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Tetrahedra of flags, volume
and homology of SL.3/
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In the paper we define a “volume” for simplicial complexes of flag tetrahedra. This
generalizes and unifies the classical volume of hyperbolic manifolds and the volume
of CR tetrahedral complexes considered in Falbel [6], and Falbel and Wang [8]. We
describe when this volume belongs to the Bloch group and more generally describe a
variation formula in terms of boundary data. In doing so, we recover and generalize
results of Neumann and Zagier [18], Neumann [16] and Kabaya [15]. Our approach
is very related to the work of Fock and Goncharov [9; 10].

57M50; 57N10, 57R20

1 Introduction

Let M be a complete hyperbolic 3–manifold. The holonomy of the geometric represen-
tation �geomW �1.M /! PGL.2;C/ is faithful and has discrete image. If d W �M !H3

is a developing map for �geom we may define the volume of �geom as the integral of
the pull-back by d of the hyperbolic volume form over a fundamental domain for M .
It follows from Mostow’s rigidity theorem that the volume of �geom is a topological
invariant of M . If the complete hyperbolic manifold M has cusps, Thurston showed
that one could obtain complete hyperbolic structures on manifolds obtained from M by
Dehn surgery by gluing a solid torus with a sufficiently long geodesic. Thurston framed
his results for general representations �W �1.M /! PGL.2;C/, which do not need
to be injective (or even discrete). The corresponding hyperbolic structures on M are
not complete; still, there is a well-defined notion of volume of � . For a representation
� associated to a Dehn surgery on M , the volume of � is the volume of the metric
completion of the corresponding hyperbolic structure on M . Neumann and Zagier [18]
and afterwards Neumann [16] provided a deeper analysis of these deformations of
�geom and their volumes. In particular, they showed that the variation of the volume
depends only on the geometry of the boundary and they gave a precise formula for
that variation in terms of the boundary holonomy. They work in the natural setting of
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decorated triangulations. In this introduction we first briefly recall the classical work
of Neumann and Zagier in order to motivate our main results, which are PGL.3;C/
analogues of theirs.

1.1 Ideal triangulations

An ordered simplex is a simplex with a fixed vertex ordering. Recall that an orientation
of a set of vertices is a numbering of the elements of this set up to even permutation.
The face of an ordered simplex inherits an orientation. We call abstract triangulation a
pair T D ..T�/�D1;:::;N ; ˆ/, where .T�/�D1;:::;N is a finite family of abstract ordered
simplicial tetrahedra and ˆ is a matching of the faces of the T� reversing the orientation.
For any simplicial tetrahedron T , we define Trunc.T / as the tetrahedron truncated
at each vertex. The space obtained from Trunc.T�/ after matching the faces will be
denoted by K .

We call triangulation – or rather ideal triangulation – of a compact 3–manifold M

with boundary an abstract triangulation T and an oriented homeomorphism

K D

NG
�D1

Trunc.T�/=ˆ!M:

1.2 Neumann–Zagier bilinear relations

Thurston has proposed to parametrize the set of conjugacy classes of representations of
�1.M / in PGL.2;C/ by solutions of a system of polynomial equations – called gluing
equations – associated to the combinatorial data T . Indeed, an ideal tetrahedron T of
H3 is described completely (up to isometry) by a single complex number z 2C�f0; 1g.
The numbers z , 1�1=z and 1=.1�z/ give the same tetrahedron; to specify z uniquely
we must pick an edge of T . Making such a choice for each T� and letting z� D z.T�/,
we end up with one of the three complex numbers z� , 1�1=z� and 1=.1�z�/ attached
to each edge of T� . The necessary and sufficient condition that gluing these ideal
tetrahedra gives a (not necessarily complete) hyperbolic manifold is that at each 1–cell
e of T the tetrahedra T� abutting to e “close up” as one goes around e ; see [18,
page 312]. This may be encoded in an equation of the form

(1.2.1)
Y
�

z
r 0
j�

� .1� z�/
r 00
j� D˙1;

where R0D .r 0j�/ and R00D .r 00j�/ are matrices with integer entries, whose columns are
parametrized by the simplices of T and whose lines are parametrized by the 1–cells
of K . For simplicity in this introduction we shall assume that the boundary of M is a
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disjoint union of a finite collection of 2–dimensional tori. The most important family
of examples is the compact 3–manifolds whose interior carries a complete hyperbolic
structure of finite volume. By a simple Euler characteristic count we then have that
the number of 1–cells of K is equal to the number N of tetrahedra. In particular R0
and R00 are square matrices of size N . Solving these gluing equations gives rise to an
efficient algorithm for constructing hyperbolic structures, which has been implemented
in SnapPea. One key feature of the gluing equations is the symplectic property of the
matrix R D .R0 j R00/ obtained as the concatenation of the matrices R0 and R00 in
(1.2.1). Namely, denoting by

J2N D

�
0 IN

�IN 0

�
the standard symplectic matrix on C2N , we have:

(1) The rows of R Poisson commute, ie RJ2N
tRD 0.

(2) Denoting by ŒR� the subspace of C2N generated by row vectors and by ŒR�?
its orthogonal with respect to the symplectic form associated to J2N , we have a
symplectic isomorphism

ŒR�?=ŒR�ŠH1.@M /;

where the right-hand side is equipped with twice the intersection product on
each boundary torus.

The proofs of these two facts are due to Neumann and Zagier [18, Theorem 2.2]; it is
the fundamental ingredient from which all the results of [18] follow.

1.3 Overview of the paper

Here we consider representations � of �1.M / in PGL.3;C/. This framework includes
both hyperbolic structures, CR structures on 3–manifolds (that is, .S3;PU.2; 1//–
geometric structures) and 3–dimensional real flag structures (that is, .SL.3;R/=B;
SL.3;R//–geometric structures, where B is the Borel subgroup of upper-triangular
matrices). One motivation is to build an efficient algorithm for constructing geometric
structures on 3–manifolds; we shall explain in Section 10 that our work can indeed
be effectively implemented in a large number of cases to build new representations of
�1.M / into PU.2; 1/ and PGL.3;R/.

So consider a representation � of the fundamental group of M in PGL.3;C/. We first
note that � is parabolic: the peripheral holonomies preserve a flag in C3 . Recall that
a flag in C3 is a line in a plane of C3 . An affine flag in C3 is the data of a non-zero
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point x 2 C3 and a non-zero linear form f W C3! C such that f .x/D 0. We say
that � is unipotent if the peripheral holonomies preserve an affine flag in C3 . The fact
that � is always parabolic links us to the work of Fock and Goncharov [9; 10]; we
indeed make intensive use of their combinatorics on the space of representations of
surface groups in SL.3;R/.

Following Thurston’s approach in the PGL.2;C/ case, rather than working with
representations of �1M into PGL.3;C/, we study decorations of simplicial complexes
by cross-ratios associated to tetrahedral configurations of flags. Our paper is then
divided into two parts. The first is purely local and deals with configurations of flags
and decorations of tetrahedra. The second part is global and deals with decoration of
tetrahedral complexes. We give a more precise overview in the two paragraphs below.

1.3.1 The local picture In Section 2 we describe flags and configuration of flags.
We associate to a tetrahedron of flags (resp. of affine flags) a set of 16 complex
z–coordinates (resp. a–coordinates); 12 coordinates associated to the edges of the
tetrahedron (one for each oriented edge) and four coordinates associated to the faces; see
Figure 3. Those are, in the Fock and Goncharov setting, the a– and z–coordinates on
the boundary of each tetrahedron, namely a four-holed sphere. Similar coordinates have
been independently considered by Garoufalidis, Goerner, Thurston and Zickert [11; 12]
who refer to them as respectively shape and Ptolemy coordinates. These data define
a decorated tetrahedron. Note that there are a lot of relations between the different
z–coordinates; these are studied in Section 2. In particular we prove (Proposition 2.4.1)
that a decorated tetrahedron is parametrized by the 4 coordinates associated to two
opposite edges.

In Section 3 we use these coordinates to define the volume of a decorated tetrahedron,
generalizing and unifying the volume of hyperbolic tetrahedra and CR tetrahedra.
This volume is “natural” in the sense that when extended to define the volume of a
simplicial complex of flag tetrahedra it is invariant under a change of triangulation of the
simplicial complex (2-3 moves). In other words, it is natural to first define a map from
the space of tetrahedra to the pre-Bloch group P.C/, which is defined as the abelian
group generated by all the points in C n f0; 1g quotiented by the 5–term relations (see
Section 3 for definitions and references). Eventually we obtain a well-defined volume

VolD 1
4
D ıˇW H3.F l/!R

(see Definition 3.2.1). Here H3.F l/ is the degree-3 homology group of the space of
flags, ˇ is a map from H3.F l/ to the pre-Bloch group P.C/ and DW P.C/!R is
the dilogarithm.
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We moreover relate our work to Suslin’s work on K3 , showing that our volume map
is essentially the Suslin map S from the (discrete) homology group H3.SL.3;C// to
the pre-Bloch group P.C/ (see Suslin [20]). Indeed: composing ˇ with the natural
projection �� from H3.SL.3;C// to H3.F l/, we end up with a “volume map” ˇ ı
��W H3.SL.3;C//! P.C/.

Theorem (see Theorem 3.5.1) The “volume map” 1
4
ˇ ı��W H3.SL.3;C//!P.C/

coincides with Suslin’s map S .

This gives a geometric and intuitive construction of the latter. Here we are very close
to the work of Zickert on the extended Bloch group [23].

Note that the volume function on hyperbolic manifolds was already extended in [6; 8] in
order to deal with Cauchy–Riemann (CR). The definition there is valid for “cross-ratio
structures” (which include hyperbolic and CR structures). It turns out to be a coordinate
description of decorated triangulations and the invariant in P.C/ coincides with the
one defined before up to a multiple of four.

The Bloch group B.C/ is a subgroup of the pre-Bloch group P.C/. It is defined as
the kernel of the map

ıW P.C/!C� ^Z C�

given by ı.Œz�/D z ^ .1� z/. The volume and the Chern–Simons invariant can then
be seen through a function (the Bloch regulator)

B.C/!C=Q:

The imaginary part is related to the volume and the real part is related to the Chern–
Simons CS mod Q invariant.

In Section 4 we associate to a decorated tetrahedron T the element ı.ˇ.T //2C�^ZC� ,
where ˇ.T / 2 P.C/ is the “volume” defined in the previous section, and compute it
using both a–coordinates and z–coordinates. The motivations for such computations
range over three different directions. At first, the algebraic meaning of the map ı in
relation with the Bloch group justifies by itself such a computation. It will allow (see
Section 6) a geometric interpretation of elements in the Bloch group and prove that
the Suslin map takes values in that group. Second it gives a grasp on our volume map,
as it gives a formula for its derivative. The third direction of interest lies more in the
proofs of our formulas: we link the quantity ı.ˇ.T // to properties of natural 2–forms
on the spaces of coordinates. This lays down the foundations for the remainder of the
paper where we focus on these 2–forms and relate them to a well-known two-form,
namely the Weil–Petersson form for surfaces (see Section 7).

Geometry & Topology, Volume 18 (2014)



1916 Nicolas Bergeron, Elisha Falbel and Antonin Guilloux

We compute ı.ˇ.T // in two different ways. The first uses a–coordinates associated to
some lift of T as a tetrahedron of affine flags. In that respect we mainly follow Fock
and Goncharov. The second way directly deals with z–coordinates and is related to
the work of Neumann and Zagier. In the global part it will turn out to be fruitful to
mix those two approaches.

1.3.2 The global picture This local work being done, we move on in Section 5
to the framework of decorated simplicial complexes. The decoration consists of a–
coordinates or z–coordinates associated to each tetrahedron and satisfying appropriate
compatibility conditions along edges and faces. This defines parabolic and unipotent
decorations of the pair .M; T /. Parabolic decorations provide a generalization to
PGL.3;C/ of Thurston’s work described above: to each tetrahedron of T we now
associate a set of 16 non-zero complex coordinates. As in the PGL.2;C/ case, these
coordinates are subject to consistency relations after gluing by ˆ. We give a complete
description of these gluing equations.

Solving the gluing equations gives rise to an efficient algorithm for constructing repre-
sentations �1.M /! PGL.3;C/. We provide an explicit computation of the holonomy
representation associated to such a decoration. In particular we list the remaining
compatibility equations needed for the decoration to be unipotent. In Section 10 this is
used to describe all unipotent decorations on the complement of the figure-eight knot.
A systematic computation of all unipotent decorations of triangulated low complexity
hyperbolic manifolds was undertaken in Falbel, Koseleff and Rouillier [7] where details
of the computation for the figure eight-knot are described. We refer to this paper for
further examples. The natural question of the rigidity of unipotent representation is
investigated in Bergeron, Falbel and Guilloux [1] (see also Genzmer [13]).

Associated to a general decorated complex K we have a “volume” element

ˇ D ˇ.K/ WD

NX
�D1

ˇ.T�/ 2 P.C/:

The main result of this paper (Theorem 5.5.1) is an explicit computation of ı.ˇ.K//,
which turns out to depend only on boundary data. The general result is a bit too
technical to be stated in this introduction. Let us note that even in the PGL.2;C/ case
it appears to be new in this generality; see Kabaya [15] and Bonahon [3].

The proof of Theorem 5.5.1 occupies three sections. We first give in Section 6 a proof
of Theorem 5.5.1 in a special case, namely when the decoration is unipotent. This
will give a new proof that the Suslin map takes values in the Bloch group. We then
deal with the proof of the general case in Sections 7 and 8. In doing so we have to
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develop a generalization of the Neumann–Zagier symplectic property to the PGL.3;C/
case. To do so we heavily use the point of view developed in Section 4 and the 2–form
constructed there. Theorem 5.5.1 finally yields a variational formula for the volume.
This is addressed in Section 11.1.

Recall that the 16 complex coordinates associated to each tetrahedron of T are subject
to relations. These relations are linearized in Section 4 so that we may think of the set
of all coordinates of the simplicial complex K as an element

z 2 HomZ.J;C
�/;

where J is a Z–module of dimension 8N and C� is seen as a Z–module. In Section 6
we linearize the gluing equations:

Proposition (Lemma 6.1.1) An element z 2 HomZ.J;C
�/ satisfies the gluing

equations if and only if it is trivial on the image of the linear map denoted by F 0
in Section 7.3.

