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G,—-instantons over twisted connected sums

HENRIQUE N SA EARP
THOMAS WALPUSKI

We introduce a method to construct G;—instantons over compact G, —manifolds
arising as the twisted connected sum of a matching pair of building blocks. Our
construction is based on gluing G, —instantons obtained from holomorphic vector
bundles over the building blocks via the first author’s work. We require natural
compatibility and transversality conditions which can be interpreted in terms of
certain Lagrangian subspaces of a moduli space of stable bundles on a K3 surface.

53C07, 53C25, 53C38

1 Introduction

A Gj,-manifold (Y, g) is a Riemannian 7-manifold whose holonomy group Hol(g)
is contained in the exceptional Lie group G, or equivalently, a 7-manifold Y together
with a torsion-free G, —structure, that is, a nondegenerate 3—form ¢ satisfying a certain
nonlinear partial differential equation; see eg Joyce [14, Part I]. An important method
to produce examples of compact G,-manifolds with Hol(g) = G, is the twisted
connected sum construction, suggested by Donaldson, pioneered by Kovalev [16] and
later extended and improved by Kovalev and Lee [17] and Corti, Haskins, Nordstrom
and Pacini [2]. Here is a brief summary of this construction: A building block consists
of a smooth projective 3—fold Z and a smooth anticanonical K3 surface X C Z with
trivial normal bundle; see Definition 2.8. Given a choice of a hyperkéhler structure
(wr,wy,wg) on X such that wy +iwg is of type (2,0) and [wy] is the restriction
of a Kihler class on Z, one can make V := Z \ ¥ into an asymptotically cylindrical
(ACyl) Calabi—Yau 3-fold, that is, a noncompact Calabi—Yau 3—fold with a tubular end
modeled on R4 x S! x ; see Haskins, Hein and Nordstrom [12]. Then Y := SIx V
is an ACyl G,—-manifold with a tubular end modeled on R x T2 x X.

Definition 1.1 Given a pair of building blocks (Z4, ¥4 ), we have the following. A

collection
m={(wj+,05+,0K +),t}
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consisting of a choice of hyperkihler structures on X4 such that wy + +iwg + is of
type (2,0) and [wy, +] is the restriction of a Kahler class on Z as well as a hyperkihler
rotation v: X4 — X_ is called matching data and (Z, X 1) are said to match via m.
Here a hyperkdhler rotation is a diffeomorphism t: ¥ — X_ such that

(1.2) vYor_=wy 4+, Yowj_=wry and tYog_ =-wg +.

Given a matching pair of building blocks, one can glue Y. by interchanging the S!—
factors at infinity and identifying ¥+ via t. This yields a simply connected compact
7-manifold Y together with a family of torsion-free G,—structures (¢7)T>T1,; See
Kovalev [16, Section 4]. From the Riemannian viewpoint (Y, ¢7) contains a “long
neck” modeled on [T, T] x T? x £ ; one can think of the twisted connected sum
as reversing the degeneration of the family of G, —manifolds that occurs as the neck
becomes infinitely long.

If (Z, %) is a building block and £ — Z is a holomorphic vector bundle such that £|x
is stable, then &|y carries a unique ASD instanton compatible with the holomorphic
structure; see Donaldson [5]. The first author showed that in this situation £|p can be
given a Hermitian—Yang—Mills (HYM) connection asymptotic to the ASD instanton
on &|x, [10]. The pullback of an HYM connection over V to S xV is a G,—instanton,
ie a connection 4 on a G-bundle over a G,—manifold such that F4 A ¥ = 0 with
¥ = *¢. It was pointed out by Simon Donaldson and Richard Thomas in their seminal
article on gauge theory in higher dimensions [9] that, formally, G;—instantons are
rather similar to flat connections over 3—manifolds. In particular, they are critical points
of a Chern—Simons-type functional and there is hope that counting them could lead
to an enumerative invariant for G, —manifolds not unlike the Casson invariant for 3—
manifolds; see Donaldson and Segal [8, Section 6] and the second author [22, Chapter 6].
The main result of this article is the following theorem, which gives conditions for a
pair of such G,—instantons over Y1 = § I'x V4 to be glued to give a G, —instanton
over (Y, ¢r1).

Theorem 1.3 Let (Z+, X 1) be a pair of building blocks that match via m . Denote
by Y the compact 7-manifold and by (¢7)r>T1, the family of torsion-free G,—
structures obtained from the twisted connected sum construction. Let £+ — Z 4
be a pair of holomorphic vector bundles such that the following hold:

. €i|gi is stable. Denote the corresponding ASD instanton by Aso + .

* There is a bundle isomorphism t: £4 |y, — E—|s_ covering the hyperkéhler
rotation v such that ™Aoo, — = Aco,+ -
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e There are no infinitesimal deformations of £1 fixing the restriction to X4 :
(14) H'(Z1, Endy(E2)(=2)) = 0.

e Denote by res+: H'(Zy,Endy(Ex)) — H (24, Endo(Ex|x,)) the restriction
map and by Ay: HY(Z+, Endy(Ex)) — H}IOO . the composition of rest with
the isomorphism from Remark 1.6. The images of Ay and T o A_ intersect
trivially in Hy

(1.5) im(A4) NimE* o A_) = {0}.

Then there exists a nontrivial PU(n)—bundle E over Y, a constant Ty > Ty and for
each T > T an irreducible and unobstructed' G,—instanton At on E over (Y, oT).

