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Residual properties of automorphism groups
of (relatively) hyperbolic groups

GILBERT LEVITT

ASHOT MINASYAN

We show that Out.G/ is residually finite if G is one-ended and hyperbolic relative to
virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic
relative to proper residually finite subgroups, the group of outer automorphisms
preserving the peripheral structure is residually finite. We also show that Out.G/ is
virtually residually p–finite for every prime p if G is one-ended and toral relatively
hyperbolic, or infinitely-ended and virtually residually p–finite.

20F67; 20F28, 20E26

1 Introduction

A group G is residually finite if, given any g ¤ 1, there exists a homomorphism '

from G to a finite group such that '.g/ ¤ 1. Residual finiteness is an important
property of groups. It is equivalent to the statement that G embeds into its profinite
completion. Well-known theorems of Mal’cev show that finitely generated residually
finite groups are Hopfian, and finitely presented residually finite groups have solvable
word problem. Many groups are known to be residually finite (in particular, finitely
generated linear groups), but it is a big open question whether all (Gromov) hyperbolic
groups are residually finite.

It is a standard and classical fact (see Baumslag [6]) that the automorphism group
Aut.G/ is residually finite if G is finitely generated and residually finite, but this is
not true for the outer automorphism group Out.G/. Indeed, any finitely presented
group may be represented as Out.G/ with G finitely generated and residually finite;
see Bumagin and Wise [8].

A special case of our main theorem is:

Corollary 1.1 If G is one-ended and hyperbolic relative to a family PDfP1; : : : ;Pkg

of virtually polycyclic groups, then Out.G/ is residually finite.
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This is new even if G is a torsion-free hyperbolic group. Work by Sela implies that a
finite-index subgroup of Out.G/ is virtually a central extension of a free abelian group
by a direct product of mapping class groups (see the first author [23]). Though mapping
class groups are known to be residually finite following work by Grossman [15] based
on conjugacy separability (see also Allenby, Kim and Tang [2]), this is not enough to
deduce residual finiteness of Out.G/ because the extension may fail to split (ie be a
direct product); see the example discussed in the introduction of [23].

To complement Corollary 1.1, recall that Out.G/ is residually finite if G is residually
finite and has infinitely many ends; see the second author and Osin [27]. On the
other hand, Out.G � F2/ contains G (with F2 the free group of rank 2), so it is
not residually finite if G is not. Thus one-endedness cannot be dispensed with in
Corollary 1.1. This also gives a direct way of proving the following fact, which may
otherwise be obtained by combining small cancellation theory over hyperbolic groups
with the results from [27].

Proposition 1.2 The following are equivalent.

(i) Every hyperbolic group is residually finite.

(ii) For every hyperbolic group G , the group Out.G/ is residually finite.

Virtual polycyclicity of the Pi is used in two ways in Corollary 1.1 (see Section 7.6).
It ensures that Pi is residually finite, and also that automorphisms of G respect the
peripheral structure: Pi is mapped to a conjugate of a Pj (this only holds if no Pi is
virtually cyclic, but such a restriction causes no loss of generality; see Section 4.1). In
fact, the peripheral structure is preserved if every Pi is small (ie it does not contain
the free group F2 ) or, more generally, NRH (nonrelatively hyperbolic); see the second
author and Osin [28] for a proof and a list of examples of NRH groups.

Since the peripheral structure is not always preserved, we restrict to the subgroup
Out.GIP/ of Out.G/ defined as the group of classes of automorphisms mapping
each Pi to a conjugate.

Theorem 1.3 Let G be a group hyperbolic relative to a family of proper finitely
generated subgroups P D fP1; : : : ;Pkg. If G is one-ended relative to P , and every Pi

is residually finite, then Out.GIP/ is residually finite.

Being one-ended relative to P means that G does not split over a finite group with
each Pi contained in a vertex group (up to conjugacy). This is weaker than having at
most one end.

Geometry & Topology, Volume 18 (2014)



Residual properties of automorphism groups 2987

If every Pi is NRH, then Out.GIP/ has finite index in Out.G/, so we deduce residual
finiteness of Out.G/.

The following example shows that it is indeed necessary to assume that all peripheral
subgroups Pi are residually finite in Theorem 1.3.

Example 1.4 Let H be a torsion-free nonresidually finite group with trivial center
(such as the Baumslag–Solitar group BS.2; 3/). Let K be a one-ended torsion-free
hyperbolic group (eg the fundamental group of a closed hyperbolic surface), and
let hki 6 K be a maximal cyclic subgroup. Let G be the amalgamated product
.H � hki/ �hki K . Then G is one-ended, torsion-free and hyperbolic relative to
P DfH �hkig (see Osin [29]). Nontrivial elements h2H define twist automorphisms
(they act as conjugation by h on H � hki and trivially on K ), which give rise to
nontrivial outer automorphisms in Out.GIP/ because H has trivial center. Thus H

can be embedded into Out.GIP/, and so Out.GIP/ is not residually finite.

In the last section of the paper we consider residual p–finiteness. If p is a prime, G

is residually p–finite if, given any nontrivial element g 2 G , there exists a homo-
morphism ' from G to a finite p–group such that '.g/ ¤ 1. A group is virtually
residually p–finite if some finite-index subgroup is residually p–finite. Evidently
residual p–finiteness implies residual nilpotence. And if a group is virtually residually
p–finite for at least two distinct primes p , then it is virtually torsion-free.

It is well known that free groups are residually p–finite for any prime p , and it is a
classical result that a finitely generated linear group is residually p–finite for all but
finitely many p (cf Wehrfritz [42]). Lubotzky [24] proved that for a finitely generated
virtually residually p–finite group G , the group Aut.G/ is also virtually residually p–
finite, which is a natural analogue of Baumslag’s result [6]. Another theorem from [24]
states that, if F is a free group of finite rank, then Out.F / is virtually residually p–
finite for any prime p . The latter result was later extended by Paris [32] to fundamental
groups of compact oriented surfaces. The next two theorems generalize these results to
certain relatively hyperbolic groups:

Theorem 1.5 If G is a one-ended toral relatively hyperbolic group, then Out.G/ is
virtually residually p–finite for every prime number p .

Recall that G is called toral relatively hyperbolic if it is torsion-free and hyperbolic
relative to a finite family of finitely generated abelian groups. The theorem also applies
to groups containing a one-ended toral relatively hyperbolic group with finite index, in
particular to virtually torsion-free hyperbolic groups (see Theorem 8.14).
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The following statement is a counterpart of Theorem 1.5 in the case when G has
infinitely many ends, giving an “outer” version of Lubotzky’s result [24] mentioned
above. It is a natural pro-p analogue of [27, Theorem 1.5].

Theorem 1.6 If G is a finitely generated group with infinitely many ends and G

is virtually residually p–finite for some prime number p , then Out.G/ is virtually
residually p–finite.

Recall that limit groups (finitely generated fully residually free groups) are toral
relatively hyperbolic; see Alibegović [1] and Dahmani [10]. Residual finiteness of
Out.G/ for such a group G was proved by Metaftsis and Sykiotis in [26]. Combining
Theorems 1.5 and 1.6 gives the following enhancement:

Corollary 1.7 If G is a limit group (finitely generated fully residually free group),
then Out.G/ is virtually residually p–finite for any prime p .

We start the paper by giving a rather quick proof of Corollary 1.1 when G is (virtually)
torsion-free hyperbolic, using Sela’s description of Out.G/ recalled above as a starting
point. The proof of Theorem 1.5 (given in Section 8) uses similar arguments, but in
order to prove Theorem 1.3, we have to use different techniques.

Say that a subgroup of a relatively hyperbolic group G is elementary if it is virtually
cyclic or parabolic (conjugate to a subgroup of some Pi ). As Guirardel and the first
author did in [19], we consider the canonical JSJ decomposition of G over elementary
subgroups relative to P . This is a graph of groups decomposition � of G such that
edge groups are elementary, each Pi is conjugate to a subgroup of a vertex group, and �
is Out.G;P/–invariant; moreover, vertex groups are either elementary, or quadratically
hanging (QH), or rigid.

In the first step of the proof of Theorem 1.3 (Section 5), we replace each rigid vertex
group by a new group which is residually finite and has infinitely many ends. In the
second step, we make elementary vertex groups, and edge groups, finite (using residual
finiteness of the Pi ). Apart from simple cases, the new graph of groups represents
a residually finite group G00 with infinitely many ends, and so Out.G00/ is residually
finite by [27]. Thus we get a homomorphism Out.GIP/!Out.G00/ and we show that
such homomorphisms “approximate” Out.GIP/.

The second step is easier when G is torsion-free (see Section 6). Torsion brings
technical complications, so in its presence we prefer to give a different argument
using Dehn fillings (see Osin [31]) and Grossman’s method [15]. Sections 7 and 8 are
independent of Section 6.
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2 Notation and residual finiteness

First let us specify some notation.

If G is a group, we denote its center by Z.G/. If H 6G is a subgroup, then ZG.H / is
its centralizer in G . We will write jG WH j for the index of a subgroup H in G . For any
g 2G , we denote by �g 2 Aut.G/ the inner automorphism given by �gW x 7! gxg�1

for all x 2G .

If R�G , then hhRiiG will denote the normal closure of R in G . If A is an abelian
group, and n � 1, we will write nA D fgn j g 2 Ag for the corresponding verbal
subgroup of A.

Given ˛ 2 Aut.G/, we write y̨ for its image in Out.G/. We denote by Aut.GIP/6
Aut.G/ the subgroup consisting of automorphisms mapping each Pi to a conjugate,
and by Out.GIP/ its image in Out.G/. If every Pi is NRH (eg if Pi is not virtually
cyclic and has no nonabelian free subgroups), then Out.GIP/ has finite index in
Out.G/ (see [28, Lemma 3.2]).

Given a group G , the cosets of finite-index normal subgroups define a basis of the
profinite topology on G . This topology is Hausdorff if and only if G is residually finite.
A subset S of G is said to be separable if S is closed in the profinite topology. Thus,
if G is residually finite, then any finite subset of G is separable.

A subgroup K6G is closed in the profinite topology if and only if K is the intersection
of a family of finite-index subgroups. It is easy to see that a normal subgroup N CG

is separable if and only if G=N is residually finite. In particular, if G is residually
finite and N CG is finite, then G=N is also residually finite.

If H 6 G has finite index, then G is residually finite if and only if H is. We will
also use the following fact: the fundamental group of a finite graph of groups with
residually finite vertex groups and finite edge groups is residually finite (see, for instance,
Serre [37, II.2.6.12]).

