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G2–instantons over twisted connected sums

HENRIQUE N SÁ EARP

THOMAS WALPUSKI

We introduce a method to construct G2 –instantons over compact G2 –manifolds
arising as the twisted connected sum of a matching pair of building blocks. Our
construction is based on gluing G2 –instantons obtained from holomorphic vector
bundles over the building blocks via the first author’s work. We require natural
compatibility and transversality conditions which can be interpreted in terms of
certain Lagrangian subspaces of a moduli space of stable bundles on a K3 surface.

53C07, 53C25, 53C38

1 Introduction

A G2 –manifold .Y;g/ is a Riemannian 7–manifold whose holonomy group Hol.g/
is contained in the exceptional Lie group G2 or equivalently, a 7–manifold Y together
with a torsion-free G2 –structure, that is, a nondegenerate 3–form � satisfying a certain
nonlinear partial differential equation; see eg Joyce [14, Part I]. An important method
to produce examples of compact G2 –manifolds with Hol.g/ D G2 is the twisted
connected sum construction, suggested by Donaldson, pioneered by Kovalev [16] and
later extended and improved by Kovalev and Lee [17] and Corti, Haskins, Nordström
and Pacini [2]. Here is a brief summary of this construction: A building block consists
of a smooth projective 3–fold Z and a smooth anticanonical K3 surface †�Z with
trivial normal bundle; see Definition 2.8. Given a choice of a hyperkähler structure
.!I ; !J ; !K / on † such that !J C i!K is of type .2; 0/ and Œ!I � is the restriction
of a Kähler class on Z , one can make V WDZ n† into an asymptotically cylindrical
(ACyl) Calabi–Yau 3–fold, that is, a noncompact Calabi–Yau 3–fold with a tubular end
modeled on RC�S1�†; see Haskins, Hein and Nordström [12]. Then Y WD S1�V

is an ACyl G2 –manifold with a tubular end modeled on RC �T 2 �†.

Definition 1.1 Given a pair of building blocks .Z˙; †˙/, we have the following. A
collection

mD f.!I;˙; !J ;˙; !K ;˙/; rg
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consisting of a choice of hyperkähler structures on †˙ such that !J ;˙C i!K ;˙ is of
type .2; 0/ and Œ!I;˙� is the restriction of a Kähler class on Z˙ as well as a hyperkähler
rotation rW †C!†� is called matching data and .Z˙; †˙/ are said to match via m.
Here a hyperkähler rotation is a diffeomorphism rW †C!†� such that

(1.2) r�!I;� D !J ;C; r�!J ;� D !I;C and r�!K ;� D�!K ;C:

Given a matching pair of building blocks, one can glue Y˙ by interchanging the S1 –
factors at infinity and identifying †˙ via r. This yields a simply connected compact
7–manifold Y together with a family of torsion-free G2 –structures .�T /T�T0

; see
Kovalev [16, Section 4]. From the Riemannian viewpoint .Y; �T / contains a “long
neck” modeled on Œ�T;T ��T 2 �†C ; one can think of the twisted connected sum
as reversing the degeneration of the family of G2 –manifolds that occurs as the neck
becomes infinitely long.

If .Z; †/ is a building block and E!Z is a holomorphic vector bundle such that Ej†
is stable, then Ej† carries a unique ASD instanton compatible with the holomorphic
structure; see Donaldson [5]. The first author showed that in this situation EjV can be
given a Hermitian–Yang–Mills (HYM) connection asymptotic to the ASD instanton
on Ej† [10]. The pullback of an HYM connection over V to S1�V is a G2 –instanton,
ie a connection A on a G–bundle over a G2 –manifold such that FA ^ D 0 with
 WD �� . It was pointed out by Simon Donaldson and Richard Thomas in their seminal
article on gauge theory in higher dimensions [9] that, formally, G2 –instantons are
rather similar to flat connections over 3–manifolds. In particular, they are critical points
of a Chern–Simons-type functional and there is hope that counting them could lead
to an enumerative invariant for G2 –manifolds not unlike the Casson invariant for 3–
manifolds; see Donaldson and Segal [8, Section 6] and the second author [22, Chapter 6].
The main result of this article is the following theorem, which gives conditions for a
pair of such G2 –instantons over Y˙ D S1 �V˙ to be glued to give a G2 –instanton
over .Y; �T /.

Theorem 1.3 Let .Z˙; †˙/ be a pair of building blocks that match via m. Denote
by Y the compact 7–manifold and by .�T /T�T0

the family of torsion-free G2 –
structures obtained from the twisted connected sum construction. Let E˙ ! Z˙
be a pair of holomorphic vector bundles such that the following hold:

� E˙j†˙ is stable. Denote the corresponding ASD instanton by A1;˙ .

� There is a bundle isomorphism xrW ECj†C ! E�j†� covering the hyperkähler
rotation r such that xr�A1;� DA1;C .
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� There are no infinitesimal deformations of E˙ fixing the restriction to †˙ :

(1.4) H 1.Z˙; End0.E˙/.�†˙//D 0:

� Denote by res˙W H 1.Z˙; End0.E˙//!H 1.†˙; End0.E˙j†˙// the restriction
map and by �˙W H 1.Z˙; End0.E˙//!H 1

A1;˙
the composition of res˙ with

the isomorphism from Remark 1.6. The images of �C and xr� ı �� intersect
trivially in H 1

A1;C
:

(1.5) im.�C/\ im.xr� ı��/D f0g:

Then there exists a nontrivial PU.n/–bundle E over Y , a constant T1 � T0 and for
each T � T1 an irreducible and unobstructed1 G2 –instanton AT on E over .Y; �T /.