It will be enough in this introduction to note that the domain of F 0 is a Z–module of
dimension 4N . The image of F 0 is the direct analog of the space ŒR� in the work of
Neumann–Zagier alluded to above. As in Neumann [16] this subspace arises here very
naturally.

In Section 4 the Z–module J is naturally equipped with a non-degenerate skew-
symmetric form �. This form turns out to be the natural generalization of Neumann–
Zagier symplectic form. The following proposition is the direct analog of the first part
of Neumann–Zagier bilinear relations.

Proposition (see (7.3.3)) The subspace Im.F 0/ is contained in Im.F 0/?� .

In fact we introduce a larger Z–module J 2 corresponding to the space of all 16
coordinates on each tetrahedron. The module J is then a quotient of J 2 . Now J 2 is
naturally equipped with a skew-symmetric form �2 that was already considered by
Fock and Goncharov in a somewhat different context. The form � is induced by �2

on the quotient. Everything being set up this way the proof of the above proposition
turns out to be a tautology.

A quite similar generalization of the first part of Neumann–Zagier bilinear relations
has been independently worked out by Garoufalidis, Goerner and Zickert [11] in the
general PGL.n;C/ case. What is more subtle is the second part of Neumann–Zagier
bilinear relations.

From the above proposition it follows that � induces a skew-symmetric form on the
quotient

H.J /D Im.F 0/?�= Im.F 0/:
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In this setting, our main result implies that � is non-degenerate on the quotient and
relates the quotient symplectic space with the “Goldman–Weil–Petersson” form wp
on H 1.@M;C2/. Recall that restricted to a torus component of @M the form wp is
defined as the coupling of the cup product on H 1 with the scalar product h � ; � i on Z2

defined by D� n

m

�
;
� n0

m0
�E
D

1
3
.2nn0C 2mm0C nm0C n0m/I

see Section 7.1.2.

Theorem (Corollary 7.3.2) The form � induces a non-degenerate skew-symmetric
form on H.J /. Moreover, tensored with C the dual symplectic space .H.J /�; ��/ is
symplectically isomorphic to .H 1.@M;C2/;wp/.

The core of the proof of this theorem goes along the same lines as the homological proof
of Neumann [16] of the Neumann–Zagier bilinear relations. We nevertheless believe
that the use of the combinatorics of Fock and Goncharov sheds some light on Neumann’s
work even in the classical PGL.2;C/ case. The two theories fit well together, allowing
a new understanding, in particular, of the Neumann–Zagier symplectic form. Indeed, an
interesting point of our proof is that the Goldman–Weil–Petersson form for peripheral
tori naturally arises.

Finally in Section 11, we describe applications of Theorem 5.5.1. First, we follow
again Neumann–Zagier and obtain an explicit formula for the variation of the volume
function that only depends on boundary data. Then, relying on remarks of Fock and
Goncharov, we describe a 2–form on the space of representations of the boundary
of our variety, which coincides with Weil–Petersson form in some cases (namely for
hyperbolic structures and unipotent decorations). We should also mention that the
Theorem above – generalizing Neumann–Zagier bilinear relations – has been used in
[1] to prove new rigidity results for representations of �1.M / into PGL.3;C/.

For the ease of reading we have added at the end of the paper an index of the most
important symbols used in the text.
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2 Configurations of flags and cross-ratios

We consider in this section the flag variety F l and the affine flag variety AF l of
SL.3; k/ for a field k . We define coordinates on the configurations of 4 flags (or affine
flags) that are very similar to the coordinates used by Fock and Goncharov [9].

2.1 Flags, affine flags and their spaces of configuration

We set up notation here for our objects of interest.

2.1.1 The spaces of flags and affine flags Let k be a field and V D k3 . A flag in
V is usually seen as a line and a plane, the line belonging to the plane. We give, for
commodity reasons, the following alternative description using the dual vector space
V � and the projective spaces P .V / and P .V �/:

We define the spaces of affine flags AF l.k/ and flags F l.k/ by

AF l.k/D f.x; f / 2 .V n f0g/� .V � n f0g/ such that f .x/D 0g;(2.1.1)

F l.k/D f.Œx�; Œf �/ 2 P .V /�P .V �/ such that f .x/D 0g:(2.1.2)

The space of flags F l.k/ is identified with the homogeneous space PGL.3; k/=B ,
where B is the Borel subgroup of upper-triangular matrices in PGL.3; k/. Similarly,
the space of affine flags AF l.k/ is identified with the homogeneous space SL.3; k/=U ,
where U is the subgroup of unipotent upper-triangular matrices in SL.3; k/. When k

is fixed, we simply denote F l and AF l the spaces of flags or affine flags.

2.1.2 Configuration modules Given a G–space X , we classically define the con-
figuration module of ordered points in X as follows. For n� 0, let Cn.X / be the free
abelian group generated by the set

.p0; : : : ;pn/ 2X nC1

of all ordered .nC 1/ set of points in X . The group G acts on X and therefore also
acts diagonally on Cn.X / giving it a left G –module structure.

We define the differential dnW Cn.X /! Cn�1.X / by

dn.p0; : : : ;pn/D

nX
iD0

.�1/i.p0; : : : ; ypi : : : : ;pn/:

Then we can check that every dn is a G –module homomorphism and dn ı dnC1 D 0.
Hence we have the G –complex

C�.X /W � � � ! Cn.X /! Cn�1.X /! � � � ! C0.X /:
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The augmentation map �W C0.X /! Z is defined on generators by �.p/D 1 for each
p 2X . If X is infinite, the augmentation complex is exact.

For a left G –module M , we denote by MG its group of coinvariants, that is,

MG DM=hgm�m for all g 2G;m 2M i:

Taking the coinvariants of the complex C�.X /, we get the induced complex

C�.X /G W � � � ! Cn.X /G! Cn�1.X /G! � � � ! C0.X /G ;

with differential xdnW Cn.X /G ! Cn�1.X /G induced by dn . We call H�.X / the
homology of this complex.

We now let G D PGL.3; k/ and X D F l . For every integer n� 0, the Z–module of
coinvariant configurations of nC 1 ordered flags is defined by

C�.F l/D C�.F l/G :

The natural projection � W SL.3; k/! PGL.3; k/! PGL.3; k/=B D F l gives a map

��W H3.SL.3; k//!H3.F l/:

We will study in this paper the homology groups H3.SL.3; k// (which is the third
group of discrete homology of SL.3; k/), H3.AF l/ and H3.F l/.

It is useful to consider a subcomplex of C�.F l/ of generic configurations. We leave to
the reader the verification that indeed the definition below gives rise to subcomplexes
of C3.F l/ and C3.F l/.

Definition 2.1.1 A generic configuration of flags .Œxi �; Œfi �/, 1� i � nC 1, is given
by nC 1 points Œxi � in general position and nC 1 lines Ker fi in P .V / such that
fj .xi/ ¤ 0 if i ¤ j . We will denote C r

n .F l/ � Cn.F l/ and Cr
n.F l/ � Cn.F l/ the

corresponding module of configurations and its coinvariant module by the diagonal
action by SL.3; k/.

A configuration of ordered points in P .V / is said to be in general position when they
are all distinct and no three points are contained in the same line. Observe that the
genericity condition of flags does not imply that the lines are in a general position.

2.2 Coordinates for a triangle of flags

Since G acts transitively on C r
1
.F l/, we see that C r

n .F l/G D Z if n � 1, and the
differential xd1W C

r
1
.F l/G! C r

0
.F l/G is zero.
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In order to describe Cr
2
.F l/, consider a configuration of 3 generic flags

.Œxi �; Œfi �/1�i�3 2 Cr
2.F l/;

called a triangle of flags. One can then define a projective coordinate system of P .C3/:
take the one where the point x1 has coordinates Œ1 W 0 W 0�t , the point x2 has coordinates
Œ0 W 0 W 1�t , the point x3 has coordinates Œ1 W �1 W 1�t and the intersection of Ker.f1/ and
Ker.f2/ has coordinates Œ0 W 1 W 0�t . The line Ker.f3/ then has coordinates Œz W zC1 W 1�,
where

z D
f1.x2/f2.x3/f3.x1/

f1.x3/f2.x1/f3.x2/
2 k�

is the triple ratio. We have Cr
2
.F l/DZŒk��. Moreover the differential xd2W C

r
2
.F l/G!

C r
1
.F l/G is given on generators z 2 k� by xd2.z/D 1 and therefore H1.F l/D 0.

We denote by z123 the triple ratio of a cyclically oriented triple of flags .Œxi �; Œfi �/iD1;2;3 .
Note that z213 D 1=z123 .

2.3 Coordinates for a tetrahedron of flags

We call a generic configuration of 4 flags a tetrahedron of flags. The coordinates we
use for a tetrahedron of flags are the same as those used by Fock and Goncharov [9]
to describe a flip in a triangulation. We may see it as a blow-up of the flip into a
tetrahedron. They also coincide with coordinates used in [6] to describe a cross-ratio
structure on a tetrahedron (see also Section 3.4).

Let .Œxi �; Œfi �/1�i�4 be an element of C3.F l/. Let us dispose symbolically these flags
on a tetrahedron 1234 (see Figure 1). We define a set of 12 coordinates on the edges
of the tetrahedron (1 for each oriented edge) and a set of 4 coordinates associated to
the faces.

2.3.1 Edge coordinates To define the coordinate zij associated to the edge ij , we
first define k and l such that the permutation .1; 2; 3; 4/ 7! .i; j ; k; l/ is even. The
pencil of (projective) lines through the point xi is a projective line P1.k/. We naturally
have four points in this projective line: the line ker.fi/ and the three lines through xi

and one of the xi0 for i 0 ¤ i . We define zij as the cross-ratio1 of these four points,

(2.3.1) zij WD Œker.fi/; .xixj /; .xixk/; .xixl/�:

We may rewrite this cross-ratio thanks to the following useful lemma.

1Note that we follow the convention (different from the one used by Fock and Goncharov) that the
cross-ratio of four points x1;x2;x3;x4 on a line is the value at x4 of a projective coordinate taking value
1 at x1 , 0 at x2 , and 1 at x3 . So we employ the formula .x1 � x3/.x2 � x4/=..x1 � x4/.x2 � x3//

for the cross-ratio.
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1

2 3

4

Figure 1: An ordered tetrahedron

Lemma 2.3.1 We have

zij D
fi.xk/ det.xi ;xj ;xl/

fi.xl/ det.xi ;xj ;xk/
:

Here the determinant is taken with respect to the canonical basis on V .

Ker.fi/

xiyi

xj

xk

xl

yj

Figure 2: Cross-ratio

Proof Consider Figure 2. By duality, zij is the cross-ratio between the points
yi ;yj and xk ;xl on the line .xkxl/. Now, fi is a linear form vanishing at yi and
det.xi ;xj ; � / is a linear form vanishing at yj . Hence, on the line .xkxl/, the linear
form fi.x/ is proportional to . � � yi/ and det.xi ;xj ; � / is proportional to . � � yj /.
This proves the formula.
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2.3.2 Face coordinates Each face .ij k/ inherits a canonical orientation as the bound-
ary of the tetrahedron .1234/. Hence, to the face .ij k/, we associate the 3–ratio of
the corresponding cyclically oriented triple of flags:

(2.3.2) zijk D
fi.xj /fj .xk/fk.xi/

fi.xk/fj .xi/fk.xj /
:

Observe that if the same face .ikj / (with opposite orientation) is common to a second
tetrahedron then

zikj D
1

zijk
:

Figure 3 displays the coordinates.

i

j k

l

zij zik

zil

zilj

zijk

zikl

Figure 3: The z–coordinates for a tetrahedron

2.3.3 Relations between coordinates There are relations between the whole set of
coordinates. Fix an even permutation .i; j ; k; l/ of .1; 2; 3; 4/. First, for each face
.ij k/, the 3–ratio is the opposite of the product of all cross-ratios “leaving” this face:

(2.3.3) zijk D�zilzjlzkl :

Second, the three cross-ratios leaving a vertex are algebraically related by

(2.3.4) zik D
1

1�zij
; zil D 1�

1

zij
:

Relations (2.3.4) are directly deduced from the definition of the coordinates zij , while
relation (2.3.3) is a consequence of Lemma 2.3.1.
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2.4 A choice of parameters

At this point, we choose four coordinates, one for each vertex: z12 , z21 , z34 , z43 .
The next proposition shows that a tetrahedron is uniquely determined by these four
numbers, up to the action of PGL.3; k/. It also shows that the space of cross-ratio
structures on a tetrahedron of flags defined in [6] coincides with the space of generic
tetrahedra as defined above.

Proposition 2.4.1 A tetrahedron of flags is parametrized by the 4–tuple .z12; z21; z34;

z43/ of elements in k n f0; 1g. In other terms, we have

Cr
3.F l/' Z

�
.k n f0; 1g/4

�
:

Proof Let e1 , e2 , e3 be the canonical basis of V and .e�
1
; e�

2
; e�

3
/ its dual basis. Up

to the action of PGL.3; k/, an element .Œxi �; Œfi �/ of Cr
3
.F l/ is uniquely given, by a

slight abuse of notation, as:

� x1 D .1; 0; 0/, f1 D .0; z1;�1/

� x2 D .0; 1; 0/, f2 D .z2; 0;�1/

� x3 D .0; 0; 1/, f3 D .z3;�1; 0/

� x4 D .1; 1; 1/, f4 D z4.1;�1; 0/C .0; 1;�1/

Observe that zi ¤ 0 and zi ¤ 1 by the genericity condition. Now we compute, using
Lemma 2.3.1 for instance, that z12 D

1
1�z1

, z21 D 1� z2 , z34 D z3 , z43 D 1� z�1
4

,
completing the proof.

We note that one can then compute xd3W C
r
3
.F l/G ! C r

2
.F l/G on the generators of

C r
3
.F l/G to be

xd3.z12; z21; z34; z43/D Œz123�� Œz124�C Œz134�� Œz234�:

2.5 Coordinates for affine flags

We will also need coordinates for a tetrahedron of affine flags (the a–coordinates in
Fock and Goncharov [9]). Let .xi ; fi/1�i�4 be an element of C3.AF l/. We also
define a set of 12 coordinates on the edges of the tetrahedron (one for each oriented
edge) and four coordinates associated to the faces.

We associate to the edge ij the number aij D fi.xj / and to the face ij k (oriented as
the boundary of the tetrahedron) the number aijk D det.xi ;xj ;xk/.