Recall that in a finitely generated group G every finite-index subgroup K 6 G

contains a finite-index subgroup N which is characteristic in G , eg one can take
N D

T
˛2Aut.G/ ˛.K/. Thus, if G finitely generated and residually finite, then for

every g 2G n f1g there is a characteristic subgroup N of finite index in G such that
g 62N .
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3 Torsion-free hyperbolic groups

The goal of this section is to give a short proof of the following statement:

Theorem 3.1 Let G be a one-ended hyperbolic group. If G is virtually torsion-free,
then Out.G/ is residually finite.

3.1 Automorphisms with twistors

Let H be a group. Fix finitely many subgroups C1; : : : ;Cs (not necessarily distinct),
with s � 1. We define groups PMCG.H / and PMCG@.H / as in [23, Section 4].

First, PMCG.H / is the subgroup of Out.H / consisting of all elements y̨ represented
by automorphisms ˛ 2 Aut.H / acting on each Ci as �ai

for some ai 2H .

Let Aut@.H / be the subset of Aut.H /�H s given by

Aut@.H /D f.˛I a1; : : : ; as/ j ˛ 2 Aut.H /; ai 2H; ˛.c/D aica�1
i

for all c 2 Ci and i D 1; : : : ; sg:

This is a group, with multiplication defined by

.˛I a1; : : : ; as/.˛
0
I a01; : : : ; a

0
s/D .˛ ı˛

0
I˛.a01/a1; : : : ; ˛.a

0
s/as/;

in accordance with the fact that ˛ ı˛0 acts on Ci as conjugation by ˛.a0i/ai .

One easily checks that I D f.�hI h; : : : ; h/ 2 Aut@.H / j h 2H g is a normal subgroup
of Aut@.H /. As in [23], we define PMCG@.H / to be the quotient of Aut@.H / by I .
Thus an element of PMCG@.H / is represented by .˛I a1; : : : ; as/, where ˛ is an
automorphism of H acting on Ci as �ai

, with ai 2H . Representatives are defined
only up to multiplication by elements of the form .�hI h; : : : ; h/; in particular, for
each i , there is a unique representative with ai D 1. Mapping .˛I a1; : : : ; as/ to y̨
defines a projection � W PMCG@.H /!PMCG.H /.

As observed in [23, Lemma 4.1] there is a short exact sequence

f1g �! TH �! PMCG@.H /
�
�! PMCG.H / �! f1g

whose kernel TH is the group of twists. It fits in an exact sequence

f1g �!Z.H / �!

sY
iD1

ZH .Ci/ �! TH �! f1g;

where the first map is the diagonal embedding and the second map takes .z1; : : : ; zs/

to the class of .idH I z1; : : : ; zs/ in PMCG@.H /.
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If N CH is a normal subgroup invariant under PMCG.H /, there are natural homo-
morphisms PMCG.H /! PMCG.H=N / and PMCG@.H /! PMCG@.H=N /, where
the target groups are defined with respect to the images of C1; : : : ;Cs in H=N .

Lemma 3.2 If H is finitely generated and residually finite, then PMCG@.H / is
residually finite.

Proof Given any nontrivial ˆ 2 PMCG@.H /, we can construct a characteristic
finite-index subgroup N C H such that ˆ maps nontrivially to the finite group
PMCG@.H=N /. Indeed, let .˛I 1; : : : ; as/ be the representative of ˆ with a1 D 1. If
˛.h/¤ h for some h 2H , we choose such an N with h�1˛.h/ 62 N . On the other
hand, if ai ¤ 1 for some i � 2, we choose a characteristic subgroup of finite index
N CH with ai 62N .

Remark 3.3 There are injective homomorphisms

Aut@.H / �!H s ÌAut.H / and PMCG@.H / �!H s�1 ÌAut.H /

defined by

.˛I a1; a2; : : : ; as/ 7! ..a�1
1 ; a�1

2 ; : : : ; a�1
s /; ˛/;

.˛I 1; a2; : : : ; as/ 7! ..a�1
2 ; : : : ; a�1

s /; ˛/;

respectively, with Aut.H / acting on H s and H s�1 diagonally. This yields another
way of proving Lemma 3.2, using residual finiteness of the semidirect product of a
finitely generated residually finite group and a residually finite group.

3.2 Surfaces

We now specialize to the case when H is the fundamental group of a compact (possibly
nonorientable) surface † with boundary components C1; : : : ; Cs ; we require s � 1 and
�.†/ < 0. We fix a representative Ci of �1.Ci/ in G and a generator ci of Ci . Then
PMCG@.H /, as defined above, may be identified with the group of isotopy classes of
homeomorphisms of † equal to the identity on the boundary. In this definition, the
isotopy is relative to the boundary, so PMCG@.H / contains Dehn twists near boundary
components. If we do not require isotopies to be relative to the boundary, we get
PMCG.H /.

There is a central extension

f1g �! TH �! PMCG@.H / �! PMCG.H / �! f1g

Geometry & Topology, Volume 18 (2014)
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as above, where TH Š Zs is generated by Dehn twists near boundary components
of †. The inclusion from Zs to PMCG@.H / may be written algebraically as

.n1; : : : ; ns/ 7! .idH I c
n1

1
; : : : ; cns

s /:

Lemma 3.4 Let nTH C TH be the subgroup generated by the nth powers of the twists.
Then PMCG@.H /=nTH is residually finite for all sufficiently large n 2N .

It is worth noting that residual finiteness does not follow directly from the fact that the
group PMCG@.H /=nTH maps onto the residually finite group PMCG.H / with finite
kernel.

Proof Let †n be the closed orbifold obtained by replacing each boundary component
of † by a conical point of order n, and let OnDH=hhcn

1
; : : : ; cn

s ii
H be its fundamental

group.

The Euler characteristic of †n is �.†n/D �.†/C
s
n

(see Scott [36] or Thurston [40]).
It is negative for n large since �.†/ < 0, so †n is a hyperbolic orbifold (see [40, The-
orem 13.3.6]). It follows that On embeds into the group of isometries of the hyperbolic
plane as a nonelementary subgroup. In particular, On has trivial center and is residually
finite.

Defining TOn
as the kernel of the map PMCG@.On/! PMCG.On/, there is a com-

mutative diagram of short exact sequences

f1g // TH
//

�

��

PMCG@.H / //

��

PMCG.H / //

��

f1g

f1g // TOn
// PMCG@.On/ // PMCG.On/ // f1g:

Since On has trivial center, and the image of Ci in On is equal to its centralizer, TOn
is

isomorphic to .Z=nZ/s , so the kernel of the map � from TH to TOn
is precisely nTH

(it is not bigger). The maps from PMCG@.H / to PMCG.H / and PMCG@.On/ both
factor through PMCG@.H /=nTH , and the intersection of their kernels is ker � D nTH .
In other words, any nontrivial element of PMCG@.H /=nTH has a nontrivial image
in PMCG.H / or in PMCG@.On/. It is well known that PMCG.H / is residually
finite (it is contained in Out.H /, which is residually finite by [15] because H is a
finitely generated free group), and PMCG@.On/ is residually finite by Lemma 3.2, so
PMCG@.H /=nTH is residually finite.

Remark 3.5 It follows from the classification of nonhyperbolic 2–orbifolds [40] that
n� 3 is always sufficient in Lemma 3.4.
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3.3 An algebraic lemma

Lemma 3.6 Consider a finite set V and groups Pv , v 2V , with normal subgroups Tv
free abelian of finite rank. Let P D

Q
v2V Pv and T D

Q
v2V Tv 6 P be their direct

products. Note that nTv is characteristic in Tv , hence it is normal in Pv .

If Pv=nTv is residually finite for every v 2 V and for all sufficiently large n 2N , then
any subgroup Z 6 T is closed in the profinite topology of P . In particular, if Z is
normal in P , then P=Z is residually finite.

Proof Let us first prove the result when Z has finite index k in the free abelian
group T . It contains nT (with finite index) whenever k divides n. For n large, nTv
is separable in Pv for every v 2 V (because Pv=nTv is residually finite), so nT DQ
v2V nTv is separable in P , by the properties of direct products. We deduce that Z

is closed in P , because it is equal to a finite union of cosets modulo nT , each of which
is separable in P because nT is separable.

The general case follows because T is a free abelian group of finite rank, and therefore
every subgroup is the intersection of a collection of finite-index subgroups (because
the quotient is clearly residually finite).

3.4 Proof of Theorem 3.1

First suppose that G is torsion-free. The result is true if Out.G/ is finite, or if G

is the fundamental group of a closed surface (in the orientable case this was proved
by Grossman [15], and in the nonorientable case by Allenby, Kim and Tang [2]).
Otherwise, by [23, Theorem 5.3], the group Out.G/ is virtually a product Zq �M ,
with M a quotient of a finite direct product … D

Q
v PMCG@.Gv/; here Gv is a

surface group H as in Section 3.2 (a QH vertex group of the cyclic JSJ decomposition
of G ), and we denote by TGv

C PMCG@.Gv/ the corresponding group of twists.
Moreover, the kernel Z of the map from … to M is contained in the free abelian
group T… D

Q
v TGv

.

Lemma 3.4 implies that PMCG@.Gv/=nTGv
is residually finite for all sufficiently

large n. It follows that Z is separable in … by Lemma 3.6. Thus M , and therefore
also Out.G/, are residually finite.

Now suppose that G is only virtually torsion-free and let N C G be a torsion-
free normal subgroup of finite index. If G is virtually cyclic, Out.G/ is finite
(cf [27, Lemma 6.6]). Otherwise, N has trivial center, so some finite-index subgroup
of Out.G/ is isomorphic to the quotient of a subgroup of Out.N / by a finite normal
subgroup (see Guirardel and the first author [20, Lemma 5.4] or Lemma 7.15 below).
We have shown above that Out.N / is residually finite, and therefore so is Out.G/.
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Remark 3.7 An alternative method to prove Theorem 3.1 could employ Funar’s results
about residual finiteness of central extensions of mapping class groups [14]. However,
writing a complete proof using this approach would still require substantial work, for
instance because the surfaces involved may be nonorientable.

4 Relatively hyperbolic groups and trees

In this section we recall basic material about relatively hyperbolic groups and trees.

4.1 Relatively hyperbolic groups

There are many equivalent definitions of relatively hyperbolic groups in the literature.
The definition we give below is due to B Bowditch [7]; for its equivalence to the
other definitions, see Hruska [22] or Osin [30]. In this paper we will always assume
that G and all the groups Pi 2 P are finitely generated. (Note that if G is hyperbolic
relative to a finite family of finitely generated subgroups then G is itself finitely
generated. This follows, for example, from the equivalence of Definition 4.1 with
Osin’s definition [30, Definition 1.6].)