Remark 1.6 If A is an ASD instanton on a PU.n/–bundle E over a Kähler surface †
corresponding to a holomorphic vector bundle E , then

H 1
A WD ker.d�A˚ dC

A
W �1.†; gE/! .�0

˚�C/.†; gE//ŠH 1.†; End0.E//I

see Donaldson and Kronheimer [7, Section 6.4]. Here gE denotes the adjoint bundle
associated with E .

Remark 1.7 If

(1.8) H 1.†C; End0.ECj†C//D f0g;

then (1.5) is vacuous. If, moreover, the topological bundles underlying E˙ are isomor-
phic, then the existence of xr is guaranteed by a theorem of Mukai; see Huybrechts and
Lehn [13, Theorem 6.1.6].

Since H 2.Z˙; End0.E˙// Š H 1.Z˙; End0.E˙/.�†˙// vanish by (1.4), there is a
short exact sequence

0!H 1.Z˙; End0.E˙//
res˙
���!H 1.†˙; End0.E˙j†˙//

!H 2.Z˙; End0.E˙/.�†˙//! 0:

This sequence is self-dual under Serre duality. Tyurin [20, page 176ff] pointed out that
this implies that

im�˙ �H 1
A1;˙

is a complex Lagrangian subspace with respect to the complex symplectic structure
induced by �˙ WD!J ;˙Ci!K ;˙ or equivalently, Mukai’s complex symplectic structure

1See Definition 3.12.
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on H 1.Z˙; End0.E˙//. Under the assumptions of Theorem 1.3 the moduli space
M.†˙/ of holomorphic vector bundles over †˙ is smooth near ŒE˙j†˙ � and so are
the moduli spaces M.Z˙/ of holomorphic vector bundles over Z˙ near ŒE˙�. Locally,
M.Z˙/ embeds as a complex Lagrangian submanifold into M.†˙/. Since r�!K ;� D

�!K ;C , both M.ZC/ and M.Z�/ can be viewed as Lagrangian submanifolds of
M.†C/ with respect to the symplectic form induced by !K ;C . Equation (1.5) asks
for these Lagrangian submanifolds to intersect transversely at the point ŒECj†C �. If
one thinks of G2 –manifolds arising via the twisted connected sum construction as
analogues of 3–manifolds with a fixed Heegaard splitting, then this is much like the
geometric picture behind Atiyah–Floer conjecture in dimension three; see Atiyah [1].

Remark 1.9 The hypothesis (1.5) appears natural in view of the above discussion.
Assuming (1.8) instead would slightly simplify the proof; see Remark 3.38. However, it
would also substantially restrict the applicability of Theorem 1.3 and, hence, the chance
of finding new examples of G2 –instantons because (1.8) is a very strong assumption.

Remark 1.10 There are as of yet no examples of new G2 –instantons constructed
using Theorem 1.3. We plan to address this issue in future work.

Outline We recall the salient features of the twisted connected sum construction in
Section 2. The expert reader may wish to skim through it to familiarize with our notation.
The objective of Section 3 is to prove Theorem 3.24, which describes hypotheses under
which a pair of G2 –instantons over a matching pair of ACyl G2 –manifolds can be
glued. Finally, in Section 4 we explain how these hypotheses can be verified for G2 –
instantons obtained via the first author’s construction. Theorem 1.3 is then proved by
combining Theorems 3.24 and 4.2 with Proposition 4.3.

Acknowledgements We are grateful to Simon Donaldson for suggesting the problem
solved in this article. We thank Marcos Jardim. Moreover, we thank the anonymous
referee for many helpful comments and suggestions. TW was supported by ERC Grant
247331 and Unicamp-Faepex grant 770/13.

2 The twisted connected sum construction

In this section we review the twisted connected sum construction using the language
introduced by Corti, Haskins, Nordström and Pacini [2].
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2.1 Gluing ACyl G2–manifolds

We begin with gluing matching pairs of ACyl G2 –manifolds.

Definition 2.1 Let .Z; !;�/ be a compact Calabi–Yau 3–fold. Here ! denotes the
Kähler form and � denotes the holomorphic volume form. A G2 –manifold .Y; �/ is
called asymptotically cylindrical (ACyl) with asymptotic cross section .Z; !;�/ if there
exist a constant ı <0, a compact subset K�Y , a diffeomorphism � W Y nK!RC�Z

and a 2–form � on RC �Z such that

��� D d t ^!CRe�C d� and r
k�DO.eıt /

for all k 2N0 . Here t denotes the coordinate on RC .

Remark 2.2 Unfortunately, Z is the customary notation both for building blocks and
asymptotic cross sections of ACyl G2 –manifolds. To avoid confusion we point out that,
unlike asymptotic cross sections, building blocks always come in pair with a divisor,
eg .Z; †/.

Definition 2.3 A pair of ACyl G2 –manifolds .Y˙; �˙/ with asymptotic cross sections
.Z˙; !˙; �˙/ is said to match if there exists a diffeomorphism f W ZC!Z� such that

f �!� D�!C and f � Re�� D Re�C:

Let .Y˙; �˙/ be a matching pair of ACyl G2 –manifolds. Fix T � 1 and define
F W ŒT;T C 1��ZC! ŒT;T C 1��Z� by

F.t; z/ WD .2T C 1� t; f .z//:

Denote by YT the compact 7–manifold obtained by gluing together

YT;˙ WDK˙[�
�1
˙ ..0;T C 1��Z˙/

via F . Fix a nondecreasing smooth function �W R! Œ0; 1� with �.t/D 0 for t � 0

and �.t/D 1 for t � 1. Define a 3–form z�T on YT by

z�T WD �˙� d Œ��˙.�.t �T C 1/�˙/�

on YT;˙ . If T � 1, then z�T defines a closed G2 –structure on YT . Clearly, all the YT

for different values of T are diffeomorphic; hence, we often drop the T from the
notation. The G2 –structure z�T is not torsion free yet, but can be made so by a small
perturbation:
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Theorem 2.4 (Kovalev [16, Theorem 5.34]) In the above situation there exists a
constant T0 � 1 and for each T � T0 there exists a 2–form �T on YT such that
�T WD z�T C d�T defines a torsion-free G2 –structure; moreover, for some ı < 0

(2.5) kd�T kC 0;˛ DO.eıT /:

2.2 ACyl Calabi–Yau 3–folds from building blocks

The twisted connected sum is based on gluing ACyl G2 –manifolds arising as the
product of ACyl Calabi–Yau 3–folds with S1 .

