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Ropelength criticality
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The ropelength problem asks for the minimum-length configuration of a knotted
diameter-one tube embedded in Euclidean three-space. The core curve of such a tube
is called a tight knot, and its length is a knot invariant measuring complexity. In terms
of the core curve, the thickness constraint has two parts: an upper bound on curvature
and a self-contact condition.

We give a set of necessary and sufficient conditions for criticality with respect to
this constraint, based on a version of the Kuhn–Tucker theorem that we established
in previous work. The key technical difficulty is to compute the derivative of thick-
ness under a smooth perturbation. This is accomplished by writing thickness as
the minimum of a C 1 –compact family of smooth functions in order to apply a
theorem of Clarke. We give a number of applications, including a classification of
the “supercoiled helices” formed by critical curves with no self-contacts (constrained
by curvature alone) and an explicit but surprisingly complicated description of the
“clasp” junctions formed when one rope is pulled tight over another.

57M25, 49J52, 53A04

Unlike the classical machine that is composed of well-defined parts that
interact according to well-understood rules (gears and cogs), the sliding

interaction of two ropes under tension is extraordinary and interactive, with
tension, topology, and the system providing the form which finally results.

—Louis H Kauffman, Knots and physics, 1992

1 Introduction

Our goal in this paper is to investigate what shape a knot or link attains when it is
tied in rope of a given diameter (or thickness) and then pulled tight. Ignoring elastic
deformations within the rope, we formulate this as the ropelength problem: to minimize
the length of a knot or link L in Euclidean space subject to the condition that it remains
one unit thick. Although there are many equivalent formulations (see Cantarella, Kusner
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and Sullivan [5] and Gonzalez and Maddocks [14]) of this thickness constraint, perhaps
the most elegant simply requires that the reach of L be at least 1

2
. Here, following

Federer, the reach of L is the supremal r � 0 such that every point in space within
distance r of L has a unique nearest point on L. Any curve of positive reach is C 1;1 ,
that is, its unit tangent vector is a Lipschitz function of arc length.

In an earlier paper [4], we studied a simplified version, the Gehring link problem, in
which the thickness constraint is replaced by the weaker requirement that the link-
thickness — the minimal distance between different components of the link — is at
least 1. Thinking of the components again as strands of rope of diameter 1, this
means that different strands cannot overlap, but each strand can pass through itself.
Our balance criterion [4] for the Gehring problem made precise the intuition that, in a
critical configuration for a link L, the tension forces seeking to minimize length must
be balanced by contact forces. More precisely, we defined a strut to be a pair of points
on different components at distance exactly 1. The balance criterion says that L is
critical if and only if there is a nonnegative measure on the set of struts, thought of as a
system of compression forces, which balances the curvature vector field of L.

The strut measure should be thought of as giving Lagrange multipliers for the distance
constraints; our proof was basically an infinite-dimensional Lagrange multipliers argu-
ment characterizing critical points of length constrained by the nonsmooth thickness
functional. The general procedure for such a problem is to write the nonsmooth
constraint as the minimum of a compact family of differentiable constraints. In the case
of link-thickness, this is immediate: we just take the infinite family of pairwise distances
between points on different components of the curve. Our proof was then based on
two technical tools. First, Clarke’s theorem [7] on the derivatives of “min-functions”
(our Theorem 3.1) lets us compute the directional derivative of the link-thickness
with respect to a smooth deformation of L. Second, we proved a new version of the
Kuhn–Tucker theorem on extrema of functionals subject to convex constraints, similar
in spirit to a version by Luenberger [15], but giving necessary and sufficient conditions
for a strong form of criticality. This provided the required version of the Lagrange
multipliers theorem.

In the present paper we adopt the same general approach to develop a criticality theory
for the (technically much more difficult) ropelength problem. Again the main point
is to express the thickness as the minimum of a compact family of smooth functions.
For this, we recall some equivalent reformulations [5, Lemmas 1, 2] of thickness for a
space curve. First, it is the infimal diameter of circles through three points on the curve,
and this is always realized in a limit as at least two points approach each other. (This
idea originates with [14] and leads to interesting work on approximating ropelength by
smooth integral Menger curvature energies; see for instance Strzelecki, Szumańska and
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von der Mosel [21].) Second, the thickness is always either the minimum self-critical
distance or twice the infimal radius of curvature, as illustrated in Figure 1.

Figure 1: The diameter of an embedded tube around a curve is controlled by
twice the radius of curvature (left) and by local minima of the self-distance
function on the tube (right).

Guided by this last picture, we write thickness as the minimum of two compact
subfamilies of smooth functions, controlling self-distance and curvature respectively.

The first subfamily is indexed by all pairs of points of the link L, but of course
cannot simply be the distance, since this vanishes along the diagonal. Guided by the
trigonometric factors that appear in the three-point diameter when two of the three points
approach each other, we define a penalized distance between two points (depending
also on the tangent direction at one of them) which equals distance for critical pairs
and achieves its minimum only at such pairs (while blowing up along the diagonal).
This yields a C 1 –compact family of functions indexed by L�L.

The second subfamily controls the curvature of L, but its construction is complicated
by the fact that L need not be C 2 . Nevertheless, since any thick curve is C 1;1

(meaning the tangent vector is Lipschitz continuous), L is twice differentiable — and
thus admits an osculating circle — almost everywhere. It is now tempting to simply
use the limit inferior to define a lower semicontinuous radius of curvature function
along the curve. We can view this as a family indexed by the compact set L, but
Clarke’s theorem requires that the derivatives under any variation vector field also be
lower semicontinuous, which is not the case here. (Knowing the derivative of curvature
requires knowing the osculating plane, information which is lost in the lim inf.) Fixing
this requires a genuinely new idea. We consider the closure Osc L of the set of
osculating circles in the space of all pointed circles in R3 ; the functions in our second
subfamily simply measure the diameter of each circle.

Proceeding in this way, we formulate and prove our first main result — the general
balance criterion of Theorem 3.17 — which gives a necessary and sufficient condition
for a link to be (strongly) critical for length under the thickness constraint. As in the
Gehring case, the condition requires the existence of a certain measure balancing the
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curvature of L, this time the sum of the strut measure and a kink measure on the space
Osc L of circles. In particular, in the case when there are no kinks, we recover the
criticality criterion of Schuricht and von der Mosel [19], who discussed tight knots
where the curvature constraint is nowhere active.

Our analysis also applies to the case where, in addition to the thickness constraint, the
radius of curvature of the curve is constrained to be at least � , a parameter giving the
stiffness of the link. (Here we take � � 1

2
, with � D 1

2
corresponding to the ordinary

ropelength problem.)

The general balance criterion can be applied directly to curves without kinks; for
example we classify curves with struts in one-to-one contact as double helices. The
kink measure, on the other hand, is a bit arcane and can be difficult to work with: in
general, L is no smoother than C 1;1 , so the space Osc L may be an unruly subspace
of the normal bundle over L. For a C 2 link, of course, the kink measure reduces to
a measure along L, but unfortunately, the only known example of a tight link which
is C 2 is the round circle, the ropelength-minimizing unknot. On the other hand, all
known explicit examples of tight links [5; 4] are piecewise C 2 , indeed even piecewise
analytic.

With a view towards the fact that other tight links (say, the tight trefoil knot) may not
even be piecewise C 2 , in Section 4, we impose the even milder smoothness assumption
of regulated kinks. We conjecture that all critical links have regulated kinks, but an
answer to this question seems far beyond our current understanding. For links with
regulated kinks, we derive successively nicer forms of our balance criterion, concluding
with Theorem 4.13, our second main result. It says the kink measure can be described
by a scalar kink tension function — or equivalently, by a virtual tangent vector — along
the curve. As an example, we use this theorem to classify all strut-free arcs in critical
curves. We combine our results into Theorem 4.19, which will be the most useful
form for most applications. Readers who are not interested in the underlying analytical
machinery may wish to start there.

At the end of the paper, we apply our balance criterion to describe the ropelength-
critical symmetric clasps. A curious feature of these clasps — whose analysis is based
on the discussion in [4, Section 9] and whose form was independently derived by
Starostin [20] — is the presence of a gap between the tips of the two components. In
other words, there is a small cavity between two tight ropes of circular cross-section
linked in this way.

Acknowledgments We gratefully acknowledge helpful conversations with many col-
leagues, including Elizabeth Denne, Oscar Gonzalez and Heiko von der Mosel. Special
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2 Curves, reach, curvature and thickness

We must begin this paper with the lengthy and somewhat intricate reformulation of
thickness outlined in the introduction. Proposition 2.14 achieves the goal of writing
thickness as the minimum of a compact family of functions; Corollary 2.16 extends
this to a family of thicknesses modeling stiff ropes. This allows us to use Clarke’s
theorem (Theorem 3.1) to compute first variation of thickness in Section 3.1.

We consider generalized links, which may include arc components with constrained
endpoints; our links are always C 1 but not necessarily C 2 .

A C 1 curve L will mean a compact 1–dimensional C 1 submanifold with boundary
embedded in R3 . (For us, manifold will always mean manifold with boundary.) The
curve L is thus a finite union of components, each a circle or an arc (compact interval).
Our results are independent of orientation, but for convenience in taking derivatives we
fix an orientation on each component. The Euclidean metric on R3 pulls back to give
a Riemannian metric on L; we denote the positively oriented unit tangent vector at a
point x 2 L by T .x/. The orientation induces a sign ˙1 on each endpoint p 2 @L

such that ˙T .p/ is the outward tangent vector.

Each arc or circle component of length ` is of course isometric to Œ0; `� or R=`Z,
respectively. Writing M for the disjoint union of these intervals or circles, the isometry
 W M ! L � R3 is simply an arc length parametrization of L, and we use it to
implicitly identify M with L.

All standard smoothness classes of functions on L are obtained via this identification.
In particular, given a (vector-valued) function f on L, we write f 0.x/ for the arc
length derivative of f at any x 2L; for example  0.x/D T .x/.

When we talk about the degree of smoothness of a Lipschitz curve L we mean the
smoothness of the arc length parametrization; it is a standard and straightforward fact
that no (immersive) reparametrization can be smoother. For any C 1 curve L, we let
EL �L denote the set of points at which L (meaning its arc length parametrization)
is twice differentiable. (At an endpoint x 2 @L we of course require only a one-sided
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second derivative.) No reparametrization has a second derivative at any point of LXEL .
For x 2EL , we write �.x/ WD T 0.x/D  00.x/ for the curvature vector.

Suppose we have a C 2 –smooth vector-valued function f W R3 ! V on space. Its
restriction to L is C 1 (with respect to arc length); indeed we have f 0.x/DDxf .T .x//.
For x 2EL , the second arc length derivative along L also exists and is given in terms
of the spatial derivatives of f by

f 00.x/DD2
xf .T .x/;T .x//CDxf .�.x//:

We say a sequence L1;L2; : : : of C 1 curves converges in the C 1 topology to a C 1

curve L if there are C 1 immersions i W L ! R3 with images i.L/ D Li such
that the maps i converge in C 1 to the inclusion map  . Of course each i has a
reparametrization i ı�i with locally constant speed (that is, constant speed on each
component). Since these also converge to  , we usually assume each i has locally
constant speed.

2.1 Reach

To handle our generalized links, we need to reconsider the equivalence of the various
formulations of reach or thickness mentioned in the introduction, that are by now
standard for closed curves. Federer’s definition [12] of reach can be rephrased as
follows:

Definition 2.1 Given a link (or indeed any closed set) L�R3 , its medial axis is the
set of points p 2R3 for which the nearest point x 2L is not unique. The reach of L,
reach.L/, is the distance from L to its medial axis.

Of course, a closed subset L� R3 has infinite reach if and only if it is convex. For
curves, this means reach.L/D1 if and only if L is a connected straight arc. We will
often implicitly exclude this trivial case, for instance when discussing derivatives of
reach.

To analyze the reach of a curve in more detail, we need to consider its tangent and
normal cones. Let L be a C 1 curve in R3 . At any interior point x 2L, the tangent
cone TxL is the line through x tangent to L. At an endpoint x 2 @L of an arc
component, TxL is the (inward) tangent ray. The normal cone NxL is

NxL WD fp 2R3
j hp�x; q�xi � 0 for all q 2 TxLg:

At an interior point this is the normal plane, while at an endpoint x 2 @L it is a closed
halfspace. (These cones are the translates by the base point x of the corresponding
cones given by Federer [12] for general closed subsets of Rn .)
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The following alternate characterization of reach is then an immediate corollary
of [12, Theorem 4.8].

Lemma 2.2 If L is a C 1 curve in R3 then the reach of L equals the infimal r > 0

such that there exist x ¤ y 2L and p 2NxL with jp�xj D r D jp�yj.

If p 62NxL, then there are points near x in L which are closer to p . Thus if .x;y/
is a local minimum for jx�yj on L�L (away from the diagonal), then .x;y/ is a
critical pair in the following sense:

Definition 2.3 A pair of distinct points x;y 2 L is a critical pair if x 2 NyL and
y 2NxL. We denote the set of all critical pairs by Crit.L/.

We would now like to reformulate the lemma above in terms of the radii of circles
tangent to the curve at one point and passing through another point.

Definition 2.4 For distinct points x;y 2 L, let C.x;y/ denote the circle (or line)
through y tangent to L at x . By plane geometry, its radius is

jx�yj

2 cos .x;y/
DW r.x;y/;

where  .x;y/ 2 Œ0; �=2� denotes the angle between the normal plane to L at x and
the segment xy . (The notation we define here suppresses the dependence of C , r

and  on L, in particular on TxL.)

To properly handle endpoints of generalized links, we also need variants of these
functions. So consider now circles in the plane of TxL and y , passing through x

and y . Let C �.x;y/ denote the smallest such circle whose center lies in NxL. Then
C �.x;y/D C.x;y/ except when x 2 @L and y 2NxL, in which case C �.x;y/ is a
circle with diameter xy . The radius of C �.x;y/ is

jx�yj

2 cos �.x;y/
DW r�.x;y/� r.x;y/;

where  �.x;y/ 2 Œ0; �=2� denotes the angle at x between NxL and the segment xy .
Thus  � D 0 for y 2 NxL and  � D �=2 for y 2 TxL. Furthermore  �.x;y/D
 .x;y/ if x is an interior point of L.

Lemma 2.2 can now be rephrased as follows:
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Corollary 2.5 If L is a C 1 curve in R3 then

reach.L/D inf
x¤y2L

r�.x;y/Dmin
�

inf
x¤y2L

r.x;y/; inf
x¤y2L
x2@L

r�.x;y/

�
:

Proof Any point p 2NxL as in Lemma 2.2 is the center of a circle through x and y ;
hence jp�xj � r�.x;y/. Conversely, the center of any C �.x;y/ is such a point p .
This gives the first equality. The second follows from the fact that r�.x;y/� r.x;y/

with equality unless x 2 @L.

(For closed curves, this was also the first statement in [5, Lemma 1]. The proof of the
later parts of that lemma should have been more careful about the treatment of points
where L is not twice differentiable.)

For any C 1 link L, the angles  and  � extend continuously to the diagonal, since
limy!x  .x;y/D�=2D limy!x  

�.x;y/. But without additional smoothness of L,
the functions r and r� do not extend. For smooth curves, of course, it is a standard
fact that as y! x , the circles tangent at x through y approach the osculating circle
at x . For completeness, we verify that the existence of a second derivative at x is
sufficient for this:

Lemma 2.6 Suppose L is a C 1 curve with curvature vector � at a point x 2 EL .
Then

lim
y!x

r.x;y/D lim
y!x

r�.x;y/D 1=j�j:

Proof First note that for y sufficiently near x , we have y 62 NxL so  �.x;y/ D
 .x;y/ and thus r�.x;y/D r.x;y/. Assume x D 0 2R3 and let  be an arc length
parametrization around x so

 .0/D 0;  0.0/D T D T .x/;  00.0/D �:

Taylor’s theorem implies that

 .s/D sT C s2

2
�C o.s2/:

For y D  .s/, we can compute  from the equation jT � yj D jyj cos .x;y/. We
get

r.x;y/D
j .s/j2

2jT �  .s/j
D

s2C o.s3/

j�js2C o.s2/
D 1=j�jC o.1/:
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Lemma 2.7 Suppose a C 1 curve L is twice differentiable at x 2 EL , and suppose
y 2LXNxL. Fix the orientation at x such that hT .x/;y �xi> 0. If r.x;y/ <1,
then the partial derivative @r=@x exists, with

@r

@x
.x;y/� .r.x;y/j�.x/j � 1/ tan .x;y/:

Proof From plane geometry, the rotation speed of the vector x�y isˇ̌̌̌
@

@x

�
x�y

jx�yj

�ˇ̌̌̌
D

1

2r.x;y/
:

The normal plane NxL of course turns at rate j�.x/j. Comparing these rates gives

�
1

2r.x;y/
� j�.x/j �

@ .x;y/

@x
� �

1

2r.x;y/
Cj�.x/j:

On the other hand differentiating the definition of r gives

@r.x;y/

@x
D�

1
2

tan C r tan 
@ 

@x
:

The desired inequality follows at once.

2.2 Penalized distance

Recall that in order to apply Clarke’s theorem (Theorem 3.1) to compute the derivative
of reach.L/ under a smooth deformation of L, we must express the reach as the
minimum of a compact family of functions. For a closed C 2 curve L, we could simply
extend r continuously to the diagonal x D y by Lemma 2.6, getting a compact family
parametrized by L�L. Unfortunately, the examples of [5] show that even ropelength
minimizers may fail to be C 2 . (For the same reason, the three-point curvature defined
off the diagonal in L�L�L has no nice extension to the diagonal, and thus cannot
be used in Clarke’s theorem.)

On the other hand by [5, Lemma 4], the reach condition implies that L is C 1;1 ,
meaning that T is a Lipschitz function of arc length. Recall that by Rademacher’s
theorem (cf Royden [18, Section 5.4]), a Lipschitz function is differentiable almost
everywhere, so EL has full measure if L is C 1;1 . This turns out to be enough to make
Clarke’s theorem work using the more technical approach that we now describe.

The expression of thickness in terms of minimum self-distance and minimum radius of
curvature is mirrored in the following dichotomy. First, if the infimal r is achieved,
then it is achieved for a critical pair .x;y/, where r D jx�yj=2. To avoid the problem
that the infimal r might also be achieved at noncritical pairs, we next define a penalized

Geometry & Topology, Volume 18 (2014)



1982 J Cantarella, J H G Fu, R B Kusner and J M Sullivan

distance function that achieves its minimum only on critical pairs. Second, if the
infimal r is not achieved, then it is approached in the limit as y! x . Intuitively, this
should happen at a point of maximum curvature, but in fact L might not even be twice
differentiable at the limit point. To handle this limiting behavior near the diagonal, in
Section 2.3 we will look at the set of osculating circles (at points where L is twice
differentiable) and compactify it within the space of all pointed circles in space.