Definition 4.1 [7, Definition 2] Consider a group G with a family of subgroups
P D fP1; : : : ;Pkg. We will say that G is hyperbolic relative to P if G admits a
simplicial action on a connected graph K such that:

� K is ı–hyperbolic for some ı � 0, and for each n 2 N every edge of K is
contained in finitely many simple circuits of length n.

� The edge stabilizers for this action of G on K are finite, and there are finitely
many orbits of edges.

� P is a set of representatives of conjugacy classes of the infinite vertex stabilizers.

We usually assume that each Pi is a proper subgroup of G , ie Pi ¤G (as any G is
hyperbolic relative to itself).

A subgroup H 6G is elementary if it is virtually cyclic (possibly finite) or parabolic
(contained in a conjugate of some Pi ). Any infinite elementary subgroup H is contained
in a unique maximal elementary subgroup yH , and ZG.H /� yH . We say that G itself
is elementary if it is virtually cyclic or equal to some Pi .

It is well known that, if some Pi is virtually cyclic (or, more generally, hyperbolic),
then G is hyperbolic relative to the family P n fPig; see, for example, [30, Theo-
rem 2.40]. In the context of Corollary 1.1, we may therefore assume that no Pi is
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virtually cyclic. We do not wish to do so in Theorem 1.3, because it may happen
that G is one-ended relative to P , but not relative to P n fPig with Pi infinite and
virtually cyclic. For simplicity, however, we assume in most of the paper that no Pi is
virtually cyclic. The (few) changes necessary to handle the general case are explained
in Section 7.5.

4.2 The canonical splitting of a one-ended relatively hyperbolic group

Assume that G is one-ended, or, more generally, one-ended relative to P : it does not
split over a finite group relative to P (ie with every Pi fixing a point in the Bass–Serre
tree). Then there is a canonical JSJ tree T over elementary subgroups relative to P (see
Guirardel and the first author [17, Corollary 13.2; 19]). Canonical means, in particular,
that T is invariant under the natural action of Out.GIP/.

The tree T is equipped with an action of G . We denote by Gv the stabilizer of a
vertex v , by Ge the stabilizer of an edge e (it is elementary). They are infinite and
finitely generated [19]. If e D vw , we say that Ge is an incident edge stabilizer in Gv
and Gw .

We also consider the quotient graph of groups � D T=G . We then denote by Gv the
group carried by a vertex v , by Ge the group carried by an edge e . If v is an endpoint
of e , we often identify Ge with a subgroup of Gv , and we say that Ge is an incident
edge group at v .

Being a tree of cylinders (see [17]), T is bipartite, with vertex set A0 [A1 . The
stabilizer of a vertex v1 2A1 is a maximal elementary subgroup (we also say that v1 is
an elementary vertex). The stabilizer of an edge "D v0v1 (with vi 2Ai ) is a maximal
elementary subgroup of Gv0

(ie it is maximal among elementary subgroups contained
in Gv0

), but G" is not necessarily maximal elementary in Gv1
or in G .

Vertices in A0 have nonelementary stabilizers. A vertex v 2A0 (or its stabilizer Gv )
is either rigid or QH (quadratically hanging). A rigid Gv does not split over an
elementary subgroup relative to parabolic subgroups and incident edge stabilizers.
Through the Bestvina–Paulin method and Rips theory, this has strong implications on
its automorphisms (see [19]). This will be the key point in the proof of Lemma 5.2.

To describe QH vertices, it is more convenient to consider a QH vertex group Gv
of the graph of groups � . First suppose that G is torsion-free. Then Gv may be
identified with the fundamental group of a (possibly nonorientable) compact hyperbolic
surface †v whose boundary is nonempty (unless Gv DG ).

Moreover, each incident edge group Ge is (up to conjugacy) the fundamental group HC
of a boundary component C of †v . Different edges correspond to different boundary
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components. Conversely, if no Pi is cyclic, the fundamental group HC of every
boundary component C is an incident edge group. If cyclic Pi are allowed, it may
happen that HC is not an incident edge group; it is then conjugate to some Pi .

If torsion is allowed, we only have an exact sequence

f1g �! F �!Gv
�
�! P �! f1g;

where F is a finite group and P is the fundamental group of a compact hyperbolic
2–orbifold Ov . If C is a boundary component of Ov , its fundamental group �1.C/�P

is infinite cyclic or infinite dihedral; one defines HC �Gv as its full preimage under � .
It is an incident edge group or is conjugate to a virtually cyclic Pi .

Note that, in all cases, a QH vertex stabilizer Gv of T is virtually free (unless GvDG ),
and stabilizers of incident edges are virtually cyclic.

The tree T is relative to P : every Pi fixes a point. If Pi is not virtually cyclic, it
equals the stabilizer of a vertex v1 2 A1 or is contained in some Gv0

with v0 rigid
(it may happen that Pi D Gv1

  Gv0
). In particular, the intersection of Pi with a

QH vertex group is virtually cyclic. If Pi is virtually cyclic and infinite, there is the
additional possibility that it is contained in a QH vertex stabilizer (and conjugate to
an HC as above).

4.3 The automorphism group of a tree

Let T be any tree with an action of a finitely generated group G . We assume that the
action is minimal (there is no proper G–invariant subtree), and T is not a point or
a line. Let Out.GIT / � Out.G/ consist of outer automorphisms ˆ D y̨ leaving T

invariant: in other words, ˆ comes from an automorphism ˛ 2Aut.G/ such that there
is an isomorphism H˛W T ! T satisfying ˛.g/H˛ DH˛g for all g 2G . We study
Out.GIT / as in [23, Sections 2–4].

It is more convenient to consider the quotient graph of groups � D T=G . It is finite,
and the maps H˛ induce an action of Out.GIT / on � . We denote by Out0.GIT /6
Out.GIT / the finite-index subgroup consisting of automorphisms acting trivially on � .

We denote by V the vertex set of � , by E the set of oriented edges, by Ev the
set of oriented edges e with origin o.e/ D v (incident edges at v ), by E the set of
nonoriented edges. We write Gv or Ge for the group attached to a vertex or an edge,
and we view Ge as a subgroup of Gv if e 2Ev (incident edge group).

For v2V , we define groups PMCG.Gv/6Out.Gv/ and PMCG@.Gv/ as in Section 3.1,
using as Ci the incident edge groups (s is the valence of v in � , and there are repetitions
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if Ge DGe0 with e ¤ e0 ). We denote by �vW PMCG@.Gv/! PMCG.Gv/ the natural
projection.

There is a natural map (extension by the identity) �vW PMCG@.Gv/! Out0.GIT /
(see [23, Section 2.3]). For instance, if � is an amalgam G D Gv �Ge

Gw , and
 2 PMCG@.Gv/ is represented by .˛I a1/, the image of  is represented by the
automorphism of G acting as ˛ on Gv and as conjugation by a1 on Gw . Elements in
the image of �v act as inner automorphisms of G on Gw for w ¤ v . The maps �v
have commuting images and fit together in a map

�W
Y
v2V

PMCG@.Gv/ �! Out0.GIT /:

There is also a map

�D
Y
v2V

�vW Out0.GIT / �!
Y
v2V

Out.Gv/

recording the action of automorphisms on vertex groups, and the projection

� D
Y
v2V

�vW
Y
v2V

PMCG@.Gv/ �!
Y
v2V

PMCG.Gv/6
Y
v2V

Out.Gv/

factors as � D � ı�.

We let Out1.GIT /� Out0.GIT / be the image of �, and

�1W Out1.GIT / �!
Y
v2V

PMCG.Gv/

the restriction of � . In general Out1.GIT / is smaller than Out0.GIT / because
elements of Out1.GIT / are required to map into PMCG.Gv/ for all v , and also since
ker � may fail to be contained in Out1.GIT / because of “bitwists” (which will not
concern us here; see the proof of Lemma 5.2).

To sum up, we have written � as the product of two epimorphismsY
v2V

PMCG@.Gv/
�� Out1.GIT /

�1�
Y
v2V

PMCG.Gv/:

We now study the group of twists T D ker �1 D ker � \ Out1.GIT /. It is gen-
erated by the commuting subgroups �v.Tv/, where Tv is the kernel of the pro-
jection �vW PMCG@.Gv/ ! PMCG.Gv/. As in Section 3.1, Tv is the quotient ofQ

e2Ev
ZGv

.Ge/ by Z.Gv/ (embedded diagonally), which we call a vertex relation.
The image of an element z 2ZGv

.Ge/ in Out.GIT / is the twist by z around e near v
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(note that z does not have to belong to Ge ). For instance, in the case of the amalgam
considered above, it acts as the identity on Gv and as conjugation by z on Gw .

The group T is generated by the product
Q

e2E ZGo.e/
.Ge/. A complete set of

relations is given by the vertex relations Z.Gv/ (with Z.Gv/ embedded diagonally
into the factors

Q
ZGo.e/

.Ge/ such that o.e/ D v ) and the edge relations Z.Ge/

(with Z.Ge/ embedded diagonally into the factors ZGv
.Ge/ and ZGw

.G xe/ if e is an
oriented edge vw and xe Dwv ). In the case of an amalgam G DGv �Ge

Gw , the edge
relation simply says that conjugating both Gv and Gw by z 2Z.Ge/ defines an inner
automorphism of G .

In other words, T is the quotient ofY
e2E

ZGo.e/
.Ge/

by the image of Y
v2V

Z.Gv/�
Y
"2E

Z.G"/;

where the products are taken over all oriented edges, all vertices, and all nonoriented
edges respectively.

Dividing
Q

e2E ZGo.e/
.Ge/ by the vertex relations yields

Q
v2V PMCG@.Gv/. The

edge relations generate the kernel of �W
Q
v2V PMCG@.Gv/!Out0.GIT /. Note that

ker�� ker� D
Q
v2V Tv .

Example In the case of an amalgam, T is the image of the map pW ZGv
.Ge/ �

ZGw
.Ge/! Out.G/ sending .a; b/ to the class of the automorphism acting on Gv

as conjugation by b and on Gw as conjugation by a. The kernel of p is generated
by the elements .a; 1/ with a 2Z.Gv/ and .1; b/ with b 2Z.Gw/ (vertex relations),
together with the elements .c; c/ with c 2 Z.Ge/ (edge relations). We have Tv D
ZGv

.Ge/=Z.Gv/ and Tw D ZGw
.Ge/=Z.Gw/. The kernels of �W PMCG@.Gv/ �

PMCG@.Gw/, and of its restriction to Tv � Tw , are generated by Z.Ge/.

The following lemma will be used in Section 6.

Lemma 4.2 Let W � V . Assume that Gv has trivial center if v 62 W , and that �
has no edge with both endpoints in W . Then the map �W W

Q
v2W PMCG@.Gv/!

Out.GIT / is injective.