Remark 1.6 If A is an ASD instanton on a PU(n)-bundle E over a Kéhler surface X
corresponding to a holomorphic vector bundle £, then

Hy:=ker(d®d}: Q'(Z.9p5) > (Q°® Q) (2. 9E)) = H' (T, Endy (€));

see Donaldson and Kronheimer [7, Section 6.4]. Here gg denotes the adjoint bundle
associated with E.

Remark 1.7 If
(1.8) H' (24, &ndo(E4 |5, )) = {0},

then (1.5) is vacuous. If, moreover, the topological bundles underlying £4 are isomor-
phic, then the existence of T is guaranteed by a theorem of Mukai; see Huybrechts and
Lehn [13, Theorem 6.1.6].

Since H*(Z+,Endy(Ex)) = H' (Z+,Endy(E+)(—X+)) vanish by (1.4), there is a
short exact sequence
1 res4 1
0— H (Zx,8Endo(Ex)) —> H (X1, Endo(Ex]x,))
— H*(Z1,&ndy(E4)(—21)) — 0.

This sequence is self-dual under Serre duality. Tyurin [20, page 176ff] pointed out that
this implies that
imAs CHy

is a complex Lagrangian subspace with respect to the complex symplectic structure
induced by Q24 :=wy 4+ +iwg + orequivalently, Mukai’s complex symplectic structure

1See Definition 3.12.
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on H'(Z4,&ndy(E+)). Under the assumptions of Theorem 1.3 the moduli space
M(X+) of holomorphic vector bundles over X4 is smooth near [€+|x, ] and so are
the moduli spaces JL(Z+) of holomorphic vector bundles over Z 4 near [£4]. Locally,
M(Z +) embeds as a complex Lagrangian submanifold into (X 4). Since t*wg — =
—wg +, both M(Z4) and M(Z_) can be viewed as Lagrangian submanifolds of
M(X4) with respect to the symplectic form induced by wg . Equation (1.5) asks
for these Lagrangian submanifolds to intersect transversely at the point [£4 s ]. If
one thinks of G,-—manifolds arising via the twisted connected sum construction as
analogues of 3—manifolds with a fixed Heegaard splitting, then this is much like the
geometric picture behind Atiyah—Floer conjecture in dimension three; see Atiyah [1].

Remark 1.9 The hypothesis (1.5) appears natural in view of the above discussion.
Assuming (1.8) instead would slightly simplify the proof; see Remark 3.38. However, it
would also substantially restrict the applicability of Theorem 1.3 and, hence, the chance
of finding new examples of G;—instantons because (1.8) is a very strong assumption.

Remark 1.10 There are as of yet no examples of new Gj—instantons constructed
using Theorem 1.3. We plan to address this issue in future work.

Outline We recall the salient features of the twisted connected sum construction in
Section 2. The expert reader may wish to skim through it to familiarize with our notation.
The objective of Section 3 is to prove Theorem 3.24, which describes hypotheses under
which a pair of G;—instantons over a matching pair of ACyl G, —manifolds can be
glued. Finally, in Section 4 we explain how these hypotheses can be verified for G, —
instantons obtained via the first author’s construction. Theorem 1.3 is then proved by
combining Theorems 3.24 and 4.2 with Proposition 4.3.

Acknowledgements We are grateful to Simon Donaldson for suggesting the problem
solved in this article. We thank Marcos Jardim. Moreover, we thank the anonymous
referee for many helpful comments and suggestions. TW was supported by ERC Grant
247331 and Unicamp-Faepex grant 770/13.

2 The twisted connected sum construction

In this section we review the twisted connected sum construction using the language
introduced by Corti, Haskins, Nordstrém and Pacini [2].
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2.1 Gluing ACyl G2-manifolds

We begin with gluing matching pairs of ACyl G, —manifolds.

Definition 2.1 Let (Z,w, 2) be a compact Calabi—Yau 3—fold. Here w denotes the
Kéihler form and 2 denotes the holomorphic volume form. A G,-manifold (Y, ¢) is
called asymptotically cylindrical (ACyl) with asymptotic cross section (Z, w, 2) if there
exist a constant § < 0, a compact subset K C Y, a diffeomorphism 7: Y\ K - R4 xZ
and a 2—form p on R x Z such that

¢ =dt Aw+ReQ2+dp and Vk,o = O(e‘”)
for all k£ € Ng. Here ¢ denotes the coordinate on R .
Remark 2.2 Unfortunately, Z is the customary notation both for building blocks and
asymptotic cross sections of ACyl G;-manifolds. To avoid confusion we point out that,

unlike asymptotic cross sections, building blocks always come in pair with a divisor,
eg (Z,%).

Definition 2.3 A pair of ACyl G, -—manifolds (Y4, ¢+) with asymptotic cross sections
(Z4,wy, Q1) is said to match if there exists a diffeomorphism f: Z4 — Z_ such that
f*o-=-wy and [f*ReQ_ =ReQy.

Let (Y4, ¢+) be a matching pair of ACyl G-manifolds. Fix 7" > 1 and define

F. [T, T+1xZ;y— [T, T +1]xZ_ by
F(t,2) .= Q2T +1—t, f(2)).
Denote by Y7 the compact 7—manifold obtained by gluing together
Yr+ =K Ui (0, T +1]x Z4)

via F. Fix a nondecreasing smooth function x: R — [0, 1] with x(¢) =0 for t <0
and x(¢t) =1 for ¢ > 1. Define a 3—form ¢7 on Y7 by

¢ :=¢+ —d[ri(x(t —T + 1)p+)]

on Yr 4. If 7> 1, then <;5T defines a closed G, —structure on Y7 . Clearly, all the Y7
for different values of T are diffeomorphic; hence, we often drop the 7" from the
notation. The G,—structure @7 is not torsion free yet, but can be made so by a small
perturbation:
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1268 Henrique N Sd Earp and Thomas Walpuski

Theorem 2.4 (Kovalev [16, Theorem 5.34]) In the above situation there exists a
constant Ty > 1 and for each T > T\ there exists a 2—form nt on Yt such that
o1 = é1 +dnr defines a torsion-free G, —structure; moreover, for some § < 0

(2.5) ldn7llcoe = O(®T).