Definition 2.6 Let .†; !I ; !J ; !K / be a hyperkähler surface. A Calabi–Yau 3–fold
.V; !;�/ is called asymptotically cylindrical (ACyl) with asymptotic cross section
.†; !I ; !J ; !K / if there exist a constant ı < 0, a compact subset K � V , a diffeo-
morphism � W V nK!RC �S1 �†, a 1–form � and a 2–form � on RC �S1 �†

such that

��! D d t ^ d˛C!I C d�;

���D .d˛� id t/^ .!J C i!K /C d� and

r
k�DO.eıt / as well as r

k� DO.eıt /

for all k 2N0 . Here t and ˛ denote the respective coordinates on RC and S1 .

Given an ACyl Calabi–Yau 3–fold .V; !;�/, taking the product with S1 with coordi-
nate ˇ , yields an ACyl G2 –manifold

.Y WD S1
�V; � WD dˇ^!CRe�/

with asymptotic cross section

.T 2
�†; d˛^ dˇC!K ; .d˛� idˇ/^ .!J C i!I //:

Let V˙ be a pair of ACyl Calabi–Yau 3–folds with asymptotic cross section †˙ and
suppose that rW †C!†� is a hyperkähler rotation; see (1.2). Then Y˙ WD V˙ �S1

match via the diffeomorphism f W T 2 �†C! T 2 �†� defined by

f .˛; ˇ;x/ WD .ˇ; ˛; r.x//:

Remark 2.7 If f did not interchange the S1 –factors, then Y would have infinite
fundamental group and, hence, could not carry a metric with holonomy equal to G2 ;
see Joyce [15, Proposition 10.2.2].

ACyl Calabi–Yau 3–folds can be obtained from the following building blocks:
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Definition 2.8 Corti, Haskins, Nordström and Pacini [3, Definition 5.1] A building
block is a smooth projective 3–fold Z together with a projective morphism f W Z!P1

such that the following hold:

� The anticanonical class �KZ 2H 2.Z/ is primitive.

� † WD f �1.1/ is a smooth K3 surface and †��KZ .

� If N denotes the image of H 2.Z/ in H 2.†/, then the embedding N ,!H 2.†/

is primitive.

� H 3.Z/ is torsion free.

Remark 2.9 The existence of the fibration f W Z ! P1 is equivalent to † having
trivial normal bundle. This is crucial because it means that Z n† has a cylindrical end.
The last two conditions in the definition of a building block are not essential; they have
been made to facilitate the computation of certain topological invariants in [3].

In his original work Kovalev [16] used building blocks arising from Fano 3–folds by
blowing up the base locus of a generic anticanonical pencil. This method was extended
to the much larger class of semi-Fano 3–folds (a class of weak Fano 3–folds) by
Corti, Haskins, Nordström and Pacini [2]. Kovalev and Lee [17] construct building
blocks starting from K3 surfaces with nonsymplectic involutions, by taking the product
with P1 , dividing by Z2 and blowing up the resulting singularities.

Theorem 2.10 (Haskins, Hein and Nordström [12, Theorem D]) Let .Z; †/ be
a building block and let .!I ; !J ; !K / be a hyperkähler structure on † such that
!J C i!K is of type .2; 0/. If Œ!I �2H 1;1.†/ is the restriction of a Kähler class on Z ,
then there is an ACyl Calabi–Yau structure .!;�/ on V WD Z n† with asymptotic
cross section .†; !I ; !J ; !K /.

Remark 2.11 This result was first claimed by Kovalev in [16, Theorem 2.4]; see the
discussion in [12, Section 4.1].

Combining the results of Kovalev and Haskins, Hein and Nordström, each matching pair
of building blocks (see Definition 1.1) yields a one-parameter family of G2 –manifolds.
This is called the twisted connected sum construction.

3 Gluing G2–instantons over ACyl G2–manifolds

In this section we discuss when a pair of G2 –instantons over a matching pair of ACyl
G2 –manifolds Y˙ can be glued to give a G2 –instanton over .Y; �T /.
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Figure 1: The twisted connected sum of a matching pair of building blocks

3.1 Linear analysis on ACyl manifolds

We recall some results about linear analysis on ACyl Riemannian manifolds. The
references for the material in this subsection are Mazya and Plamenevskiı̆ [19] and
Lockhart and McOwen [18].

3.1.1 Translation-invariant operators on cylindrical manifolds Let E ! X be
a Riemannian vector bundle over a compact Riemannian manifold. By slight abuse
of notation we also denote by E its pullback to R�X . Denote by t the coordinate
function on R. For k 2N0 , ˛ 2 .0; 1/ and ı 2R we define

k � k
C

k;˛

ı

WD ke�ıt � kC k;˛

and denote by C
k;˛
ı
.R �X;E/ the closure of C1

0
.R �X;E/ with respect to this

norm. We set C1
ı
WD
T

k C
k;˛
ı

.

Let DW C1.X;E/!C1.X;E/ be a linear self-adjoint elliptic operator of first order.
The operator

L1 WD @t �D

extends to a bounded linear operator L1;ıW C
kC1;˛
ı

.R�X;E/! C
k;˛
ı
.R�X;E/.

Theorem 3.1 (Mazja and Plamenevskiı̆ [19, Theorem 5.1]) The linear operator L1;ı
is invertible if and only if ı 62 spec.D/.