Proof The kernel of �W is the intersection of ker� with
Q
v2W Tv �

Q
v2V Tv . If

v 62W , the group Gv has trivial center, so the product
Q

e2Ev
Z.Ge/, taken over all
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edges with origin v , injects into Tv . This implies that, if a product z D
Q
"2E z" with

z" 2 Z.G"/ maps to
Q
v2W Tv , it cannot involve edges having an endpoint outside

of W . Thus z is trivial since all edges are assumed to have an endpoint not in W .

Remark 4.3 If edges with both endpoints in W are allowed, the proof shows that the
kernel of �W is generated by the edge relations associated to these edges.

5 Getting rid of the rigids

Let G be a group hyperbolic relative to a family of finitely generated subgroups
P D fP1; : : : ;Pkg, and one-ended relative to P . In this section we assume that no Pi

is virtually cyclic (see Section 7.5 for a generalization).

We consider the canonical elementary JSJ tree T relative to P (see Section 4.2). It
is invariant under Out.GIP/, so Out.GIP/ 6 Out.GIT /, and bipartite: each edge
joins a vertex with elementary stabilizer to a vertex with nonelementary (rigid or QH)
stabilizer. In particular, T cannot be a line; we assume that it is not a point.

As above, we consider the quotient graph of groups � D T=G , with vertex set V .
Just like those of T , vertices of � (and their groups) may be elementary, rigid or QH.
We partition V as VE [VR [VQH accordingly; each edge has exactly one endpoint
in VE .

Lemma 5.1 The group T is generated by the groups �w.Tw/ with w 2 VE : twists
near vertices in VE generate the whole group of twists of T .

Proof If eD vw is any edge with v 2 VQH [VR (and therefore w 2 VE ), then Ge is
a maximal elementary subgroup of Gv , so ZGv

.Ge/DZ.Ge/ since ZGv
.Ge/�Ge .

We can then use edge relations to view twists around e near v as twists near w .

Lemma 5.2 Let Outr .G/ be the image of the restriction

�E;QH W

Y
v2VE[VQH

PMCG@.Gv/ �! Out.G/

of � (see Section 4.3). Then Outr .G/ is contained in Out.GIP/ with finite index.

Proof We first prove Outr .G/ � Out.GIP/. Recall that Pi is assumed not to be
virtually cyclic, so (up to conjugacy) it is equal to an elementary vertex group or is
contained in a rigid vertex group. In either case elements of Outr .G/ map Pi to a
conjugate (trivially if Pi is contained in a rigid group). In fact, Outr .G/ is contained
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in Out0.GIP/DOut.GIP/\Out0.GIT /, a finite-index subgroup of Out.GIP/. We
show that Outr .G/ has finite index in Out0.GIP/.

Recall the maps �vW Out0.GIT /! Out.Gv/, and consider their restrictions to the
subgroup Out0.GIP/. It is shown in [19, Proposition 4.1] that the image of such
a restriction is finite if v 2 VR (this is a key property of rigid vertices), contains
PMCG.Gv/ with finite index if v 62 VR (note that PMCG.Gv/ is Out.GvI Inc.t/v /
in [19]; the assumption that no Pi is virtually cyclic is used to ensure Bv D Incv ).

Now consider the homomorphism �W Out0.GIT /!
Q
v2V Out.Gv/. The image of

Outr .G/ is
Q
v2VE[VQH

PMCG.Gv/, so it has finite index in the image of Out0.GIP/.
We complete the proof by showing that Outr .G/ contains ker � .

It is pointed out in [19, Subsection 3.3] that ker � is equal to the group of twists T
(because, if v 62 VE , then incident edge groups are equal to their normalizer in Gv ).
By Lemma 5.1, T is generated by twists near vertices in VE . These belong to the
image of �E;QH , so T � Outr .G/.

We shall now change the graph of groups � into a new graph of groups � 0 . We do not
change the underlying graph, or edge groups, or vertex groups Gv for v 2 VE [VQH ,
but for v 2 VR we replace Gv by a group G0v defined as follows.

If e2Ev is an incident edge, Ge is a maximal elementary subgroup of Gv , in particular
it contains the finite group Z.Gv/. Consider the groups Ge , for e 2 Ev , as well as
Z�Z.Gv/. All these groups contain Z.Gv/, and we define G0v as their free amalgam
over Z.Gv/, ie G0v is obtained from the free product .�e2Ev

Ge/ � .Z�Z.Gv// by
identifying all copies of Z.Gv/.

The inclusion from Ge into the new vertex group G0v is the obvious one. Note that G0v
is not one-ended relative to incident edge groups (because of the factor Z�Z.Gv/),
and is residually finite if the Pi are (as an amalgam of residually finite groups over a
finite subgroup). We denote by G0 the fundamental group of � 0 .

Lemma 5.3 The finite-index subgroup Outr .G/ � Out.GIP/ is isomorphic to a
subgroup of Out.G0/.

Proof Since nothing changes near vertices in VE [VQH , we still have a map

�0E;QH W

Y
v2VE[VQH

PMCG@.Gv/ �! Out.G0/:

It suffices to show ker�0
E;QH

D ker�E;QH . Recall that the kernel of �E;QH is the
same as the kernel of its restriction to

Q
v2VE[VQH

Tv , and similarly for �0
E;QH

. For
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v 2 VR , the group G0v was defined so that the groups Z.Gv/ and ZGv
.Ge/ do not

change, so Tv does not change, and neither does the map from
Q
v2V Tv to Out.G/.

The result follows.

6 Torsion-free relatively hyperbolic groups

This section is devoted to a proof of Theorem 1.3 in the torsion-free case.

Theorem 6.1 Let G be a torsion-free group hyperbolic relative to a family of proper
finitely generated residually finite subgroups P D fP1; : : : ;Pkg, none of which is
cyclic. If G is one-ended relative to P , then Out.GIP/ is residually finite.

See Remark 6.2 for the case when some of the Pi are allowed to be cyclic.

Proof As in the previous section, let � be the canonical JSJ decomposition of G .
First suppose that � is trivial (a single vertex v ). If v is rigid, then Out.GIP/ is finite
(see [19]). If v is QH, then G is a closed surface group and Out.G/ is residually finite
by [15; 2]. The case v 2 VE cannot occur since Pi ¤G . From now on, we suppose
that � is nontrivial.

By Lemma 5.2, it is enough to show that Outr .G/ is residually finite. Given a nontrivial
ˆ 2 Outr .G/, we want to map Outr .G/ to a finite group without killing ˆ. Note that
it is enough to map Outr .G/ to a residually finite group without killing ˆ.

Using Lemma 5.3, we view Outr .G/ as a group of automorphisms of G0 . To simplify
notation, we will not write the superscripts 0 unless necessary.

Recall the epimorphismsY
v2VE[VQH

PMCG@.Gv/ �! Outr .G/ �!
Y

v2VE[VQH

PMCG.Gv/

induced by �E;QH and
Q
v2VE[VQH

�v . Write ˆ as the image of a tuple .ˆv/ 2Q
v2VE[VQH

PMCG@.Gv/ under �E;QH . If v 2 VQH , the group PMCG.Gv/ is
residually finite since PMCG.Gv/ � Out.Gv/ with Gv free of finite rank, so we
may assume that ˆ maps trivially to PMCG.Gv/ for v 2 VQH . This means that
ˆv 2 Tv � PMCG@.Gv/ for v 2 VQH . By Lemma 5.1, we may use edge relations to
find a representative of ˆ with ˆv D 1 for v 2 VQH . We fix such a representative,
and we choose u 2 VE with ˆu ¤ 1.

Next we fix a characteristic finite-index subgroup Nv C Gv for each v 2 VE , and
we denote Hv DGv=Nv . Since Gv is assumed to be residually finite (it is cyclic or
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conjugate to a Pi ), we may also require that, if e D vw is an edge with w 2 VQH ,
then the image of Ge ŠZ in Hv has order ne � 4. As in the proof of Lemma 3.2, we
also require that ˆu maps to a nontrivial element under the natural homomorphism
from PMCG@.Gu/ to PMCG@.Hu/.

We now construct a new graph of groups � 00 , with the same underlying graph as �
and � 0 , with vertex groups G00v DHv at vertices v 2 VE . We describe the edge groups,
and the other vertex groups. The inclusions from edge groups to vertex groups will be
the obvious ones.

Given an edge e D vw with v 2 VE , its group G00e in � 00 is the image of Ge in Hv , a
cyclic group of order ne � 4.

If v 2 VR , its group in � 0 is the free product .�Ge/�Z, with the first product taken
over all e 2Ev . We define its new group as G00v D .�G00e /�Z.

If v 2 VQH , its group in � and � 0 is a surface group �1.†v/, with boundary com-
ponents of †v corresponding to incident edges (see Section 4.2). We define G00v
as the fundamental group of the closed orbifold obtained from †v by replacing the
boundary component associated to an edge e by a conical point of order ne . The
assumption ne � 4 ensures that the orbifold is hyperbolic (see [40, 13.3.6]), so G00v
is a nonelementary subgroup of Isom.H2/. In particular, G00v has trivial center and is
residually finite.

The fundamental group G00 of � 00 is a quotient of G0 . It is residually finite, as the
fundamental group of a graph of groups with residually finite vertex groups and finite
edge groups. We show that the splitting � 00 of G00 is nontrivial.

If v 62 VE , the group G00v is infinite (because of the factor Z in the rigid case), so
triviality would imply that u has valence 1 and the incident edge group in � 00 is equal
to G00u . This is impossible because PMCG@.G00u/ is nontrivial (it contains the image
of ˆu , which is assumed to be nontrivial).

Since � 00 is a splitting over finite groups, G00 has infinitely many ends. By [27, Theo-
rem 1.5], Out.G00/ is residually finite. We conclude the proof by constructing a map
from Outr .G/ to Out.G00/ mapping ˆ nontrivially.

Let v 2 VE [ VQH . Since the kernel of the map Gv ! G00v is invariant under
PMCG.Gv/, there is an induced map from PMCG@.Gv/ to PMCG@.G00v /. Similarly,
the kernel of the projection from G0 to G00 is invariant under the image of Outr .G/
in Out.G0/ (see Lemma 5.3), so there is an induced map from Outr .G/ to Out.G00/.
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These maps fit in a commutative diagramY
v2VE[VQH

PMCG@.Gv/ //

��

Y
v2VE[VQH

PMCG@.G00v /

��

Outr .G/ // Out.G00/:

Since ˆv D 1 for v 2 VQH , and ˆu maps nontrivially to PMCG@.Hu/, Lemma 4.2
(applied in � 00 with W D VE ) implies that ˆ maps nontrivially to Out.G00/.