Definition 2.8 Given a link L, the penalized distance between two distinct points
x;y 2L is

pd.x;y/ WD jx�yj sec2  .x;y/D 2r.x;y/ sec .x;y/:

For y D x , we set pd.x;x/D1. When we want to emphasize the dependence on L,
we will write pdL.x;y/. Similarly the penalized endpoint distance is

pd�.x;y/ WD jx�yj sec2  �.x;y/D 2r�.x;y/ sec �.x;y/� pd.x;y/:

For y D x , we set pd�.x;x/ D 1. Of course pd�.x;y/ D pd.x;y/ except when
x 2 @L.

Lemma 2.9 Given a link L of positive reach, the penalized distance is a continuous
function from L�L to .0;1�. Similarly, the penalized endpoint distance is continuous
when restricted to @L�L.

Proof First, we note that the angle  .x;y/ (extended to be �=2 on the diagonal
x D y ) is continuous. The formula for pd.x;y/ shows it shares this continuity away
from the diagonal. But we also have continuity on the diagonal, since r � reach.L/> 0,
while  approaches �=2 as .x;y/! .z; z/.

On the other hand the penalized endpoint distance pd�.x;y/ is merely lower semi-
continuous, since it equals pd.x;y/ away from endpoints x 2 @L but can jump down
there. But the continuity claimed here is easy: for fixed x 2 @L, the angle  �.x;y/ is
continuous in y , and the rest follows as above.

Lemma 2.10 Suppose 0 < reach.L/ <1. We have pd�.x;y/ � 2 reach.L/ for all
x;y 2L; equality can hold only if x;y is a critical pair.

Proof Clearly pd�.x;y/ � 2r�.x;y/, with equality only when  �.x;y/D 0, that
is, when y 2 NxL. Since r�.x;y/ � reach.L/ by Corollary 2.5, it only remains to
show that x 2 NyL in the case pd�.x;y/ D 2 reach.L/. If not, there is a tangent
vector T to L at y such that hx�y;T i> 0. The directional derivative of jx�yj in
the direction T is negative; since  �.x;y/D 0, the directional derivative of pd�.x;y/
is the same negative value, contradicting the fact that pd�.x;y/ D reach.L/ is a
minimum.

Geometry & Topology, Volume 18 (2014)



Ropelength criticality 1983

2.3 Osculating circles

Capturing the curvature portion of the thickness information on a C 1;1 curve as a
min-function will require a genuinely new idea. As mentioned in the introduction, one
might be tempted to use lim inf to replace the radius of curvature defined on EL by a
lower semicontinuous function on L. But its time derivative under a variation of L

would not be lower semicontinuous, so Clarke’s theorem would not work.

Instead we recall that at each point in the dense set EL � L there is an osculating
circle. Taking the closure of the set of these osculating circles inside the space of
pointed circles in R3 gives the compact index set on which the radius function is
C 1 –continuous. This construction is the most important technical idea in this paper,
and we note that a similar idea should be essential in extending our results to surfaces
or higher-dimensional submanifolds.

Thus we consider the space Circ of all oriented pointed circles (including lines) in R3 .
We describe a circle through p 2R3 by its oriented unit tangent T 2 S2 at p together
with its curvature vector � 2 TT S2 there. This identifies Circ with R3 � TS2 3

.p;T; �/. Here of course � D 0 exactly when the circle degenerates to a line. Let
R.p;T; �/ WD 1=j�j 2 .0;1� be the radius function on Circ and let … denote the
projection …W .p;T; �/ 7! p .

Given a C 1;1 link L, the set EL on which the second derivative exists has full measure.
Note that the minimal Lipschitz constant Lip.T / for the tangent vector as a function
of arc length is exactly supEL

j�j. We let Osc L � Circ be the set of all osculating
circles:

Osc L WD f.x;T .x/; �.x// j x 2ELg � Circ :

Its closure Osc L is a compact subset of Circ since j�j is bounded on EL . Note that
for any .x;T; �/ 2 Osc L we have x 2 L and T D T .x/, while of course � ? T is
some normal vector; thus we can view Osc L as a subset of the normal bundle to L.

For x 2 L, we set Osc Lx WD Osc L\…�1fxg. Since EL � L is dense, it follows
that Osc Lx is nonempty for every point x 2L. Thus for x 2L we may define

�.x/ WD min
Osc Lx

RD
�

lim
EL3y!x

j�.y/j
��1

:

Note that � is essentially a Clarke upper derivative of the tangent vector T . Clearly
� is lower semicontinuous, so it attains its minimum along L, which we can view as
a minimum radius of curvature. For x 2EL we have �.x/ � 1=j�.x/j, but equality
might not hold.
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Lemma 2.11 If L is a C 1;1 curve and c 2 Osc L then R.c/� reach.L/.

Proof By continuity of R, it is enough to prove this for osculating circles c 2 Osc L.
There it follows immediately from Corollary 2.5 and Lemma 2.6.

Lemma 2.12 If r.x;y/D reach.L/ with y 62NxL, then �.x/D reach.L/.

Proof If not, we have r.x;y/ < �.x/, in which case by lower semicontinuity of �
there is a neighborhood U of x in L such that r.x0;y/ < �.x0/ for x0 2 U . At
any x0 2EL\U we have r.x0;y/j�.x0/j< 1, so by Lemma 2.7 we get @r=@x < 0.
Since L is C 1;1 , the function r is Lipschitz (at least locally where it is finite), so its
values near x can be computed by integrating this derivative. But this contradicts the
fact that r is minimized at x .

Remark In fact under the hypothesis of Lemma 2.12, x and y lie on the same
component of L, and the arc of L from x to y (in the direction of the tangent T at x

with hT;y � xi > 0) must be an arc of a circle, but we will not need to invoke this
stronger statement.

Lemma 2.13 Suppose  is a subarc of L joining x to y with length at most �r.x;y/.
Then sup\EL

j�j � 1=r.x;y/, so inf � � r.x;y/.

Proof In the case r.x;y/D1 there is nothing to prove. Otherwise, for convenience
we rescale so that r.x;y/D 1 and translate so that C.x;y/ is centered at the origin.
Letting B denote the open unit ball, C.x;y/ is then a great circle on @B .

First suppose there is a subarc ˛ �  disjoint from B and with endpoints a; b 2 @B .
Then ˛ has length at most � but at least that of the great circular arc from a to b . Let ˇ
denote the extension of this latter arc (within the same great circle) with one endpoint
at a and having the same length as ˛ . Since this is still less than a semicircle, the
distance between the endpoints of ˇ is at least ja� bj. Applying Schur’s comparison
theorem to ˛ and ˇ , we conclude that the curvature of ˛ is somewhere at least that
of ˇ , that is, that sup˛ j�j � 1 as desired. (In [22], we show that the standard proof
(see Chern [6]) of Schur’s theorem for smooth curves actually applies to all W 1;BV

curves, that is to all curves of finite total curvature. In particular, it applies to C 1;1

curves, with the curvature comparison being between the measures j�j ds .)

If there is no such subarc, then B \  is dense in  . In particular there is a sequence
xi 2  \B with xi! x . It now suffices to show limy!x j�.y/j � 1.

The function f .p/ WD jpj2 � 1 is C 1;1 along L with f .x/ D 0 D f 0.x/. Since
f .xi/ < 0 there is some yi between x and xi with f 0.yi/ < 0, and thus some zi
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between x and yi such that f 00.zi/ < 0. In fact the set of such zi has positive measure,
so we may choose zi 2EL . Then by the chain rule,

f 00.zi/D 2.1Chzi ; �.zi/i/ > 2.1� jzi jj�.zi/j/;

so we find that j�.zi/jjzi j> 1. Since jzi j ! 1, we have lim j�j � 1 as desired.

2.4 Thickness and stiff ropes

We can now prepare for the application of Clarke’s theorem by expressing the reach
of L as the minimum of a family of functions parametrized by the disjoint union
.L�L/tOsc L:

Proposition 2.14 For any C 1;1 curve L,

reach.L/Dmin
n

1
2

min
x;y2L

pd�.x;y/;min
L
�
o

Dmin
n

1
2

min
x;y2L

pd�.x;y/; min
c2Osc L

R.c/
o
:

Proof The right-hand sides are equal and by Lemmas 2.10 and 2.11 they are at least
reach.L/. It remains to prove that either 2 reach.L/D pd�.x;y/ for some x;y 2L,
or reach.L/DR.c/ for some c 2 Osc L.

By Corollary 2.5, we can find a sequence .xi ;yi/ with r�.xi ;yi/! reach.L/. By
compactness, a subsequence converges to some pair .x;y/. We consider three cases.

First, if x¤ y and y 2NxL then  �.x;y/D 0. Therefore, pd�.x;y/D 2r�.x;y/D

2 reach.L/.

Second, if x ¤ y and y 62 NxL, then by Lemma 2.12 we have reach.L/ D �.x/,
which is the radius of some circle in Osc Lx by compactness.

Third, if x D y , then for large i the subarc i from xi to yi satisfies the length
bound of Lemma 2.13. Applying the lemma, we find a point zi 2 i \ EL with
1=j�.zi/j � r.xi ;yi/C 1= i . Since zi! x while r.xi ;yi/! reach.L/, we conclude
as desired that �.x/� reach.L/.

Proposition 2.14 permits us also to model stiff ropes, which cannot bend as much as
the reach constraint permits.

Definition 2.15 If L is a C 1;1 curve and � � 1
2

, we define the � –thickness of L as

Thi� .L/ WDmin
n
2 reach.L/; 1

�
min

L
�
o
:
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We note that a link with Thi� � 1 cannot have an osculating circle with radius less
than � . We specify � � 1

2
because otherwise this formula would simply give twice the

reach. (It is tempting to try to define a thickness for � < 1
2

by combining the curvature
term with a minimum distance of critical pairs. But this is unphysical in the sense that
it permits the thick rope to penetrate itself near points of large curvature; furthermore it
is not amenable to our analysis since the reformulation in terms of penalized distance
does not apply.)

As a corollary, we get the main result of this section; it writes thickness as a min-function,
which will let us apply Clarke’s theorem.

Corollary 2.16 For any link L and any � � 1
2

we have

Thi� .L/Dmin
n

min
x;y2L

pd�.x;y/; 1

�
min

L
�
o

Dmin
n

min
x;y2L

pd.x;y/; min
x2@L
y2L

pd�.x;y/; 1

�
min

L
�
o
:

Proof The first equality follows immediately from Proposition 2.14. The second
follows from the fact that pd�.x;y/� pd.x;y/ with equality unless x 2 @L.

Clearly for any � we have Thi� .L/D1 if and only if L is a connected straight arc,
since this is true of reach.L/. From Lemma 2.10 and the definition of � –thickness we
immediately get:

Corollary 2.17 Suppose 0<Thi� .L/<1. If x;y 2L satisfy pd�.x;y/DThi� .L/
then Thi� .L/D 2 reach.L/, so .x;y/ 2 Crit.L/.

Definition 2.18 We refer to pairs .x;y/ 2 Crit with pd�.x;y/D Thi� .L/ as struts;
and to circles c 2 Osc L such that R.c/D � Thi� .L/ as kinks. We denote the sets of
struts and kinks by

StrutD Strut.L/� Crit�L�L; KinkD Kink.L/� Osc L� Circ :

Thus the � –thickness of L is realized exactly at the struts and kinks.

Every kink is a circle of the same radius � , indeed it is a point in Circ of the form
.x;T .x/; n=�/ with jnj D 1. Thus we identify it with .x; n/, and we can and will
view Kink.L/ as a subset of the unit normal bundle to L. But without additional
smoothness assumptions on L it is hard to say anything about the possible structure of
this kink set.
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The � –ropelength problem is to minimize length subject to the condition Thi� � 1.
For a closed link L, we minimize over the usual link type ŒL�. When L includes arc
components, we constrain each endpoint p2@L to lie in an affine subspace denoted H 0

p

(of dimension 0, 1 or 2). Furthermore we allow for Neumann or first-order boundary
constraints by specifying that the tangent vector T .p/ at each endpoint stay in a linear
subspace H 1

p ; we consider only the cases of clamped tangents (dim H 1
p D 1) and free

tangents (dim H 1
p D 3). We define the constrained link type ŒL� (as in [4, Section 8])

by requiring that each endpoint p stay on H 0
p , with tangent T .p/ 2H 1

p , during any
isotopy. (Of course it would be easy to allow more general constraint manifolds but we
will not need this for our examples.)

To prevent isotopy classes from being too large, we could also include obstacles for
the curve, as in [4]. The resulting wall struts in the criticality theory work just as in the
Gehring problem considered there. However, in the examples we have in mind (like
the simple clasp) the obstacles are never active constraints, so the wall struts are not
needed. Thus we leave this extension of the theory as a straightforward exercise for
the reader.

Definition 2.19 Suppose Thi� .L/ � 1. We say that L is a ropelength minimizer
constrained by � –thickness (or, for short, a Thi� –constrained minimizer) in its (possibly
constrained) link type ŒL� if it minimizes length among all curves in ŒL� with Thi� � 1.
We say L is a local minimizer if it minimizes length among all curves with Thi� � 1

in some C 1 neighborhood.

Proposition 2.20 The thickness Thi� is upper semicontinuous with respect to the C 1

metric on the space of C 1;1 curves L.

Proof By definition, Thi� is the minimum of reach.L/ and a scaled radius-of-
curvature term. Federer has shown [12, Theorem 4.13] that reach.L/ is upper semi-
continuous even with respect to the (coarser) topology induced by Hausdorff distance.

It only remains to check that minL � is semicontinuous with respect to C 1 convergence
of L. Since � is a local function, it suffices to consider a connected curve L. Suppose
Li are C 1;1 curves converging to L. As we have noted earlier, we may assume that
the convergent C 1 maps i W L! Li each have constant speed vi (with vi ! 1 of
course). Now, by the lower semicontinuity of Lipschitz constants, we have�

min
L
�
��1
D sup

x2EL

j�.x/j D Lip.T /� lim Lip. 0i /D lim v2
i sup

x2ELi

j�i.x/j

D lim.v2
i / lim

�
min
Li

�i

��1
D lim

�
min
Li

�i

��1

which yields the desired conclusion.
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We now prove the existence of thickness-constrained minimizers, under a mild technical
hypothesis that prevents the length of any component from shrinking to zero. Since
a circle component of thickness Thi� � 1 necessarily has length at least � , we only
have to worry here about arc components. An arc component with endpoints p and q

clearly has length bounded away from 0 if the constraints H 0
p and H 0

q are disjoint.

Corollary 2.21 Suppose the constrained link type ŒL� contains at least one curve L

with Thi� .L/� 1, and suppose that, in at least one length-minimizing sequence Li of
such curves, the length of each component stays bounded away from zero. Then there
exists a � –thickness constrained minimizer in ŒL�.

Proof We may assume the Li are parametrized at locally constant speed on a common
domain (say L1 ). By Arzela–Ascoli we may extract a subsequence converging in C 1

to a limit curve L0 . (If the link L is split, we assume without loss of generality
that the various pieces stay within a common ball while they shrink.) Because the
convergence is in C 1 , we have Len.Li/! Len.L0/, and by Proposition 2.20 we
know Thi� .L0/ � lim Thi� .Li/ � 1. That the endpoints of L still satisfy the given
constraints is clear. Finally, by C 1 convergence, L0 is isotopic to all but finitely many
of the Li and in particular, L0 2 ŒL�.

3 The general balance criterion

We give an analytic condition, Theorem 3.17, that is both necessary and sufficient for
a general curve to be critical for � –ropelength (subject to the ancillary condition of
Thi� –regularity). The condition may be viewed as an equation of vector distributions
on R3 . The approach follows the one we used in [4]: using Clarke’s Theorem 3.1 we
compute the derivative of the thickness of a curve L under a variation induced by a
smooth vector field � ; then we apply the Kuhn–Tucker theorem.

3.1 The derivative of thickness

Here we give a formula for the first variation of the � –thickness of L, which will be
key to the technical definition of criticality for length subject to thickness constraints.
The proof is an application of a theorem of Clarke [7] on the directional derivatives of a
function g that may be expressed as the minimum of a C 1 –compact family fgug of C 1

functions. Essentially this theorem states that the directional derivative of g at a point x

is the minimum of the directional derivatives of those gu for which gu.x/ D g.x/.
In our case, this will mean that the first variation of thickness in the direction of a
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deforming vector field is given (in Theorem 3.5) as the minimum of the derivatives of
the strut lengths and kink radii.

We use Clarke’s theorem [7] in the following special case:

Theorem 3.1 (Clarke) Let U be a sequentially compact topological space. Suppose
that for each u 2 U and some � > 0 there is a C 1 function guW .��; �/! R such
that the functions .t;u/ 7! gu.t/ and .t;u/ 7! g0u.t/ are lower semicontinuous. Then,
putting g.t/ WDminu2U gu.t/, the right derivative of g at t D 0 exists and is given by

dg

dtC

ˇ̌̌̌
tD0

Dminfg0u.0/ j u 2 U;gu.0/D g.0/g:

That the minima exist (in the definition of g and the formula for its derivative) as opposed
to infima, is of course an immediate consequence of the compactness hypothesis. There
is nothing special about t D 0; the min function g has both one-sided derivatives at
each t 2 .��; �/.

We have previously expressed thickness as the minimum of penalized distances between
pairs of points on our curve and scaled radii over the closure of the set of osculating
circles to L. It will be easy to differentiate penalized distances as we vary our curve,
but somewhat more complicated to differentiate radii of curvature. We now turn to the
task of defining and computing these derivatives.

While the main technical difficulties we face in this work are due to the fact that our
curves may fail to be C 2 , when we consider derivatives, it suffices to consider only
variations arising from C 2 –smooth deformations of the ambient space R3 : our balance
criteria show that criticality with respect to such variations suffices to get balancing
measures.

