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A ‘Darboux theorem’ for shifted symplectic structures
on derived Artin stacks, with applications
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DOMINIC JOYCE

This is the fifth in a series of papers on the ‘k –shifted symplectic derived algebraic
geometry’ of Pantev, Toën, Vaquié and Vezzosi. We extend our earlier results from
(derived) schemes to (derived) Artin stacks. We prove four main results:

(a) If .X ; !X / is a k –shifted symplectic derived Artin stack for k < 0 , then near
each x2X we can find a ‘minimal’ smooth atlas 'W U!X , such that .U ;'�.!X //

may be written explicitly in coordinates in a standard ‘Darboux form’.

(b) If .X ; !X / is a .�1/–shifted symplectic derived Artin stack and X D t0.X/

the classical Artin stack, then X extends to a ‘d–critical stack’ .X; s/ , as by Joyce.

(c) If .X; s/ is an oriented d–critical stack, we define a natural perverse sheaf {P �
X ;s

on X , such that whenever T is a scheme and t W T ! X is smooth of relative
dimension n , T is locally modelled on a critical locus Crit.f W U ! A1/ , and
t�. {P �

X ;s
/Œn� is modelled on the perverse sheaf of vanishing cycles PV�

U;f
of f .

(d) If .X; s/ is a finite-type oriented d–critical stack, we can define a natural motive
MFX ;s in a ring of motives SM st;y�

X on X , such that if T is a scheme and t W T !X

is smooth of dimension n , then T is modelled on a critical locus Crit.f W U !A1/ ,
and L�n=2ˇ t�.MFX ;s/ is modelled on the motivic vanishing cycle MFmot;�

U;f
of f .

Our results have applications to categorified and motivic extensions of Donaldson–
Thomas theory of Calabi–Yau 3–folds.

14A20; 14F05, 14D23, 14N35, 32S30

1 Introduction

This is the fifth in a series of papers [3; 4; 5; 14] on the subject of the ‘k –shifted
symplectic derived algebraic geometry’ of Pantev, Toën, Vaquié and Vezzosi [28] and
its applications to generalizations of Donaldson–Thomas theory of Calabi–Yau 3–folds
and to complex and algebraic symplectic geometry.
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Pantev et al [28] defined notions of k –shifted symplectic derived schemes and stacks
.X ; !/, a new geometric structure on derived schemes and derived stacks X in the
sense of Toën and Vezzosi [30; 31]. They proved that any derived moduli stack M of
(complexes of) coherent sheaves on a Calabi–Yau m–fold Y carries a .2�m/–shifted
symplectic structure.

We are particularly interested in Calabi–Yau 3–folds, in which case k D�1. Pantev
et al [28] also proved that the derived critical locus Crit.f W U ! A1/ of a regular
function f on a smooth K–scheme U is �1–shifted symplectic, and that the derived
intersection L\M of two algebraic Lagrangian submanifolds L;M in an algebraic
symplectic manifold .S; !/ is �1–shifted symplectic.

The first paper by Joyce [14] in our series defined and studied ‘algebraic d–critical loci’
.X; s/, a classical K–scheme X with a geometric structure s which records information
on how X may Zariski locally be written as a classical critical locus Crit.f W U !A1/

of a regular function f on a smooth K–scheme U . It also discussed ‘d–critical stacks’
.X; s/, a generalization to Artin K–stacks.

The second paper by Bussi, Brav and Joyce [4] proved a ‘Darboux theorem’ for the
k –shifted symplectic derived schemes .X ; !/ of [28] when k < 0, writing .X ; !/
Zariski locally in a standard form, and defined a truncation functor from �1–shifted
symplectic derived schemes .X ; !/ to algebraic d–critical loci .X; s/. By [28], this
implies that moduli schemes M of simple (complexes of) coherent sheaves on a
Calabi–Yau 3–fold Y can be made into d–critical loci .M; s/.

The third paper by Bussi, Brav, Dupont, Joyce and Szendrői [3] proves that if .X; s/ is
an algebraic d–critical locus with an ‘orientation’, then one can define a natural perverse
sheaf P�

X ;s
, a D –module DX ;s , and (over KDC ) a mixed Hodge module MX ;s over

X , such that if .X; s/ is locally modelled on Crit.f W U !A1/ then P�
X ;s

is locally
modelled on the perverse sheaf of vanishing cycles PV�

U;f
of f , and similarly for

DX ;s;MX ;s . We hope to apply this to the categorification of Donaldson–Thomas theory
of Calabi–Yau 3–folds, as in Kontsevich and Soibelman [18].

The fourth paper by Bussi, Joyce and Meinhardt [5] proves that if .X; s/ is a finite-type,
oriented algebraic d–critical locus then one can define a natural motive MFX ;s in a ring
of motives SM y�

X on X , such that if .X; s/ is locally modelled on Crit.f W U !A1/

then MFX ;s is locally modelled on the ‘motivic vanishing cycle’ MFmot;�
U;f

of f . We
hope to apply this to motivic Donaldson–Thomas invariants of Calabi–Yau 3–folds, as
in Kontsevich and Soibelman [17].

The goal of this paper is to extend the results of [3; 4; 5] from K–schemes to Artin
K–stacks, using the notion of d–critical stack from [14]. The next four theorems
summarize the main results of Sections 2–5 below, respectively:
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Theorem 1.1 Let K be an algebraically closed field of characteristic zero, .X ; !X / a
k –shifted symplectic derived Artin K–stack as in [28] for k < 0, and p 2X.K/ be a
K–point of X . Then we can construct the following data:

(a) Affine derived K–schemes U D Spec A, V D Spec B , where A;B are commu-
tative differential graded K–algebras (cdgas) in degrees less than or equal to 0,
of an explicit ‘standard form’ defined in Section 2.3.

(b) A morphism of derived stacks 'W U D Spec A! X which is smooth of the
minimal possible relative dimension nD dim H 1.LX jp/.

(c) An inclusion �W B ,!A of B as a dg-subalgebra of A, so that i DSpec �W U!V

is a morphism of derived K–schemes; on classical schemes, i D t0.i /W U D

t0.U /! V D t0.V / is an isomorphism.

(d) A K–point zp 2 Spec H 0.A/ with '. zp/ D p , such that the ‘standard form’
cdgas A;B have the minimal possible numbers of generators dim H j .LU j zp/,
dim H j .LV ji . zp// in each degree j D 0;�1; : : : ; k; k � 1.

(e) An equivalence of relative (co)tangent complexes LU =V 'TU =X Œ1�k�; hence
LU =V is a vector bundle of rank n in degree k � 1.

(f) A k –shifted symplectic structure !B D .!
0
B
; 0; : : :/ on V D Spec B which is in

‘Darboux form’ in the sense of [4, Section 5] and Section 2.4, with '�.!X /�

i �.!B/ in k –shifted closed 2–forms on U .

For example, if k D�2d � 1 for d D 0; 1; : : : then the ‘standard form’ and ‘Darboux
form’ conditions above mean the following. The degree 0 part B0 of B is a smooth K–
algebra of dimension m0 , and we are given x0

1
; : : : ;x0

m0
2B0 such that .x0

1
; : : : ;x0

m0
/

are étale coordinates on all of V .0/D Spec B0 . As a graded commutative algebra, B

is freely generated over B0 by variables

x�i
1 ; : : : ;x�i

mi
in degree �i for i D 1; : : : ; d ,

yi�2d�1
1 ; : : : ;yi�2d�1

mi
in degree i � 2d � 1 for i D 0; 1; : : : ; d .