The main difficulty in extending this proof to groups with torsion lies in defining G00v
for v 2 VQH when Gv contains a nontrivial finite normal subgroup F . This may be
done using small cancellation techniques, but we prefer to give a different proof (using
Grossman’s method and Dehn fillings) in the general case.

Remark 6.2 Theorem 6.1 holds if the Pi are allowed to be cyclic (recall that an
infinitely-ended G may become one-ended relative to P if cyclic Pi are added). There
is a technical complication due to the fact that, if Gv D �1.†v/ is QH, there may
exist boundary components of †v whose fundamental group equals some Pi (up to
conjugacy) but is not an incident edge group. Because of this, one must change the
definition of PMCG@.Gv/ and PMCG.Gv/ slightly. See Section 7.5 for details.

7 Groups with torsion

The goal of this section is to prove Theorem 1.3 (Sections 7.4 and 7.5) and Corollary 1.1
(Section 7.6).

7.1 Finitary fillings of relatively hyperbolic groups

Definition 7.1 Let I be a property of groups, let G be a group, and let fH�g�2ƒ be
a nonempty collection of subgroups of G . We will say that most finitary fillings of G

with respect to fH�g�2ƒ have property I provided there is a finite subset S �G n f1g

such that, for any family of finite-index normal subgroups N�CH� with N�\S D∅
for all � 2ƒ, the following two conditions hold:

� For each � 2ƒ one has N \H� DN� , where N WD hhN� j � 2ƒii
G .

� The quotient G=N satisfies I .

Any quotient G=N as above will be called a finitary filling of G with respect to
fH�g�2ƒ . The finite subset S will be called the obstacle subset.
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In this work we will mainly be concerned with the case when I is the property of
being residually finite, or conjugacy separable.

Remark 7.2 If G DA�C B , where C is finite and A;B are residually finite, then
most finitary fillings of G with respect to any of the families fAg, fBg or fA;Bg
are residually finite (it suffices to take S WD C n f1g and use the universal property
of amalgamated free products; G=N will be an amalgam of residually finite groups
over C ). More generally, if G is the fundamental group of a finite graph of groups
with finite edge groups and residually finite vertex groups, then most finitary fillings
of G with respect to any collection of vertex groups will be residually finite.

In this subsection, and the next, we will consider a graph of groups � , with fundamental
group G , satisfying the following assumption (this will be applied to the graph � 0

constructed in Section 5).

Assumption 7.3 We suppose that � is a connected finite bipartite graph with vertex
set V D V1 tV2 (so every vertex from V1 is only adjacent to vertices from V2 and
vice-versa), and � is not a point. Moreover, the following properties hold:

(1) If u 2 V1 then the group Gu is residually finite.

(2) If v 2 V2 then most finitary fillings of Gv with respect to fGe1
; : : : ;Ges

g are
residually finite, with e1; : : : ; es the collection of all oriented edges of � starting
at v , and Ge1

; : : : ;Ges
the corresponding edge groups.

(3) For every u 2 V1 , the group Gu is a proper finitely generated subgroup of
G D �1.�/, and G is hyperbolic relative to the family fGu j u 2 V1g; in
particular, G is finitely generated.

The main technical tool for our approach is the theory of Dehn fillings in relatively
hyperbolic groups, developed by Osin [31, Theorem 1.1] (in the torsion-free case this
was also done independently by Groves and Manning [16, Theorem 7.2]):

Theorem 7.4 Suppose that a group G is hyperbolic relative to a family of subgroups
fH�g�2ƒ . Then there exists a finite subset S �G n f1g with the following property. If
fN�g�2ƒ is any collection of subgroups such that N� CH� and N�\S D∅ for all
� 2ƒ, then:

(1) For each � 2ƒ one has H�\N DN� , where N WD hhN� j � 2ƒii
G .

(2) The quotient group G=N is hyperbolic relative to the collection fH�=N�g�2ƒ .

Moreover, for any finite subset M � G , there exists a finite subset S.M /� G n f1g,
such that the restriction of the natural homomorphism G! G=N to M is injective
whenever N�\S.M /D∅ for all � 2ƒ.
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Suppose that � is any graph of groups with fundamental group G , and we are given
normal subgroups Nv CGv for each vertex v . Assume furthermore that Nv \Ge D

Nw \Ge whenever e D vw is an edge of � (as usual, we view Ge as a subgroup
of both Gv and Gw ; to be precise, we want the preimages of Nv and Nw , under the
embeddings of Ge into Gv and Gw respectively, to coincide).

Then we can construct a “quotient graph of groups” x� as follows: the underlying graph
is the same as in �, the vertex group at a vertex v is Gv=Nv , the group carried by
e D vw is Ge=.Nv \Ge/, and the inclusions are the obvious ones. The fundamental
group of x� is isomorphic to G=hh[vNvii

G .

Now suppose that � is as in Assumption 7.3. For each v 2 V2 , there is an obstacle set
Sv �Gv n f1g, and we define S WD

S
v2V2

Sv .

Lemma 7.5 Consider an arbitrary family of subgroups fNugu2V1
such that NuCGu ,

jGu WNuj<1 and Nu\S D∅ for every u2 V1 . The group xG WDG=hh
S

u2V1
Nuii

G

is the fundamental group of a quotient graph of groups x� in which every u 2 V1 carries
Gu=Nu , and every v 2V2 carries a residually finite group. In particular, xG is residually
finite.

Proof For every edge eD uv of � , with u 2 V1 and v 2 V2 , we define a finite-index
normal subgroup Le CGe by Le WDGe \Nu (as above, we view Ge as a subgroup
of both Gu and Gv ). Now, for each vertex v2V2 we let Mv WD hhLe1

[� � �[Les
iiGv C

Gv , where e1; : : : ; es are the edges of � starting at v . Observe that Lej
\Sv D∅ for

j D 1; : : : ; s by construction, hence Mv \Gej
DLej

by Definition 7.1.

This shows that xG is represented by a quotient graph of groups x� . The group carried
by u 2 V1 is Gu=Nu , a finite group; in particular, edge groups are finite. The group
carried by v 2 V2 is Gv=Mv , which is residually finite by Assumption 7.3. Thus xG is
residually finite.

Remark 7.6 Since every Gu , with u 2 V1 , is residually finite, a family of normal
subgroups fNugu2V1

as in Lemma 7.5 exists. We may even require Nu\S 0D∅ if S 0

is any given finite subset of G n f1g.

Remark 7.7 Lemma 7.5 only requires the second condition of Assumption 7.3.

Proposition 7.8 Let G be the fundamental group of a graph of groups � as in
Assumption 7.3. Then G is residually finite.
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Proof Take any element x 2Gnf1g and let M WD f1;xg�G . Since each Gu , u2V1 ,
is residually finite, one can find sufficiently small finite-index subgroups Nu C Gu

as in Lemma 7.5. We can also assume that each Nu is disjoint from the set S.M /

provided by Theorem 7.4 (applied to G relative to the Gu ). If N WD hhNu j u 2 V1ii
G ,

then xG DG=N is residually finite by Lemma 7.5, and the image of x under the map
�W G! xG is nontrivial by the final claim of Theorem 7.4. Composing � with a map
from xG to a finite group that does not kill �.x/, we get a finite quotient of G in which
the image of x is nontrivial. This shows residual finiteness of G .

The above proposition is true even without the hypothesis that vertex groups from V1

are finitely generated.

7.2 Using Grossman’s method

Let G be hyperbolic relative to a family of proper finitely generated subgroups P D
fP1; : : : ;Pkg.

Recall that an element g 2 G is called loxodromic if g has infinite order and is
not conjugate to an element of Pi for any i . Two elements g; h 2 G are said to be
commensurable in G if there are f 2G and m; n2Znf0g such that hnDfgmf �1 (we
use the terminology of [27], where conjugate elements are considered commensurable).
An automorphism ˛ 2 Aut.G/ is called commensurating if ˛.g/ is commensurable
with g for every g 2G .

It is known that G contains a unique maximal finite normal subgroup denoted E.G/

(see [27, Corollary 2.6]); this subgroup contains the center of G if G is not virtually
cyclic.

Lemma 7.9 Assume that G is not virtually cyclic.

(1) If E.G/D f1g, then every commensurating automorphism of G is inner.

(2) Suppose that ˛ 2 Aut.G/ is not a commensurating automorphism. Then there
exists a loxodromic element g 2G such that ˛.g/ is also loxodromic and ˛.g/
is not commensurable with g in G .

Proof Statement (1) is proved in [27, Corollary 1.4].

Suppose that ˛ 2 Aut.G/ is not commensurating. By [27, Corollary 5.3] there exists
a loxodromic element g0 2 G such that ˛.g0/ is not commensurable with g0 in G .
Statement (2) now follows after applying [27, Lemma 4.8].
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Lemma 7.10 [27, Lemma 7.1] Assume that G is hyperbolic relative to fP1; : : : ;Pkg,
with k � 1, and g; h 2G are two noncommensurable loxodromic elements. Then g

and h are loxodromic and noncommensurable in most finitary fillings of G with respect
to fP1; : : : ;Pkg.

Recall that G is conjugacy separable if, given any nonconjugate elements g; h 2G ,
there exists a homomorphism ' from G to a finite group such that '.g/ and '.h/ are
not conjugate. Note that this is evidently stronger than residual finiteness of G .

Proposition 7.11 Let G be the fundamental group of a graph of groups � as in
Assumption 7.3. Suppose that E.G/D f1g, and for each v 2 V2 most finitary fillings
of Gv with respect to fGe1

; : : : ;Ges
g (where e1; : : : ; es is the list of edges of � starting

at v ) are conjugacy separable. Then Out.G/ is residually finite.

The proof uses Grossman’s method, which is based on the following fact:

Lemma 7.12 Given a finitely generated group G and ˛ 2 Aut.G/, suppose that there
is a homomorphism  W G ! K with K finite, and g 2 G , such that  .g/ is not
conjugate to  .˛.g// in K . Then there is a homomorphism y� W Out.G/!L with L

finite such that y�.y̨/¤ 1 in L, where y̨ is the image of ˛ in Out.G/.

Proof Since G is finitely generated, there exists a characteristic finite-index subgroup
N CG such that N �ker . Let 'W G!G=N be the canonical epimorphism. Then  
factors through ' , hence '.g/ is not conjugate to '.˛.g// in G=N . Observe that, as N

is characteristic in G , there are induced homomorphisms � W Aut.G/! Aut.G=N /

and y� W Out.G/!L WDOut.G=N /. Since '.g/ is not conjugate to '.˛.g// in G=N ,
the automorphism �.˛/ is not inner and y�.y̨/¤ 1.

Proof of Proposition 7.11 We may assume that G is not virtually cyclic, since Out.G/
is finite if it is (see [27, Lemma 6.6]). Applying Lemma 7.5 and Remark 7.6, we find
a quotient graph of groups x� where vertices in V1 carry finite groups and vertices
in V2 carry residually finite groups. We write xG D �1.x�/, and we let �W G! xG be
the projection.