Elements a 2 ker L1 can be expanded as

(3.2) aD
X

ı2specD

eıtaı;

where aı are ı–eigensections of D ; see Donaldson [6, Section 3.1]. One consequence
of this is the following result:
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Proposition 3.3 Denote by �C and �� the first positive and negative eigenvalue of D ,
respectively. If a 2 ker L1 and

aDO.eıt / as t !1

with ı < �C , then there exists a0 2 ker D such that

r
k.a� a0/DO.e��t / as t !1

for all k 2N0 . If a 2L1.R�X;E/, then aD a0 .

3.1.2 Asymptotically translation-invariant operators on ACyl manifolds Let M

be a Riemannian manifold together with a compact set K �M and a diffeomorphism
� W M nK! RC �X such that the pushforward of the metric on M is asymptotic
to the metric on RC �X , this means here and in what follows that their difference
and all of its derivatives are O.eıt / as t !1 with ı < 0. Let F be a Riemannian
vector bundle and let x� W F jMnK !E be a bundle isomorphism covering � such that
the pushforward of the metric on F is asymptotic to the metric on E . Denote by
t W M! Œ1;1/ a smooth positive function which agrees with t ı� on ��1.Œ1;1/�X /.
We define

k � k
C

k;˛

ı

WD ke�ıt � kC k;˛

and denote by C
k;˛
ı
.M;F / the closure of C1

0
.M;F / with respect to this norm.

Let LW C1
0
.M;E/!C1

0
.M;E/ be an elliptic operator asymptotic to L1D @t �D ,

ie the coefficients of the pushforward of L to RC�X are asymptotic to the coefficients
of L1 . The operator L extends to a bounded linear operator LıW C

kC1;˛
ı

.M;E/!

C
k;˛
ı
.M;E/.

Proposition 3.4 [12, Proposition 2.4] If ı 62 spec.D/, then Lı is Fredholm.

Elements in the kernel of L still have an asymptotic expansion analogous to (3.2). We
need the following result which extracts the constant term of this expansion.

Proposition 3.5 There is a constant ı0>0 such that, for all ı2 Œ0; ı0�, ker LıDker L0

and there is a linear map �W ker L0! ker D such that

r
k.x��a� �.a//DO.e�ı0t / as t !1

for all k 2N0 ; in particular,
ker �D ker L�ı0

:
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Proof Let �˙ be the first positive/negative eigenvalue of D . Then pick 0 < ı0 <

min.�C;���/ such that the decay conditions made above hold with �2ı0 instead of ı .
Given a 2 ker Lı0

, set za WD �.t/x��a˙ with � as in Section 2.1. Then L1za 2 C1
�ı0

.
By Theorem 3.1 there exists a unique b 2 C1

�ı0
such that L1.za � b/ D 0. By

Proposition 3.3 .za�b/0 2 ker D and za�b� .za�b/0DO.e��t / as t tends to infinity.
From this it follows that a 2 ker L0 ; hence, the first part of the proposition. With
�.a/ WD .za� b/0 the second part also follows.

3.2 Hermitian–Yang–Mills connections over Calabi–Yau 3–folds

Suppose .Z; !;�/ is a Calabi–Yau 3–fold and .Y WD R�Z; � WD d t ^!CRe�/
is the corresponding cylindrical G2 –manifold. In this section we relate translation-
invariant G2 –instantons over Y with Hermitian–Yang–Mills connections over Z . Let
G denote a compact semisimple Lie group.

Definition 3.6 Let .Z; !/ be a Kähler manifold and let E be a G–bundle over Z .
A connection A on E is a Hermitian–Yang–Mills (HYM) connection if

(3.7) F
0;2
A
D 0 and ƒFA D 0:

Here ƒ is the dual of the Lefschetz operator L WD ! ^ � .

Remark 3.8 We are mostly interested in the special case of U.n/–bundles; however,
for G D U.n/, (3.7) is too restrictive as it forces c1.E/D 0. There are two customary
ways to circumnavigate this issue. One is to change (3.7) and instead of the second part
require that ƒFA be equal to a constant in u.1/, the center of u.n/, which is determined
by the degree of det E ; the other one is to work with the induced PU.n/–bundle. These
viewpoints are essentially equivalent and we adopt the latter.

Remark 3.9 By the first part of (3.7) an HYM connection induces a holomorphic
structure on E . If Z is compact, then there is a one-to-one correspondence between
gauge equivalence classes of HYM connections on E and isomorphism classes of
polystable holomorphic GC –bundles E whose underlying topological bundle is E ;
see Donaldson [5] and Uhlenbeck and Yau [21].

On a Calabi–Yau 3–fold (3.7) is equivalent to

FA ^ Im�D 0 and FA ^! ^! D 0I

hence, using  D �� D �.d t ^!CRe�/D 1
2
! ^! � d t ^ Im� one easily derives:

Proposition 3.10 [10, Proposition 8] Denote by �Z W Y !Z the canonical projec-
tion. A is an HYM connection if and only if ��

Z
A is a G2 –instanton.
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In general, if A is a G2 –instanton on a G –bundle E over a G2 –manifold .Y; �/, then
the moduli space M of G2 –instantons near ŒA�, ie the space of gauge equivalence classes
of G2 –instantons near ŒA�, is the space of small solutions .�; a/ 2 .�0˚�1/.Y; gE/

of the system of equations

d�AaD 0 and dACa�C�.FACa ^ /D 0

modulo the action of �A�G, the stabilizer of A in the gauge group of E , assuming Y

is compact or appropriate assumptions are made regarding the growth of � and a. The
linearization LAW .�

0˚�1/.Y; gE/! .�0˚�1/.Y; gE/ of this equation is

(3.11) LA WD

�
d�

A

dA �. ^ dA/

�
:

It controls the infinitesimal deformation theory of A.

Definition 3.12 A is called irreducible and unobstructed if LA is surjective.

