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Gromov–Witten/pairs descendent
correspondence for toric 3–folds

RAHUL PANDHARIPANDE

AARON PIXTON

We construct a fully equivariant correspondence between Gromov–Witten and stable
pairs descendent theories for toric 3–folds X . Our method uses geometric constraints
on descendents, An surfaces and the topological vertex. The rationality of the stable
pairs descendent theory plays a crucial role in the definition of the correspondence.
We prove our correspondence has a non-equivariant limit.

As a result of the construction, we prove an explicit non-equivariant stationary de-
scendent correspondence for X (conjectured by MNOP). Using descendent methods,
we establish the relative GW/Pairs correspondence for X=D in several basic new
log Calabi–Yau geometries. Among the consequences is a rationality constraint for
non-equivariant descendent Gromov–Witten series for P3 .

14N35; 14H60

0 Introduction

0.1 Descendents in Gromov–Witten theory

Let X be a nonsingular projective 3–fold. Gromov–Witten theory is defined via
integration over the moduli space of stable maps. Let Mg;r .X; ˇ/ denote the moduli
space of r –pointed stable maps from connected genus-g curves to X representing the
class ˇ 2H2.X;Z/. Let

evi WMg;r .X; ˇ/!X;

Li!Mg;r .X; ˇ/

denote the evaluation maps and the cotangent line bundles associated to the marked
points. Let 1; : : : ; r 2H�.X;Q/ and let

 i D c1.Li/ 2H 2.Mg;n.X; ˇ/;Q/:
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The descendent fields, denoted by �k. /, correspond to the classes  k
i ev�i . / on the

moduli space of maps. Let

h�k1
.1/ � � � �kr

.r /ig;ˇ D

Z
ŒMg;r .X ;ˇ/�vir

rY
iD1

 
ki

i ev�i .i
/

denote the descendent Gromov–Witten invariants. Foundational aspects of the theory
are treated, for example, in [1; 2; 13].

Let C be a possibly disconnected curve with at worst nodal singularities. The genus
of C is defined by 1� �.OC /. Let M 0

g;r .X; ˇ/ denote the moduli space of maps
with possibly disconnected domain curves C of genus g with no collapsed connected
components. The latter condition requires each connected component of C to represent
a nonzero class in H2.X;Z/. In particular, C must represent a nonzero class ˇ .

We define the descendent invariants in the disconnected case by

h�k1
.1/ � � � �kr

.r /i
0
g;ˇ D

Z
ŒM 0g;r .X ;ˇ/�vir

rY
iD1

 
ki

i ev�i .i/:

The associated partition function is defined by1

(1) Z0GW

�
X Iu

ˇ̌̌ rY
iD1

�ki
.i/

�
ˇ

D

X
g2Z

� rY
iD1

�ki
.i/

�0
g;ˇ

u2g�2:

Since the domain components must map nontrivially, an elementary argument shows
the genus g in the sum (1) is bounded from below. The descendent insertions in (1)
should match the (genus-independent) virtual dimension,

(2) dim
�
M 0

g;r .X; ˇ/
�vir
D

Z
ˇ

c1.TX /C r:

If X is a nonsingular toric 3–fold, then the descendent invariants can be lifted to
equivariant cohomology. Let

TD .C�/3

be the 3–dimensional algebraic torus acting on X . Let s1; s2; s3 be the equivariant first
Chern classes of the standard representations of the three factors of T. The equivariant
cohomology of the point is well known to be

H�T .�/DQŒs1; s2; s3�:

1Our notation follows [15] and emphasizes the role of the moduli space M 0g;r .X; ˇ/ . The degree-0

collapsed contributions will not appear anywhere in our paper.
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For equivariant classes i 2H�T .X;Q/, the descendent invariants

h�k1
.1/ � � � �kr

.r /i
0
g;ˇ D

Z
ŒM 0g;r .X ;ˇ/�vir

rY
iD1

 
ki

i ev�i .i/ 2H�T .�/

are well-defined. In the equivariant setting, the descendent insertions may exceed the
virtual dimension (2). The equivariant partition function

Z0GW

�
X Iu

ˇ̌̌ rY
iD1

�ki
.i/

�T

ˇ

2QŒs1; s2; s3�..u//

is a Laurent series in u with coefficients in H�T .�/.

If X is a nonsingular quasi-projective toric 3–fold, the equivariant Gromov–Witten
invariants of X are still well-defined by localization residues [3]. In the quasi-projective
case,

Z0GW

�
X Iu

ˇ̌̌ rY
iD1

�ki
.i/

�T

ˇ

2Q.s1; s2; s3/..u//:

For the study of the Gromov–Witten theory of toric 3–folds, the open geometries play
an important role.

0.2 Descendents in the theory of stable pairs

Let X be a nonsingular projective 3–fold, and let ˇ 2H2.X;Z/ be a nonzero class.
We consider next the moduli space of stable pairs�

OX
s
! F

�
2 Pn.X; ˇ/;

where F is a pure sheaf supported on a Cohen–Macaulay subcurve of X , s is a
morphism with 0–dimensional cokernel, and

�.F /D n; ŒF �D ˇ:

The space Pn.X; ˇ/ carries a virtual fundamental class obtained from the deformation
theory of complexes in the derived category [30].

Since Pn.X; ˇ/ is a fine moduli space, there exists a universal sheaf

F !X �Pn.X; ˇ/I

see [30, Section 2.3]. For a stable pair ŒOX ! F � 2 Pn.X; ˇ/, the restriction of F to
the fiber

X � ŒOX ! F ��X �Pn.X; ˇ/
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is canonically isomorphic to F . Let

�X WX �Pn.X; ˇ/!X;

�P WX �Pn.X; ˇ/! Pn.X; ˇ/

be the projections onto the first and second factors. Since X is nonsingular and F is
�P –flat, F has a finite resolution by locally free sheaves. Hence the Chern character
of the universal sheaf F on X �Pn.X; ˇ/ is well-defined. By definition, the operation

�P�

�
��X . / � ch2Ci.F/\�

�
P . � /

�
WH�.Pn.X; ˇ//!H�.Pn.X; ˇ//

is the action of the descendent �i. /, where  2H�.X;Z/.

For nonzero ˇ 2 H2.X;Z/ and arbitrary i 2 H�.X;Q/, define the stable pairs
invariant with descendent insertions by

˝
�k1
.1/ : : : �kr

.r /
˛
n;ˇ
D

Z
ŒPn.X ;ˇ/�vir

rY
iD1

�ki
.i/

D

Z
Pn.X ;ˇ/

rY
iD1

�ki
.i/

�
ŒPn.X; ˇ/�

vir�:
The partition function is

ZP

�
X I q

ˇ̌̌ rY
iD1

�ki
.i/

�
ˇ

D

X
n

� rY
iD1

�ki
.i/

�
n;ˇ

qn:

Since Pn.X; ˇ/ is empty for sufficiently negative n, the partition function is a Laurent
series in q . The following conjecture was made in [29].

Conjecture 1 The partition function ZP.X I q j
Qr

iD1 �ki
.i//ˇ is the Laurent expan-

sion of a rational function in q .

Let X be a nonsingular quasi-projective toric 3–fold. The stable pairs descendent
invariants can be lifted to equivariant cohomology (and defined by residues in the open
case). For equivariant classes i 2H�T .X;Q/, we see that

ZP

�
X I q

ˇ̌̌ rY
iD1

�ki
.i/

�T

ˇ

2Q.s1; s2; s3/..q//

is a Laurent series in q with coefficients in H�T .�/. A central result of [27; 28] is the
following rationality property.
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Rationality Let X be a nonsingular quasi-projective toric 3–fold. The partition
function

ZP

�
X I q

ˇ̌̌ rY
iD1

�ki
.i/

�T

ˇ

is the Laurent expansion in q of a rational function in the field Q.q; s1; s2; s3/.

The above rationality result implies Conjecture 1 when X is a nonsingular projec-
tive toric 3–fold. The corresponding statement for the equivariant Gromov–Witten
descendent partition function is expected (from calculational evidence) to be false.

0.3 Correspondence

Let X be a nonsingular quasi-projective toric 3–fold, and let p1; : : : ;pm 2X be the
distinct T–fixed points. Let pj2H�T .X;Q/ be the class of the T–fixed point pj . Let
˛ be a partition,

˛ D .˛1 � ˛2 � � � � � ˛` > 0/;

of size2 j˛j and length `. Define the descendent insertion

(3) �˛.pj /D �˛1�1.pj /�˛2�1.pj / � � � �˛`�1.pj /:

Since the classes of the T–fixed points span a basis of localized equivariant cohomology

H�T .X;Q/˝Q.s1; s2; s3/;

we can consider equivariant descendents of X in the form

ZP

�
X I q

ˇ̌̌ mY
jD1

�˛.j /.pj /

�T

ˇ

; Z0GW

�
X Iu

ˇ̌̌ mY
jD1

�˛.j /.pj /

�T

ˇ

for partitions ˛.1/; : : : ; ˛.m/ associated to the T–fixed points.

A central result of the paper is the construction of a universal correspondence matrix K

indexed by partitions ˛ and b̨ of positive size with3

K˛;y̨ 2QŒi;w1;w2;w3�..u//

and K˛;y̨ D 0 unless j˛j � jb̨j. The coefficients K˛;y̨ are symmetric in the variables
wi . The matrix K is used to define a correspondence rule

�˛.pj / 7!b� ˛.pj /D
X
j˛j�jy̨j

K˛;y̨.w
j
1
; w

j
2
; w

j
3
/�y̨.pj /;

2The unique partition of size 0 is the empty partition of length `D 0 . In the empty case, �∅.pj /D 1 .
3As usual, i2 D�1 .
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where wj
1
; w

j
2
; w

j
3

are the tangent weights of X at pj . The symmetry of K in the
variables wi is required for the correspondence rule to be well-defined. If ˛ D∅, we
formally set b� ∅.pj /Db1 D 1:

To state the correspondence property of K, the basic degree

dˇ D

Z
ˇ

c1.X / 2 Z

associated to the class ˇ 2H2.X;Z/ will be required.

Theorem 1 There exists a universal correspondence matrix K (symmetric in the
variables wi ) satisfying

.�q/�dˇ=2ZP

�
X I q

ˇ̌̌ mY
jD1

�˛.j /.pj /

�T

ˇ

D .�iu/dˇZ0GW

�
X Iu

ˇ̌̌ mY
jD1

b� ˛.j /.pj /

�T

ˇ

under the variable change �q D eiu for all nonsingular quasi-projective toric 3–
folds X .

The variable change in the descendent correspondence is well-defined by the rationality
result for the stable pairs partition function. However, much of the u dependence of K

remains mysterious.4 A central point of the paper is to show the consequences which
can be derived from various accessible properties of the u dependence.

We will construct the matrix K from the study of 1–leg equivariant descendent invariants.
A geometric argument using capped descendent vertices following [27] is used to prove
the 2–leg and then the complete 3–leg result of Theorem 1. The argument uses the
full force of the equivariant Gromov–Witten/Pairs correspondence for primary fields in
[18; 20].

Along with the construction of K, we prove several basic properties. A uniqueness
statement for K in the context of capped vertices appears in Theorem 8 of Section 1.
The leading terms of K are determined by the following result.

Theorem 2 For partitions ˛ of positive size, K˛;˛ D .iu/`.˛/�j˛j and

K˛;y̨¤˛ D 0 if j˛j � jb̨jC j`.˛/� `.b̨/j:
4Conjectural formulas for a partial descendent correspondence between Gromov–Witten theory and the

Donaldson–Thomas theory of ideal sheaves are proposed in a forthcoming article by Oblomkov, Okounkov
and the first author [21]. The investigation of the relationship between descendents for stable pairs and
ideal sheaves is an interesting direction for further study. Though not fully equivariant, the formulas of
[21] should partially constrain K .
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In other words, we can write the correspondence as

b� ˛.p/D .iu/`.˛/�j˛j�˛.p/C � � � ;
where the dots stand for terms �y̨ with partitions b̨ of positive size satisfying

j˛j> jb̨jC j`.˛/� `.b̨/j:
Theorem 2, proven in Section 2, plays an important role in the applications. We prove
the u coefficients of K˛;y̨ are symmetric polynomials in the variables wi in Section 4.

Theorem 3 The u coefficients of K˛;y̨ 2 QŒi;w1;w2;w3�..u// are symmetric and
homogeneous in the variables wi of degree j˛jC `.˛/� jb̨j � `.b̨/.
0.4 Consequences

We derive several implications of our descendent correspondence which require only
basic properties of K.

A first consequence is the following result for the non-equivariant partition functions
with primary fields �0. / and stationary descendents �k.p/.

Theorem 4 Let X be a nonsingular projective toric 3–fold. After the variable change
�q D eiu , we have

.�q/�dˇ=2ZP

�
X I q

ˇ̌̌ rY
iD1

�0.i/

sY
jD1

�kj .p/

�
ˇ

D .�iu/dˇ .iu/�
P

kjZ0GW

�
X Iu

ˇ̌̌ rY
iD1

�0.i/

sY
jD1

�kj .p/

�
ˇ

;

where i 2H�.X;Q/ are classes of positive degree.

Theorem 4 was conjectured for arbitrary nonsingular projective 3–folds in [15] for the
Donaldson–Thomas theory of ideal sheaves. Our proof, via Theorem 1, uses only the
leading terms of the u dependence of correspondence matrix K. The non-equivariant
limit plays an important role in the simple form of the descendent correspondence in
Theorem 4. If fully T–equivariant partition functions are considered, then complete
knowledge of the matrix K is required.

By Theorem 4 and the rationality result for stable pairs descendents, we conclude that

e�iudˇ=2 � .�iu/dˇ .iu/�
P

kjZ0GW

�
X Iu

ˇ̌̌ rY
iD1

�0.i/

sY
jD1

�kj .p/

�
ˇ
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is a rational function of e�iu . We know no other approaches to such rationality results
for descendents in Gromov–Witten theory.

In a different direction, we can also prove the Gromov–Witten/Pairs correspondences
for primary fields in several new relative cases. The first is a non-equivariant log
Calabi–Yau geometry with the relative divisor given by a K3 surface.

Theorem 5 Let X be a nonsingular projective Fano toric 3–fold, and let K3�X be
a nonsingular anti-canonical K3 surface. After the variable change �q D eiu , we have

.�q/�dˇ=2ZP

�
X=K3I q j �0.1/ � � � �0.r / j �

�
ˇ

D .�iu/dˇC`.�/�j�jZ0GW
�
X=K3Iu j �0.1/ � � � �0.r / j �

�
ˇ
;

where i 2H�.X;Q/ are arbitrary classes.

Relative Gromov–Witten and stable pairs theory are reviewed in Section 1.1. Our
standard conventions for the boundary conditions � along the relative divisors are
explained there. The rationality of the stable pairs series of Theorem 5 has been
established earlier in Section 4 of [27]. Theorem 5 can be used to prove a rationality
constraint for the Gromov–Witten descendent series of P3 .

Let Q.�q; i/Œu; 1
u
� be the ring of Laurent polynomials in u with coefficients given by

rational functions in �q over QŒi �. For example

q� 1=q

2i
u�2
C

qC 1=q

2
u4
2Q.�q; i/Œu; 1=u�:

Corollary 3 For the non-equivariant descendent series, we have

Z0GW

�
P3
Iu
ˇ̌̌ sY

jD1

�kj .j /

�
ˇ

2Q.�q D eiu; i/Œu; 1=u�;

where j 2H�.P3;Q/ are classes of positive degree.

Let An be the minimal toric resolution of the standard An –singularity obtained by a
quotient of a cyclic ZnC1 –action on C2 , see Section 4.2 for a review. Consider the
.C�/2 –equivariant geometry relative geometry

An �P1=D DAn �P1=.An/x1
[ .An/x2

[ .An/x3

relative to the fibers over the distinct point x1;x2;x3 2 P1 . Here .C�/2 acts only on
the toric surface An . We prove the following result.

Geometry & Topology, Volume 18 (2014)
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Theorem 6 After the variable change �q D eiu , we have

.�q/�dˇ=2ZP

�
An �P1=DI q j �.1/; �.2/; �.3/

�.C�/2
ˇ

D .�iu/dˇC
Pk

iD1 `.�
.i//�j�.i/jZ0GW

�
An �P1=DIu j �.1/; �.2/; �.3/

�.C�/2
ˇ

;

where the �.i/ are arbitrary .C�/2 –equivariant relative conditions along the fibers
.An/xi

.

Theorem 6 resolves questions left open in [16; 17]. In fact, Theorem 6 would follow
from the results of [16; 17] if certain conjectured invertibilities were established; see
[16, Section 8.3]. Our proof of the 3–point Gromov–Witten/Pairs correspondence for
An –local curves completely bypasses such invertibility issues.

The results stated above are the first applications of the equivariant descendent cor-
respondence. The main application will be to establish the Gromov–Witten/Pairs
correspondence for several basic families of compact Calabi–Yau 3–folds. The strategy
is to follow the methods of [19] which determine the Gromov–Witten theory of the
quintic 3–fold

X5 � P4

and to take parallel geometric steps for the stable pairs theory. A non-equivariant
Gromov–Witten descendent correspondence is necessary for the argument.

A basic result of the present paper is a non-equivariant formulation of the Gromov–
Witten/pairs descendent correspondence. The application to compact Calabi–Yau
3–folds will be taken up in [26].