We shall now enlarge S to ensure that x� possesses additional properties. First, we
may assume that vertices in V2 carry a conjugacy separable group. By Dyer [13], xG is
then conjugacy separable, as the fundamental group of a finite graph of groups with
conjugacy separable vertex groups and finite edge groups.

Now consider any y̨ 2 Out.G/ n f1g, represented by ˛ 2 Aut.G/ n Inn.G/. Since
E.G/Df1g, by Lemma 7.9 there exists a loxodromic element g 2G such that ˛.g/ is
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a loxodromic element not commensurable with g in G . By Lemma 7.10 (applied to G

relative to the Gu ), we can enlarge the obstacle set S to assume that the elements �.g/
and �.˛.g// are noncommensurable in xG .

Since xG is conjugacy separable, there exists a finite group K and a homomorphism
�W xG ! K such that �.�.g// is not conjugate to �.�.˛.g/// in K . Thus, setting
 WD � ı �W G ! K , we can apply Lemma 7.12 to find a finite quotient of Out.G/
separating y̨ from the identity.

7.3 Quadratically hanging groups

In the next subsection, we will apply Propositions 7.8 and 7.11 to the canonical JSJ
decomposition. In order to do this, we need to study finitary fillings of QH vertex
groups. We denote such a group by O .

Recall from Section 4.2 that O is an extension

f1g �! F �!O
�
�! P �! f1g;

where F is a finite group and P is the fundamental group of a hyperbolic 2–orbifold O
with boundary. Consider full preimages Ci D ��1.Bi/ of a set of representatives
B1; : : : ;Bs of fundamental groups of components of the boundary of O .

The goal of this subsection is the following statement:

Proposition 7.13 Most finitary fillings of O with respect to H D fC1; : : : ;Csg are
conjugacy separable.

Proof First assume F D f1g, so Ci D Bi . In this case we shall see that most finitary
fillings are fundamental groups of closed hyperbolic orbifolds. Thus they are virtually
surface groups, hence conjugacy separable by a result of Martino [25, Theorem 3.7].

We define an obstacle set S D S1 [ � � � [ Ss in P D �1.O/ as follows. Let r be a
large integer (to be determined later). Recall (see [40]) that each Bi is either infinite
cyclic or infinite dihedral. In the cyclic case, Bi is generated by a single element c of
infinite order and we let Si WD fc; c

2; : : : ; cr g. In the dihedral case, Bi is generated
by two involutions a; b and we let Si WD fa; b; ab; .ab/2; : : : ; .ab/r g.

Any finite-index normal subgroup Ki C Bi with Ki \ Si D ∅ is cyclic, generated
by cmi or .ab/ni for some mi or ni larger than r . It follows that the quotient
�1.O/=hhKi j i D 1; : : : ; sii�1.O/ is the fundamental group of a closed orbifold O0 ,
which is obtained from O by replacing each boundary component by a conical point
(elliptic point, in the terminology of [40]) of order mi in the cyclic case, and by a
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dihedral point (corner reflector, in the terminology of [40]) of order ni in the dihedral
case.

We claim that O0 is hyperbolic if r is large enough. By [40, Theorem 13.3.6], a 2–
orbifold admits a hyperbolic structure if and only if its Euler characteristic is negative.
The Euler characteristic �.O0/ can be computed by the formula (cf [40, 13.3.3; 36])

�.O0/D �.O/C
X 1

mi
C

X 1

2ni
:

Since �.O/ is negative, so is �.O0/ for r large, and the claim follows. Defining S

using such an r , we deduce that most finitary fillings of O are fundamental groups of
closed hyperbolic orbifolds. This proves the proposition when F D f1g.

In the general case, we have to use Dehn fillings (Theorem 7.4). It is a standard
fact [7, Theorem 7.11] that O is hyperbolic relative to the family HD fC1; : : : ;Csg

(these are nonconjugate maximal virtually cyclic subgroups of the hyperbolic group O ).
Consider the obstacle set xS D ��1.S/[S 0 , where S is the set constructed above in
�1.O/ and S 0 is provided by Theorem 7.4 (applied to O and H).

Consider any collection of finite-index normal subgroups NiCCi such that Ni\
xSD∅,

iD1; : : : ; s , and set N WDhhNi j iD1; : : : ; siiO . By Theorem 7.4 we have N\CiDNi

for each i , so it remains to check that the quotient O 0 DO=N is conjugacy separable.

Let 'W O!O 0 denote the natural epimorphism. Then O 0 maps with finite kernel '.F /
onto P=�.N / Š P=hh�.Ni/ j i D 1; : : : ; siiP . Our choice of xS guarantees that
�.Ni/ does not meet the set S , so P=�.N / is the fundamental group of a hyperbolic
orbifold O0 . The exact sequence f1g! '.F /!O 0! �1.O0/!f1g implies that O 0

is virtually a surface group (see [25, Theorem 4.3]), hence it is conjugacy separable as
above.

7.4 Conclusion

We prove Theorem 1.3, starting with a couple of lemmas. We first assume that no Pi

is virtually cyclic, postponing the general case to the next subsection.

Lemma 7.14 Consider the graph of groups � 0 constructed in Section 5, and assume,
additionally, that the subgroups P1; : : : ;Pk are residually finite (and not virtually
cyclic). Then � 0 satisfies Assumption 7.3. In particular, its fundamental group G0 is
residually finite (by Proposition 7.8).

Proof Recall that � 0 is bipartite, with V1D VE and V2D VR[VQH . Vertex groups
in V1 are elementary, hence residually finite by assumption.
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For v 2 VR , the vertex group G0v is obtained by amalgamating Z�C and the incident
edge groups Ge over a finite group C . Define S D C n f1g as the obstacle set. As in
Remark 7.2, each finitary filling of G0v with respect to the incident edge groups is an
amalgam over C , with factors being finite or Z�C .

For QH vertices, residual finiteness (indeed, conjugacy separability) of finitary fillings
follows from Proposition 7.13. The assumption that no Pi is virtually cyclic guaran-
tees that fC1; : : : ;Csg is (up to conjugacy) the family of incident edge groups (see
Section 4.2).

Relative hyperbolicity follows from standard combination theorems for relatively
hyperbolic groups (cf [10; 29]) because vertex groups in V2 are hyperbolic relative to
incident edge groups: this was pointed out in the proof of Proposition 7.13 in the QH
case, and in the rigid case this is a consequence of Definition 4.1 (as the graph K one
can take the Bass–Serre tree associated to the splitting of G0v , v 2 VR , as an amalgam
over C discussed above).

Lemma 7.15 Suppose that G is a finitely generated group, and N is a centerless
normal subgroup of finite index in G .

(1) Some finite-index subgroup Out0.G/6 Out.G/ is isomorphic to a quotient of a
subgroup of Out.N / by a finite normal subgroup L.

(2) Let P be a finite family of subgroups in G and let Q be a collection of rep-
resentatives of N –conjugacy classes among fN \ gHg�1 j H 2 P;g 2 Gg.
Then some finite-index subgroup of Out.GIP/ is isomorphic to a quotient of a
subgroup of Out.N IQ/ by a finite normal subgroup. In particular, if Out.N IQ/
is residually finite then so is Out.GIP/.

Proof The first assertion is standard (see for instance [20, Lemma 5.4]). One defines
Aut0.G/ as the set of automorphisms mapping N to itself and acting as the identity
on G=N , and Out0.G/ is its image in Out.G/. Using the fact that N is centerless,
one shows that the natural map Aut0.G/! Aut.N / is injective. The group L comes
from the action of inner automorphisms of G .

For (2), observe that automorphisms in Aut0.G/ preserving the set of conjugacy classes
of groups in P also preserve the (finite) set of N –conjugacy classes of subgroups
from Q.

We can now prove Theorem 1.3 when no peripheral subgroup is virtually cyclic:

Theorem 7.16 Let G be a group hyperbolic relative to a family of proper finitely
generated subgroups P D fP1; : : : ;Pkg. If G is one-ended relative to P , no Pi is
virtually cyclic, and every Pi is residually finite, then Out.GIP/ is residually finite.

Geometry & Topology, Volume 18 (2014)



Residual properties of automorphism groups 3011

Proof Consider the canonical elementary JSJ tree T of G relative to the family P , as
in Section 4.2. If T is trivial (a single vertex), then either G is rigid or it maps onto the
fundamental group of a closed hyperbolic 2–orbifold with finite kernel. In the former
case Out.GIP/ is finite (see [19, Theorem 3.9]) and in the latter case G contains a sur-
face subgroup of finite index (see for instance [25, Theorem 4.3]). Therefore in this case
Out.G/ is residually finite by a combination of Grossman’s theorem [15, Theorem 3]
with Lemma 7.15.

Hence we can further assume that the canonical JSJ tree T is nontrivial. Let us apply
the construction of Section 5. By Lemma 5.3, a finite-index subgroup Outr .G/ of
Out.GIP/ embeds into Out.G0/, where G0 is the fundamental group of the bipartite
graph of groups � 0 .

If T has at least one rigid vertex, then the group G0 has infinitely many ends, because
of the way we constructed � 0 . Furthermore, G0 is residually finite by Lemma 7.14.
Therefore Out.G0/ is residually finite by [27, Theorem 1.5], so its subgroup Outr .G/,
and also Out.GIP/, are residually finite.

Hence we can suppose that the JSJ decomposition of G has no rigid vertices. In this
case G0 DG by construction, and V2 D VQH .

There are two cases. Assume, at first, E.G/Df1g. Then, according to Proposition 7.13,
the graph of groups � 0 satisfies all the assumptions of Proposition 7.11, which allows
us to conclude that Out.G/ (and, hence, Out.GIP/) is residually finite.

If E.G/¤ f1g, we shall deduce residual finiteness of Out.GIP/ from Lemma 7.15.
As E.G/ is finite and G is residually finite (by Lemma 7.14), there exists a finite-
index normal subgroup N C G such that N \E.G/ D f1g. It is standard that N

is hyperbolic relative to the family Q described in the second part of Lemma 7.15
(this follows immediately from Definition 4.1). Note that groups in Q are finitely
generated, residually finite, not virtually cyclic, and they are proper subgroups of N

since groups in P have infinite index in G (indeed, each Pi 2 P is almost malnormal
in G ; see [30, Theorem 1.4]).

The group E.N / is trivial because it is characteristic in N , hence it is contained in
E.G/\N Df1g. In particular, N is centerless. Moreover, as pointed out by Guirardel
and the first author in [18], it follows from Dicks and Dunwoody [11, Theorem IV.1.3]
that N is one-ended relative to Q. Since E.N / D f1g, we know that Out.N IQ/
is residually finite by the previous case, and Lemma 7.15 implies that Out.GIP/ is
residually finite.

