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Affine unfoldings of convex polyhedra

MOHAMMAD GHOMI

We show that every convex polyhedron admits a simple edge unfolding after an
affine transformation. In particular, there exists no combinatorial obstruction to a
positive resolution of Dürer’s unfoldability problem, which answers a question of
Croft, Falconer and Guy. Among other techniques, the proof employs a topological
characterization of embeddings among the planar immersions of the disk.

52B05, 57N35; 05C10, 57M10

1 Introduction

A well-known problem in geometry (see Demaine and O’Rourke [6], O’Rourke [16],
Pak [17] and Ziegler [23]), which may be traced back to the Renaissance artist Albrecht
Dürer [7], is concerned with cutting a convex polyhedral surface along some span-
ning tree of its edges so that it may be isometrically embedded, or unfolded without
overlaps, into the plane. Here we show that this is always possible after an affine
transformation of the surface. In particular, unfoldability of a convex polyhedron does
not depend on its combinatorial structure, which settles a problem of Croft, Falconer
and Guy [4, Section B21].

In this work a (compact) convex polyhedron P is the boundary of the convex hull
of a finite number of affinely independent points of Euclidean space R3 . A cut tree
T �P is a (polygonal) tree which includes all the vertices of P , and each of its leaves
is a vertex of P . Cutting P along T yields a compact surface PT which admits
an isometric immersion PT ! R2 (see Section 4), called an unfolding of P . This
unfolding is simple, or an embedding, if it is one-to-one. We say P is in general
position with respect to a unit vector or direction u provided that the height function
h. � / WD h � ;ui has a unique maximizer and a unique minimizer on vertices of P .
Then T is monotone with respect to u provided that h is (strictly) decreasing on every
simple path in T which connects a leaf of T to the vertex minimizing h. For � > 0,
we define the (normalized) affine stretching parallel to u as the linear transformation
A�W R

3!R3 given by

A�.p/ WD
1
�
.pC .�� 1/hp;uiu/;
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and set X � WDA�.X / for any X �R3 . Note that if uD .0; 0; 1/, then A�.x;y; z/D

.x=�;y=�; z/. Thus A� makes any convex polyhedron arbitrarily “thin” or “needle-
shaped” for large �. Our main result is as follows:

Theorem 1.1 Let P be a convex polyhedron, u a direction with respect to which P

is in general position, and T �P a cut tree which is monotone with respect to u. Then
the unfolding of P� generated by T � is simple for sufficiently large �.

When a cut tree is composed of the edges of P , or is a spanning tree of the edge
graph of P , the corresponding unfolding is called an edge unfolding. If P admits a
simple edge unfolding, then we say P is unfoldable. Note that there exists an open
and dense set of directions u in the sphere S2 with respect to which P is in general
position. Furthermore, it is easy to construct monotone spanning edge trees for every
such direction. They may be generated, for instance, via the well-studied “steepest
edge” algorithm (see Schlickenrieder [19], Lucier [13] and [6]), or a general procedure
described in Note 1.6. Thus Theorem 1.1 quickly yields:

Corollary 1.2 An affine stretching of a convex polyhedron, in almost any direction, is
unfoldable.

Figure 1

An example of this phenomenon is illustrated in Figure 1. The left side of this figure
shows a truncated tetrahedron (viewed from “above”) together with an overlapping
unfolding of it generated by a monotone edge tree. As we see on the right side, however,
the same edge tree generates a simple unfolding once the polyhedron has been stretched.

The rest of this work will be devoted to proving Theorem 1.1. We will start in Sections 2
and 3 by recording some basic definitions and observations concerning the composition
of paths in convex polyhedra and their developments in the plane. In particular, we
discuss the notion of “mixed developments” which arises naturally in this context
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and constitutes a useful technical tool. Then, in Section 4, we will show that to each
cut tree there is associated a path whose development coincides with the boundary
of the corresponding unfolding. Thus, Dürer’s problem may be viewed as the search
for spanning edge trees with simple developments. To this end, we will obtain in
Section 5 a topological criterion for deciding when a closed planar curve which bounds
an immersed disk is simple. This will be the principal tool for proving Theorem 1.1,
which will be utilized by means of an induction on the number of leaves of the cut tree.
To facilitate this approach we will study the structure of monotone cut trees in Section 6,
and the effect of affine stretchings on their developments in Section 7. Finally, these
observations will be synthesized in Section 8 to complete the proof.

The earliest known examples of simple edge unfoldings for convex polyhedra are
due to Dürer [7], although the problem which bears his name was first formulated
by Shephard [20]. Furthermore, the assertion that a solution can always be found,
which has been dubbed Dürer’s conjecture, appears to have been first published by
Grünbaum [10; 11]. There is empirical evidence both for and against this supposition.
On the one hand, computers have found simple edge unfoldings for countless convex
polyhedra through an exhaustive search of their spanning edge trees. On the other hand,
there is still no algorithm for finding the right tree [13; 19], and computer experiments
suggest that the probability that a random edge unfolding of a generic polyhedron
overlaps itself approaches 1 as the number of vertices grow; see Schevon [18]. General
cut trees have been studied at least as far back as Alexandrov [1] who first established
the existence of simple unfoldings (not necessarily simple edge unfoldings) for all
convex polyhedra; see also Itoh, O’Rourke and Vîlcu [12], Miller and Pak [14] and
Demaine, Demaine, Hart, Iacono, Langerman and O’Rourke [5] for recent related
results. Other references and background may be found in [6].

Note 1.3 A chief difficulty in assailing Dürer’s problem is the lack of any intrinsic
characterization for an edge of a convex polyhedron P . Indeed the edge graph of P

is not the unique graph in P whose vertices coincide with those of P , whose edges
are geodesics and whose faces are convex. It seems reasonable to expect that Dürer’s
conjecture should be true if and only if it holds for this wider class of generalized edge
graphs. This approach has been studied by Tarasov [22], who has announced some
negative results in this direction.

Note 1.4 As we mentioned above, one way to generate some monotone trees in a con-
vex polyhedron is via the “the steepest edge” algorithm which has been well studied due
to its relative effectiveness in finding simple unfoldings. Indeed Schlickenrieder [19] had
conjectured that every convex polyhedron contains at least one steepest edge tree which
generates a simple unfolding. He had successfully tested this conjecture in thousands
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of cases, after a thorough examination of various kinds of spanning edge trees and cata-
loguing their failure to produce simple unfoldings. Subsequently, however, Lucier [13]
produced a counterexample to Schlickenrieder’s conjecture. Although it is not clear
whether all monotone trees in Lucier’s example fail to produce simple unfoldings.

Note 1.5 Dürer’s problem is usually phrased in somewhat broader terms than described
above: Can every convex polyhedral surface be cut along some collection T of its
edges so that the resulting surface PT is connected and admits an isometric embedding
into the plane? In other words, it is not a priori assumed that T is a spanning tree.
Assuming that this is the case, however, does not cause loss of generality. Indeed, it
is obvious that the cut set T must contain every vertex of P (for otherwise PT will
not be locally isometric to the plane), and T may not contain any cycles (for then PT

will not be connected). Furthermore, it follows fairly quickly from the Gauss–Bonnet
theorem that T must be connected [6, Lemma 22.1.2]. So T is indeed a spanning tree.

Note 1.6 A general procedure for constructing monotone spanning edge trees T in
a convex polyhedron P may be described as follows. The only requirement here is
that P be positioned so that it has a unique bottom vertex r . Then, since P is convex,
every vertex v of P other than r will be adjacent to a vertex which lies below it, ie
has smaller z–coordinate. Thus, by moving down through a sequence of adjacent
vertices, we may connect v to r by means of a monotone edge path (with respect
to u D .0; 0; 1/). Let v0 be a top vertex of P , and B0 be a monotone edge path
which connects v0 to r . If B0 covers all vertices of P , then we set T WD B0 and we
are done. Otherwise, from the remaining set of vertices choose an element v1 which
maximizes the z–coordinate on that set. Then we generate a monotone edge path B1

by connecting v1 to an adjacent vertex which lies below it and continue to go down
through adjacent vertices until we reach a vertex of B0 (including r ). If B0 and B1

cover all the vertices of P , then we set T WDB0[B1 and we are done. Otherwise we
repeat the above procedure, until all vertices of P have been covered.

Acknowledgements The author thanks A J Friend for computer experiments to test
Theorem 1.1 in the early stages of this work. Research of the author was supported in
part by NSF Grants DMS-0336455, DMS-1308777, and Simons Collaboration Grant
279374.

2 Preliminaries

For easy reference, we begin by recording here the definitions and notation which will
be used most frequently in the following pages.
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2.1 Basic terminology

Throughout this work Rn is the n–dimensional Euclidean space with standard inner
product h � ; � i and norm k � k. Further Sn�1 denotes the unit sphere in Rn . The height
function is the mapping hW Rn!R given by h.x1; : : : ;xn/D xn; and P denotes (the
boundary of) a (compact) convex polyhedron in R3 which is oriented by the outward
unit normals to its faces. We assume that P is positioned so that it has a single top
vertex `0 and a single bottom vertex r , ie h has a unique maximizer and a unique
minimizer on P . Furthermore, T is a cut tree of P which is rooted at r . The leaves
of T are the vertices of T of degree 1 which are different from r . The simple paths
in T which connect its leaves to r will be called the branches of T . We will assume,
unless stated otherwise, that T is monotone, by which we will always mean monotone
with respect to uD .0; 0; 1/. So h will be (strictly) decreasing on each branch of T .
We let PT be the surface obtained by cutting P along T , and � W PT ! P be the
corresponding projection (as will be defined in Section 4). Further xPT will denote the
image of PT under an unfolding PT ! R2 . We say xPT is simple if the unfolding
map is one-to-one. More generally, for any mapping f W X !R2 and subset X0 �X ,
we set xX0 WD f .X0/ and say xX0 is simple if f is one-to-one on X0 . Finally, by
sufficiently large we mean for all values bigger than some constant.