We start by noting that any C 2 diffeomorphism �W R3! R3 induces a homeomor-
phism �� on the space Circ of pointed circles: If c �R3 is the circle .x;T; �/ 2 Circ,
then ��.x;T; �/ is the osculating circle at �.x/ to the C 2 –smooth curve �.c/. It is
clear that � maps the circle c to a curve with velocity v WDDx�.T / and acceleration
a WDD2

x�.T;T /CDx�.�/. Thus

��.x;T; �/D

�
�.x/;

v

jvj
;

a

jvj2
�
ha; viv

jvj4

�
:

Expressing the length of the new curvature vector in the usual way in terms of the
vector cross product gives

R.��.x;T; �//D
jvj3

jv�aj
D

jDx�.T /j
3

jDx�.T /� .D2
x�.T;T /CDx�.�//j

:
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The variations of a link that we consider are generated by a C 1 –smooth family of C 2

diffeomorphisms �t with �0 D Id. The initial velocity @
@t
jtD0�

t is thus a C 2 vector
field � . (Conversely, any C 2 vector field � on R3 is the initial velocity of some such
family �t , for instance its local autonomous flow, given by @�t=@t D � ı �t .) The
diffeomorphisms �t induce a C 1 –smooth family �t

� of homeomorphisms of Circ,
whose initial velocity is a continuous vector field �� on Circ depending only on � . The
formula we need expresses the derivative of the radius function R in the direction ��
in terms of the given vector field � and its spatial derivatives.

Lemma 3.2 Given a C 1 –smooth one-parameter family of C 2 diffeomorphisms �t

with initial velocity � , the time derivative of the radius function R (where this is finite)
is

ı�R.x;T; �/ WDD.x;T;�/R.��/D 2RhT;Dx�.T /i �R3
h�;D2

x�.T;T /CDx�.�/i:

Proof By smoothness, the time derivatives commute with spatial derivatives. From
�0 D Id we see Dx�

0 D Id and D2
x�

0 D 0. Thus we can write ı�R.x;T; �/ as

3hT;Dx�.T /i

jT � �j
�
hT � �;Dx�.T /� �CT � .D2

x�.T;T /CDx�.�//i

jT � �j3

D 3RhT;Dx�.T /i �R3.hT;Dx�.T /ih�; �iC h�;D
2
x�.T;T /CDx�.�/i/;

using the facts that jT j D 1 and jT � �j D 1=R. Since h�; �i DR�2 , this reduces to
the formula given.

Of course if .x;T; �/ is the osculating circle to L at a point x 2EL , then the quantity
D2

x�.T;T /CDx�.�/ appearing here is simply the second derivative � 00 of � along L.

Corollary 3.3 Suppose L is a C 1;1 curve and � a C 2 vector field on space. At any
point x 2EL with osculating circle c D .x;T; �/, � ¤ 0, we have

ı�R.c/D 2Rh� 0;T i �R3
h� 00; �i:

Lemma 3.4 Suppose �W R3 ! R3 is a C 2 diffeomorphism and L � R3 is a C 1

curve. Then its image �L is a C 1 curve with E�L D �EL . Assuming L is C 1;1 , we
also have ��.Osc L/D Osc�L.

Proof If  is the arc length parametrization of L, then � ı  is an immersive
parametrization of �L. Since its second derivative exists at all points of �EL we
have �EL � E�L . The reverse inclusion follows by considering L as the image
of �L under ��1 . For a C 1;1 curve, we now see ��.Osc L/DOsc�L; since �� is a
homeomorphism, it follows that ��.Osc L/D Osc�L.
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We are now ready to apply Clarke’s theorem to give our first main result, a formula for
the first variation of thickness of a link.

Theorem 3.5 Let �t for t 2 .��; �/ be a C 1 –smooth family of C 2 diffeomorphisms
of R3 with �0 D Id, and let � be the initial velocity vector field

�x WD
@�t .x/

@t

ˇ̌̌
tD0

:

Let L be a C 1;1 curve with reach.L/ <1. Then the function t 7! Thi� .�t .L// is
differentiable from the right at t D 0, with right-hand derivative

ı� Thi� .L/ WD
d Thi� .�t .L//

dtC

ˇ̌̌
tD0

Dmin
�

min
.x;y/2Strut.L/

1

2

D
x�y

jx�yj
; �x � �y

E
;

1

�
min

c2Kink.L/
ı�R.c/

�
:

Proof We will apply Clarke’s Theorem 3.1 to a family of functions of t parametrized by
the compact space .L�L/tOsc L. The functions are the following: for .x;y/2L�L

we use t 7! pd�
t .L/.�t .x/; �t .y//, and for c 2Osc L we use t 7! 1

�
R.�t

�.c//. These
functions and their derivatives depend continuously on the parameters; they form the
family to which we will apply Clarke’s theorem.

By the last lemma, �t
�.Osc L/D Osc�tL. Thus by Corollary 2.16 and the definition

of Thi� , the minimum of our Clarke family is the thickness Thi� .�tL/. Clarke’s
theorem thus shows that thickness has a forward time derivative given by the minimum
derivative of pd.x;y/ or R=� where these functions equal thickness.

By Corollary 2.17, struts are critical pairs: we have that pd.x;y/ D Thi� .L/ only
if .x;y/ 2 Crit. Differentiating the formula defining pd.x;y/, using the fact that
 .x;y/D 0, we see that the derivative equals the derivative of jx�yj=2 given above.

Note that our functions sometimes take the value C1. This is not really an obstacle
to applying Clarke’s theorem: we simply choose a smooth increasing map hW R!R
that is bounded above but satisfies h.x/D x for x � Thi� .L/C 1. Composing each
function in our family with h gives a family to which Clarke’s theorem as stated applies.
Since h is the identity near all points where its value matters, it drops out of the formula
for the derivative.

Since superlinear functions may be characterized as infima of families of linear functions,
we immediately get:
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Corollary 3.6 Suppose L is a C 1;1 curve with reach.L/ <1. Then the functional
� 7! ı� Thi� .L/ is superlinear for � 2 C 2.R3;R3/. That is, for a � 0 and vector
fields � and �, we have

ıa� Thi� .L/D aı� Thi� .L/; ı�C� Thi� .L/� ı� Thi� .L/C ı� Thi� .L/:

3.2 The balance criterion

Having computed the derivative of the function Thi� representing the one-sided con-
straint, we can now start to formulate our balance criterion. Recall that in a constrained
link type, at each endpoint p 2 @L we have constraints given by the subspaces H 0

p

and H 1
p .

Definition 3.7 Let L be a C 1;1 curve in the constrained link type ŒL�. A vector
field � 2 C 2.R3;R3/ is compatible with ŒL� at L if �.p/ is tangent to H 0

p and
�0.p/DDp�.T / 2H 1

p at each endpoint p 2 @L.

These conditions of course mean that the vector field � preserves the endpoint con-
straints to first order. While the autonomous flow of � might violate these constraints
to second order, we next show how to modify it locally near the endpoints to fix this.

Lemma 3.8 Suppose L is a constrained link and � is a compatible vector field.
Then there exists a C 1 family of C 2 diffeomorphisms �t with initial velocity � such
that �t .L/ satisfies the endpoint constraints for all small t .

Proof Let z�t be the autonomous flow of �, satisfying @z�t=@t D �ı z�t . We will make
local modifications in a ball Br .p/ around each endpoint, choosing the radius r > 0

small enough that these balls are disjoint. We focus on a single endpoint p 2 H 0
p ,

where the tangent vector to L is some v0 2 H 1
p . After flowing by time t , the link

z�t .L/ has endpoint pt D �t .p/ and velocity vt DDp
z�t .v0/ there. These are close

to H 0
p and H 1

p , respectively, and there is a unique “smallest” Euclidean rigid motion �t

restoring these constraints exactly: first we rotate around pt until vt lies in H 1
p and

then we translate pt to its orthogonal projection in H 0
p . This motion depends smoothly

on pt and vt and thus is a C 1 function of t . The compatibility of � with the endpoint
conditions means exactly that .@�t=@t/jtD0 D 0, since only second-order corrections
are necessary.

Now fix a smooth bump function  supported on Br .p/ and with  � 1 on some
smaller neighborhood of p . Then define �t as the linear combination

�t .x/ WD  .x/�t .z�t .x//C .1� .x//z�t .x/:
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In a small neighborhood of p , only the first term is active, so �t .L/ satisfies the
endpoint constraints. But because d�t=dt D 0, the initial velocity of �t is still �.

Definition 3.9 Assuming reach.L/ <1, we say that L is Thi� –regular if it has a
thickening field, meaning a compatible C 2 vector field � on R3 with ı� Thi� .L/ > 0.

Regularity is a form of constraint qualification; we will use it for instance to show that
minimizers are critical points. Note that for a classical link type (with all components
closed curves), any L with Thi� > 0 is Thi� –regular: the Euler vector field �p WD p

generating homotheties is a thickening field. Regularity also holds for many examples
of constrained links.

A link is critical for the ropelength problem if its length cannot be decreased without
also decreasing thickness. For technical reasons we will also need a strong version of
criticality.

Definition 3.10 Suppose Thi� .L/D 1. We say L is � –critical if

ı� Len.L/ < 0D) ı� Thi� .L/ < 0

for every compatible � 2 C 2.R3;R3/. We say L is strongly � –critical if there exists
� > 0 such that

ı� Len.L/D�1D) ı� Thi� .L/� ��

for every compatible � 2 C 2.R3;R3/.

Clearly strong criticality implies criticality. Under the assumption of Thi� –regularity
they are in fact equivalent.

Lemma 3.11 If L is Thi� –regular and � –critical, then L is in fact strongly � –
critical.

Proof Let � be a thickening field for L. Scaling � if necessary, we may assume that
ı� Len.L/� 1

2
. Thus for � as in the definition of strong criticality, ı�C� Len.L/��1

2
.

Using the superlinearity of Corollary 3.6, and the criticality of L, we get

0> ı�C� Thi� .L/� ı� Thi� .L/C ı� Thi� .L/:

Thus we may take � WD ı� Thi� .L/.

The next two lemmas characterize Thi� –constrained local minimizers L. In the trivial
case when Thi� .L/ > 1, the thickness constraint is not active; if Thi� .L/D 1 and L

is Thi� –regular, then it is critical.
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Lemma 3.12 If L is a Thi� –constrained local minimizer with Thi� .L/ > 1, then
each component of L is a straight arc.

Proof Since the constraint Thi� � 1 is not active at L, the curve is a local length
minimizer without constraints. Thus ı� Len.L/ D 0 for all compatible � , so L has
zero curvature everywhere.

Lemma 3.13 If L is a Thi� –constrained local minimizer with Thi� .L/D 1, and L

is Thi� –regular, then L is (strongly) � –critical.

Proof Suppose � is a compatible vector field such that ı� Len.L/<0, but ı� Thi� �0.
Let � be a thickening field, and choose c > 0 small enough that ı�Cc� Len < 0. By
Corollary 3.6, we see ı�Cc� Thi� > 0. Using Lemma 3.8, we can flow to get nearby
curves in the same constrained link type with Thi� > 1 but smaller length than L,
which is a contradiction.

The rest of our results deal with strongly � –critical curves L with Thi� .L/D 1, and
thus apply to Thi� –regular local minimizers (ignoring the trivial case of minimizers
with Thi� .L/ > 1, classified above). Our main theorem, the general balance criterion,
says that a link is strongly critical if and only if its curvature is balanced by certain
measures on the kinks and struts.

Definition 3.14 Let L be a C 1;1 link. A kink measure for L is a nonnegative Radon
measure on Kink.L/. A strut measure for L is a nonnegative Radon measure on
Strut.L/�L�L that is invariant under .x;y/ 7! .y;x/. Given a strut measure � on
Strut.L/ we define the associated strut force measure � on L to be the vector-valued
measure obtained by projecting the vector-valued Radon measure 2.x � y/�.x;y/

to L via .x;y/ 7! x . ThusZ
Strut.L/

hx�y; �x � �yi d�.x;y/D

Z
L

h�; d�i:

Physically one should think of a strut measure as a system of compressions on the
points of self-contact of the embedded tube around L, or alternatively on certain
compression-bearing elements of length 1 connecting critical pairs of L. The strut
force measure then gives the resultant force along L itself. The physical interpretation
of the kink measure is more elusive in general.

Definition 3.15 A C 1;1 link L with Thi� .L/D 1 is � –balanced if there exist a strut
measure � (with strut force measure �) and a kink measure � for L such that for any
compatible vector field � we have

ı� Len.L/D
Z

L

h�; d�iC

Z
Kink.L/

ı�R.c/ d�.c/:
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We refer to this as the balance equation. Note that it may be viewed as an equation
of distributions acting on vector fields �W R3!R3 . The kink term has distributional
order 2 by Lemma 3.2, while the other terms have order 0: in particular the variation
of length can be written as

ı� Len.L/D
Z

L

h� 0;T i ds D�

Z
L

h�; �i dsC
X

p2@L

h�;˙T i;

pairing � with a vector-valued Radon measure which is absolutely continuous on the
interior and has outward-pointing atoms at each endpoint.

The general balance criterion is an application of the following version of the Kuhn–
Tucker theorem from linear programming, which we proved in [4] following ideas
of [15]. As usual C.Y / denotes the space of continuous functions on a space Y .

Theorem 3.16 Let X be any vector space and Y be a compact topological space. For
any linear functional f on X and any linear map AW X ! C.Y /, the following are
equivalent.

(a) There exists � > 0 such that for each � 2X with f .�/D�1 there exists y 2 Y

with .A�/.y/� �� .

(b) There exists a nonnegative Radon measure � on Y such that f .�/D
R

Y A.�/d�

for all � 2X .

Theorem 3.17 (General balance criterion) A link L with Thi� .L/D 1 is strongly
� –critical (Definition 3.10) if and only if it is � –balanced (Definition 3.15).

Proof We apply Theorem 3.16 with X being the space of compatible vector fields �
and f the linear functional f .�/ WD ı� Len.L/. The idea is to capture the derivative
ı� Thi� .L/ as the minimum value of a continuous function A.�/. Thus following
Theorem 3.5 we take Y WD StruttKink and define AW X ! C.Y / via

A.�/ WD

�1
2
hx�y; �x � �yi .x;y/ 2 Strut;
��1ı�R.c/ c 2 Kink:

The conclusion of Theorem 3.16 is then exactly that L is strongly critical if and only
if it is balanced.

The special case of a critical knot with no kinks was analyzed by Schuricht and von
der Mosel [19]. Of course in this case our balance criterion reduces to theirs, involving
only the strut measure. We next consider other links that can be balanced by strut
measure alone.
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Proposition 3.18 Suppose L is a critical link for the Gehring problem of minimizing
length subject to maintaining distance 1 between components. Then L is also � –
critical for any � for which Thi� .L/� 1.

Proof The main theorem of [4] gives a strut measure on the set of Gehring struts
(connecting points at distance 1 on distinct components). Under the assumption that
Thi� .L/� 1, these Gehring struts are also struts in our sense. Even if there are kinks
or further struts (between points on a single component) the Gehring strut measure
alone balances the link, so by the general balance criterion it is � –critical.

Consider for instance, the known ropelength-minimizing links from [5], where each
component is a convex planar curve built from straight segments and arcs of unit circles.
They have Thi� D 1 for any � 2 Œ1

2
; 1� and thus are global minimizers also for these

more restrictive problems. By Lemma 3.13 they are then strongly � –critical. The
same strut measure that balances them for the Gehring problem [4] also shows they
are � –balanced, again for any � � 1. (For � D 1 the curved sections are kinks and
balance can be achieved in other ways as well.)

The Gehring � –clasp of [4, Section 9] has maximum curvature 1=
p

1� �2 at the tip.
Since neither component approaches itself closely, for � �

p
1� �2 we have Thi� D 1.

For these values of � , the strut measure used for the Gehring problem shows the clasp
is also � –balanced. Below in Section 7 we explore what happens for larger stiffnesses,
when the clasps include kinks.

Similarly, we described in [4, Section 10] a Gehring-critical configuration B0 of the
Borromean rings. It curvature is bounded by 1:52802 (and no component approaches
itself closely), so the same strut measure shows it is � –balanced for any � < 0:65444.
We also described a nearby configuration B2 (with length less than 1% more than that
of B0 ) where each component is made of arcs of unit circles centered on the other com-
ponents. For � D 1 these arcs are kinks, and it is not hard to show (using Lemma 4.18
below) that B2 is 1–balanced. We have computed � –balanced configurations also for
intermediate stiffnesses and plan to report on these separately.

3.3 Kink-free arcs with special strut patterns

The kink term in the general balance criterion is a bit arcane; in Section 4 we will
give nicer versions under certain minimal smoothness assumptions. But of course the
kink term is irrelevant along kink-free arcs (or even kinked arcs over which the kink
measure vanishes), so we can apply the general balance criterion directly.
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Lemma 3.19 Suppose L is � –balanced and A is an open subarc over which the kink
measure vanishes. Then along A the strut force measure is absolutely continuous, given
by �D�� ds .

Proof For any vector field � vanishing on LXA the kink term in the balance equation
vanishes, so we get Z

A

h�; d�i D ı� Len.L/D
Z

A

h� 0;T i ds:

Integrating by parts gives the desired result.

As a first application, we can easily analyze “free” sections of a critical curve, with
no struts or kinks. (This result was first discussed — in the case of a C 2 knot — by
Gonzalez and Maddocks [14].)

Proposition 3.20 If L is � –balanced and A is a subarc with zero strut force measure
and zero kink measure, then A is a line segment.

Proof By the lemma, � ds D��D 0 along the subarc.

We now consider the case of two subarcs in “one-to-one contact”.

Proposition 3.21 Let L be � –balanced. Suppose A and B are two subarcs with
zero kink measure and suppose they are in one-to-one contact, meaning there is a
homeomorphism �W A! B such that there is a strut from a to �.a/ for each a 2 A

but no other struts touching A[B . Then A[B forms a piece of a standard symmetric
double helix of pitch at least 1 (or of a circle).

Remark We could start with the weaker assumption of a (weakly) monotonic family
of struts, where a single point a 2A might touch a whole subarc B0 �B or vice versa.
In fact this cannot happen, since B0 is a subarc of the unit normal circle to A at a, so
the tangent vector has nonzero change along B0 ; this would imply an atom of strut
force measure at a which is impossible since � is absolutely continuous on a kink-free
arc.

Proof Change the orientation on B if necessary to assume that � is orientation-
preserving. Since the kink measure vanishes on A[B , the lemma applies, giving
�D�T 0 . For any subarc aa0 �A, by the symmetry of � we get

T .a/�T .a0/D�.aa0/D��.�.aa0//D T .�.a0//�T .�.a//:
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This means that W WD T .a/CT .�.a// is a constant vector along A.

Now define the continuous vector field N.a/ WD �.a/ � a along A. Since struts
have unit length and �.a/ 2 NaL, this is a unit normal field. Since � acts in the
direction �N of the single strut, we deduce that T 0 D j�jN almost everywhere. That
is, N is the Frenet principal normal.