0.5 Non-equivariant limit

Let X be a nonsingular quasi-projective toric 3–fold with T–fixed points p1; : : : ;pm

and inclusions
�j W pj ,!X; � WX T ,!X:

The pull-back of the top Chern class of the tangent bundle,

��j .c3.TX //D e.Tanj / 2H�T .pj ;Q/;

is the Euler class of the tangent representation at pj .

Theorem 1 establishes a descendent correspondence for T–equivariant Gromov–Witten
and stable pairs theories. Does Theorem 1 define a correspondence for non-equivariant
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theories? Certainly every non-equivariant descendent �k. / can be lifted to a combi-
nation of T–equivariant descendents of the form �k.pj / by localization

(4) e D �� mX
jD1

��j .e /
��j .c3.TX //

pj ;

where e is any T–equivariant lift of  . Theorem 1 can then be applied. However, the
coefficients

��j .e /
e.c3.TX //

2Q.s1; s2; s3/

which appear on the right of (4) are rational functions of the si (almost always with
poles). After the application of Theorem 1, poles in si will occur on the Gromov–Witten
side of the correspondence. Whether the resulting combination of Gromov–Witten
invariants can be rewritten in non-equivariant terms is not immediately clear. The
outcome depends upon properties of the correspondence matrix K.

We prove a Gromov–Witten/Pairs descendent correspondence for X which admits
a non-equivariant limit. In order to state the answer, we will require the following
notation. Let b̨ be a partition of length b̀ as in Section 0.3. Let � be the cohomology
class of the small diagonal in the product X

ỳ. For a cohomology class  of X , let

 ��D
X

j1;:::;jỳ

�

j1
˝ � � �˝ �


jỳ

be the Künneth decomposition of  �� in the cohomology of X
ỳ. We define the

descendent insertion �y̨. / by

(5) �y̨. /D
X

j1;:::;jỳ

�y̨1�1.�

j1
/ � � � �y̨ỳ�1.�


jỳ
/:

For example, if  is the class of a point, then

�y̨.p/D �y̨1�1.p/ � � � �y̨ỳ�1.p/

in accordance with convention (3). Definition (5) is valid for both the standard and the
T–equivariant cohomology of X .

We construct a second correspondence matrix eK indexed by partitions ˛ and b̨ of
positive size with eK˛;y̨ 2QŒi; c1; c2; c3�..u//

and eK˛;y̨ D 0 unless j˛j � jb̨j. Via the substitution

ci D ci.TX /;

Geometry & Topology, Volume 18 (2014)
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the elements of eK act on the cohomology (both standard and T–equivariant) of X

with QŒi �–coefficients. Of course, we take the canonical lift of T to the tangent bundle
TX in the equivariant case.

The matrix eK is used to define a new correspondence rule

(6) �˛1�1.1/ � � � �˛`�1.`/ 7! �˛1�1.1/ � � � �˛`�1.`/:

The formula for the right side of (6) requires a sum over all set partitions P of f1; : : : ; `g.
For such a set partition P , each element S 2 P is a subset of f1; : : : ; `g. Let ˛S be
the associated subpartition of ˛ , and let

S D

Y
i2S

i :

We define the right side of (6) by

(7) �˛1�1.1/ � � � �˛`�1.`/D
X

P set partition of
f1;:::;`g

Y
S2P

X
y̨

�y̨
�eK˛S ;y̨ � S

�
:

Theorem 7 There exists a universal correspondence matrix eK satisfying

.�q/�dˇ=2ZP

�
X I q j �˛1�1.1/ � � � �˛`�1.`/

�T
ˇ

D .�iu/dˇZ0GW
�
X Iu j �˛1�1.1/ � � � �˛`�1.`/

�T
ˇ

under the variable change �q D eiu for all nonsingular quasi-projective toric 3–
folds X .

We prove Theorem 7 by constructing eK canonically from K. Divisibility properties
of the coefficients of K, required for the construction of eK , are proven geometrically.
From our construction of eK , we will see Theorem 7 specializes to Theorem 1. The main
advantage of Theorem 7 over Theorem 1 is the obvious existence of a non-equivariant
limit. In fact, since (7) makes sense for the standard cohomology of any nonsingular
projective 3–fold, we conjecture the following.

Conjecture 2 For any nonsingular projective 3–fold X , we have

.�q/�dˇ=2ZP

�
X I q j �˛1�1.1/ � � � �˛`�1.`/

�
ˇ

D .�iu/dˇZ0GW
�
X Iu j �˛1�1.1/ � � � �˛`�1.`/

�
ˇ

under the variable change �q D eiu .
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By Conjecture 1, the stable pairs descendent series on the left is expected to be a
rational function in q , so the change of variables is well-defined. Conjecture 2 is a
consequence of Theorem 7 in case X is toric by taking the non-equivariant limit. In
the non-toric case, Conjecture 2 predicts the correspondence is the same.

Formula (7) assumes all the cohomology classes j are even. In the presence of odd
cohomology, a natural sign must be included in (7). We may write set partitions P of
f1; : : : ; `g indexing the sum on the right side of (7) as

S1[ : : :[SjP j D f1; : : : ; `g:

The parts Si of P are unordered, but we choose an ordering for each P . We then
obtain a permutation of f1; : : : ; `g by placing the elements in the ordered parts Si (and
respecting the original order in each part). The permutation determines a sign �.P /
by the anti-commutation of the associated odd classes. We then write

�˛1�1.1/ � � � �˛`�1.`/D
X

P set partition of
f1;:::;`g

.�1/�.P/
Y

Si2P

X
y̨

�y̨
�eK˛Si

;y̨ � Si

�
:

0.6 Plan of the paper

We start in Section 1 by reviewing relative Gromov–Witten and stable pairs theories.
The capped descendent vertex of [27], defined in Section 1.3, will play a central role in
the construction of the correspondence matrix K. Theorem 1 is implied by a relative
descendent correspondence stated in Theorem 8 of Section 1.3.

To construct K, we proceed leg by leg for capped descendent vertices. The study of the
1–leg case in Section 2 uniquely determines K by the invertibility of the associated
descendent/relative matrices. We define K via the 1–leg geometry. After the proof
of the 1–leg descendent correspondence in Section 2.3, the initial terms of K are
calculated in Section 2.4 to prove Theorem 2. The symmetry between the variables si

is broken in the 1–leg geometry, so the symmetry of K is not immediate.

We review the technique of capped localization in Section 3. The capped descendent
correspondence in the 2–leg case is established in Section 4 using the geometry of A1

surfaces (a strategy already employed in [18; 27]). Crucial here is a new invertibility
proven in Section 4.5. A consequence of the 2–leg correspondence is the symmetry of
K in the variables wi proven in Section 4.7. The 3–leg case is obtained by a parallel
argument in Section 5, completing the proof of Theorem 8 and thus of Theorem 1.

The first applications of the descendent correspondence are taken up in Section 6. The
easiest is Theorem 6 proven in Section 6.2. After a further study of the initial terms of
K, we prove Theorem 4 in Section 6.6.
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Section 7 concerns the non-equivariant formulation of the descendent correspondence.
After delicate divisibility properties for the coefficients of K are established, the
formula for eK in terms of K is given in Section 7.3. Theorem 7 is then a consequence
of Theorem 1. The final applications of the paper, in Section 8 to log Calabi–Yau
geometries, require the non-equivariant correspondence. Theorem 5 is proven in
Section 8.3.
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1 Capped descendent vertex

1.1 Relative theories

Let D �X be a nonsingular divisor. Relative Gromov–Witten and relative stable pairs
theories enumerate curves with specified tangency to the divisor D . See [15; 28] for a
technical discussion of relative theories.

In Gromov–Witten theory, relative conditions are represented by a partition � of the
integer

R
ˇ ŒD�; each part �i of which is marked by a cohomology class i 2H�.D;Z/.

The numbers �i record the multiplicities of intersection with D while the cohomology
labels i record where the tangency occurs. More precisely, let M 0

g;r .X=D; ˇ/� be
the moduli space of stable relative maps with tangency conditions � along D . To
impose the full boundary condition, we pull-back the product

Q
i i via the evaluation

maps
M 0

g;r .X=D; ˇ/�!D

at the points of tangency. By convention, an absent cohomology label stands for
1 2H�.D;Z/. Also, the tangency points are considered to be unordered.
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In the stable pairs theory, the relative moduli space admits a natural morphism to the
Hilbert scheme of d points in D ,

Pn.X=D; ˇ/! Hilb
�
D;

Z
ˇ

ŒD�
�
:

Cohomology classes on Hilb.D;
R
ˇ ŒD�/ may thus be pulled-back to the relative moduli

space. We will work in the Nakajima basis of H�.Hilb.D;
R
ˇ ŒD�/;Q/ indexed by a

partition � of
R
ˇ ŒD� labeled by cohomology classes of D . For example, the class

j�
˛
2H�

�
Hilb

�
D;

Z
ˇ

ŒD�
�
;Q

�
;

with all cohomology labels equal to the identity, is
Q
��1

i times the Poincaré dual of
the closure of the subvariety formed by unions of schemes of length

�1; : : : ; �`.�/

supported at `.�/ distinct points of D .

The conjectural relative GW/Pairs correspondence for primary fields [15] equates the
partition functions of the theories.

Conjecture 3 We have

.�q/�dˇ=2ZP

�
X=DI q j �0.1/ � � � �0.r / j �

�
ˇ

D .�iu/dˇC`.�/�j�jZ0GW
�
X=DIu j �0.1/ � � � �0.r / j �

�
ˇ
;

after the change of variables eiu D�q .

As before, ZP.X=DI q j �0.1/ � � � �0.r / j �/ˇ is conjectured to be a rational function
of q .

1.2 Degeneration formulas

Relative theories satisfy degeneration formulas. Let

X! B

be a nonsingular 4–fold fibered over an irreducible and nonsingular base curve B . Let
X be a nonsingular fiber, and let

X1[D X2
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be a reducible special fiber consisting of two nonsingular 3–folds intersecting transver-
sally along a nonsingular surface D .

If all insertions 1; : : : ; r lie in the image of

H�.X1[D X2;Z/!H�.X;Z/ ;

the degeneration formula in Gromov–Witten theory takes the form [8; 10; 12]

(8) Z0GW
�
X j �k1

.1/ � � � �kr
.r /

�
ˇ

D

X
Z0GW

�
X1 j � � � j �

�
ˇ1
z.�/u2`.�/Z0GW

�
X2 j � � � j �

_
�
ˇ2
;

where the summation is over all curve splittings ˇ D ˇ1 C ˇ2 , all splittings of the
insertions �ki

.i/, and all relative conditions �.

In (8), the cohomological labels of �_ are Poincaré duals of the labels of �. The
gluing factor z.�/ is the order of the centralizer in the symmetric group S.j�j/ of an
element with cycle type �.

The degeneration formula in the stable pairs theory takes a very similar form,

ZP

�
X j �k1

.1/ � � � �kr
.r /

�
ˇ

D

X
ZP

�
X1 j � � �

ˇ̌
�
�
ˇ1
.�1/j�j�`.�/z.�/q�j�jZP

�
X2 j � � � j �

_
�
ˇ2
I

see [15; 28]. The sum over the relative conditions � is interpreted as the coproduct
of 1,

�1D
X
�

.�1/j�j�`.�/z.�/j�
˛
˝j�_

˛
;

in the tensor square of H�.Hilb.D;
R
ˇ ŒD�/;Z/. Conjecture 3 is easily seen to be

compatible with degeneration.

1.3 Definition of the capped vertex

Bare capped vertices were first considered in [18] in the context of Donaldson–Thomas
theory. The capped descendent vertex was introduced in [27] to prove the rationality of
the stable pairs theory of toric 3–folds. Capped vertices will play a basic role in the
construction and proof of the descendent correspondence. We review the definitions
here.

Let T be a 3–dimensional algebraic torus. As before, let s1; s2; s3 2 H�T .�/ be the
first Chern classes of the standard representations of the three factors of T. Let T act
diagonally on P1 �P1 �P1 ,

.�1; �2; �3/ � .Œx1;y1�; Œx2;y2�; Œx3;y3�/D .Œx1; �1y1�; Œx2; �2y2�; Œx3; �3y3�/:
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Let 0;12 P1 be the points Œ1; 0� and Œ0; 1� respectively. The tangent weights5 of T
at the point

pD .0; 0; 0/ 2 P1
�P1

�P1

are s1 , s2 and s3 .

Let U � P1 � P1 � P1 be the T–invariant 3–fold obtained by removing the three
T–invariant lines

L1;L2;L3 � P1
�P1

�P1

passing through the point .1;1;1/,

(9) U D P1
�P1

�P1
n

3[
iD1

Li :

Let Di �U be the divisor with i th coordinate 1. For i ¤ j , the divisors Di and Dj

are disjoint in U .

The capped descendent vertex is a partition function of U with integrand

�˛.p/D �˛1�1.p/ � � � �˛`�1.p/

and free relative conditions imposed at the divisors Di . While the relative geometry
U=

S
i Di is not compact, the moduli spaces Pn.U=

S
i Di ; ˇ/ have compact T–fixed

loci. The stable pairs invariants of U=
S

i Di are well-defined by T–equivariant
residues. In the localization formula for the residue theories of U=

S
i Di , nonzero

degrees can occur only on the edges meeting the origin p 2 U .

We denote the capped descendent vertex by

(10) C
�
�˛.p/ j �

.1/; �.2/; �.3/
�
D Z

�
U=

[
i

Di ;
Ỳ
iD1

�˛i�1.p/
ˇ̌̌
�.1/; �.2/; �.3/

�T

ˇ

;

where the partition ˛ specifies the descendent integrand and the partitions �.1/; �.2/ ,
�.3/ denote relative conditions imposed at D1;D2;D3 . While ˛ must be non-empty as
before, the partitions �.i/ are permitted to be empty. However, we require the condition

(11) j�.1/jC j�.2/jC j�.3/j> 0

to hold. The number of legs of the vertex is the number of non-empty partitions among
�.1/ , �.2/ and �.3/ .

The curve class ˇ in (10) is determined by the relative conditions: ˇ is the sum
of the three axes passing through p 2 U with coefficients j�.1/j, j�.2/j and j�.3/j

5Our sign conventions here follow [25] and disagree with [28].
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respectively. The superscript T after the bracket denotes T–equivariant integration on
Pn.U=

S
i Di ; ˇ/. The condition (11) implies ˇ is nonzero.

The above definition is valid for both Gromov–Witten and stable pairs theories. The
relative conditions are interpreted as tangency in Gromov–Witten theory and as element
of the Nakajima basis in the theory of stable pairs. We denote the vertices in the two
theories by

CP

�
�˛.p/ j �

.1/; �.2/; �.3/
�
; CGW

�
�˛.p/ j �

.1/; �.2/; �.3/
�
:

We will prove Theorem 1 by a refined correspondence result for the capped descendent
vertex.

Theorem 8 There exists a unique correspondence matrix K satisfying

.�q/�
P

i j�
.i/jCP

�
�˛.p/ j �

.1/; �.2/; �.3/
�

D .�iu/
P

i j�
.i/jC`.�.i//CGW

�b�˛.p/ j �.1/; �.2/; �.3/�
under the variable change �q D eiu .

In case no descendents are present, the basic equality of the equivariant capped vertices

.�q/�
P

i j�
.i/jCP

�
1 j �.1/; �.2/; �.3/

�
D .�iu/

P
i j�

.i/jC`.�.i//CGW

�
1 j �.1/; �.2/; �.3/

�
is the main result of [18]. The number of legs of the descendent vertex refers to the
number of non-empty partitions among �.1/ , �.2/ and �.3/ .

By capped localization discussed in Section 3, we will easily derive Theorem 1 from
Theorem 8. The proof of Theorem 8 will be given leg by leg starting with the 1–leg
case.

2 Descendent correspondence: 1–leg

2.1 Construction of K

We construct the matrix K in several steps. The first is very simple. Let d > 0 be an
integer, and let Pd be the set of partitions of positive size at most d . Let

Cd
P.˛; �/D CP.�˛.p/ j∅;∅; �/; ˛; � 2 Pd

be a matrix with both rows and columns indexed by Pd . The coefficients of Cd
P are

rational functions in q .
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Lemma 1 For all d > 0, the matrix Cd
P is invertible.

Similarly, we define the corresponding matrix using the 1–leg Gromov–Witten descen-
dent vertices,

Cd
GW.˛; �/D CGW.�˛.p/ j∅;∅; �/; ˛; � 2 P :

The coefficients of Cd
P are Laurent series in u.

Lemma 2 For all d > 0, the matrix Cd
GW is invertible.

By the invertibility of Lemmas 1 and 2, there exists a unique correspondence matrix Kd

indexed by Pd with coefficients in Q.i; s1; s2; s3/..u// which satisfies the condition

.�q/�j�jCP.�˛.p/ j∅;∅; �/D .�iu/j�jC`.�/CGW

�X
y̨2Pd

Kd
˛;y̨
�y̨.p/

ˇ̌̌
∅;∅; �

�
under the variable change �q D eiu for all ˛; � 2 Pd .

Definition The correspondence matrix K is defined by the rule

K˛;y̨ D K
j˛j

˛;y̨

if j˛j � jb̨j and K˛;y̨ D 0 otherwise.

After proving Lemmas 1 and 2 in Section 2.2 below, we will use a geometric argument
in Section 2.3 to prove the following compatibility statement.

Proposition 3 For all d � j˛j, Kd
˛;y̨
D K

j˛j

˛;y̨
for all b̨.