2.2 Paths and their compositions

A line segment in Rn is oriented if one of its endpoints, say a, is designated as the
“initial point” and the other, say b , as the “final point”. Then the segment will be
denoted by ab . A path � is a sequence of oriented line segments in Rn such that the
final point of each segment coincides with the initial point of the succeeding segment.
These segments are called the edges of � , and their endpoints constitute its vertices.
The vertices of � inherit a natural ordering 
0; : : : ; 
k , where 
0 is the initial point
of the first edge, 
k is the final point of the last edge, and successive elements share
a common edge. Conversely, any sequence of points 
0; : : : ; 
k of Rn with distinct
successive elements determines a path denoted by

� D Œ
0; : : : ; 
k � WD .
0
1; : : : ; 
k�1
k/:

Then 
0 , 
k are the initial and final vertices of � respectively. Any other vertex of �
will be called an interior vertex. If only consecutive edges of � intersect, and do so
only at their common vertex, then � is simple. We say that � is closed if 
k D 
0 , in
which case we set 
iCk WD 
k , and consider all vertices of � to be interior vertices. An
interior vertex is simple if its adjacent vertices are distinct. The trace of � is the union
of the edges of � , which will again be denoted by � . For any pair of vertices v , w
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of � we let vwD .vw/� denote the subpath of � with initial point v and final point w .
The trace of this path will also be denoted by vw .

We utilize two different notions for combining a pair of paths � D Œ
0; : : : ; 
k � and
�D Œ!0; : : : ; !`�, when 
k D !0 . The concatenation of these paths is given by

� �� WD Œ
0; : : : ; 
k ; !1; : : : ; !`�;

while their composition is defined as

� ı� WD Œ
0; : : : ; 
k�m; !mC1; : : : ; !`�;

where m is the largest integer such that 
k�i D !i for 0 � i � m. One may think
of � ı� as the path obtained from � �� by excising its largest subpath centered
at 
k which double backs on itself; see Figure 2. This notion has also been studied
by Berestovskiı̆ and Plaut in [2, page 1770]. Finally we set ��1 WD Œ
k ; : : : ; 
0�: Note
that we have the equality � ı��1 D Œ
0� which may be considered a trivial path.

� � � �� � ı�

Figure 2

2.3 Sides and angles

In this section P need not be compact; in particular, it may stand for R2'R2�f0g�R3

with “outward normal” .0; 0; 1/. A side of a simple closed path � in P is the closure
of a component of P �� . We may distinguish these sides as follows. Choose a point x

in the interior of an edge 
i
iC1 of � , pick a side S of � , let F be the face of S

which contains x , n be the outward unit normal to F , and � be a unit normal to 
i
iC1

which points inside S . Then S lies to the left of � provided that .
iC1�
i ; n; �/ has
positive determinant; otherwise, S lies to the right of � . If � is not simple or closed,
one may still define a local notion of sides near its interior vertices as we describe
below.

For any point o 2 P , let sto denote the star of o, ie the union of faces of P which
contain o. Orient the boundary curve @ sto by choosing a cyclical ordering for its
vertices, so that sto lies to the left of it. Any point x 2 sto�fog generates a ray Rx�R3

which emanates from o and passes through x . Let bsto denote the intersection of these
rays with the unit ball in R3 centered at o. Then the total angle of P at o, denoted
by †P .o/, is the length of @bsto . Next, for any pair of points a, b in sto�fog, we define
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the (left) angle †.a; o; b/ of the path Œa; o; b�. Consider the projection sto�fog! @bsto

given by x 7! yx WD Rx \ @bsto . This establishes a bijection @ sto ! @bsto which
orients @bsto . Let j � j denote the length of oriented segments of @bsto and set

†.a; o; b/ WD

�
jybyaj; ya¤ yb;

†P .o/; yaD yb:

In particular note that if ya¤ yb , then

(1) †.a; o; b/C†.b; o; a/D†P .o/:

If yaD yb , then we define the entire sto as the left side of Œa; o; b�. Otherwise, Ra[Rb

divides sto into a pair of components. The closure of each of these components will be
called a side of Œa; o; b�. The projection sto�fog ! @bsto maps one of these regions
to the (oriented) segment yayb and the other to ybya, which will be called the right and
left sides of Œa; o; b� respectively. Finally, c 2 sto lies strictly to the left (resp. right) of
Œa; o; b� if c lies in the left (resp. right) side of Œa; o; b� and is disjoint from Ra[Rb .
The following elementary observations will be useful throughout this work.

Lemma 2.1 Let o 2 P , and a, b , c 2 sto�fog. Then we have:

(i) c lies strictly to the left of Œa; o; b� if and only if †.a; o; c/ <†.a; o; b/:

(ii) If c lies strictly to the left of Œa; o; b�, then †.a; o; c/C†.c; o; b/D†.a; o; b/:

Proof To see (i) first assume that ya D yb ; see the left diagram in Figure 3. Then c

lies strictly to the left of Œa; o; b� if and only if yc ¤ ya; yb . Furthermore †.a; o; c/ <
†P .o/D†.a; o; b/ if and only if yc ¤ ya; yb . Next we establish (i) when ya¤ yb ; see the
right diagram in Figure 3.

ya

yb

o

yc

o
yc ya

yb

Figure 3

In this case, if c lies strictly to the left of Œa; o; b�, then yc 2 int.ybya/, the interior of ybya in
@bsto . Thus †.a; o; c/Djycyaj< jybyajD†.a; o; b/. Conversely, if †.a; o; c/<†.a; o; b/
(and ya¤ yb ), then yc ¤ ya; yb . Consequently jycyaj< jybyaj which yields yc 2 ybya. So, since
yc¤ya; yb , it follows that c lies strictly to the left of Œa; o; b�. To see (ii) note that if yaD yb
and yc¤ya; yb , then †.a; o; c/C†.c; o; b/D†.a; o; c/C†.c; o; a/D†P .o/D†.a; o; b/.

Geometry & Topology, Volume 18 (2014)



3062 Mohammad Ghomi

If, on the other hand, we have ya ¤ yb , and c lies strictly to left of Œa; o; b�, then
yc 2 int.ybya/. Thus †.a; o; b/D jybyaj< jybycjC jycyaj D †.a; o; c/C†.c; o; b/.

3 Mixed developments of paths

In this section we describe a general notion for developing a path � D Œ
0; : : : ; 
k �

of P into the plane, and show (Proposition 3.1) how this concept interacts with that of
composition of paths discussed in the last section. First we define the left angle of �
at an interior vertex 
i by

�i D �i Œ��D �
i
Œ�� WD †.
i�1; 
i ; 
iC1/:

Further the corresponding right angle is given by

�i
0
WD †.
iC1; 
i ; 
i�1/D†P .
i/� �i ;

where the last equality follows from (1). In particular we have

(2) �i C �i
0
D†P .
i/� 2�;

due to the convexity of P . It will also be useful to note that �i
0Œ��D �k�i Œ�

�1�: A
mixed development of � is a path x� D Œx
0; : : : ; x
k � in R2 with left angles x�i , and right
angles x� 0i , such that:

(i) k
i � 
i�1k D kx
i � x
i�1k for 1� i � k .

(ii) x�i D �i or x� 0i D �i
0 for 1� i � k � 1.

If x�i D �i for all i , then x� is a (left) development. We say x� is a mixed development
based at an interior vertex 
` if x� 0i D �i

0 for i � `, and x�i D �i for all i > `. This path
will be denoted by .x�/
` , and unless noted otherwise, the term x� will be reserved
to indicate a (left) development. We also set .x�/
0

WD x� . Note that x� is uniquely
determined once its initial condition .x
0; xu0/ 2R2 �S1 has been prescribed, where
xu0 WD .x
1 � x
0/=kx
1 � x
0k is the direction of the first edge. A pair of paths � , �
in R2 are congruent if they coincide up to a (proper) rigid motion, in which case we
write � ��.

Proposition 3.1 Let � D Œ
0; : : : ; 
k �, �D Œ!0; : : : ; !`� be a pair of paths in P such
that 
i D !i for i D 0; : : : ;m< `. Further suppose that either mD k , or else !mC1

lies strictly to the left of Œ
m�1; 
m; 
mC1�. Then

.x�/�1
ı S�� .��1 ı�/
m

;

provided that x� and x� have the same initial conditions.
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0

!0


m

!m


k

!`

ık�m

ı0

ıkC`�2m

Figure 4

Proof Let � WD ��1 ı� and z� WD .x�/�1 ı x�. Then

�D Œ
k ; : : : ; 
0� ı Œ!0; : : : ; !`�D Œ
k ; : : : ; 
m; !mC1; : : : ; !`�;

z�D Œx
k ; : : : ; x
0� ı Œx!0; : : : ; x!`�D Œx
k ; : : : ; x
m; x!mC1; : : : ; x!`�:

In particular note that �, z� each have n WD k C `� 2mC 1 vertices. If we denote
these vertices by ıi , zıi , where 0� i � n� 1, then we have

ıi D

�

k�i ; i � k �m;

!i�kC2m; i � k �m;
zıi D

�
x
k�i ; i � k �m;

x!i�kC2m; i � k �mI

see Figure 4. In particular, 
mD ık�m . So we have to show that z�� .x�/ık�m
, which

means we need to check that:

(i) kıi � ıi�1k D k
zıi � zıi�1k for 1� i � n� 1.