We have !0
B
D
Pd

iD0

Pmi

jD1
ddRyi�2d�1

j ddRx�i
j in .ƒ2�1

B
/�2d�1 . The differen-

tial d on the cdga B is db D fH; bg for b 2 B , where f � ; � gW B � B ! B is the
Poisson bracket defined using the inverse of !0

B
, and H 2 B�2d is a Hamiltonian

function satisfying the classical master equation fH;H g D 0. Also B � A, and A

is freely generated as a graded commutative algebra over B by additional variables
w�2d�2

1
; : : : ; w�2d�2

n in degree �2d � 2.

Theorem 1.1 says that given a k –shifted derived Artin stack .X ; !X / for k < 0, near
each p 2X.K/ we can find a smooth atlas 'W U !X with U D Spec A an affine
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derived scheme, such that .U ;'�.!X // is in a standard ‘Darboux form’. Although
.U ;'�.!X // is not k –shifted symplectic, as '�.!X / is not nondegenerate, we can
build from .U ;'�.!X // in a natural way a ‘Darboux form’ k –shifted symplectic
derived scheme .V ; !B/, which is equivalent to .U ;'�.!X // except in degree k � 1.

Theorem 1.2 Let .X ; !X / be a �1–shifted symplectic derived Artin K–stack in the
sense of [28] over K algebraically closed of characteristic zero, and X D t0.X/ the
corresponding classical Artin K–stack. Then X extends naturally to a d–critical stack
.X; s/ in the sense of [14]. If T is a K–scheme and t W T !X a smooth 1–morphism,
this gives a d–critical structure s.T; t/ on T making .T; s.T; t// into an algebraic
d–critical locus, in the sense of [14].

Theorem 1.2 implies that Artin moduli stacks M of (complexes of) coherent sheaves
on a Calabi–Yau 3–fold Y extend naturally to d–critical stacks .M; s/.

Theorem 1.3 Let .X; s/ be an oriented d–critical stack over an algebraically closed
field K with char K ¤ 2. Fix a theory of perverse sheaves or D –modules over
K–schemes and Artin K–stacks, for instance Laszlo and Olsson’s l –adic perverse
sheaves [20; 21; 22]. Then there is a natural perverse sheaf or D –module {P�

X ;s
on X

with Verdier duality and monodromy isomorphisms

†X ;sW
{P�X ;s �!DX . {P

�
X ;s/; TX ;sW

{P�X ;s �!
{P�X ;s;

such that if T is a K–scheme and t W T ! X a 1–morphism smooth of relative
dimension n, then t�. {P�

X ;s
/Œn�; t�.†X ;s/Œn�; t

�.TX ;s/Œn� are isomorphic to the perverse
sheaf or D –module P�

T;s.T;t/
on the oriented algebraic d–critical locus .T; s.T; t//

defined in [3, Section 6], and its Verdier duality and monodromy isomorphisms
†T;s.T;t/;TT;s.T;t/ . So in particular, if .T; s.T; t// is locally modelled on a criti-
cal locus Crit.f W U ! A1/ for U a smooth K–scheme, then t�. {P�

X ;s
/Œn� is locally

modelled on the perverse sheaf or D –module of vanishing cycles of f .

Theorem 1.4 Let .X; s/ be an oriented d–critical stack over K algebraically closed of
characteristic zero, with X of finite type and locally a global quotient. Then there exists
a unique motive MFX ;s in a certain ring SMX

st; y� of y�–equivariant motives on X , such
that if T is a finite-type K–scheme and t W T !X is smooth of relative dimension n,
so that .T; s.T; t// is an oriented algebraic d–critical locus over K, then

t�.MFX ;s/D Ln=2
ˇMFT;s.T;t/ in SMT

st; y�,

where MFT;s.T;t/ 2
SMT

st; y� is as in [5, Section 5]. So in particular, if .T; s.T; t// is
locally modelled on Crit.f W U ! A1/ for U a smooth K–scheme, then L�n=2

ˇ

t�.MFX ;s/ is locally modelled on the motivic vanishing cycle MFmot;�
U;f

of f .
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We expect that Theorems 1.3 and 1.4 will have applications in categorified and motivic
extensions of Donaldson–Thomas theory of Calabi–Yau 3–folds, as in Kontsevich and
Soibelman [17; 18].

Conventions and notation Throughout K will be an algebraically closed field with
char KD 0, except that we allow K algebraically closed with char K¤ 2 in Section 4.
Classical K–schemes and Artin K–stacks will be written W;X;Y;Z; : : :, and derived
K–schemes and derived Artin K–stacks in bold as W ;X ;Y ;Z ; : : :.

Basic references for K–schemes are Hartshorne [11], for Artin K–stacks Laumon and
Moret-Bailly [23], and for derived K–schemes and derived Artin K–stacks Toën and
Vezzosi [30; 31].

All (classical) K–schemes and Artin K–stacks X are assumed locally of finite type,
except in Section 5 when we assume they are of finite type. All derived K–schemes and
derived K–stacks X are assumed to be locally finitely presented. We write SchK for
the category of K–schemes, ArtK for the 2–category of Artin K–stacks, dSchK for the
1–category of derived K–schemes, and dArtK for the 1–category of derived Artin
K–stacks, and t0W dSchK ! SchK , t0W dArtK ! ArtK for the classical truncation
functors. Other notation generally follows the prequels [3; 4; 5; 14] to this paper.

Acknowledgements We would like to thank Tom Bridgeland, Sven Meinhardt, Balázs
Szendrői, and Bertrand Toën for helpful conversations, and a referee for careful proof-
reading and useful comments. This research was supported by EPSRC Programme
Grant EP/I033343/1. The first author acknowledges the support of the European
Commission under the Marie Curie Programme which awarded him an IEF grant. The
contents of this article reflect the views of the authors and not the views of the European
Commission.

2 Local models for atlases of shifted symplectic stacks

Sections 2.1 and 2.2 give background on derived algebraic geometry [30; 31] and Pantev,
Toën, Vaquié and Vezzosi’s shifted symplectic structures [28], and Sections 2.3–2.4
recall the main definitions of [4, Sections 4–5]. Then Sections 2.5–2.7, the new material
in this section, generalize Sections 2.3–2.4 to derived Artin stacks.

2.1 Derived algebraic geometry

We work in the context of Toën and Vezzosi’s derived algebraic geometry [30; 31],
and Pantev, Toën, Vaquié and Vezzosi’s theory of k –shifted symplectic structures
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1292 O Ben-Bassat, C Brav, V Bussi and D Joyce

on derived schemes and stacks [28]. This is a complex subject, and we give only a
brief sketch to fix notation. A longer explanation suited to our needs can be found
in [4, Sections 2–3].