There are some relations between them, but they will not be of interest for us.
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2.6 From affine flags to flags

By definition there is a natural projection AF l ! F l : it consists in projectivizing
the flags. It extends to a map Cr

3
.AF l/! Cr

3
.F l/. In other terms, when you give

coordinates .aij ; aijk/ for a tetrahedron of affine flags, you also have a tetrahedron of
flags and hence coordinates .zij ; zijk/.

We remark that the z–coordinates are ratios (up to a sign) of the affine coordinates:

(2.6.1) zij D�
aikailj

ailaijk

and zijk D
aij ajkaki

aikajiakj

:

3 Tetrahedra of flags and volume

In this section we define the volume of a tetrahedron of flags, generalizing and unifying
the volume of hyperbolic tetrahedra (see Section 3.3) and CR tetrahedra (see [6] and
Section 3.4). Via Proposition 2.4.1, it coincides with the volume function on cross-ratio
structures on a tetrahedron as defined in [6].

3.1 The pre-Bloch group, the dilogarithm and the volume

We define a volume for a tetrahedron of flags by constructing an element of the pre-
Bloch group and then taking the dilogarithm map.

The pre-Bloch group P.k/ is the quotient of the free abelian group ZŒk n f0; 1g� by
the subgroup generated by the 5–term relations

(3.1.1) Œx�� Œy�C

�
y

x

�
�

�
1�x�1

1�y�1

�
C

�
1�x

1�y

�
for all x;y 2 k n f0; 1g:

For a tetrahedron of flags T , let zij D zij .T / and zijk D zijk.T / be its coordinates.

For each tetrahedron of flags, define the element

ˇ.T /D Œz12�C Œz21�C Œz34�C Œz43� 2 P.C/
and extend it – by linearity – to a function

(3.1.2) ˇW Cr
3.F l/! P.C/:

We emphasize here that ˇ.T / depends on the ordering of the vertices of the tetrahedron
of flags2 T . The following proposition implies that ˇ is well defined on H3.F l/.

2This assumption may be removed by averaging ˇ over all orderings of the vertices. In any case if c

is a chain in C3.F l/ representing a cycle in C3.F l/ we can represent c by a closed 3–cycle K together
with a numbering of the vertices of each tetrahedron of K (see Section 5.2.2).
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Proposition 3.1.1 The map ˇ vanishes on the boundary space xd4.Cr
4
.F l//.

Proof We have to show that Im.xd4/ is contained in the subgroup generated by the
5–term relations. This is proven by computation and is exactly the content of [6,
Theorem 5.2].3

3.2 Dilogarithm and volume

We assume in this subsection that k is a subfield of C . The Bloch–Wigner dilogarithm
function is

D.x/D arg .1�x/ log jxj � Im
�Z x

0

log .1� t/
dt

t

�
;

D arg .1�x/ log jxjC Im.ln2.x//:

Here ln2.x/D
R x

0 log .1� t/dt
t

is the dilogarithm function. The function D is well-
defined and real analytic on C�f0; 1g and extends to a continuous function on P1.C/
by defining D.0/DD.1/DD.1/D 0. It satisfies the 5–term relation and therefore,
for k a subfield of C , gives rise to a well-defined map

DW P.k/!R

given by linear extension as

D

� kX
iD1

ni Œxi �

�
D

kX
iD1

niD.xi/:

It is known that the function D is related to the volume of hyperbolic ideal tetrahedra;
see Section 3.3.

We finally define the volume map on Cr
3
.F l/ via the dilogarithm (the constant will be

explained in the next section):

Definition 3.2.1 When k is a subfield of C , the volume map VolW Cr
3
.F l/! C is

defined by
VolD 1

4
D ıˇ:

From Proposition 3.1.1, Vol is well defined on H3.F l/.

From the previous definition, we see how closely is ˇ related to Vol. We will occa-
sionally abuse notation and call ˇ the volume map.

3Another point of view is given by Dimofte, Gabella and Goncharov [4].
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3.3 The hyperbolic case

We briefly explain here how the hyperbolic volume for ideal tetrahedra in the hyperbolic
space H3 fits into the framework described above.

An ideal hyperbolic tetrahedron is given by 4 points on the boundary of H3 , ie P1.C/.
Up to the action of SL.2;C/, these points are in homogeneous coordinates Œ0; 1�, Œ1; 0�,
Œ1; 1� and Œ1; t �; the complex number t being the cross-ratio of these four points. Its
volume is then D.t/ (see eg Zagier [22]).

Here we present how P1.C/ naturally embeds into F l in such a way that our map
Vol coincide with the hyperbolic volume. For that purpose, let us identify C3 with the
Lie algebra sl.2;C/. We then have the adjoint action of SL.2;C/ on C3 preserving
the quadratic form given by the determinant on sl.2;C/. In usual coordinates, it is
given by xz�y2 . The group SL.2;C/ preserves the isotropic cone of this form. The
projectivization of this cone is identified to P1.C/ via the Veronese map (in canonical
coordinates)

h1W P1.C/! P2.C/; Œx;y� 7! Œx2;xy;y2� :

The first jet of that map gives a map h from P1.C/ to the variety of flags F l . A
convenient description of that map is obtained thanks to the identification between C3

and its dual given by the quadratic form. Denote by h � ; � i the bilinear form associated
to the determinant. Then we have

hW P1.C/! F l; p 7! .h1.p/; hh1.p/; � i/:

Let T be the tetrahedron of flags h.Œ0; 1�/, h.Œ1; 0�/, h.Œ1; 1�/ and h.Œ1; t �/. An easy
computation gives its coordinates:

z12.T /D t; z21.T /D t; z34.T /D t; z43.T /D t:

It implies that ˇ.T /D 4Œt � and that Vol coincides with the hyperbolic volume:

Vol.T /DD.t/:

Remark Define an involution � on the z–coordinates by

�.zijk/D
1

zijk

on the faces and

�.zij /D
zji.1C zilj /

zilj .1C zijk/
and �.zji/D

zij .1C zijk/

zijk.1C zilj /

on edges. The set of fixed points of � correspond exactly with the hyperbolic tetrahedra.
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3.4 The CR case

CR geometry is modeled on the sphere S3 equipped with a natural PU.2; 1/ action
(see Jacobowitz [14] for an introduction). More precisely, consider the group U.2; 1/
preserving the Hermitian form defined on C3 by

hz; wi D w�
0@0 0 1

0 1 0

1 0 0

1A z:

Define the following cones in C3 :

V0 D fz 2C3
�f0g W hz; zi D 0g;

V� D fz 2C3
W hz; zi< 0g:

Let � W C3nf0g!CP2 be the canonical projection. Then H2
CD�.V�/ is the complex

hyperbolic space and its boundary is

@H2
C D S3

D �.V0/D fŒx;y; z� 2CP2
j xxzCjyj2C zxx D 0g:

The group of biholomorphic transformations of H2
C is then PU.2; 1/, the projectiviza-

tion of U.2; 1/. It acts on S3 by CR transformations.

An element x 2 S3 gives rise to an element .Œx�; Œf �/ 2F l.C/ where Œf � corresponds
to the unique complex line tangent to S3 at x . As in the hyperbolic case we may
consider the inclusion map

h1W S
3
! P2.C/

and the first complex jet of that map gives a map

hW S3
! F l.C/;

x 7! .h1.x/; h � ; h1.x/i/:

As in the case of hyperbolic geometry, one can characterize CR tetrahedra (that is,
four flags that are the image of four points in S3 by the map h) by conditions on the
coordinates zij . Moreover one can obtain them as the fixed point set of an involution
on the space of flag tetrahedra. We will not make explicit these conditions as they will
not be used in this paper and refer the reader to Falbel [5].

As a final remark, the definition given in [6] (up to multiplication by 4) of the volume of
a CR tetrahedron TCR agrees with our definition, that is, Vol.TCR/D

1
4
D ıˇ.TCR/.
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3.5 Relations with the work of Suslin on the homology of GL.n/

We show here how our map ˇ allows a new and more geometric way to interpret the
Suslin map S W H3.SL.3; k//! P.k/ (see [20]). First of all, recall that the natural
projection � W SL.3; k/ ! F l D PGL.3; k/=B gives a map ��W H3.SL.3; k// !
H3.F l/.

Theorem 3.5.1 The Suslin map S W H3.SL.3; k//!P.k/ may be interpreted in term
of the volume map ˇ . Indeed, we have

ˇ ı�� D 4S:

Proof Let T be the subgroup of diagonal matrices (in the canonical basis) of SL.3; k/.
Recall that SL.2; k/ is seen as a subgroup of SL.3; k/ via the adjoint representation
(as in Section 3.3). We find in the work of Suslin the following three results:

(1) H3.SL.3; k//DH3.SL.2; k//CH3.T / [20, page 227]

(2) S vanishes on H3.T / [20, page 227]

(3) S coincides with the cross-ratio on H3.SL.2; k// [20, Lemma 3.4]

So we just have to understand the map ˇ ı�� on T and SL.2; k/. As T is a subgroup
of B , the map ˇ ı �� vanishes on T . And we have seen in Section 3.3 that, on a
hyperbolic tetrahedron, ˇ coincide with 4 times the cross-ratio.

This proves the theorem.

Remark After writing this section we became aware of Zickert’s paper [23]. In it
(see Section 7.1) Zickert defines a generalization – denoted y� – of Suslin’s map. When
specialized to our case his definition coincides with 1

4
ˇ ı �� . We believe that the

construction above sheds some light on the “naturality” of this map.

3.6 The Bloch group

We recall in this section the definition of the Bloch group B.k/� P.k/ as the kernel
of a map ı and relate the derivative of the dilogarithm to ı .

We use wedge ^Z for skew symmetric product on Abelian groups. Consider k�^Zk� ,
where k� is the multiplicative group of k . Recall that it is the abelian group generated
by the set x ^Z y factored by the relations

xy ^Z z D x ^Z zCy ^Z z and x ^Z y D�y ^Z x:
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In particular, 1^Z x D 0 for any x 2 k� , and

xn
^Z y D n.x ^Z y/D x ^Z yn:

The Bloch group B.k/ is defined as the kernel of the homomorphism

(3.6.1) ıW P.k/! k� ^Z k�;

which is defined on generators of P.k/ by ı.Œz�/D z ^Z .1� z/.

Computing ı.ˇ/ we will give another proof that the Suslin map S D ˇ ı�� takes its
values in the Bloch group B.k/; see Section 6.

Let us now compute the derivative of the Bloch–Wigner dilogarithm D.z/ using this
map ı . Assume once again that k �C . Then the derivatives of D.z/ are elementary
functions:

(3.6.2)
@D

@z
D

i

2

�
log j1� zj

z
C

log jzj
1� z

�
;

@D

@z
D�

i

2

�
log j1� zj

z
C

log jzj
1� z

�
:

Assume that the parameter z 2 C� is varying in dependence on a single variable t .
Then

d

dt
D.zt /D

i

2

��
log j1� zj

z
C

log jzj
1� z

�
dz

dt
�

�
log j1� zj

z
C

log jzj
1� z

�
dz

dt

�
D Im

��
d

dt
log.z/

�
log j1� zj �

�
d

dt
log.1� z/

�
log jzj

�
:

Here is how to interpret this computation using ı . Consider F.k�/ the space of
algebraic functions on k� and �1.k�/ the space of 1–forms. Consider the map

Im.d log^Z log/W F.k�/^Z F.k�/!�1.k�/

defined by

Im.d log^Z log/.f ^Z g/D Im.log jgj � d.logf /� log jf j � d.log g//:

Then we have:

Proposition 3.6.1 For the Bloch–Wigner dilogarithm function D (Section 3.2), the
1–form dD is the composition of Im.d log^Z log/ and of the function ı (3.6.1),
namely

dD D Im.d log^Z log/.ı/:

This proposition will in part motivate the study of the map ı.ˇ/: it represents the
variation of the volume of a tetrahedron of flags when the flags are varying. This is
also the point of Section 11.1.
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4 Decoration of a tetrahedron and the pre-Bloch group

In this section we let T be an ordered tetrahedron of flags and compute the quantity
ı.ˇ.T // 2C� ^Z C� we have defined in the previous section.

The first computation in this section uses a–coordinates associated to some lift of T as
a tetrahedron of affine flags. In that respect we mainly follow Fock and Goncharov. The
second way directly deals with z–coordinates and follows the approach of Neumann
and Zagier. We will see in the remaining of the paper how fruitful it is to mix those
two approaches.

All over this section, we denote by T a tetrahedron of flags .Œxi �; Œfi �/ and by Ta a
tetrahedron of affine flags .xi ; fi/ lifting T . Associated to T is a set of z–coordinates
zij and zijk and associated to Ta is a set of a–coordinates aij and aijk (defined in
Section 2).

4.1 A first formula via affine flags

4.1.1 The Z–module J 2
T

associated to a tetrahedron All our computations will
go through considerations of Z–modules equipped with a 2–form. We first define such
a Z–module, which will be very important to us, and then explain some constructions
and results about Z–modules. Let J 2

T
D ZI be the 16–dimensional abstract free

Z–module where (see Figure 4)

I D fvertices of the (red) arrows in the 2–triangulation of the faces of T g:

We write the canonical basis fe˛g˛2I of J 2
T

. It contains oriented edges eij (edges
oriented from j to i ) and faces eijk . Given ˛ and ˇ in I we set

"˛ˇ D #foriented (red) arrows from ˛ to ˇg� #foriented (red) arrows from ˇ to ˛g:

i

j k

Figure 4: Combinatorics of W
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This allows to define the bilinear skew-symmetric form �2 on J 2
T

by4

(4.1.1) �2.e˛; eˇ/D "˛ˇ:

Remark that we have one a–coordinate a˛ for each ˛ 2 I . So the set of a–coordinates
.a˛/˛2I associated to our tetrahedron of affine flags Ta naturally defines an elementX

˛2I

a˛e˛ 2 k�˝Z J 2
T ;

where k is any field that contains all the a–coordinates. At this point, we will review
some notions and results on Z–modules with such a 2–form.

4.1.2 Z–modules and 2–forms Let V be a Z–module equipped with a bilinear
product

BW V �V ! Z:

Then its dual Z–module V � is the Z–module V � D Hom.V;Z/. If V is a finitely
generated free module, by the classical definition of the tensor product, we get Z–
modules

k�˝Z V Š Hom.V �; k�/ and k�˝Z V � Š Hom.V; k�/:

This going back and forth with dual modules when considering tensoring will be
repeatedly used throughout this paper and should be kept in mind.

