Volume 18, issue 4 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Tetrahedra of flags, volume and homology of $\mathrm{SL}(3)$

Nicolas Bergeron, Elisha Falbel and Antonin Guilloux

Geometry & Topology 18 (2014) 1911–1971
Abstract

In the paper we define a “volume” for simplicial complexes of flag tetrahedra. This generalizes and unifies the classical volume of hyperbolic manifolds and the volume of CR tetrahedral complexes considered in Falbel [Q. J. Math. 62 (2011) 397–415], and Falbel and Wang [Asian J. Math. 17 (2013) 391–422]. We describe when this volume belongs to the Bloch group and more generally describe a variation formula in terms of boundary data. In doing so, we recover and generalize results of Neumann and Zagier [Topology 24 (1985) 307–332], Neumann [Topology ’90 (1992) 243–271] and Kabaya [Topology Appl. 154 (2007) 2656–2671]. Our approach is very related to the work of Fock and Goncharov [Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1–211; Ann. Sci. Éc. Norm. Supér. 42 (2009) 865–930].

Keywords
Bloch group, $3$–manifolds, $\mathrm{PGL}(3,\mathbb{C})$, tetrahedra
Mathematical Subject Classification 2010
Primary: 57M50
Secondary: 57N10, 57R20
References
Publication
Received: 30 September 2011
Revised: 3 October 2013
Accepted: 27 February 2014
Published: 2 October 2014
Proposed: Walter Neumann
Seconded: Dmitri Burago, Jean-Pierre Otal
Authors
Nicolas Bergeron
Institut de Mathématiques de Jussieu
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris
France
http://people.math.jussieu.fr/~bergeron
Elisha Falbel
Institut de Mathématiques
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris
France
http://people.math.jussieu.fr/~falbel
Antonin Guilloux
Institut de Mathématiques
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris
France
http://people.math.jussieu.fr/~aguilloux