Lemmas 1–2 and Proposition 3 together yield a unique correspondence matrix

K˛;y̨ 2Q.i; s1; s2; s3/..u//

satisfying Theorem 8 in the 1–leg case. The proof of Theorem 8 in the 2– and 3–leg
cases will be presented in Sections 4 and 5. Theorem 1 will be derived as a consequence.

By our construction, the u coefficients of K˛;y̨ are easily seen to be homogeneous
rational functions in the variables si of degree j˛j C `.˛/� jb̨j � `.b̨/. The claim
follows from the homogeneity of the coefficients of the matrices

Cd
P.˛; �/; Cd

GW.˛; �/

obtained from geometric dimensional analysis.
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Theorem 3 asserts further the symmetry and polynomiality of the coefficients K˛;y̨ .
Unfortunately, the construction of K from the 1–leg geometry breaks the symmetry
between the variables si . The symmetry of K will be established in Section 4.7 as a
step in the proof of Theorem 8. The restriction of the coefficients of K to the subring

QŒi; s1; s2; s3�..u//�Q.i; s1; s2; s3/..u//

will also be proven in Section 4.7, completing the proof of Theorem 3.

2.2 Proof of Lemmas 1 and 2

On the set Pd , we define two partial orderings

˛ D ę ” j˛j � `.˛/� jęj � `.ę/;
˛ < ę ” `C.˛/� `C.ę/;

where `C.˛/ is the number of parts of ˛ which are strictly greater than 1. The
conditions ˛ B ę and ˛ � ę are defined via the corresponding strict inequalities.

Lemma 4 If ˛ C �, then Cd
P.˛; �/D 0 and Cd

GW.˛; �/D 0.

Proof The result is a consequence of a dimension count. The 1–leg vertex can be
studied via the cap geometry,

N DOP1 ˚OP1 ! P1;

relative to the fiber
N1 �N

over 12 P1 . The total space N naturally carries an action of a 3–dimensional torus
T where the first two factors scale the components of the rank 2 trivial bundle and last
factor acts on P1 with fixed points 0;12 P1 . Let the scaling weights be s1 and s2 ,
and let the tangent weight along P1 at the fixed point p0 2N over 0 2 P1 be s3 . The
T–action preserves the relative divisor N1 . The equivariant relative geometry N=N1
is equivalent to (9) in the 1–leg case.

Let N0 �N be the fiber over 0 2 P1 of the cap, and let N0 be the associated class in
equivariant cohomology. Similarly, let p0 be the equivariant cohomology class of p0 .
We have the relation

N0 D
p0

s1s2
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in the equivariant cohomology of the cap. For the relative conditions, we can weight
each part of � by the fixed point p1 over 12 P1 . Let �Œp1� denote the resulting
weighted partition. We have the relation

1D
p1

s1s2

in the equivariant cohomology of the divisor over 12 P1 . Hence, we can write

Cd
P.˛; �/D .s1s2/

`.˛/�`.�/ZP

�
CapI q

ˇ̌̌ `.˛/Y
iD1

�˛i�1.N0/
ˇ̌̌
�Œp1�

�T

j�j

;

Cd
GW.˛; �/D .s1s2/

`.˛/�`.�/Z0GW

�
CapIu

ˇ̌̌ `.˛/Y
iD1

�˛i�1.N0/
ˇ̌̌
�Œp1�

�T

j�j

:

The moduli spaces of relative stable pairs and relative stable maps to the cap with
boundary condition �Œp1� are both compact of virtual dimension j�j � `.�/. The
integrand

`.˛/Y
iD1

�˛i�1.N0/

imposes j˛j � `.˛/ condition in both theories. If the dimension of the integrand is
strictly less than the virtual dimension, the equivariant integral vanishes for compact
moduli spaces.

Lemma 5 If j˛j � `.˛/D j�j � `.�/ and ˛ � �, then

Cd
P.˛; �/D 0; Cd

GW.˛; �/D 0:

Proof If �D .�1/ has a single part (which must exceed 1 by the second hypothesis),
then ˛ must have all parts equal to 1. The first hypothesis

(12) j˛j � `.˛/D j�j � `.�/

then can not hold. Hence, the lemma is true if the length of � is 1. We will assume the
length of � is at least 2 and proceed by induction.

Consider the equivariant geometry of P2 �P1 relative to the fiber

P2
1 D P2

� f1g � P2
�P1:

Let L 2H2.P2 �P1;Z/ be the class of the section P1 contracted over P2 . The first
two factors of T acts on P2 with fixed points �0; �1; �2 2 P2 . The tangent weights can
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be chosen as

s1; s2 for �0; �s1; s2� s1 for �1; s1� s2;�s2 for �2:

The last factor of T acts on P1 as before with weight s3 at 0 2 P1 . Let e� be the
cohomology weighted partition obtained from � with all parts weighted by Œ�0� 2
H�T .P

2;Q/. The integralZ
ŒPn.P2�P1=P2

1;j�jL/z��
vir

`.˛/Y
iD1

�˛i�1.P2
0/ 2Q

has integrand dimension equal to the virtual dimension and hence is independent of
equivariant lift.

Let �1 > 1 be the largest part of �. Let

�0 D � n f�1g;

which is not empty since `.�/ at least 2. Let b� be the cohomology weighted partition
with the parts �i weighted by Œ�0� 2 H�T .P

2;Q/ except �1 which is weighted by
Œ�1� 2H�T .P

2;Q/. By the independence of the choice of equivariant lift,

(13)
Z
ŒPn.P2�P1=P2

1;j�jL/z��
vir

`.˛/Y
iD1

�˛i�1.P2
0/D

Z
ŒPn.P2�P1=P2

1;j�jL/y��
vir

`.˛/Y
iD1

�˛i�1.P2
0/:

The left side of (13) is exactly the qn coefficient of

ZP

�
CapI q

ˇ̌̌ `.˛/Y
iD1

�˛i�1.N0/
ˇ̌̌
�Œp1�

�T

j�j

:

Similarly the right side of (13) is the qn coefficient of

X
˛0[˛00D˛

jAut.�0/j
jAut.�/j

ZP

�
CapI q

ˇ̌̌ `.˛0/Y
iD1

�˛0
i
�1.N0/

ˇ̌̌
�0Œp1�

�T

j�0j

�

�
ZP

�
CapI q

ˇ̌̌ `.˛00/Y
iD1

�˛00
i
�1.N0/

ˇ̌̌
�1Œp1�

�T

�1

�
s1D�s1

s2Ds2�s1

;

where the sum is over disjoint splittings of ˛ . For the right side, the support of the
stable pairs is disconnected. Hence, the universal sheaf F (used in the definition of the
descendents in Section 0.2) splits as a direct sum. Since the Chern character of a sum
is the sum of Chern characters, we obtain the above descendent distribution.
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The hypothesis (12) implies

j˛0j � `.˛0/Cj˛00j � `.˛00/D j�0j � `.�0/Cj�1j � 1:

For nonvanishing terms of the sum, by Lemma 4, we must have

j˛0j � `.˛0/D j�0j � `.�0/; j˛00j � `.˛00/D j�1j � 1:

At least one of the conditions ˛0 � �0 or ˛00 � .�1/ must hold. Since ˛00 � .�1/ is
impossible, the condition ˛0 � �0 must hold. The induction statement is established.

The argument for Gromov–Witten theory is literally identical. The formal properties
used above hold also for Gromov–Witten theory.

We define an equivalence relation � on Pd by the following rule: ˛ � ę if ˛ and ę
differ only by parts of size 1. For example,

.4; 4; 3; 1/� .4; 4; 3; 1; 1; 1/:

The proof of Lemma 5 in fact yields a refined result.

Lemma 6 If j˛j � `.˛/D j�j � `.�/, `C.˛/D `C.�/, and ˛ œ � then

Cd
P.˛; �/D 0; Cd

GW.˛; �/D 0:

By Lemma 4, the matrices Cd
P and Cd

GW are block lower-triangular with respect to the
partial ordering D. In order to establish invertibility, we need only study the blocks
where

(14) j˛j � `.˛/D j�j � `.�/

is fixed. By Lemma 5, the above blocks themselves are block lower-triangular with
respect to the partial ordering <. So, we need only study blocks where both (14) and

`C.˛/D `C.�/

are fixed. By Lemma 6, we finally restrict ourselves to the square blocks where the
equivalence class under � is fixed.

Let  2 Pd be a partition with no parts equal to 1. The evaluation

(15) ZP

�
CapI q

ˇ̌̌ `. /Y
iD1

�i�1.N0/
ˇ̌̌
 Œp1�

�T

j j

D
qj j

jAut. /j

`. /Y
iD1

1

i !
;

has been computed in [25] and does not vanish. The cardinality of the equivalence
class under � determined by  is d � j j. By the divisor equation, the block of Cd

P
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corresponding to the equivalence class of  is, up to harmless .s1s2/
`.˛/�`.�/ factors,

the matrix 0BBBBBBBBB@

1
0!

1
1!

1
2!

: : : 1
.d�j j/!

j j
0!

j jC1
1!

j jC2
2!

: : : d
.d�j j/!

j j2

0!
.j jC1/2

1!
.j jC2/2

2!
: : : d2

.d�j j/!

:::
:::

:::
: : :

:::

j jd�j j

0!
.j jC1/d�j j

1!
.j jC2/d�j j

2!
: : : dd�j j

.d�j j/!

1CCCCCCCCCA
with every element multiplied by (15). Invertiblity is immediate from the Vandermonde
determinant.

The argument for the Gromov–Witten matrix Cd
GW is identical. The replacement for

(15) is the evaluation

(16) Z0GW

�
CapIu

ˇ̌̌ `. /Y
iD1

�i�1.N0/
ˇ̌̌
 Œp1�

�T

j j

D
u�2`. /

jAut. /j

`. /Y
iD1

1

i !

obtained6 from [22, Lemma 7]. The proofs of Lemmas 1 and 2 are complete.

We define K
j˛j

˛;y̨
using the invertibility of C

j˛j
P and C

j˛j
P . A direct consequence of

Lemma 4 is the following vanishing.

Lemma 7 If ˛ C b̨, then K
j˛j

˛;y̨
D 0.

We will later require an invertibility result which is clear from our matrix analysis here.

Lemma 8 The submatrix of Cd
P.˛; �/ determined by the conditions

d D j˛j D j�j

is invertible (even after the restriction s3 D 0).

Proof By Lemmas 4–6, the submatrix is lower-triangular with respect to the partial
ordering. Moreover the diagonal elements are nonzero with no s3 dependence. The
evaluation s3 D 0 is well-defined since the dependence of the descendents of the cap
have no poles along s3 ; see [28, Lemma 1].

6Beware of the typographical error of a factor of d in Lemma 7 of [22].
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2.3 Proof of Proposition 3

The proposition will follow once we establish the identity

(17) .�q/�j�jCP.�˛.p/ j∅;∅; �/D .�iu/j�jC`.�/CGW

� X
y̨2Pj˛j

K
j˛j

˛;y̨
�y̨.p/

ˇ̌̌
∅;∅; �

�
for all nonempty partitions �.

Let d D j�j. If d � j˛j, the identity holds by the definition of Kj˛j . To prove the
identity for d > j˛j, we employ a geometric relation using the relative space

P2
�P1=P2

1

introduced in the proof of Lemma 5. Once identity (17) is proven, the proposition
follows from the invertibility of Kd .

Let b� be the cohomology weighted partition with the largest part �1 weighted by
Œ�0�2H�T .P

2;Q/ and all the remaining parts �2; : : : ; �`.�/ weighted by 12H�T .P
2;Q/.

We will consider the partition functions

ZP

�
˛;b��D ZP

�
P2
�P1=P2

1I q
ˇ̌̌
� �

`.˛/Y
iD1

�˛i�1.N0/
ˇ̌̌b��T

dL

;

ZGW

�
˛;b��D ZGW

�
P2
�P1=P2

1Iu
ˇ̌̌
� �

`.˛/Y
iD1

�˛i�1.N0/
ˇ̌̌b��T

dL

;

where � is the small diagonal condition obtained from P2 .

To explain the small diagonal class � in the case of stable pairs, a recasting of the
descendents is required. Let X=D be a 3–fold relative geometry, and let ˇ 2H2.X;Z/.
Let

X ! Pn.X=D; ˇ/

be the universal space. We consider the r th fiber product

�P W X r
! Pn.X=D; ˇ/

of X over Pn.X=D; ˇ/ with projections

�i W X r
! X

for 1 � i � r onto the i th factor. After composing with the canonical contraction
X !X , we obtain

�i;X W X r
!X:
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The Chern character of the universal sheaf F ! X on the universal space X is
well-defined. The operation

(18) �P�

� rY
iD1

��i;X .i/ ��
�
i .ch2Cki

.F//\��P . � /

�
on H�.Pn.X=D; ˇ/ is defined to be the action of the descendent

Qr
iD1 �ki

.i/, where
i 2H�.X;Z/. By the push-pull formula, definition (18) agrees with the descendents
constructed in Section 0.2.

The advantage here of definition (18) is the existence of a morphism

�X r W X r
!X r ; �X r D .�1;X ; : : : ; �r;X /:

Any class in ı 2H�.X r ;Q/ can be included in the descendent as

�P�

�
��X r .ı/

rY
iD1

��i;X .i/ ��
�
i .ch2Cki

.F//\��P . � /

�
:

Of course, ��
X r .ı/ can be incorporated in the i by the Künneth decomposition.

However, in the equivariant case, the Künneth decomposition requires inversion of the
equivariant parameters and interferes with dimension arguments.

In the case relevant to the proof of Proposition 3,

X=D D P2
�P1=P2

1;

and � is the class on the `.˛/–fiber product of the universal space X obtained by
pulling back the class of the small diagonal of .P2/`.˛/ ,

X `.˛/
! .P2

�P1/`.˛/! .P2/`.˛/:

Since the moduli space of maps has marked points, the parallel construction for Gromov–
Witten theory is immediate.

Lemma 9 If d > j˛j, then

ZP.˛;b�/D ZGW.˛;b�/D 0:

Proof The virtual dimension of the stable pairs and stable maps moduli spaces with
the relative condition b� imposed is

d C `.�/� 2:

The dimension of the integrand in both cases is

j˛j � `.˛/C 2.`.˛/� 1/;
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with the last term accounting for the small diagonal �. If

(19) j˛jC `.˛/� 2< d C `.�/� 2

then the lemma is obtained from dimension constraints for the compact geometry.

We may also express the theories of P2�P1=P2
1 by localization in terms of the 1–leg

descendent vertex. A simple analysis using Lemma 4 shows the vanishing of the lemma
holds if

(20) j˛j � `.˛/ < d � `.�/:

Finally, we observe if neither condition (19) nor condition (20) are satisfied, then

2j˛j � 2� 2d � 2

which violates the hypothesis d > j˛j.

The constraint on 1–leg descendent vertices obtained by localization of the vanishing
of Lemma 9 expresses

CP.�˛.p/ j �;∅;∅/ and CGW.�˛.p/ j �;∅;∅/

in terms of
CP.�˛.p/ j �

0;∅;∅/ and CGW.�˛.p/ j �
0;∅;∅/;

where �0 � � is a strict subset. Moreover, the reduction equation respects identity (17)
since all the �y̨ which appear in

b� ˛ D X
y̨2Pj˛j

K
j˛j

˛;y̨
�y̨

also satisfy d > jb̨j. By induction, we have established identity (17) and completed
the proof of Proposition 3.

The result of Proposition 3 is simultaneously the construction of the matrix K and the
proof of Theorem 8 in the 1–leg case.

2.4 Basic properties of K

By construction, we have the vanishing

j˛j< jb̨j H) K˛;y̨ D 0:

We have already established the vanishing

(21) ˛ C b̨ H) K˛;y̨ D 0

Geometry & Topology, Volume 18 (2014)



Gromov–Witten/pairs descendent correspondence for toric 3–folds 2773

in Lemma 7. A more subtle result is the following.

Proposition 10 We have

b� ˛.p/D .iu/`.˛/�j˛j�˛.p/C � � � ;
where the dots stand for terms �y̨ with ˛ B b̨.

Proof By the vanishing (21), we need only consider b̨ for which

j˛j � `.˛/D jb̨j � `.b̨/:
By Proposition 3, we have

.�q/�jy̨jZP.CapI qj�˛.p0/jb̨/Tjy̨j
D .�iu/jy̨jC`.y̨/Z0GW

�
CapIu

ˇ̌̌X
�

K˛;���.p0/
ˇ̌̌ b̨�T

jy̨j

:

Using the proven invertibilities, we need only match

(22) .�q/�jy̨jZP

�
CapI q j �˛.p0/ j b̨�T

jy̨j

with the series

(23) .�iu/jy̨jC`.y̨/Z0GW
�
CapIu j .iu/`.˛/�j˛j�˛.p0/ j b̨�T

jy̨j
:

The required matching is established in the next lemma.

After trading p0 insertions on the cap for N0 via

p0 D s1s2N0

and using standard dimension arguments, we reduce the necessary matching to the
following result.

Lemma 11 Let ˛ be a partition of positive size, and let d � 1D j˛j � `.˛/. Then,

ZP

�
CapI q

ˇ̌̌ `.˛/Y
iD1

�˛i�1.N0/
ˇ̌̌
d Œp1�

�T

d

D qd d`.˛/�2Q`.˛/
iD1

.˛i � 1/!
;

Z0GW

�
CapIu

ˇ̌̌ `.˛/Y
iD1

�˛i�1.N0/
ˇ̌̌
d Œp1�

�T

d

D u�2 d`.˛/�2Q`.˛/
iD1

.˛i � 1/!
:
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Proof The Gromov–Witten calculation is well-known. The result follows directly from
[22, Lemma 7] after translation of notation (and accounting of a factor d typographical
error in the formula in [22]).