The arguments given above show the following facts, which may be of independent
interest:
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Corollary 7.17 Let G be a group hyperbolic relative to a family P D fP1; : : : ;Pkg

of proper finitely generated residually finite groups, such that no Pi is virtually cyclic.
Suppose that G is one-ended relative to P .

If the canonical JSJ decomposition of G over elementary subgroups relative to P has
no rigid vertices, then G is residually finite. Otherwise, a finite-index subgroup of
Out.GIP/ embeds into Out.G0/, where G0 is a finitely generated residually finite
group with infinitely many ends.

In all cases, Out.GIP/ virtually embeds into Out.G0/, where G0 is a finitely generated
residually finite relatively hyperbolic group.

7.5 Allowing virtually cyclic Pi

We now prove Theorem 1.3 in general, allowing virtually cyclic peripheral subgroups.
We may assume that all Pi are infinite, since removing finite groups from P does not
affect relative one-endedness.

The new phenomenon occurs at QH vertices of the canonical JSJ decomposition � .
With the notation of Section 7.3, it is still true that incident edge groups of Gv are
preimages of fundamental groups of boundary components of O , but there may now
be boundary components Cj such that Cj D �

�1.Bj / is not an incident edge group,
but is conjugate to a group in P .

In Section 5 we used groups PMCG.Gv/ and PMCG@.Gv/, defined using incident
edge groups of � . We must now replace PMCG.Gv/ with a subgroup by requiring
that automorphisms act on groups Cj as above as inner automorphisms �aj

of Gv .
The group PMCG@.Gv/ is replaced by the preimage of this subgroup under �v . We do
not keep track of the aj ; the corresponding Cj should be thought of as punctures rather
than boundary components, in particular there is no twist near them (in the context of
Section 3.2, isotopies are free on the components Cj ).

With this modification, all arguments given in Sections 5, 6 and 7 go through. In
Proposition 7.13, we define H using only the groups Cj which are incident edge
groups. The hyperbolic orbifold O0 may then have a nonempty boundary. In this case
its fundamental group is virtually free, hence conjugacy separable by Dyer [12].

7.6 Proof of Corollary 1.1

Suppose that G is hyperbolic relative to a family P D fP1; : : : ;Pkg of virtually
polycyclic groups. Without loss of generality we may assume that no Pi is virtually
cyclic (see Section 4.1). The result is true if G is virtually polycyclic; see Wehrfritz [43].
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Otherwise, Theorem 1.3 applies since every Pi is residually finite. To conclude, note
that Out.GIP/ has finite index in Out.G/ because groups in P are characterized (up
to conjugacy) as maximal virtually polycyclic subgroups which are not virtually cyclic
(see [28, Lemma 3.2] for a more general result).

8 Residual p–finiteness for automorphism groups

8.1 Residual p–finiteness

Given a prime p and a group G , we will say that a subgroup K 6 G has p–power
index in G if jG WKj D pk for some k � 0.

Remark 8.1 The intersection of two subgroups H1;H2 of p–power index is not
necessarily of p–power index, but it is if H1 and H2 are normal (for then there is an
embedding of G=.H1\H2/ into G=H1 �G=H2 ). In particular, if G is finitely gener-
ated, any normal subgroup H of p–power index contains one which is characteristic
in G , namely the intersection of all subgroups of G with the same index as H .

The collection of normal subgroups of G of p–power index forms a basis of neigh-
borhoods of the identity in G , giving rise to the pro-p topology on G . As in the
case of residually finite groups, the pro-p topology on G is Hausdorff if and only
if G is residually p–finite: given g ¤ 1, there is a homomorphism ' from G to a
finite p–group such that '.g/ ¤ 1 (by Remark 8.1, one may assume that ker' is
characteristic if G is finitely generated).

Residual p–finiteness is a much more delicate condition than residual finiteness. It is
still clearly stable under direct products, but in general it is not stable under semidirect
products (Z is residually p–finite for any prime p , but it is easily checked that the
Klein bottle group, the nontrivial semidirect product ZÌZ, is not residually p–finite
if p > 2). Even more strikingly, for any given set of prime numbers …, there exists
a 3–generated center-by-metabelian group which is residually p–finite if and only if
p 2…; see Hartley [21].

Lemma 8.2 If A has a residually p–finite normal subgroup B of p–power index,
then A is residually p–finite.

Proof Take any x 2A n f1g. Since B is residually p–finite, there exists a p–power
index normal subgroup N C B such that x 62 N . The intersection H of all A–
conjugates of N is normal in A and has p–power index in B (see Remark 8.1), so
jA WH j D jA W BjjB WH j is a power of p . Since x 62H , we can conclude that A is
residually p–finite.
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Remark 8.3 Combining Lemma 8.2 with an induction on the subnormal index, one
can actually prove that any group containing a subnormal residually p–finite subgroup
of p–power index is itself residually p–finite.

It is not difficult to see that not every p–power index subgroup of a group G has to be
closed in the pro-p topology. In fact, a p–power index subgroup K6G is closed in the
pro-p topology on G if and only if K is subnormal in G (cf Toinet [41, Lemma A.1]).

Lemma 8.4 If G is residually p–finite, and N C G is a finite normal subgroup,
then G=N is also residually p–finite.

Proof Indeed, since G is residually p–finite, any finite subset of G is closed in the
pro-p topology on G . Therefore N is the intersection of p–power index normal
subgroups of G , and so G=N is residually p–finite.

For any prime p and any group H , let Autp.H / be the subgroup of Aut.H / which
consists of automorphisms that act trivially on the first mod p homology of H . Namely,
let Kp WD ŒH;H �H p be the verbal subgroup of H , which is the product of the derived
subgroup ŒH;H � and the subgroup H p generated by all the pth powers of elements
in H . Then

Autp.H /D f˛ 2 Aut.H / j ˛.hKp/D hKp for all h 2H g:

If H is finitely generated, then Kp has finite index in H , therefore Autp.H / will have
finite index in Aut.H /. Observe also that all inner automorphisms are in Autp.H /

because H=Kp is abelian, and the group Outp.H / WD Autp.H /= Inn.H / has finite
index in Out.H /.

The following classical theorem of P Hall will be useful (cf Robinson [35, 5.3.2, 5.3.3]):

Lemma 8.5 If H is a finite p–group, then Autp.H / is also a finite p–group.

The next statement was originally proved by L Paris in [32, Theorem 2.4]. We present
an elementary proof based on Lemma 8.5.

Lemma 8.6 Let H be a finitely generated residually p–finite group, for some prime p .
Then Autp.H / is residually p–finite, hence Aut.H / is virtually residually p–finite.

Proof Consider any nontrivial automorphism ˛ 2 Autp.H /. Then there is h0 2H

such that ˛.h0/¤ h0 . Since H is residually p–finite, there exist a finite p–group K

and an epimorphism  W H ! K with  .˛.h0// ¤  .h0/ in K . As explained in
Remark 8.1, one may assume that ker is a characteristic subgroup of H . This
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implies that  naturally induces a homomorphism 'W Aut.H /! Aut.K/. Clearly,
'.Autp.H //�Autp.K/, so the restriction '0 of ' to Autp.H / gives a homomorphism
from Autp.H / to Autp.K/, where the latter is a finite p–group by Lemma 8.5. It
remains to observe that '0.˛/ is nontrivial, because '0.˛/. .h0//D .˛.h0//¤ .h0/

by construction.

8.2 Toral relatively hyperbolic groups

In this section we will prove Theorem 1.5. The method is similar to the one used in
Section 3.

Given a group H with a fixed family of peripheral subgroups C1; : : : ;Cs , s � 1,
we can define Aut@.H /, PMCG@.H / and PMCG.H / as in Section 3.1. For any
prime p , let Aut@p.H / 6 Aut@.H / consist only of those tuples .˛I a1; : : : ; as/ for
which ˛ 2 Autp.H /. In other words Aut@p.H / is the full preimage of Autp.H /

under the natural projection Aut@.H /! Aut.H /. We also define PMCG@p.H / as
the image of Aut@p.H / in PMCG@.H /, and PMCGp.H / will denote its image in
PMCG.H /6 Out.H /.

Remark 8.7 If H is finitely generated, PMCG@p.H / has finite index in PMCG@.H /.

Lemma 8.8 If H is a finite p–group, then so is PMCG@p.H /. If H is a finitely
generated residually p–finite group, then PMCG@p.H / is residually p–finite.

Proof The group PMCG@p.H / embeds into H s�1 Ì Autp.H / (see Remark 3.3);
this group is a finite p–group by Lemma 8.5. For the second assertion, argue as in
Lemma 3.2, mapping PMCG@p.H / to PMCG@p.H=N / with H=N a finite p–group.

Our next goal is Lemma 8.11 below, which is an analogue of Lemma 3.4. We need to
prove two auxiliary statements first.

Lemma 8.9 Fundamental groups of closed hyperbolic surfaces are residually p–finite
for all primes p .

Proof Let † be a closed hyperbolic surface. Then �1.†/ is residually free, except
for the case when † D †�1 is the closed nonorientable surface of genus 3 (and
Euler characteristic �1); see G Baumslag [5] and B Baumslag [4]. Since free groups
are residually p–finite for every prime p (cf [35, 6.1.9]), the lemma follows for all
†¤†�1 . On the other hand, for any prime p , there is a normal cover of degree p

of †�1 (because the abelianization of �1.†�1/ is isomorphic to Z2 �Z=2Z). This
cover is a surface of higher genus, so its fundamental group is residually p–finite by
the previous argument. Hence �1.†�1/ is residually p–finite by Lemma 8.2.
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Lemma 8.10 Let p be a prime, and n be a power of p . Let †n be a closed hyperbolic
2–orbifold whose singularities are cone points of order n. Then On WD �1.†n/ is
residually p–finite.

Proof Let † be a compact surface obtained by removing a neighborhood of each
conical point. We may map �1.†/ to a finite p–group so that the fundamental group of
every boundary component has image of order exactly n: if † has only one boundary
component, this follows from Stebe [39, Lemma 1] (see also [25, Lemma 4.1]); if
there are more, the fundamental group of each boundary component is a free generator
of �1.†/, and we map �1.†/ to H1.�1.†/;Z=nZ/, its abelianization mod n.

The corresponding normal covering of † extends to a covering of †n by a closed
surface, because its restriction to every component of @† has degree exactly n. The
fundamental group of this surface is residually p–finite by Lemma 8.9. Its index in On

is a power of p , so On is residually p–finite by Lemma 8.2.