2.2 ACyl Calabi-Yau 3—folds from building blocks

The twisted connected sum is based on gluing ACyl G,-manifolds arising as the
product of ACyl Calabi—Yau 3—folds with S!.

Definition 2.6 Let (X, w;,ws,wg) be a hyperkihler surface. A Calabi—Yau 3—fold
(V,w, Q) is called asymptotically cylindrical (ACyl) with asymptotic cross section
(X, w5, wy,wg) if there exist a constant § < 0, a compact subset K C V', a diffeo-
morphism 7: V\ K - R4 xS x X, a I-form p anda 2—form o on Ry x S! x X
such that

myxw =dt Ada + w7 +dp,
7xQ = (do—idt) A(wy +iwg)+do and
Vk,o = O(e&) aswellas VKo = O(e‘gt)

for all k € Ng. Here ¢ and « denote the respective coordinates on R4 and S'!.

Given an ACyl Calabi—Yau 3—fold (V, w, ), taking the product with S! with coordi-
nate B, yields an ACyl G,-manifold

(Y :=8'xV,¢:=dB Aw+ReQ)
with asymptotic cross section
(T?*x X,da AdB +wg, (da—idB) A (wy +iop)).

Let V4 be a pair of ACyl Calabi—Yau 3—folds with asymptotic cross section X4 and
suppose that t: £ — Y_ is a hyperkihler rotation; see (1.2). Then Y4 := V4 x S
match via the diffeomorphism f: T2 x £ — T2 x £_ defined by

fla, B.x) := (B, a, v(x)).

Remark 2.7 If f did not interchange the S!—factors, then ¥ would have infinite
fundamental group and, hence, could not carry a metric with holonomy equal to G, ;
see Joyce [15, Proposition 10.2.2].

ACyl Calabi—Yau 3—folds can be obtained from the following building blocks:
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Definition 2.8 Corti, Haskins, Nordstrom and Pacini [3, Definition 5.1] A building
block is a smooth projective 3—fold Z together with a projective morphism f: Z — P!
such that the following hold:

The anticanonical class —K 7 € H?(Z) is primitive.

¥ := f~!(oc0) is a smooth K3 surface and ¥ ~ —K 7.

If N denotes the image of H?(Z) in H*(X), then the embedding N — H?*(X)
is primitive.

H?3(Z) is torsion free.

Remark 2.9 The existence of the fibration f: Z — P! is equivalent to ¥ having
trivial normal bundle. This is crucial because it means that Z \ ¥ has a cylindrical end.
The last two conditions in the definition of a building block are not essential; they have
been made to facilitate the computation of certain topological invariants in [3].

In his original work Kovalev [16] used building blocks arising from Fano 3—folds by
blowing up the base locus of a generic anticanonical pencil. This method was extended
to the much larger class of semi-Fano 3—folds (a class of weak Fano 3—folds) by
Corti, Haskins, Nordstrom and Pacini [2]. Kovalev and Lee [17] construct building
blocks starting from K3 surfaces with nonsymplectic involutions, by taking the product
with P!, dividing by Z, and blowing up the resulting singularities.

Theorem 2.10 (Haskins, Hein and Nordstrom [12, Theorem D]) Let (Z,X) be
a building block and let (wy,wy,wg) be a hyperkihler structure on X such that
wy +iwg isof type (2,0). If [wy] € HV'(X) is the restriction of a Kiihler class on Z ,
then there is an ACyl Calabi—Yau structure (w,2) on V := Z \ ¥ with asymptotic
cross section (X, wy, wy, wg).

Remark 2.11 This result was first claimed by Kovalev in [16, Theorem 2.4]; see the
discussion in [12, Section 4.1].

Combining the results of Kovalev and Haskins, Hein and Nordstrom, each matching pair

of building blocks (see Definition 1.1) yields a one-parameter family of G,-manifolds.
This is called the twisted connected sum construction.

3 Gluing G;,-instantons over ACyl G,;-manifolds

In this section we discuss when a pair of G;—instantons over a matching pair of ACyl
G,-manifolds Y1 can be glued to give a G, —instanton over (Y, ¢7).

Geometry € Topology, Volume 19 (2015)



1270 Henrique N Sd Earp and Thomas Walpuski

Yr 4 Yr-

T,T+1
[ T3
St St
X / X

St St

Figure 1: The twisted connected sum of a matching pair of building blocks

3.1 Linear analysis on ACyl manifolds

We recall some results about linear analysis on ACyl Riemannian manifolds. The
references for the material in this subsection are Mazya and Plamenevskii [19] and
Lockhart and McOwen [18].