Fix an algebraically closed base field K, of characteristic zero. Toën and Vezzosi define
the 1–category dStK of derived K–stacks (or D�–stacks) [31, Definition 2.2.2.14;
30, Definition 4.2]. All derived K–stacks X in this paper are assumed to be locally
finitely presented. There is a spectrum functor

SpecW fcommutative differential graded K–algebras, degrees less than or equal to 0g

�! dStK :

All cdgas in this paper will be in degrees less than or equal to 0. A derived K–stack X

is called an affine derived K–scheme if X is equivalent in dStK to Spec A for some
cdga A over K. As in [30, Section 4.2], a derived K–stack X is called a derived
K–scheme if it may be covered by Zariski open Y � X with Y an affine derived
K–scheme. Write dSchK for the full 1–subcategory of derived K–schemes in dStK .

We call a derived K–stack X a derived Artin K–stack if it is m–geometric for
some m [31, Definition 1.3.3.1] and the underlying classical stack is 1–truncated (that
is, just a stack, not a higher stack). Any such X admits a smooth surjective morphism
'W U ! X , an atlas, with U a derived K–scheme. Write dArtK for the full 1–
subcategory of derived Artin K–stacks in dStK . Then dSchK � dArtK � dStK .

Write SchK for the category of K–schemes X , and ArtK for the 2–category of Artin
K–stacks X . By an abuse of notation we regard SchK as a discrete 2–subcategory
of ArtK , so that SchK � ArtK . As in [31, Proposition 2.1.2.1], there is an inclusion
functor i W ArtK!dArtK mapping SchK!dSchK , and a classical truncation functor
t0W dArtK! ArtK mapping dSchK! SchK .

A derived Artin K–stack X has a cotangent complex LX of finite cohomological
amplitude Œ�m; 1� and a dual tangent complex TX [31, Section 1.4; 30, Sections 4.2.4–
4.2.5] in a stable1–category Lqcoh.X/ defined in [30, Sections 3.1.7, 4.2.4]. When X

is a classical scheme or stack, then the homotopy category of Lqcoh.X/ is nothing but
the triangulated category Dqcoh.X /. These have the usual properties of (co)tangent
complexes. For instance, if f W X!Y is a morphism in dArtK there is a distinguished
triangle

(1) f �.LY /
Lf //LX

//LX=Y
//f �.LY /Œ1�;

where LX=Y is the relative cotangent complex of f . Here f is smooth of relative
dimension n if and only if LX=Y is locally free of rank n, and f is étale if and only
if LX=Y D 0.
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2.2 Shifted symplectic derived schemes and derived stacks

Let X be a derived stack. Pantev, Toën, Vaquié and Vezzosi [28] defined k –shifted
p–forms, k –shifted closed p–forms and k –shifted symplectic structures on X for
k 2 Z and p > 0. One first defines these notions on derived affine schemes and then
defines the general notions by smooth descent. Since our main theorems are statements
about the local structure of derived stacks endowed with shifted symplectic forms, it
suffices for us to describe the affine case. The basic idea is this:

(a) Define the exterior powers ƒpLX in Lqcoh.X/ for pD0; 1; : : :. Regard ƒpLX

as a complex, with differential d:

� � �
d //.ƒpLX /

k�1 d //.ƒpLX /
k d //.ƒpLX /

kC1 d // � � �

Then a k –shifted p–form, or p–form of degree k , is an element !0 of .ƒpLX /
k

with d!0 D 0. Mostly we are interested in the cohomology class Œ!0� 2

H k.ƒpLX /.

(b) There are de Rham differentials ddRW ƒ
pLX !ƒpC1LX with ddR ı ddR D

d ı ddRC ddR ı dD 0. Then a k –shifted closed p–form, or closed p–form of
degree k , is a sequence ! D .!0; !1; !2; : : :/ with !i in .ƒpCiLX /

k�i for
i > 0, satisfying d!0 D 0 and ddR!

i C d!iC1 D 0 for i D 0; 1; : : :.
That is, ! D .!0; !1; !2; : : :/ is a k –cycle in the negative cyclic complex�� 1Y

iD0

.ƒpCiLX /
k�i

�
k2Z

; dC ddR

�
:

Mostly we are interested in the cohomology class Œ!� D Œ!0; !1; : : :� in the
cohomology of this complex. We will write ! � !0 if !;!0 are k –shifted
closed p–forms with the same cohomology class Œ!� D Œ!0�. There is a map
.!0; !1; !2; : : :/ 7! !0 from k –shifted closed p–forms to k –shifted p–forms.

(c) A k –shifted symplectic structure on X is a k –shifted closed 2–form .!0; : : :/

on X whose induced morphism !0� W TX ! LX Œk� is an equivalence.

If a derived K–scheme X has a 0–shifted symplectic structure then X is a smooth K–
scheme X with a classical symplectic structure. Pantev et al [28] construct k –shifted
symplectic structures on several classes of derived moduli stacks. If Y is a Calabi–Yau
m–fold and M a derived moduli stack of coherent sheaves or perfect complexes on Y ,
then M has a .2�m/–shifted symplectic structure. We are particularly interested in
the case mD 3, so k D�1.
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2.3 ‘Standard form’ affine derived schemes

The next definition summarizes [4, Example 2.8, Definitions 2.9 and 2.13].

Definition 2.1 We will explain how to inductively construct a sequence of commutative
differential graded algebras (cdgas) A.0/;A.1/; : : : ;A.n/D A over K with A.0/ a
smooth K–algebra and A.k/ having underlying commutative graded algebra free
over A.0/ on generators of degrees �1; : : : ;�k . We will call A a standard form cdga.
We will write U .i/D Spec A.i/ for i D 0; : : : ; n and U D U .n/D Spec A for the
corresponding affine derived K–schemes, where U .0/D U.0/ is a smooth classical
K–scheme, which contains Spec H 0.A/ as a closed K–subscheme.

Begin with a commutative algebra A.0/ smooth over K. Choose a free A.0/–
module M�1 of finite rank together with a map ��1W M�1 ! A.0/. Define a
cdga A.1/ whose underlying commutative graded algebra is free over A.0/ with
generators given by M�1 in degree �1 and with differential d determined by the map
��1W M�1!A.0/. By construction, we have H 0.A.1//DA.0/=I , where the ideal
I �A.0/ is the image of the map ��1W M�1!A.0/.

Note that A.1/ fits in a homotopy pushout diagram of cdgas

SymA.0/.M
�1/

0�

//

��1
���

A.0/

��
A.0/

f �1

// A.1/;

with morphisms ��1
� ; 0� induced by ��1; 0W M�1!A.0/. Write f �1W A.0/!A.1/

for the resulting map of algebras.

Next, choose a free A.1/–module M�2 of finite rank and a map ��2W M�2Œ1�!A.1/.
Define a cdga A.2/ whose underlying commutative graded algebra is free over A.1/

with generators given by M�2 in degree �2 and with differential d determined by the
map ��2W M�2Œ1�!A.1/. Write f �2 for the resulting map of algebras A.1/!A.2/.

As the underlying commutative graded algebra of A.1/ was free over A.0/ on gen-
erators of degree �1, the underlying commutative graded algebra of A.2/ is free
over A.0/ on generators of degrees �1;�2. Since A.2/ is obtained from A.1/ by
adding generators in degree �2, we have H 0.A.1//ŠH 0.A.2//ŠA.0/=I .