Now suppose, as in Section 3.2, that H is the fundamental group of a compact surface †
with negative Euler characteristic and s � 1 boundary components. Let C1; : : : ;Cs

be the fundamental groups of these components, considered as subgroups of H . Let
TH 6 PMCG@.H / be the corresponding group of twists. Note that TH � PMCG@p.H /

for any prime p . We have the following analogue of Lemma 3.4:

Lemma 8.11 Let p be a prime. Then the quotient PMCG@p.H /=nTH is residually
p–finite for every sufficiently large power n of p .

Proof The proof is similar to that of Lemma 3.4, using PMCGp instead of PMCG.
The kernel of � W TH ! TOn

is nTH , and we need to know that PMCGp.H / and
PMCG@p.On/ are residually p–finite.

Clearly we have PMCGp.H / 6 Outp.H /, which is residually p–finite by a result
of L Paris [32, Theorem 1.4] since H is a free group. On the other hand, the group
PMCG@p.On/ is residually p–finite by Lemmas 8.10 and 8.8.

We also need to consider abelian groups. Let A be a free abelian group of finite rank with
a chosen family of subgroups C1; : : : ;Cs . For any prime p , consider the corresponding
groups Aut@p.A/, PMCG@p.A/, and the normal subgroup TA C PMCG@p.A/, defined
as in Section 3.1. Note that TA is naturally isomorphic to the quotient of As by its
diagonal subgroup, hence to As�1 .

Lemma 8.12 Let p be a prime. The quotient PMCG@p.A/=nTA is residually p–finite
for every power n of p .
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Proof Consider the following commutative diagram of short exact sequences:

f1g // TA
//

�

��

PMCG@p.A/ //

��

PMCGp.A/ //

��

f1g

f1g // TA=nA
// PMCG@p.A=nA/ // PMCGp.A=nA/ // f1g

The map � W TA ! TA=nA sends As�1 to .A=nA/s�1 , so its kernel is nTA and the
proof is reduced to showing that PMCGp.A/ and PMCG@p.A=nA/ are residually p–
finite. Now PMCGp.A/6 Outp.A/D Autp.A/ is residually p–finite by Lemma 8.6,
and PMCG@p.A=nA/ is a finite p–group by Lemma 8.8.

Lemma 8.13 Consider a finite set V and groups Pv , v2V , with normal subgroups Tv
free abelian of finite rank. Let P D

Q
v2V Pv and T D

Q
v2V Tv 6 P be their direct

products.

Suppose that p is a prime number and Z 6 T is a subgroup such that T=Z contains
no q–torsion if q ¤ p is a prime. If Pv=nTv is residually p–finite for all v 2 V and
for every sufficiently large power n of p , then Z is closed in the pro-p topology of P .
In particular, if Z is normal in P , then P=Z is residually p–finite.

Proof This is similar to the proof of Lemma 3.6. One first proves the result when Z has
p–power index in T . In the general case, T=Z being residually p–finite guarantees
that Z is the intersection of (normal) subgroups of p–power index in T .

We are now ready to prove the main theorem of this section.

Theorem 8.14 If some finite-index subgroup of G is a one-ended toral relatively
hyperbolic group, then Out.G/ is virtually residually p–finite for any prime p .

Proof First suppose that G itself is torsion-free and hyperbolic relative to a family
PDfP1; : : : ;Pkg of free abelian groups of finite rank. As in the proof of Corollary 1.1,
we can assume that no Pi 2 P is cyclic, and restrict to Out.GIP/ because it has finite
index in Out.G/. Consider the canonical JSJ tree T relative to P over abelian groups
as in Section 4.2.

If T consists of a single point then either G is rigid, G is the fundamental group of a
closed hyperbolic surface †, or G is a finitely generated free abelian group. In the first
case Out.G/ is finite (see [19] for instance). In the second case, if † is orientable then
Outp.G/ is residually p–finite by [32, Theorem 1.4], and if † is nonorientable, then it
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possesses an orientable cover †0 of degree 2. Since the group Out.�1.†
0// is virtually

residually p–finite by [32, Theorem 1.4], and �1.†
0/ is a centerless normal subgroup

of finite-index of G , we can use Lemmas 7.15 and 8.4 to conclude that Out.G/ is
virtually residually p–finite. Finally, if G is a free abelian group of finite rank, then
Outp.G/D Autp.G/ is residually p–finite by Lemma 8.6.

Thus we can suppose that the tree T is nontrivial. In this case we know (cf Lemma 5.2
and Remark 8.7) that Outrp.G/, the image by �E;QH of

Q
v2VE[VQH

PMCG@p.Gv/,
has finite index in Out.GIP/. We apply Lemma 3.6 to

P D
Y

v2VE[VQH

PMCG@p.Gv/;

with Tv D Tv .

We know that each PMCG@p.Gv/=nTv is residually p–finite for n a large power of p ,
by Lemmas 8.11 and 8.12. The quotient of

Q
v2VE[VQH

Tv by Z D ker�E;QH is
the whole group of twists T by Lemma 5.1, it is torsion-free (see [19, Corollary 4.4]).
Thus Outrp.G/ D P=Z is residually p–finite by Lemma 3.6. It has finite index in
Out.G/, so Out.G/ is virtually residually p–finite.

Now suppose that G contains a toral relatively hyperbolic group G0 with finite index.
We may assume that G0 is normal. If G0 is abelian, then Out.G/ is contained
in some GL.n;Z/ by [43], so it is virtually residually p–finite by Lemma 8.6 (as
GL.n;Z/Š Aut.Zn/). Otherwise G0 has trivial center and we apply Lemmas 7.15
and 8.4.

8.3 Groups with infinitely many ends

In this subsection we prove Theorem 1.6: if G is a finitely generated group with
infinitely many ends, and G is virtually residually p–finite for some prime number p ,
then Out.G/ is virtually residually p–finite. The argument will use the following
“pro-p” analogue of Lemma 7.12:

Lemma 8.15 Let p be a prime. Given a finitely generated group G and ˛ 2Autp.G/,
suppose there is a homomorphism  W G!K with K a finite p–group such that  .g/
is not conjugate to  .˛.g// in K . Then there is a homomorphism �W Outp.G/!L

with L a finite p–group such that �.y̨/¤ 1 in L, where y̨ denotes the image of ˛
in Outp.G/.

Proof The proof is almost identical to the proof of Lemma 7.12, except we use Autp
and Outp instead of Aut and Out, together with the fact that Outp.H / is a finite
p–group for any finite p–group H , which immediately follows from Lemma 8.5.
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Proof of Theorem 1.6 Recall that by Stallings’ theorem for groups with infinitely
many ends [38], the group G splits as an amalgamated product or as an HNN-extension
over a finite subgroup C 6 G . Since G is virtually residually p–finite we can find
a finite-index normal subgroup H C G such that H \ C D f1g and H is resid-
ually p–finite. It follows from the generalized Kurosh Theorem (cf [11, I.7.7] or
Cohen [9, Theorem 8.27]) that H D A �B , where A and B are nontrivial finitely
generated residually p–finite groups. Note that H has trivial center (as does any
nontrivial free product), and so by Lemmas 7.15 and 8.4 it is enough to prove that
Out.H / is virtually residually p–finite.

Observe that H is hyperbolic relative to fA;Bg and consider any automorphism
˛ 2Autp.H /n Inn.H /. Again, since H splits as a nontrivial free product, H contains
no nontrivial finite normal subgroups, hence E.H / D f1g. Therefore, according to
Lemma 7.9, there exists g 2H such that both g and h WD ˛.g/ are loxodromic in H

and g is not commensurable with h in H . Since A and B are residually p–finite,
applying Lemma 7.10, we can find normal subgroups A0 CA and B0 C B such that
A1 WD A=A0 and B1 WD B=B0 are finite p–groups and the images of g and h are
noncommensurable in the free product H1 WDA1 �B1 .

We claim that H1 is conjugacy p–separable, ie given two nonconjugate h; h0 2H1

there exist a finite p–group K and a homomorphism �W H1!K such that �.h/ is not
conjugate to �.h0/ in K . Indeed, by the Kurosh subgroup theorem, the kernel of the
natural map A1�B1!A1�B1 is free, thus H1 is an extension of a finitely generated
free group by the finite p–group A1 �B1 . Hence, by a theorem of E Toinet [41, The-
orem 1.7], H1 is conjugacy p–separable (in fact, the full strength of Toinet’s result
is not needed here: conjugacy p–separability of free products of finite p–groups can
be derived from the conjugacy p–separability of the free group via a short argument,
similar to the one used by V Remeslennikov in [33, Theorem 2]).

Let �W H !H1 denote the natural homomorphism with ker �D hhA0;B0iiH . Let

 WD � ı �W H !K:

Then  .h/D  .˛.g// is not conjugate to  .g/ in K by construction. Therefore by
Lemma 8.15 there is a finite p–group L and a homomorphism �W Outp.H /!L such
that �.y̨/ ¤ 1 in L, where y̨ is the image of ˛ in Outp.H /. Thus we have shown
that Outp.H / is residually p–finite. Since H is finitely generated,

jOut.H / W Outp.H /j<1;

and so Out.H / is virtually residually p–finite, as required.
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Before concluding let us discuss one application of Theorem 1.6. In a recent pa-
per [3] Aschenbrenner and Friedl proved that the fundamental group of any compact
3–manifold M is residually p–finite for all but finitely many primes p . Recalling
Lubotzky’s theorem [24, Proposition 2], they derived that Aut.�1.M // is virtually
residually p–finite and mentioned that the similar fact for Out.�1.M // is not yet
known. Theorem 1.6 implies that if a compact orientable 3–manifold M is not
irreducible, then Out.�1.M // is virtually residually p–finite (for all but finitely many
primes p ). Indeed, since M is not irreducible, either it is S2 �S1 or it decomposes
into a connected sum of prime manifolds. In the former case �1.M / Š Z, and in
the latter case �1.M / splits as a nontrivial free product. Thus either Out.�1.M // is
finite, or �1.M / has infinitely many ends, and so Out.�1.M // is virtually residually
p–finite for all but finitely many p by Theorem 1.6 (using the result of Aschenbrenner
and Friedl [3] mentioned above). Therefore, in order to prove that Out.�1.M // is
virtually residually p–finite for all compact orientable 3–manifolds M , it is enough
to consider only irreducible manifolds.

As a finishing remark, one can recall the theorem of Rhemtulla [34] stating that if
a group is residually p–finite for infinitely many primes p , then it is biorderable.
Unfortunately our methods do not allow us to deduce that Out.G/ has a single finite-
index subgroup which is residually p–finite for infinitely many p . This is because
we rely on Lemma 8.5, requiring one to pass to the subgroup Outp.G/, the index of
which generally depends on the prime p .
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