3.1.1 Translation-invariant operators on cylindrical manifolds Let £ — X be
a Riemannian vector bundle over a compact Riemannian manifold. By slight abuse
of notation we also denote by E its pullback to R x X . Denote by ¢ the coordinate
function on R. For k£ € Ng, a € (0, 1) and § € R we define

Il era =™ - llcra
and denote by C8k “*(R x X, E) the closure of Cs°(R x X, E) with respect to this
k.o
norm. We set C° := (), Cs .
8 k™8

Let D: C*®(X, E) — C°(X, E) be alinear self-adjoint elliptic operator of first order.
The operator
Loo = 3, —-D

extends to a bounded linear operator L, s: Cékﬂ’a(R XX, E)— C(sk’a RxX,E).

Theorem 3.1 (Mazja and Plamenevskii [19, Theorem 5.1]) The linear operator L s
is invertible if and only if § & spec(D).

Elements a € ker L, can be expanded as
(3.2) a= Y ¢"as
SespecD

where ag are §—eigensections of D; see Donaldson [6, Section 3.1]. One consequence
of this is the following result:
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Proposition 3.3 Denote by A4+ and A_ the first positive and negative eigenvalue of D,
respectively. If a € ker L, and

a= O(e‘”) ast — oo
with § < A4, then there exists ag € ker D such that
Vk(a —dag) = O(e)‘—t) ast — oo

forallk e Ng. Ifae L*°(Rx X, E), thena = ay.

3.1.2 Asymptotically translation-invariant operators on ACyl manifolds Let M
be a Riemannian manifold together with a compact set K C M and a diffeomorphism
w: M\ K — R4 x X such that the pushforward of the metric on M is asymptotic
to the metric on R4 x X, this means here and in what follows that their difference
and all of its derivatives are O(e%") as 1 — oo with § < 0. Let F be a Riemannian
vector bundle and let 7: F|pr\ g — E be a bundle isomorphism covering 7 such that
the pushforward of the metric on F is asymptotic to the metric on E. Denote by
t: M —[1, 00) asmooth positive function which agrees with foxr on 771 ([1, 00) x X).
We define

I g = 1™ -l cha
and denote by C {Sk “*(M, F) the closure of Cg° (M, F) with respect to this norm.

Let L: C§°(M, E) — C§°(M, E) be an elliptic operator asymptotic to Loo = 3d;— D,
ie the coefficients of the pushforward of L to R4 x X are asymptotic to the coefficients

of L. The operator L extends to a bounded linear operator Lg: C 8k tle (M, E) —
CH(M,E).

Proposition 3.4 [12, Proposition 2.4] If 6 & spec(D), then Lg is Fredholm.

Elements in the kernel of L still have an asymptotic expansion analogous to (3.2). We
need the following result which extracts the constant term of this expansion.

Proposition 3.5 There is a constant 8 > 0 such that, for all § €[0, §¢], ker Lg=ker L
and there is a linear map t: ker Ly — ker D such that

Vk(J_r*a —(a)) = O(e_‘sot) ast — oo

for all k € Ny; in particular,
kert =ker L_g,.
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Proof Let A1 be the first positive/negative eigenvalue of D. Then pick 0 < §y <
min(A 4+, —A_) such that the decay conditions made above hold with —2§, instead of §.
Given a € ker L, set a := x(t)T«a+ with x as in Section 2.1. Then Lod € C°°

By Theorem 3.1 there exists a unique b € C°° such that Loo(@ — b) = 0. By
Proposition 3.3 (@a—b)g €eker D and @a—b — (a— b)o O(e*~") as ¢ tends to infinity.
From this it follows that @ € ker Lg; hence, the first part of the proposition. With
t(a) := (@—b)g the second part also follows. |

3.2 Hermitian—-Yang—Mills connections over Calabi—Yau 3—folds

Suppose (Z,w, ) is a Calabi—Yau 3—fold and (Y ;=R x Z,¢ :=dt Aw +ReQ)
is the corresponding cylindrical G, —manifold. In this section we relate translation-
invariant G, —instantons over Y with Hermitian—Yang—Mills connections over Z . Let
G denote a compact semisimple Lie group.

Definition 3.6 Let (Z, ) be a Kdhler manifold and let £ be a G-bundle over Z.
A connection A on E is a Hermitian—Yang—Mills (HYM) connection if

(3.7) F$*=0 and AF4=0.

Here A is the dual of the Lefschetz operator L :=w A .

Remark 3.8 We are mostly interested in the special case of U(n)-bundles; however,
for G = U(n), (3.7) is too restrictive as it forces c¢;(E£) = 0. There are two customary
ways to circumnavigate this issue. One is to change (3.7) and instead of the second part
require that A F4 be equal to a constant in u(1), the center of u(n), which is determined
by the degree of det E ; the other one is to work with the induced PU(n)-bundle. These
viewpoints are essentially equivalent and we adopt the latter.

Remark 3.9 By the first part of (3.7) an HYM connection induces a holomorphic
structure on E. If Z is compact, then there is a one-to-one correspondence between
gauge equivalence classes of HYM connections on E and isomorphism classes of
polystable holomorphic G€—bundles & whose underlying topological bundle is E

see Donaldson [5] and Uhlenbeck and Yau [21].

On a Calabi—Yau 3—fold (3.7) is equivalent to
FynImQ =0 and FqAwArw=0;
hence, using ¥ = x¢ = x(df Aw +Re Q) = %a) Aw —dt Alm Q2 one easily derives:

Proposition 3.10 [10, Proposition 8] Denote by mz: Y — Z the canonical projec-
tion. A is an HYM connection if and only if w7, A is a G, —instanton.
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In general, if A is a G—instanton on a G-bundle E over a G,-—manifold (Y, ¢), then
the moduli space M of G,—instantons near [A], ie the space of gauge equivalence classes
of G,—instantons near [A], is the space of small solutions (£,a) € (Q°® Q") (Y.gE)
of the system of equations

d%a=0 and dgye€+*(FaraA¥)=0

modulo the action of I'y C %, the stabilizer of A in the gauge group of E, assuming Y
is compact or appropriate assumptions are made regarding the growth of & and a. The
linearization L4: (Q°@® Q)(Y.gr) — (R°® Q1) (Y, gg) of this equation is

P— d*
3.11) La:= (dA * (Y deA))'

It controls the infinitesimal deformation theory of A.
Definition 3.12 A is called irreducible and unobstructed if L 4 is surjective.