The stable pairs evaluation can be computed by localization using the same methods as
in [25, Lemma 4]. By dimension counting, the result has no dependence on s1 and s2 .
Therefore, we can work mod s1C s2 . We obtain the sum

.�1/dC`.˛/�1/qd

d � d! �
Q`.˛/

iD1
.˛i C 1/!

X
aCbDd�1

.�1/a
�

d � 1

a

�
P˛.a/;

where

P˛.a/D

`.˛/Y
iD1

�
�.�b� 1/˛iC1

C .�b/˛iC1
C a˛iC1

� .aC 1/˛iC1
�

is a polynomial in a with leading term7

`.˛/Y
iD1

.�d.˛i C 1/˛i/a
d�1:

The stable pairs evaluation is then

.�1/dC`.˛/�1qd

d � d! �
Q`.˛/

iD1
.˛i C 1/!

.�1/d�1.d � 1/!

`.˛/Y
iD1

.�d.˛i C 1/˛i/D
d`.˛/�2qdQ`.˛/
iD1

.˛i � 1/!
:

We define yet another partial ordering D� on partitions by

˛D� ę ” j˛jC `.˛/� jęjC `.ę/:
The conditions ˛B� ę is defined via the corresponding strict inequalities. In Section 6.3,
we will prove the following result parallel to Proposition 10.

Proposition 12 We have

b� ˛.p/D .iu/`.˛/�j˛j�˛.p/C � � � ;
where the dots stand for terms �y̨ with ˛B� b̨.

Propositions 10 and 12 together immediately imply Theorem 2 constraining the initial
terms of K.

7The lower terms do not contribute since
P

aCbDd�1

.�1/a
�d�1

a

�
ak D 0 for k < d � 1 .
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As a Corollary of Proposition 10, we see the simple form

b� 1`.p/D �1`.p/

holds for ˛ D .1`/ since no partition satisfies .1`/B b̨.

Let .1/C ˛ be the partition obtained by adding a part equal to 1 to ˛ . The part 1

corresponds to a �0.p/ factor in �.1/C˛.p/. We can write

�0.p0/D s1s2�0.N0/

in the cap geometry. Using the T–equivariant divisor equations8 for the cap,�
�0.N0/

rY
iD1

�ki
.p0/

ˇ̌̌
�iPn;d D d

�
�0.N0/

rY
iD1

�ki
.p0/

ˇ̌̌
�

�P
n;d

;

�
�0.N0/

rY
iD1

�ki
.p0/

ˇ̌̌
�

�P
g;d

D d

�
�0.N0/

rY
iD1

�ki
.p0/

ˇ̌̌
�

�GW
g;d

C

rX
jD1

s3

�
�kj�1.p0/

Y
i¤j

�ki
.p0/

ˇ̌̌
�

�GW
g;d

;

we can easily understand how the matrix K treats the part 1. To state the answer, let

ˆ
�
�k1
.p/ � � � �kr

.p/
�
D

rX
jD1

�kj�1.p/
Y
i¤j

�ki
.p/

and extend ˆ linearly to linear combinations of monomials in �k.p/.

Proposition 13 For partitions ˛ ,

b� .1/C˛.p/D �0.p/ �b� ˛ � s1s2s3 �ˆ.b� ˛.p//:
Proof The divisor equations show the proposed formula for b� 1C˛.p/ respects the
1–leg correspondence of Theorem 8 which uniquely defines K.

2.5 Example

We calculate the first coefficients of K. The terms

K.1/;.1/ D 1; K.1/;y̨¤.1/ D 0:

8 In the Gromov–Witten case, if kj � 1< 0 , the summand is omitted in the divisor equation.
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have already been established. More interesting are the coefficients K.2/;y̨ . By
Proposition 10, we have

K.2/;.2/ D
1

iu

and the only other non-vanishing coefficients are possibly K.2/;.12/ and K.2/;.1/ . How-
ever, K.2/;.12/ vanishes by Proposition 12. A degree-1 calculation below yields

K.2/;.1/ D
s1C s2C s3

iu
;

so we see that

(24) b� .2/.p/D 1

iu
�.2/.p/C

s1C s2C s3

iu
�.1/.p/:

Note, K.2/;.1/ is symmetric in the si .

To prove (24), we need only check a single correspondence (as only the single coefficient
K.2/;.1/ is unknown). In [25], we have already calculated that9

ZP

�
CapI q j �.2/.p0/ j .1/Œp1�

�T
1
D�q

�s1C s2

2

� 1� q

1C q
:

There is not much difficulty in calculating the corresponding Gromov–Witten series

Z0GW
�
CapI q j �.2/.p0/ j .1/Œp1�

�T
1

D�s3u�2
C

1

u

d

du

�
s3

� u=2

sin.u=2/

�� .s1Cs2/

s3

�
�

� u=2

sin.u=2/

� .s1Cs2/

s3

by the Hodge integral methods of [4; 6]. The descendent is inserted via the dilation
equation which appears as differentiation of the vertex term. The factor furthest to the
right is the rubber contribution. The series

Z0GW
�
CapI q j �.1/.p0/ j .1/Œp1�

�T
1
D u�2

is simple. After including the .�q/�1 and .�iu/2 scalings of the 1–leg descendent
correspondence (17), we check that�s1C s2

2

� 1� q

1C q

D�
1

iu

�
.s1C s2/Cu

d

du

�
s3

� u=2

sin.u=2/

�� .s1Cs2/

s3

�
�

� u=2

sin.u=2/

� .s1Cs2/

s3

�
after �q D eiu .

9The tangent weight conventions of [25] differ from the conventions here by a sign.
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In the above example, the stable pairs descendent had been exactly calculated and
the dilation equation at the vertex could be used to handle the Gromov–Witten side.
While the stable pairs descendents series are difficult to calculate, at least methods exist
[28; 25]. At the moment, there is no reasonable way to calculate the Gromov–Witten
descendent series except, of course, order by order in u.

3 Capped localization

3.1 Toric geometry

Let X be a nonsingular toric 3–fold. Virtual localization with respect to the action of
the full 3–dimensional torus T reduces all stable pairs and Gromov–Witten invariants
of X to local contributions of the vertices and edges of the associated toric polytope.
We will use the regrouped localization procedure introduced in [18] with capped vertex
and edge contributions. The capped vertex and edge terms are equivalent building
blocks for global toric calculations, but are much better behaved.

Let � denote the polytope associated to X . The vertices of � are in bijection with
T–fixed points X T . The edges e correspond to T–invariant curves

Ce �X:

The three edges incident to any vertex carry canonical T–weights; the tangent weights
of the torus action.

We will consider both compact and noncompact toric varieties X . In the latter case,
edges may be compact or noncompact. Every compact edge is incident to two vertices.

3.2 Capping

Capped localization expresses the T–equivariant stable pairs descendents of X as a
sum of capped descendent vertex and capped edge data.

A half-edge h D .e; v/ is a compact edge e together with the choice of an incident
vertex v . A partition assignment

h 7! �.h/

to half-edges is balanced if the equality

j�.e; v/j D j�.e; v0/j

always holds for the two halves of e . For a balanced assignment, let

jej D j�.e; v/j D j�.e; v0/j
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denote the edge degree.

The outermost sum in the capped localization formula runs over all balanced assignments
of partitions �.h/ to the half-edges h of � satisfying

(25) ˇ D
X

e

jej � ŒCe � 2H2.X;Z/:

Such a partition assignment will be called a capped marking of �. The weight of
each capped marking in the localization sum for the stable pairs descendent partition
function equals the product of three factors:

(i) Capped descendent vertex contributions.

(ii) Capped edge contributions.

(iii) Gluing terms.

Each vertex determines up to three half-edges specifying the partitions for the capped
vertex. Each compact edge determines two half-edges specifying the partitions of the
capped edge. The capped edge contributions (ii) and gluing terms (iii) here are exactly
the same as for the capped localization formula in [18]. Precise formulas are written in
Section 3.3.

The capped localization formula is easily derived from the standard localization formula
(with roots in [6; 14]). Indeed, the capped objects are obtained from the uncapped
objects by rubber integral10 factors. The rubber integrals cancel in pairs in capped
localization to yield standard localization.

3.3 Formulas

The T–equivariant cohomology of X is generated (after localization) by the classes of
the T–fixed points X T �X . Let ˛ be a partition with parts ˛1; : : : ; ˛` and let

� W f1; : : : ; `g !X T:

Let p�.i/ 2 H�T .X;Q/ denote the class of the T–fixed point �.i/. We consider the
capped localization formula for the T–equivariant stable pairs and Gromov–Witten
descendent partition functions

(26) ZP

�
X I q

ˇ̌̌ rY
iD1

�ki
.p�.i//

�T

ˇ

; Z0GW

�
X Iu

ˇ̌̌ rY
iD1

�ki
.p�.i//

�T

ˇ

:

10 Rubber integrals h� j 1=.1� 1/ j �i� arise in the localization formulas for relative geometries.
See [28] for a discussion.
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We will indicate the slight differences between the formula for stable pairs and stable
maps below.

Let V be the set of vertices of � which we identify with X T . For each vertex v 2V , let
hv

1
; hv

2
; hv

3
be the associated half-edges11 with tangent weights sv

1
; sv

2
; sv

3
respectively.

Let �ˇ be the set of capped markings satisfying the degree condition (25). Each � 2�ˇ
associates a partition �.h/ to every half-edge h. Let

jhj D j�.h/j

denote the half-edge degree.

For each v 2V , the assignments � and � determine an evaluation of the capped vertex,

C.v; �; �/D C

� Y
i2��1.v/

�ki
.pv/

ˇ̌
�.hv1/; �.h

v
2/; �.h

v
3/

�ˇ̌̌̌
s1Dsv

1
;s2Dsv

2
;s3Dsv

3

:

Let he
1

and he
2

be the half-edges associated to the edge e . The assignment � also
determines an evaluation of the capped edge,

E.e; �/D E.�.he
1/; �.h

e
2//:

The capped edge geometry is discussed in [18]. A gluing factor is specified by � at
each half-edge hvi 2H . For stable pairs

GP.h
v
i ; �/D .�1/jh

v
i
j�`.�.hv

i
//z.�.hvi //

�Q3
jD1 svj

svi

�`.�.hv
i
//

� q�jh
v
i
j;

where z.�/ is the order of the centralizer in the symmetric group of an element with
cycle type �. For Gromov–Witten theory,

GGW .h
v
i ; �/D z.�.hvi //

�Q3
jD1 svj

svi

�`.�.hv
i
//

�u2`.�.hv
i
//:

The capped localization formula for stable pairs can be written exactly in the form
presented in Section 3.2,

ZP

�
X;

rY
iD1

�ki

�
p�.i/

��T

ˇ

D

X
�2�ˇ

Y
v2V

Y
e2E

Y
h2H

CP.v; �; �/EP.e; �/GP.h; �/;

11 For simplicity, we assume X is projective so each vertex is incident to 3 compact edges.
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where the product is over the sets of vertices V , edges E and half-edges H of the
polytope �. Similarly,

Z0GW

�
X;

rY
iD1

�ki

�
p�.i/

��T

ˇ

D

X
�2�ˇ

Y
v2V

Y
e2E

Y
h2H

CGW.v; �; �/EGW.e; �/GGW.h; �/:

An immediate consequence of the above capped localization formulas for stable pairs
and Gromov–Witten theories is the implication of Theorem 1 by Theorem 8 and the
symmetry of K in the variables si . Theorem 8 is applied to the capped descendent
vertices on the right side of the formula. The capped edge correspondences have already
been proven in [18] (with the stable pairs case discussed in [20, Section 5]). Tracing
the factors of q and u here is an easy exercise.

4 Descendent correspondence: 2–leg

4.1 Overview

Our goal here is to prove Theorem 8 in the 2–leg case. Consider the capped 2–leg
descendent vertices

CP.�˛.p/ j∅; �; �/; CGW.�˛.p/ j∅; �; �/:

Our proof of Theorem 8 will be by induction on the complexity of the legs. The
descendent insertion �˛.p/ will be fixed for the argument. If � D ∅, we are in the
1–leg case where Theorem 8 has already been established in Section 2. The 1–leg case
will be the base of the induction.

Define a partial ordering on pairs of partitions .�; �/ satisfying the condition .�; �/¤
.∅;∅/ by the following rules. We say

.�; �/F .�0; �0/

if we have j�j> j�0j. The proof of Theorem 8 in the 2–leg case is by induction with
respect to the partial ordering F.

Along the way, we will also establish basic properties of the correspondence matrix K

constructed in Section 2.1. The following result, completing the proof of Theorem 3,
will be proven in Section 4.7:

The coefficients of K lie in the subring

(27) ƒ3..u//�Q.i; s1; s2; s3/..u//;

where ƒ3 is the ring of symmetric polynomials in s1; s2; s3 over the field QŒi �.
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4.2 A1 geometry

Let � be a primitive .nC 1/th root of unity, for n� 0. Let the generator of the cyclic
group ZnC1 act on C2 by

.z1; z2/ 7! .�z1; �
�1z2/:

Let An be the minimal resolution of the quotient

An!C2=ZnC1:

The diagonal .C�/2 –action on C2 commutes with the action of Zn . As a result, the
surfaces An are toric.

The surface A1 is isomorphic to the total space of

O.�2/! P1

and admits a toric compactification

A1 � P.OCO.�2//D F2

by the Hirzebruch surface.

Let C �A1 be the 0–section of O.�2/, and let ?; � 2 C be the .C�/2 –fixed points.
Let

?; � 2 F2 nA1

be the .C�/2 –fixed points lying above ?; � respectively. We fix our .C�/2 –action by
specifying tangent weights at the four .C�/2 –points

(28)

T?.F2/ W s1� s2; 2s2;

T�.F2/ W s2� s1; 2s1;

T?.F2/ W s1� s2; �2s2;

T�.F2/ W s2� s1; �2s1:

No tangent weight here is divisible by s1C s2 .

Consider the nonsingular projective toric variety F2 �P1 . The 3–torus

TD .C�/3

acts on F2 as above via the first two factors and acts on P1 via the third factor with
tangent weights s3 and �s3 at the points 0;12 P1 respectively. The two T–invariant
divisors of F2 �P1

D0 D F2 � f0g; D1 D F2 � f1g
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will play a basic role. The 3–fold F2�P1 has eight T–fixed points which we denote by

?0; ?0; �0; �0; ?1; ?1; �1; �1 2 F2 �P1;

where the subscript indicates the coordinate in P1 .

Let L0 � F2 � P1 be the T–invariant line connecting ?0 and ?0 . Similarly, let
L1 � F2 �P1 be the T–invariant line connecting ?1 and ?1 . The lines L0 and
L1 are P1 –fibers of the Hirzebruch surfaces D0 and D1 . We have

H2.F2 �P1;Z/D ZŒC �˚ZŒL0�˚ZŒP �;

where P is the fiber of the projection to F2 .

4.3 Integration

We will find relations which express C.�˛.p/ j∅; �; �/ in terms of inductively treated
vertices for stable pairs and Gromov–Witten theory. The inductive equations will
respect the correspondence claimed in Theorem 8.

Let �0 be a partition. The relations will be obtained from vanishing invariants of the
relative geometry F2 �P1=D1 in curve class

ˇ D j�j � ŒC �C .j�jC j�0j/ � ŒP �:

The virtual dimensions of the associated moduli spaces are

dimvirPn.F2 �P1; ˇ/D 2j�jC 2j�0j;

dimvirM 0
g.F2 �P1; ˇ/D 2j�jC 2j�0j:

Relative conditions in Hilb.D1; j�jCj�0j/ are best expressed in terms of the Nakajima
basis given by a T–equivariant cohomology weighted partition of j�jCj�0j. We impose
the relative condition determined by the partition

�[�0 D �1C � � �C�`.�/C�
0
1C � � �C�

0
`.�0/

weighted by Œ?1� 2H�T .D1;Q/ for the parts of � and Œ�1� 2H�T .D1;Q/ for the
parts of �0 . We denote the relative condition by r.�; �0/. The same data expresses
relative conditions in Gromov–Witten theory. After imposing r.�; �0/, the virtual
dimension drops to

dimvirPn.F2 �P1=D1; r.�; �0//ˇ D j�j � `.�/Cj�0j � `.�0/;

dimvirM 0
g.F2 �P1=D1; r.�; �0//ˇ D j�j � `.�/Cj�0j � `.�0/:
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To define an equivariant integral, we specify the descendent insertion by

�˛.Œ?0�/D �˛1�1.Œ?0�/ � � � �˛`.˛/�1.Œ?0�/:

The descendent insertion imposes j˛jC `.˛/ conditions. Therefore, the integrals

(29)
Z
ŒPn.F2�P1=D1;r.�;�0//ˇ�vir

�˛.Œ?0�/;

Z
ŒM 0

g;`.˛/
.F2�P1=D1;r.�;�0//ˇ�vir

�˛.Œ?0�/;

viewed as T–equivariant push-forwards to a point, both have dimension

j�j � `.�/Cj�0j � `.�0/� j˛j � `.˛/:

We conclude the following result.