Now, we consider the bilinear product B . We define on the Z–module k�˝Z V the
bilinear product

^BW .k
�
˝Z V /� .k�˝Z V /! k� ^Z k�

defined on generators by

.z1˝ v1/^B .z2˝ v2/D B.v1; v2/.z1 ^Z z2/:

A key feature of this definition is that it is natural: it is preserved by mappings preserving
the bilinear products. Indeed, as a direct consequence of the definitions, we have:

Lemma 4.1.1 If �W V !W is a homomorphism of Z–modules with bilinear forms
B and b such that ��.b/DB then the induced map �W k�˝Z V !k�˝Z W satisfies

��.^b/D^B:

Or, in other terms, for any element x 2 k�˝Z V , we have x ^B x D �.x/^b �.x/.

4Observe in particular that �2.eji ; eijk/D 1 and so on, the logic being that the vector eijk is the
outgoing vector on the face ij k and the vector eji (oriented from i to j ) turns around it in the positive
sense.
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We conclude this abstract subsection with another piece of notation: we will need in
numerous points to tensor our Z–modules by ZŒ1

2
�. We prefer to define a notation

for it:

Notation 4.1.1 For a Z–module V , we define V Œ1
2
� WD V ˝Z ZŒ1

2
�.

4.1.3 A first formula Recall that we associated to the tetrahedron of affine flags Ta

a set of coordinates .a˛/˛2I and then in turn an element

a WD
X
˛2I

a˛e˛ 2 k�˝Z J 2
T :

As a is an element of k�˝Z J 2
T

, we may apply the construction of the product ^�2

to get
a^�2 aD

X
˛;ˇ2I

"˛ˇa˛ ^Z aˇ 2 k� ^Z k�:

The first step to link ı.ˇ.T // with bilinear products is done in the following lemma:

Lemma 4.1.2 Let T be a tetrahedron of flags, Ta a tetrahedron of affine flags lifting T

and a2k�˝ZJ 2
T

the element associated to Ta . Then the element ı.ˇ.T //2k�^Zk�
is computed in terms of a as

(4.1.2) ı.ˇ.T //D 1
2

a^�2 a:

Proof To each ordered face .ij k/ of T we associate the element

(4.1.3) Wijk D aijk ^
akiajkaij

aikakj aji
C aij ^ aik C aki ^ akj C ajk ^ aji 2 k� ^Z k�:

The proof in the CR case of [8, Lemma 4.9] leads to5

ı.ˇ.T //DW143CW234CW132CW124:

Finally one checks that

W143CW234CW132CW124 D
1

2

X
˛;ˇ2I

"˛ˇa˛ ^Z aˇ:

We let W .T /DW143CW234CW132CW124 .

5Alternatively we may think of T as a geometric realization of a mutation between two triangulations
of the quadrilateral .1324/ and apply [9, Corollary 6.15].
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Remarks (1) The element W .T / coincides with the W invariant associated by
Fock and Goncharov to the triangulation by a tetrahedron of a sphere with 4

punctures (the orientation of the faces being induced by the orientation of the
sphere).

(2) Whereas T – being a tetrahedron of flags – only depends on the flag coordinates,
each W associated to the faces depends on the affine flag coordinates.

In the next paragraph we make the second remark more explicit by computing ı.ˇ.T //
using the z–coordinates.

4.2 The Neumann–Zagier symplectic space and a second formula

In this section, we focus directly on the tetrahedron of flags T and its associated z–
coordinates .z˛/˛2I . In order to get a formula for ı.ˇ.T //, we construct a Z–module
with a 2–form in which those coordinates live (after tensoring by k� ). And then
we relate this Z–module to J 2

T
. The 2–form we will construct is an extension of

Neumann–Zagier symplectic form, already introduced by J Genzmer [13], in the space
of z–coordinates associated to the edges of a tetrahedron. We reinterpret her definitions
in our context of flag tetrahedra.

Recall that the z–coordinates are subject to the relations (2.3.3) and (2.3.4). The first
one is zijk D�zilzjlzkl and the second one implies

(4.2.1) zij zikzil D�1:

4.2.1 Finding a space for z–coordinates: The Z–module J �
T

Denote by .e�̨/˛2I

the basis of .J 2
T
/� dual to .e˛/˛2I . We associate to T the element

z WD
X
˛2I

z˛e�̨ 2 k�˝Z .J
2
T /
�:

At this point, the Z–module of interest seems to be .J 2
T
/� . But it is not clear which

2–form should be defined on it. Instead, we use the relations recalled above to find a
submodule of .J 2

T
/� , equipped with a natural 2–form, which “contains” z .

Consider the map
pW J 2

T ! .J 2
T /
�

defined by p.v/D�2. � ; v/. Its image Im.p/ consists exactly of the forms in .J 2
T
/�

vanishing on the kernel of �2 . This kernel is the subspace generated by elements of
the form X

˛2I

b˛e˛
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for all fb˛g 2 ZI such that
P
˛2I b˛"˛ˇ D 0 for every ˇ 2 I . Equivalently it is the

subspace generated by eij C eikC eil and eijk � .eil C ejl C ekl/. We will rather use
as generators the elements

vi D eij C eik C eil and wi D eji C eki C eli C eijk C eilj C eikl I

see Figure 5.

i

j

kl
The vector vi

i

j

kl
The vector wi

Figure 5: The vectors vi and wi in Ker.�2/

We then define two Z–modules J�
T
D Im.p/� .J 2

T
/� and its dual JT D J 2

T
=Ker.�2/.

Both are 8–dimensional. Remark that, by construction, the form �2 induces a non-
degenerate form, denoted �, on JT . Moreover, on J�

T
, there is the natural dual

2–form, well-defined by

��.p.v/;p.v0//D�2.v; v0/ for v; v0 2 J 2
T

These constructions are justified by the following proposition: the element z 2 .J 2
T
/�

almost belongs to k�˝Z J�
T

(recall from Notation 4.1.1 that J�
T
Œ1
2
�D J�

T
˝Z Z

�
1
2

�
).

Proposition 4.2.1 Let T be a tetrahedron of flags, and z its associated element in
k�˝Z .J

2
T
/� . Then z belongs to k�˝Z J�

T

�
1
2

�
.

Proof Because of relations (2.3.3) and (4.2.1) the image of the kernel of �2 by z is
the (torsion) subgroup f˙1g � k� (that is easily checked on vi and wi ). We conclude
that the element z 2 k�˝ .J 2

T
/�
�

1
2

�
in fact belongs to k�˝J�

T

�
1
2

�
.

4.2.2 Relation between a– and z–coordinates and the second formula On the
basis .e˛/ and its dual basis .e�̨/, we can write

p.e˛/D
X
ˇ

"˛ˇe�ˇ :
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We define accordingly the dual map

p�W Hom..J 2
T /
�; k�/' k�˝Z J 2

T ! k�˝Z .J
2
T /
�
' Hom.J 2

T ; k
�/:

Observe that if a 2 k�˝Z J 2
T

and z 2 k�˝Z .J
2
T
/� are the elements associated to

the a– and z–coordinates of T , then

p�.a/D z in k�˝J�T
�

1
2

�
:

Indeed,

p�.a/.e˛/D a.p.e˛//D a

�X
ˇ

�˛ˇe�ˇ
�
D

Y
ˇ

a
"˛ˇ
ˇ
:

In particular, we recover the formula

p�.a/.eij /D
aikailj

ailaijk

:

So, according to (2.6.1), we have

p�.a/.eij /D�zij :

There is therefore a sign missing here and p�.a/D z only holds modulo 2–torsion.
This link is enough to get our second formula for ı.ˇ.T //, this time only in terms of
z–coordinates:

Lemma 4.2.1 Let T be a tetrahedron of flags and z 2 k� ˝Z J�
T

�
1
2

�
the element

associated to T . Then the element ı.ˇ.T // 2 k� ^Z k� is computed in terms of z as

(4.2.2) ı.ˇ.T //D 1
2
z ^�� z:

Proof By definition of �� , one has p�.��/D�2 . It then follows from Lemma 4.1.1
that

(4.2.3) a^�2 aD z ^�� z:

One concludes using the formula ı.ˇ.T //D 1
2
a^�2 a given in Lemma 4.1.2.

4.3 Another point of view

One can present another point of view on this construction, which is easier to relate
to the Neumann–Zagier bilinear form. The space J�

T
is 8–dimensional and we may

associate to 8 oriented edges (two pointing at each vertex) of T a basis ffij g. Using
this basis, the element z 2 k�˝Z J�

T

�
1
2

�
is written z D

P
zijfij .
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We then note that (up to eventually adding a root of �1 to k )

(4.3.1) ı.ˇ.T //D zij ^Z .1� zij /C zji ^Z .1� zji/

C zkl ^Z .1� zkl/C zlk ^Z .1� zlk/

D
1
2
z ^Z Hz;

where H is the linear map J�
T
!J�

T
, which on generators of J�

T
is given by H.fij /D

fik and H.fik/D�fij . It yields a linear map H W k�˝Z J�
T
! k�˝Z J�

T
. We note

that in coordinates we get

.Hz/fij
D

1

zik
and .Hz/fik

D zij :

The choice of the basis ffij g of J�
T

and the choice of the map H are not canonical
but they define the natural symplectic form

(4.3.2) ��. � ; � /D hH � ; � i

on J�
T

, where h � ; � i is the scalar product associated to the basis ffij g. Such a sym-
plectic space was first considered by Neumann and Zagier [16; 18] in the PGL.2;C/
context.

5 Decoration of a tetrahedral complex and its holonomy

In the previous sections we defined coordinates for a single tetrahedron of flags and
affine flags and defined its invariant ˇ in P.k/, directly related to the volume.

We study here how one may decorate a complex of tetrahedra with these coordinates,
compute the holonomy of its fundamental group and define the generalized invariant
ˇ (in the pre-Bloch group) associated to the decorated complex of tetrahedra. We
eventually state the main theorem of the paper, Theorem 5.5.1, which computes ı.ˇ/
in terms of boundary data.

5.1 Quasi-simplicial manifolds

Let us begin with the definition of a quasi-simplicial complex (see eg [16]): A quasi-
simplicial complex K is a cell complex whose cells are simplices with injective
simplicial attaching maps, but no requirement that closed simplices embed in jKj –
the underlying topological space. A tetrahedral complex is a quasi-simplicial complex
of dimension 3.
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From now on we let K be a tetrahedral complex. The (open) star of a vertex v 2K.0/

is the union of all the open simplices that have v as a vertex. It is an open neighborhood
of v and is the open cone on a simplicial complex Lv called the link of v .

A quasi-simplicial 3–manifold is a compact tetrahedral complex K such that jKj �
jK.0/j is a 3–manifold (with boundary). By an orientation of K we mean an orientation
of this manifold. A 3–cycle is a closed quasi-simplicial 3–manifold.

A quasi-simplicial 3–manifold is topologically a manifold except perhaps for the
finitely many singular points v 2 jK.0/j where the local structure is that of a cone
on jLvj; a compact connected surface (with boundary). We will soon require that
for each vertex v 2 K.0/ , jLvj is homeomorphic to either a sphere, a torus or an
annulus. Let K.0/

s , K.0/
t and K.0/

a be the corresponding subsets of vertices. We
note that jKj � jK.0/

t [K.0/
a j is an (open) 3–manifold with boundary that retracts

onto a compact 3–manifold with boundary M . Note that @M is the disjoint union
T1[ � � � [T� [S1[ � � � [S� where each Ti is a torus and each Si a surface of genus
gi � 2. Moreover: each Ti corresponds to a vertex in K.0/

t and each Si contains at
least one simple closed essential curve each corresponding to a vertex in K.0/

a ; see
Figure 6.

Given such a compact oriented 3–manifold with boundary M , we call a quasi-simplicial
3–manifold as above a triangulation of M .

Figure 6: The retraction of a quasi-simplicial 3–manifold onto a compact
3–manifold with boundary

5.2 Decoration of a quasi-simplicial complex

Let M be a quasi-simplicial manifold triangulated by the complex K . Denote by
T1; : : : ;T� the tetrahedra of K . Let zK be the universal covering of K : it is a
triangulation of the universal covering zM of M . As such, the fundamental group
�1.M / acts on zK .
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5.2.1 Decoration and coordinates

Definition 5.2.1 A parabolic decoration of the tetrahedral complex is the data of a
flag for each vertex of zK (equivalently a map from the 0–skeleton of the complex zK
to F l ) such that:

� For each tetrahedron of the complex, the corresponding tetrahedron of flags is in
generic position.

� If two tetrahedra of zK lift the same tetrahedron of K , then the two tetrahedra
of flags define the same element in C3.F l/.

Similarly, a unipotent decoration is the data of an affine flag for each vertex with the
genericity condition and such that, if two tetrahedra of zK lift the same tetrahedron of
K , then the two tetrahedra of affine flags define the same element in C3.AF l/.

Let us make two comments on these definitions. First, a parabolic decoration – together
with an ordering of the vertices of each 3–simplex – associates to each tetrahedron of
K a well-defined configuration of 4 flags (ie an element of C3.F l/). Hence, as seen
in Section 2, it equips each tetrahedron of K with a set of z–coordinates (defined in
Section 2.3). Second, a unipotent decoration induces a parabolic decoration via the
canonical projection AF l ! F l , so we get these z–coordinates, as well as a set of
a–coordinates (see Section 2.5).

5.2.2 Representing elements of H3.PGL.3;C// by decorated 3–cycles Neu-
mann [17, Section 4] has proven that any element of H3.PGL.3;C// can be represented
by an oriented 3–cycle K , together with an ordering of the vertices of each 3–simplex
of K so that these orderings agree on common faces, and a decoration of K . Moreover,
any class in H3.SL.3;C// can be represented by a unipotent decoration of K .

In other words: any class ˛ 2 H3.PGL.3;C// can be represented as f�ŒK�, where
K is a quasi-simplicial complex such that jKj � jK.0/j is an oriented 3–manifold,
ŒK� 2H3.jKj/ is its fundamental class and f W jKj ! B PGL.3;C/ is some map.

This motivates the study of decorated 3–cycles. From now on we fix K a decorated
oriented quasi-simplicial 3–manifold together with an ordering of the vertices of
each 3–simplex of K . Let N be the number of tetrahedra of K and denote by T� ,
� D 1; : : : ;N , these tetrahedra. We let zij .T�/ be the corresponding z–coordinates.
We now describe the consistency relations on these coordinates in order to be able to
glue together the decorated tetrahedra.
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5.3 Consistency relations

These relations are of two types (cf [6]): face relations and edge relations.