(ii) �i
0Œz��D �i

0Œ�� for 1� i � k �m, and �i Œz��D �i Œ�� for k �m< i < n� 1.

To establish (i) note that, for 1� i � k �m,

kıi � ıi�1k D k
k�i � 
k�iC1k D kx
k�i � x
k�iC1k D k
zıi � zıi�1k:

Furthermore, for k �m� i � n� 1,

kıi�ıi�1kD k!i�kC2m�!i�kC2m�1kD kx!i�kC2m� x!i�kC2m�1kD k
zıi�zıi�1k:

Next we check (ii). For 1� i < k �m,

�i
0Œ��D �i

0Œ��1�D �k�i Œ��D �k�i Œx��D �i
0Œ.x�/�1�D �i

0Œz��:

Furthermore, for k �m< i < n� 1,

�i Œ��D �i�kC2mŒ��D �i�kC2mŒx��D �i Œz��:

It remains to check that � 0
k�m

Œ��D � 0
k�m

Œz��, and to this end it suffices to show

(3) � 0k�mŒ��D �mŒ��� �mŒ�� and � 0k�mŒ
z��D �mŒx��� �mŒx��:
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To establish the first equation in (3) note that

�mŒ��C �
0
k�mŒ��D†.!m�1; !m; !mC1/C†.ık�mC1; ık�m; ık�m�1/

D†.
m�1; 
m; !mC1/C†.!mC1; 
m; 
mC1/:

Further, since !mC1 lies strictly on the left of Œ
m�1; 
m; 
mC1�, Lemma 2.1(ii) yields

†.
m�1; 
m; !mC1/C†.!mC1; 
m; 
mC1/D†.
m�1; 
m; 
mC1/D �mŒ��:

The second equation in (3) follows from a similar calculation, once we check that x!mC1

lies strictly to the left of Œx
m�1; x
m; x
mC1�. Indeed, since !mC1 lies strictly on left of
Œ
m�1; 
m; 
mC1�, Lemma 2.1(i) yields

�mŒ��D†.!m�1; !m; !mC1/D†.
m�1; 
m; !mC1/<†.
m�1; 
m; 
mC1/D�mŒ��:

So �mŒx��D �mŒ�� < �mŒ��D �mŒx��. Consequently,

†.x
m�1; x
m; x!mC1/D†.x!m�1; x!m; x!mC1/D�mŒx��<�mŒx��D†.x
m�1; x
m; x
mC1/:

So, by Lemma 2.1(i), x!mC1 lies strictly to the left of Œx
m�1; x
m; x
mC1� as claimed.

4 The tracing path of a cut tree

Here we describe precisely how a cut tree T determines an unfolding of P . Further
we show that the boundary of this unfolding coincides with a development of a certain
path �T which traces T . This leads to the main result of this section, Proposition 4.4
below, which shows that an unfolding of P generated by T is simple if and only if
the development of �T is simple. We start by recording some basic lemmas. In this
section T need not be monotone.

Since leaves of T are vertices of P , T partitions each face of P into a finite num-
ber of polygons. Let FT .P / WD fFig be the disjoint union of these polygons, and
� W FT .P /! P be the projection generated by the inclusion maps Fi ,! P . Glue
each pair Fi , Fj 2FT .P / along a pair Ein , Ejm of their edges if and only if �.Ein/,
�.Ejm/ 62 T and �.Ein/D �.Ejm/. This yields a compact surface PT (which we
may think of as having resulted from “cutting” P along T ). The inclusion maps
Fi ,! P again define a natural projection � W PT ! P , which is the identity map
on int.PT / WD PT � @PT D P �T . So, since T is contractible, PT is a topological
disk. Also note that PT inherits an orientation from P , which in turn induces a
cyclical ordering zv0; : : : ; zvn on the vertices of @PT so that PT lies to the left of @PT ,
ie every zvi has an open neighborhood Ui in PT such that �.Ui/ lies to the left of
Œ�.zvi�1/; �.zvi/; �.zviC1/� in P . Since PT contains no vertices in its interior, and
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all the interior angles of @PT are less than 2� , it is locally isometric to the plane.
Therefore, since PT is simply connected, it may be isometrically immersed in the plane;
see eg the author [9, Lemma 2.2]. An immersion is a locally one-to-one continuous
map, and is isometric if it preserves distances. So we have established this:

Lemma 4.1 PT is simply connected and is locally isometric to R2 . In particular,
there exists an isometric immersion PT !R2 .

Any such immersion will be called an unfolding of P (generated by T ) provided that
it is orientation preserving, ie xPT lies locally on the left of @PT , with respect to the
orientation that @PT inherits from @PT . Recall that for any set X � PT , we let xX
denote the image of X under the unfolding PT !R2 , and say xX is simple provided
that X !R2 is one-to-one.

Lemma 4.2 xPT is simple if and only if @PT is simple.

Proof This is a special case of the following general fact (see the author [8]): if M

is a connected compact surface with boundary components @Mi , and M !R2 is an
immersion, then SM is simple if and only if each @M i is simple.

So, as far as Dürer’s problem is concerned, we just need to decide when @PT is simple.
To this end it would be useful to think of @PT not as the restriction of the unfolding
of PT to @PT , but rather as the development of a path of P . This path is given by

�T D Œv0; : : : ; vn� WD Œ�.zv0/; : : : ; �.zvn/�;

where zv0; : : : ; zvn is the cyclical ordering of the vertices of @PT mentioned above.
Thus, �T traces �.@PT / D T , and � establishes a bijection vi $ zvi between the
vertices of �T and @PT . For each zvi let zstzvi

denote the star of zvi in PT . Then,
since PT lies to the left of @PT , we have the following:

Lemma 4.3 For every vertex vi of �T , the left side of Œvi�1; vi ; viC1� in P coincides
with �.est zvi

/.

In particular, the left angles of �T in P are the same as the interior angles of PT . So,
since the unfolding PT !R2 is orientation preserving, it follows that the left angles
of @PT are the same as those of a development x�T of �T . Thus @PT is congruent
to x�T , and Lemma 4.2 yields:

Proposition 4.4 xPT is simple if and only if x�T is simple.
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5 Criteria for embeddedness of immersed disks

As we discussed in the last section, an immersed disk in the plane is simple (or
embedded) if and only if its boundary is simple. Here we generalize that observation.
Let D �R2 be the unit disk centered at the origin, with oriented boundary @D . For p ,
q 2 @D , let pq � @D denote the segment with initial point p and final point q . Recall
that an immersion is a continuous locally one-to-one map. Further recall that for any
X �D , and mapping f W D!R2 , we set xX WD f .X /, and say xX is simple if f is
one-to-one on X .

Figure 5

A simple curve segment in R2 , whose endpoints do not have the same height, is weakly
monotone (with respect to the direction .0; 1/) if it may be extended to an unbounded
simple curve by attaching a vertical ray to its top endpoint which extends upward, and
a vertical ray to its bottom endpoint which extends downward; see Figure 5. The main
result of this section is that an immersed disk is embedded whenever its boundary
admits a decomposition into weakly monotone paths:

Proposition 5.1 Let D
f
! R2 be an immersion with polygonal boundary. Suppose

there is a pair of points p0 , p1 in @D such that p0p1 and p1p0 are weakly monotone.
Then xD is simple.

The basic strategy for proving the above proposition is to extend f to an immersion of
a larger disk which has simple boundary and thus is one-to-one. To this end first note
that by polygonal boundary here we mean that there are points vi , i 2 Zk , cyclically
arranged along @D so that f maps each oriented segment viviC1 to a line segment.
Then we obtain a closed polygonal path Œxv0; : : : ; xvk � in R2 . Since f is locally one-to-
one, each vi has a neighborhood Ui in D such that xUi lies one side of Œxvi�1; xvi ; xviC1�

as defined in Section 2.3, and it is easy to see that this side must be the same for all i .
Thus we may say that xD lies locally on one side of @D .