Proposition 14 If j�0j � `.�0/ > j˛j C `.˛/, then the T–equivariant integrals (29)
vanish for all Euler characteristics n and genera g .

4.4 Relations

We consider first the stable pairs case. Define the T–equivariant series

ZP.˛; �; �
0/ˇ D

X
n

qn

Z
ŒPn.F2�P1=D1;r.�;�0//ˇ�vir

�˛.Œ?0�/

obtained from the stable pairs integrals (29). By Proposition 14, the series ZP.˛; �; �
0/ˇ

vanishes identically if j�0j � `.�0/ > j˛jC `.˛/. We will calculate the left side of

(30) ZP.˛; �; �
0/ˇ D 0

by capped localization to obtain a relation constraining the stable pairs capped descen-
dent vertices.

The stable pairs theory of the relative geometry F2 �P1=D1 admits a capped local-
ization formula. Over 0 2 P1 , capped descendent vertices occur as in the capped
localization formula of Section 3.3. Over 1 2 P1 , capped rubber terms for T–
equivariant localization in the relative geometry arise. Capped rubber is discussed in
[18, Section 3.4]. Since all our descendent insertions lie over 02P1 , our capped rubber
has the same definition as the capped rubber of [18].

By the curve choice ˇ and the relative constraints r.�; �0/, the only capped rubber
contributions of F2�P1=D1 which arise over12P1 in the T–equivariant localization
formula for ZP.˛; �; �

0/ˇ lie in

A1 �P1
� F2 �P1:
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The capped rubber contributions of A1 � P1=D1 are proven to satisfy the GW/DT
correspondence in [18, Lemma 6] relying on the results of [16; 17]. See [20, Section 5]
for GW/Pairs correspondence for the A1 capped rubber.

We now analyze the capped localization of ZP.˛; �; �
0/ˇ over 0 2 P1 . A term in the

capped localization formula is said to be principal if not all the capped descendent
vertices which arise are lower than .�; �/ in the partial ordering F. Our first task now
is to identify the principal terms.

First consider the descendent insertions. The descendents

�˛1�1.Œ?0�/ � � � �˛`.˛/�1.Œ?0�/

all lie on ?0 . Hence, the only capped vertex with non-trivial descendents is ?0 . The
tangent weights at ?0 are

(31) s1� s2; 2s2; s3;

where the first two lie along D0 . For the capped vertices occurring at ?0 , the weights
(31) are substituted

CP

�
�˛.Œ?0�/ j∅; �.2/; �.3/

�
D CP

�
�˛.p/ j∅; �.2/; �.3/

�
js1Ds1�s2;s2D2s2;s3Ds3

into the standard capped vertex defined in Section 1.3. An equivariant vertex with no
descendents occurs at �0 . By the choice of ˇ and r.�; �0/, no vertices can only occur
at ?0 and �0 .

Next consider the edge degree d of C over 0 2 P1 in the capped localization formula.
If d < j�j, then the capped descendent vertex at ?0 is lower than .�; �/ in the partial
ordering F. We restrict ourselves to the principal terms where d D j�j.

Since all of j�j � ŒC � occurs over 0 2 P1 , the rubber over 1 2 P1 is all 1–leg. The
relative conditions are determined by � with weights Œ?1� and �0 with weights Œ�1�.
In the principal terms of the capped localization of (30), precisely the following set of
capped 2–leg descendent vertices occur at ?0 :

(32) fCP.�˛.Œ?0�/ j∅; b�; �/ j jb�j D j�jg:
The principal terms arise as displayed in Figure 1. In addition to the vertex C.˛j�; b�;∅/
at ?0 , there is a capped edge with partitions

jb�j D jb� 0j
along the curve C over 0 2 P1 . Finally, there is a capped 2–leg vertex with no
descendents at �0 with outgoing partitions b� 0 and �0 .
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?0 ?1

�1
�0

y�

y�0

�

�0

Figure 1: Principal terms

The system of equations (30) as the partition �0 varies has unknowns (32) parameterized
by partitions of j�j. However, the number of equations is infinite. The induction step
is established if the set of equations as �0 varies subject to the condition

j�0j � `.�0/ > j˛jC `.˛/

has maximal rank (equal to the number of partitions of size j�j) with respect to the
unknowns (32).

4.5 Maximal rank

The capped edge matrix along C has maximal rank [18]. The main difficulty is to
prove the matrix of capped 2–leg vertices

CP.1 j∅; b� 0; �0/
has maximal rank when b� 0 varies among partitions of size j�j and �0 varies among
the infinite set of partitions satisfying

j�0j � `.�0/ > j˛jC `.˛/:

Proposition 15 For any positive integers d and N , the matrix

CP.1 j∅; ı; �/

determined as ı varies among partition of d and � varies among partitions satisfying

j�j � `.�/�N � 1

is of maximal rank.
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Proof We may prove the maximal rank condition after the topological vertex special-
ization

s1C s2C s3 D 0:

The capped vertex is related to the standard uncapped vertex by invertible capped
rubbers. The uncapped vertex may be evaluated directly; see [14; 24]. Up to further
invertible factors, the matrix to consider becomesX

�

sıt=�.q
�/ s�=�.q

�/;

where sıt=� and s�=� are skew Schur functions evaluated at

q� D .q�1=2; q�3=2; : : : /:

As ı and � vary over all partitions12 of size at d and at most d respectively, the matrix
of skew Schur functions sıt=� is of maximal rank. We are thus reduced to proving that
the matrix

(33)
�
s�=�.q

�/
�
; j�j � `.�/�N � 1; j�j � d;

has maximal rank.

We select a square minor from (33) by the following construction. For every partition

�D .e1 � e2 � � � � � e`.�//

of size at most d , define

�C D .e1CN � e2 � � � � � e`.�//:

In case �D∅, then �C D .N / has length 1. As � varies among partitions of size at
most d , �C varies among partitions which satisfy

j�Cj � `.�C/�N � 1

with equality achieved for �D∅. We will prove the matrix

(34)
�
s�C=�.q

�/
�
; j�j; j�j � d;

is invertible.

We define a partial ordering � on partitions � of size at most d by the following rule.
Let �� be the partition obtained by removing the largest part of �,

�� D .e2 � � � � � e`.�//:

12� is permitted here to be empty.
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In case �D∅, then �� D∅. Define �� e� if

�� � e��;
or equivalently,

e2 �ee2; e3 �ee3; e4 �ee4; : : : :

Unwinding the definitions, we immediately find that

s�C=�.q
�/D 0 unless � � �

since the skew Schur function vanishes unless �� �C . We conclude the matrix (34) is
block triangular with respect to the ordering �.

For any matrix with a block triangular structure with respect to a partial ordering,
invertibility is equivalent to the invertibility of the blocks. In the case at hand, a block
is specified by a partition

� D .t1 � t2 � � � � � t`.�//

satisfying d � j� j � t1 . The block corresponding to � is indexed by the partitions

P� D f� j �� D �g:

The cardinality of P� is M C 1, where

M D d � j� j � t1:

In fact, the elements of P� are simply the partitions

.t1; t1; t2; : : : ; t`.�//; .t1C 1; t1; t2; : : : ; t`.�//; : : : ; .t1CM; t1; t2; : : : ; t`.�//:

The associated block is

B� D
�
s�C=�.q

�/
�
; �; � 2 P� :

To proceed further, we recall the definition of the skew Schur functions,

(35) s�=� D det
�
h�i��jCj�i

�
;

where hk is the complete symmetric function of degree k . If �D∅,

s�=∅ D det
�
h�iCj�i

�
is the standard Schur function associated to �. The elements of P� are

ft1C ig[ �
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for 0� i �M . Expanding definition (35), we see

sft1CiCN g[�=ft1Cjg[� D hNCi�j :

Therefore, we can write the determinant of the block as

(36) detB� D det
�
hNCi�j .q

�/
�
;

where 0� i; j �M on the right. Fortunately, we recognize the determinant (36) as
the Schur function s.N;:::;N /.q

�/ associated to the partition .N; : : : ;N / with M C 1

parts equal to N . The evaluation q� does not vanish on the Schur functions.

4.6 Proof of Theorem 8 in the 2–leg case

We have already seen the integration relations determine CP.�˛.p/ j∅; �; �/ by induc-
tion on the complexity of the legs. We will now study the parallel integration relations
in Gromov–Witten theory. Our goal is to determine CGW.b� ˛.p/ j∅; �; �/ by the same
induction and compatible with the correspondence of Theorem 8 for capped 2–leg
descendent vertices,

We will consider integration relations from Gromov–Witten theory for

(37) ZGW.˛; �; �
0/ˇ D

X
g

u2g�2
X
y̨2Pj˛j

K˛;y̨.s1� s2; 2s2; s3/

�

Z
ŒM 0

g;`.y̨/
.F2�P1=D1;r.�;�0//ˇ�vir

�y̨.Œ?0�/:

The first issue to confront is the broken symmetry in the definition of K in Section 2.1.
While K is symmetric in s1 and s2 , the variable s3 is treated differently. We orient K
in (37) by setting the s3 direction lie along P1 (which, conveniently, is also s3 in the
conventions of Section 4.2).

The formal analysis of the Gromov–Witten relations is identical to the above stable
pairs analysis. For fixed ˛ , there are only finitely many b̨ which occur on the right
side of b� ˛ D X

y̨2Pj˛j

K˛;y̨�y̨:

In order to make the integration relations compatible with Theorem 8, we must consider
the matrix of capped 2–leg vertices

(38) CGW.1 j∅; b� 0; �0/
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when b� 0 varies among partitions of size j�j and �0 varies among the infinite set of
partitions satisfying

j�0j � `.�0/ >Maxfjb̨jC `.b̨/ j K˛;y̨ ¤ 0g:

As Proposition 15 still applies,13 the matrix (38) is of maximal rank.

The inductive determination of the 2–leg descendent vertex via the integration relations
therefore respects the correspondence of Theorem 8.

4.7 Proof of Theorem 3

Since the homogeneity assertion was established in Section 2.1, the inclusion (27) is
the only part of Theorem 3 which remains to be proven.

The base of the induction in the proof of Theorem 8 is the � D ∅ case of 1–leg
established in Section 2. The orientation of K in (37) is perfect for the base case (as the
1–leg direction is then along P ). Applying the induction, we prove Theorem 8 for the
case where � is arbitrary and �D∅. In other words, the 1–leg correspondence holds
for the same matrix K when s2 and s3 are interchanged! By the uniqueness statement
for the 1–leg descendent correspondence in Section 2.1, we conclude K is symmetric.

The uk coefficients of K are polynomials in s3 (having only poles at along s1 and
s2 ). The proof is obtained from two observations. First, we have basic T–equivariant
proper maps from the stable pairs and stable maps spaces to the symmetric product
of C2 ,

Pn.Cap j �/d ! Symd .C2/;

Mg;`.Cap j �/d ! Symd .C2/I

see [28, Lemma 1]. The T–action of the third torus factor corresponding to s3 on
Symd .C2/ is trivial. Pushing-forward the integrals in both cases shows the uk coef-
ficients of the capped descendent invariants are polynomial in s3 . The matrix K is
obtained in Section 2.1 from the matrices of 1–leg capped descendents after inversion
and product. The second observation is that the determinants of the 1–leg capped
descendent matrices (see the proofs of Lemmas 1 and 2) have no s3 dependence. Hence,
the uk coefficients of K are polynomials in s3 .

By the symmetry, the uk coefficients of K are polynomial in all the variables s1 , s2

and s3 .

13The correspondence for capped stable pair and Gromov–Witten vertices without descendents is
used here.
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5 Descendent correspondence: 3–leg

5.1 Overview

We now prove Theorem 8 in the 3–leg case. Consider the capped 3–leg descendent
vertices

CP.�˛.p/ j �; �; �/; CGW.�˛.p/ j �; �; �/:

Our proof of Theorem 8 will again be by induction on the complexity of the legs. The
descendent insertion �˛.p/ will be fixed for the argument. If � D∅ or �D∅, we are
in the 2–leg case14 where Theorem 8 has been established in Section 4. The 2–leg
case will be the base of the induction.

Define a partial ordering on pairs of partitions .�; �; �/ satisfying the condition
.�; �; �/¤ .∅;∅/ by the following rules. We say

.�; �; �/F .�0; �0; �0/

if we have j�j C j�j > j�0j C j�0j. The proof of Theorem 8 in the 3–leg case is by
induction with respect to the partial ordering F.

The argument for descendent correspondence for the capped 3–leg vertex closely
follows the 2–leg case. The main difference is to replace A1 geometry by A2 geometry.

5.2 A2 geometry

Let A2 � F be any nonsingular projective toric compactification. We will only be
interested in the two .�2/–curves of A2 ,

C; bC �A2:

No other curves of F will play a role in the construction.

Let b�; ?; � 2 A2 be the .C�/2 –fixed points. The curve bC connects b� to ? and C

connects ? to � . The other .C�/2 –fixed points in F nA2 will not play an important
role.

Consider the nonsingular projective toric variety F �P1 . The 3–torus

TD .C�/3

acts on F via the first two factors and acts on P1 via the third factor with tangent
weights s3 and �s3 at the points 0;12 P1 respectively. Let

D0 D F � f0g; D1 D F � f1g
14Since the symmetry of K has been proven, all the 2–leg cases are equivalent.
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be T–invariant divisors of F2 �P1 . The 3–fold F �P1 has six important T–fixed
points which we denote by

b�0; ?0; �0; b�1; ?1; �1 2 F �P1;

where the subscript indicates the coordinate in P1 .

Let L1 � F �P1 be the T–invariant line connecting ?1 to .F nA2/1 . We have

H2.F �P1;Z/� ZŒC �˚ZŒbC �˚ZŒP �;

where P is the fiber of the projection to F .

5.3 Integration

We will find relations which express C.�˛.p/ j �; �; �/ in terms of inductively treated
vertices for stable pairs and Gromov–Witten theory. The inductive equations will
respect the correspondence claimed in Theorem 8.

Let �0 and �0 be partitions. The relations will be obtained from vanishing invariants
of the relative geometry F �P1=D1 in curve class

ˇ D j�j � ŒC �Cj�j � bC C .j�jC j�0jC j�0j/ � ŒP �:
The virtual dimensions of the associated moduli spaces are

dimvirPn.F �P1; ˇ/D 2j�jC 2j�0jC 2j�0j;

dimvirM 0
g.F �P1; ˇ/D 2j�jC 2j�0jC 2j�0j:

Relative conditions in Hilb.D1; j�jC j�0jC j�0j/ in the Nakajima basis are given by
a T–equivariant cohomology weighted partition of j�jC j�0jC j�0j. We impose the
relative condition determined by the partition

�[�0[ �0 D �1C � � �C�`.�/C�
0
1C � � �C�

0
`.�0/C �

0
1C � � �C �

0
`.�0/

weighted by Œ?1� 2H�T .D1;Q/ for the parts of �, Œb�1� 2H�T .D1;Q/ for the parts
of �0 and Œ�1� 2H�T .D1;Q/ for the parts of �0 . We denote the relative condition by
r.�; �0; �0/. After imposing r.�; �0; �0/, the virtual dimension drops to

dimvirPn.F2 �P1=D1; r/ˇ D j�j � `.�/Cj�0j � `.�0/Cj�0j � `.�0/;

dimvirM 0
g.F2 �P1=D1; r/ˇ D j�j � `.�/Cj�0j � `.�0/Cj�0j � `.�0/:

To define an equivariant integral, we specify the descendent insertion by

�˛.Œ?0�/D �˛1�1.Œ?0�/ � � � �˛`.˛/�1.Œ?0�/:
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The descendent insertion imposes j˛jC `.˛/ conditions. Therefore, the integrals

(39)
Z
ŒPn.F�P1=D1;r/ˇ�vir

�˛.Œ?0�/;

Z
ŒM 0

g;`.˛/
.F�P1=D1;r/ˇ�vir

�˛.Œ?0�/

viewed as T–equivariant push-forwards to a point, both have dimension

j�j � `.�/Cj�0j � `.�0/Cj�0j � `.�0/� j˛j � `.˛/:

We conclude the following result.

Proposition 16 If either j�0j � `.�0/ or j�0j � `.�0/ exceeds j˛j C `.˛/, then the
T–equivariant integrals (39) vanish for all Euler characteristics n and genera g .

5.4 Proof of Theorem 8

Define the T–equivariant series

ZP.˛; �; �
0; �0/ˇ D

X
n

qn

Z
ŒPn.F�P1=D1;r.�;�0;�0//ˇ�vir

�˛.Œ?0�/

obtained from the stable pairs integrals (39). On the Gromov–Witten side, we consider
the integrals

ZGW.˛; �; �
0; �0/ˇ D

X
g

u2g�2
X
y̨2Pj˛j

K˛;y̨

Z
ŒM 0

g;`. y̨ /
.F�P1=D1;r.�;�0;�0//ˇ�vir

�y̨.Œ?0�/:

Since we have already established the symmetry of K in the variable si , we no longer
need to worry about the orientation of K. When both j�0j � `.�0/ and j�0j � `.�/
exceed

Maxfjb̨jC `.b̨/jK˛;y̨ ¤ 0g;

Proposition 16 implies

(40) ZP.˛; �; �
0; �0/ˇ D 0; ZGW.˛; �; �

0; �0/ˇ D 0:

The inductive analysis of the capped localization of stable pairs and Gromov–Witten
relations (40) exactly follows the treatment given in Section 4.4 for the 2–leg case.
The outcome is an inductive determination of the capped descendent 3–leg vertices in
terms of the capped descendent 2–leg vertices which respects the correspondence of
Theorem 8. The maximal rank result of Proposition 15 is used twice.
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6 First consequences

6.1 Descendents over 0 2 P1

Since Theorems 3 and 8 together imply Theorem 1, we have proven the matrix K

determines a Gromov–Witten/Pairs descendent correspondence for all nonsingular
quasi-projective toric 3–folds X .