Let F be an internal face (2–dim cell) of K and T , and T 0 be the tetrahedron attached
to F . In order to fix notation, suppose that the vertices of T are 1; 2; 3; 4 and that the
face F is 123. Let 40 be the remaining vertex of T 0 . The face F inherits two 3–ratios
from the decoration: first z123.T / as a face of T and second z132.T

0/ as a face of
T 0 . But considering F to be attached to T or T 0 only changes its orientation, not the
flags at its vertex. So these two 3–ratios are inverses. Hence we get the:

Face relation Let T and T 0 be two tetrahedra of K with a common face .ij k/

(oriented as a boundary of T ), then zijk.T /zikj .T
0/D 1.

i

j

Figure 7: Tetrahedra sharing a common edge

We should add another compatibility condition to ensure that the edges are not singu-
larities: we are going to compute the holonomy of a path in a decorated complex and
we want it to be invariant under crossing the edges. One way to state the condition is
the following one: let T1; : : : ;T� be a sequence of tetrahedra sharing a common edge
.ij / and such that ij is an inner edge of the subcomplex composed by the T� (they
are making looping around the edge; see Figure 7). Then we ask that the following be
satisfied:

Edge relation zij .T1/ � � � zij .T�/D zji.T1/ � � � zji.T�/D 1

5.4 Holonomy of a decoration

From the definition of a decoration, we see that they define a holonomy representation
of the fundamental group �1.M / (up to conjugation): Indeed, fix a tetrahedron T of zK
and pick an element 
 in �1.M /. Then 
 �T is another tetrahedron of zK . Moreover, T
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and 
 �T lift the same tetrahedron of K . Hence the decoration transforms T and 
 �T
in two tetrahedra of flags that are congruent (they define the same element in C3.F l//.
As such, they are related by a well-defined element �.
 / 2 PGL.3; k/. It is easily
checked that 
 7! �.
 / is a representation. Starting with a different tetrahedron from
T only conjugates the representation. We now compute this holonomy representation
in terms of the z–coordinates associated to each tetrahedron.

5.4.1 Basis change in a tetrahedron Recall from Section 2.2 that, with a configu-
ration of 3 generic flags .Œxi �; Œfi �/1�i�3 2 Cr

2
.F l/ with triple ratio X , we defined a

projective coordinate system of P .C3/ as the one where the point x1 has coordinates
Œ1 W 0 W 0�t , the point x2 has coordinates Œ0 W 0 W 1�t , the point x3 has coordinates
Œ1 W �1 W 1�t and the intersection of Ker.f1/ and Ker.f2/ has coordinates Œ0 W 1 W 0�t .
The line Ker.f3/ then has coordinates ŒX WX C 1 W 1�.

Given an oriented face we therefore get 3 projective bases associated to the triples
.123/, .231/ and .312/. The cyclic permutation of the flags induces the coordinate
change given by the matrix

T .X /D

0@ X X C 1 1

�X �X 0

X 0 0

1A :
Namely, if a point p has coordinates Œu W v W w�t in the basis associated to the triple
.123/, it has coordinates T .X /Œu W v W w�t in the basis associated to .231/.

Lemma 5.4.1 If we have a tetrahedron of flags .ij kl/ with its z–coordinates, then
the coordinate system related to the triple .ij k/ is obtained from the coordinate system
related to the triple .ij l/ by the coordinate change given by the matrix

E.zij ; zji/D

0@z�1
ji 0 0

0 1 0

0 0 zij

1A :
Beware that the orientation of .ij l/ is not the one given by the tetrahedron.

Proof The matrix we are looking for fixes the flags .Œxi �; Œfi �/ and .Œxj �; Œfj �/ corre-
sponding to the vertex i and j . In particular it should be diagonal. Finally it should
send Œxl � to Œxk �. But in the coordinate system associated to the triple .ij k/, the point
Œxl � in the flag .Œxl �; Œfl �/ corresponding to the vertex l has coordinates

xl D Œzji W �1 W z�1
ij �

t :

This proves the lemma.
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5.4.2 Computation of the holonomy From this we can explicitly compute the holo-
nomy of a path in the complex. For that let us put three points in each face near the
vertices, denoting by .ij k/ the point in the face ij k near i . As we have said before,
once the decoration is fixed, each of these points corresponds to a projective basis
of C3 . Each path can be deformed so that it decomposes in two types of steps (see
Figure 8):

(1) A path inside an oriented face ij k from .ij k/ to .j ki/

(2) A path through a tetrahedron ij kl from .ij k/ to .ij l/ (ie turning left around
the edge ij oriented from j to i )

1

2

3
4

.123/

.123/

.124/

Figure 8: Two elementary steps for computing holonomy

Now the holonomy of the path is the coordinate change matrix so that: in case .1/, you
have to left multiply by the matrix T .zijk/ and in case .2/ by the matrix E.zij ; zji/.

In particular the holonomy of the path turning left around an edge, ie the path .ij k/!

.ij l/, is given by:

(5.4.1) Lij DE.zij ; zji/D

0@z�1
ji 0 0

0 1 0

0 0 zij

1A
As an example which we will use latter on, one may also compute the holonomy of
the path turning right around an edge, ie, the path .i lj /! .ikj /. We consider the
sequence of coordinate changes (see Figure 9 for the path going from .231/ to .241/)

.i lj /! .lj i/! .j il/! .j ik/! .ikj /:

The first two operations are cyclic permutations both given by the matrix T .zilj /. It
follows from Lemma 5.4.1 that the third is given by the matrix E.zji ; zij /. Finally
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1

2

3
4

.231/ .241/

T.z123/
E.z12;z21/

T.z123/

T.z124/

Figure 9: Turning right

the last operation is again a cyclic permutation given by the matrix T .zikj /. The
coordinate change from the basis .i lj / to .ikj / is therefore given by

T .zikj /E.zji ; zij /T .zilj /
2
D

0B@zjizilj ? ?

zikj ?
zikj

zij

1CA :
Using zikj D 1=zijk , we get that the holonomy matrix, in PGL.3;C/, of the path
turning right around an edge ij is

(5.4.2) Rij D

0B@zjizilj zijk ? ?

1 ?
1

zij

1CA :
Remark Beware that Lij Rij is not the identity in PGL.3;C/. This is due to the
choices of orientations of the faces which prevents Lij Rij to be a matrix of coordi-
nate change. When computing the holonomy of a path we therefore have to avoid
backtracking.

5.5 Decoration and the pre-Bloch group

Let k be a field containing all the z–coordinates of the tetrahedra T� , � D 1; : : : ;N .
To any of these (ordered) tetrahedra we have associated an element ˇ.T�/ 2P.k/ (see
Section 3.1). Set

(5.5.1) ˇ.K/D
X
�

ˇ.T�/ 2 P.k/:

As in Section 4, we will state a formula for the element ı.ˇ.K//; see Theorem 5.5.1.
It will express this quantity in terms of boundary of M , which consists in the boundary

Geometry & Topology, Volume 18 (2014)



1944 Nicolas Bergeron, Elisha Falbel and Antonin Guilloux

of the complex and its links. Before stating the theorem, we need to define coordinates
associated to these boundaries.

5.5.1 Coordinates for the boundary of the complex The boundary † of the com-
plex K is a triangulated punctured surface. As in Section 4 and in [9], we associate
to † the set I† of the vertices of the (red) arrows of the triangulation of † obtained
using Figure 4. As in the preceding section we set J 2

†
D ZI† and consider the skew-

symmetric form �2
†

on J 2
†

, introduced by Fock and Goncharov in [9], defined by the
same formula as �2 (see Section 4.1). Here again we let J�

†
� .J 2

†
/� be the image of

J 2
†

by the linear map v 7!�2
†
.v; � /.

The decoration of K yields a decoration of the punctures of † by flags, as in [9], and
hence a point

z† D .z
†
˛ /˛2I† 2 k�˝Z J�†

�
1
2

�
:

Here is a more descriptive point of view, using the holonomy of the decoration of K : It
provides † with coordinates associated to each ˛ 2 I† . To each face ij k we associate
the face 3–ratio zijk of the corresponding tetrahedra T of K :

z†ijk D zijk.T /:

Moreover, to each oriented edge ij of the triangulation of † we associate the last
eigenvalue of the holonomy of the path joining the two adjacent faces by turning left
around ij in K . It is equal to the product zij .T1/ � � � zij .T�/, where T1; : : : ;T� is the
sequence of tetrahedra sharing ij as a common edge:

z†ij D zij .T1/ � � � zij .T�/:

Note that when K has a unipotent decoration, then the punctures are decorated by
affine flags. We immediately get an element a† 2 k�˝Z J 2

†
that projects onto z† in

k�˝Z J�
†

�
1
2

�
. Here again we have

a† ^�2
†

a† D z† ^��
†

z† :

The first expression is the W –element W .†/ associated to the decorated † by Fock
and Goncharov.

5.5.2 Coordinates for the links We now define some coordinates for the links of
K . From now on we assume that for each vertex v 2 K.0/ , jLvj is homeomorphic
to either a torus or an annulus. We fix symplectic bases .as; bs/ for each of the torus
components and we fix cr (resp. dr ) a generator of each homology group H1.Lr / (resp.
H1.Lr ; @Lr /), where the Lr are the annulus boundary components. We furthermore
assume that the algebraic intersection number �.cr ; dr /D 1.
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Each one of these homology elements may be represented as a path as in Section 5.4
that remains close to the associated vertex. So we may compute its holonomy using
only matrices Lij and Rij ; we will get an upper-triangular matrix. More conceptually,
the path is looping around a vertex decorated by a flag, so must preserve the flag. So it
may be conjugated to an upper-triangular matrix. Recall also that the diagonal part of
a triangular matrix is invariant under conjugation by an upper-triangular matrix.

We define the holonomy elements As , Bs , Cr , Dr and A�s , B�s , C �r , D�r such that
the holonomy matrices associated to as , bs , cr , dr have the following form in a
basis adapted to the flag decorating the link (see also Section 7.2 for a more explicit
description): 0B@ 1

A�s
� �

0 1 �

0 0 As

1CA :
5.5.3 A formula for ı.ˇ.K // The following theorem computes ı.ˇ.K// in terms
of the coordinates z† and the holonomy elements:

Theorem 5.5.1 The invariant ı.ˇ.K// only depends on the boundary coordinates z† ,
As , Bs , Cr , Dr and A�s , B�s , C �r , D�r . Moreover:

(1) If the decoration of K is unipotent then 2ı.ˇ.K//D z† ^��
†

z† .

(2) If K is closed, ie, †D∅, and each link is a torus, we have the following formula
for 3ı.ˇ.K//:X

s

�
2As ^Z BsC 2A�s ^Z B�s CA�s ^Z BsCAs ^Z B�s

�
:

Remarks � Theorem 5.5.1 generalizes several results known in the SL.2;C/ case;
see Neumann [16] – when K is closed – and Kabaya [15] – when all the connected
components of † are spheres with 3 vertices. A related formula – still in the PGL.2;C/
case – is obtained by Bonahon [2; 3]. One may extract from our proof a formula for
the general case. Though it should be related to the Weil–Petersson form on @M , we
are not able yet to make this relation explicit.

� Thanks to Theorem 5.5.1, when the decoration of K is unipotent, the fact that ˇ
lies inside the Bloch group is a boundary condition (the only non-vanishing part is
3
2
z†^��

†
z† ). As a consequence, if the boundary is empty, it will automatically belong

to the Bloch group. Using the Suslin map, it allows us to construct geometrically any
class in Kind

3
.k/, supporting a remark of Fock and Goncharov; see [10, Proposition

6.16] and the following section.

Geometry & Topology, Volume 18 (2014)



1946 Nicolas Bergeron, Elisha Falbel and Antonin Guilloux

� With the computation of the derivative of the dilogarithm D done in Proposition
3.6.1, this theorem yields a variational formula for the volume. It will be addressed in
Section 11.1.

� The proof will run through the next three sections. We will heavily use the point of
view developed in Section 4 and achieve it by constructing and relating 2–forms on
different Z–modules. These 2–forms are interesting on their own. For example, this
leads to some rigidity results; see [1].

6 Some linear algebra and the unipotent case

The goal of this section is to prove Theorem 5.5.1 when K has a unipotent decoration.
Along the way, we lay down the first basis for the homological proof in the general
case.

6.1 Linearization of the consistency relations

Let .J i ; �i/ (i D∅; 2) denote the orthogonal sum of the spaces .J i
T�
; �i/. We denote

by e
�
˛ the e˛–element in J i

T�
.

As seen in Section 4, a decoration provides us with an element

z 2 Hom.J; k�/
�

1
2

�
' k�˝Z J�

�
1
2

�
D k�˝Z Im.p�/

�
1
2

�
which satisfies the face and edge conditions.6 We first translate these two consistency
relations into linear algebra.

Let C or
1

be the free Z–module generated by the oriented internal7 1–simplices of K

and C2 the free Z–module generated by the internal 2–faces of K . Introduce the map

(6.1.1) F W C or
1 CC2! J 2

defined by, for an internal oriented edge xeij of K ,

F.xeij /D e1
ij C � � �C e�ij ;

where T1; : : : ;T� is the sequence of tetrahedra sharing the edge xeij such that xeij is an
inner edge of the subcomplex composed by the T� and each e

�
ij gets identified with

the oriented edge xeij in K (recall Figure 7). And for a 2–face xeijk ,

F.xeijk/D e
�

ijk
C e�ikj ;

6Note that z moreover satisfies the non-linear equations zik.T�/D 1=.1� zij .T�// .
7Recall that our complex may have boundary.
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where � and � index the two 3–simplices having the common face xeijk . An element
z 2 Hom.J 2; k�/ satisfies the face and edge conditions if and only if it vanishes
on Im.F /.

Let .J 2
int/
� be the subspace of .J 2/� generated by internal edges and faces of K .

The dual map F�W .J 2/�! C or
1
CC2 (here we identify C or

1
CC2 with its dual by

using the canonical basis) is the “projection map”, which maps .e�˛ /� to xe˛ when
.e
�
˛ /
� 2 .J 2

int/
� and maps .e�˛ /� to 0 if .e�˛ /� … .J 2

int/
� .

