Volume 18, issue 4 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Other MSP Journals
Tetrahedra of flags, volume and homology of $\mathrm{SL}(3)$

Nicolas Bergeron, Elisha Falbel and Antonin Guilloux

Geometry & Topology 18 (2014) 1911–1971
Bibliography
1 N Bergeron, E Falbel, A Guilloux, Local rigidity for $\mathrm{PGL}(3 , \mathbb{C})$ representations of $3$–manifold groups, Exp. Math. 22 (2013) 410
2 F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233 MR1413855
3 F Bonahon, A Schläfli-type formula for convex cores of hyperbolic $3$–manifolds, J. Differential Geom. 50 (1998) 25 MR1678473
4 T Dimofte, M Gabella, A Goncharov, $K\!$–decompositions and $3d$ gauge theories, arXiv:1301.0192
5 E Falbel, A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69 MR2401419
6 E Falbel, A volume function for spherical CR tetrahedra, Q. J. Math. 62 (2011) 397 MR2805210
7 E Falbel, P V Koseleff, F Rouillier, Representations of fundamental groups of $3$–manifolds into $\mathrm{PGL}(3,\mathbb{C})$: Exact computations in low complexity, arXiv:1307.6697
8 E Falbel, Q Wang, A combinatorial invariant for spherical CR structures, Asian J. Math. 17 (2013) 391 MR3119793
9 V V Fock, A B Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) 1 MR2233852
10 V V Fock, A B Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009) 865 MR2567745
11 S Garoufalidis, M Goerner, C Zickert, Gluing equations for $\mathrm{PGL}(n,\mathbb{C})$–representations of $3$–manifolds, arXiv:1207.6711
12 S Garoufalidis, D Thurston, C Zickert, The complex volume of $\mathrm{SL}(n,\mathbb{C})$–representations of $3$–manifolds, (2013) arXiv:1111.2828v2
13 J Genzmer, Sur les triangulations des structures CR–sphériques, PhD thesis, Université Pierre et Marie Curie (2010)
14 H Jacobowitz, An introduction to CR structures, Mathematical Surveys and Monographs 32, Amer. Math. Soc. (1990) MR1067341
15 Y Kabaya, Pre-Bloch invariants of $3$–manifolds with boundary, Topology Appl. 154 (2007) 2656 MR2340949
16 W D Neumann, Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic $3$–manifolds, from: "Topology '90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 243 MR1184415
17 W D Neumann, Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413 MR2033484
18 W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 MR815482
19 R Riley, A personal account of the discovery of hyperbolic structures on some knot complements, Expo. Math. 31 (2013) 104 MR3057120
20 A A Suslin, Homology of $\mathrm{GL}_{n}$, characteristic classes and Milnor $K\!$–theory, Trudy Mat. Inst. Steklov. 165 (1984) 188 MR752941
21 W P Thurston, The geometry and topology of $3$–manifolds, lecture notes, Princeton University (1978–1981)
22 D Zagier, The dilogarithm function, from: "Frontiers in number theory, physics, and geometry, II" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer, Berlin (2007) 3 MR2290758
23 C Zickert, The extended Bloch group and algebraic $K\!$–theory, (2010) arXiv:0910.4005v3