Volume 18, issue 5 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
On the topology of ending lamination space

David Gabai

Geometry & Topology 18 (2014) 2683–2745
Abstract

We show that if S is a finite-type orientable surface of genus g and with p punctures, where 3g + p 5, then (S) is (n 1)–connected and (n 1)–locally connected, where dim(P(S)) = 2n + 1 = 6g + 2p 7. Furthermore, if g = 0, then (S) is homeomorphic to the (p 4)–dimensional Nöbeling space. Finally if n0, then P(S) is connected.

Keywords
Nöbeling, lamination
Mathematical Subject Classification 2010
Primary: 57M50
Secondary: 20F65
References
Publication
Received: 19 October 2011
Revised: 5 December 2011
Accepted: 15 July 2012
Published: 1 December 2014
Proposed: Walter Neumann
Seconded: Michael Freedman, Danny Calegari
Authors
David Gabai
Department of Mathematics
Princeton University
Fine Hall, Washington Road
Princeton, NJ 08544
USA