Recall the surfaces An defined in Section 4.2. As before, let

D1 �An �P1

be the fiber over 1 2 P1 . The relative geometry An � P1=D1 is equivariant with
respect to the action of 3–dimensional torus

TD T �C�;

where the 2–dimensional torus T acts on An and C� acts on P1 with fixed points
0;12 P1 . The weights associated to T are s1; s2 , and the weight associated to C�

is s3 . Let
p0; : : : ;pn 2D0

be the T–fixed points lying over 0 2 P1 .

Using the correspondence of Theorem 8 for capped descendent vertices over 0 2 P1

and the correspondence for capped An –rubber ([18, Lemma 6] together with [20,
Section 5]), we immediately conclude the following result.

Proposition 17 For the T–equivariant relative geometry An � P1=D1 , after the
variable change �q D eiu , we have

.�q/�dˇ=2ZP

�
An �P1=D1I q

ˇ̌̌ nY
jD0

�˛.j /.pj /
ˇ̌̌
�

�T

ˇ

D .�iu/dˇC`.�/�j�jZ0GW

�
An �P1=D1Iu

ˇ̌̌ nY
jD0

b�˛.j /.pj /
ˇ̌̌
�

�T

ˇ

;

where ˛.0/; : : : ; ˛.n/ are partitions, � is a T–equivariant relative condition along D1 ,
and ˇ 2H2.An �P1;Z/ is any curve class.

Since the coefficients of the matrix K have no poles in the si by Theorem 3, we
can restrict the correspondence of Proposition 17 to s3 D 0 (so long as the relative
conditions � have no denominators in s3 ). We will typically take � to have no s3

dependence at all. As an application of Proposition 17, we will prove Theorem 6.
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6.2 Proof of Theorem 6

Let L 2H2.An �P1;Z/ be the class of the factor P1 . For the 3–fold An �P1 , we
can uniquely write a curve class ˇ as

ˇ D dLC F;

where F 2H2.An;Z/ is a fiber class and

dˇ D

Z
ˇ

c1.An �P1/D 2d:

For fixed d , we define a matrix square matrix

MP;d .˛
.0/; : : : ; ˛.n/ j �/

with columns indexed by .nC 1/–tuples of partitions

˛.0/; : : : ; ˛.n/;

nX
jD0

j˛j.j/ D d;

rows indexed by relative conditions � in the Nakajima basis15 of the T –equivariant
cohomology of Hilb.An; d/ with respect to the classes p0; : : : ; pn , and with matrix
coefficients X

F2H2.An;Z/

QF .�q/�dZP

�
An �P1=D1I q

ˇ̌̌ nY
jD0

�˛.j /.pj /
ˇ̌̌
�

�T

dLCF

:

Lemma 18 For all d > 0, the matrix MP;d is invertible and remains invertible after
restriction MP;d js3D0 .

Proof We may prove invertibility after restriction to QD 0. The issue then separates
to the invertibility of matrices of caps determined at each pi . The capped geometry
P1=1 associated to pi is the line

pi �P1
�An �P1:

The required invertibility is then obtained from Lemma 8.

By the correspondence of Proposition 17, the Gromov–Witten matrix MGW;d with the
same indices and coefficientsX

F2H2.An;Z/

QF .�iu/2dC`.�/�j�jZGW

�
An �P1=D1Iu

ˇ̌̌ nY
jD0

b� ˛.j /.pj /
ˇ̌̌
�

�T

dLCF

15The Nakajima basis here is given by assigning a partition to each pi .
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is also invertible.

To prove Theorem 6, we restrict to the fiberwise T –action. Let p0
j ;p

1
j ;p
1
j be the

T –fixed points of An corresponding to pj in the fibers over the points 0; 1;12 P1

respectively. We consider the stable pairs series for An �P1

X
F2H2.An;Z/

QF .�q/�dZP

� nY
jD0

�˛.j /.p
0
j /

nY
jD0

�ˇ.j /.p
1
j /

nY
jD0

� .j /.p
1
j /

�T

dLCF

;

where we have
nX

jD0

j˛.j/j D

nX
jD0

jˇ.j/j D

nX
jD0

j .j/j D d:

By the correspondence of Theorem 1, the above series equals

X
F2H2.An;Z/

QF .�iu/2dZGW

� nY
jD0

b� ˛.j /.p0
j /

nY
jD0

b� ˇ.j /.p1
j /

nY
jD0

b�  .j /.p1j /

�T

dLCF

:

We degenerate the descendents over 0; 1;1 to three An –caps. Using the compatibility
of the above correspondences with the degeneration formula and the invertibility of
MP;d js3D0 , we obtain the correspondence of Theorem 6.

6.3 Descendents on S �P1=S1

Let S be a nonsingular quasi-projective toric surface. Let S1 � S �P1 be the fiber
over 12 P1 . The basic relative geometry S �P1=S1 is equivariant with respect to
the full 3–dimensional torus

TD T �C�;

where the 2–dimensional torus T acts on S and C� acts on P1 with fixed points
0;12 P1 . The weights associated to T are s1; s2 and the weight associated to C� is
s3 .

Let p1; : : : ;pm be the T–fixed points of S � P1 lying over 0 2 P1 . As before, let
L 2H2.S �P1;Z/ be the curve class of the factor P1 . For the class dL, we have

ddL D

Z
dL

c1.S �P1/D 2d:
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Proposition 19 For the T–equivariant relative geometry S�P1=S1 , after the variable
change �q D eiu , we have

.�q/�dZP

�
S �P1=S1I q

ˇ̌̌ mY
jD1

�˛.j /.pj /
ˇ̌̌
�

�T

dL

D .�iu/dC`.�/Z0GW

�
S �P1=S1Iu

ˇ̌̌ mY
jD1

b�˛.j /.pj /
ˇ̌̌
�

�T

dL

;

where ˛.0/; : : : ; ˛.n/ are partitions, � is a T–equivariant relative condition along S1 ,
and d > 0.

Proof The result is immediate from the 1–leg correspondence of Theorem 8. Each
fixed point pi of S is contained in a torus invariant open U ŠC2 . The open set

U �P1=U1 � S �P1=S1

is simply the cap. Since the curve class is dL, we can directly reduce the proposition
to the correspondence for 1–leg capped descendent vertices.

We will apply Proposition 19 in case S D P1�P1 to study the non-equivariant limit of
the descendent correspondence in Section 7. We will require there also the following
technical divisibility result valid for all projective S .

Let S be a nonsingular projective toric surface, and let p 2 S � P1 be a toric fixed
point lying over 0 2 P1 . Let

F.�.p//D
X
˛

C˛�˛.p/

be a finite sum over ˛ of positive size and C˛ 2QŒi; s1; s2; s3�..u//.

Proposition 20 If the divisibility

sk
1 j Z

0
GW

�
S �P1=S1Iu j F.�.p// j �

�T
dL

holds for all d >0 and all relative conditions � with cohomology weights in H�T .S;Q/,
then sk

1
divides F .

Since S is projective, the series Z0GW.S �P1=S1Iu j F.�.p// j �/
T
dL

has no poles in
the si , so the divisibility hypothesis in Proposition 20 is sensible.
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Proof We can write F in the form16

F D
X
m>0

Fm; Fm D

X
j˛jC`.˛/Dm

C˛�˛.p/:

We argue by contradiction. Let FM be the largest M for which FM is not divisible
by sk

1
. Since the higher Fm>M are divisible by sk

1
, the hypothesis implies

sk
1 j Z

0
GW

�
S �P1=S1Iu

ˇ̌̌ MX
mD2

Fm

ˇ̌̌
�

�T

dL

for all d > 0 and all relative conditions �.

The next step is a simple dimension analysis. The codimension of the class �˛.p/ is
j˛jC `.˛/. To each partition  , we associate the relative condition  along S1 with
all cohomology weights equal to 1 2H�T .S;Q/. The virtual dimension of the relative
moduli space of maps to S �P1=S1 of class j jL satisfying the relative condition 
is j jC `. /. By compactness and dimension constraints, we obtain the vanishing

Z0GW
�
S �P1=S1Iu j �˛.p/ j 

�T
j jL
D 0

when j˛jC `.˛/ < j jC `. /. Hence, we see that

(41) sk
1 j Z

0
GW

�
S �P1=S1Iu j FM j 

�T
j jL

for all partitions  satisfying j jC `. /DM .

Next, we consider the matrix indexed by partitions ˛ and  satisfying

(42) j˛jC `.˛/DM; j jC `. /DM

with coefficients

(43) Z0GW
�
S �P1=S1Iu j �˛.p/ j 

�T
j jL
:

By the dimension constraints, the coefficient (43) is independent of the equivariant
parameters; we can treat the coefficient as a non-equivariant integral. Hence, we can
calculate (43) by separating the points in the descendent insertion. We replace �˛.p/ by

(44) �a1�1.p
0
1/ � � � �a`.˛/�1.p

0
`.˛//

for distinct points p0
1
; : : : ;p0`.˛/ 2S . If `.˛/>`. /, then the corresponding coefficient

(43) certainly vanishes as the relative condition does not have enough parts17 to satisfy
the incidences with p0

1
; : : : ;p0`.˛/ .

16Note the minimum value of j˛jC `.˛/ for ˛ of positive size is 2 .
17Remember the class of the curve is degree 0 when projected to S .
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The matrix (43) is block triangular with blocks given by the equal length condition

`.˛/D `. /:

The equal length condition implies j˛j D j j by (42). Using the separated insertion
(44) and further dimension counting, we conclude the coefficient (43) vanishes in the
block unless ˛ D  .

We have proven the matrix (43) is triangular. The diagonal elements 4˛ are determined
by (16) and are non-zero (with no s1 dependence). The divisibility of the coefficients
of FM by sk

1
then immediately follows from (41).

The proof of Proposition 20 provides the first step of the proof18 of Proposition 12.
Recall the partial ordering D� on partitions:

˛D� ę ” j˛jC `.˛/� jęjC `.ę/
Proposition 12 We have

b� ˛.p/D .iu/`.˛/�j˛j�˛.p/C � � � ;
where the dots stand for terms �y̨ with ˛B� b̨.

Proof Let S be any nonsingular projective toric surface, and let p 2 S be a toric
fixed point. By Proposition 19,

.�q/�dZP

�
S �P1=S1I q j �˛.p/ j �

�T
dL

D .�iu/dC`.�/Z0GW

�
S �P1=S1Iu

ˇ̌̌X
y̨

K˛;y̨�y̨.p/
ˇ̌̌
�

�T

dL

for all d .

Consider the set of P of partitions b̨ with j˛j � jb̨j which maximize jb̨j C `.b̨/
subject to the condition K˛;y̨ ¤ 0. Let  2 P minimize `. /. We view  as a relative
condition along S1 with all cohomology weights equal to 1 2H�T .S;Q/. If  B� ˛ ,
then

.�q/�dZP

�
S �P1=S1I q j �˛.p/ j 

�T
j jL
D 0;

.�iu/dC`.�/Z0GW

�
S �P1=S1Iu

ˇ̌̌X
y̨

K˛;y̨�y̨.p/
ˇ̌̌


�T

j jL

D K˛; � 4 ;

18Proposition 12 was stated in Section 2.3, but not used except as part of the proof of Theorem 2. The
proof of Proposition 12 here also completes the proof of Theorem 2.
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where 4 is non-zero. Here, we have used the geometric vanishing arguments of the
proof of Proposition 20 for both stable pairs and stable maps. Hence, K˛; D 0 which
is a contradiction. We conclude that

b̨B� ˛ H) K˛;y̨ D 0:

To prove the proposition, we need now only consider b̨ for which

j˛jC `.˛/D jb̨jC `.b̨/:
Specifically, we need to exactly match

(45) .�q/�jy̨jZP

�
S �P1=S1I q j �˛.p/ j b̨�T

jy̨jL

with the series

(46) .�iu/jy̨jC`.y̨/Z0GW
�
S �P1=S1Iu j .iu/

`.˛/�j˛j�˛.p/ j b̨�T
jy̨jL

D .�1/j˛ju2`.˛/Z0GW
�
S �P1=S1Iu j �˛.p/ j b̨�T

jy̨jL
:

The exact matching is proven in Section 6.4.

6.4 Matching

Let Y be a nonsingular surface, and let E � Y be a nonsingular curve. Let L 2

H2.Y �P1;Z/ be the curve class of the factor P1 . The divisor

E �P1
� Y �P1

intersects the divisor Y1 � Y � P1 lying over 1 2 P1 . We will consider here the
relative geometry

(47) Y �P1=E �P1
[Y1

for the curve classes dL in both stable pairs and Gromov–Witten theory.

For normal crossings boundary, the most promising approach to the relative theories is
via log geometry [7]. However, our case is very simple since we are only considering
the curve classes dL. Since

L � ŒE �P1�D 0;

our curves never meet E � P1 and the delicate choices required for curves passing
through the singularities of E � P1 [ Y1 can be completely avoided. The moduli
spaces
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Pn.Y �P1=E �P1
[Y1; dL/�;

M 0
g;r .Y �P1=E �P1

[Y1; dL/�

are easily defined. In both cases, the projections of the curves to Y are never allowed to
meet E ; bubbling occurs along E to keep the projections away. The relative boundary
conditions over 12 P1 are then imposed as usual. The points of the resulting moduli
spaces corresponds to stable pairs or stable maps which meet (the degeneration of)
Y1 away from the intersection with E �P1 . Hence, the deformation theories, virtual
classes and degeneration formulas are all standard. Further details concerning the
moduli problem here are given in Section 6.5.

Let ˛ and b̨ be two partitions of positive size satisfying

j˛j � jb̨j; j˛jC `.˛/D jb̨jC `.b̨/
as in the proof of Proposition 12. The required matching of (45) and (46) concerns the
relative geometry S �P1=S1 . By a dimension analysis, the series (45) and (46) have
no dependence on the equivariant parameters si . Therefore, we can replace �˛.p/ by

�a1�1.p
0
1/ � � � �a`.˛/�1.p

0
`.˛//;

where the points p0i 2 S are distinct. Furthermore, we can degenerate to the normal
cone of p0i � S for each p0i . The limit of p0i then lies on surface P2=E where E � P2

is a line. We immediately conclude

ZP

�
S �P1=S1I q j �˛.p/ j b̨�T

jy̨jL

D

X
y̨D

S
i 
.i/

`.˛/Y
iD1

ZP

�
P2
�P1=E �P1

[P2
1I q j �˛i�1.p

0
i/ j 

.i/
�T
j .i/jL

;

where the sum on the right is over all ways of writing b̨ as a union of `.˛/ disjoint
subpartitions  .i/ satisfying

˛i C 1D j .i/jC `. .i//:

Another degeneration argument implies

ZP

�
P2
�P1=E �P1

[P2
1I q j �˛i�1.p

0
i/ j 

.i/
�T
j .i/jL

D ZP

�
P2
�P1=P2

1I q j �˛i�1.p
0
i/ j 

.i/
�T
j .i/jL
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If  .i/ equals �.i/[ .1mi /, where �.i/ has no parts equal to 1, then localization with
respect to the torus action on P2 yields

ZP

�
P2
�P1=P2

1I q j �ai�1.p
0
i/ j 

.i/
�T
j .i/jL

D

X
e0Ce1C���CejDmi

e0�0; ek>0 for k>0

�
.�1/jZP

�
CapI q j �˛i�1.p/ j �

.i/
[ .1e0/

�T
.j�.i/jCe0/L

�

jY
kD1

ZP

�
CapI q j 1 j .1ek /

�T
ekL

�
:

The parallel formulas hold in Gromov–Witten theory.

The matching of (45) and (46) is then a consequence of the following calculation.

Lemma 21 Let  D �[ .1m/ be a partition of positive size where � has no parts
equal to 1. Let aC 1D j jC `. /. ThenX
e0Ce1C���CejDm

e0�0; ek>0 for k>0

�
.�1/jZP

�
CapI q j �a�1.p/ j �[ .1

e0/
�T
.j�jCe0/L

�

jY
kD1

ZP

�
CapI q j 1 j .1ek /

�T
ekL

�
D qj j

.�1/`. /�1

j j!jAut. /j
;

X
e0Ce1C���CejDm

e0�0; ek>0 for k>0

�
.�1/jZ0GW

�
CapI q j �a�1.p/ j �[ .1

e0/
�T
.j�jCe0/L

�

jY
kD1

Z0GW
�
CapI q j 1 j .1ek /

�T
ekL

�
D u�2 1

j j!jAut. /j
:

Proof The Gromov–Witten calculation is well-known. In fact, the result is just a
genus-0 connected Gromov–Witten invariant determined as a special case of [23,
Theorem 2].

We require the stable pairs evaluation. We know that the expression has no dependence
on s1 and s2 , actually state why somewhere so we can work mod s1C s2 as in [25]
and Lemma 11. Localization yields the formula (true mod s1C s2 )

ZP

�
CapI q j �a�1.p/ j �[ .1

e0/
�T
.j�jCe0/L

�
.�1/`. /�1.s1s2/

e1C���Cej qj�jCe0

.aC 1/!.j�jC e0/!e0!z.�/

X
�`j�jCeo

��
�
.1/j�jCe0

�
��
�
�[ .1e0/

�
�

X
�2�

cDc.�/

�
.c � 1/aC1

� 2caC1
C .cC 1/aC1

�
;
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where �� is the character of the irreducible representation of the symmetric group
corresponding to � and c.�/ is the content of a square in a partition.