Note that A.2/ fits in a homotopy pushout diagram of cdgas

SymA.1/.M
�2Œ1�/

0�

//

��2
���

A.1/

��
A.1/

f �2

// A.2/;
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with morphisms ��2
� ; 0� induced by ��2; 0W M�2Œ1�!A.1/.

Continuing in this manner inductively, we define a cdga A.n/DA with A0DA.0/ and
H 0.A/DA.0/=I , whose underlying commutative graded algebra is free over A.0/

on generators of degrees �1; : : : ;�n. We call any cdga A constructed in this way a
standard form cdga.

If A is of standard form, we will call a cdga A0 a localization of A if A0 D A˝A0

A0Œf �1� for f 2A0 , that is, A0 is obtained by inverting f in A. Then A0 is also of
standard form, with A00 ŠA0Œf �1�. If p 2 Spec H 0.A/ with f .p/¤ 0, we call A0

a localization of A around p .

Let A be a standard form cdga. We call A minimal at p 2 Spec H 0.A/ if for all
k D 1; : : : ; n the compositions

H�k.LA.k/=A.k�1// �!H 1�k.LA.k�1// �!H 1�k.LA.k�1/=A.k�2//

in the cotangent complexes restricted to Spec H 0.A/ vanish at p . (For more on this
point, see [4, Proposition 2.12].)

Here are [4, Theorems 4.1 and 4.2]. They say that any derived scheme X is locally
modelled on Spec A for a (minimal) standard form cdga A, and give us a way to
compare two such local models f W Spec A ,!X , gW Spec B ,!X .

Theorem 2.2 Let X be a derived K–scheme, and x 2X . Then there exist a standard
form cdga A over K which is minimal at a point p 2 Spec H 0.A/, in the sense of
Definition 2.1, and a morphism f W U D Spec A! X in dSchK which is a Zariski
open inclusion with f .p/D x .

Theorem 2.3 Let X be a derived K–scheme, A;B be standard form cdgas over K,
and f W Spec A! X , gW Spec B ! X be Zariski open inclusions in dSchK . Sup-
pose p 2 Spec H 0.A/ and q 2 Spec H 0.B/ with f .p/ D g.q/ in X . Then there
exist a standard form cdga C over K which is minimal at r in Spec H 0.C / and
morphisms of cdgas ˛W A! C , ˇW B! C which are Zariski open inclusions, such
that Spec˛W r 7! p , SpecˇW r 7! q , and f ı Spec˛ ' g ı Specˇ as morphisms
Spec C !X in dSchK .

If instead f ;g are étale rather than Zariski open inclusions, the same holds with ˛; ˇ
étale rather than Zariski open inclusions.

One important advantage of working with derived schemes U D Spec A for A a
standard form cdga, is that the cotangent complex LU and its exterior powers ƒpLU
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can be written simply and explicitly in terms of A. As in [4, Sections 2, 3.3] the
differential-graded module of Kähler differentials �1

A
is a model for LU . If U.0/D

Spec A0 admits global étale coordinates .x0
1
; : : : ;x0

m0
/, then �1

A
is a finitely-generated

free A–module, generated by

ddRx�i
1 ; : : : ; ddRx�i

mi

in degree �i for i D 0; : : : ; n, where x�i
1
; : : : ;x�i

mi
are A.i � 1/–bases for the free

finite rank A.i � 1/–modules M�i for i D 1; : : : ; n, in the notation of Definition 2.1.

Because of this, on U DSpec A, the k –shifted (closed) p–forms from [28] discussed in
Section 2.2 can be written down explicitly in coordinates. Here is [4, Proposition 5.7].
Part (a) implies that for a k –shifted symplectic form ! D .!0; !1; !2; : : :/ on a
standard form U D Spec A, up to equivalence we may take !1D!2D � � � D 0, which
simplifies calculations a lot. (Let us note here that the proof of [4, Proposition 5.7]
uses the interpretation of shifted symplectic forms as representing classes in negative
cyclic homology.)

Proposition 2.4 (a) Let ! D .!0; !1; !2; : : :/ be a closed 2–form of degree k < 0

on U D Spec A, for A a standard form cdga over K. Then there exist ˆ 2 AkC1

and � 2 .�1
A
/k such that dˆ D 0 in AkC2 and ddRˆC d� D 0 in .�1

A
/kC1 and

! � .ddR�; 0; 0; : : :/.

(b) In the case k D�1 in (a) we have ˆ 2A0 DA.0/, so we can consider the restric-
tion ˆjU red of ˆ to the reduced K–subscheme U red of U D t0.U / D Spec H 0.A/.
Then ˆjU red is locally constant on U red , and we may choose .ˆ; �/ in (a) such
that ˆjU red D 0.

(c) Suppose .ˆ; �/ and .ˆ0; �0/ are alternative choices in part (a) for fixed !; k;U ;A,
where if k D�1 we suppose ˆjU red D 0Dˆ0jU red as in (b). Then there exist ‰ 2Ak

and  2 .�1
A
/k�1 with ˆ�ˆ0 D d‰ and � ��0 D ddR‰C d .

2.4 ‘Darboux form’ shifted symplectic derived schemes

The next definition summarizes [4, Examples 5.8–5.10].

Definition 2.5 Fix d D 0; 1; : : :. We will explain how to define a class of explicit
standard form cdgas .A; d/D A.n/ for nD 2d C 1 with a very simple, explicit k –
shifted symplectic form !D .!0; 0; 0; : : :/ on U D Spec A for k D�2d�1. We will
say that A; ! are in Darboux form.

First choose a smooth K–algebra A.0/ of dimension m0 . Localizing A.0/ if necessary,
we may assume that there exist x0

1
; : : : ;x0

m0
2 A.0/ such that ddRx0

1
; : : : ; ddRx0

m0
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form a basis of �1
A.0/

over A.0/. Geometrically, U.0/D Spec A.0/ is a smooth K–
scheme of dimension m0 , and .x0

1
; : : : ;x0

m0
/W U.0/!Am0 are global étale coordinates

on U.0/.

Next, choose m1; : : : ;md 2NDf0; 1; : : :g. Define A as a commutative graded algebra
to be the free algebra over A.0/ generated by variables

(2)
x�i

1 ; : : : ;x�i
mi

in degree �i for i D 1; : : : ; d ,

yi�2d�1
1 ; : : : ;yi�2d�1

mi
in degree i � 2d � 1 for i D 0; 1; : : : ; d .

So the upper index i in xi
j ;y

i
j always indicates the degree. We will define the differ-

ential d in the cdga .A; d/ later.

The spaces .ƒp�1
A
/k and the de Rham differential ddR upon them depend only on

the commutative graded algebra A, not on the (not yet defined) differential d. Note
that �1

A
is the free A–module with basis ddRx�i

j ; ddRyi�2d�1
j for i D 0; : : : ; d and

j D 1; : : : ;mi . Define

(3) !0
D

dX
iD0

miX
jD1

ddRyi�2d�1
j ddRx�i

j in .ƒ2�1
A/
�2d�1 .

Then ddR!
0 D 0 in .ƒ3�1

A
/�2d�1 .

Now choose H in A�2d , which we will call the Hamiltonian, and which we require
to satisfy the classical master equation

(4)
dX

iD1

miX
jD1

@H

@x�i
j

@H

@yi�2d�1
j

D 0 in A1�2d .