From the definitions we get the following:

Lemma 6.1.1 An element z 2 k�˝Z .J
2/� satisfies the face and edge conditions if

and only if
z 2 k�˝Z Ker.F�/:

A decorated tetrahedral complex K thus provides us with an element

z 2 k�˝ .J�\Ker.F�//
�

1
2

�
:

We focus now on the element ı.ˇ.K// 2 k� ^Z k� . By definition of ˇ.K/, we have

ı.ˇ.K//D

�X
1

ı.ˇ.T�//:

Moreover we have seen in Lemma 4.2.1 that

ı.ˇ.T�//D z.T�/^�� z.T�/:

Hence, by definition of J� and �� , we have

ı.ˇ.K//D 1
2
z ^�� z:

6.2 Proof of Theorem 5.5.1 in the unipotent case

In this section we assume that K is equipped with a unipotent decoration. Consider an
edge ij of K , and let T1 , : : :, T� be the tetrahedra sharing it. The vertices i and j

are equipped with affine flags .xi ; fi/ and .xj ; fj /. For any tetrahedron T sharing
this edge, we have (see Section 2.5)

aij .T /D fi.xj /:

In other terms it does not depend on the tetrahedron chosen and we have

aij .T1/e
1
ij C � � �C aij .T�/e

�
ij D fi.xj /F.xeij / 2 k�˝Z J 2:
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When looking at a face ij k between T and T 0 , we get

aijk.T /D�aikj .T
0/:

Killing the 2–torsion, we get

aijk.T /eijk C aikj .T
0/eikj D aijk.T /F.xeijk/ 2 k�˝Z J 2

�
1
2

�
:

Going one step further to z–coordinates, we get that a unipotent decoration corresponds
to a point z 2 k�˝ .Im.p ıF //

�
1
2

�
. In Section 5.5.1 we have defined a map

k�˝ .Im.p ıF //
�

1
2

�
! k�˝J�

†

�
1
2

�
:

The following proposition states that this map respects the 2–forms �� and ��
†

.

Proposition 6.2.1 In the unipotent case, �� is the pullback of ��
†

.

Proof We have seen that on each tetrahedron p�.��.T //D�2.T /.

Since Im.pıF / is the image under p of the subspace Im.F / of J 2 , each face f of T

is an oriented triangle with a–coordinates, so we define a 2–form �2.f;T / by the usual
formula. If the face f is internal between T and T 0 , we have �2.f;T /D��2.f;T 0/
as the only difference is the orientation of the face (and hence of its red triangulation;
see Figure 4).

Moreover p�.��/ is the sum of the �2.T /. Hence it reduces to the sum on external
faces of �2.f;T /, that is, exactly �2

†
D p�.��/.

Using the usual Lemma 4.1.1, we get the proof of Theorem 5.5.1 in the unipotent case:

ı.ˇ.K//D z† ^��
†

z†:

As a corollary, we see that the Suslin map S D ˇ ı�� (see Section 3.5) takes its value
in the Bloch group B.k/:

Corollary 6.2.1 The Suslin map S sends H3.SL.3; k// to the Bloch group B.k/.

Proof Via the projection SL.3; k/! AF l D SL.3; k/=U (see Section 2) and the
consideration in Section 5.2.2, an element of H3.SL.3; k// is represented by a closed
tetrahedral complex with a unipotent decoration. In other terms, ��.H3.SL.3; k/// is
included in the unipotent decorations of closed tetrahedral complex.

Let K be such a closed tetrahedral complex with a unipotent decoration. Using the
unipotent case of Theorem 5.5.1, ı.ˇ.K// only depends on the boundary coordinates
z† . But, as † is empty, z† is trivial. Hence ı is trivial on ˇ.K/, which means that
ı vanishes on ˇ ı ��.H3.SL.3; k///. As we showed that the Suslin map S equals
ˇ ı�� and the Bloch group is the kernel of ı , the corollary is proven.
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6.3 The invariant W

It may be useful to give another point of view on this formula.

The boundary surface † is a union of ideally triangulated closed oriented8 surfaces
with punctures decorated by affine flags in the sense of Fock and Goncharov [9]:
the triangles are decorated by affine flags coordinates in such a way that the edge
coordinates on the common edge of two triangles coincide.

Each triangle being oriented, we may define the W –invariant

W .†/D
X
�

W�;

where W� is defined by Equation (4.1.3).9

Recall from Section 5.5.1 that the unipotent decoration of † provides us with an
element a† 2 k�˝Z J 2

†
that projects onto z† 2 k�˝Z J�

†

�
1
2

�
. We have10

W .†/D 1
2
a† ^�2

†
a† D

1
2
z† ^��

†
z†:

Hence, from the previous section, we deduce the following proposition:

Proposition 6.3.1 In the unipotent case we have

ı.ˇ.K//DW .†/:

Our goal is now to extend this result beyond the unipotent case; to this end we develop
a theory analogous to the one of Neumann–Zagier but in the PGL.3;C/ case. We first
treat in detail the case where K is closed.

7 Neumann–Zagier bilinear relations for PGL.3;k/

For this section and the next one, we assume that K is a closed tetrahedral complex.

A decoration of K provides us with and element z 2 k�˝ .J� \Ker.F�//
�

1
2

�
; see

Section 6.1. Moreover we have seen in that section that the invariant ı.ˇ.K// is
written 1

2
z ^�� z . We will compute this last expression. But here we first describe the

8The orientation being induced by that of K .
9Note that in the case of K D T the boundary of T is a sphere with 4 punctures and the definition of

W .T / in Section 4 matches this one.
10Note in particular that W .†/ only depends on the flag z –coordinates; see also [10, Lemma 6.6].

Moreover, in case K D T , we recover Lemma 4.1.2.
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right set-up to state the generalization of Proposition 6.2.1 to general – non-unipotent –
decorations.

We construct a Z–module together with a 2–form such that the “holonomy element”
(see Section 5.5.2) belongs to this module after tensoring by k� . This module is a
group of chains in a simplicial decomposition of the links. We then relate the 2–form
(given by the intersection form) with our 2–forms � and �� . It will relate closely
�� with the Weil–Petersson form on the cohomology of the tori. This leads to a more
precise version of Theorem 5.5.1; see Corollary 7.3.2.

In Section 9, we will explain how to modify the definitions and proofs to deal with the
general case.

7.1 Coordinates on the boundary

Denote by M the 3–manifold triangulated by K . As K is closed, its boundary † is
empty and each jLvj is a torus. We first define coordinates for @M and a symplectic
structure on these coordinates.

7.1.1 Two simplicial decompositions Each torus boundary surface S in the link of
a vertex is triangulated by the traces of the tetrahedra; from this we build the CW–
complex D whose edges consist of the inner edges of the first barycentric subdivision;
see Figure 10. We denote by D0 the dual cell division. Let C1.D/D C1.D;Z/ and
C1.D0/D C1.D0;Z/ be the corresponding chain groups. Given two chains c 2 C1.D/
and c0 2 C1.D0/ we denote by �.c; c0/ the (integer) intersection number of c and
c0 . This defines a bilinear form �W C1.D/ � C1.D0/ ! Z which induces the usual
intersection form on H1.S/. In that way C1.D0/ is canonically isomorphic to the dual
of C1.D/.

D: D0:

Figure 10: The two cell decompositions of the link
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7.1.2 Goldman–Weil–Petersson form for tori Here we equip

C1.D;R2/D C1.D/˝R2

with the bilinear form ! defined by coupling the intersection form � with the scalar
product on R2 seen as the space of roots of sl.3;C/ with its Killing form. We describe
more precisely an integral version of this.

From now on we identify R2 with the subspace V Df.x1;x2;x3/
t 2R3 Wx1Cx2Cx3D

0g via �
1

0

�
7!

0@ 1

�1

0

1A and
�

0

1

�
7!

0@ 0

1

�1

1A :
We let L� V be the standard lattice in V where all three coordinates are in Z. We
identify it with Z2 using the above basis of V . The restriction of the usual euclidean
product of R3 gives a product, denoted Œ � ; � �, on V (the “Killing form”).11 In other
words, we have��

1

0

�
;

�
1

0

��
D

��
0

1

�
;

�
0

1

��
D 2 and

��
0

1

�
;

�
1

0

��
D�1:

Identifying V with V � using the scalar product Œ � ; � �, the dual lattice L� � V �
becomes a lattice L0 in V ; an element y 2 V belongs to L0 if and only if Œx;y� 2 Z
for every x 2L.

We consider C1.D;L/ and define ! D �˝ Œ � ; � �W C1.D;L/�C1.D0;L0/! Z by the
formula

!.c˝ l; c0˝ l 0/D �.c; c0/Œl; l 0�:

This induces a (symplectic) bilinear form on H1.S;R
2/, which we still denote by ! .

Note that ! identifies C1.D0;L0/ with the dual of C1.D;L/.

Remark The canonical coupling C1.D;L/�C 1.D;L�/! Z identifies C1.D;L/�
with C 1.D;L�/. This last space is naturally equipped with the “Goldman–Weil–
Petersson” form wp, dual to ! . Let h � ; � i be the natural scalar product on V �
dual to Œ � ; � �: letting d W V ! V � be the map defined by d.v/ D Œv; � �, we have
hd.v/; d.v0/i D Œv; v0�. In coordinates, d W R2!R2 is given by

d

�
x

y

�
D

�
2x�y

2y �x

�
:

11In terms of roots of sl.3/ , the chosen basis is, in usual notation, e1 � e2 , e2 � e3 .
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Identifying V � with R2 using the dual basis, we have��
1

0

�
;

�
1

0

� �
D

��
0

1

�
;

�
0

1

��
D

2

3
and

��
0

1

�
;

�
1

0

��
D

1

3
:

On H 1.S;R2/ the bilinear form wp induces a symplectic form – the usual Goldman–
Weil–Petersson symplectic form – formally defined as the coupling of the cup-product
and the scalar product h � ; � i.

7.2 Linearization of the holonomy elements

We now linearize the holonomy elements, ie, we explain how the computations of the
eigenvalues of the holonomy of the torus may be done in our framework of Z–modules.

7.2.1 The holonomy elements map To any decoration z 2k�˝.J�\Ker.F�//
�

1
2

�
,

we now explain how to associate an element

R.z/ 2 Hom.H1.S;L/; k
�/
�

1
2

�
:

We may represent any class in H1.S;L/ by an element c˝
�

n
m

�
in C1.D;L/, where

c is a closed path in S seen as the link of the corresponding vertex in the complex K .
Using the decoration z we may compute the holonomy of the loop c , as explained
in Section 5.4. This vertex being equipped with a flag stabilized by this holonomy,
we write it as an upper-triangular matrix. Let .1=C �; 1;C / be the diagonal part. The
function that maps c ˝

�
n
m

�
to C m.C �/n is the aforementioned element R.z/ of

k�˝H 1.S;L�/
�

1
2

�
.

7.2.2 Linearization for a torus In the preceding paragraph we have constructed a
map

RW k�˝ .J�\Ker.F�//
�

1
2

�
! Hom.H1.S;L/; k

�/
�

1
2

�
:

As we have done before, for consistency relations, we now linearize this map.

Let hW C1.D;L/!J 2 be the linear map defined on the elements e˝
�

n
m

�
of C1.D;L/

by

(7.2.1) h

�
e˝

�
n

m

��
D 2me

�
ij C 2ne

�
ji C n.e

�

ijk
C e

�

ilj
/:

Here we see the edge e as turning left around the edge .ij / in the link of the vertex i

inside the tetrahedron T� D .ij kl/; see Figure 11.
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i

j k

l

2m

n

n2n

Figure 11: The map h

Lemma 7.2.1 Let z 2 k� ˝ .J� \ Ker.F�//
�

1
2

�
. Viewing z as an element of

Hom.J 2; k�/
�

1
2

�
, we have

z ı hDR.z/2:

Proof Let c be an element in H1.S/. Recall that the torus is triangulated by the trace
of the tetrahedra. To each triangle, there corresponds a tetrahedron T� and a vertex
i of this tetrahedron. Now each vertex of the triangle corresponds to an edge ij of
the tetrahedron T� oriented from the vertex j to i . Hence each edge of D may be
canonically denoted by c

�
ij : it is the edge in the link of i that turns left around the edge

ij of the tetrahedron T� . We represent c as a cycle xc D
P
˙c

�
ij . The cycle xc turns

left around some edges, denoted by e�ij , and right around other edges, denoted by e�
0

ij .
In other terms, we have xc D

P
� c�ij �

P
�0 c

�0

ij . Then, using the matrices L�ij (5.4.1)
and R

�0

ij (5.4.2), we see that the diagonal part of the holonomy of c is given by

(7.2.2) C D

Q
z
�
ijQ

z
�0

ij

and C � D
Q

z
�
jiQ

z
�0

ji z
�0

ijk
z
�0

ilj

:

Let us simplify the formula for C � a bit. Recall the face relation: If T and T 0 share
the same face ij k , we have zijk.T /zikj .T

0/D 1. Hence if our path c was turning
right before a face F and continues after crossing F , the corresponding face coordinate
simplifies in the product

Q
z
�0

ijk
z
�0

ilj
. Let F be the set of faces (with multiplicity) at

which c changes direction. For F in F , let T be the tetrahedron containing F in
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which ˛ turns right. We consider F oriented as a face of T and denote zF its 3–ratio.
We then have

(7.2.3) C � D
Q

z
�
jiQ

z
�0

ji

Q
F zF

:

Now h.c˝
�
0
1

�
/D 2

P
e
�
ij �2

P
e
�0

ij , as turning right is the opposite to turning left. It
proves (with (7.2.2)) that

z ı h

�
c˝

�
0

1

��
D

 Q
z
�
ijQ

z
�0

ij

!2

D C 2:

We have to do a bit more rewriting to check it for c˝
�
1
0

�
. Indeed, we have

h

�
c˝

�
1

0

��
D

X
�

.2e
�
ji C e

�

ijk
C e

�

ilj
/�

X
�0

.2e
�0

ji C e
�0

ijk
C e

�0

ilj
/;

so that

z ı h

�
c˝

�
1

0

��
D

 Q
z
�
jiQ

z
�0

ji

!2 Q
z
�

ijk
z
�

iljQ
z
�0

ijk
z
�0

ilj

:

For the same reason as before, the “internal faces” simplify in the productsY
�

z
�

ijk
z
�

ilj
and

Y
�0

z
�0

ijk
z
�0

ilj
:

Moreover, for ij k D F 2 F , we have

zF D z
�0

ijk
D

1

z
�

ijk

as the orientation given to F is the one given by the tetrahedron in which c turns right.
As z

�

ijk
appears at the numerator and z

�0

ijk
at the denominator, we get a factor 1=.zF /

2 .
So the last formula can be rewritten as

z ı h

�
c˝

�
1

0

��
D

 Q
z
�
jiQ

z
�0

ji

!2 �
1Q
F zF

�2

D .C �/2;

which proves the lemma.

