Volume 18, issue 4 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Tetrahedra of flags, volume and homology of $\mathrm{SL}(3)$

Nicolas Bergeron, Elisha Falbel and Antonin Guilloux

Geometry & Topology 18 (2014) 1911–1971
Abstract

In the paper we define a “volume” for simplicial complexes of flag tetrahedra. This generalizes and unifies the classical volume of hyperbolic manifolds and the volume of CR tetrahedral complexes considered in Falbel [Q. J. Math. 62 (2011) 397–415], and Falbel and Wang [Asian J. Math. 17 (2013) 391–422]. We describe when this volume belongs to the Bloch group and more generally describe a variation formula in terms of boundary data. In doing so, we recover and generalize results of Neumann and Zagier [Topology 24 (1985) 307–332], Neumann [Topology ’90 (1992) 243–271] and Kabaya [Topology Appl. 154 (2007) 2656–2671]. Our approach is very related to the work of Fock and Goncharov [Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1–211; Ann. Sci. Éc. Norm. Supér. 42 (2009) 865–930].

Keywords
Bloch group, $3$–manifolds, $\mathrm{PGL}(3,\mathbb{C})$, tetrahedra
Mathematical Subject Classification 2010
Primary: 57M50
Secondary: 57N10, 57R20
References
Publication
Received: 30 September 2011
Revised: 3 October 2013
Accepted: 27 February 2014
Published: 2 October 2014
Proposed: Walter Neumann
Seconded: Dmitri Burago, Jean-Pierre Otal
Authors
Nicolas Bergeron
Institut de Mathématiques de Jussieu
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris
France
http://people.math.jussieu.fr/~bergeron
Elisha Falbel
Institut de Mathématiques
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris
France
http://people.math.jussieu.fr/~falbel
Antonin Guilloux
Institut de Mathématiques
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris
France
http://people.math.jussieu.fr/~aguilloux