Proof of Proposition 5.1 As discussed above, xD lies locally on one side of the
path @D . We may assume that this is the left-hand side after composing f with a
reflection of R2 . Since p0p1 , p1p0 are weakly monotone, they are simple and their
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endpoints have different heights. Suppose that xp0 is the endpoint with the lower
height, and let R0 be the vertical ray which emanates from xp0 and extends downward.
Similarly, let R1 be the vertical ray which emanates from xp1 and extends upward.
Let C be a circle so large which contains xD in the interior of the region it bounds.
Then R0 , R1 intersect C at precisely one point each, say at x0 and x1 respectively;
see Figure 6.

x0

xp0

xp1

x1

D1

x0

xp0

xp1

x1

D0

Figure 6

Now consider the oriented composite path x0x1 WD x0 xp0 [p0p1 [ xp1x1 shown on
the right diagram in Figure 6. Since p0p1 is weakly monotone, x0x1 is simple, and
thus it divides the region bounded by C into a pair of disks. Let D0 be the disk which
lies to the right of x0x1 . Similarly, let x1x0 WD x1 xp1[p1p0[ xp0x0 , and D1 be the
disk which lies on the right of the oriented path x1x0 , as shown in the left diagram
in Figure 6. Now gluing D0 and D1 along the segments x0 xp0 and x1 xp1 yields an
immersed annulus A. Note that by construction A lies locally on the right of @D .
Thus, gluing A to xD along @D yields an immersed disk, say D0 . Note that @D0 D C

which is simple. Thus it follows (via [8, Lemma 1.1], or Lemma A.2) that D0 and
consequently xD is simple as claimed.

The criteria which were proved above were the precise conditions we need in the
proof of Theorem 1.1. See Appendix A for more general criteria concerned with
embeddedness of immersed disks.

6 Structure of monotone cut trees

Here we describe how the leaves of T inherit a cyclical ordering from P , which in turn
orders the branches of T . We use this to define a sequence of paths �i in T , together
with a class of related paths � 0i . The paths �i join the top and bottom vertices of P ,
while � 0i are closed paths which correspond to the boundary of certain disks Di � PT .
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6.1 Leaves `i and junctures ji

Let � WD �T be the path tracing T defined in Section 4. Note that each edge E of T

appears precisely twice in � , because there are precisely two faces F1 , F2 of PT

such that �.F1/ and �.F2/ are adjacent to E . This quickly yields:

Lemma 6.1 Let v be a vertex of T which has degree n in T . Then there are
precisely n vertices of � which coincide with v .

In particular each leaf of T occurs only once in � . Consequently, � determines a
unique ordering `0 , `1; : : : ; `k�1 of the leaves of T . Further we set `iCk WD `i , and
designate `0 (the top vertex of P ) as the initial vertex of � . Recall that a vertex of �
is simple if its adjacent vertices are distinct.

Lemma 6.2 Any vertex of � which is not a leaf or root of T is simple.

Proof Let vi be a vertex of � which is not simple. We will show that the degree of vi

in T is 1, which is all we need. Since vi is nonsimple, the left side of Œvi�1; vi ; viC1�

is the entire star stvi
by definition. Thus, by Lemma 4.3, �.zstzvi

/ D stvi
. Choose

r > 0 so small that the metric “circle” C � PT of radius r centered at zvi lies in the
interior of zstzvi

. Then �.C / � int.stvi
/ is a simple closed curve enclosing vi which

intersects T only once. Thus degT .vi/D 1 as claimed.

Using the last lemma, we now show that the leaves of T may be characterized via the
height function h as follows:

Lemma 6.3 A vertex of � is a local maximum point of h on the sequence of vertices
of � if and only if it is a leaf of T .

Proof Suppose that v is a leaf of T , and let u, w be its adjacent vertices in � .
Since T is monotone, and v ¤ r , there exists a vertex v0 of T which is adjacent to v
and lies below it. Since degT .v/D 1, uD v0 D w . In particular, u, w lie below v .
So v is a local maximizer of h. Conversely, suppose that v is a local maximizer of h.
Then u, w lie below v , because T does not have horizontal edges. Let �u , �w be
the simple monotone paths in T which connect u, w to r respectively. Then vu ��u

and vw ��w are simple, since they are monotone. Hence uD w , by the uniqueness
of simple paths in T . So v is not simple and therefore must be either a leaf or the root
of T , by Lemma 6.2. The latter is impossible, since v is a local maximizer of h.
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`0

`1

`i

`iC1

j0

PT
z̀
0

z|0

z̀
1

z̀
i

z|i
ji z̀

iC1
�

Figure 7

It follows from Lemma 6.3 that between every pair of consecutive leaves `i , `iC1

of � there exists a unique vertex ji , called a juncture, which is a local minimizer
of h; see Figure 7. Note that some junctures of � may coincide with each other, or
with the root r of T . For any ordered pair .v; w/ of vertices of T let .vw/T be the
(unique) simple path in T joining v to w . Note that the paths j̀ ji and ji`iC1 of �
are monotone and therefore simple. Thus

(4) .`iji/� D .`iji/T and .ji`iC1/� D .ji`iC1/T :

6.2 Branches ˇi and the paths �i

For 0 � i � k � 1, we define the branches of T as the paths ˇi WD .`ir/T ; which
connect each leaf of T to its root. Note that, by (4), we have

(5) ˇi D .`ir/T D .`iji/T � .jir/T D .`iji/� � .jir/T :

Having ordered the branches of T , we now describe the first class of paths which are
useful for our study of monotone trees:

(6) �i WD .`0`i/� �ˇi D .`0ji/� � .jir/T

for 0� i �k�1. See Figure 8 for some examples. Next we record how the composition
of these paths is related to the branches of T .

Lemma 6.4 For 0� i � k � 2, ��1
i ı�iC1 D ˇ

�1
iC1
�ˇiC1:

Proof By (4), (5) and (6), we have

��1
i ı�iC1 D ..`0ji/� � .jir/T /

�1
ı ..`0`iC1/� �ˇiC1/

D .rji/T � .ji`0/��1 ı .`0ji/� � .ji`iC1/� �ˇiC1

D .rji/T � .ji`iC1/T �ˇiC1 D .r`iC1/T �ˇiC1 D ˇ
�1
iC1 �ˇiC1:

This concludes the proof.
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�i �iC1 ��1
i ı�iC1

`i

`iC1 `iC1

Figure 8

The following observation shows, via Lemma 2.1(i), that �iC1 lies to left of �i near ji ,
if ji is an interior vertex of �i .

Lemma 6.5 If ji ¤ r , then �ji
Œ�iC1� < �ji

Œ�i �; for 0� i � k � 2.

Proof Let v , w be the vertices of �iC1 which precede and succeed ji respectively. By
Lemma 6.2, v¤w . Next let u denote the vertex of �i which succeeds ji ; see Figure 9.
We need to show that †.v; ji ; w/ <†.v; ji ;u/: Suppose, towards a contradiction, that
†.v; ji ; w/�†.v; ji ;u/.

u

v w

ji

S
�iC1

�i

Figure 9

The equality in the last inequality cannot occur, because by definitions of �i and
�iC1 , u lies below ji while w lies above it (so u¤ w ). Thus we may assume that
†.v; ji ; w/ >†.v; ji ;u/. Then, by Lemma 2.1(i), u lies strictly in the left side S of
Œv; ji ; w�. Consequently uji intersects the interior of S , which means int.S/\T ¤∅.
But this is impossible because S D �.est z|i

/ by Lemma 4.3 which yields

(7) int.S/D int.�.est zji
//D �.int.est z|i

//� �.int.PT //D P �T:

This concludes the proof.

Now we are ready to prove the main result of this subsection:

Proposition 6.6 For 0� i � k � 2, .�i/
�1 ı x�iC1 � .ˇ

�1
iC1
�ˇiC1/ji

:
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Proof By Lemma 6.4, ˇ�1
iC1 �ˇiC1 D �

�1
i ı�iC1 . So we just need to check that

.��1
i ı�iC1/ji

� .�i/
�1
ı x�iC1;

which follows from Proposition 3.1 via Lemma 6.5. More specifically, there are two
cases to consider. If ji D r , then �i is a subpath of �iC1 , which corresponds to the
case “mDk ” in Proposition 3.1. If ji¤ r , then Lemma 6.5 together with Lemma 2.1(i)
ensure that �iC1 lies to the left of �i near ji , and so the hypothesis of Proposition 3.1
is again satisfied.

6.3 Dual branches ˇ 0

i
and the paths � 0

i

To describe the second class of paths which we may associate to a monotone tree, we
first establish the existence of a collection of paths ˇ0i which are in a sense dual to the
branches ˇi defined above.

Proposition 6.7 Each leaf `i of a monotone cut tree T may be connected to the top
leaf `0 of T via a monotone path ˇ0i in P , which intersects T only at its endpoints.

Assume for now that the above proposition holds. Then for each leaf `i , we fix a
path ˇ0i given by this proposition and set

(8) � 0i WD

�
.`0`i/� �ˇ

0
i 1� i � k � 1;

� i D k:

Note that since the interior of ˇ0i lies in P �T , it lifts to a unique path ž0i in PT (see
Figure 10) such that �. ž0i/Dˇ

0
i . Consequently each � 0i corresponds to a simple closed

curve z� 0i in PT , where

z� 0i WD .
z̀
0
z̀
i/@PT

� ž
0
i for 1� i � k � 1 and z� 0k WD @PT :

Let Di � PT be the disk bounded by z� 0i which lies to the left of it, and note that
Dk D PT .

The unfolding PT !
xPT � R2 induces unfoldings Di !

xDi � R2 . Thus, as was
the case for @PT discussed in Section 4, there are two congruent ways to map each
boundary curve @Di to R2 : one via the development of � ı z� 0i D �

0
i and the other via

the restriction of the unfolding xDi to @Di . So we may record:

Lemma 6.8 For 1 � i � k , the mappings @Di ! R2 generated by x� 0i and @Di

coincide, up to a rigid motion. In particular, x� 0i bounds an immersed disk.
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� 0i

`o

`i

Di
ˇ0i

ž0
i

PT

z̀
i

z̀
0

z� 0i

Figure 10

To prove Proposition 6.7, we need the following lemma whose proof is similar to that of
Lemma 6.5. Recall that ji are local minimizers of h on � which traces T D �.@PT /.
Thus ji are local minimizers of hı� on @PT . The next observation generalizes this fact.