If A is irreducible and unobstructed, then M is smooth at ŒA�. If Y is compact, then LA

has index zero; hence, is surjective if and only if it is invertible; therefore, irreducible
and unobstructed G2 –instantons form isolated points in M. If Y is noncompact, the
precise meaning of M and LA depends on the growth assumptions made on � and a,
and M may very well be positive-dimensional.

Proposition 3.13 If A is an HYM connection on a bundle E over a G2 –manifold
Y WDR�Z as in Proposition 3.10, then the operator L��

Z
A defined in (3.11) can be

written as
L��

Z
A D

zI@t CDA;

where

zI WD

0@ �1

1

I

1A
and DAW .�

0˚�0˚�1/.Z; gE/! .�0˚�0˚�1/.Z; gE/ is defined by

(3.14) DA WD

0@ d�
A

ƒdA

dA �IdA �� .Im�^ dA/

1A :
(Note that T Y DR˚��

Z
T Z .)
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Proof Plugging  D 1
2
! ^! � d t ^ Im� into the definition of L��

Z
A and using the

fact that the complex structure acts via

(3.15) I D 1
2
� .! ^! ^ � /

on �1.Z; gE/ the assertion follows by a direct computation.

Definition 3.16 Let A be an HYM connection on a G–bundle E over a Kähler
manifold .Z; !/. Set

Hi
A WD ker

�
x@A˚x@

�
AW �

0;i
�
Z; gC

E

�
! .�0;iC1

˚�0;i�1/
�
Z; gC

E

��
:

We call H0
A

the space of infinitesimal automorphisms of A and H1
A

the space of
infinitesimal deformations of A.

Remark 3.17 If Z is compact and A is a connection on a PU.n/–bundle E corre-
sponding to a holomorphic vector bundle E , then Hi

A
ŠH i.Z; End0.E//.

Proposition 3.18 If .Z; !;�/ is a compact Calabi–Yau 3–fold and A is an HYM
connection on a G –bundle E!Z , then

ker DA ŠH0
A˚H1

A

with DA as in (3.14).

Proof If s 2 H0
A

and ˛ 2 H1
A

, then DA.Re s; Im s; ˛ C x̨/ D 0. Conversely, if
.�; �; a/ 2 ker DA , then applying d�

A
(resp. d�

A
ı I ) to

dA� � IdA���.Im�^ dAa/D 0;

using (3.15), taking the L2 inner product with � (resp. �) and integrating by parts
yields dA� D 0 (resp. dA�D 0). Thus �C i� 2H0

A
and

d�AaD 0; ƒdAaD 0 and Im�^ dAaD 0;

which implies ˛ WD a0;1 2H1
A

because d�
A
D @�

A
Cx@�

A
and ƒdA D�i@�

A
C ix@�

A
.

3.3 G2–instantons over ACyl G2–manifolds

Definition 3.19 Let .Y; �/ be an ACyl G2 –manifold with asymptotic cross section
.Z; !;�/. Let A1 be an HYM connection on a G–bundle E1 ! Z . A G2 –
instanton A on a G –bundle E!Y is called asymptotic to A1 if there exist a constant
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ı < 0 and a bundle isomorphism x� W EjY nK ! E1 covering � W Y nK! RC �Z

such that

(3.20) r
k.x��A�A1/DO.eıt /

for all k 2 N0 . Here by a slight abuse of notation we also denote by E1 and A1
their respective pullbacks to RC �Z .

Definition 3.21 Let .Y; �/ be an ACyl G2 –manifold and let A be a G2 –instanton on
a G –bundle over .Y; �/ asymptotic to A1 . For ı 2R we set

TA;ı WD ker LA;ı D
˚
a 2 ker LA

ˇ̌
r

k
x��aDO.eıt / for all k 2N0

	
;

where aD .�; a/ 2 .�0˚�1/.Y; gE/. Set TA WD TA;0 .

Proposition 3.22 Let .Y; �/ be an ACyl G2 –manifold and let A be a G2 –instanton
asymptotic to A1 . Then there is a constant ı0>0 such that for all ı2 Œ0; ı0�, TA;ıDTA

and there is a linear map �W TA!H0
A1
˚H1

A1
such that

r
k.x��a� �.a//DO.e�ı0t /

for all k 2N0 ; in particular,
ker �D TA;�ı0

:

Proof By Proposition 3.13, LA is asymptotic to zI.@t �
zIDA/. Since zIDA is self-

adjoint and ker zIDA D ker DA , we can apply Proposition 3.5 to obtain a linear
map �W TA ! ker DA1 and use the isomorphism ker DA1 Š H0

A1
˚ H1

A1
from

Proposition 3.18.

Proposition 3.23 Let .Y; �/ be an ACyl G2 –manifold and let A be a G2 –instanton
asymptotic to A1 . Then

dim im �D 1
2

dim.H0
A1
˚H1

A1
/

and, if H0
A1
D 0, then im � � H1

A1
is Lagrangian with respect to the symplectic

structure on H1
A1

induced by ! .

Proof By Lockhart and McOwen [18, Theorem 7.4] for 0< ı� 1

dim im �D index LA;ı D
1
2

dim ker DA1 :

Suppose H0
A1
D 0. If .�; a/ 2 TA , then d�

A
dA� D 0 and, by Proposition 3.22, �

decays exponentially. Integration by parts shows that dA� D 0; hence � D 0. Therefore
TA ��

1.Y; gE/.
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We show that im � is isotropic: for a; b 2 TA ,

1

2

Z
Z

h�.a/^ �.b/i ^! ^! D

Z
Y

d.ha^ bi ^ /D 0

because dAa^ D dAb ^ D 0.