Reversing the roles of A and B , we see equally well that N.a/? T .�.a//. (Indeed
the principal normal at �.a/ 2B is �N.a/.) It follows that N.a/?W , which in turn
implies that hW;T .a/i is constant along A. But from the definition of W , we have

hW;T .a/i D 1ChT .a/;T .�.a//i D hW;T .�.a//i;

so hW;T i is the same constant along B .

Consider first the degenerate case where W D 0, meaning T .�.a//D �T .a/. The
arcs A and B stay in the plane of T .a/ and N.a/, and indeed are centrally symmetric
around the midpoint of any strut. Since a and �.a/ are always at unit distance, it
follows that A and B are antipodal arcs of a circle of diameter 1, a degenerate double
helix of pitch zero.

Clearly this case only arises when � D 1
2

. Since points near �.a/ are at distance
less than 1 from a, it follows that A and B belong to the same component of L.
Furthermore, by the remark after Lemma 2.12, this component is the full circle of
diameter 1. Since this circle is kinked, balance could alternatively be obtained through
a kink measure instead of the strut measure.

For the general case W ¤ 0, think of W as a vertical vector. Since N ?W , each
strut connects points at equal height. Since hW;T i is the same constant along each
curve, the homeomorphism � is actually an isometry. Consider now the midpoints
M.a/ WD .aC �.a//=2 of the struts. Since � is an isometry, differentiating gives
M 0DW =2, meaning these midpoints move at constant speed in direction W . Since T

makes a constant angle with W , the strut vectors N.a/ also rotate at constant speed in
the plane perpendicular to W . The arcs A and B , given as M �N=2, thus form a
symmetric double helix as claimed.

(In the degenerate case where jW j D 2, we have T .�.a//D T .a/�W =2. That is,
both A and B are straight segments, giving a degenerate double helix of infinite pitch.
The strut measure vanishes on the struts connecting A and B .)

Consider the squared distance function from a fixed point .�1=2; 0; 0/ 2A to the other
strand B D f.cos �; sin �; k�/=2g of a helix of pitch k . Since its second derivative is
.k2�cos �/=2, we see that it is convex (with a single minimum at the claimed strut) for
k � 1. For smaller pitch, the distance has a local maximum at � D 0, so the thickness
of the double helix is less than 1 and the curves are not in one-to-one contact.
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This agrees with the result of Maddocks and Keller [16] which states (under different
hypotheses) that two intertwined ropes in equilibrium with one-to-one contact should
form a double helix where the radii of the helices depend on the tension in the ropes.
Schuricht and von der Mosel [19] show in this situation that the curvature vectors of A

and B must point along the common strut, without carrying the analysis through to
prove that the curves form a double helix.

4 Balance with regulated kinks

The general balance criterion can be hard to apply without some control on the kink set.
In the balance equation, as we have already noted, the second-order kink term is equated
to strut and length terms which are distributions of order zero in the variation vector
field � . If we knew that kinked arcs were C 2 , then there would be at most one kink
over each point of L and furthermore, Corollary 3.3 would give the kink term in terms
of the second arc length derivative of � . In this case, standard distributional calculus
(cf Duistermaat and Kolk [10]) then says this second-order term can be integrated by
parts. This would give us a simpler form of the balance criterion as an equality of
measures in which the variational vector field does not appear.

Our goal is to carry out as much of this program as possible for less smooth links, like
those in our examples. Over a junction point along a piecewise C 2 curve, for instance,
there may be two kinks. Our first theorem below says that we can essentially ignore
such points: the kink measure is nonatomic even after projection down to L, so even
any countable subset of L can be ignored.

In the later parts of this section we discuss the balance criterion under certain mild
regularity assumptions about the kinked arcs of L; these suffice first to guarantee a
single kink over all but a countable subset of L, then to transfer the balance equations
to distributions along L, and thus to apply the calculus of distributions. We end up with
friendlier versions of the balance criterion, and can bootstrap to greater smoothness of
the critical link L.

4.1 The projection of the kink measure is nonatomic

The kink measure � for a balanced link L is supported on Kink.L/, which we view
as a subset of the unit normal bundle N1.L/ via .x; n/ ! .x;T .x/; n=�/. Thus
we think of � as a measure on this circle bundle with support on Kink. We recall
the projection …W Circ! R3 , in particular …W N1.L/! L. If � is a kink measure
for L, then we write x� for the projection of �� to L, which of course is supported on
…Kink.L/. (The factor of � here simplifies several formulas later.)
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Using Lemma 3.2 we can write the kink term in the balance equation asZ
Kink

ı�R.x; n/ d�.x; n/D 2

Z
L

h� 0;T i dx�.x/� �2

Z
Kink
hD2

x�.T;T /; ni d�.x; n/

� �

Z
Kink
hDx�.n/; ni d�.x; n/:

We note the linear and quadratic dependence on n in the last two terms; these could also
be written as integrals over L, now with respect to projected vector- and tensor-valued
measures. Thus it is really only the projections to L of the three measures � , n�

and .n˝ n/� which enter into the balance equation. (What this essentially means is
that if we Fourier-decompose the measure � on each normal circle, then it is only the
components of order 0, 1 and 2 which matter.)

Our first result shows that no single normal circle has positive mass. This will later
allow us to ignore countably many points along L.

Theorem 4.1 If L is � –balanced, then the projection x� of the kink measure � to L

is nonatomic.

Proof Fix a point on L, which by translation we assume is at the origin. We must
show that �.…�1f0g/ D 0. We will obtain this equation as the limit of the balance
equation applied to a family of variation fields �� .

Let f denote a smooth nonnegative bump function supported on the unit ball, with
f � 1 in a small neighborhood of 0. Given any vector v 2 R3 we write v? WD
v� hv;T0iT0 for its part perpendicular to the tangent vector T0 WD T .0/ at the origin.
Then we define

��.x/ WD f .x=�/x?:

Since �� is supported on the �–ball its L1 norm is O.�/. Thus in the limit �! 0

the order 0 (strut and ı Len) terms in the balance equation approach 0 (even though
the strut force measure might have an atom at the origin). Therefore the kink term
approaches 0 as well.

We easily calculate the derivatives

Dx�
�.v/DDx=�f .v/x

?=�Cf .x=�/v?;

D2
x�
�.v; v/D 2Dx=�f .v/v

?=�CD2
x=�f .v; v/x

?=�2:

Note that D�� is O.1/ while D2�� is O.1=�/. At the origin (independent of � ) we
have D0�

�.v/D v? , while the second derivatives vanish.
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Note that �� is supported on the �–ball; since reach.L/ � Thi� .L/ D 1 we know
(from Denne, Diao and Sullivan [9, Lemma 3.1]) that for small � this ball contains a
single arc ˛� of L whose length is at most 2 arcsin � . Now suppose x 2 ˛� is at arc
length s DO.�/ from 0. Using the curvature bound and the fact that � � 1

2
, we get

jT .x/�T0j � jsj=� � 2jsj and thus jx� sT0j � s2 . In particular, jT?j DO.�/ and
jx?j DO.�2/ along the whole arc ˛� .

The integrand in the kink term is

ı�� R.x; n/D 2�hT;Dx�
�.T /i � �hn;Dx�

�.n/i � �2
hn;D2

x�
�.T;T /i:

First we show that this integrand is uniformly bounded as �! 0. Clearly the first two
terms are O.1/. Writing

hn;D2
x�
�.T;T /i D 2Dx=�f .T /hn;T

?
i=�CD2

x=�f .T;T /hn;x
?
i=�2

shows — using our estimates on T? and x? — that the third term is also O.1/. We
also note that at x D 0 the integrand reduces to

ı�� R.0; n/D 0� �hn; ni � 0D��;

independent of � .

Now as �! 0 the arcs ˛� shrink to the single point f0g, so since the kink integrand is
uniformly bounded, the kink integral

R
…�1.˛�/ ı�� R.x; n/ d� approaches the integral

over …�1f0g, which as noted is ���.…�1f0g/, independent of � . Thus this measure
is zero, as desired.

4.2 Regularly balanced links

To reformulate the balance criterion in a nicer way it will be important to consider
curves with regulated second derivative. While regulated functions are usually defined
(as in Bourbaki [2, Chapter 2.1]) on an interval in R, it is equivalent to define them
on Riemannian 1–manifolds; in our context we speak of submanifolds M of a C 1

curve L. (Any 1–manifold is a countable union of components, each a circle or an
open, half-open or compact interval.) Note that a submanifold M � L with empty
boundary is exactly an open subset U �LX @L.

Let M �L be a submanifold of a C 1 curve. A regulated function on M is a function
f W D!Rn defined on a dense subset D �M whose one-sided limits exist at every
x 2M . An interior point x 2M X@M is called a jump point of f if f .x�/¤f .xC/.
For � > 0 we let J� denote the set on which the jump is large:

J�.f / WD fx 2M X @M j jf .x�/�f .xC/j � �g:
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If M is compact then J� is finite; for any M it follows that J� is countable and closed
in M (though not necessarily in L). The union J D J.f / WD

S
J�.f /�M is the

countable set of all jump points (which may of course be dense). Let xf W M ! Rn

denote any function such that xf .x/ 2 ff .x�/; f .xC/g for each x . (Note that xf D f
at all but countably many points of D , a statement which is vacuous if D is countable.)
Then xf is continuous on M X J but has a jump discontinuity at each x 2 J . The
following lemma is then immediate:

Lemma 4.2 Let f be a regulated function on M . Consider the smoothings f� WD
xf � �� obtained by convolution with a sequence of mollifiers (cf [10, Chapter 1]).

Here f� is defined away from an �–neighborhood of @M . For any x 2M X .@M [J /,
the continuity of xf at x implies that f�.x/ ! xf .x/. In particular we have this
pointwise convergence at all but countably many points of M .

We will say that an absolutely continuous function gW M !Rn has regulated deriva-
tive if its arc length derivative g0 (which is defined almost everywhere) is regulated.
Note that in this case the mean value theorem implies that g0.x˙/ are the one-sided
derivatives of g , so these exist everywhere, and g is differentiable exactly at those x

where g0.xC/D g0.x�/.

Lemma 4.3 Let f W .a; b/! .c; d/ be a C 1;1 diffeomorphism with 1
2
� f 0 � 1. Its

inverse g is also C 1;1 with 1� g0 � 2. Furthermore f has regulated second derivative
if and only if g does.

Proof The chain rule gives g0.f .x// D 1=f 0.x/; therefore if f 0 is L–Lipschitz
then g0 is 8L–Lipschitz. The second derivative g00 exists almost everywhere and from
the formula g00.f .x//D�f 00.x/=f 0.x/3 we see that it has a one-sided limit at f .x/
if and only if f 00 has a one-sided limit at x .

Definition 4.4 Suppose a link L is � –balanced (Definition 3.15) by strut measure �
and kink measure � . We say L is regularly balanced if there is an open subset U �L

such that x�.LXU /D 0 and the unit tangent T has regulated derivative � on U .

We conjecture that every � –balanced link is regularly balanced, but this seems difficult
to prove. But there is a condition on L which will ensure this.

Definition 4.5 We say a C 1;1 curve L has regulated kinks if …Kink is contained in
a submanifold M �L on which T has regulated derivative. (As above, this means M

is a countable union of circles and intervals.)
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With this in hand, we prove the following.

Lemma 4.6 Suppose that L has regulated kinks. Then L is regularly balanced (see
Definition 4.4) if and only if L is � –balanced (see Definition 3.15). (By Theorem 3.17,
this holds if and only if L is strongly � –critical.)

Proof It only remains to show that if L is � –balanced then it is regularly balanced.
Let M be the submanifold on which T has regulated derivative and set U WDM X@M .
We know x� is supported on …Kink�M . Since @M is countable and x� is nonatomic,
we have x�.LXU /D 0.

In the rest of this section we analyze regularly balanced links to get several equivalent
conditions that are easier to apply. First we show that we can reformulate the balance
equation to involve distributions along L instead of on R3 ; then we integrate by parts
twice, ending with a balance equation that can be stated as an equality of measures
with no explicit variation vector field. This is the condition we use later to show our
examples are (regularly) balanced.

Suppose L is regularly balanced. We let J denote the jump set of � on U ; since J is
countable and x� is nonatomic, x�.J /D 0. Over each point of U XJ there is at most
one kink; a kink exists only when j�j D 1=� . (Over each point in J there are at most
two kinks, but we may ignore these with regards to the kink measure.)

Now we claim that we may replace U (in the definition of regularly balanced) by an
open subset on which j�j is bounded away from zero. Writing c WD 1=2� for notational
convenience, remove from U the set Jc where � jumps by at least c . We may do this
because Jc is closed in U and, being countable, has measure zero with respect to the
nonatomic x� . Now let A be the closure — in this new U — of fx 2 U j �.x/ < cg.
At any point in A, some one-sided limit of � is at most c , while on …Kink some
one-sided limit of � is 2c D 1=� . Since all jumps on U are by less than c , we see A

is disjoint from …Kink, so x�.A/D 0. Thus we may remove A from U , proving the
claim.

From now on we assume we have adjusted U in this way. It follows that the unit
principal normal vector N WD �=j�j is well defined as a regulated function on U (with
jumps only on J ). We can rewrite the kink term in the balance equation in terms of
this normal vector, using Corollary 3.3:

Lemma 4.7 On a regularly balanced link L, the kink measure � is uniquely deter-
mined by its projection x� , and the kink term in the balance equation becomesZ

Kink
ı�R.x; n/ d�.x; n/D

Z
U

.2h� 0;T i � �h� 00;N i/ dx�:
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Here we note that in the last term, both N and � 00 are regulated functions (with jumps
only on J ). Since their product is also regulated and x� is nonatomic, the integral is
well-defined.

By this lemma, the balance equation for a regularly balanced L can be expressed
entirely in terms of derivatives of the vector field � along the curve L. Of course, �
here is still a C 2 vector field in space, and the balance equation is an equation of
distributions on such vector fields. Our next result shows, however, that we can translate
it into an equation of distributions on C 2 vector fields along L. (We recall that the C 2

structure on L comes not directly from the embedding in R3 but instead from the
local identification with R given by an arc length parametrization.) This sets us up to
use the standard calculus of distributions: by examining the highest-order term, we can
integrate by parts and bootstrap to higher smoothness.

Theorem 4.8 Let L be a link with Thi� .L/ D 1. Then L is regularly balanced
(Definition 4.4) by strut force measure � and kink measure � if and only ifZ

L

h�0;T i ds�

Z
L

h�; d�i D

Z
U

.2h�0;T i � �h�00;N i/ dx�

for all compatible C 2 vector fields � 2 C 2.L;R3/ along L.

Note that this is the same balance equation we already have for C 2 fields on space;
the only difference is that it is now supposed to hold for C 2 fields along L. For such
fields �, compatible means again that at each endpoint p 2 @L we have �.p/ tangent
to H 0

p and �0.p/ 2H 1
p .

Proof First suppose this balance equation holds for all compatible � 2 C 2.L;R3/.
Given a compatible C 2 vector field � on space, to check the balance equation for �
it suffices to find a sequence of compatible smooth fields �i along L with uniformly
bounded C 2 norms such that j�i � �jC 1.L/! 0 and �00i ! � 00 pointwise on U X J .
For then each term in the balance equation for �i approaches the corresponding term
for � (in Lemma 4.7). In particular, to handle the second-order term

R
UXJ hN; �

00
i i dx�

we use the dominated convergence theorem. But the construction of the �i is easy:
we simply start with the restriction of � to L and smooth it by convolving with a
sequence of mollifiers. (Small modifications near the endpoints suffice to maintain
the compatibility conditions.) Since � 00 is regulated on U with jumps only on J , the
desired pointwise convergence follows from Lemma 4.2.

Conversely, if L is regularly balanced, then given any compatible C 2 field � along L

it suffices to find a sequence of smooth �i on R3 that have uniformly bounded C 2

norms, that converge to � in C 1.L/ and whose second derivatives converge pointwise
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on U X J . Indeed it suffices to construct the �i locally in a neighborhood of any
given point p 2L; these pieces can be patched together with a partition of unity. By
translation we assume p D 0 and let T0 be the tangent there. The idea is to extend �
to x� on a neighborhood of 0 2R3 by making x� constant on each plane perpendicular
to T0 , and then smooth this in space.

More precisely, consider the function f W x 7! hT0;xi. Restricted to L, it is C 1;1 and
has regulated second derivative on U . On some neighborhood V �L of p we have
1
2
< f 0 � 1, so in particular f jV is a C 1 diffeomorphism onto its image .a; b/�R.

Lemma 4.3 applies to show the inverse function gW .a; b/!V is a C 1;1 parametrization
with speed in Œ1; 2/, and has regulated second derivative on the subset f .U \V /. Thus
if we set x� WD �ıg then x� is also C 1;1 with regulated second derivative on f .U \V /.
To get the �i , we simply smooth x� by convolving it with a sequence of mollifiers:

�i WD .x���i/ ıf:

The desired properties again follow immediately using Lemma 4.2.

On a regularly balanced link L, we have discussed the principal normal N as a
regulated function on U . For convenience we extend it arbitrarily outside of U . (Of
course for points x 2EL with � ¤ 0 we are free to pick N D �=j�j but this will be
irrelevant.) In the balance equation of Theorem 4.8, since x� vanishes outside U , we
can thus equally well write the integral over U as an integral over all of L.

For our further analysis, it will be important to make use of the space BV.M;Rn/

of functions of bounded (essential) variation, again on a submanifold M � L of
a C 1 curve. For k � 1 we write W k;BV.M;Rn/ for the Sobolev space of functions
whose k th (distributional) derivatives (with respect to arc length) lie in BV.M;Rn/.
We write BVloc.M;Rn/ for the space of functions with locally bounded variation
in M , and similarly for W

k;BV
loc .M;Rn/. We recall a few facts about BV functions.

(Compare the discussion in [22, Section 1] and the references there.)

� Any f 2BVloc.M;Rn/ (after modification on a set of measure zero) is regulated,
that is, has only jump discontinuities. (On the other hand, of course not even
every continuous function is in BVloc .)

� We have f 2 BVloc.M;Rn/ if and only if its distributional derivative is a
vector-valued Radon measure (with atoms at the jumps of f ).

� Any function g 2 W
1;BV

loc .M;Rn/ is continuous and locally Lipschitz. (A
continuous curve is in W 1;BV if and only if it has finite total curvature.)