The classical master equation can be expressed invariantly as fH;H gD 0, where f � ; � g
is a certain shifted Poisson bracket. For more on this, consult [4, Section 5.7].

Note that (4) is trivial when d D 0, so that kD�1, as A1D 0. Define the differential d
on A by dD 0 on A.0/, and

(5) dx�i
j D

@H

@yi�2d�1
j

; dyi�2d�1
j D

@H

@x�i
j

; i D 0; : : : ; d; j D 1; : : : ;mi :

Then d ı dD 0, and .A; d/ is a standard form cdga ADA.n/ as in Definition 2.1 for
nD 2dC1, defined using free modules M�i Dhx�i

1
; : : : ;x�i

mi
iA.i�1/ for i D 1; : : : ; d

and M i�2d�1 D hyi�2d�1
1

; : : : ;yi�2d�1
mi

iA.2d�i/ for i D 0; : : : ; d .
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Then ! D .!0; 0; 0; : : :/ is a k –shifted symplectic structure on U D Spec A for
k D�2d � 1. Define ˆ 2A�2d and � 2 .�1

A
/�2d�1 by ˆD� 1

2dC1
H and

(6) � D
1

2d C 1

dX
iD0

miX
jD1

Œ.2d C 1� i/yi�2d�1
j ddRx�i

j C i x�i
j ddRyi�2d�1

j �:

Then dˆ D 0, ddRˆC d� D 0, and !0 D ddR� , as in Proposition 2.4(a). We say
that A; ! are in Darboux form for k D�2d � 1.

In [4, Examples 5.9 and 5.10] we give similar Darboux forms for k D �4d and
k D �4d � 2 with d D 0; 1; 2; : : :. We will not give all the details. In brief, when
k D�4d , rather than (2), A is freely generated over A.0/ by the variables

x�i
1 ; : : : ;x�i

mi
in degree �i for i D 1; : : : ; 2d � 1,

x�2d
1 ; : : : ;x�2d

m2d
;y�2d

1 ; : : : ;y�2d
m2d

in degree �2d ,

yi�4d
1 ; : : : ;yi�4d

mi
in degree i � 4d for i D 0; 1; : : : ; 2d � 1,

and !0 2 .ƒ2�1
A
/�4d with ddR!

0 D 0 is given by

!0
D

2dX
iD0

miX
jD1

ddRyi�4d
j ddRx�i

j in .ƒ2�1
A/
�4d ,

and d on A is defined as in (5) using H 2A1�4d satisfying the analogue of (4). We
then say that A;U D Spec A; ! are in Darboux form for k D�4d .

Similarly, when k D�4d � 2, A is freely generated over A.0/ by the variables

x�i
1 ; : : : ;x�i

mi
in degree �i for i D 1; : : : ; 2d ,

z�2d�1
1 ; : : : ; z�2d�1

m2dC1
in degree �2d � 1,

yi�4d�2
1 ; : : : ;yi�4d�2

mi
in degree i � 4d � 2 for i D 0; 1; : : : ; 2d ,

and !0 2 .ƒ2�1
A
/�4d�2 with ddR!

0 D 0 is given by

!0
D

2dX
iD0

miX
jD1

ddRyi�4d�2
j ddRx�i

j C

m2dC1X
jD1

ddRz�2d�1
j ddRz�2d�1

j ;

and d is defined as in (5) using H 2A�4d�1 satisfying

2dX
iD1

miX
jD1

@H

@x�i
j

@H

@yi�4d�2
j

C
1

4

m2dC1X
jD1

�
@H

@z�2d�1
j

�2

D 0 in A�4d .
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We then say that A; ! are in strong Darboux form for k D�4d � 2. There is also a
weak Darboux form [4, Example 5.12] in this case, which we will not discuss.

Here is [4, Theorem 5.18], the main result of [4]. We consider it to be a shifted
symplectic analogue of Darboux’ theorem, as it shows that we can choose ‘coordinate
systems’ on a k –shifted symplectic derived scheme .X ; !/ in which ! assumes a
standard form.

Theorem 2.6 Let X be a derived K–scheme with k –shifted symplectic form z! for
k < 0, and x 2X . Then there exists a standard form cdga A over K which is minimal
at p 2 Spec H 0.A/, a k –shifted symplectic form ! on Spec A, and a morphism
f W U D Spec A!X with f .p/D x and f �.z!/� ! , such that:

(i) If k is odd or divisible by 4, then f is a Zariski open inclusion, and A; ! are in
Darboux form, as in Definition 2.5.

(ii) If k � 2 mod 4, then f is étale, and A; ! are in strong Darboux form, as in
Definition 2.5.

Bouaziz and Grojnowski [2] also independently prove a similar theorem.

2.5 ‘Standard form’ atlases for derived stacks

We first generalize Definition 2.1 and Theorems 2.2–2.3 to derived Artin stacks:

Definition 2.7 Let X be a derived Artin K–stack, and p a point of X . By this we
mean a morphism pW Spec K!X ; we may also call p a K–point of X . A standard
form open neighbourhood .A;'; zp/ of p , in the smooth topology, means a standard
form cdga A over K in the sense of Definition 2.1, so that U D Spec A is an affine
derived K–scheme, and a morphism 'W U ! X which is smooth of some relative
dimension n> 0, and a K–point zp in U with pD'. zp/, that is, there is an equivalence
of morphisms p' ' ı zpW Spec K!X . If we do not specify p; zp , we just call .A;'/
a standard form open neighbourhood in X .

For such X ;p; .A;'; zp/; n, as for (1) we have the standard fibre sequence

(7) '�.LX /
L'

//LU
//LU =X

//'�.LX /Œ1�;

where LU =X is locally free of rank n. Restricting (7) to zp and taking cohomology,
we have the following:
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(a) There are isomorphisms H i.LX jp/ŠH i.LU j zp/ for i < 0.

(b) Since U is not stacky, H 1.LU j zp/ D 0 and so there is an exact sequence of
K–vector spaces

0 //H 0.LX jp/ //H 0.LU j zp/ //H 0.LU =X j zp/ //H 1.LX jp/ //0;

where H 0.LU =X j zp/ŠKn . Therefore n> dim H 1.LX jp/.
Note that H 1.LX jp/Š IsoX .p/

� , where IsoX .p/ is the Lie algebra of the
isotropy group IsoX .p/ of X at p , which is an algebraic K–group.
In particular, the minimal possible relative dimension n D rank.LU =X / of a
neighbourhood 'W U !X of p is nD dim H 1.LX jp/.

(c) If ' is smooth of minimal relative dimension nD dim H 1.LX jp/, then

(8) H 0.LX jp/ŠH 0.LU j zp/ and H 0.LU =X j zp/ŠH 1.LX jp/:

We call a standard form open neighbourhood .A;'; zp/ minimal at p if A is minimal
at zp in the sense of Definition 2.1 and n D dim H 1.LX jp/. Then parts (a), (c)
imply that A.0/ is smooth of dimension m0 D dim H 0.LX jp/, and A has mi D

dim H�i.LX jp/ generators in degree �i for i D 1; 2; : : :.

Theorem 2.8 Let X be a derived Artin K–stack, and p a point of X . Then there
exists a minimal standard form open neighbourhood .A;'; zp/ of p , in the sense of
Definition 2.7.