3.4 Gluing G2–instantons over ACyl G2–manifolds

In the situation of Proposition 3.23, if ker � D 0 and H0
A1
D 0, then one can show

that the moduli space M.Y / of G2 –instantons near ŒA� which are asymptotic to some
HYM connection is smooth. Although the moduli space M.Z/ of HYM connections
near ŒA1� is not necessarily smooth, formally, it still makes sense to talk about its
symplectic structure and view M.Y / as a Lagrangian submanifold. The following
theorem shows, in particular, that transverse intersections of a pair of such Lagrangians
give rise to G2 –instantons.

Theorem 3.24 Let .Y˙; �˙/ be a pair of ACyl G2 –manifolds which match via
f W ZC!Z� . Denote by .YT ; �T /T�T0

the resulting family of compact G2 –manifolds
arising from the construction in Section 2.1. Let A˙ be a pair of G2 –instantons on E˙
over .Y˙; �˙/ asymptotic to A1;˙ . Suppose that the following hold:

� There is a bundle isomorphism xf W E1;C ! E1;� covering f such that
xf �A1;� DA1;C .

� The maps �˙W TA˙
! ker DA1;˙

constructed in Proposition 3.22 are injective
and their images intersect trivially:

(3.25) im.�C/\ im. xf � ı ��/D f0g �H0
A1;C

˚H1
A1;C

:

Then there exists T1 � T0 and for each T � T1 there exists an irreducible and
unobstructed G2 –instanton AT on a G –bundle ET over .YT ; �T /.

Proof The proof proceeds in three steps. We first produce an approximate G2 –
instanton zAT by an explicit cut-and-paste procedure. This reduces the problem to
solving the nonlinear partial differential equation

(3.26) d�
zAt

aD 0 and d zATCa
�C�T .F zATCa

^ T /D 0

for a2�1.YT ; gET
/ and � 2�0.YT ; gET

/, where  T WD��T . Under the hypotheses
of Theorem 3.24 we will show that we can solve the linearization of (3.26) in a uniform
fashion. The existence of a solution of (3.26) then follows from a simple application of
Banach’s fixed-point theorem.
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Step 1 There exists a ı < 0 and for each T � T0 there exists a connection zAT on a
G –bundle ET over YT such that

(3.27) kF zAT
^ T kC 0;˛ DO.eıT /:

The bundle ET is constructed by gluing E˙jYT;˙
via xf and the connection zAT is

defined by
zAT WDA˙� x�

�
˙Œ�.t �T C 1/a˙�

over YT;˙ with
a˙ WD x�˙;�A˙�A1;˙;

x�˙ is as in Definition 3.19 and � is as in Section 2.1. Then (3.27) is a straightforward
consequence of (2.5) and (3.20).

Step 2 Define a linear operator LT W C
1;˛ ! C 0;˛ by (3.11) with A D zAT and

�D �T . Then there exist constants zT1; c > 0 such that for all T � zT1 the operator LT

is invertible and

(3.28) kL�1
T akC 1;˛ � ce.jıj=4/T kakC 0;˛ :

Step 2.1 There exists a constant c > 0 such that for all T � T0

(3.29) kakC 1;˛ � c.kLT akC 0;˛ CkakL1/:

This is an immediate consequence of standard interior Schauder estimates because of
(2.5) and (3.20).

Step 2.2 There exist constants zT1 � T0 and c > 0 such that for T 2 Œ zT1;1/

(3.30) kakL1 � ce.jıj=4/T kLT akC 0;˛ :

Suppose not; then there exist a sequence .Ti/ tending to infinity and a sequence .ai/

such that

(3.31) kaikL1 D 1 and lim
i!1

e.jıj=4/TikLTi
aikC 0;˛ D 0:

Then by (3.29),

(3.32) kaikC 1;˛ � 2c:
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Hence, by Arzelà–Ascoli we can assume (by passing to a subsequence) that the sequence
ai jYTi ;˙

converges in C 1;˛=2
loc to some section a1;˙ of .ƒ0˚ƒ1/˝ gE˙

over Y˙ ,
which is bounded and satisfies

LA˙
a1;˙ D 0

because of (2.5) and (3.20). Using standard elliptic estimates, a1;˙ 2 TA˙
.

Proposition 3.33 In the above situation,

lim
i!1

k.ai jYTi ;˙
/� .a1;˙jYTi ;˙

/kL1.YTi ;˙
/ D 0:

The proof of this proposition will be given at the end of this section. Accepting it as a
fact for now, it follows immediately that

�C.a1;C/D
xf � ı ��.a1;�/

because YTi ;C\YTi ;�D ŒTi ;TiC1��ZC . Now, by (3.25) we must have �˙.a1;˙/D0;
hence, a1;˙ D 0, since �˙ are injective.

However, by (3.31) there exist xi 2YTi
such that jaTi

j.xi/D 1. By passing to a further
subsequence and possibly changing the roles of C and � we can assume that each
xi 2 YTi ;C ; hence, by Proposition 3.33, a1;C ¤ 0, contradicting what was derived
above. This proves (3.30).

Step 2.3 We complete the proof of Step 2.

Combining (3.29) and (3.30) yields

kakC 1;˛ � ce.jıj=4/T kLT akC 0;˛ :

Therefore, LT is injective; hence, also surjective since LT is formally self adjoint.

Step 3 There exists a constant T1 �
zT1 and for each T � T1 a smooth solution

aD aT of (3.26) such that limT!1 kaT kC 1;˛ D 0.

We can write (3.26) as

(3.34) LT aCQT .a/C "T D 0

where QT .a/ WD
1
2
�T .Œa^a�^ T /C Œa; �� and "T WD �T .F zAT

^ T /. We make the
ansatz aDL�1

T
b . Then (3.34) becomes

(3.35) bC zQT .b/C "T D 0
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with zQT DQT ıL�1
T

. By (3.28),

k zQT .b1/�
zQT .b2/kC 0;˛ � ce.jıj=2/T .kb1kC 0;˛ Ckb2kC 0;˛ /kb1� b2kC 0;˛

for some constant c > 0 independent of T � zT1 . By Step 1, k"T kC 0;˛ D O.eıT /.
Now, Lemma 3.36 yields the desired solution of (3.35) and thus of (3.26) provided
T � T1 for a suitably large T1 �

zT1 . By elliptic regularity a is smooth.