Geometry & Topology, Volume 18 (2014)



2006 J Cantarella, J H G Fu, R B Kusner and J M Sullivan

Lemma 4.9 Suppose L is regularly balanced. Then the projected kink measure x� is
absolutely continuous with respect to ds and indeed there exists ˆ 2W 1;BV.L;R3/

such that N x� Dˆ ds and ˆ.p/?H 1
p at each endpoint p 2 @L. The balance equation

for L can then be written asZ
L

h�; d�i D

Z
L

h�0;T � 2jˆjT � �ˆ0i ds:

Proof The balance equation from Theorem 4.8 equates
R

Lh�
00;N dx�i with terms of

order at most one in �, so this term is also order one. Thus we can write N x� Dˆ ds

with ˆ 2 BV.L;R3/. Since x� is nonnegative, it follows that ˆD jˆjN ; of course
jˆj 2 BV.L/ is nonnegative and vanishes (a.e.) outside U . Now we may integrate by
parts to obtain

�

Z
L

h�00;N i dx� D�

Z
L

h�00; ˆi ds D

Z
L

h�0; ˆ0 dsi �
X

p2@L

h˙�0; ˆi;

where ˙�0 is the derivative of � in the outward direction ˙T . Note that the value ˆ.p/
of a BV function at an endpoint is well defined as the one-sided limit.

Thus we may write the balance equation from Theorem 4.8 asZ
L

h�0;T i ds�

Z
L

h�; d�i D

Z
L

h�0; 2jˆjT C �ˆ0i ds� �
X

p2@L

h˙�0; ˆi:

Since the left-hand side has order 0, so does the right-hand side. Our first conclusion
is that the atomic terms h�0; ˆi vanish at each endpoint. Since a compatible vector
field � can have an arbitrary value �0.p/ 2 H 1

p at p 2 @L, this simply means that
ˆ.p/?H 1

p . The balance equation then reduces to the form given in the lemma.

Our second conclusion is that the integrand 2jˆjT C�ˆ0 (which gets paired with �0 ) is
a BV function. Since T and jˆj are both BV, so is their product and we conclude that
ˆ0 2BV, that is, that ˆ2W 1;BV.L;R3/, as desired. In particular ˆ is continuous.

A few comments on the boundary conditions are in order. Let p 2 @L be an endpoint.
By continuity it is clear that ˆ.p/ is a normal vector. Thus if dim H 1

p D 1 (that is, if
the tangent vector at p is fixed) then the condition ˆ ? H 1

p is automatic. If on the
other hand dim H 1

p D 3 (that is, if the tangent vector is free) then of course ˆ?H 1
p

means ˆ.p/D 0.

Corollary 4.10 If L is regularly balanced then the vector field ˆ of Lemma 4.9
vanishes on the jump set J � U of � .
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Proof Suppose x 2 J is a jump point of � . If at least one one-sided limit has
j�j.x˙/ < 1=� , then there are no kinks in some one-sided neighborhood of x . Thus x�
vanishes on that neighborhood and so does ˆ, so ˆ.p/D 0 by continuity. Otherwise,
the jump in � reflects a jump between kinks in different normal directions, that is, N

also has a jump at x . But the continuity of ˆ implies that N Dˆ=jˆj is continuous
at any point where ˆ¤ 0. Thus again we conclude ˆ.p/D 0.

Definition 4.11 Suppose L has Thi� D 1. A kink tension function for L is a non-
negative � 2W 1;BV.L/, vanishing at any endpoint p 2 @L with free tangent vector,
such that on the open set U WD fp 2 L j �.p/ > 0g the link L is C 2 with constant
curvature j�j � 1=� . We call the BV vector field

V WD .1� 2�/T � �.�N /0

the virtual tangent associated to � , noting that it agrees with T outside U .

We are now ready to give our final reformulation of the balance criterion.

Definition 4.12 Suppose L has Thi� D 1. We say L is nicely balanced if it has a
strut measure � (with strut force measure �) and a kink tension function � (with
virtual tangent V ) such that �CV 0 D 0 as measures on the interior of L, while at
each endpoint p 2 @L, we have �fpg�V .p/?H 0

p .

Note that this nice form �D �V 0 of the balance equation generalizes the equation
�D�T 0 for kink-free arcs (where of course V D T ) from Lemma 3.19. Physically,
of course, for a (nonkinked) curve under tension (minimizing its length), the tangent
vector T at a point p can be thought of as the force exerted by the arc of the curve
after p on the arc before p . Along a kinked arc, this force is instead V , due to the fact
that the curvature bound is active. The kink tension function � can be thought of as
giving the Lagrange multipliers for the curvature bounds at each point along the curve.
Physically one could imagine a “triple strut” acting like an archer’s bow to transmit
force between a point q and points some tiny arc length � before and after it along L,
through bars attached to each other at the center of the osculating circle. Then �.q/
gives the relative strength to which this triple strut is used, in a limit as �! 0. The
formula above for V .p/ then follows as the net transmitted force between the arcs
before and after p .

The next theorem is our final main technical result.

Theorem 4.13 A link L is regularly balanced (Definition 4.4) if and only if it is nicely
balanced (Definition 4.12).
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Proof Suppose first that L is regularly balanced. In view of Lemma 4.9 we set
� WD jˆj. Since this is continuous, f� > 0g is open, and we may replace the original U

(in the definition of regularly balanced) by this open subset. Since � vanishes on J

by Corollary 4.10, we know that L is C 2 on U . In terms of the virtual tangent
V D .1�2�/T ��ˆ0 , the balance equation of the lemma is

R
Lh�; d�iD

R
Lh�
0;V i ds .

Integrating by parts gives �CV 0 D 0 on the interior and h�;�fpg�V .p/i at each
endpoint p 2 @L. Recalling that a compatible vector field � can have any value parallel
to H 0

p at p , we obtain �fpg�V .p/?H 0
p .

Conversely, if L is nicely balanced with strut measure � and kink tension function � ,
we define x� WD � ds . Since L is C 2 along U D f� > 0g there is a unique kink
measure � projecting to this x� . Retracing our steps in the integrations by parts, we see
that L is regularly balanced by � and this � .

We note that it would be possible to do the analysis of this section for a single subarc
A � L. If A has regulated kinks, then the kink measure over A can be expressed
in terms of a kink tension function and virtual tangent. If A abuts other kinked arcs,
the boundary conditions of course get more complicated. We have not carried this
out in detail even though it would allow a slight strengthening of the results below on
strut-free kinked arcs; we would only need to assume regulated kinks along the arc in
question rather than on the whole link.

Given Theorem 4.13, we can rephrase the conjecture mentioned above as follows:

Conjecture 4.14 Every � –balanced link is nicely balanced. In particular, the kink
measure is supported over piecewise C 2 arcs of the link.

We gain some hope that this conjecture is true from the analysis above: we have seen,
for instance, that if an arc A has regulated kinks but the jump set J of � is dense in A,
then the kink measure vanishes over A. The effect of the kink measure, as seen in the
kink tension function, grows only in the interior of C 2 pieces of the link.

Corollary 4.15 Suppose L is nicely balanced with kink tension � . Then along U we
have L 2W

3;BV
loc .U;R3/. The normal N and thus also the binormal B WD T �N are

in W
1;BV

loc .U /, so the torsion � WD hN 0;Bi is locally BV on U .

Proof Recall that �2W 1;BV.L/ and �>0 on U . Since .1=�/0D��0=�2 we see that
1=� 2W

1;BV
loc .U /. Since �N Dˆ2W 1;BV.L;R3/ we conclude N 2W

1;BV
loc .U;R3/.

But on U , we have N D �� , so this means that L 2W
3;BV

loc .U;R3/, as claimed. The
Leibniz product rule for BV functions shows B WD T �N 2W

1;BV
loc .U;R3/, and then

� WD hN 0;Bi 2 BVloc.U /.
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It follows that along U we have the usual Frenet equations

T 0 DN=�; N 0 D�T=� C �B; B0 D��N:

We can thus write

V D .1��/T � ��0N � ���B;

V 0 D ..1��/=� � ��00C ��2�/N � �.� 0�C 2�0�/B:

Along U we may decompose the restricted strut force measure �jU into two signed
Radon measures

�jU D�N N C�BB; �N WD h�;N i; �B WD h�;Bi:

We now rewrite the balance equation �D�V 0 in terms of these measures.

Corollary 4.16 If L is nicely balanced, then we have the following equalities of
signed Radon measures on U :

�2�00C .1� �2�2/� D 1C ��N ;

�.�2�/0 D ��B:

Further smoothness results would depend on better understanding how the geometry of
the rest of the curve affects the struts converging on a given arc. Of course we know that
outside the closure of U , the strut force measure �D�T 0 is absolutely continuous.
On this closure, however, � can even have atoms. The next result describes their effect
on � and � .

Corollary 4.17 At a point p 2U , an atom of �N corresponds to a jump in �0 , while
an atom of �B corresponds to a jump in � . If �fpg D 0 at a limit point p of LXU ,
then �0.p/D 0. If �fpgD 0 at an isolated point p of LXU , then �0C.p/C�

0
�.p/D 0

and if these are nonzero then N changes sign at p .

Proof From the equation �D�V 0 and the fact that .1�2�/T is continuous, we see
that

atom of � ! jump in V  ! jump in .�N /0 :

Thus on U , an atom of �N corresponds to a jump in �0 while an atom of �B

corresponds to a jump in �2� , that is, to a jump in � .

Now recall that �� 0 on LXU . Thus if p is a limit point, at least one of the one-sided
derivatives �0

˙
.p/ vanishes. If � has no atom at p , the derivative �0.p/ exists, hence

is 0.
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Finally, suppose p is an isolated point of LXU . If � has no atom there, then �0N is
continuous at p , which yields the desired conclusion.

As an example, we consider a planar kinked arc, that is, a circular arc, say of total
turning angle 2˛ .

Lemma 4.18 Suppose  is a kinked circular arc of turning angle 2˛ , joined at each
end to straight segments. Suppose further that  bears no strut force except for a single
atom. Then  is balanced if and only if this atom acts at the midpoint p of the arc, in
the principal normal direction �N.p/ with mass 2 sin˛ . The kink tension function is
� D 1� cos.˛� � jsj/, where s denotes the arc length from p .

Proof Let T0 and T1 be the tangent vectors to the straight segments. Since V D T

on these segments, the jump in V is exactly T1�T0 D 2 sin˛N.p/. This jump must
cancel the atom of strut force measure. Since the strut force always acts in the normal
plane and N.p/ is normal to the curve only at p , we see the atom is at p as claimed.

In the planar case of � D 0, the equations of Corollary 4.16 reduce on a strut-free
arc to �2�00 C � D 1. Since � vanishes at the ends of the arc, we solve to get
� D 1� cos.˛� � jsj/ as claimed. This solution for � illustrates that �0 vanishes at
the endpoints, but jumps by �2 sin˛ where the strut force is applied.

Remark It is also interesting to consider where (along the unit normal circle around p )
the atom of strut force can come from. For � � 1 there could be a single strut in
the plane of  , but for small stiffnesses the strut force has to come from struts acting
almost normal to the plane of  . Thinking of  in a vertical plane with p at the
bottom, we know there must be struts acting downwards on p . But the points they
come from cannot be higher than the center of the circle  , that is, cannot be more
than � above p , because higher points would be closer to the rest of  than to p . That
means the downward-acting struts are all within angle arcsin � of horizontal, on one
side or the other of the plane of  . In our critical clasps (Section 7) the kink near the
tip of one component is balanced by pairs of such unit circle arcs (of angle less than
arcsin � ) along the other component; we refer to these as shoulders.

We have now proved our main theoretical results; the rest of the paper applies them to
study various interesting examples. We can summarize our main theorems as follows:

nicely balanced ks
Theorem 4.13

+3 regularly balanced
Definition 4.4

+3 �–balanced;

�–balanced ks
Theorem 3.17

+3 strongly �–critical
Definition 3.10

+3 �–critical:

Geometry & Topology, Volume 18 (2014)



Ropelength criticality 2011

We also have the following partial converses: a � –balanced link with regulated kinks
is nicely balanced (Lemma 4.6); a � –critical link that is Thi� –regular is strongly � –
critical (Lemma 3.11). We recall that every closed link — with only circle components —
is regular. We can assemble these ideas into the following form, which will be most
useful in applications:

Theorem 4.19 Let L be a link with regulated kinks (Definition 4.5). Then L is
� –critical for ropelength (Definition 3.10) if there is a kink tension function � and a
strut measure � (with strut force measure � decomposed into normal and binormal
parts �N and �B ) so that L is W

3;BV
loc on the support of � and, as measures,

�2�00C .1� �2�2/� D 1C ��N ;

�.�2�/0 D ��B:

If L is Thi� –regular — in particular if it is closed — then these sufficient conditions
for criticality are also necessary.

5 Length-critical curves with an upper bound on curvature

If we restrict our attention to critical curves that are balanced by kink measure alone, we
replace our original problem with a more classical one from differential geometry: to
find critical curves for minimizing length subject to an upper bound on curvature. It is
not immediately obvious from this formulation that nontrivial solutions exist; after all,
the curves that minimize length absolutely are straight lines, which have curvature zero.

To develop some intuition, consider the one-parameter family of helices

hr .t/ WD .r cos t; r sin t; t/

with curvature r=.1Cr2/ and torsion 1=.1Cr2/. The curve-shortening flow decreases
r > 0 while staying in this family. Thus it increases curvature for r > 1 (that is, for
j� j< � ) but decreases curvature for r < 1. As this suggests, helices with j� j< � turn
out to be critical for our problem of minimizing length subject to an upper bound on
curvature, while those with j� j> � cannot be.

We now proceed to use our balance criterion to determine exactly which curves —
including the helices just mentioned — are critical for this problem. We consider arcs
of critical curves that are balanced by kink measure alone. In the absence of strut
force, it is convenient to ignore struts completely and to rescale such that kinks have
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curvature 1. Essentially, we take a limit of the constraints � Thi� .L/� 1 as � !1,
and are left with the curvature constraint

Thi1.L/ WDmin
L
� � 1:

It should be clear that the derivative of Thi1 is like that of Thi� but sees only the
kink terms, and that our general balance theorem adapts to this situation to say L is
strongly 1–critical if and only if it is balanced by kink measure alone. In case L has
regulated kinks, it is of course regularly and indeed nicely balanced as before.

Lemma 5.1 Suppose L is � –balanced, and A is a compact subcurve such that the
strut force measure � vanishes along the interior of A. (In particular this is the
case if there are no struts with endpoints in the interior of A.) Then the rescaled
curve A=� has Thi1 � 1. Considered as a curve with fixed endpoints and fixed
tangent directions there, A=� is balanced by kink measure alone, and is thus strongly
1–critical. Conversely, if A is strongly 1–critical, then for any � � 1=reach.A/ we
find that �A is � –balanced.

Proof For the first direction, note that even if some struts to A carry strut measure
necessary to balance other parts of the curve, they have by assumption no net effect
on A and thus can be ignored when balancing A. The endpoint constraints on A

ensure there is no restriction on the kink measure there.

For the converse, note first that Thi� .�A/ � 1. In the case � D 1=reach.A/, the
curve �A may have some struts, but even then it can be balanced with �D 0.

Remark For this problem of minimizing length subject only to the curvature constraint
Thi1 � 1, we can treat each component of a link separately. As in Figure 3 (right),
the curves do not necessarily stay embedded: we may have nonembedded critical
configurations. Thus we should generalize our setup to allow nonembedded C 1;1

curves.

We proceed to classify connected, strongly 1–critical curves, under the assumption
that they have regulated kinks. That is, we classify connected curves which are nicely
balanced by kink measure alone. Of course each such curve has positive reach if it
is embedded, and is thus � –critical for large enough � , but we do not compute the
reach for our individual examples. By the lemma above, any strut-free arc of a nicely
balanced link will be one of the curves in our list.

To get started, suppose L is a connected curve, nicely balanced by kink measure alone.
Note that although we are considering Thi1 , we have rescaled to get curvature 1, so
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we should take � D 1 in the formulas from the last section. For instance, the virtual
tangent vector becomes

V D .1� 2�/T � .�N /0 D .1��/T ��0N ���B:

Since V 0 D �� D 0, we see that V is constant along L. Indeed, this “force” V

should be viewed as the conserved quantity along L corresponding to the translational
symmetry of our problem.

With � D 1 and � D 0, the equations from Corollary 4.16 for the kink tension
function � along U WD f� > 0g become

(1) �00C .1� �2/� D 1; .�2�/0 D 0:

Thus on each component C � U we see that �2� is some constant c . On C we can
then express (1) as the semilinear ODE

(2) �00 D 1��C
c2

�3

for � and we get

(3) V D .1��/T ��0N �
c

�
B:

In particular, along C we have

jV j2 D .� � 1/2C�02C
c2

�2

and since V is constant, this is a conserved quantity for the ODE. For c ¤ 0 consider
as phase space the � > 0 half of the .�; �0/–plane. (For c D 0 we take for now the
whole .�; �0/–plane and impose the requirement � � 0 later.) On this phase space,
the above expression for jV j2 is clearly a proper, strictly convex function. Thus it
has a single minimum — at some fixed point .�0; 0/ for the flow — and its other level
sets are closed loops encircling this minimum. It follows that all solutions to (2) are
periodic; each is determined by the parameters c and jV j. This discussion makes it
clear that the cases c ¤ 0 and c D 0 should be considered separately; we treat them in
the next two subsections.

5.1 Supercoiled helices

Proposition 5.2 Suppose a connected curve L is nicely balanced by kink measure
alone and suppose at some point p 2L we have �2� ¤ 0. Then �2� D c is constant
along all of L, and � > 0 satisfies (2). The kink tension function � on such L is
uniquely determined.
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Proof As above, let C be the component of f� > 0g containing p , and set c WD

�.p/2�.p/¤ 0. On C we know � satisfies (2) for some c¤ 0. The level set of jV j2 is
a closed loop in the half-plane � >0, meaning the solution extends with nonvanishing �
to the whole curve L. For the final statement, note first that � is uniquely determined
up to a constant factor by the fact that �2� is constant; the constant is then determined
by (1).

To understand these solutions better, let us first consider helices again. A helix of con-
stant curvature ��1 and torsion ��m also has pitch m and lies on a cylinder of radius
1=.1Cm2/; in appropriate coordinates it is parametrized as .cos t; sin t;mt/=.1Cm2/.
If it is balanced then by (1), we see � � 0 is a constant � � �0 D 1=.1�m2/. Clearly
this works exactly when jmj< 1, that is, when j� j< � . (We saw before that helices
with j� j> � are not critical as they can be shortened while decreasing curvature.) We
compute c Dm=.1�m2/2 and

jV j2 D cm.1Cm2/D
m2.1Cm2/

.1�m2/2
:

Using (3), we see that the virtual tangent vector V points along the axis of the helix,
but in the opposite direction from T , as hV;T i D 1�� < 0. (Physically, the endpoint
constraints are holding a kinked helix under compression, rather than tension as for a
straight arc.)