Lemma 6.9 Each juncture ji of � is a local minimizer of h ı� on PT .

Proof Let v , w be vertices of � which are adjacent to ji . If ji D r , then there is
nothing to prove, since r is the absolute minimizer of h on P . So assume that ji ¤ r .
Then v ¤ w by Lemma 6.2. Consequently vw WD Œv; ji ; w� determines a pair of sides
in stji

. Let X � stji
be the set of points whose heights are smaller than h.ji/. Then X

is connected and is disjoint from vw . Thus X lies entirely on one side of vw which
will be called the bottom side, while the other side will be the top side. Recall that
S WD �.est z|i

/ is one of the sides of vw by Lemma 4.3. We claim that S is the top
side, which is all we need. To this end note that the path jir of T intersects X . So T

intersects the interior of the bottom side. But int.S/\T D∅ by (7). Thus S cannot
be the bottom side.

`o

`i

PT

z̀
i

z̀
0

Figure 11

Now we are ready to prove the main result of this subsection:
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Proof of Proposition 6.7 Let’s say a path in PT is monotone if its projection into
P is monotone. We will connect z̀i to z̀0 with a monotone path ž0i in PT which
intersects @PT only at its endpoints. Then ˇ0i WD �. ž

0
i/ is the desired path. We will

proceed in two stages: first (Part I) we construct a monotone path ž0i in PT which
connects z̀i to z̀0 , and then (Part II) perturb ž0i to make sure that its interior is disjoint
from @PT . See Figure 11 and compare it to Figure 10.

Part I If `i D `0 (ie i D 0), we set ž0i WD z̀0 and we are done. So suppose that
`i ¤ `0 . Then there is a vertex v of P adjacent to `i which lies above it. The only
edge of T which is adjacent to `i connects to it from below. Thus `iv is not an edge
of T , and therefore corresponds to a unique edge z̀izv of PT . This will constitute the
first edge of ž0i . There are three cases to consider:

(i) v D `0 .

(ii) v is a leaf of T other than `0 .

(iii) v is not a leaf of T .

If (i) holds, we are done. If (ii) holds, then we may connect v to an adjacent vertex v0

lying above it to obtain the next edge zvzv0 of ž0i . If (iii) holds, then, by Lemma 6.9, v
cannot be a juncture of � , because it is the highest point of `iv . Thus v lies in the
interior of a subpath `njn or jn`nC1 of � . In particular, there exists a monotone
subpath v`n of ��1 or v`nC1 of � which connects v to a leaf v0 of T which lies
above it. Lifting this path to @PT will extend our path to zv0 . Now again there are three
cases to consider for v0 , as listed above, and repeating this process eventually yields
the desired path ž0i .

Part II After a subdivision, we may assume that all faces of PT are triangles. If
an edge E of ž0i lies on @PT , let F be the face of @PT adjacent to E , choose a
point p in the interior of F which has the same height as an interior point of E , and
replace E with the pair of line segments which connect the vertices of E to p ; see
the left diagram in Figure 12.

E
p

pv

a

b

Figure 12

Thus we may perturb each edge of ž0i which lies on @PT so that ž0i intersects @PT

only at some of its vertices. Let v be such a vertex. Further let a (resp. b ) be a point in
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the interior of the edge of ž0i adjacent to v which lies above (resp. below) v . We need
to replace the segment ab of ž0i with another monotone segment in PT which avoids
v ; see the right diagram in Figure 12. Pick a point p in the interior of the star of PT

at v which has the same height as v . It suffices to construct a pair of monotone paths
in int.PT /D P �T which connect a and b to p . The first path may be constructed
as follows, and the other path is constructed similarly. Let Ra , Rb be the rays which
emanate from v and pass through a, b respectively. These rays determine a region
R in the star of PT at v which is contained between them. There exists a face F of
PT which contains a and intersects the interior of R. If p 2 F , then we connect a

to p with a line segment and we are done. If p 62 F , then F has a unique edge E

which lies in the interior of R and is adjacent to v . There is a point a0 in the interior
of E which lies below a (because E is adjacent to v which is below a). Connect a

to a0 with a line segment. Next consider the face of PT which is adjacent to E and is
different from F . If this face contains p then we connect a0 to p with a line segment
and we are done. Otherwise we repeat the above procedure until we reach p .

7 Affine developments of monotone paths

Here we study the effects of the affine stretchings of P on the developments of its
piecewise monotone paths. The main results of this section are Propositions 7.5 and 7.6
below. The first proposition shows that affine stretchings of piecewise monotone paths
have piecewise monotone developments, and the second proposition states that this
development is simple if the original curve double covers a monotone path. First we
need to prove the following lemmas. At each interior vertex 
i of a path � in P , let ‚i

denote the angle between 
i�1� 
i , and 
iC1� 
i in R3 . Further recall that �i , �i
0

denote the left and right angles of � in P .

Lemma 7.1 At any interior vertex 
i of a path � in P , we have �i ; �i
0
�‚i .

Proof Let S be a unit sphere in R3 centered at 
i , and z
i�1 , z
iC1 be the projections
of 
i�1 and 
iC1 into S as defined in Section 2.3. Then ‚i is the geodesic distance
between z
iC1 and z
i�1 in S . So it cannot exceed the length of any curve in S

connecting z
iC1 and z
i�1 , including those which correspond to �i , �i
0 .

Let P� denote the image of P under the affine stretching .x;y; z/ 7! .x=�;y=�; z/.
For any object X associated to P we also let X � denote the corresponding object
of P� . Further, we let X1 denote the limit of X � as �!1. In particular note
that P1 lies on the z–axis. A path is monotone if the heights h of its vertices form a
strictly monotone sequence.
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Lemma 7.2 Let � be a monotone path in P . Then �1i D .�i
0/1 D � .

Proof For each vertex 
i of � , h.
 �i / is constant. Thus h.
1i /D h.
i/. Since � is
monotone, it follows that 
1i lies in between 
1

i�1
and 
1

iC1
on the z–axis. So


1i�1� 

1
i and 
1iC1� 


1
i

are antiparallel vectors, which yields that ‚1i D �: By Lemma 7.1, ��i , .�i
0/� �‚�i .

Thus �1i ; .�i
0/1 � �: On the other hand, by (2), �1i C .�i

0/1 � 2�: So

�1i D .�i
0/1 D �:

The last lemma leads to the following observation.

Lemma 7.3 Let v be a vertex of P . Then, †P .v/
1 D 2� if v is not the top or

bottom vertex of P . Otherwise, †P .v/
1 D 0.

Proof The last statement is obvious. To see the first statement note that if v is not an
extremum point of h, then since P is convex there exists a monotone path Œu; v; w�
in P , where u and w are adjacent vertices of v . Let � , � 0 be the angles of this path
at v . Then �1 D .� 0/1 D � by Lemma 7.2. So †P .v/

1 D 2� by (2).

A path is piecewise monotone if it is composed of monotone subpaths, or does not
contain any horizontal edges. The last two lemmas yield:

Lemma 7.4 Let � be a piecewise monotone path in P , and 
i be an interior vertex
of � . If 
i is a local extremum of h on � , then �1i , .�i

0/1 D 0 or 2� . Otherwise
�1i D .�i

0/1 D � .

Proof If 
i is not a local extremum of h (on � ), then Œ
i�1; 
i ; 
iC1� is a monotone
path. Consequently, �1i D .�i

0/1D� by Lemma 7.2 as claimed. Next suppose that 
i

is a local extremum of h. If 
i is the top or bottom vertex of P , then †P .
i/
1 D 0,

by Lemma 7.3, which yields that �1i D .�i
0/1 D 0 by (2), and again we are done. So

suppose that 
i is not an extremum vertex. Then †P .
i/
1 D 2� by Lemma 7.3, and

consequently �1i C .�i
0/1D 2� by (2). So we just need to check that �1i D 0 or 2� .

To see this note that if 
i is not simple, then ��i D†P .
i/
� , which yields that �1i D2� ,

by Lemma 7.3. So we may assume that 
i is simple. If 
i is a local maximum (resp.
local minimum) of h, then there exists a vertex v of P which is adjacent to 
i and
lies above (resp. below) it. Consequently, v lies strictly either to the right or left
of Œ
i�1; 
i ; 
iC1�. Suppose that v lies strictly to left of Œ
i�1; 
i ; 
iC1�. Then ��i D
†.
i�1; 
i ; v/

�C†.v; 
i ; 
iC1/
�; by Lemma 2.1(ii). But Œ
i�1; 
i ; v� and Œv; 
i ; 
iC1�
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are monotone. Thus by Lemma 7.2, †.
i�1; 
i ; v/
1 D � D †.v; 
i ; 
iC1/

1: So
�1i D �C� D 2� . If, on the other hand, v lies strictly to the right of Œ
i�1; 
i ; 
iC1�,
then v lies strictly to the left of Œ
iC1; 
i ; 
i�1�, and a similar reasoning shows that
.�i
0/1 D 2� , or �1i D 0.