The crucial step in the evaluation is the application of the character sum identity

(48)
X

�`j�jCe

��
�
.1/j�jCe

�
��
�
�[ .1e/

� X
�2�

cDc.�/

X c

D

� eX
iD0

i !

�
e

i

��
j�jC e

i

��
X

1
2 �X�

1
2

�j�jC2e�2i�2
� `.�/Y

kD1

�
X
�k
2 �X�

�k
2

�
;

valid for � with no part of size 1. Before proving this identity, we will complete the
proof of Lemma 21. Using (48) along with the basic evaluation

ZP

�
CapI q j 1 j .1e/

�T
eL
D

1

e!.s1s2/e
;

we see the stable pair expression we need to compute is given by replacing X c with
.c � 1/aC1� 2caC1C .cC 1/aC1 in the Laurent polynomial

.�1/`. /�1qj j
X

e0Ce1C���CejDm
e0�0; ek>0 for k>0

.�1/jQj

kD1
ek !

1

.aC 1/!.j�jC e0/!e0!z.�/

�

� e0X
iD0

i !

�
e0

i

��
j�jC e0

i

��
X

1
2 �X�

1
2

�j�jC2e0�2i�2
� `.�/Y

kD1

�
X
�k
2 �X�

�k
2

�
:

Fortunately, most of the terms in this double sum cancel. If 0 � r � m, then the
coefficient of

qj j
�
X

1
2 �X�

1
2

�j�jC2m�2r�2
`.�/Y
kD1

�
X
�k
2 �X�

�k
2

�
appearing above is

.�1/`. /�1

.aC 1/!.m� r/!.j�jCm� r/!z.�/

X
e0Ce1C���CejDr

e0�0; ek>0 for k>0

.�1/jQj

kD0
ek !
:

D

8̂<̂
:

.�1/`. /�1

.aC 1/!m!.j�jCm/!z.�/
if r D 0,

0 otherwise,

because terms in the sum with e0 D 0 can be paired off with those with e0 > 0.
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Thus, we just need to compute the result of replacing X c with

.c � 1/aC1
� 2caC1

C .cC 1/aC1

in the Laurent polynomial

.�1/`. /�1

.aC 1/!m!.j�jCm/!z.�/
qj j

�
X

1
2 �X�

1
2

�j�jC2m�2
`.�/Y
kD1

i
�
X
�k
2 �X�

�k
2

�
:

Since the above polynomial is divisible by .X � 1/a�1 , this is simply a matter of
differentiating a� 1 times with respect to X , setting X D 1, and then multiplying by
.aC 1/!. We find

.�1/`. /�1

m!.j�jCm/!z.�/
qj j

`.�/Y
kD1

�k D qj j
.�1/`. /�1

j j! jAut. /j

as desired.

We now return to (48). The proof of this identity requires only a slight modification of
the arguments used in the proof of Theorem A.1 in [5], so we will only give a sketch
here.

Let nD j�j C e and define the Jucys–Murphy elements Li .1 � i � n/ as sums of
transpositions

Li D .1; i/C .2; i/C � � �C .i � 1; i/

in the group algebra CŒSn� of the symmetric group Sn . The elements Li have the
following property: For any polynomial f , the element f .L1/C � � �C f .Ln/ acts as
the scalar

P
�2� f .c.�// on the irreducible representation V � of Sn corresponding

to a partition � of n.

If we let � 2 Sn be any permutation with cycle type �[ .1e/, then the trace of the
element ��1.f .L1/C � � �Cf .Ln// acting on CŒSn� will be equal toX

�`j�jCe

��
�
.1/j�jCe

�
��
�
�[ .1e/

� X
�2�

cDc.�/

f .c/:

But the trace is also equal to n! times the coefficient of � in the element f .L1/C

� � � C f .Ln/, which can be computed easily using the Lascoux–Thibon formula to
expand the power sum Lr

1
C � � �CLr

n ; see [5, Theorem A.4]. The substitution q D et

appearing there corresponds precisely to replacing the X c in (48) with cr .
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6.5 Moduli spaces for Y �P1=E �P1[Y1

Following Section 6.4, Let Y be a nonsingular surface, and let E� Y be a nonsingular
curve. Let L 2 H2.Y � P1;Z/ be the curve class of the factor P1 . We consider the
relative geometry

(49) Y �P1=E �P1
[Y1

for the curve classes dL in both stable pairs and Gromov–Witten theory.

Consider first the simple relative geometry Y �P1=E �P1 . Jun Li has constructed
the associated Artin stack of degenerations A in [11]. The morphism defined by the
universal target

� W Y!A

is not smooth. The morphism has singularities over the boundary of A along the
internal divisors (all isomorphic to E �P1 ) of the degenerations. Let

Yo
� Y

denote the smooth locus of � ,
�o
W Yo
!A:

There is a divisor Yo
1 � Yo corresponding to Y1 � Y �P1 . Since �o is a smooth

morphism, the moduli spaces of stable pairs and stable maps to the relative geometry
Yo=Yo

1 relative to the morphism �o are well-defined. The moduli spaces

Pn.Y �P1=E �P1
[Y1; dL/;

M 0
g;r .Y �P1=E �P1

[Y1; dL/�

are defined to the open subsets with finite stabilizers. Properness is proven as usual
by semistable reduction. The virtual class is constructed relative over A, and the
degeneration formula used in Section 6.4 are proven exactly following [12].

The points of the moduli space Pn.Y � P1=E � P1 [ Y1; dL/ are easily described.
We start with a k –step degeneration of Y � P1 along E � P1 . Such degenerations
have finitely many additional components which are all isomorphic to the P1 –bundle
P1.NY=E ˚OE/�P1 over E �P1 . The result is the space

(50) Y �P1
[P1.NY=E ˚OE/�P1

[ � � � [P1.NY=E ˚OE/�P1

with kC 1 components. The components (50) are attached along the internal divisors
E �P1 . The original space Y �P1 is the 0th step of the degeneration. Next, we take
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an l –step degeneration along the fiber over 12 P1 . Let BY �P1 denote the l –step
degeneration

Y �P1
[Y1 �P1

[ � � � [Y1 �P1:

Similarly, let CP1
E
�P1 denote the l –step degeneration

P1.NY=E˚OE/�P1
[P1.NY1=E1˚OE1/�P1

[� � �[P1.NY1=E1˚OE1/�P1

with attachment along the internal divisors Y1 . The stable pairs we consider lie on
the target

(51) BY �P1 [
CP1

E
�P1 [ � � � [

CP1
E
�P1

with attachment along the degenerations of the internal divisors E �P1 . The curve
class dL is distributed to each term in (51). By stability (finiteness of automorphisms),
a nonzero degree must be distributed to each term other than

BY �P1 :

On each term of (51), we specify a stable pair relative to the fiber over infinity and
disjoint from the internal divisors obtained from degenerations of E �P1 . By stability,
we require a nontrivial stable pair in at least one of the k –steps over each of the
positive steps of the degeneration over 12 P1 . The description in the stable map case
is identical.

6.6 Proof of Theorem 4

Let X be a nonsingular projective toric 3–fold with T–fixed points

p1; : : : ;pm 2X:

Let 1; : : : ; r 2H�.X;Q/ be classes of positive degree. Since H�.X;Q/ is generated
by divisors, we may regard i as a polynomial of positive degree in the divisor classes.

Lemma 22 Every divisor class in H 2.X;Q/ can be lifted to H 2
T .X;Q/ with trivial

restriction to pm .

Proof Since the divisor classes of X are spanned by toric divisors, all divisor classes
can be lifted to T–equivariant cohomology. After further tensoring with a 1–dimension
representation of T, the restriction to H 2

T .pm;Q/ can be set to 0.
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After lifting each i to a polynomial e i in T–equivariant divisor classes vanishing at
pm , we can lift the 0–descendent insertions as a finite sum

rY
iD1

�0.i/D

m�1X
kD1

X
l�0

fk;l.s1; s2; s3/�0.pk/
l ;

where fk;l 2Q.s1; s2; s3/. Hence

.�q/�dˇ=2ZP

�
X I q

ˇ̌̌ rY
iD1

�0.i/

sY
jD1

�kj .p/

�
ˇ

D .�q/�dˇ=2ZP

�
X I q

ˇ̌̌ �m�1X
kD1

X
l�0

fk;l.s1; s2; s3/�0.pk/
l

� sY
jD1

�kj .pm/

�T

ˇ

:

We now apply Theorem 1 to the right hand side using the relation

b� 1`.pi/D �1`.pi/

proven in Section 2.4. After the variable change �q D eiu , we obtain

.�iu/dˇZ0GW

�
X Iu

ˇ̌̌ �m�1X
kD1

X
l�0

fk;l.s1; s2; s3/�0.pk/
l

�b��.pm/

�T

ˇ

D .�iu/dˇZ0GW

�
X Iu

ˇ̌̌ rY
iD1

�0.e i/ �b��.pm/

�T

ˇ

;

where � D .k1C 1; : : : ksC 1/. By Proposition 12, we have

b� �.p/D .iu/`.�/�j�j��.p/C � � � ;
where the dots stand for terms �y̨ with ˛B� b̨. Finally, using the dimension constraint
for non-equivariant integrals, we obtain

.�iu/dˇ .iu/�
P
j kjZ0GW

�
X Iu

ˇ̌̌ rY
iD1

�0.i/

sY
jD1

�kj .p/

�
ˇ

;

which is the claimed correspondence.

7 Non-equivariant limit

7.1 Overview

Our goal here is to prove the correspondence of Theorem 1 can be written completely
in non-equivariant terms. The outcome is a descendent correspondence which makes
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sense for any (not necessarily toric) nonsingular projective 3–fold. In the toric case, the
non-equivariant correspondence is a consequence of Theorem 1. For general 3–folds,
the correspondence is conjectural.

7.2 Notation

We denote the set of descendent symbols by

� D f�0; �1; �2; : : :g:

Let � be a partition with positive parts �1; : : : ; �` . We associate a polynomial �� in
the symbols � to � by

�� D ��1�1��2�1 � � � ��l�1

following the conventions of Section 0.3. Using the correspondence matrix, we define

b� � DX
y�

K�;y��y�

for non-empty partitions � .

For subsets S � f1; : : : ; `g, we let �S be the subpartition consisting of the parts �i

for i 2 S . The definition

(52) e� � D X
P set partition

of f1;:::;`g

.�1/jP j�1.jP j � 1/!
Y

S2P

b� �S

is crucial to our study. Here e� � lies in the polynomial ring in the symbols � with
coefficients in the ring QŒi; s1; s2; s3�..u//. The polynomials b� �S

on the right carry
the complexity of the correspondence matrix K.

7.3 Divisibility

In order to obtain a non-equivariant formulation of Theorem 1, our first step is to prove
a divisibility result constraining the coefficients

K�;y� 2QŒi; s1; s2; s3�..u//

of the correspondence matrix.

Proposition 23 Let � be a partition of positive length `. Then

(53) e� � � 0 mod .s1s2s3/
`�1

as a polynomial in the descendent symbols � with coefficients in QŒi; s1; s2; s3�..u//.
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Proof We will use the relative correspondence established in Proposition 19 for the
geometry

S �P1=S1 D P1
�P1

�P1=.P1
�P1/1:

The surface S D P1�P1 is viewed as the first two factors of the 3–fold P1�P1�P1 .
We will consider T–equivariant stationary descendents at

p� D .0; 0; 0/; p? D .1; 0; 0/:

Let the tangent weights at p� be s1; s2; s3 respectively along the three P1 factors.
Then

p� � p? D s1P�?;

where P�? is the class of the line P�? connecting the two points.

We will prove the proposition together with the divisibility claim

(54) Z0GW

�
S �P1=S1Iu je� � .p� / j ��T

dL
� 0 mod s`�1

1

for every curve class dL and relative condition �. We prove the proposition and the
divisibility (54) simultaneously by induction on the length ` of � . For `D 1, both
statements are trivial. We assume ` > 1.

If divisibility (54) holds for partitions � of length `, then e� � must be divisible by
s`�1
1

by Proposition 20. By the symmetry of the coefficients of K in the variables si ,
we conclude e� � is divisible by .s1s2s3/

`�1 . We have proven claim (54) for length `
implies claim (53) for length `.

Finally, we show if (53) holds for partitions of length 1; 2; : : : ; `� 1, then divisibility
(54) holds for length `. For any set partition

QD fQ1; : : : ;Qkg of f1; : : : ; `g

with 1 2Q1 and k > 1, consider the Gromov–Witten series for S �P1=S1

(55) Z0GW

�e� �Q1
.p� /

kY
jD2

�e� �Qj
.p� /C .�1/jQj je� �Qj

.p?/
� ˇ̌̌
�

�T

dL

lying in QŒi; s1; s2; s3�..u//. By the inductive hypothesis, we pick up a factor of
sjQj j�1
1

for each part in the set partition. Also, each part in the set partition after the
first contributes an additional factor of s1 because

(i) the correspondence matrices K at the points p� and p? are equal after changing
the sign of s1 ,

(ii) s1 divides p� � p? .

Geometry & Topology, Volume 18 (2014)



Gromov–Witten/pairs descendent correspondence for toric 3–folds 2809

Thus, we see (55) is divisible by s`�1
1

.

Using again the divisibility of p� � p? by s1 in T–equivariant cohomology, we see

ZP

�
��1
.p� /

Ỳ
jD2

��j .p� � p?/
ˇ̌̌
�

�T

dL

� 0 mod s`�1
1 :

From the descendent correspondence of Proposition 19, we immediately conclude

(56) Z0GW

�V
��1
.p�/

Ỳ
jD2

��j .p�� p?/
ˇ̌̌
�

�T

dL

� 0 mod s`�1
1 ;

where
V
�ı.p�/��.p?/ Db� ı.p� /b� �.p?/.

The desired divisibility (54) now follows from the basic identity

(57)
X

Q set partition
of f1;:::;`g

12Q1

e� �Q1
.p� /

jQjY
jD2

.e� �Qj
.p� /C .�1/jQj je� �Qj

.p?//

D

V

��1
.p�/

Ỳ
jD2

��j .p�� p?/ :

Since s`�1
1

divides both (55) and (56), we conclude the claim (54) holds for length
` from the identity (57). The term �� .p� / occurs on the left side of (57) when
Q1 D f1; : : : ; `g.

We now check identity (57) by computing the coefficient of

(58)
Y

S2A

2��S
.p�/

Y
T2B

2��T
.p?/

appearing when the e� on the left side are expanded in terms of b� . Here, A[B D C

is a partition of a set partition C of f1; : : : ; `g into two nonempty subsets, with 1

belonging to one of the parts in A. Let

aD

ˇ̌̌̌ [
S2A

S

ˇ̌̌̌
and b D

ˇ̌̌̌ [
T2B

T

ˇ̌̌̌
;

so the coefficient of this term on the right side of (57) is equal to .�1/b if jAj D 1 and
jBj � 1 and 0 otherwise.

The term on the left side of (57) given by a set partition Q of f1; : : : ; `g will contribute
to the coefficient of (58) if and only if QDQA[QB with A a refinement of QA and

Geometry & Topology, Volume 18 (2014)



2810 Rahul Pandharipande and Aaron Pixton

B a refinement of QB . Such Q are parametrized by choosing one set partition of A

and one of B , so we compute the coefficient to beX
PA set partition of A
PB set partition of B

� Y
S2PA

.�1/jS j�1.jS j � 1/!

�
� .�1/b �

� Y
T2PB

.�1/jT j�1.jT j � 1/!

�
:

Finally, we need only prove the fundamental identityX
P set partition

of f1;:::;kg

Y
S2P

.�1/jS j�1.jS j � 1/!D

�
1 if k D 0; 1;

0 if k > 1;

which follows immediately from the observation that each term is counting the permu-
tations of f1; : : : ; kg that yield a given orbit partition P , with sign equal to the sign of
the permutations of this type.

We define the correspondence matrix eK which we will use for the non-equivariant
limit by

(59) eK�;y� D 1

.s1s2s3/`.�/�1
Coeff�y� .e� � /:

By the vanishing K�;y� D 0 unless j� j � jb� j, we deduce the vanishing

eK�;y� D 0 unless j� j � jb� j:
By the divisibility of Proposition 23,

eK�;y� 2QŒi; s1; s2; s3�..u//:

In fact, since K is symmetric in the si , we may view

eK�;y� 2QŒi; c1; c2; c3�..u//;

where the ci are elementary symmetric functions in the si .

Proposition 24 The u coefficients of eK�;y� 2QŒi; s1; s2; s3�..u// are symmetric and
homogeneous in the variables si of degree

j� jC `.�/� jb� j � `.b� /� 3.`.�/� 1/:

Proof The result follows from Theorem 3 and definitions (52) and (59).
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7.4 Proof of Theorem 7

Let X be a nonsingular quasi-projective toric 3–fold. Let ˛ be a partition of length `
and positive parts. Let

1; : : : ; ` 2H�T .X;Q/

be T–equivariant classes. We can express

(60) ZP

�
X I q j �a1�1.1/ � � � �a`�1.`/

�
ˇ

in terms of Gromov–Witten theory by writing each class l as a combination of the
T–fixed points via (4) and then applying the descendent correspondence of Theorem 1.