To consider general solutions, we start again with any value of m2 .�1; 1/ and define c

by c WDm=.1�m2/2 . A direct computation shows that the minimum value of jV j2 on
the .�; �0/–plane is then cm.1Cm2/, occurring at .1=.1�m2/; 0/, and every solution
to (2) then corresponds to a choice of jV j �

p
cm.1Cm2/. Equality gives the helix

described above with � �m and � � 1=.1�m2/, while greater values of jV j lead
to solutions where � and � oscillate above and below these values. Each solution
can also be described by the maximum value of � along its orbit in the .�; �0/–plane,
which will be k=.1�m2/ for some k � 1. This k determines jV j by

(4) jV j2 D
.k�1Cm2/2Cm2=k2

.1�m2/2
:

Even if these general solutions cannot be expressed in closed form, it is easy to integrate
the ODE numerically for different values of m and jV j. Given their shapes (seen in
Figure 2), we call these curves supercoiled helices. We can restate Proposition 5.2 as
follows: Suppose a connected curve L has nonzero torsion somewhere and is nicely
balanced by kink measure alone. Then L is a subarc of some supercoiled helix.
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k D 1 1:125 1:25 1:5 1:75 2

c D 0:5
m� 0:372

c D 1
m� 0:525

c D 3
m� 0:715

Figure 2: The picture shows � –critical curves obtained by solving (2) with
various values for c D m=.1 � m2/2 and various initial conditions. For
any c , there is one solution with constant � � 1=.1�m2/: a helix with
torsion m . The solutions shown have initial conditions �0.0/D 0 and �.0/D
k=.1�m2/ , for various k � 1 . The shape of the curves explains why we
call them supercoiled helices; they become progressively more twisted as
k increases. The virtual tangent V is vertical in all of these pictures, and
we can see that each curve is invariant under a screw motion along V , as
guaranteed by Proposition 5.5.

This same family of curves was discovered by Hector Sussmann, who called them
“helicoidal arcs”. Sussmann gives a fascinating control-theoretic derivation of the
family in his research abstract [23]. He considers the same problem of minimizing
length subject to the curvature bound Thi1 � 1 for arcs with fixed endpoints and
fixed tangents there. He shows the absolute length minimizer (for any given boundary
conditions) is either a helicoidal arc or a concatenation of at most three circular arcs
and straight segments (as in our case c D 0 below). Our results are somewhat weaker
than Sussmann’s in that he has fewer regularity assumptions, but are stronger in that
we classify all critical curves, rather than just minimizers. (Sussmann also claims to
have a proof that any supercoiled helix is a local strict minimizer for length in the sense
that each subarc of length less than some ı > 0 is the unique length minimizer for its
endpoints, but the promised paper with details does not seem to have appeared even as
a preprint.)

As is clear from the pictures, each supercoiled helix is invariant with respect to some
screw motion (perhaps degenerating to a translation) along the direction of V , which
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we call vertical. To prove this, we analyze the vertical and horizontal components
separately.

Lemma 5.3 Suppose an arc from p to q is nicely balanced by kink measure alone,
with � > 0 and virtual tangent V . Then

hq�p;V i D �0.q/��0.p/� c2

Z q

p

��3 ds:

Proof From (3) and (2) we have

hq�p;V i D

Z q

p

hT;V i ds D

Z q

p

.1��/ ds D

Z q

p

�00 ds� c2

Z q

p

��3 ds:

We conjecture that each supercoiled helix is embedded; while we do not attempt to
prove this, the last lemma suffices to show that the curve does not close after any full
number of periods:

Corollary 5.4 Each period of a supercoiled helix makes negative progress in the
direction of V . In particular, for c ¤ 0 no solution to (2) gives a closed curve.

Proof For c ¤ 0 the lemma means that each period of the curve makes the same
negative progress �c2

R
L �
�3 ds in the V direction. Thus we cannot close up after

any number of periods.

Now we turn to analyzing the horizontal part of the supercoiled helix L. For this,
consider the curve V �L, a rotated and scaled version of the horizontal projection.
Differentiating gives

.V �L/0 D V �T D .��0N ���B/�T D���N C�0B D .�B/0:

But this means that V � L � �B �W W is a constant. Since �B is bounded, we
immediately see (for V ¤ 0) that L is contained in a cylinder around an axis parallel
to V . Just as V can be viewed as a conserved force, the (pseudo)vector W is the
conserved torque corresponding to the rotational invariance of our problem. This
torque W of course depends on a choice of origin; by translating L we can change its
horizontal component (perpendicular to V ). In particular, we will translate to make W

vertical, a scalar multiple of V . This minimizes jW j and centers the bounding cylinder
for L around the origin.

With this choice of origin, V �W D 0. Thus, writing L? for the horizontal component
of L, we have

(5) L? WD �
V �.V �L/

jV j2
D�

V ��B

jV j2
:

Geometry & Topology, Volume 18 (2014)



Ropelength criticality 2017

Since hV; �Bi � �c , we get

(6) jV ��Bj2 D jV j2j�Bj2� hV; �Bi2 D �2
jV j2� c2:

Combining (5) and (6) gives

(7) jL?j D

s
�2

jV j2
�

c2

jV j4
:

Since c and V are constant, it is clear that the radius jL?j from the cylinder axis is a
monotone function of � .

Proposition 5.5 For c ¤ 0 every solution to (2) — that is, every supercoiled helix —
is invariant under some screw motion (or perhaps a translation) in the direction of the
virtual tangent V . For the supercoiled helix with c Dm=.1�m2/2 and � maximized
at k=.1�m2/, the curve is (tightly) contained in a cylinder of radius

k.k�1Cm2/

.k�1Cm2/2Cm2=k2
D

k.k�1Cm2/c

mjV j2
:

Proof Any solution to (2) is periodic with some period P . Thus the torsion (and of
course curvature) of the supercoiled helix L are P –periodic in arc length. Thus L is
invariant under some rigid motion � of space in the sense that L.sCP /D �L.s/ for
all s . But this motion must preserve the vertical direction of the constant virtual tan-
gent V . That is, � is a screw motion along an axis parallel to V , perhaps degenerating
to a translation or a rotation; the case of a rotation is ruled out by Corollary 5.4. Since
we have translated to make W k V , the screw axis passes through the origin. The
cylinder radius is the maximum value of jL?j, calculated from (7) at the maximum
� D k=.1�m2/.

5.2 Planar critical curves

Now we turn to the case c D 0. Based on what we have already proved about the case
c ¤ 0, we see that if c D 0 on one component C of U �L, then we must have c D 0

on all of U . Thus � � 0 on U , so each component of U is an arc of a unit circle (if
not the whole circle). Thus L is made up of (potentially infinitely many) circular arcs
(the components of U ) possibly joined by straight segments (LXU ). We will use
Corollary 4.17 to analyze the possible junctions.

First we examine the possible kink tension functions � on a circular arc, noting that
for c D 0 equations (2), (3) become

�00 D 1��; V D .1��/T ��0N:
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Figure 3: A wave is the planar C 1 concatenation of circular arcs of the
same turning angle � > � . On the left, we see such an example. Since the
straight line joining these endpoints is also critical, this shows that there are
many � –critical curves joining the same pair of fixed endpoints. If we allow
nonembedded curves, there are infinitely many such critical configurations,
like the one on the right.

Now suppose that L is a unit circle. Given any vector V in the plane of L, we define
� WD 1�hT;V i on L. Clearly � � 0 on L if and only if jV j � 1. That is, the various
possible kink measures balancing L correspond to the virtual tangent vectors V in
the closed unit disk. For V D 0 we have � � 1 (and it is interesting to think of L as
a degenerate helix with mD 0 in the context of the discussion after Proposition 5.2).
For jV j< 1 we have � > 0 on L. For jV j D 1 we have � > 0 except at a single point
p 2L where �.p/D 0D �0.p/.

For jV j>1, we cannot use this � to balance the whole circle, but we do have �>0 on an
arc of more than half the circle, centered at the point where T points in the direction �V ;
at its endpoints �D0 but �0¤0. Congruent such arcs can be joined end-to-end in a C 1

fashion such that V remains constant at each junction point while N flips sign; see
Figure 3. We call an infinite such concatenation a wave. A wave is embedded if and only
if the turning angle of each piece is less than 5�=3, that is, if and only if jV j> 2=

p
3.

(The borderline case corresponds to two rows of the hexagonal circle packing.)

Theorem 5.6 Suppose L is an embedded connected curve, nicely balanced by kink
measure alone (for fixed endpoints with fixed tangents). If L has any point of nonzero
torsion, then as we have seen, it is a subarc of some supercoiled helix (for instance a
helix of torsion less than 1). Otherwise L is either a straight segment (possibly joined
to circular arcs at each end), a circle (or arc thereof), or a subarc of some wave.

Proof We have already treated the case of nonzero torsion, so we may assume c D 0.
Thus the curve is made up of straight segments and unit circular arcs. At any junction
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between two pieces we have � D 0, and by Corollary 4.17 we have �0 D 0 unless N

flips sign.

Our classification now proceeds according to jV j. Along any straight segment we
have V D T , so jV j D 1; if the segment is joined to a circular arc at either end,
this V uniquely determines the kink tension function on that arc. In particular the
embeddedness of L means each arc is less than a full circle, so we never have � D 0

again along either arc and there are no further junctions. (If the segment degenerates
to a point, the two circular arcs form part of a wave, and L can also be balanced as
below with jV j> 1.)

If jV j< 1 on a circular arc then � > 0 so there are no junctions and L is a circle, or
some subarc. (Here V is not uniquely determined. Since L is embedded we do not go
more than once around the circle.)

Finally if jV j > 1 on a circular arc, then if the arc extends to where � D 0 we have
�0 ¤ 0 there, so if there is a junction it is exactly the kind seen in a wave. Extending,
there can be further junctions, but the whole curve is a subarc of the wave specified
by V . (If there is no junction, we are really in the previous case of a circular arc. If
there is a single junction, we can consider L as a subarc of many different waves, with
any small enough jV j > 1, or balance it with jV j D 1. As long as there are at least
two junctions, V and the wave containing L are uniquely determined.)

Remark If we did allow nonembedded curves, then there would be additional exam-
ples as follows: at any point p 2L where � D 0D �0 (for instance any point along
a straight segment of L), we can splice in a “hoop,” a full circle tangent to L at p .
Indeed we could traverse many different hoops at p before continuing further along
the initial curve L. Comparing where we used embeddedness in the proof above, we
see these (along with circles traversed more than once) are the only new examples.

Corollary 5.7 Suppose L is an embedded connected curve, nicely balanced by kink
measure alone (for fixed endpoints with free tangents). Then L is either a straight
segment, a circle, or the subarc of a wave between some two junction points; that is, a
planar C 1 concatenation of circular arcs with equal turning angle � >� (and � < 5�=3

if there are more than two arcs).

Proof Since the tangent vectors at the endpoints are free, we must have � D 0 there.
That means we are looking for those examples from the theorem that satisfy this
boundary condition. (Recall that on almost all examples, � was uniquely determined.)
Supercoiled helices are clearly excluded. In the other three examples, the endpoints
are restricted to the special cases listed.
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Remark Analogous to the remark about curve-shortening flow on helices, we can
give the following intuition for the condition that each piece in a wave has turning
angle greater than � . Consider the one-parameter family of circular arcs through two
fixed points in a plane. The curvature is maximized at the semicircle. The arcs of less
than a semicircle can thus be shortened while decreasing curvature — even staying
within our family — while the arcs of more than a semicircle cannot.

Durumeric [11] used Sussmann’s work to prove that every closed C 1;1 curve which is
a local minimum for ropelength has at least one strut. In our language, such curves
are 1

2
–minimizing. We now prove a similar result which again is weaker in that it

requires regulated kinks but stronger in that it applies to all critical curves, not just to
minimizers.

Corollary 5.8 Every closed 1
2

–critical curve with regulated kinks has at least one
strut.

Proof If the curve has nonzero strut force measure, it must have struts. If not, the
curve is a circle of unit diameter by Theorem 5.6, and it again has struts.

It is also interesting to see how two arcs of the type we have been considering can join
at a point p where there is an atom of strut force measure. At p the virtual tangent V

jumps by exactly �fpg, while of course � is continuous. If �.p/D 0 we are talking
about a junction between circular arcs (or perhaps one straight segment); here the atom
of � allows us to change the plane of the circle (and to change �0 ).

If on the other hand �.p/ > 0, the Frenet frame is well defined, and we now consider
atoms in �N and in �B separately using Corollary 4.17. At an atom of �B we have
a jump in c D �2� but �0 (like � ) is continuous. That is, we might change from one
supercoiled helix to another, or might jump to or from the case c D 0. At an atom
of �N , on the other hand, c stays constant but �0 jumps. For c ¤ 0 this means a
vertical jump in the phase space, generally to a different supercoiled helix with the
same c , but if �0 merely changes sign then jV j is unchanged and we have merely
jumped to a different point on the same supercoiled helix. For c D 0 we don’t see
any effect on the curve at p — it remains a circular arc — but the jump in �0 affects
where � vanishes to either side along this arc (as we saw in Lemma 4.18).

6 Noncompact curves

Sometimes it is interesting to consider noncompact (but still metrically complete)
curves L. Since a complete curve L with positive reach is properly embedded, for
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any compact K �R3 , the intersection L\K is compact. Typically (for instance, by
Sard’s theorem for almost every closed ball K ) this intersection is actually a compact
subcurve of L.

Of course the length of L is infinite, but if we restrict our attention to variations �
supported on some compact K �R3 then ı� Len.L/ and ı� Thi� .L/ are given by the
same formulas as before, noting that only those struts and kinks touching K\L — a
compact subfamily — matter here.

Fix now a compact K and a complete curve L with Thi� .L/ D 1. We say that L

is strongly � –critical for variations supported on K if there exists � > 0 (depending
on K ) such that the condition in the earlier definition of strong criticality holds for
all � supported on K . We say that L is � –balanced for variations supported on K if
there exist strut and kink measures (depending on K ) such that the balance equation
holds for all � supported on K .

It is straightforward to extend the general balance criterion (for each K ) to say that L

is strongly critical for variations supported on K if and only if it is � –balanced for
variations supported on K . Indeed, in the typical case when K \L is a compact
subcurve A, this statement is only slightly different from the general balance criterion
for A (considered with any new endpoints and their tangents fixed): Essentially the
parts of L at distance at most 1 from K act as obstacles for A.

Now suppose for a complete curve L with Thi� .L/ D 1 we can find a single strut
measure � and a single kink measure � (typically given by a kink tension function
� 2W

1;BV
loc .L/ vanishing outside C 2 arcs) such that the balance equation holds for all

compactly supported � . It follows for each K that L is strongly critical for variations
supported on K . In particular, L is critical; any compactly supported variation that
decreases length must also decrease thickness.

In previous sections, we have implicitly seen several examples like this already.
� A straight line is balanced by �D 0 and � D 0.
� An infinite double helix of pitch at least 1 is balanced by the single family of

struts in one-to-one contact.
� Any supercoiled helix is balanced by the � > 0 used to define it; in particular

any infinite single helix with � < j�j is balanced by a constant � .
� Any infinite wave (with each piece having turning angle more than � ) is balanced

by its � , which vanishes at every junction.

With appropriate regularity and smoothness assumptions, one can show these are the
only complete critical curves with the kink/strut patterns we considered before, that is,
kink-free with controlled strut pattern as in Section 3.3, or strut-free as in Section 5.
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arcsin �

Figure 4: The clasp is the simplest configuration of two interlooped arcs. On
the left, we see the basic clasp where the endpoints are constrained to lie in
parallel planes. On the right, we have the angled clasp where the four ends
of the rope make an angle of arcsin � with the horizontal. We will study
� –critical clasp configurations for varying values of � and � .

In the clasps we discuss next, the ends of each arc — attached the boundary planes —
are straight segments. Clearly we could extend these to be infinite rays and talk about a
complete clasp. It would be balanced by the same compactly supported strut and kink
measures used for the compact clasp.

7 The tight clasp

Our next example is a variation on the “simple clasp” which we considered previously
in [4, Section 9]. This clasp is a system of two interlooped ropes as in Figure 4 (left),
one anchored to the floor and one to the ceiling. We studied the problem of minimizing
the total length subject to the Gehring condition that the two strands are everywhere
separated by at least unit distance, that is, that the link-thickness is at least 1.

In fact, we considered the entire family of “� –clasp” problems, 0� � � 1, in which the
four ends of the two ropes are no longer vertical but make an angle of arcsin � with the
horizontal. (Thus the case � D 1 is the basic clasp described above.) In each case we
described in detail a critical configuration (a “Gehring clasp”) that we conjectured to be
minimizing. Surprisingly, for � D 1 the Gehring clasp is a C 1 curve with unbounded
curvature (that is, not C 1;1 ).

Here we consider the analogous problem in the more physically realistic setting of the
present paper where the constraint is Thi� � 1. Where the Gehring � –clasp would
have curvature greater than 1=� , our � –critical � –clasp now has a kinked arc. Note
that the struts in these critical clasps always connect one component to the other. Thus
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(by an argument like Proposition 3.18) they are equally well critical for a Gehring
problem with stiffness in which, in addition to the constraint on link-thickness, we
insist that the curvature of each strand never exceed 1=� . For this problem we may
permit the stiffness to assume the full range of values 0 � � <1. The criticality
theory for this problem is a straightforward combination of our work here with that
in [4], and we refrain from developing it explicitly. In the remainder of this section, we
will allow arbitrary values of � ; when � < 1

2
we implicitly then mean link-thickness

with a curvature constraint instead of Thi� .

Definition 7.1 Consider a large tetrahedron with two edges forming an orthogonal
frame with the line connecting their midpoints, where the dihedral angles along these
edges are 2 arcsin � 2 Œ0; �� as in Figure 4 (right). Suppose that the endpoints of
two arcs are constrained to lie on the faces of this tetrahedra, and the arcs are linked
as shown (giving a Hopf link if each component is closed with segments in its own
boundary faces). The .�; �/–clasp problem is the problem of minimizing the length of
this configuration subject to the constraint that Thi� .L/� 1.

