Volume 18, issue 4 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29, 1 issue

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Lipschitz connectivity and filling invariants in solvable groups and buildings

Robert Young

Geometry & Topology 18 (2014) 2375–2417
Bibliography
1 P Abramenko, Twin buildings and applications to $S$–arithmetic groups, Lecture Notes in Math. 1641, Springer (1996) MR1624276
2 P Abramenko, K S Brown, Buildings, Graduate Texts in Math. 248, Springer (2008) MR2439729
3 A Abrams, N Brady, P Dani, M Duchin, R Young, Pushing fillings in right-angled Artin groups, J. Lond. Math. Soc. 87 (2013) 663 MR3073670
4 L Ambrosio, B Kirchheim, Currents in metric spaces, Acta Math. 185 (2000) 1 MR1794185
5 M Bestvina, A Eskin, K Wortman, Filling boundaries of coarse manifolds in semisimple and solvable arithmetic groups, J. Eur. Math. Soc. (JEMS) 15 (2013) 2165 MR3120741
6 K U Bux, K Wortman, Finiteness properties of arithmetic groups over function fields, Invent. Math. 167 (2007) 355 MR2270455
7 K U Bux, K Wortman, Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups, Invent. Math. 185 (2011) 395 MR2819164
8 Y de Cornulier, R Tessera, Metabelian groups with quadratic Dehn function and Baumslag–Solitar groups, Confluentes Math. 2 (2010) 431 MR2764812
9 C Druţu, Filling in solvable groups and in lattices in semisimple groups, Topology 43 (2004) 983 MR2079992
10 D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett Publishers (1992) MR1161694
11 S M Gersten, Isoperimetric and isodiametric functions of finite presentations, from: "Geometric group theory, Vol. 1" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 79 MR1238517
12 C Groft, Generalized Dehn functions, II, arXiv:0901.2317
13 M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1 MR697984
14 M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1 MR1253544
15 M Gromov, Carnot–Carathéodory spaces seen from within, from: "Sub-Riemannian geometry" (editors A Bellaïche, J J Risler), Progr. Math. 144, Birkhäuser (1996) 79 MR1421823
16 B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 639 MR1447034
17 U Lang, T Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 2005 (2005) 3625 MR2200122
18 E Leuzinger, C Pittet, Isoperimetric inequalities for lattices in semisimple Lie groups of rank $2$, Geom. Funct. Anal. 6 (1996) 489 MR1392327
19 A Lubotzky, S Mozes, M S Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. 91 (2000) 5 MR1828742
20 C Pittet, Hilbert modular groups and isoperimetric inequalities, from: "Combinatorial and geometric group theory" (editors A J Duncan, N D Gilbert, J Howie), London Math. Soc. Lecture Note Ser. 204, Cambridge Univ. Press (1995) 259 MR1320289
21 B Schulz, Spherical subcomplexes of spherical buildings, Geom. Topol. 17 (2013) 531 MR3039769
22 S Wenger, A short proof of Gromov's filling inequality, Proc. Amer. Math. Soc. 136 (2008) 2937 MR2399061
23 B White, Mappings that minimize area in their homotopy classes, J. Differential Geom. 20 (1984) 433 MR788287
24 R Young, The Dehn function of $\mathrm{SL}(n;\mathbb{Z})$, Ann. of Math. (2) 177 (2013) 969 MR3034292