Lemma 3.36 (Donaldson and Kronheimer [7, Lemma 7.2.23]) Let X be a Banach
space and let T W X !X be a smooth map with T .0/D 0. Suppose there is a constant
c > 0 such that

kT x�Tyk � c.kxkCkyk/kx�yk:

If y 2X satisfies kyk � 1
10c

, then there exists a unique x 2X with kxk � 1
5c

solving

xCT x D y:

Moreover, this x 2X satisfies kxk � 2kyk.

To complete the proof of Theorem 3.24 it now remains to prove Proposition 3.33 for
which we require the following result.

Proposition 3.37 In the situation of Theorem 3.24, there is a 0 > 0 such that for each
 2 .0; 0/ the linear operator LA˙

W C
1;˛
 ! C

0;˛
 has a bounded right inverse.

Proof By Proposition 3.4, LA˙
W C

1;˛
 ! C

0;˛
 is Fredholm whenever  > 0 is

sufficiently small. The cokernel of LA˙
can be identified to be TA˙;�

, which is
trivial by hypothesis.

Proof of Proposition 3.33 We restrict to the C case; the � case is identical. It
follows from the construction of a1;C that for each fixed compact subset K � YC

lim
i!1

k.ai jK /� .a1;CjK /kL1.K / D 0:

To strengthen this to an estimate on all of YTi ;C the factor e
jıj
4

T in (3.31) will be
important, even though it is clearly not optimal.

With � as in Section 2.1 define a cut-off function �T W YC ! Œ0; 1� by �T .x/ WD

1��.tC.x/�
3
2
T /. For each sufficiently small  > 0 we have

kLAC.�Ti
ai/kC

0;˛
 .YC/ DO.e�.3=2/Ti /
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using the estimates (2.5), (3.20), (3.31) and (3.32). Using Proposition 3.37 we construct
bi 2 C

1;˛
 such that ai

1;C WD �Ti
ai C bi 2 TAC; and kbikC

1;˛

0;
D O.e�.3=2/Ti /.

Hence,
k.ai jYTi ;C

/� .ai
1;CjYTi ;C

/kL1.YTi ;C
/ DO.e�.1=2/Ti /:

Moreover, limi!1 k.a
i
1;CjK /� .a1;CjK /kL1.K / D 0 and since both k � kL1.K /

and k � kL1.YC/ are norms on the finite-dimensional vector space TAC; D TAC it also
follows that

lim
i!1

kai
1;C� a1;CkL1.YC/ D 0:

Therefore,
lim

i!1
k.ai jYTi ;C

/� .a1;CjYTi ;C
/kL1.YTi ;C

/ D 0:

Remark 3.38 The proof of Theorem 3.24 slightly simplifies assuming H0
A1;C

˚

H1
A1;C

D f0g instead of (3.25): We can directly conclude that �˙.a1;˙/ D 0 and,
hence, a1;˙ D 0; thus making Proposition 3.33 unnecessary. In particular, (3.30)
holds without the additional factor of e.jıj=4/T .

4 From holomorphic vector bundles over building blocks to
G2–instantons over ACyl G2–manifolds

We now discuss how to deduce Theorem 1.3 from Theorem 3.24.

Definition 4.1 Let .V; !;�/ be an ACyl Calabi–Yau 3–fold with asymptotic cross
section .†; !I ; !J ; !K /. Let A1 be an ASD instanton on a G –bundle E1 over †.
An HYM connection A on a G–bundle E over V is called asymptotic to A1 if
there exist a constant ı < 0 and a bundle isomorphism x� W EjV nK ! E1 covering
� W V nK!RC �S1 �† such that

r
k.x��A�A1/DO.eıt /

for all k 2 N0 . Here by a slight abuse of notation we also denote by E1 and A1
their respective pullbacks to RC �S1 �†.

The following theorem can be used to produce examples of HYM connections A on
PU.n/–bundles over ACyl Calabi–Yau 3–folds asymptotic to ASD instantons A1 ;
hence, by taking the product with S1 , examples of G2 –instantons ��

V
A asymptotic

to ��
†

A1 over the ACyl G2 –manifold S1�V . Here �V W S
1�V !V and �†W T 2�

†!† denote the canonical projections.
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Theorem 4.2 (Sá Earp [10, Theorem 59]) Let Z and † be as in Theorem 2.10
and let .V WD Z n†;!;�/ be the resulting ACyl Calabi–Yau 3–fold. Let E be a
holomorphic vector bundle over Z and let A1 be an ASD instanton on Ej† compatible
with the holomorphic structure. Then there exists an HYM connection A on EjV which
is compatible with the holomorphic structure and asymptotic to A1 .

By slight abuse of notation we also denote by A1 the ASD instanton on the PU.n/–
bundle associated with Ej† and by A the HYM connection on the PU.n/–bundle
associated with EjV . Theorems 3.24 and 4.2 together with the following result imme-
diately imply Theorem 1.3.

Proposition 4.3 In the situation of Theorem 4.2, suppose H 0.†; End0.Ej†// D 0.
Then

(4.4) H1
��
†

A1
DH 1

A1
;

see Definition 3.16 and Remark 1.6, and for some small ı > 0 there exist injective
linear maps

��W T��
V

A;�ı!H 1.Z; End0.E/.�†//;

�W T��
V

A!H 1.Z; End0.E//

such that the following diagram commutes:

(4.5)

T��
V

A;�ı T��
V

A H1
��
†

A1

H 1.Z; End0.E/.�†// H 1.Z; End0.E// H 1.†; End0.Ej†//

��

�

� Š

Equation (4.4) is a direct consequence of H0
A1
D 0. The proof of the remaining

assertions requires some preparation.