Let h�W .J 2/� ! C1.D;L/� be the map dual to h. Note that for any e 2 J 2 and
c 2 C1.D;L/ we have

(7.2.4) .h� ıp.e//.c/D p.e/.h.c//D�2.e; h.c//:
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Now composing p with h� and identifying C1.D;L/� with C1.D0;L0/ using ! we
get a map

(7.2.5) gW J 2
! C1.D0;L0/

and it follows from (7.2.4) that for any e 2 J 2 and c 2 JT we have

(7.2.6) !.c;g.e//D�2.e; h.c//:

In the following we let J@M D C1.@M;L/ and C1.@M
0;L0/ be the orthogonal sum

of the C1.D;L/’s and C1.D0;L0/’s for each torus link S . We abusively denote by
hW J@M ! J 2 and gW J 2! C1.@M

0;L0/ the product of the maps defined above on
each T .

7.3 Homology of the complexes

We prove here that the maps defined above induce maps in homology and cohomology.

Consider the composition of maps

C or
1 CC2

F
�! J 2 p

�! .J 2/� F�

�! C or
1 CC2:

By inspection, one may check that F� ıp ıF D 0. Here is a geometric way to figure
this after tensoring by k�˝Z

�
1
2

�
: First note that if z D p�.a/, then a can be thought

as a set of affine coordinates lifting of z . Now a belongs to the image of F exactly
when these a–coordinates agree on elements of J 2 corresponding to common oriented
edges (resp. common faces) of K (see Section 6). In such a case the decoration of K

has a unipotent decoration lifting z . Finally the map F� computes the last eigenvalue
of the holonomy matrix of paths going through and back a face (face relations) and of
paths going around edges (edge relations). In the case of a unipotent decoration these
eigenvalues are trivial. This shows that F� ıp ıF D 0.

In particular, letting GW J!C or
1
CC2 be the map induced by F�ıp and F 0W C or

1
CC2!

J be the map F followed by the canonical projection from J 2 to J , we get a complex

(7.3.1) C or
1 CC2

F 0

�! J
G
�! C or

1 CC2:

Similarly, letting G� D p ıF and .F 0/� be the restriction of F� to Im.p/D J� , we
get the dual complex

(7.3.2) C or
1 CC2

G�

�! J�
.F 0/�

����! C or
1 CC2:
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We define the homology groups of these two complexes,

H.J /D Ker.G/= Im.F 0/D Ker.F� ıp/=.Im.F /CKer.p//;

H.J�/D Ker..F 0/�/= Im.G�/D .Ker.F�/\ Im.p//= Im.p ıF /:

We note that

(7.3.3) Ker.G/D Im.F 0/?� and Im.G�/D Ker..F 0/�/?�� :

The symplectic forms � and �� thus induce skew-symmetric bilinear forms on H.J /
and H.J�/. These spaces are obviously dual spaces and the bilinear forms match
through duality.

A decoration of K provides us with an element z 2 k�˝Ker..F 0/�/
�

1
2

�
. We already

have dealt with the subspace k�˝ Im.p ıF /
�

1
2

�
that corresponds to the unipotent

decorations (see Section 6): in that case ı.ˇ.K//D 0 as K is closed. We thus conclude
that ı.ˇ.K// only depends on the image of z in k�˝Z H.J�/

�
1
2

�
. We will describe

this last space in terms of the homology of @M .

Let Z1.D;L/ and B1.D;L/ be the subspaces of cycles and boundaries in C1.D;L/.
The following lemma is easily checked by inspection.

Lemma 7.3.1 We have

h.Z1.D;L//� Ker.F� ıp/;

h.B1.D;L//� Ker.p/C Im.F /:

In particular h induces a map xhW H1.D;L/!H.J / in homology. By duality, the map
g induces a map xgW H.J /!H1.D0;L0/, as follows from the next lemma.

Lemma 7.3.2 We have

g.Ker.F� ıp//�Z1.D0;L0/;
g.Ker.p/C Im.F //� B1.D0;L0/:

Proof First of all, Z1.D0;L0/ is the orthogonal of B1.D;L/ for the coupling ! .
Moreover, by definition of g , if e 2 Ker.F� ıp/, we have

g.e/ 2Z1.D0;L0/, !.B1.D;L/;g.e//D 0

,�2.h.B1.D;L//; e/D 0:

The last condition is given by the previous lemma. The second point is similar.
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Note that H1.D;L/ and H1.D0;L0/ are canonically isomorphic, so that we identify
them (with H1.@M;L/) in the following.

Theorem 7.3.1

(1) The map xg ı xhW H1.@M;L/!H1.@M;L/ is multiplication by 4.

(2) Given e 2H.J / and c 2H1.@M;L/, we have !.c; xg.e//D�.e; xh.c//.

As a corollary, one understands the homology of the various complexes.

Corollary 7.3.1 The map xh induces an isomorphism from H1.@M;L/
�

1
2

�
to H.J /

�
1
2

�
.

Moreover we have xh��D�4! .

Corollary 7.3.2 The form �� on k�˝ J� \Ker.F�/
�

1
2

�
is the pullback of wp on

H 1.@M;L�/ by the map R.

Theorem 5.5.1 will follow from Corollary 7.3.2 and Lemma 4.1.1 (see Section 8.2 for
an explicit computation). Corollary 7.3.2 is indeed the analog of Proposition 6.2.1 in
the closed but non-unipotent case. We postpone the proof of Theorem 7.3.1 until the
next section and, in the remaining part of this section, deduce Corollaries 7.3.1 and
7.3.2 from it.

7.4 Proof of Corollaries 7.3.1 and 7.3.2

We first compute the dimension of the spaces H.J / and H.J�/. Recall that l is the
number of vertices in K .

Lemma 7.4.1 The dimension of H.J / and H.J�/ is 4l .

Proof By the rank formula we have

dim J 2
D dim Ker.F� ıp/C dim Im.F� ıp/;

and by definition we have

dim Ker.F� ıp/D dim.Ker.p/C Im.F //C dimH.J /:

We also have

dim.Ker.p/C Im.F //D dim Ker.p/C dim Im.F /� dim.Ker.p/\ Im.F //;

dim Im.F� ıp/D dim Im.F�/� dim.Im.p/\Ker.F�//:

Geometry & Topology, Volume 18 (2014)



1958 Nicolas Bergeron, Elisha Falbel and Antonin Guilloux

The map F is injective and therefore F� is surjective. We conclude that

dim Im.F /D dim Im.F�/D dim C or
1 C dim C2:

But dim J 2 D 16N , dim Ker.p/ D 8N , dim C2 D 2N . Moreover, a classical com-
putation proves that the number of edges of K is N , since the Euler characteristic
of M is 0 [18]. So we have dim C or

1
D 2N . We are therefore reduced to prove that

dim.Ker.p/\ Im.F //D 2l . Restricted to a single tetrahedron T� , the kernel of p is
generated by the elements

v
�
i D e

�
ij C e

�

ik
C e

�

il
and w

�
i D e

�
ji C e

�

ki
C e

�

li
C e

�

ijk
C e

�

ilj
C e

�

ikl

in J 2.T�/ for i a vertex of T� (see Section 4.2).

In Im.F /, all the coordinates of e�ij that project on the same edge xeij must be equal,
as are the two coordinates of e�

ijk
and e�

0

ikj
projecting on the same face. Hence,

Im.F /\Ker.p/ is generated by the vectors F.vi/ and F.wi/, where

vi D

X
xeij an edge

oriented away from i

xeij ; wi D

X
xej i an edge

oriented toward i

xeji C

X
xeijk a face
containing i

xeijk :

One verifies easily that these vectors are free, proving the lemma.

Since it follows from Theorem 7.3.1(1) that xh has an inverse after tensoring by Z
�

1
2

�
we conclude from Lemma 7.4.1 that H.J /

�
1
2

�
and H1.@M;L/

�
1
2

�
are isomorphic.

Now Theorem 7.3.1(2) implies that xh and xg are adjoint maps with respect to the forms
! on H1.@M;L/

�
1
2

�
and � on H.J /

�
1
2

�
. Corollary 7.3.1 follows.

The second Corollary 7.3.2 is merely a dual statement: recall from Section 7.2 that
the map R2 is induced by the map h�W J� ! C 1.D;L�/ dual to h. Now the
map c0 7! !. � ; c0/ induces a symplectic isomorphism between .H1.@M;L0/; !/ and
.H 1.@M;L�/;wp/. It therefore follows from Corollary 7.3.1 that the symplectic form
�� on H.J�/ is four times the pullback of wp by the map H.J�/!H 1.@M;L�/
induced by h� . Remembering that h� induces the square of R, the statement of
Corollary 7.3.2 follows.

8 Homologies and symplectic forms

In this section we first prove Theorem 7.3.1 (in the closed case). We then explain how
to deduce Theorem 5.5.1 from it and its Corollary 7.3.2.
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8.1 Proof of Theorem 7.3.1

We first compute g ı hW C1.D;L/! C1.D0;L0/ using Equation (7.2.6).

8.1.1 A computation in a single tetrahedron We first work in a fixed tetrahedron
and therefore forget about the �’s. We denote by cij the edge of D corresponding to a
(left) turn around the edge eij and we denote by c0ij its dual edge in D0 ; see Figure 10.
The following computations are straightforward:

�
�
h
�
cij ˝

� n

m

��
; h
�
cik ˝

� n0
m0
���
D 2

h� n

m

�
;
� n0

m0
�i

�
�
h
�
cij ˝

� n

m

��
; h
�
cjk ˝

� n0
m0
���
D�2

h�.nC2m/=3

.2nCm/=3

�� n0
m0
�i

�
�
h
�
cij ˝

� n

m

��
; h
�
cji ˝

� n0
m0
���
D 0

�
�
h
�
cij ˝

� n

m

��
; h
�
cki ˝

� n0
m0
���
D 2

h�.nC2m/=3

.2nCm/=3

�
;
� n0

m0
�i

and so on. Since it follows from Equation (7.2.6) that

!
�
c˝

� n0
m0
�
;g ı h

�
cij ˝

� n

m

���
D�

�
h
�
cij ˝

� n

m

��
; h
�
c˝

� n0
m0
���

we conclude that the element g ı h
�
cij ˝

� n

m

��
in C1.D0;L0/ is

g ı h
�
cij ˝

� n

m

��
D 2.c0ik � c0il/˝

� n

m

�
C 2.c0ki � c0kj C c0jl � c0jk C c0lj � c0li/˝

�
.nC 2m/=3

.2nCm/=3

�
:

8.1.2 Gluing tetrahedra Let us come back to the complex. Consider a cycle c DP
� c

�
ij . We let the index � be implicit in the following formulas and compute

g ı h
�
c˝

� n

m

��
D

�
2
X
�

c0ik � c0il
�
˝

� n

m

�
C

�
2
X
�

c0ki � c0kj C c0jl � c0jk C c0lj � c0li

�
˝

�
.nC 2m/=3

.2nCm/=3

�
:

Interestingly, we are now reduced to a problem in the homology of @M and the lattice
L does not play any role here.
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8.1.3 A homological lemma Indeed, the first assertion in Theorem 7.3.1 follows
from the following lemma. The second assertion of Theorem 7.3.1 then follows from
Equation (7.2.6).

Lemma 8.1.1
� The path

P
�

c0
ik
� c0

il
is homologous to 2c in H 1.@M /.

� The path
P
�

c0
ki
� c0

kj
C c0

jl
� c0

jk
C c0

lj
� c0

li
vanishes in H 1.@M /.

This lemma is already proven by Neumann [16, Lemma 4.3]. The proof is a careful
inspection using Figures 12 and 13. The first point is quite easy: the path

P
c0

ik
�c0

il
is

the boundary of a regular neighborhood of c . The second part is the “far from the cusp”
contribution in Neumann’s paper. We draw on Figure 13 four tetrahedra sharing an
edge (the edges are displayed in dotted lines). The blue path is the path c in the upper
link. The collection of green paths are the relative

P
� c0

ki
� c0

kj
C c0

jl
� c0

jk
C c0

lj
� c0

li

in the other links. It consists in a collection of boundaries.

Figure 12: What happens inside the cusp: c in blue and g ı h.c/ in green

8.2 Proof of Theorem 5.5.1 in the closed case

Theorem 5.5.1 is now a corollary. Indeed, if z 2H.J�/, we have from Lemma 4.1.1
and Corollary 7.3.2 that

3ı.ˇ.z//D 3
2
z ^�� z D 3

2
R.z/^wp R.z/:

It remains to compute the last quantity. Recall from the previous section the definition
of R.z/: if a loop c represents a class in homology, let .1=C �; 1;C / be the diagonal
part of its holonomy. Then R.z/ applied to c˝

�
n
m

�
equals C m.C �/n . In other terms,

denoting Œas � and Œbs � the classes dual to as and bs , we have (see Section 7.1.2)

R.z/D Œas �˝

�
A�s
As

�
C Œbs �˝

�
B�s
Bs

�
:
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Figure 13: What happens far from the cusp

Recall from Section 7.1.2 that the form wp is the coupling of the cup product and the
scalar product h � I � i on Z2 . Hence we conclude by

3ı.ˇ.z//D
X

s

3
˝�

A�s ;As

�
;
�
B�s ;Bs

�˛
D

X
s

2As ^BsC 2A�s ^B�s CA�s ^BsCAs ^B�s :

9 Extension to the general case

We consider now the case of a complex K with boundary and explain how the preceding
proof of Theorem 5.5.1 shall be adapted to deal with it. Recall that the boundary of
K �K.0/ decomposes as the union of a triangulated surface † and the links. The
latter are further decomposed as torus links Ss and annulus links Lr . We proceed as
in the closed case and indicate the modifications to be done. For simplicity we suppose
that k DC .
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9.1 Coordinates for the boundary of the complex

We denote by C or
1
CC2 the Z–module generated by internal (oriented) edges and faces.