Let Pset
`

be the set of set partitions of f1; : : : ; `g. For a partition P 2Pset
`

, each S 2P

is a subset of f1; : : : ; `g. Let

S D

Y
i2S

i and �˛S
D

Y
i2S

�ai�1:

A first formula for the Gromov–Witten descendent corresponding to the stable pairs
integral (60) is given by

(61)
X

P2Pset
`

X
Injective �;

�WP!f1;:::;mg

Y
S2P

��
�.S/

.S /

��
�.S/

.c3.X /jS j/
b� ˛S

.p�.S//:

Here, the T–fixed points of X are p1; : : : ;pm , and we follow the notation of the
localization identity (4).

We may extend the second sum in (61) to run over all functions

� W P ! f1; : : : ;mg

(rather than just the injective ones) by rewriting the formula as

(62)
X

P2Pset
`

X
�WP!f1;:::;mg

Y
S2P

��
�.S/

.S /

��
�.S/

.c3.X /jS j/
e� ˛S

.p�.S//

using definition (52). Finally, the cohomological identity
mX

jD1

��j . /

��j .c3.X //
pj ˝ � � �˝ pj D  �� 2H�T .X � � � � �X;Q/

allows us to rewrite (62) efficiently as

(63)
X

P2Pset
`

Y
S2P

1

c3.X /jS j�1
e� ˛S

.S /
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following convention (5). Theorem 7 then follows from Theorem 1, formula (7) and
our definition of eK .

For a nonsingular quasi-projective toric 3–fold X with T–fixed points p1; : : : ;pm ,
we have two descendent correspondences for the stable pairs series

(64) ZP

�
X I q

ˇ̌̌ mY
jD1

�˛.j /.pj /

�T

ˇ

of Section 0.3. We can apply Theorem 1 or Theorem 7. In fact, the result is the same.

Lemma 25 Theorem 7 applied to (64) specializes exactly to Theorem 1.

Proof The claim reduces to the inversion formulaX
Q set partition

of f1;:::;`.˛.j //g

Y
S2Q

e�
˛
.j /

S

.pj /Db� ˛.j /.pj /

obtained from the specialization p? D 0 of (57).

Proposition 24 implies the descendent correspondence of Theorem 7 respects the
dimensions of the insertions.

7.5 Relative descendent correspondence

Let X be a nonsingular projective 3–fold, and let D � X be a nonsingular divisor.
Let �X ŒD� denote the locally free sheaf of differentials with logarithmic poles along
D . Let

TX Œ�D�D�X ŒD�
_

denote the dual sheaf of tangent fields with logarithmic zeros.

For the relative geometry X=D , we let the coefficients of eK act on the cohomology of
X via the substitution

ci D ci.TX Œ�D�/

instead of the substitution ci D TX used in the absolute case. Then, we would like to
define

�˛1�1.1/ � � � �˛`�1.`/D
X

P set partition
of f1;:::;lg

Y
S2P

X
y̨

�y̨.eK˛S ;y̨ � S /:

as before. The correct definition is subtle for arbitrary classes i . A full discussion of
the descendent correspondence for relative geometries will be given in [26]. However, a
restricted case in which the above definition is appropriate will be relevant for Section 8.
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Conjecture 4 Let 1; : : : ; l 2H�.X;Q/ be classes which restrict to 0 on D , then
we have

.�q/�dˇ=2ZP

�
X=DI q j �˛1�1.1/ � � � �˛`�1.`/ j �

�
ˇ

D .�iu/dˇC`.�/�j�jZ0GW
�
X=DIu j �a1�1.1/ � � � �˛`�1.`/ j �

�
ˇ

under the variable change �q D eiu .

In addition, the stable pairs descendent series on the left is conjectured to be a rational
function in q , so the change of variables is well-defined. Conjecture 4 is open.

8 Log Calabi–Yau 3–folds

8.1 Overview

Let X be a nonsingular projective toric Fano 3–fold with a nonsingular irreducible anti-
canonical divisor S (necessarily isomorphic to a K3 surface). The relative geometry
X=S is log Calabi–Yau since the sheaf of differentials of X with logarithmic poles
along S has trivial determinant. In order to prove the Gromov–Witten/Pair corre-
spondence of Theorem 5 for X=S , we will require results about projective bundles
over S .

Let L0 and L1 be two line bundles on S . The projective bundle

PS D P.L0˚L1/! S

admits sections

Si D P.Li/� PS :

Before proving Theorem 5, we will establish the relative descendent correspondence of
Conjecture 4 for PS=S1 for descendent insertions supported on S0 . While the result
goes beyond toric varieties, the vanishings which hold for K3 geometries make PS=S1
accessible. The descendent correspondences for projective bundles over surfaces will
be studied in more detail in [26].

Theorem 5 and Corollary 3 will follow easily from Theorem 7, degeneration, and the
descendent correspondence for PS=S1 .

Geometry & Topology, Volume 18 (2014)



2814 Rahul Pandharipande and Aaron Pixton

8.2 Descendent correspondence for PS =S1

Let �1; : : : ; �` be cohomology classes on PS supported19 on the section S0 . Let � be
a relative condition along S1 . Our first step is to prove the non-equivariant descendent
correspondence of Conjecture 4 for the classes �i .

Proposition 26 We have

(65) .�q/�dˇ=2ZP

�
PS=S1I q j �˛1�1.�1/ � � � �˛`�1.�`/ j �

�
ˇ

D .�iu/dˇC`.�/�j�jZ0GW
�
PS=S1Iu j �˛1�1.�1/ � � � �˛`�1.�`/ j �

�
ˇ

after the variable change �q D eiu .

The log tangent bundle of PS=S1 restricts to the standard tangent bundle of PS on the
section S0 . Since the classes �i are supported on S0 , the descendent correspondence
matrix eK for PS=S1 is the same as the matrix for PS .

Proof By the vanishings in stable pair and Gromov–Witten theory obtained from the
holomorphic symplectic structure of K3 surfaces, only invariants of PS in multiples
of the fiber class

L 2H2.PS ;Z/

contracted over S are non-zero. Moreover, for the stable pairs series, only the initial
q–coefficient is non-zero.

Let X be any nonsingular projective surface equipped with line bundles L0 and L1 .
Let �1; : : : ; �` be cohomology classes on

PS D P.L0˚L1/! S

supported on the section X0 . Consider the Gromov–Witten series

(66) .�iu/j�jC`.�/Z0GW
�
PX =X1Iu j �˛1�1.�1/ � � � �˛`�1.�`/ j �

�
j�jL

:

Each u–coefficient of (66) can be expressed by an explicit study of the moduli space
of stable maps to the fiber classes of PX ! X . By a standard analysis (see [19,
Section 1.2]), each u–coefficient is a universal polynomial over Q in the all classical
pairings

(67)
Z

X

‚
�
c.TX /; c.L0/; c.L1/

�
[

Y
i2I

�i ;

19Each �i is push-forward of a class on S . Since K3 surfaces have only even cohomology, the �i

have even degrees.
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where ‚ is a monomial in the Chern classes of the bundles

TX ;L0;L1!X

of bounded degree (determined by the descendent partition ˛ D .˛1; : : : ; ˛`/ and the
degrees of �i ). In the product on the right side of (67), I � f1; : : : ; `g is a subset.

Let X be a nonsingular projective toric surface with toric line bundles L0 and L1 .
For fixed ˛ and �i , there are only finitely many classical pairings (67). Moreover, as
we vary the toric surface X and the toric line bundle Li , we easily see a Zariski dense
set of possible classical pairings is achieved.20 Hence, the u–coefficient polynomials
of the Gromov–Witten series are fully determined by the toric examples.

If X is a nonsingular projective toric surface with toric line bundles Li , then the
relation

.�q/�j�jZP

�
PX =X1I q j �˛1�1.�1/ � � � �˛`�1.�`/ j �

�
j�jL

D .�iu/j�jC`.�/Z0GW
�
PX =X1Iu j �˛1�1.�1/ � � � �˛`�1.�`/ j �

�
j�jL

is a direct consequence, by localization, of the descendent correspondence for the cap.
When we localize with respect to the 2–dimension torus T acting on X and the Li ,
the result is cap for each T –fixed point of X . The stable pairs series

(68) .�q/�j�jZP

�
PX =X1I q j �˛1�1.�1/ � � � �˛`�1.�`/ j �

�
j�jL

is thus also determined by the classical pairings (67) in the toric case. In fact, using
the denominator results proven in Theorem 5 of [28], the q–coefficients of (68) are
polynomials in the pairings (67).

Next, let the nonsingular projective surface X with line bundles L0 and L1 be
arbitrary. The q0 –coefficient of the stable pairs series (68) is special. The associated
moduli space of stable pairs is simply the Hilbert scheme of j�j point of X . The stable
pairs invariant then can be calculated by Hilbert scheme techniques [9]. The result is
also a polynomial in classical pairings (67). Hence, we have two polynomials in the
classical pairing (67):

(i) The q0 –coefficient of the Gromov–Witten series (66) for X after the variable
change �q D eiu .

(ii) The polynomial obtained from the Hilbert scheme of points calculation of the
q0 –coefficient of the stable pairs series (68) for X .

20Since the classes �i we consider are of even degrees, the degrees can be matched in toric geometry.
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The two polynomials are equal when evaluated in the toric geometry and thus must be
identical (by Zariski denseness).

The polynomials (i) and (ii) are therefore equal for the K3 geometry PS=S1 . To
complete the proof of the correspondence (65), we must only prove the higher q–
coefficients, obtained after the variable change �q D eiu for Gromov–Witten series
(66) for PS=S1 , all vanish.

Let X be a nonsingular quasi-projective toric surface with toric line bundles L0 and
L1 . Consider the T –equivariant Gromov–Witten series

(69) .�iu/j�jC`.�/Z0GW
�
PX =X1Iu j �˛1�1.�1/ � � � �˛`�1.�`/ j �

�T
j�jL

;

where T is the 2–dimensional torus acting on X and the Li . As before, each u–
coefficient is a universal polynomial over Q in the all classical T –equivariant pairings

(70)
Z

X

‚
�
c.TX /; c.L0/; c.L1/

�
[

Y
i2I

�i ;

where ‚ is a monomial in the Chern classes of the bundles

TX ;L0;L1!X

of bounded degree (determined by the descendent partition ˛ and the degrees of �i ).
In T –equivariant geometry, more pairings may be non-zero. Otherwise, the situation
is exactly the same as in the non-equivariant case. The universal polynomials in the
T –equivariant geometry restrict to the universal polynomials in the non-equivariant
geometry.

We finally specialize X to the quasi-projective surfaces An . If we restrict to the
sub-torus C� � T which preserves the holomorphic form, then

c1.TX /D 0:

The An geometries, as n varies, provide a rich supply of C�–equivariant pairings (70)
subject to the vanishing of c1.TX /, The T –equivariant correspondence

.�q/�j�jZP

�
PX =X1I q j �a1�1.�1/ � � � �a`�1.�`/ j �

�T
j�jL

D .�iu/j�jC`.�/Z0GW
�
PX =X1Iu j �a1�1.�1/ � � � �a`�1.�`/ j �

�T
j�jL

has already been proven for X D An . The higher q–coefficients of the stable pairs
side above vanish (since An has a holomorphic symplectic form invariant under C� ).
Hence, the higher q–coefficients obtained after the change of variables �qD eiu for the
Gromov–Witten series (69) for An all vanish. By the universality of the polynomials
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and the sufficient Zariski density of the An geometries (subject to the vanishing of the
first Chern class of the tangent bundle), we conclude the necessary vanishing of the
higher q–coefficients for Gromov–Witten series (66) for PS=S1 .

8.3 Proof of Theorem 5

Let X be a nonsingular projective Fano toric 3–fold, and let S �X be a nonsingular
anti-canonical K3 surface. Let N be the normal bundle of S in X . Let

S0;S1 � P.OS ˚N /

be the sections determined by the summand OS and N respectively. Let

�0 W S ,! P.OS ˚N /

be the inclusion of S0 .

Let B be a fixed self-dual basis of the cohomology of S . Recall a Nakajima basis
element in the Hilbert scheme Hilb.S; n/ is a cohomology weighted partition � of n,

..�1; �1/; : : : ; .�`; �`//; nD
X̀
iD1

�i ; �i 2 B:

Such a weighted partition determines a descendent insertion

�Œ��D
Ỳ
iD1

��i�1.�1�.�i//:

By standard K3 vanishing arguments [20], the stable pairs invariants of the relative
3–fold geometry P.OS˚N /=S1 are nontrivial only for curves classes in the fibers of

P.OS ˚N /=S1! S:

Define the partition function for the relative geometry by

(71) ZP

�
P.OS ˚N /=S1I q j �Œ�� j �

�
dL
;

where � and � are both partitions of d weighted by B . By further vanishing, only the
leading qd terms of (71) are possibly nonzero. The following result is proven in [27,
Section 4.1].

Proposition 27 Let d > 0 be an integer. The square matrix indexed by B–weighted
partitions of d with coefficients

(72) ZP

�
P.OS ˚N /=S1I q j �Œ�� j �

�
dL

has maximal rank.
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We can also consider the Gromov–Witten analogue of Proposition 27. By Proposition 26,
we have a descendent correspondence

(73) .�q/�dZP

�
P.OS ˚N /=S1I q j �Œ�� j �

�
dL

D .�iu/j�jC`.�/Z0GW
�
P.OS ˚N /=S1Iu j �Œ�� j �

�
dL

after the variable change �q D eiu . In particular, the Gromov–Witten matrix corre-
sponding to (72) is also invertible.

Let ˇ 2H2.X;Z/ be a curve class, and let

dˇ D

Z
ˇ

c1.X /D

Z
ˇ

ŒS �:

Consider the descendent correspondence of Theorem 7,

(74) .�q/�dˇ=2ZP

�
X I q j �Œ��

�
ˇ
D .�iu/dˇZ0GW

�
X Iu j �Œ��

�
ˇ
;

where � is a partition of dˇ weighted by B . Since all the cohomology classes of
the descendent �Œ�� lie on S , we can degenerate to the normal cone. The resulting
degeneration formula21 in stable pairs theory for ZP.X j �Œ��/ˇ isX

ZP

�
P.OS ˚N /=S1 j �Œ�� j �

�
dˇL
.�1/j�j�`.�/z.�/q�j�jZP

�
X=S j j �_

�
ˇ
;

where the sum is over all elements � of the Nakajima basis of cohomology of
Hilb.S; dˇ/. The parallel degeneration formula for Gromov–Witten theory together
with Propositions 26 and 27 imply Theorem 5 in case there are no descendent insertions.

Consider now the correspondence of Theorem 5 with the full descendent insertion

(75) �0.1/ � � � �0.r /:

Since X is a toric variety, the cohomological degree of each i must be even. Degrees
0 and 2 can be removed from both stable pairs and Gromov–Witten theory by the
fundamental class and divisor equations. We need only consider insertions i of degree
4 or 6. The divisor

�S W S �X

is ample since X is Fano. Hence, classes i 2H�.X;Q/ of degrees 4 and 6 can be
written as

(76) �S�.�i/D i

21We follow here the notation of Section 1.2.
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for �i 2H�.S;Q/ by hard Lefschetz. We can write the insertion (75) as

�0

�
�S�.�1/

�
� � � �0

�
�S�.�r /

�
:

We now reduce correspondence of Theorem 5 with the full insertion (75) to Theorem 5
with no insertions. Via degeneration to the normal cone of S , we can write

ZP

�
X j �0.�S�.�1// � � � �0.�S�.�r //

�
ˇ

in terms of the relative geometries asX
ZP

�
P.OS ˚N /=S1 j �0.�S0�.�1// � � � �0.�S0�.�r // j �

�
dˇL

� .�1/j�j�`.�/z.�/q�j�jZP

�
X=S j j �_

�
ˇ
;

where the sum is as before. The parallel degeneration formula for Gromov–Witten
theory together with Proposition 26 achieves the desired reduction.

8.4 Proof of Corollary 3

Let S � P3 be a nonsingular quartic surface (anti-canonical and K3). Let ˇ 2
H2.P3;Z/. Since c1.TP3/ is even, dˇ is even. Then, by Theorem 5, we have

(77) Z0GW
�
P3=S j j �_

�
ˇ
2Q.�q D eiu; i/Œu; 1=u�

by the rationality in q of the corresponding stable pairs series [27].

Since the classes j 2H�.P3;Q/ are assumed to be of positive degree, we can write

�S�.�j /D j

for classes �j 2H�.S;Z/. After replacing the descendent insertion with

�k1

�
�S�.�1/

�
� � � �ks

�
�S�.�s/

�
;

we can degenerate to the normal cone of S . We find that

Z0GW
�
P3
j �k1

.�S�.�1// � � � �ks
.�S�.�s//

�
ˇ

is equal to

(78)
X

Z0GW
�
P.OS ˚N /=S1 j �k1

.�S0�.�1// � � � �ks
.�S0�.�s// j �

�
dˇL

� z.�/u2`.�/Z0GW
�
P3=S j j �_

�
ˇ
:

The terms of (78) which are invariants of P.OS ˚N /=S1 are Laurent polynomials
in u and 1=u by K3 vanishings (the only connected contributions are of genus 0 and
1). The terms with are invariants of P3=S are constrained by (77). The claim of the
corollary then follows immediately.
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