In this section we construct critical curves for the various .�; �/–clasp problems. These
curves have the same symmetry (with the two components being congruent convex
planar arcs in perpendicular planes) as our Gehring clasps. We believe these solutions
are the length minimizers, but we do not see how to prove this. (Our arguments below
might perhaps extend to show the curves we describe are the unique critical curves
with the given symmetry, but it seems hard to show this symmetry is not broken in a
minimizer.)

The maximum curvature of the Gehring � –clasp is 1=
p

1� �2 at its tip. Thus for
0 � � �

p
1� �2 , the critical .�; �/–clasp is identical to the Gehring clasp, a curve

explicitly described in terms of elliptic integrals. On the other hand, for larger � , the
curvature bound is active, and it is not surprising that our critical clasps include not
only “Gehring arcs” (subarcs of the Gehring clasp), but also “kinks” (circular arcs of
curvature 1=� ) at the tips.

The curves that we obtain fall into four regimes, depending on the values of the
parameters � and � , as shown in the phase diagram of Figure 5.

In each case they consist of two congruent arcs lying in orthogonal planes. Both
components are symmetric with respect to the line of intersection of the two planes,
which we take to be the z–axis. We describe the component lying in the xz–plane,
which we take to be the one with endpoints attached to the ceiling, as in [4]. In the
discussion below, we will refer to a circular arc of maximal curvature 1=� as a kink.
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fully kinked
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Figure 5: This phase diagram shows the domain of the various types of
solutions to the clasp problem as the values of � (the sine of the angle
made by the endpoints of the clasp with the horizontal) and � (the stiffness
parameter) change. In the uppermost “fully kinked” region, the clasp is a
pair of circle arcs of radius � joined with straight segments. There is a
single strut connecting these arcs. In the next “transitional” region, the clasp
consists of arcs of circles of radius � at the tips joined by straight segments
to arcs of circles of radius 1 at the shoulders of the clasp, finally joined by
straight segments to the endpoints. In the third “generic” region, the curve is
piecewise analytic, with eleven analytic pieces: a circle arc of radius � at the
tip, joined by straight segments to arcs of the “Gehring clasp” from [4]. These
arcs are joined by straight segments to circular arcs of unit radius, which are
joined by straight segments to the endpoints of the clasp. In the last “Gehring”
region, the solution is the same as that from [4].

The fully kinked regime: � � 1 Here the curve consists of a kink of total angle
2 arcsin � , with straight segments attached to the endpoints. There is exactly one strut
between the two components, joining their tips (the points lying on the z–axis).

The transitional regime: .
p

4C�2� 2/=.2�
p

4��2/� � < 1 In this case the
curve consists of a kink of angle 2 arcsin �=2 joined by line segments to two circular
arcs of radius 1 and angle arcsin � � arcsin �=2, each centered at the tip of the other
component. There is a one-parameter family of struts connecting each point of the
latter arcs to the tip of the other component.

The generic regime:
p

1��2 < � < .
p

4C�2� 2/=.2�
p

4��2/ This is the
most complicated possibility, of which the others may be regarded as degenerations. The
curve is piecewise analytic, with eleven analytic pieces, described by four parameters
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a; b; ˛; ˇ (determined in Section 7.5 below): a kink of angle 2˛ at the tip; joined
to two straight segments of length a; each joined to a section of the Gehring � –
clasp described by the parameter interval Œsin˛; sinˇ�; each joined to another straight
segment of length b ; joined to a circular arc of radius 1, centered at the tip of the
other component, and of angle arcsin � �ˇ ; each joined finally to a straight segment
connected to a constraining plane. There are two types of one-parameter families of
struts connecting the two components: first, those connecting the arcs of radius 1 to the
tip of the other component; second, each point of each Gehring arc shares struts with its
conjugate points (in the sense of [4]) on the two Gehring arcs of the other component.

The Gehring regime: 0� � �
p

1��2 For these parameter values the critical
curves are identical to those described in [4].

The clasp problem was analyzed earlier by Starostin [20]. While Starostin did not have
a general criticality theory to work with, and so could not prove that his configurations
were fully ropelength-critical, he derived a solution equivalent to our “generic” clasp
by considering the problem of length-critical curves with a fixed contact set. Very
recently, the clasp has been numerically analyzed with extremely high resolution by
Pieranski and Przybyl [17]. Their results (at least for the generic regime), agree very
closely with both Starostin’s work and the conclusions here.

7.1 General results on clasp-type curves

We start with some useful lemmas about configurations of circular arcs.

Lemma 7.2 Suppose a � –critical link L passes through the origin and includes the
circular arc C WD f.sin �; 0; cos �/ j �0 � � � �1g. If � < 1 so that C is not kinked and
if C has no struts except those to the origin, then these struts generate an atom of strut
force measure at the origin whose vertical component has magnitude sin �1� sin �0 .

Proof Since C has no kinks, �.C / is the difference in the tangent vectors at the two
ends of C . This force all gets transmitted to the origin.

Lemma 7.3 Let C be circle in the xz–plane, centered at a point c on the z–axis, and
let B be a C 1 arc in the yz–plane. If .p; q/ 2 B �C is critical for distance, and p is
an interior point of B , then either p D c or q lies on the z–axis.

Proof Since .p; q/ is critical for distance, the segment pq is normal to B and C .
Therefore, if q does not lie on the z–axis then the projection of p to the xz–plane
must be the center c of C . It follows that all points of C are equidistant from p .
However, unless pD c then not all of the segments pr joining p to r 2 C are normal
to B at p , contradicting the criticality of the pair .p; r/.

Geometry & Topology, Volume 18 (2014)



2026 J Cantarella, J H G Fu, R B Kusner and J M Sullivan

To fix the symmetry of our clasps in coordinates, let one component lie in the xz–plane
while the other lies in yz–plane. Our symmetry group 2 � 2 (using the Conway–
Thurston orbifold notation) is then the dihedral point group of order eight in O.3/

generated by mirror reflections across the xz– and yz–planes, together with a four-
fold rotary reflection around the z–axis. To describe a symmetric clasp, it suffices to
describe half of one component: the arc from the “tip” on the z–axis (where the curve
is horizontal) to the endpoint (on a face of the enclosing tetrahedron); this convex arc
has total curvature arcsin � .

In each of our descriptions of a clasp, we will describe only the portion of the clasp in
a fundamental domain for this symmetry. This will be a convex curve in the half-plane
of the xz–plane with positive x ; its endpoint on the z–axis will be called the tip of the
clasp. It will sometimes be convenient for us to parametrize this curve by the sine u of
the angle that its tangent makes with the x–axis.

We will be interested in proving that the minimum distance between two such arcs is at
least 1. To this end we adapt [4, Lemma 9.3].

Lemma 7.4 Let 1 and 2 be two convex curves lying in the xz– and yz–planes
respectively. Suppose there is a critical pair .p1;p2/ of length � connecting these
components. Write xi for the distance from pi to the z–axis, and ui for the sine of the
angle between the tangent to i and the horizontal. Then 0� xi=� � ui � 1, and any
two of the numbers x1;x2;u1;u2 determine the other two according to the formulas

x2
i D �

2
�

x2
j

u2
j

D �2
u2

i .1�u2
j /

1�u2
i u2

j

; u2
i D

�2�x2
j =u

2
j

�2�x2
j

D
x2

i

�2�x2
j

;

where j ¤ i . The height difference between p1 and p2 is �z D
xi

ui

q
1�u2

i .

Proof The difference vector is p1�p2 D .x1;x2; �z/. Since this strut has length �
and is perpendicular to each i , we get

�z2
Cx2

1 Cx2
2 D �

2; �z D
xi

ui

q
1�u2

i :

Simple algebraic manipulations, eliminating �z , yield the other given equations.

7.2 The fully kinked regime

We first consider a clasp constructed of very stiff rope, consisting of circular arcs and
line segments (see Figure 6, left).
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arcsin �

bounding tetrahedron

.0:8; 1:1/ Kinked clasp

˛
arcsin �

s2
s1

kink

shoulder

c1

c2

bounding tetrahedron

.0:8; 0:95/ Transitional clasp

Figure 6: At the left, we see the fully kinked clasp of Proposition 7.5
with .�; �/ D .0:8; 1:1/ . At the right, we see the transitional clasp of
Proposition 7.6 with .�; �/D .0:8; 0:95/ . In each diagram, the upper (closely
dotted) line is the intersection of a face of the bounding tetrahedron with the
xz–plane. The entire curved portion of the kinked clasp (left) is a single
circular arc of radius � ; the tips of the two components are at unit distance.
The transitional clasp (right) consists of a lower “kinked” circular arc of
radius � joined by a short straight segment to an upper “shoulder” circular
arc of radius 1 . The kink extends to an angle ˛ D arcsin �=2 , while the
shoulder extends to angle arcsin � . The tip of the other component is at the
center c2 of the shoulder.

Proposition 7.5 Let CK be the curve in the right half-plane of the xz–plane consist-
ing of

� a circular arc of radius � of angle arcsin � centered at .0; 0; � � 1
2
/,

� joined to a line segment in the xz–plane.

If � � 1, the corresponding 2 � 2 symmetric curve zCK , where the tips of the two
components lie at unit distance, is critical for the .�; �/–clasp problem.

Proof We must check that (i) zCK obeys the endpoint constraints, (ii) zCK obeys the
thickness constraint, and (iii) zCK is � –critical. The first is clear from the construction.
For the second, we first note that the radius of curvature is always at least � by
construction, so that if the struts have length at least 1, the thickness constraint is
satisfied. In fact, by Lemma 7.3 and symmetry, if � > 1 the only strut is the one joining
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the tip points .0; 0; 1
2
/ and .0; 0;�1

2
/. (If � D 1, there is a family of struts joining

each point on each circular arc to the tip of the other component of the clasp.)

To check that our configuration is � –critical, since the hypotheses are clearly satisfied
we may apply the final version of the balance criterion. We let the strut measure be an
atom of mass 2� on the unique strut. The arcs are then balanced against each other
by the kink tension function � of Lemma 4.18. On the straight segments, T 0 D 0 and
� D 0, so the balance equation is clearly satisfied. At the endpoints, � D 0 and there
is no strut force measure, so we require only that the curve be normal to the constraint
plane, which is true by construction.

We note that Lemma 4.18 tells us that such a configuration of circular arcs of turning
angles 2�0 and 2�1 and lines is � –critical as above if and only if sin �0D sin �1 . This
means that in addition to the configuration above, where �0 D �1 � �=2, there are
balanced solutions with �0��=2� �1 where a short circular arc balances a longer one,
as well as balanced solutions with �0 D �1 > �=2. These are interesting � –critical
curves, but they do not satisfy the boundary conditions of the .�; �/–clasp problems.

7.3 The transitional regime

In the transitional regime, the clasp is a circle-line-circle-line curve as in Figure 6(right).

Proposition 7.6 Suppose � � 2. Let CT be the C 1 curve in the right half-plane of
the xz–plane consisting of the following pieces joined in succession:

� A (kinked) circular arc of angle arcsin �=2 and radius �

� A line segment of length �.1� �/=
p

4� �2

� A circular arc of radius 1 and angle arcsin � � arcsin �=2 (which we will refer
to as the shoulder)

� A ray attached to the other end of the shoulder

If

(8) 1> � �

p
4C�2�2

2�
p

4��2

then this curve exists, and the corresponding 2 � 2 symmetric curve zCT , the tip of
whose second component lies at the center of the shoulder of the first, is a critical curve
for the .�; �/–clasp problem.
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Remark Since .
p

4C �2�2/=.2�
p

4� �2/ < 1 for � 2 .0; 1�, we see that for each
such � the condition (8) is not vacuous.

Proof We first show that CT exists. Referring to Figure 6, we choose coordinates so
that the center of the shoulder arc lies at the origin of the xz–plane. Then the endpoints
of the shoulder arc are

(9) .�; 0;�
p

1� �2/; s2 WD

�
�

2
; 0;�

q
1� �2=4

�
:

One endpoint of the segment is s2 , and the segment has slope

(10) m WD
�

p
4��2

() � D
2mp
1Cm2

:

Thus the x and z coordinates of a point on the segment are related by

(11) z D
�

p
4��2

�
x�

�

2

�
�

p
4��2

2
:

From the value for the length of the segment given in the Proposition it is easily
computed that its other endpoint is

(12) s1 WD

�
��

2
; 0;

��2�4

2
p

4��2

�
:

This endpoint coincides with one endpoint of the kinked arc of radius � . Putting c1

for the center of this arc, the radial vector s1� c1 is parallel to the radial vector s2 of
the shoulder, that is, makes the angle arcsin �

2
with the vertical. Thus the center of this

arc is
c1 WD

�
0; 0;

��2�4

2
p

4��2
C �

p
4��2

2

�
D

�
0; 0;

2��2
p

4��2

�
and the tip of C is p0 WD .0; 0; z0/, where

(13) z0 WD
2��2
p

4��2
� �:

Next we show that if (8) holds then zCT has Thi� � 1. It is easy to see that its curvature
satisfies � � 1=� (since � < 1), so we need only show that all the critical pairs have
length at least 1. Let us call the two components of the curve C and C � , and put
p�

0
D .0; 0; 0/ for the tip point of C � .

If .p;p�/ 2 C �C � is a critical pair with p on the kink arc of C , then p D p0 by
Lemma 7.3, since C � does not pass through the center of the kink. The shoulders
of C � lie on the boundary of the ball of radius 1 about p0 , and by elementary geometry
the rest of C � lies strictly outside it. Therefore any such pair has length at least 1.

If .p;p�/ is a critical pair with p on the shoulder of C , then p�D p�
0

by Lemma 7.3
again, so jp�p�j D 1.
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By symmetry it remains to consider the case of critical pairs .p;p�/ where the points
lie on the respective straight segments of C and C � . We show that if (8) holds then
� WD jp�p�j � 1. In the notation of Lemma 7.4, put

p DW .x1; 0; z1/; p� DW .0;x2; z2/:

By (10), the sine of the angle made by the respective segments with the x– and y –axes
is u WD �=2. Then by Lemma 7.4,

(14) x2
1 D x2

2 D
�2u2

1Cu2
D

�2.�=2/2

1C .�=2/2
D

�2�2

4C �2
:

In particular p and p� correspond to one another under the symmetry of the clasp,
and the midpoint of the segment pp� lies on the horizontal plane equidistant from the
two tips p0;p

�
0

. Therefore the difference in heights between p and p�
0

is equal to the
difference in heights between p0 and p� , that is,

(15) z1C z2 D z0C 0:

On the other hand, by Lemma 7.4 the difference in the heights of p;p� is

(16) �z WD z2� z1 D
x1

u

p
1�u2 D

x1

�

p
4� �2:

Substituting (13) and solving the system (15), (16) we obtain

(17) x1 D
�

�2C4
Œ2C �.2�

p
4� �2/�

and from (14)

(18) �D
2C�.2�

p
4��2/p

�2C4
:

The thickness condition is violated if and only if both � < 1 and the point p lies on
the segment of C (rather than somewhere on the rest of the line it determines). The
latter condition is equivalent to the condition that x1 lie between the x coordinates
of s1 and s2 , that is,

��

2
< x1 <

�

2

in view of (9), (12), or by (17), (14),

(19) �

2
<

�p
�2C4

<
1

2
:

The second inequality of (19) is a clear consequence of � < 1, which may in turn be
expressed as

(20) � <

p
4C�2�2

2�
p

4��2
:
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Substituting (18), the first inequality of (19) is equivalent to

(21) � <
4

�2C2
p

4��2
:

We claim that the right-hand side of (21) dominates that of (20) in the relevant range
0� � � 2. Putting t WD �2=4 this is equivalent to the inequality

(22) t C
p

1� t �
1�
p

1�t
p

1Ct�1
D
.
p

1Ct�
p

1�t/C.1�
p

1�t2/

t
; 0� t � 1:

To prove (22), we note

(23) t

2
� 1�

p
1� t ; 0� t � 1;

so the left-hand side of (22) is dominated by 1C t=2. On the other hand (23) also
yields immediately

t2

2
� 1�

p
1� t2; t �

p
1C t �

p
1� t ;

for 0� t � 1, so 1C t=2 is dominated by the right-hand side of (22) in turn.

Thus (20) is the effective condition. But this is precisely the negation of (8) (assuming
we are not in the fully kinked case). So we have now shown that if .�; �/ obey our
conditions then Thi� . zCT /� 1.

Finally we show that the curve is (strongly) � –critical with the given endpoint con-
straints by showing it is regularly balanced.

There is a one-parameter family of struts joining each point on the shoulder arcs to
the opposite tip. By Lemma 7.2, the strut measure ds on these struts balances the
shoulders. Further, this measure generates a strut force measure of magnitude � at the
tip. By Lemma 4.18, this is balanced by a � function on the kink if and only if the
angle of the kink is arcsin.�=2/. But this is true by construction. As before, zCT is
normal to the constraint planes at the endpoints of the arc, so the endpoint conditions
of Theorem 4.13 are satisfied as well.

This completes the proof of Proposition 7.6.

7.4 The Gehring regime

We have now described the clasp structures in very stiff rope with

� >

p
4C �2� 2

2�
p

4� �2
:

These are characterized by kinked circular arcs in balance with shoulder arcs. We now
jump to the opposite end of the spectrum and describe clasps in very flexible rope with
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� <
p

1� �2 . The generic clasp described in Section 7.5 will combine features from
both of these situations.

In [4], we described critical � –clasps for the Gehring problem. We check below that
the maximum curvature of those Gehring � –clasps is

p
1� �2 (at their tips). This is

all that is needed to strengthen [4, Theorem 9.5] to yield the following result.

Theorem 7.7 Suppose � �
p

1� �2 . Consider the curve C1 in the xz–plane given
parametrically for u 2 Œ��; � � by

x D x� .u/ WD
u
p

1� .� � juj/2p
1�u2.� � juj/2

;(24)

z D z� .u/ WD

Z
dz

dx
dx D

Z
u

p
1�u2

du

�� .u/
;

where

(25) �� .u/ WD

p
.1�u2.� � juj/2/3.1� .� � juj/2/

1� .� � juj/2C .� � juj/juj.1�u2/

and the constant of integration for z is chosen so that

z.0/C z.�/D�
p

1� �2:

There is a curve C2 in the yz–plane, congruent to C1 and lying at distance exactly 1
from C1 , such that zCGe WD C1[C2 is 2� 2 symmetric, with Thi� . zCGe/D 1, and is
critical for the .�; �/–clasp problem.