Recall from Section 5.5.1 that a parabolic decoration of K gives a parabolic decoration
of †, ie, an element z† 2 k�˝Z .J

2
†
/�
�

1
2

�
, whose interpretation is that one may glue

the decorated surface † to the decorated complex fulfilling the consistency relations.
More precisely, if e˛ is a basis vector of J 2

†
, one defines the e�̨ component of z† by

z†˛

Y
�

z�˛ D 1;

where the product is over all the e�˛ identified with e˛ . As usual we will rather consider
the corresponding linear map

h†W J
2
†! J 2; e˛ 7! �

X
�

e�˛:

as well as the dual map h�
†
W .J 2/�! .J 2

†
/� . Note that if e�˛ in J 2 corresponds to

an internal edge or face then h�..e�˛/�/D 0 whereas if it corresponds to a boundary
element e˛ 2 J 2

†
we have h�..e�˛/�/D�e�̨ . In particular one easily checks that the

following diagram is commutative:

(9.1.1)

J 2 p
// .J 2/�

h�

��

J 2
†

p†
//

h

OO

.J 2
†
/�

Recall that J† D J 2
†
=Ker.p†/.

The cell decomposition D is now defined for every cusp, each of which is either a torus
or an annulus. In the latter case we may consider cycles relative to the boundary. We
denote by Zrel

1
.D;L/, resp. Zrel

1
.D0;L0/, the subspace of relative cycles in C1.D;L/,

resp. C1.D0;L0/. It is the orthogonal of B1.D0;L0/, resp. B1.D;L/, with respect to
the form ! defined as above; see Section 7.1.2.

We now set

J 2
@M D J 2

†˚C1.D;L/; .J 2
@M /0 D J 2

†˚C1.D0;L0/;

and let
�2
@M W J

2
@M � .J

2
@M /0! Z

be the bilinear coupling obtained as the orthogonal sum of �2
†

and ! . As above it
corresponds to these data the map p@M W J

2
@M
! ..J 2

@M
/0/� , p@M .c/ D �2

@M
.c; � /,
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as well as the spaces

J@M D J 2
@M=Ker.p@M /D J†˚C1.D;L/;

.J 0@M /� D Im.p@M /D J�†˚C1.D0;L0/:
The bilinear coupling induces a canonical perfect coupling

�@M W J@M �J 0@M ! Z;

which identifies J�
@M

with J 0
@M

.

9.2 Complexes and homologies

As in the closed case (see Section 7.2) the linearization of the holonomy yields an
extension of h† to a map hW J 2

@M
! J 2 . We then have the following diagram:

C or
1
CC2

F
// J 2 p

// .J 2/� F�
//

h�

��

C or
1
CC2

J 2
@M

h

OO

.J 2
@M
/

Now it follows from Equation (9.1.1) that the image of h� ıp is contained in J�
@M

.
Identifying it with J 0

@M
using �@M we get a map gW J 2! J 0

@M
. As in the closed

case, for any c 2 J 2
@M

and e 2 J 2 , we have12

(9.2.1) �@M .c;g.e//D�2.e; h.c//:

We moreover have the inclusions

h.J 2
†˚Zrel

1 .D;L//� Ker.F� ıp/;

h.J 2
†˚B1.D;L//� Im.F /CKer.p/:

Denoting
H@M D .J 2

†˚Zrel
1 .D;L//=h�1.Im.F /CKer.p//;

H0@M D .J†˚Zrel
1 .D0;L0//=g.Im.F /CKer.p//;

we conclude that the maps h and g induce maps

xhW H@M !H.J / and xgW H.J /!H0@M :

It furthermore follows from Equation (9.2.1) that �@M induces a bilinear coupling

x�@M W H@M �H0@M ! Z:

12Here we abusively use the same notation for c and its image in J@M .
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Lemma 9.2.1 The bilinear coupling x�@M is non-degenerate.

Proof Denote by @M n† the union of the links (tori and annuli). The quotient J† of
J 2
†

naturally identifies with the quotient of Im.F /Ch.J 2
†
/ by Im.F /CKer.p/. Note

that the former identifies with the image of the Z–module generated by all (oriented)
edges and faces of K into J 2 . We then have two short exact sequences

0 // J† // H@M // H rel
1
.@M n†;L/ // 0;

0 // H1.@M n†;L
0/ // H0

@M
// J† // 0:

These are in duality with respect to �@M . Moreover this duality yields �† on the
product J†�J† and the intersection form, coupled with Œ � ; � �, on H rel

1
.@M n†;L/�

H1.@M n†;L/. Since both are non-degenerate, this proves the lemma.

It now follows from (9.2.1) that �@M . � ;gıh. � //D�2.h. � /; h. � //. And computations
similar to Section 8.1 show that the right-hand side has a trivial kernel on H@M . The
coupling x�@M being non-degenerate, we conclude that xh is injective. As in the closed
case, we may furthermore compute the dimension of H.J /. Let �t be the number of
tori and �a be the number of annuli. Then, computing the Euler characteristic of the
double of K along †, the proof of Lemma 7.4.1 yields the following:

Lemma 9.2.2 The dimension of H.J / is 4�t C 2�aC dim.J†/.

This is easily seen to be the same as both the dimensions of H@M and H0
@M

; see the
proof of Lemma 9.2.1. Over C the maps xh and xg are therefore invertible and we
conclude that the form � on J induces a form x� on H.J / such that

x�@M .c; xg.e//D x�.e; xh.c//:

In particular x� is determined by �@M and the invariant ı.ˇ.K// only depends on the
boundary coordinates. This concludes the proof of Theorem 5.5.1.

10 Examples

In this section we describe the complement of the figure eight knot obtained by gluing
two tetrahedra. In the case of hyperbolic geometry, the discrete faithful unipotent
representations into PSL.2;C/ were first obtained by Riley (see the interesting account
in [19]). The gluing of tetrahedra used here is Thurston’s description [21]. We will
describe in this paper only the unipotent solutions of the gluing equations and leave an
analysis of the full solution variety to a future paper. More details on the solutions are
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described in [7] where other hyperbolic manifolds are analyzed. It turns out that all
solutions that are not hyperbolic for the figure-eight knot were already obtained in [5]
as they correspond to CR decorations.

Let zij and wij be the coordinates associated to the edge ij of the two tetrahedra as
shown in Figure 14.

1

2

3 4

z12

z34 z43

z21

1

2

3 4

w12

w34 w43

w21

Figure 14: The figure-eight knot represented by two tetrahedra

w31

z41

w34

z31

w21 w23

z23

w13 w12

z13

w43 w41

z43 z42 z32 z34 z21 z24 z14 z12

w32 w24 w14 w42

Figure 15: The link at the boundary for the figure-eight knot. The horizontal
line corresponds to the generator with eigenvalues A and A� the other line
corresponds to the generator with eigenvalues B and B� .

The edge equations are

z12w12z13w43z43w42 D 1; z21w21z31w34z34w24 D 1;

z42w32z32w31z41w41 D 1; z24w23z23w13z14w14 D 1:

The face equations are

z13z43z23w14w34w24 D 1; z14z24z34w21w41w31D 1;

z12z42z32w13w43w23 D 1; z21z31z41w12w32w42D 1:
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And the holonomies are (see Section 7.2)

AD z41

1

w32

z31

1

w24

z23

1

w14

z13

1

w41

; B D z43

1

w41

;

A� D 1

z14

w14w41

w32

1

z13

w13w31

w24

1

z32

w23w32

w14

1

z31

w31w13

w42

; B� D 1

z34

w23w32

w41

:

If A D B D A� D B� D 1, the solutions of the equations correspond to unipotent
structures. The complete hyperbolic structure on the complement of the figure-eight knot
determines a solution of the above equations. In fact, in that case, if ! D .1C i

p
3/=2

then
z12 D z21 D z34 D z43 D w12 D w21 D w34 D w43 D !

is a solution the equations as obtained in [21].

The three spherical CR decorations with unipotent boundary holonomy were obtained
in [5] as the following solutions (up to complex conjugation):

z12 D xz21 D z34 D xz43 D w12 D xw21 D w34 D xw43 D !;

z12 D
5� i
p

7

4
; z21 D

3� i
p

7

8
; z34 D

5C i
p

7

4
; z43 D

3C i
p

7

8
;

w12 D
3� i
p

7

8
; w21 D

5� i
p

7

4
; w34 D

3C i
p

7

8
; w43 D

5C i
p

7

4
;

and

z12 D
�1C i

p
7

4
; z21 D

3� i
p

7

2
; z34 D

�1� i
p

7

4
; z43 D

3C i
p

7

2
;

w12 D
3C i
p

7

2
; w21 D

�1� i
p

7

4
; w34 D

3� i
p

7

2
; w43 D

�1C i
p

7

4
:

The first solution above corresponds to a discrete representation of the fundamental
group of the complement of the figure eight knot in PU.2; 1/ with faithful boundary
holonomy. Moreover, its action on complex hyperbolic space has limit set the full
boundary sphere. The other solutions give rise to spherical CR structures in the
complement of the figure eight knot.

11 Applications

11.1 Volumes of decorated tetrahedral complex

We assume in this section that k DC and that K is a closed tetrahedral complex. A
decoration of K provides us with an element z 2C�˝Z J�

�
1
2

�
that satisfies the face
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and edge conditions as well as the non-linear equations

zik.T�/D
1

1� zij .T�/
:

Let X DC�˝Z J�
�

1
2

�
; this is a complex variety.

Following Section 3.2 we define the volume of K as

(11.1.1) Vol.K/D 1
4
D.ˇ.K//:

This defines a real analytic function on X

VolW X !C:

Let F.X /� be the group of invertible real analytic functions on X and �1.X / the
space of real analytic 1–form on X . The holonomy elements As , A�s and Bs , B�s
of Theorem 5.5.1 define elements in F.X /� . Now, as in Section 3.6, there is a map
Im.d log^Z log/W F.X /� ^Z F.X /�!�1.X / defined by

Im.d log^Z log/.f ^Z g/D Im
�
log jgj � d.logf /� log jf j � d.log g/

�
:

Following Neumann and Zagier [18], we want to compute the variation of Vol.K/ as
we vary z 2X . Equivalently we compute dVol 2�1.X / using holonomy elements:

Proposition 11.1.1 The derivative of the volume Vol depends only on the holonomy
elements:

dVolD 1

12

X
s

Im.d log^Z log/.2As^Z BsC2A�s ^Z B�s CA�s ^Z BsCAs^Z B�s /:

Proof Paraphrasing Section 3.6, we can write with the notation above: dD.ˇ/ D

Im.d log^Z log/.ı.ˇ//. Proposition 11.1.1 follows from Theorem 5.5.1 and (11.1.1).

Remark Specializing to the hyperbolic case, we recover the result of Neumann and
Zagier [18]; see also Bonahon [3, Theorem 3].

11.2 Weil–Petersson forms

Let k be an arbitrary field. The Milnor group K2.k/ is the cokernel of ıW P.k/!
k� ^Z k� .

Let X† D C� ˝Z J�
†

�
1
2

�
; it is a complex manifold. As above we may consider

the field F.X†/� ; we let �2
hol.X†/ denote the space of holomorphic 2–forms on
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X† . The element z† defines an element in F.X†/� . We still denote the projection of
z† ^��

†
z† into K2.F.X†/�/.

Now, since d log^Zd log..1�f /^Z f /D 0, there is a group homomorphism

d log^Zd logW K2.F.X /�†/!�2.X†/; f ^Z g 7! d log.f /^Z d log.g/:

In the hyperbolic case and when the decoration is unipotent, Fock and Goncharov [9]
prove that

1
2
d log z† ^��

†
d log z† D d log^Zd log.W .†//

is the Weil–Petersson form. Although expected, the analogous statement in the
PGL.3;C/ case seems to be open. In any case, Theorem 5.5.1 implies that this
form vanishes, equivalently the “Weil–Petersson forms” corresponding to the different
components of † add up to zero.

Main symbols used

k is an arbitrary field

AF l.k/ (or just AF l as k is fixed) is the space of affine flags; see Equation (2.1.1)

F l.k/ (or just AF l as k is fixed) is the space of flags; see Equation (2.1.2)

zij denotes an edge coordinate; see Equation (2.3.1)

zijk denotes a face coordinate; see Equation (2.3.2)

P.k/ denotes the pre-Bloch group; see Section 3.1

ˇW C3.F l/! P.C/ is a “volume map”; see Equation (3.1.2). See also Equation (5.5.1)

D is the Bloch–Wigner dilogarithm; see Section 3.2

B.k/ denotes the Bloch group; see Section 3.6

^Z is the skew symmetric product on Abelian groups; see Section 3.6

ıW P.k/! k� ^Z k� is defined in Equation (3.6.1)

J 2
T

is a 16–dimensional Z–module associated to a tetrahedron T ; see Section 4.1.1

�2 is a skew-symmetric form on J 2
T ; see Equation (4.1.1).

V Œ1
2
� WD V ˝Z ZŒ1

2
�; see Notation 4.1.1

^B denotes a bilinear product on a k�–modules; see Section 4.1.2

pW J 2
T ! .J 2

T /
� is the linear map defined by p.v/D�2. � ; v/; see Section 4.2.1
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JT DJ 2
T
=Ker.�2/ and J�

T
D im.p/� .J 2

T
/� are 8–dimensional Z–modules; see Section 4.2.1

� and �� are non-degenerate skew-symmetric forms on resp. JT and J�
T

; see Section 4.2.1

K is a quasi-simplicial complex; see Section 5.1

M is a quasi-simplicial manifold triangulated by K ; see Section 5.1

J 2
†

is a Z–module associated to a boundary † of K ; see Section 5.5.1

J† and J�
†

are Z–modules associated to a boundary † of K ; see Section 5.5.1

z†˛ are coordinates associated to a boundary † of K ; see Section 5.5.1

.J 2; �2/ and .J; �/ are associated to K ; see Section 6.1

C or
1

denotes the free Z–module generated by the oriented internal 1–simplices of K ; see
Section 6.1

C2 denotes the free Z–module generated by the internal 2–faces of K ; see Section 6.1

F W C or
1
CC2! J 2 is a linearization of the consistency relations; see Equation (6.1.1)

D and D0 are simplicial complexes defined in Section 7.1.1

R is the holonomy map defined in Section 7.2.1

hW C1.D;L/! J 2 is the linearization of R defined in Equation (7.2.1)

gW J 2! C1.D0;L0/ is a linear map defined in Equation (7.2.5)

F 0W C or
1
CC2! J is the linear map obtained by composing F with the projection J 2! J ;

see Section 7.3

GW J ! C or
1 CC2 is the map induced by F� ıp ; see Section 7.3
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