If A is irreducible and unobstructed, then Al is smooth at [A4]. If Y is compact, then L 4
has index zero; hence, is surjective if and only if it is invertible; therefore, irreducible
and unobstructed G, —instantons form isolated points in Jt. If ¥ is noncompact, the
precise meaning of Jl and L4 depends on the growth assumptions made on & and «a,
and Jil may very well be positive-dimensional.

Proposition 3.13 If A is an HYM connection on a bundle E over a G, —manifold
Y :=R x Z as in Proposition 3.10, then the operator Ly a defined in (3.11) can be
written as

Lprq=1T0/+ Dy,

where
—1

I
and Dg: (Q°® Qe Q) (Z,gr) = (Q°® Q@ Q1) (Z, gE) is defined by
d%
(3.14) Dy = Ady
dgy —Idgy —x(ImQ Ady)

(Note that TY =R @ n,TZ.)
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Proof Plugging v = %w Aw—dt AIm Q into the definition of Ln} 4 and using the
fact that the complex structure acts via

(3.15) I=Jx(@A0A")

on Q1(Z,gg) the assertion follows by a direct computation. |

Definition 3.16 Let 4 be an HYM connection on a G-bundle E over a Kihler
manifold (Z, w). Set

Hf“ = ker(gA @gj: Qo’i(Z,g%) — Q%+l g Qo’i_l)(Z,g%)).
We call 7—[,21 the space of infinitesimal automorphisms of A and 7-[,;1 the space of

infinitesimal deformations of A.

Remark 3.17 If Z is compact and A is a connection on a PU(n)—bundle E corre-
sponding to a holomorphic vector bundle £, then 7-[1’.4 ~ H'(Z,Endy(E)).

Proposition 3.18 If (Z,w»,2) is a compact Calabi—Yau 3—fold and A is an HYM
connection on a G —-bundle £ — Z , then
ker Dy = HY & HY,
with D4 as in (3.14).
Proof If s € Hg and o € 7-{114, then D4(Res,Ims,a + @) = 0. Conversely, if
(§.m.a) € ker Dy, then applying d (resp. d% o) to
dgé—Idgn—*x(ImQ Adya) =0,

using (3.15), taking the L? inner product with & (resp. 1) and integrating by parts
yields d4& =0 (resp. d4n =0). Thus £ +in € 7—[91 and

dja=0, Adga=0 and ImQAdga=0,

which implies « := a%! € %}, because d¥% = 9% —i—gj and Ady = —i 0% + igjl. O

3.3 G;-instantons over ACyl G;-manifolds

Definition 3.19 Let (Y, ¢) be an ACyl G,—manifold with asymptotic cross section
(Z,w,2). Let Aso be an HYM connection on a G-bundle Eoc — Z. A G-
instanton 4 ona G-bundle £ — Y is called asymptotic to A if there exist a constant
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d <0 and a bundle isomorphism 7: E|y\g — Eco covering 7: Y \ K - R4 x Z
such that

(3.20) VK (7w A — Ao) = O(e*)
for all k € Ny. Here by a slight abuse of notation we also denote by Eo and A
their respective pullbacks to R4 x Z.
Definition 3.21 Let (Y, ¢) be an ACyl G,-manifold and let 4 be a G,—instanton on
a G -bundle over (Y, ¢) asymptotic to Aso. For § € R we set
Tas:=kerLys= {c_z eker L4 } VETea = 0(e) for all k € No},
where a = (£,a) € (Q° @ Q")(Y,gEg). Set T4 := Ta,0-
Proposition 3.22 Let (Y, ¢) be an ACyl G, —manifold and let A be a G, —instanton

asymptotic to A . Then there is a constant 8o > 0 such that for all § €[0, 8¢], T4, = T4
and there is a linear map ;. T4 — 7—[9100 @ 7—[}100 such that

VF(Fra —(a)) = O(e™%7)
for all k € Ny; in particular,

kert =Ty _s,-

Proof By Proposition 3.13, L4 is asymptotic to T(a, — TDA). Since TDA is self-
adjoint and ker ID4 = ker D4, we can apply Proposition 3.5 to obtain a linear
map t: Ty — ker D4__ and use the isomorphism ker D4 = ’HBIOO @ Hjloo from
Proposition 3.18. ad

Proposition 3.23 Let (Y, ¢) be an ACyl G, —manifold and let A be a G, —instanton
asymptotic to Aso. Then
dimim: =} dim(H}_ @) )
and, if Hgoo = 0, then im: C Hiloo is Lagrangian with respect to the symplectic
structure on Hjloo induced by w.
Proof By Lockhart and McOwen [18, Theorem 7.4] for 0 < § < 1
dimim: =index L4 5 = % dimker Dy .