4.1 Comparing infinitesimal deformations of ��

V
A and A

Proposition 4.6 If A is an HYM connection asymptotic to A1 , then there exists a
ı0 > 0 such that for all ı � ı0

(4.7) T��
V

A;ı D
˚
a 2 ker DA

ˇ̌
r

k
x��aDO.eıt / for all k 2N0

	
;

with DA as in (3.14).
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Proof We can write LA D
zI@ˇ CDA where ˇ denotes the coordinate on S1 . For

ı � 0, (4.7) follows by an application of [23, Lemma A.1] by the second author. The
right-hand side is contained in the left-hand side of (4.7) which, by Proposition 3.22, is
independent of ı 2 Œ0; ı0�.

Proposition 4.8 In the situation of Proposition 4.3, there exists a constant ı0 > 0 such
that, for all ı � ı0 , H0

A;ı
D 0 and

T��
V

A;ı ŠH1
A;ı;

where
Hi

A;ı WD
˚
˛ 2Hi

A

ˇ̌
r

k
x��˛ DO.eıt / for all k 2N0

	
:

Proof If ı� ı0 (cf. Proposition 3.22) and .�; �; a/2TA;ı , then �.�; �; a/2f0g˚H1
A1

.
Hence � and � decay exponentially and one use can Proposition 4.6 and argue as in
the proof of Proposition 3.18; it also follows that H0

A;ı
D 0.

4.2 Acyclic resolutions via forms of exponential growth/decay

In view of the above what is missing to prove Proposition 4.3 is a way to relate H1
A;ı

with the cohomology of (twists of) End0.E/. This is what the following result provides.

Proposition 4.9 Let .Z; †/ be a building block and let V WD Z n† be the ACyl
Calabi–Yau 3–fold constructed via Theorem 2.10. Suppose that E is a holomorphic
vector bundle over Z and suppose that A is an HYM connection on E compatible with
the holomorphic structure and asymptotic to an ASD instanton on Ej† .

For ı 2R define a complex of sheaves .A�
ı
; x@/ on Z by

(4.10) Ai
ı.U / WD

˚
˛ 2�0;i.V \U; E/

ˇ̌
r

k
x��˛ DO.eıt / for all k 2N0

	
:

If ı 2R nZ, then the complex of sheaves .A�
ı
; x@/ is an acyclic resolution of E.bıc†/.

In particular, setting �i
ı
.˛/ WD Œ˛� one obtains maps

�i
ıW H

i
A;ı!H i.�.A�ı/; x@/ŠH i.Z; E.bıc†//:

Remark 4.11 In Proposition 4.9, bıc denotes the largest integer not greater than ı ;
in particular, bıc† is a divisor on Z .

Remark 4.12 We state Proposition 4.9 in dimension three; however, it works mutatis
mutandis in all dimensions.
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Proof of Proposition 4.9 The proof consists of three steps.

Step 1 The sheaves A�
ı

are C1–modules, hence, acyclic; see Demailly [4, Chapter IV,
Corollary 4.19].

Step 2 We have E.bıc†/D ker
�
x@W A0

ı
!A1

ı

�
.

Let x 2 Z and let U � Z denote a small open neighborhood of x . An element
s 2 ker.x@W �.U;A0

ı
/! �.U;A1

ı
// corresponds to a holomorphic section of EjV\U

such that jzj�ıs stays bounded. Here z is a holomorphic function on U vanishing to
first order along †\U , whose existence follows from Definition 2.8. Then z�bıcs is
weakly holomorphic in U . By elliptic regularity z�bıcs extends across U \† and thus
s defines an element of �.U; E.bıc†//. Conversely, it is clear that �.U; E.bıc†//�
ker
�
x@W �

�
U;A0

ı

�
! �

�
U;A1

ı

��
.

Step 3 The complex of sheaves
�
A�
ı
; x@
�

is exact.

Away from † the exactness follows from the usual x@–Poincaré Lemma. If x 2†, then
since Z is fibred over P1 , by Definition 2.8, there exist a small open neighborhood U

of x in Z , a polydisc D �† centered at x and a biholomorphic map � W V \U !

RC � S1 �D such that the pushforward of the Kähler metric on V \ U via � is
asymptotic to the metric induced by that on D . The necessary version of the x@–Poincaré
lemma can now be proved along the lines of Griffiths and Harris [11, page 25] provided
the linear operator

x@W C1ı �
0.R�S1/! C1ı �

0;1.R�S1/

is invertible. This, however, is a simple consequence of Theorem 3.1 since x@D @tCi@˛
and the spectrum of i@˛ on S1 DR=Z is Z.

4.3 Proof of Proposition 4.3

In view of Proposition 4.8 we only need to establish (4.5) with H1
A;ı

instead of T��
V

A;ı .
By Proposition 4.9 applied to End0.E/, we have linear maps

�1
ı W H

1
A;ı!H 1.Z; End0.E/.bıc†// for ı 2R nZI

hence, linear maps

��W H1
A;�ı!H 1.Z; End0.E/.�†//;

�W H1
A DH1

A;ı!H 1.Z; End0.E//
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for some small ı > 0 making the following diagram commute:

H1
A;�ı

H1
A

H 1
A1

H 1.Z; End0.E/.�†// H 1.Z; End0.E// H 1.†; End0.Ej†//

��

�

� Š

The map �� is injective, because if ��aD 0, then aD x@s for some s 2 �
�
Z;A0

�ı

�
and thus Z

V

kak2 D

Z
V

ha; x@si D

Z
V

hx@�a; si D 0:

Since H 0.†; End0.Ej†//D 0, the first map on the bottom is injective and because the
rows are exact a simple diagram chase proves shows that � is injective.
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