We will assume that all developments below have initial condition ..0; 0/; .0;�1//,
as defined in Section 3. A monotone path is positively (resp. negatively) monotone
provided that the heights of its consecutive vertices form an increasing (resp. decreasing)
sequence.

Proposition 7.5 Let � be a piecewise monotone path in P and x� be a mixed develop-
ment of � . Then x�1 is a path with vertical edges. Furthermore, each subpath of x�1

which corresponds to a positively (resp. negatively) monotone subpath of � will be
positively (resp. negatively) monotone.

Proof Recall that h.
1i / D h.
i/. So since � is monotone, 
1i ¤ 
1i�1 . Then,
since kx
 �i � x


�
i�1k D k


�
i � 


�
i�1k, it follows that kx
1i � x


1
i�1k D k


1
i � 


1
i�1k ¤ 0.

So x
1i ¤ x

1
i�1 , which means that x�1 is a path. In particular x�1i , .x� 0i/

1 are well
defined, and are limits of x��i , .x� 0i/

� respectively. Now Lemma 7.4 quickly completes
the argument.

The doubling of a path � D Œ
0; : : : ; 
k � is the path

D� WD � ���1
D Œ
0; 
1; : : : ; 
k�1; 
k ; 
k�1; : : : ; 
1; 
0�DW Œ
0; : : : ; 
2k �:

Our next result shows that doublings of monotone paths which end at vertices of P

have simple unfoldings once they get stretched enough.

Proposition 7.6 Let � D Œ
0; : : : ; 
k � be a monotone path in P such that 
k is a
vertex of P different from its top or bottom vertex, and D� WD .D�/
` be a mixed
development of D� based at 
` for some 0� ` < k . Then, for sufficiently large �:

(i) D�� is simple.

(ii) The line which passes through x
 �
0

, x
 �
2k

intersects D�� at no other point.

(iii) If ˛�
0

, ˇ�
0

denote the interior angles of D�� � Œx
 �
2k
; x
 �

0
� at x
 �

0
, x
 �

2k
, then

˛�0 Cˇ
�
0 < �:

Furthermore, ˛�
0

, ˇ�
0

may be arbitrarily close to �=2.
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Proof We proceed by induction on the number of edges of � . Clearly the proposition
holds when � has only one edge. Suppose that it holds for the subpath ��

1
WD

Œ
 �
1
; : : : ; 
 �

k
� of �� . Then we claim that it also holds for �� . Henceforth we will

assume that � is arbitrarily large and drop the explicit reference to it. Let L1 be the line
passing through the endpoints x
1 , x
2k�1 of D�1 , and o be the midpoint of x
1x
2k�1 .
We may assume, after rigid motions, that o is fixed, L1 is horizontal, and D�1 lies
above L1 ; see Figure 13. Furthermore, since by assumption 
k is not the top or bottom
vertex of P , we may assume that the left angle of D� at 
k (which coincides with
the total angle of P at 
k ) is arbitrarily close to 2� by Lemma 7.3. Then it follows
that x
2k�1 lies to the right of x
1 on L1 , just as depicted in Figure 13.

L0

L1

x
0
x
2k

x
1 x
2k�1

˛0 ˇ0

˛01 ˇ01

˛1
ˇ1

x�1 x�2k�1

Figure 13

Now we claim that x
0 , x
2k lie below L1 . To see this, let ˛1 , ˇ1 be the interior angles of
D�1 � Œx
2k�1; x
1� at x
1 , x
2k�1 respectively. Further let x�1 , x�2k�1 denote respectively
the left angles of D� at x
1 and x
2k�1 . We may assume ˛1 , ˇ1��=2 by the inductive
hypothesis on �1 . By Lemma 7.2, we may also assume that x�1; x�2k�1 � �: So

(9) ˛1C
x�1 �

3�
2

and ˇ1C
x�2k�1 �

3�
2
;

which show that x
0 , x
2k lie below L1 as claimed. Next we show that x
1x
0 , x
2k�1x
2k

do not intersect, which will establish (i). It suffices to check that ˛0
1
Cˇ0

1
� � , where

˛01 WD 2� �˛1�
x�1 and ˇ01 WD 2� �ˇ1�

x�2k�1:

There are two cases to consider: either x�1D �1 or x�1
0D �1

0 by the definition of mixed
development. If x�1 D �1 , then

x�1C
x�2k�1 D �1C �2k�1 D �1C �1

0
D†P .
1/� 2�;

where the identity �2k�1 D �1
0 used here follows from the definition of D� . If, on

the other hand, x� 0
1
D �1

0 , then

x�1C
x�2k�1 D 2� � x� 01C

x�2k�1 D 2� � �1
0
C �2k�1 D 2�:
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So we always have x�1C
x�2k�1 � 2� . Also note that ˛1Cˇ1 < � by the inductive

hypothesis on �1 . Thus it follows that,

(10) ˛01Cˇ
0
1 D 4� � .˛1Cˇ1/� .x�1C

x�2k�1/ > 4� �� � 2� D �;

as desired. To establish (ii), let L0 be the line passing through x
0 , x
2k . By (10) the
quadrilateral Q WD x
0x
1x
2k�1x
2k is convex. Thus x
1 , x
2k�1 lie on the same side or
“above” L0 . It remains to check that D�1 is disjoint from L0 . To this end note that the
length of D�1 is bounded from above, since affine stretchings do not increase lengths.
So D�1 is contained in a half disk H of some constant radius which lies above L1

and is centered at o. Further x
1x
0 and x
2k�1x
2k are almost orthogonal to L0 by (9),
and they have the same length, which is bounded from below (by jh.
1/� h.
0/j).
Thus L0 is nearly parallel to L1 while its distance from o is bounded from below.
So L0 will be disjoint from H . Finally, (iii) follows immediately from (10), since Q

is a simple quadrilateral and thus the sum of its interior angles is 2� .

8 Proof of Theorem 1.1

For convenience, we may assume that uD .0; 0; 1/. Let � WD �T be the path which
traces T as defined in Section 4. Recall that, as we showed in Section 6, � admits a
decomposition into monotone subpaths:

� D `0j0 � j0`1 � � � � � `k�1jk�1 � jk�1`0:

Also recall that `iji are negatively monotone, and ji`iC1 are positively monotone. By
Proposition 4.4 we just need to show that the development x�� is simple for large �.
To this end, we first record how large � needs to be, and then proceed by induction on
the number of leaves of T .

8.1 Fixing the stretching factor �

Let �i , � 0i be the paths defined in Section 6, and recall that these paths also admit
decompositions into monotone subpaths:

�i D `0j0 � j0`1 � � � � � `i�1ji�1 � ji�1`i � `ir; 0� i � k � 1;

� 0i D `0j0 � j0`1 � � � � � `i�1ji�1 � ji�1`i � `i`0; 1� i � k:

Let ��i , .� 0i/
� denote the affine stretching of these paths, and x��i , .x� 0i/

� be their
corresponding developments with initial condition ..0; 0/; .0;�1//, as in Section 7.
We need to choose � so large that:
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(C1) For each positively (resp. negatively) monotone subpath of �i or � 0i the corre-
sponding subpath of x��i or .x� 0i/

� is positively (resp. negatively) monotone.

(C2) .x��i /
�1 ı x��

iC1
is simple and lies on one side of the line L� passing through

its endpoints. Furthermore, L� is not vertical (see Figure 14).

x̀
0

x̀
0

x̀
i x̀

i

xji
xji

xji

xri xri
xriC1 xriC1

x̀
iC1

x̀
iC1

x�i
x�iC1

x��1
i ı
x�iC1

Figure 14

To see that (C1) holds let 
j , x
1j denote the vertices of � , x�1 , and set

0< � < 1
2

inf
j
kx
1j � x


1
j�1k D

1
2

inf
j
jh.
j /� h.
j�1/j:

Choose � so large that kx
 �j � x

1
j k � � . Then x
 �j lies below (resp. above) x
 �j�1 if and

only if x
1j lies below (resp. above) x
1j�1 . Thus monotone subpaths of x��i correspond
to those of x�1i , which by Proposition 7.5 correspond to the monotone subpaths of �i .
Similarly we may obtain an estimate for � in .x� 0i/

� . To see that (C2) holds note that,
by Proposition 6.6,

.x��i /
�1
ı x��iC1 � ..ˇ

�
iC1

/�1 �ˇ�
iC1

/j�
i
� .Dˇ�

iC1
/j�

i
:

So, since ˇi are monotone, it follows from Proposition 7.6 that the right-hand side of
the above expression is simple and lies on one side of the line L� passing through
its endpoints. Further, L� becomes arbitrarily close to meeting .x��i /

�1 ı x��iC1 or-
thogonally, as � grows large. At the same time, the edges of .x��i /

�1 ı x��iC1 become
arbitrarily close to being vertical, by Proposition 7.5. Thus L� cannot be vertical for
large �. For the rest of the proof we fix � to be so large that (C1), (C2) hold, and drop
the explicit reference to it.

8.2 The inductive step

It remains to show that x� is simple. To this end recall the definition of weakly monotone
from Section 5, and observe that:
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Lemma 8.1 For 0� i � k � 1, if x�i is weakly monotone, then x� 0
iC1

is simple.