Suppose Hgm = 0. If (§,a) € T4, then d%d4& = 0 and, by Proposition 3.22, &
decays exponentially. Integration by parts shows that d 4& = 0; hence £ = 0. Therefore
7;1 C Ql (Y, g E)
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We show that im ¢ is isotropic: for a,b € T4,

%/Z(L(a)/\t(b))/\a)/\a)=/Yd((a/\b)/\W)=O

because dgqa Ay =dg4b A Y = 0. |

3.4 Gluing G;—instantons over ACyl G;-manifolds

In the situation of Proposition 3.23, if kert = 0 and ’Hgoo = 0, then one can show
that the moduli space JM(Y) of G,—instantons near [A] which are asymptotic to some
HYM connection is smooth. Although the moduli space MM (Z) of HYM connections
near [Aso] is not necessarily smooth, formally, it still makes sense to talk about its
symplectic structure and view J(Y) as a Lagrangian submanifold. The following
theorem shows, in particular, that transverse intersections of a pair of such Lagrangians
give rise to G —instantons.

Theorem 3.24 Let (Y1,¢+) be a pair of ACyl G, —manifolds which match via
J: Zy—Z_. Denoteby (YT, ¢1)T>T, the resulting family of compact G, —manifolds
arising from the construction in Section 2.1. Let A be a pair of G, —instantons on E 1
over (Y4, ¢+) asymptotic to Aso,+ . Suppose that the following hold:

e There is a bundle isomorphism f : Eco,+ = Eoo,— covering f such that
¥ Aoo,— = Aco+-
e Themaps ty: Ty, —ker Dy, constructed in Proposition 3.22 are injective

and their images intersect trivially:

(3.25) im(e4) Nim(f* o) ={0} CHY _, SHy_ .

Then there exists Ty > Ty and for each T > T there exists an irreducible and
unobstructed G, —instanton A on a G-bundle Et over (Y1, ¢T).

Proof The proof proceeds in three steps. We first produce an approximate G,—
instanton A7 by an explicit cut-and-paste procedure. This reduces the problem to
solving the nonlinear partial differential equation

(3.26) d7a=0 and dg  E+*r(Fz  ,AY7)=0

forae Q' (Yr,gg,) and £ € Q°(Y7, gE,), where Y1 := x¢7 . Under the hypotheses
of Theorem 3.24 we will show that we can solve the linearization of (3.26) in a uniform
fashion. The existence of a solution of (3.26) then follows from a simple application of
Banach’s fixed-point theorem.
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Step 1 There exists a § < 0 and for each T > T there exists a connection /TT on a
G -bundle E7 over Y7 such that

(3.27) IF 7, A¥Tlcoa = 0.

The bundle E7 is constructed by gluing Ei|YT’ 4 via f_ and the connection A7 is
defined by

Ar = Az —TLX( =T + Dax]

over Y7 + with
a4 = ﬁ:l:,*A:i: - Aoo,:l:»
4+ is as in Definition 3.19 and x is as in Section 2.1. Then (3.27) is a straightforward

consequence of (2.5) and (3.20).

Step 2 Define a linear operator L7: cle 5 Coe by (3.11) with 4 = /TT and
¢ = ¢1. Then there exist constants 77, ¢ > 0 such that for all 7" > T the operator L
is invertible and

(3.28) IL7 allcra < ce®DT ||a] cow.

Step 2.1 There exists a constant ¢ > 0 such that for all 7" > Ty

(3.29) lallcre = c(lLrallcoe +llallLee).

This is an immediate consequence of standard interior Schauder estimates because of
(2.5) and (3.20).

Step 2.2 There exist constants T; > T, and ¢ > 0 such that for T € [T 1,00)

(3.30) la)l oo < cePVIT ) Lral|co.

Suppose not; then there exist a sequence (7;) tending to infinity and a sequence (g;)
such that

(3.31) lg;lzee =1 and  lim e®VHTi L1 g |l cow = 0.

1—>00

Then by (3.29),

(3.32) la;llcre <2c.
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Hence, by Arzela—Ascoli we can assume (by passing to a subsequence) that the sequence

a;ly,. . converges in Ckl;c"‘/ 2 to some section a., 4 of (A A ®gE L over Y,
i ,

which is bounded and satisfies

LA:I:L—ZOO,:E = 0

because of (2.5) and (3.20). Using standard elliptic estimates, d, 1 € T4, -

Proposition 3.33 In the above situation,

ll—lfgo a1y, 1) = @oo 2lvy, ILoory, o) =0

The proof of this proposition will be given at the end of this section. Accepting it as a
fact for now, it follows immediately that

L (@ooq) = [T ot(8no,)

because Y7, +NY7, - =[T;, T; +1]x Z 4. Now, by (3.25) we must have (4 (a¢,, 1) =0;
hence, a, 4 =0, since 1 are injective.

However, by (3.31) there exist x; € Y7, such that |ar, |(x;) = 1. By passing to a further
subsequence and possibly changing the roles of + and — we can assume that each
x; € Y7, +; hence, by Proposition 3.33, a,,  # 0, contradicting what was derived
above. This proves (3.30).

Step 2.3 We complete the proof of Step 2.

Combining (3.29) and (3.30) yields
lallcre < ce®VOT | Lra] coa.

Therefore, L7 is injective; hence, also surjective since L7 is formally self adjoint.

Step 3 There exists a constant 77 > T 1 and for each 7' > T a smooth solution
a = ap of (3.26) such that limr o |la7||c1.e = 0.