Proof Since X has a smooth atlas, for any p 2 X there exists an affine neigh-
bourhood y'W yU ! X of p , where yU is an affine derived K–scheme, yp 2 yU with
y'. yp/D p , and y' is smooth of some relative dimension yn, with yn> dim H 1.LX jp/

by Definition 2.7(b). Let r D yn� dim H 1.LX jp/, so that r is the dimension of the
kernel of H 0.L yU =X j yp/! H 1.LX jp/! 0. We shall use this kernel to cut down
y'W yU !X to the minimal dimension nD dim H 1.LX jp/.

Localizing yU around yp , by Theorem 2.2 we may take yU D Spec yA, where yA is
a standard form cdga minimal at yp 2 yU . Then the natural map H 0.L yU .0/j yp/ !
H 0.L yU j yp/ is an isomorphism. Since H 0.L yU j yp/!H 0.L yU =X j yp/!H 1.LX jp/ is
exact, we may choose (after localization) functions x1; : : : ;xr on yU .0/ vanishing
at yp so that ddRx1; : : : ; ddRxr at yp map to a basis of the kernel of H 0.L yU =X j yp/!
H 1.LX jp/ under the composition H 0.L yU .0/j yp/!H 0.L yU j yp/!H 0.L yU =X j yp/.

The functions x1; : : : ;xr define a map gW yU .0/!Ar and hence a map f W yU !Ar

with f . yp/D 0. We let U denote the (homotopy) fibre f �1.0/, so that we have the
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following diagram in which the square is a pullback:

U

zf
��

z|

//

'

--
yU

f
��

y'

// X

�
jD0

// Ar

Let zp be the preimage of yp in U . We will show that after localizing U around zp ,
the composition ' D y' ı z|W U ! X is smooth of relative dimension n D yn� r D

dim H 1.LX jp/. Consider the fibre sequence LU = yU Œ�1�! z| �.L yU =X /!LU =X . We
claim LU = yU Œ�1� is free of rank r and that the map LU = yU Œ�1�! z| �.L yU =X / is injec-
tive at zp and hence, by Nakayama’s lemma, in a neighbourhood of zp . Localizing U

around zp , it will follow immediately that LU =X is locally free of rank n D yn� r .
Thus 'W U !X is the desired neighbourhood of p of minimal relative dimension.

To sustain the claim, note that since the cotangent complex of � D Spec K is zero, we
have an equivalence Lj Œ�1� ' j �.�1

Ar /. Thus Lj Œ�1� is free of rank r and hence
so is zf �.Lj /Œ�1� ' LU = yU Œ�1�. Furthermore, the map in question LU = yU Œ�1� !

z| �.L yU =X / factors as LU = yU Œ�1�' zf � ı j �.�1
Ar /' z| � ıf �.�1

Ar /! z| �.L yU /!
z| �.L yU =X /. But f was constructed precisely so that the composition f �.�1

Ar /!

L yU ! L yU =X should be injective at yp . Thus, we may choose an affine neigh-
bourhood 'W U ! X , zp of p which is smooth of the minimal relative dimension
nD dim H 1.LX jp/. Applying Theorem 2.2 to U at zp , we may take U D Spec A,
where A is a standard form cdga minimal at zp 2U .

Theorem 2.9 Let X be a derived Artin K–stack and .A;'/; .B; / standard form
open neighbourhoods in X , and write U D Spec A, V D Spec B . Then for each
p 2U �X V there exist a standard form cdga C over K minimal at q 2W D Spec C ,
an étale morphism i W W !U �X V with i .q/D p , and cdga morphisms ˛W A! C ,
ˇW B! C with �U ı i ' Spec˛W W !U and �V ı i ' SpecˇW W ! V .

Proof Since U ;V are derived K–schemes, U �X V is a derived algebraic K–
space, and étale locally equivalent to a derived K–scheme. Thus given p 2U �X V

we may choose an affine derived K–scheme �W , a point yq 2 �W and an étale map
y{W �W !U �X V with y{.yq/D p .

Write �W D t0. �W /, U.0/D Spec A0 and V .0/D Spec B0 for the classical schemes.
The compositions

�W ,! yW
y{
�!U �X V

�U
��!U ,!U.0/ and �W ,! yW

y{
�!U �X V

�V
��! V ,! V .0/
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give maps �W ! U.0/, �W ! V .0/. Choose a map �W !AN such that the product
map �W !U.0/�V .0/�AN is a locally closed embedding. Localizing �W ; �W at yq if
necessary, we can choose a locally closed K–subscheme W .0/ of U.0/�V .0/�AN

containing the image of �W as a closed K–subscheme, such that W .0/ is smooth of
dimension dim Tyq �W . For instance, W .0/ can be obtained as an intersection of an
appropriate regular sequence of hypersurfaces.

Following the proof of Theorem 2.2 in [4, Section 4.1], we can construct a standard
form cdga C minimal at q 2 W D Spec C with Spec C 0 D W .0/ and an equiva-
lence j W W ! yW with j .q/ D yq . Setting i D y{ ı j , we now have morphisms of
derived schemes �U ı i W W ! U , �V ı i W W ! V whose classical truncations
�U ıi W W !U , �V ıi W W !V extend to morphisms of the ambient smooth schemes
W .0/D Spec C 0!U.0/D Spec A0 , W .0/D Spec C 0!V .0/D Spec B0 . As A;B

are freely generated in negative degrees, it follows that we may write �U ı i ' Spec˛
and �V ı i ' Specˇ for morphisms of cdgas ˛W A! C , ˇW B! C . This completes
the proof.

2.6 ‘Darboux form’ atlases for shifted symplectic stacks

Here is the main result of this section, a stack analogue of Theorem 2.6. Note that
(a)(i)–(v) are modelled closely on the first part of Definition 2.5, and equations (9)–(13)
are analogues of or identical to (2)–(6).

Theorem 2.10 (a) Let .X ; !X / be a k –shifted symplectic derived Artin K–stack,
where k D �2d � 1 for d D 0; 1; 2; : : :, and p 2 X . Then we can construct a
minimal standard form open neighbourhood .A;'W U ! X ; zp/ of p in the sense
of Definition 2.7, and a k –shifted closed 2–form ! D .!0; 0; : : :/ on U D Spec A

for !0 2 .ƒ2�1
A
/k , such that '�.!X / � ! in k –shifted closed 2–forms on U D

Spec A. Furthermore, A; ! are in a standard ‘Darboux form’, a modified version of
Definition 2.5, as follows:

(i) The degree-0 part A0 of A is a smooth K–algebra of dimension m0 , and we
are given x0

1
; : : : ;x0

m0
2A0 such that ddRx0

1
; : : : ; ddRx0

m0
form a basis of �1

A0

over A0 .

(ii) As a graded commutative algebra, A is freely generated over A0 by variables

(9)

x�i
1 ; : : : ;x�i

mi
in degree �i for i D 1; : : : ; d ,

yi�2d�1
1 ; : : : ;yi�2d�1

mi
in degree i � 2d � 1 for i D 0; 1; : : : ; d ,

w�2d�2
1 ; : : : ; w�2d�2

n in degree �2d � 2,
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for m0; : : : ;md > 0 with m0 as in (i) and n D dim H 1.LX jp/ the relative
dimension of ' . The upper index i in wi

j ;x
i
j ;y

i
j is the degree. Then

(10) !0
D

dX
iD0

miX
jD1

ddRyi�2d�1
j ddRx�i

j in .ƒ2�1
A/
�2d�1 .