Proof By Lemma 6.8, x� 0iC1 bounds an immersed disk. So, by Proposition 5.1, it
suffices to show that x� 0iC1 admits a decomposition into a pair of weakly monotone
curves. Indeed, x� 0iC1D `0ji �ji`0 ; see Figure 15. Note that `0ji is weakly monotone,
because it is a subpath of x�i . To show that ji`0 is also weakly monotone, via (C1), it
suffices to check that ji`0 is monotone. This is the case, since ji`0Dji`iC1�`iC1`0D

ji`iC1 �ˇ
0
iC1; and ji`iC1 , ˇ0iC1 are both positively monotone.

x̀
0

x̀
iC1

xDiC1
x� 0

iC1

xji

Figure 15

Now recall that � 0
k
D � by (8). Thus, by Lemma 8.1, to complete the proof of

Theorem 1.1 it suffices to show that x�k�1 is weakly monotone. By (C1), x�0 is
monotone, since �0 D ˇ0 is monotone. So it remains to show:

Lemma 8.2 For 0� i � k � 2, if x�i is weakly monotone, then so is x�iC1 .

To establish this lemma, let a be a point on the y –axis which lies above all paths x�i , x� 0i .
Further let xri be the final point of x�i and bi be a point with the same x–coordinate
as xri which lies below all paths x�j , � 0j . We may also assume that all bi have the same
height. Now set

y�i WD ax̀0 � x�i � xribi :

Then x�i is weakly monotone if and only if y�i is simple. Thus to prove Lemma 8.2,
we need to show that y�iC1 is simple, if y�i is simple. To this end note that y�iC1 D

ax̀iC1 �
x̀
iC1biC1 . Thus it suffices to check that:

(I) ax̀iC1 and x̀iC1biC1 are each simple.

(II) ax̀iC1\
x̀
iC1biC1 D f

x̀
iC1g.
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8.3 Proof of the inductive step

It remains to establish items (I) and (II) above subject to the assumption that y�i is
simple, or x�i is weakly monotone, in which case x� 0

iC1
is also simple by Lemma 8.1.

8.3.1 Verifying (I) First we check that x̀iC1biC1 is simple. Note that

x̀
iC1biC1 D

x̀
iC1xriC1 � xriC1biC1 D `iC1r � xriC1biC1I

see the right diagram in Figure 16. Recall that xriC1biC1 is negatively monotone by the
definition of biC1 . Further, by (C1), `iC1r is negatively monotone as well, since `iC1r

is negatively monotone by the definition of �iC1 . So x̀iC1biC1 is monotone and
therefore simple.

x̀
0

x̀
0

a a

xji
xji

xriC1

biC1

xri

bi

x̀
iC1

A

x̀
iC1

x̀
iC1

Figure 16

Next we establish the simplicity of ax̀iC1 . Note that ax̀iC1 D axji � xji
x̀
iC1; and axji is

simple because it is a subpath of y�i ; see the left diagram in Figure 16. Furthermore,
xji
x̀
iC1 is simple as well, because it is a subpath of x� 0iC1 . It remains to check that

axji \ xji
x̀
iC1 D fxjig:

To see this note that axji D ax̀0 � x̀0 xji . Thus it suffices to show that

x̀
0
xji \ xji

x̀
iC1 D f

xjig and ax̀0\ xji
x̀
iC1 D∅:

The first equality holds because x̀0 xji and xji
x̀
iC1 are both subpaths of x� 0iC1 . To see the

second equality note that xji
x̀
iC1D ji`iC1 is positively monotone by (C1) while ax̀0 is

negatively monotone by definition of a. So it suffices to check that x̀iC1 lies below x̀0 .
This is the case because x̀iC1

x̀
0 D `iC1`0 D

x̌0
iC1; and ˇ0iC1 is positively monotone.

Thus x̀iC1
x̀
0 is positively monotone by (C1).
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8.3.2 Verifying (II) Let

A WD bixri � .riji/x��1
i
� .ji`0/x� 0

iC1
� x̀0aI

see the middle diagram in Figure 16. Since each of the paths in this composition is
positively monotone, A is simple. Let S � R2 be the slab contained between the
horizontal line passing through a and the horizontal line on which all bi lie. Then
S �A will have precisely two components, whose closures will be called the sides
of A, and may be distinguished as the left and the right side in the obvious way. To
establish claim (II) above it suffices to show:

(i) ax̀iC1 lies to the left of A.

(ii) One point of x̀iC1biC1 lies strictly to the right of A.

(iii) x̀iC1biC1\AD fx̀iC1g.

Indeed, (ii) and (iii) show that all of x̀iC1biC1 lies to the right of A, because x̀iC1biC1

is connected and lies in the slab S . This together with (i) show that ax̀iC1 and x̀iC1biC1

may intersect only along A, and then (iii) ensures that the intersection is x̀iC1 . It
remains to establish each of the three items listed above:

(i) We have ax̀iC1 D ax̀0 � x̀0 xji � xji
x̀
iC1 . Note that ax̀0 and xji

x̀
iC1 lie on A. Thus

it remains to check that x̀0 xji lies to the left of A. We have

AD bi
xji � xji

x̀
0 �
x̀
0a:

Note that x̀0 xji meets x̀0a and bi
xji only at its endpoints, since all these paths lie on y�i .

Further x̀0 xji meets xji
x̀
0 again only at its endpoints, since these paths lie on x� 0iC1 .

So A meets x̀0 xji only at its endpoints. It suffices to show then that a point in the
interior of x̀0 xji lies on the left of A. This is so, because xDiC1 lies on the left of x� 0iC1

and the orientations of A and x� 0iC1 agree where they meet.

(ii) Near x̀iC1 , A coincides with x� 0iC1 . Let C be a circle centered at x̀iC1 whose
radius is so small that it intersects x� 0iC1 and A only at two points; see the right diagram
in Figure 17.

Then there exists a neighborhood U of z̀iC1 in DiC1 whose image xU coincides with
the left side of x� 0iC1 in C . Consider the edge xE of x̀iC1biC1 which is adjacent to x̀iC1 ,
and let E be the corresponding edge of z�iC1 in @PT ; see the left diagram in Figure 17.
We claim that there is a point of xE inside C which lies strictly to the right of x� 0iC1 , or
is disjoint from xU , which is all we need. To see this recall that the unfolding PT !R2

is locally one-to-one. Thus it suffices to note that the interior of E is disjoint from
DiC1 . Indeed, since E� @PT , E\DiC1DE\DiC1\@PT DE\ z̀0 z̀iC1Df

z̀
iC1g.
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z� 0
iC1 DiC1

U
z̀
iC1

C

E

z̀
0 xU

x̀
iC1

xE

x� 0
iC1

Figure 17

(iii) Since x̀iC1biC1 is negatively monotone, it may intersect A only along its subpath
which lies below x̀iC1 , that is bi

x̀
iC1 . So it suffices to check that bi

x̀
iC1\

x̀
iC1biC1D

f`iC1g, or bibiC1 WD bi
x̀
iC1 �

x̀
iC1biC1 is simple. To see this, note that

bibiC1 D bixri � ririC1 � xriC1biC1I

see Figure 18. The first and third paths in this decomposition are simple. Further,
ririC1 D

x��1
i ı x�iC1 which is also simple by (C2). Furthermore, again by (C2),

ririC1 lies above the line L passing through its endpoints, while bixri and xriC1biC1

lie below L (“above” and “below” here are all well defined, since L is not vertical
by (C2)). So bibiC1 is simple, as claimed.

x̀
iC1

xri

bi

xriC1

biC1

L

Figure 18

Appendix A: More on embeddedness of immersed disks

Here we generalize Proposition 5.1, in case it might be useful in making further
progress on Dürer’s problem. We say R�R2 is a ray emanating from p if there exists
a continuous one-to-one map r W Œ0;1/! R2 such that r.Œ0;1// D R, r.0/ D p

and kr.t/ � pk ! 1 as t ! 1. Also, as before, for any X � D , and mapping
f W D!R2 , we set xX WD f .X /, and say xX is simple if f is one-to-one on X .

Theorem A.1 Let D
f
!R2 be an immersion. Suppose there are k � 2 distinct points

pi , i 2 Zk , cyclically arranged in @D such that pipiC1 is simple. Further suppose
that there are rays Ri �R2 emanating from xpi such that:
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(i) Ri \RiC1 D∅.

(ii) Ri \pi�1piC1 D f xpig.

(iii) There is an open neighborhood Ui of pi in D and a point ri 2Ri �f xpig such
that xUi \ xpiri D f xpig.

Then xD is simple.

To prove this theorem we need a pair of lemmas, which follow from the theorem on
the invariance of domain (if M and N are manifolds of the same dimension and
without boundary, U �M is open, and f W U !N is a one-to-one continuous map,
then f .U / is open in N ). The first lemma also uses the fact that a simply connected
manifold admits only trivial coverings.

Lemma A.2 Let M be a compact connected surface, and M
f
!R2 be an immersion.

Suppose that @M lies on a simple closed curve C �R2 . Then SM is simple.