We can write (3.26) as
(3.34) Lra+ Qr(@)+er =0

where Q7(a) := %*T([a/\a]/\ VYr)+la, &) and er := *7(F7, AYT). We make the
ansatz a = L}llg . Then (3.34) becomes

(3.35) b+ Or(b)+er=0

Geometry & Topology, Volume 19 (2015)



G, —instantons over twisted connected sums 1279

with Or = Qr o L7'. By (3.28),

107 (by) — O1 (b))l cow < ce VDT (b cow + byl cow) |by —bsllcoa

for some constant ¢ > 0 independent of 7 > T;. By Step 1, lerlcoe = O(e
Now, Lemma 3.36 yields the desired solution of (3.35) and thus of (3.26) provided
T > T, for a suitably large 77 > T . By elliptic regularity a is smooth. |

ST)'

Lemma 3.36 (Donaldson and Kronheimer [7, Lemma 7.2.23]) Let X be a Banach
space and let T: X — X be a smooth map with T(0) = 0. Suppose there is a constant
¢ > 0 such that

ITx =Tyl < clixl+1yDIx =yl
If y € X satisfies ||y| < ﬁ, then there exists a unique x € X with ||x|| < % solving
x+Tx=y.
Moreover, this x € X satisfies || x|| <2|»|-

To complete the proof of Theorem 3.24 it now remains to prove Proposition 3.33 for
which we require the following result.

Proposition 3.37 In the situation of Theorem 3.24, there is a Yy > 0 such that for each
Y € (0, yo) the linear operator L4 : CJ} * C1(/) ** has a bounded right inverse.

Proof By Proposition 3.4, Ly_: C,}’“ — C)(,)’a is Fredholm whenever y > 0 is

sufficiently small. The cokernel of L4, can be identified to be T4 ), which is
trivial by hypothesis. a

Proof of Proposition 3.33 We restrict to the + case; the — case is identical. It
follows from the construction of g,  that for each fixed compact subset K C Y

lim |[(g;|k) — (@oo + 1K) Lo (k) = 0.
1—>00
. . 18l . .
To strengthen this to an estimate on all of Y7, | the factor e 4 T in (3.31) will be
important, even though it is clearly not optimal.

With yx as in Section 2.1 define a cut-off function x7: Y4 — [0,1] by xr(x) :=
1—x(t+(x)— %T). For each sufficiently small y > 0 we have

ILay (xTa)llcde vy = O(e~C/DvTiy
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using the estimates (2.5), (3.20), (3.31) and (3.32). Using Proposition 3.37 we construct
b; € CJ}:O‘ such that gfx)ﬂL = X1,4; +b; € Tay,y and ||b;]lc)e = O(e=G/2vTiy
Hence,

11y, ) = oo 1 ¥, Loy, 4) = 0(e=(1/rTr)

Moreover, lim;_ o ||(c_zéo’+|K) — (@0 + 1K) Lo (k) = 0 and since both | - || oo (k)

and || - || poo(y,.) are norms on the finite-dimensional vector space T4, = T4, italso
follows that

. i _
ilggo laoo,+ = Qoo +lLo(r4) = 0.

Therefore,
ll—l>n;<) ”(QilYT,-.—i-) - (Qoo,+|YTi'+)||L°°(YTi,+) =0. o

Remark 3.38 The proof of Theorem 3.24 slightly simplifies assuming Hgloo’ +®
HLOO’ L= {0} instead of (3.25): We can directly conclude that (4 (a,, 1) = 0 and,
hence, a,, + = 0; thus making Proposition 3.33 unnecessary. In particular, (3.30)
holds without the additional factor of ¢S/

4 From holomorphic vector bundles over building blocks to
G,—-instantons over ACyl G,;-manifolds

We now discuss how to deduce Theorem 1.3 from Theorem 3.24.

Definition 4.1 Let (V,w, ) be an ACyl Calabi—Yau 3—fold with asymptotic cross
section (X, wr,wy,wg). Let Ao be an ASD instanton on a G-bundle E, over X.
An HYM connection A on a G-bundle E over V is called asymptotic to Aso if
there exist a constant § < 0 and a bundle isomorphism 7: E[j\ g — Eoo covering
7 V\K = Ry xS x T such that

VE (7 A — Aoo) = O(e*)

for all k£ € Ny. Here by a slight abuse of notation we also denote by Es, and Ao
their respective pullbacks to Ry x S! x X.

The following theorem can be used to produce examples of HYM connections A on
PU(n)-bundles over ACyl Calabi—Yau 3—folds asymptotic to ASD instantons A ;
hence, by taking the product with S!, examples of G,—instantons my, A asymptotic
to JT;AOO over the ACyl G, —manifold S1xV.Here ny: S'xV —V and 7s: T?x
3} — ¥ denote the canonical projections.
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Theorem 4.2 (Sa Earp [10, Theorem 59]) Let Z and ¥ be as in Theorem 2.10
and let (V := Z \ £, w, Q) be the resulting ACyl Calabi—Yau 3—fold. Let £ be a
holomorphic vector bundle over Z and let A, be an ASD instanton on €|y compatible
with the holomorphic structure. Then there exists an HYM connection A on |y which
is compatible with the holomorphic structure and asymptotic to Aeo -

By slight abuse of notation we also denote by A, the ASD instanton on the PU(n)-
bundle associated with £|y and by A the HYM connection on the PU(n)-bundle
associated with £|y-. Theorems 3.24 and 4.2 together with the following result imme-
diately imply Theorem 1.3.

