Volume 19, issue 1 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Complex hyperbolic geometry of the figure-eight knot

Martin Deraux and Elisha Falbel

Geometry & Topology 19 (2015) 237–293
Bibliography
1 A F Beardon, The geometry of discrete groups, 91, Springer (1995) MR1393195
2 N Bergeron, E Falbel, A Guilloux, Tetrahedra of flags, volume and homology of SL(3), Geom. Topol. 18 (2014) 1911 MR3268771
3 D Burns Jr., S Shnider, Spherical hypersurfaces in complex manifolds, Invent. Math. 33 (1976) 223 MR0419857
4 M Deraux, Deforming the –Fuchsian (4,4,4)–triangle group into a lattice, Topology 45 (2006) 989 MR2263221
5 E Falbel, A spherical CR–structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69 MR2401419
6 E Falbel, P V Koseleff, F Rouiller, Representations of fundamental groups of 3–manifolds into PGL(3, ) : Exact computations in low complexity, to appear in Geom. Dedicata
7 E Falbel, J Wang, Branched sperical CR–structures on the complement of the figure-eight knot, Michigan Math. J. 63 (2014) 635 MR3255694
8 S Garoufalidis, M Goerner, C K Zickert, Gluing equations for PGL(n, )–representations of 3–manifolds, arXiv:1207.6711
9 W M Goldman, Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3–manifolds, Trans. Amer. Math. Soc. 278 (1983) 573 MR701512
10 W M Goldman, Complex hyperbolic geometry, Clarendon Press (1999) MR1695450
11 B Maskit, Kleinian groups, 287, Springer (1988) MR959135
12 G D Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980) 171 MR586876
13 J R Parker, Complex hyperbolic Kleinian groups, in preparation
14 M B Phillips, Dirichlet polyhedra for cyclic groups in complex hyperbolic space, Proc. Amer. Math. Soc. 115 (1992) 221 MR1107276
15 R Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975) 281 MR0412416
16 D Rolfsen, Knots and links, 7, Publish or Perish (1990) MR1277811
17 R E Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105 MR1828374
18 R E Schwartz, Real hyperbolic on the outside, complex hyperbolic on the inside, Invent. Math. 151 (2003) 221 MR1953259
19 R E Schwartz, Spherical CR–geometry and Dehn surgery, 165, Princeton Univ. Press (2007) MR2286868
20 W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)