Proof There is a homeomorphism �W R2!R2 which maps C to S1 , by the theorem
of Schoenflies; see Moise [15]. So we may assume that @M � S1 , after replacing f
with �ıf . Since M is compact, it contains a point x which maximizes kf kW M !R.
By invariance of domain, int.M / is open in R2 . Thus it follows that x 2 @M , or
xx 2 S1 , which in turn implies that kf k � 1, or SM �D . Now since @M � S1 D @D ,
f W M !D is a local homeomorphism. To see this let U be an open neighborhood
in M such that f is one-to-one on the closure cl U of U . Then cl U is homeomorphic
to cl U (any one-to-one continuous map from a compact space into a Hausdorff space
is a homeomorphism onto its image). So U is homeomorphic to xU . Further since
.U \ @M / � @D it follows that xU is open in D , as claimed. Now since M is
compact and D is connected, f is a covering map (this is a basic topological fact;
see do Carmo [3, page 375]). But D is simply connected, and M is connected;
therefore, f is one-to-one.

For every x 2R2 let Br .x/ denote the (closed) disk of radius r centered at x . Then
for any X �R2 , we set Br .X / WD

S
x2X

Br .x/.

Lemma A.3 Let D!R2 be an immersion, and A� @D be a closed set such that xA
is simple. Then for every closed connected set X � int.A/ and � > 0, there exists a
connected open neighborhood U of X in D such that xU is simple and lies in B�. xX /.
Furthermore, U �A is open, connected, and U �A\AD∅.
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Proof Let U WD int.Bı.X //\D ; see Figure 19. We claim that if ı > 0 is sufficiently
small, then U is the desired set. Indeed (for small ı ) xU � B�. xX /, since D! R2

is continuous and X is compact. Further, since D!R2 is locally one-to-one, X is
compact, and xX is simple, it follows that xU is simple (this is a basic fact; see, eg,
Spivak [21, page 345]).

D

U X

A

xU
xX

xA

Figure 19

Next note that since X � int.A/, X is disjoint from @D� int.A/, which is compact.
Thus U will be disjoint from @D�A as well. Consequently U �AD U � @D which
is open in R2 . So, since U �A is simple, it follows from the invariance of domain
that U �A is open, and it is connected as well since U �A is connected. Finally note
that if we set V WD int.Bı.A//\D , then xV will be simple, just as we had argued
earlier for xU . So, since U , A� V , we have .U �A/\ xAD .U �A/\AD∅:

Now we are ready to prove the main result of this section:

Proof of Theorem A.1 We will extend f to an immersion zf W M !R2 where M

is a compact connected surface containing D , zf D f on D , and zf .@M / lies on a
simple closed curve. Then zf is one-to-one by Lemma A.2, and hence so is f .

Part I: Constructions of M and zf Let C �R2 be a circle which encloses xD and
is disjoint from it. Then each ray Ri must intersect C at some point. Let qi 2 Ri

be the first such point, assuming that Ri is oriented so that xpi is its initial point; see
Figure 20.

Di

xx SW

qi

qiC1

xpi

xpiC1

Figure 20
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Now set Ai WD xpiqi [ pipiC1 [ xpiC1qiC1: Then, by conditions (i) and (ii) of the
theorem, Ai is a simple curve. Consequently it divides the disk bounded by C into
a pair of closed subdisks, which we call the sides of Ai . Let x 2 int.pipiC1/. By
Lemma A.3, there is an open neighborhood W of x in D such that SW � pipiC1

is connected and is disjoint from pipiC1 . Further, choosing � sufficiently small in
Lemma A.3, we can make sure that SW is disjoint from xpiqi and xpiC1qiC1 . So it
follows that SW �Ai is connected and is disjoint from Ai . Consequently, it lies in the
interior of one of the sides of Ai . Let Di be the opposite side. Glue each Di to DiC1

along xpiC1qiC1 . Further, glue each Di to D by identifying pipiC1 with pipiC1 via
f . This yields a compact connected surface M which contains D . Define

zf W M !R2

by letting zf D f on D , and zf be the inclusion map Di ,! R2 on Di . Then zf is
continuous and zf .@M /� C as desired.

Part II: Local injectivity of zf Recall that zf is locally one-to-one on the interiors
of D and each Di by definition. Also note that zf is one-to-one near every point of C

different from qi . So it remains to check that zf is one-to-one near every point of
pipiC1 and xpiqi . There are four cases to consider:

(i) First we check the points x0 2 int.pipiC1/. It suffices to show that there exists
an open neighborhood W 0 of x0 in D such that W 0 �Ai is disjoint from Di (this
would show that Di and xD lie on different sides of Ai near x0 ). To see this let X be
the segment xx0 of Ai , and W 0 be a small open neighborhood of X in D given by
Lemma A.3. Then, just as we had argued earlier, W 0�Ai will be disjoint from Ai ,
and thus will lie on one side of it. Since x 2X , W 0�Ai intersects SW �Ai , which
by definition lies outside Di . Thus W 0�Ai also lies outside Di , as claimed.

(ii) Next we check pi . Let B WD B�. xpi/, where � > 0 is so small that xpi�1 , xpiC1

and qi lie outside B . Let a, b , c be the first points where the (oriented curves)
pipi�1 , pipiC1 , xpiqi intersect @B respectively. Assuming � is small, ab will be
simple, since @D is locally simple. Also note that xpic is simple, since Ri is simple.
Furthermore,

xpic \ ab �Ri \pi�1piC1 D fpig

by the second condition of the theorem. So ab[ xpic divides B into 3 closed sectors;
see the left diagram in Figure 21.

Let S1 be the sector which contains a and b , S2 be the sector which contains a

and c , and S3 be the sector which contains c and b . Next note that an open neigh-
borhood of pi in M consists of three components: a neighborhood Vi of p in D ,
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xpi

xpiC1

xpi�1

qi

qi

xpi

a

c
b

S1

S2

S3

C

Figure 21

and neighborhoods Ui , Ui�1 , of xpi in Di , Di�1 respectively. We claim that when
these neighborhoods are small, each lies in a different sector of B . Then, since zf is
one-to-one on each of these neighborhoods, it will follow that zf is one-to-one near pi ,
as desired. To establish the claim note that by the third condition of the theorem there is
an open neighborhood Vi of pi in D such that xVi is disjoint from the interior of xpic

(assuming � is small). Further, we may assume that Vi is connected and is so small
that xVi fits inside B . Then xVi must lie in S1 . Next, by Lemma A.3, we may choose
a connected open neighborhood Ui of xpi in Di such that xUi D Ui fits in B , and
xUi � bc D Ui � bc is connected, where bc WD xpib[ xpic . Note that Ui contains some
interior points of xpic and pipiC1 . So Ui � bc cannot lie entirely in S1 or S2 , and
therefore intersects S3 . Consequently Ui�bc�S3 , because Ui�bc is connected and
disjoint from the boundary of S3 . So Ui � S3 . A similar argument shows Ui�1 � S2 .

(iii) Now we check the points x0 2 int. xpiqi/. Let X � int. xpiqi/ be a connected
compact set which contains x0 and a point of the neighborhood Ui�1 of xpi discussed
in part (ii). Then again by Lemma A.3, there exists a connected open neighborhood W 0

of X in Di�1 such that W 0�Ai lies entirely on one side of Ai . By design W 0�Ai

intersects Ui�1�Ai , which lies outside Di as we showed in part (ii). Thus W 0�Ai

also lies outside Di . So Di , Di�1 lie on opposite sides of Ai near x0 , which shows
that zf is one-to-one near x0 .

(iv) It remains to check qi . Again, we have to show that there exists an open neighbor-
hood of qi in Di�1 which lies outside Di . The argument is similar to that of part (ii),
and uses part (iii). Let B WD B�.qi/, where � > 0 is so small that B intersects C in
precisely two points and xpi lies outside B ; see the right diagram in Figure 21. Then the
segment of C in B together with the smallest segment of qi xpi in B determine three
sectors. Only two of these sectors border both C and a neighborhood of qi in qi xpi , and
these are where Di and Di�1 lie near qi . We have to show that, near qi , Di and Di�1

lie in different sectors. To this end it suffices to note that every open neighborhood of qi

in Di�1 , given by Lemma A.3, intersects a neighborhood of the type W 0 discussed in
part (iii), which lies outside Di .
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Appendix B: Index of symbols

Symbol Principal use Section

P a convex polyhedron 1
T a cut tree of P 1
PT the compact disk obtained by cutting P along T 4
h the height function 2.1
� the stretching factor 1
� W PT ! P the natural projection 4
xPT image of PT under an unfolding 2.1
� D �T the tracing path of T 4
x� image of � under a (left) development 3

.x�/
i
a mixed development of � based at the vertex 
i 3

sto star of P at a point o, 2.3
zstzo star of PT at a point zo 4
Œ
0; : : : ; 
k � a path with vertices 
i 2.2
� the operation for concatenation of two paths 2.2
ı the operation for composition of two paths 2.2
��1 inverse of a path � 2.2
†P .o/ total angle of P at a point o 2.3
†.a; o; b/ (left) angle of the path Œa; o; b� at o 2.3
�i left angles of � 3
� 0i right angles of � 3
vi vertices of �T 4
xvi vertices of x�T which correspond to vi 4
zvi vertices of PT which correspond to vi 4
`i leaves of T as ordered by �T 6
`0 the top leaf of T 2.1
r the root of T 2.1
ji junctures of �T 6
ˇi branches of T 6
ˇ0i dual branches of T 6
�i concatenation of the subpath `0`i of �T with ˇi 6
� 0i concatenation of the subpath `0`i of �T with ˇ0i 6
z� 0i the closed path in PT corresponding to � 0i 6
Di the subdisk of PT bounded by z� 0i 6
D� doubling of a path � 7
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