(iii) We are given H in A�2d , called the Hamiltonian, which satisfies the classical
master equation

(11)
dX

iD1

miX
jD1

@H

@x�i
j

@H

@yi�2d�1
j

D 0 in A1�2d .

The differential d on A satisfies dD 0 on A0 , and

(12) dx�i
j D

@H

@yi�2d�1
j

; dyi�2d�1
j D

@H

@x�i
j

; i D 0; : : : ; d; j D 1; : : : ;mi :

Note that (12) does not specify dw�2d�2
j for j D 1; : : : ; n, and so does not

completely determine d on A.

(iv) Define ˆ 2A�2d and � 2 .�1
A
/�2d�1 by ˆD� 1

2dC1
H and

(13) � D
1

2d C 1

dX
iD0

miX
jD1

Œ.2d C 1� i/yi�2d�1
j ddRx�i

j C i x�i
j ddRyi�2d�1

j �:

Then dˆD 0, ddRˆC d� D 0, and !0 D ddR� .

(v) Minimality of .A;'; zp/ means that dw�2d�2
j j zp D 0 for j D 1; : : : ; n and

dx�i
j j zp D

@H

@yi�2d�1
j

ˇ̌̌̌
zp

D 0D dyi�2d�1
j j zp D

@H

@x�i
j

ˇ̌̌̌
zp

; i D 0; : : : ; d; j D 1; : : : ;mi :

(b) In part (a) let B be the graded subalgebra of A generated by A0 and the vari-
ables xi

j ;y
i
j in (ii) for all i; j , with inclusion �W B ,! A. Then B is closed under d,

and so is a dg-subalgebra of A. For degree reasons H; ˆ above cannot depend on
the w�2d�2

j , so H; ˆ2B . Also the data !;!0; � in �1
A
; ƒ2�1

A
above are the images

under � of !B; !
0
B
; �B in �1

B
; ƒ2�1

B
. Then !B is a k –shifted symplectic structure

on V D Spec B , and B; !B is in Darboux form as in Definition 2.5, and B is minimal
at zp as in Definition 2.1.

Geometrically, we have a diagram of morphisms in dArtK

V D Spec B U D Spec A
'

//
iDSpec �

oo X ;
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where .X ; !X /, .V ; !B/ are k –shifted symplectic, with '�.!X / � i �.!B/ in k –
shifted closed 2–forms on U . We can think of 'W U ! X as a ‘submersion’, and
i W U ,! V as an embedding of U as a derived subscheme of V . On classical schemes,
i D t0.i / WU D t0.U /! V D t0.V / is an isomorphism. There is a natural equivalence
of relative (co)tangent complexes

(14) LU =V ' TU =X Œ1� k�:

(c) The obvious analogues of (a), (b) also hold if .X ; !X / is a k –shifted symplectic
derived Artin K–stack for k < 0 with k � 0 mod 4 or k � 2 mod 4. In each case,
the algebra A is the corresponding algebra from Definition 2.5, modified by adding
generators wk�1

1
; : : : ; wk�1

n in degree k � 1.

Proof For (a), let .X ; !X / be a k –shifted symplectic derived Artin K–stack with
k D �2d � 1 for d > 0, and p 2 X . By Theorem 2.8 we may choose a minimal
standard form open neighbourhood .A;'; zp/ of p , which we may localize further
during the proof. Then by Definition 2.7, ' is smooth of relative dimension n D

dim H 1.LX jp/, and A.0/ is smooth of dimension m0 D dim H 0.LX jp/, and A has
mi D dim H�i.LX jp/ generators in degree �i for i D 1; 2; : : :.

Since .X ; !X / is k –shifted symplectic for k D �2d � 1 we have H�i.LX jp/ Š

H kCi.LX jp/
� , so dim H�i.LX jp/D dim H kCi.LX jp/. Thus, A is freely generated

over A0 by mi generators in degree �i for i D 1; : : : ; d , and mi generators in degree
i �2d �1 for i D 0; 1; : : : ; d , and n generators in degree �2d �2, which is the same
number of variables as in (9).

The pullback '�.!X / is a k –shifted closed 2–form on U DSpec A, so Proposition 2.4
gives !0 2 .�2

A
/k with d!0 D ddR!

0 D 0 and '�.!X / � .!
0; 0; 0; : : :/. Consider

the morphism !0� W TA ! �1
A
Œk� given by contraction with !0 , and its restriction

to zp on cohomology, which gives morphisms

(15) H i.!0
� j zp/W H

i.TAj zp/ŠH�i.�1
Aj zp/

�
�!H kCi.�1

Aj zp/:

On cohomology !0� factorizes as TA ! '�.TX /! '�.LX /Œk�! �1
A
Œk�. Here

'�.TX /!'
�.LX /Œk� is the pullback of !X � W TX!LX Œk�, which is an equivalence

as !X is nondegenerate. Also '�.LX /Œk�!�1
A
Œk� is L'Œk� as in (7), and so as in

Definition 2.7, on cohomology H i at zp is an isomorphism for i 6 �k , and zero for
i D 1� k . The map TA! '�.TX / is the dual of L' , and so on cohomology H i

at zp is an isomorphism for i > 0, and zero for i D�1. Combining these, (15) is an
isomorphism for 06 i 6 �k and zero otherwise.

We can now prove (a)(i)–(iv) by following the proof of the k odd case of Theorem 2.6
in [4, Section 5.6]. Localizing A at zp if necessary, this chooses étale coordinates
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x0
1
; : : : ;x0

m0
on U 0 D Spec A0 , and generators x�i

1
; : : : ;x�i

mi
in degree �i for i D

1; : : : ; d and yi�2d�1
1

; : : : ;yi�2d�1
mi

in degree i � 2d � 1 for i D 0; 1; : : : ; d for A,
such that !0 is given by (10), and also constructs H; ˆ; � satisfying (11)–(13). The
proof in [4, Section 5.6] does not choose the generators w�2d�2

1
; : : : ; w�2d�2

n for A

in degree �2d � 2, but as these are not required to satisfy any conditions, they can
be chosen arbitrarily. Note that !0;H; ˆ; � do not involve w�2d�2

1
; : : : ; w�2d�2

n for
degree reasons. Part (a)(v) follows from Definition 2.7 and (12). This completes (a).

The first parts of (b) are immediate, comparing (a) with Definition 2.5. To construct the
equivalence (14), consider the following diagram, in which the rows are the standard
fibre sequences and the vertical arrow is induced by an inverse of '�.!X /:

(16)

LU =X Œ�1� // '�.LX / //

'��

LU

TU Œ�k� // '�.TX /Œ�k� // TU =X Œ1� k�

Since LU =X and TU =X can be assumed to be free, we have

Ext�1.LU =X Œ�1�;TU =X Œ1� k�/Š Ext1�k.LU =X ;TU =X /D 0;

Hom.LU =X Œ�1�;TU =X Œ1� k�/Š Ext�kC2.LU =X ;TU =X /D 0:

Applying RHom.LU =X Œ�1�;�/ to the bottom row of (16) and taking cohomology,
we find that Hom.LU =X Œ�1�;TU Œ�k�/ŠHom.LU =X Œ�1�;'�.TX /Œ�k�/. Thus (16)
can be filled in to a commutative diagram

(17)

LU =X Œ�1� //

��

'�.LX / //

'��

LU

��
TU Œ�k� // '�.TX /Œ�k� // TU =X Œ1� k�;

and such a filling is unique up to homotopy.