Remark As described in [4], the parameter u equals the sine of the angle between
the tangent to C1 and the x–axis. The function �� is the curvature. Each point
.x.u/; 0; z.u// 2 C1 is connected by two struts of length 1 to symmetrically located
points .0;˙x.u�/;�z.u�//2C2 , where uCu�D � . These struts bear a strut measure
which balances the curvature measure on each arc of the curve.

Following [4], the parameters u;u� as above are said to be conjugate. Likewise, a
subarc A � C1 corresponding to c � u � d is said to be conjugate to the subarcs
of C2 corresponding to � � d � u� � � � c . In other words the conjugate arcs to A

are precisely the subarcs of C2 that are joined to A by struts.

Proof The only thing to check is that the curvature function �� .u/ � 1=� when
u 2 Œ0; � �. To prove it, it will be convenient to define ˛; ˇ;  2 Œ0; �=2� by

sin˛ D u; sinˇ D u� D � � sin˛; sin  D sin˛ sinˇ:
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Then by (25)

(26) �� .u/D �� .sin˛/D
cosˇ cos3 

cos2 ˇC sin  cos2 ˛
�

cos3 

cosˇ
�

cos 
cosˇ

:

Furthermore
1

�
�

1
p

1��2
�

1q
1�sin2 ˇ

D
1

cosˇ

since � � sinˇ . Therefore

1

�
�

1

cosˇ
�

cos 
cosˇ

� �� .u/;

as desired.

7.5 The generic regime

We now describe the most complicated clasps. As the stiffness of the curve decreases
from the transitional regime, the transitional clasp develops a self-contact in the middle
of the straight segment. This contact causes the straight segment to split into two
straight segments, with an arc of the Gehring clasp of Theorem 7.7 between them.
The kink and shoulder arcs remain, though they become smaller (they will eventually
vanish) as the stiffness continues to decrease. These clasps are pictured in Figure 7.

Theorem 7.8 Suppose

p
4C �2� 2

2�
p

4� �2
> � >

p
1� �2 .

(1) There exists a unique solution .˛; ˇ; ; a; b/ to the system of equations

sin˛C sinˇ D �;(27a)

sin  D sin˛ sinˇ;(27b)

b

sinˇ
D a sin˛C �.1� cos˛/;(27c)

b cosˇ D sinˇ� cos˛ sinˇ
cos 

;(27d)

a cos˛ D sin˛ cosˇ
cos 

� � sin˛;(27e)

with ˛; ˇ;  2 Œ0; �=2�, sin˛ � �=2, and a; b > 0.
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c4
c3
c2

c1

s1
s2

s3

s4

ˇ

˛

kink
Gehring

shoulder

bounding tetrahedron

.0:8; 0:8/ Generic clasp

Figure 7: This diagram shows the construction of the generic clasp of
Theorem 7.8 with .�; �/ D .0:8; 0:8/ . The top (closely dotted) line is the
intersection of a face of the bounding tetrahedron with the xz–plane. The
generic clasp consists of a kinked circular arc of radius � , a straight segment,
an arc of the Gehring clasp, another straight segment, and a “shoulder” circular
arc of radius 1 . The length of the straight segments is exaggerated on this
picture; their true length is close to the width of the lines used to draw the radii.
The tip of the other component is located at the center c4 of the shoulder; the
remaining ci are used in the proof below.

(2) Given this solution, there is a C 1 curve C� in the right half-plane of the
xz–plane as shown in Figure 7, consisting of the following pieces joined in
succession:

� A kinked circular arc of angle ˛ , meeting the z–axis orthogonally
� A straight segment of length a,
� The arc sin˛ � u� sinˇ arc of the Gehring clasp of Theorem 7.7
� A straight segment of length b

� A “shoulder” circular arc of radius 1 from angle ˇ to angle arcsin �

Furthermore, if we denote by zC� the corresponding .2 � 2/–symmetric curve,
the tip of whose second component lies at the center of the shoulder arc of the
first, then the Gehring arcs of the two components of zC� are conjugate.

(3) We have Thi� . zC�/D 1.

(4) The curve zC� is critical for the .�; �/–clasp problem.
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Proof (1) Let us change our point of view by taking � as given, and viewing (27)
as a 1–parameter family of systems in the unknowns �; ˇ; ; a; b as the parameter
˛ varies from 0 to arcsin �=2. It is clear that (27a), (27b), (27d) determine ˇ; ; b
uniquely, with b > 0 since

(28) cos  D
q

1� sin2  D

q
1� sin2 ˛ sin2 ˇ >

p
1� sin2 ˛ D cos˛:

Solving (27c), (27e) for a; � and substituting the value for b arising from (27d), we
obtain

� D
sin2 ˛ cos2 ˇCcos2 ˛�cos˛ cos 

.1�cos˛/ cosˇ cos 
(29)

D
cos �cos˛

.1�cos˛/ cosˇ
D
.1Ccos˛/ cosˇ

cos Ccos˛
;

aD tan˛ cosˇ
�

1

cos 
�

1Ccos˛
cos Ccos˛

�
(30)

D tan˛ cosˇ
cos˛.1� cos  /

cos  .cos  C cos˛/
> 0:

Thus we may show that (27) is uniquely solvable in the original sense, with � given
and ˛ unknown, by establishing that (29) expresses � as a continuous strictly increasing
function of ˛ , with �.arcsin.�=2// D .

p
4C �2 � 2/=.2 �

p
4� �2/ and �.0/ Dp

1� �2 . The latter relations may be verified directly, and continuity of � is trivial.
To prove that � is strictly increasing, since sin˛ and sin  D sin˛.� � sin˛/ are
both increasing in the range 0 � sin˛ � �=2, it is clear that both cos˛ and cos 
are decreasing functions of ˛ . Thus it remains only to show that the numerator
.1C cos˛/ cosˇ of (29) is increasing as a function of u WD sin˛ 2 Œ0; �=2�. Since

d

du
cos˛ D� tan˛; d

du
sinˇ D�1;

d

du
cosˇ D tanˇ;

we compute

d

du
.1C cos˛/ cosˇ D� tan˛ cosˇC .1C cos˛/ tanˇ > tanˇ� tan˛:

But sin˛C sinˇ D � and sin˛ < �=2, so

sinˇ > sin˛ D) ˇ > ˛ D) tanˇ > tan˛:

(2) Letting x.u/D x� .u/ denote the parametrization of the Gehring arc given in (24),
the x–coordinates of the two endpoints of this arc are

x.sin˛/D sin˛ cosˇ
cos 

; x.sinˇ/D cos˛ sinˇ
cos 

;
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by (27a) and (24). On the other hand the x–coordinates of the inner endpoints of the
kink and the shoulder arcs are given by � sin˛; sinˇ respectively. Since by part (1)

a cos˛ D x.sin˛/� � sin˛ D sin˛ cosˇ
cos 

� � sin˛ > 0;

b cosˇ D sinˇ�x.sinˇ/D sinˇ� cos˛ sinˇ
cos 

> 0;

we may interpolate straight segments of lengths a; b between the kink and the Gehring
arc, and between the Gehring arc and the shoulder, respectively, to obtain a C 1 curve C�
as described.

Next we show that the Gehring arcs of the two components of zC� are conjugate to
each other provided the components are situated with the tip of one at the center of
the shoulder of the other. Referring to Figure 7, this is to say that the point c3 is the
projection to the xz–plane of the point s�

2
of the other component that corresponds

to s2 . If the center of the shoulder arc (which is the tip of the other component) is
the origin then the z–coordinate of c3 is clearly b= sinˇ . On the other hand, since
the two components are congruent the z–coordinate of s�

2
equals the difference in the

z–coordinates of s2 and the tip of C� . Equating these two,
b

sinˇ
D a sin˛C �.1� cos˛/;

which is (27c).

(3) We show first that the curvature of C� is no more than 1=� . The kink, shoulder,
and straight segments clearly obey this bound, so we need only check the Gehring
clasp arc. We parametrize this arc by u 2 Œsin˛; sinˇ� as in Theorem 7.7. Viewing
� D �.˛/ as in (29) above, we must check that

(31) �� .u/� 1=�.˛/

on this interval. We carry this out for the two subintervals Œsin˛; �=2� and Œ�=2; sinˇ�
separately.

Since �.˛/ is strictly increasing in ˛ for sin˛ 2 Œ0; �=2�, for u in this range we have
1=�.u/ � 1=�.˛/ and it suffices to show �� .u/ � 1=�.u/. Define ˛0 by sin˛0 D u,
and ˇ0;  0 analogously to (27a) and (27b). Then

�� .u/D �� .sin˛0/D cosˇ0 cos3  0

cos2 ˇ0Csin  0 cos2 ˛0
�

cosˇ0 cos3  0

cos2 ˇ0
�

cos  0

cosˇ0
:

On the other hand, by (29)

1

�.u/
D

cos  0Ccos˛0

.1Ccos˛0/ cosˇ0

and (31) follows easily.
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To cover the range u 2 Œ�=2; sinˇ� it suffices to prove that �� .u�/ � 1=�.u/ for
u 2 Œsin˛; �=2�, where uC u� D � (that is, u;u� are conjugate). Since replacing u

by u� exchanges the variables ˛0 and ˇ0 and leaves  0 unchanged,

�� .u
�/D

cos˛0 cos3  0

cos2 ˛0Csin  0 cos2 ˇ0
�

cos3  0

cos˛0
�

cos  0

cos˛0
:

On the other hand,
1

�.u/
D

cos  0Ccos˛0

.1Ccos˛0/ cosˇ0
�

cos  0Ccos  0 cos˛0

.1Ccos˛0/ cosˇ0
D

cos  0

cosˇ0
:

Now (31) follows from the fact that sin˛0 � �=2� sinˇ0 .

Next we claim that all critical pairs .p;p�/ of the distance between the components
of zC� satisfy jp �p�j � 1. To simplify the discussion we will put C �

�
for the part

of the second component lying in the y � 0 part of the yz–plane, and consider only
those pairs with p 2 C� ;p

� 2 C �
�

.

The claim is clearly true if p lies on the Gehring arc, since in this case p� is the
conjugate point of the Gehring arc of C �

�
.

Note that if .p;p�/ is a critical pair then the projection of the segment pp� to the
xz–plane is a line segment perpendicular to C� at p and with the other endpoint on
the z–axis. Now if we denote by z�.p/ the z–intercept of the normal line through C�
at p , then z� is an increasing function of the x–coordinate of p . (This is obvious for
the circular arcs and line segments, and true for the Gehring arc by construction.)

By Lemma 7.3, if p lies on the shoulder arc or the kink then p� is the tip of C �
�

. In the
shoulder case jp�p�j D 1 by construction. To handle the kink case we note that every
point of C� lies at distance � 1 from the tip of C �

�
: otherwise C� crosses the circle of

radius 1 about the origin in the xz–plane at some point p . Since the slope of C� must
be less than the slope of the circle at this point, it follows that z�.p/ > z�.s4/ D 0.
But z�.p/� 0 by monotonicity.

By monotonicity of z� again, and symmetry, it remains only to consider the case where
p 2 s1s2 and p� 2 s�

3
s�
4

. However, since the lines generated by these segments are
skew, there is at most one such critical pair. This pair is p D s2 , p� D s�

3
, that is, the

common endpoints of the segments and the Gehring arcs.

(4) We will show zC� is regularly balanced.

There is a one-parameter family of struts joining each point on the shoulder arcs to
the opposite tip. By Lemma 7.2, the strut measure ds on these struts balances the
shoulders. Further, this measure generates a strut force measure of magnitude � at the
tip. By Lemma 4.18, this is balanced by a � function on the kink if and only if the
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angle of the kink is arcsin.�=2/. But this is true by (27a). The straight segments bear
no strut force and have T 0 D 0, so they obey the balance equation as well. Further, the
Gehring arcs obey the balance equation by construction.

As before, zC� is normal to the constraint planes at the endpoints of the arc, so the
endpoint conditions of Theorem 4.13 are satisfied as well.

This completes the proof of Theorem 7.8. A picture of the clasp appears in Figure 8.

Figure 8: These figures show the .1; 1
2
/ clasp. From left to right, the straight

“tail,” shoulder, Gehring, and kinked arcs of the clasp are shown in alternating
blue and white colors. The two straight segments are included in black. The
longer segment of length b � 0:003878 between the Gehring and shoulder
sections is barely visible as a thin black border about one pixel wide. The
much shorter segment of length a� 0:000224 between the kink and Gehring
regions is too narrow to show up.

7.6 Geometry of the tight clasps

To compare the length of various clasps with the same � but different � , in a way
independent of a particular bounding tetrahedron, we define the excess length `.�; �/
of our .�; �/ clasp to be the difference between the length of the clasp and four times
the inradius of the bounding tetrahedron, which would be the infimal length in the
absence of any thickness constraint. As � increases, we are strengthening the curvature
constraint, so the excess length must be monotonically increasing.

While the excess length of the kinked and transitional clasps can be computed exactly,
the length of the Gehring clasp (and the generic clasp, which includes a Gehring arc) is
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only known as the solution of a certain hyperelliptic integral [4]. We constructed all of
our clasps numerically, checking the thickness and curvature of each with octrope (see
Ashton and Cantarella [1]), and computing the excess length by numerical integration.
The results are shown in Figure 9, which shows how the excess length increases with �
for � D 0:8. For a kinked clasp we find `.0:8; 1/� 2:109180872, while for the Gehring
clasp we get `.0:8; 1

2
/� 2:103080861; these differ by about 0:3%.
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Figure 9: This pair of graphs shows how the excess length `.0:8; �/ increases
for � 2 .0:5; 1:1/ . In the Gehring regime 0 � � � 0:6 , the .�; �/ clasp is
of course just the Gehring � –clasp, independent of � , so `.0:8; �/ stays
constant at about 2:10308 . The graphs plot 100.`.0:8; �/=`.0:8; 0/ � 1/ ,
that is the percentage increase of `.0:8; �/ over the Gehring excess length.
For example, at � D 1:05 , our (fully kinked) solution is a clasp with 1:5%
more excess length than the Gehring clasp. We have changed the scale of
the plot at � D 0:9 in order to make the behavior for smaller � easier to see.
From the graphs, it seems the excess length function may be C 1 across the
Gehring/generic boundary at � D 0:6 and the generic/transitional boundary
at � � 0:927 , but clearly has a corner at the transitional/kinked boundary at
� D 1 .

For �D1, the excess length of the kinked �D1 clasp is `.1; 1/D2��2�4:28318531,
while in the generic regime we have for instance `.1; 1

2
/� 4:2630946; these differ by

about 0:46%. For the Gehring clasp we have `.1; 0/� 4:262897, which is about 0:5%
less. We can see, from this example and from the graphs in Figure 9, that very little
length is saved over the generic regime.

One of the most striking features of the Gehring clasp is a small gap between the two
tubes, forming a small chamber between the two tubes as they are pulled together.
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We have already seen that the same gap exists in the generic solutions, as we showed
above that the tip-to-tip distance was greater than 1. In fact, the tip-to-tip distance
is monotonic in � for each value of � , as we see in Figure 10. For smaller values
of � , the maximum tip-to-tip distance decreases as well, reaching 1 only for the trivial
� D 0 clasp. The maximum tip-to-tip distance, about 1:05653, occurs at the Gehring
.1; 0/–clasp. The generic .1; 1

2
/ clasp still has tip-to-tip distance about 1:05468.

stiffness �
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Figure 10: This graph shows the tip-to-tip distance for the clasps with � D 1

(upper curve) and � D 0:8 (lower curve). We can see that in all the kinked
clasps (� � 1) the tips are in contact, so the tip-to-tip distance is 1 . As the
stiffness decreases, the force exerted by the shoulder arcs pushes the tips
apart, creating a gap between the tubes. We mark the transition between the
kinked, transitional, generic, and Gehring regimes with small dots. For � D 1 ,
recall that the Gehring regime degenerates to a point, so the corresponding
dot appears at � D 0 . Also, we note that the kinked/transitional boundary
occurs at � D 1 for all � so the curves merge at � D 1 . We can see that the
gap size is constant over the Gehring regime (as the curves are not changing
with � ) and then decreases monotonically as � increases until the transition
to the kinked regime, which has no gap for any � or � .
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8 Future directions

A number of interesting questions regarding ropelength remain unanswered by our
investigation. First, we note that although every link type has a ropelength minimizer,
there are still very few explicit examples of closed links critical for ropelength: only
the Borromean rings and the known minimizers from [5]. These have no kinks (so they
are critical also for the Gehring problem) and all their components are planar. It would
be very interesting to apply our balance criterion to describe further examples.

One way to generate further examples of critical links is to minimize ropelength with
some symmetry imposed. The general principle of symmetric criticality suggests that
the resulting configurations are still critical when the symmetries are relaxed. For
ropelength, the superlinearity of the first variation of thickness (Corollary 3.6) is exactly
the technical tool needed to show that symmetric criticality works as expected for
ropelength problem, despite the lack of smoothness: the (symmetrized) average of
thickening fields is again a thickening field, and thus a link that is critical under the
imposition of symmetry remains critical without the symmetry constraint. This means
that we now know many knots (including torus knots) with more than one critical
configuration. Results of this kind appear in Cantarella, Ellis, Fu and Mastin [3]. It
then becomes interesting to ask about second-order behavior, which in particular could
determine which are local minima. Although there is a theory of second-order behavior
for nonlinear constrained optimization problems in finite dimensions (see for instance
Forsgren, Gill and Wright [13, Section 2]) it seems nontrivial to extend this to our
infinite-dimensional setting.

It has long been conjectured that any knot — even the unknot — will have multiple
local minima for the ropelength problem. Some such unknots have been computed
numerically, but proving their existence remains an interesting open question. Promis-
ingly, a solution to a closely related problem — finding distinct configurations of a
given link which cannot be isotoped to one another without increasing the ropelength
of one component — has recently been given by Coward and Hass [8].

The question of the regularity of ropelength minimizers or critical curves remains a
central one in the field. Our regularity results depend on the assumption that kinks are
regulated; it would be nice to show this is always the case. Our bootstrapping argument
(Corollary 4.15) gives W

3;BV
loc regularity on the kinks. Regularity results for nonkinked

regions (and further regularity for kinks) would seem to depend on understanding the
possible geometry of how struts can impinge on an arc.

Finally, we note that the supercoiled helices of Section 5 form an interesting family
for further investigation. In particular, a comparison of our approach with Sussmann’s

Geometry & Topology, Volume 18 (2014)



2042 J Cantarella, J H G Fu, R B Kusner and J M Sullivan

would be fruitful; there may be borderline cases where solutions to his minimization
problem fail to be Thi� –regular and thus might not be strongly critical. It would be nice
to understand (2) well enough to prove our conjecture that the curves are embedded.
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