Proposition 4.3 In the situation of Theorem 4.2, suppose H°(Z,Endy(Ex)) = 0.
Then

1 _ gl
(4.4) Mo ae = Hior

see Definition 3.16 and Remark 1.6, and for some small § > 0 there exist injective
linear maps

ke Tox a,—s = H'(Z,Endo(E)(=X)),
K T g = HY(Z, &ndy(€))

such that the following diagram commutes:

Tat d,—8 Tua L Hzlrgngo
(4.5) . k . [ N

HY(Z,Endy(E)(=X)) — HW(Z,Endy(E)) — H' (T, Endy(Eyx))

Equation (4.4) is a direct consequence of Hgioo = 0. The proof of the remaining
assertions requires some preparation.

4.1 Comparing infinitesimal deformations of = A and A

Proposition 4.6 If A is an HYM connection asymptotic to A, then there exists a
8o > 0 such that for all § < §

(4.7) Tar a5 ={a €ker Dg | V¥7Toa = O(™) forall k € No},
with D4 as in (3.14).
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Proof We can write L4 = 70 g + D4 where B denotes the coordinate on S I For
8 <0, (4.7) follows by an application of [23, Lemma A.1] by the second author. The
right-hand side is contained in the left-hand side of (4.7) which, by Proposition 3.22, is
independent of § € [0, &g]. |

Proposition 4.8 In the situation of Proposition 4.3, there exists a constant 6y > 0 such

that, for all § <, 7-[21 s =0 and

~ a1
7};;A,5 = HA,sv
where

Hiy 5= {o € Wy | VEZa = O(Y) forall k € N).

Proof If § <&y (cf. Proposition 3.22) and (£, 7,a) € T4,s, then 1(§,n,a) € {0}697-[11400.
Hence £ and n decay exponentially and one use can Proposition 4.6 and argue as in
the proof of Proposition 3.18; it also follows that 7-[21 s=0. O

4.2 Acyclic resolutions via forms of exponential growth/decay

In view of the above what is missing to prove Proposition 4.3 is a way to relate ’Hjl 5
with the cohomology of (twists of) Endy(E). This is what the following result provides.

Proposition 4.9 Let (Z, %) be a building block and let V := Z \ ¥ be the ACyl
Calabi—Yau 3 —fold constructed via Theorem 2.10. Suppose that £ is a holomorphic
vector bundle over Z and suppose that A is an HYM connection on £ compatible with
the holomorphic structure and asymptotic to an ASD instanton on &|x .

For § € R define a complex of sheaves (A3, 9) on Z by
(4.10) ALU) :={a e Q¥ (V NU,E) | ViR = O(eY) for all k € Ny}

If § € R\ Z, then the complex of sheaves (Aj3, 9) is an acyclic resolution of £(|§] ).
In particular, setting K(ls' () := [a] one obtains maps

k5: Hly s — H' (T(A3),0) = H'(Z,£(|8]%)).

Remark 4.11 In Proposition 4.9, |§] denotes the largest integer not greater than §;
in particular, |§|X is a divisor on Z.

Remark 4.12 We state Proposition 4.9 in dimension three; however, it works mutatis
mutandis in all dimensions.
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Proof of Proposition 4.9 The proof consists of three steps.

Step 1 The sheaves Ag are C°°—modules, hence, acyclic; see Demailly [4, Chapter IV,
Corollary 4.19].

Step 2 We have £([§]%) = ker(d: A — A}).

Let x € Z and let U C Z denote a small open neighborhood of x. An element
s € ker(3: T'(U, .Ag) — I'(U, Aé )) corresponds to a holomorphic section of &|pyny
such that |z|_5s stays bounded. Here z is a holomorphic function on U vanishing to
first order along 3 N U, whose existence follows from Definition 2.8. Then 2=l s
weakly holomorphic in U . By elliptic regularity z~ 18] extends across U NS and thus
s defines an element of T'(U, £(|5]X)). Conversely, it is clear that T'(U, £(|6] X)) C
ker(d: T(U, A9) — T'(U, A})).

Step 3 The complex of sheaves (Ag, 8) is exact.

Away from ¥ the exactness follows from the usual 9—Poincaré Lemma. If x € X, then
since Z is fibred over P!, by Definition 2.8, there exist a small open neighborhood U
of x in Z, a polydisc D C X centered at x and a biholomorphic map =: VNU —
R4+ x S! x D such that the pushforward of the Kihler metric on V N U via 7 is
asymptotic to the metric induced by that on D. The necessary version of the 9—Poincaré
lemma can now be proved along the lines of Griffiths and Harris [11, page 25] provided
the linear operator

3: CPQOR x ST — CPQ (R x ST
is invertible. This, however, is a simple consequence of Theorem 3.1 since 0=10;4104

and the spectrum of 19y on S! =R/Z is Z. |

4.3 Proof of Proposition 4.3

In view of Proposition 4.8 we only need to establish (4.5) with Hii s instead of 7;,; A5-
By Proposition 4.9 applied to Endy(E), we have linear maps

kg: Hys— H'(Z,Endo(€)(|8]%)) ford e R\Z;
hence, linear maps
K_: 7—[114,_5 — HY(Z,&ndy(£)(-3)),
K My =My s — H'(Z,Endo(€))
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for some small § > 0 making the following diagram commute:

1 1 L 1
Hy s Hy Hy

|« l |=

HY(Z,Endy(E)(=X)) — HW(Z,Endy(E)) — H' (T, Endy(E]x))

The map «_ is injective, because if k_a = 0, then a = ds for some s € F(Z, A(ig)

and thus
/ lall? = / (a,35) = / T a.s) = 0.
Vv V Vv

Since H°(X, Endy(€|x)) = 0, the first map on the bottom is injective and because the
rows are exact a simple diagram chase proves shows that « is injective. a
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