Restricting (17) to zp and taking cohomology gives a commutative diagram:

(18)

H k�1.LX jp/
Š

//

Š��

H k�1.LU j zp/

��

H k�1.TX jp Œ�k�/ // H k�1.TU =X j zp Œ1� k�/

Since the morphism

H�1.TX jp/ŠH k�1.TX jp Œ1� k�/!H k�1.TU =X j zp Œ�k�/ŠH 0.TU =X j zp/
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is dual to H 0.LU =X j zp/!H 1.LX jp/, which is an isomorphism by (8), we see from
(18) that H k�1.LU j zp/!H k�1.TU =X j zp Œ1� k�/ is also an isomorphism.

Next, consider the fibre sequence ��.LV /! LU ! LU =V . Note that LU =V Œk � 1�

is free of rank dim H k�1.LX jp/ D dim H 1.LX jp/ D n and that the natural map
H k�1.LU j zp/!H k�1.LU =V j zp/ is an isomorphism by the minimality of the inductive
construction of U D Spec A in Definition 2.1.

Since ��.LV / has amplitude in Œk; 0� and TU =X is locally free, the composition
��.LV /! LU ! TU =X Œ1� k� is homotopic to zero, and we can therefore choose
a factorization LU ! LU =V ! TU =X Œ1 � k� of LU ! TU =X Œ1 � k�. Restrict-
ing this factorization to zp and taking cohomology, we see that the induced map
H k�1.LU =V j zp/ ! H k�1.TU =X j zp Œ1 � k�/ is an isomorphism. By Nakayama’s
lemma, the map LU =V ! TU =X Œ1 � k� is an equivalence in a neighbourhood of
zp . So localizing U ;V if necessary, equation (14) holds, proving part (b).

For (c), we follow the same method, using the ‘Darboux form’ in [4, Example 5.9] for
k� 0 mod 4, and the ‘strong Darboux form’ in [4, Example 5.10] for k� 2 mod 4. As
in the proof of [4, Theorem 5.18(iii)], in the case k � 2 mod 4, as well as modifying A

by localizing at zp (ie restricting to a Zariski open neighbourhood of zp in U DSpec A),
we also need to modify A by adjoining square roots of some nonzero functions in A0

(ie taking a finite étale cover of U D Spec A). As the result is still a minimal standard
form open neighbourhood .A;'; zp/ of p , this does not affect the statement of the
theorem.

In the case k D �1, as in [4, Example 5.15] the classical K–schemes U Š V in
Theorem 2.10(a),(b) are isomorphic to Crit.H W U.0/! A1/. Also, that 'W T !X

smooth implies ' D t0.'/W T D t0.T /!X D t0.X/ is smooth. So changing notation
from U.0/;H; zp to U; f;u, using H i.LX jp/ŠH i.LX jp/ for X D t0.X/ and i D

0; 1, and applying Proposition 2.4(b) to get f jT red D 0, we deduce:

Corollary 2.11 Let .X ; !X / be a �1–shifted symplectic derived Artin K–stack,
and X D t0.X/ the corresponding classical Artin K–stack. Then for each p 2 X

there exist a smooth K–scheme U with dimension dim H 0.LX jp/, a point t 2 U , a
regular function f W U !A1 with ddRf jt D 0, so that T WD Crit.f /� U is a closed
K–subscheme with t 2 T , and a morphism 'W T ! X which is smooth of relative
dimension dim H 1.LX jp/, with '.t/D p . We may take f jT red D 0.

Here the derived critical locus Crit.f W U !A1/, as a �1–shifted symplectic derived
scheme, agrees with .V ; !B/ in Theorem 2.10, and 'W T !X corresponds to t0.'/ ı

t0.i /
�1 in Theorem 2.10.
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Thus, the underlying classical stack X of a �1–shifted symplectic derived stack
.X ; !X / admits an atlas consisting of critical loci of regular functions on smooth
schemes.

Now let Y be a Calabi–Yau 3–fold over K, and M a classical moduli stack of coherent
sheaves F on Y , or complexes F� in Db coh.Y / with Ext<0.F�;F�/ D 0. Then
MD t0.M/, for M the corresponding derived moduli stack. The (open) condition
Ext<0.F�;F�/D 0 is needed to make M 1–truncated (that is, a derived Artin stack,
in our terminology), and so make M D t0.M/ an ordinary, and not higher, stack.
Pantev et al [28, Section 2.1] proved M has a �1–shifted symplectic structure !M .
Applying Corollary 2.11 and using H i.LMjŒF �/Š Ext1�i.F;F /� yields a new result
on classical 3–Calabi–Yau moduli stacks, the statement of which involves no derived
geometry:

Corollary 2.12 Suppose Y is a Calabi–Yau 3–fold over K, and M a classical moduli
K–stack of coherent sheaves F , or more generally of complexes F� in Db coh.Y /
with Ext<0.F�;F�/D 0. Then for each ŒF � 2M, there exist a smooth K–scheme U

with dim U D dim Ext1.F;F /, a point u 2 U , a regular function f W U ! A1 with
ddRf ju D 0, and a morphism 'W Crit.f /!M which is smooth of relative dimension
dim Hom.F;F /, with '.u/D ŒF �.

This is an analogue of [4, Corollary 5.19]. When KDC , a related result for coherent
sheaves only, with U a complex manifold and f a holomorphic function, was proved
by Joyce and Song [15, Theorem 5.5] using gauge theory and transcendental complex
methods.

2.7 Comparing ‘Darboux form’ atlases on overlaps

Let .X ; !X / be a k –shifted symplectic derived Artin K–stack for k<0. Theorem 2.10
gives a minimal standard form open neighbourhood .A;'; zp/ of each p in X with
'�.!X /�! , where the k –shifted closed 2–form ! D .!0; 0; : : :/ on U D Spec A is
in a standard ‘Darboux form’, and ˆ2AkC1 , � 2 .�1

A
/k with dˆD0, ddRˆCd�D0,

ddR� D !
0 , satisfying ˆjU red D 0 if k D�1, as in Proposition 2.4(a),(b). We think

of A;'; !;ˆ; � as like coordinates on X near p in the smooth topology, which write
X ; !X in a nice way.

It is often important in geometric problems to compare different choices of coordinates
on the overlap of their domains. So suppose A;U ;'; !;ˆ; � and A0;U 0;'0; !0; ˆ0; �0

are two choices as above, and q 2 U �';X ;'0 U
0 . We would like to compare the

presentations A;U ;'; !;ˆ; � and A0;U 0;'0; !0; ˆ0; �0 for X near q . Here is a
method for doing this, following [4, Section 5.8] in the scheme case:
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(i) Apply Theorem 2.9 to .A;'/; .A0;'0/; q . This gives a standard form cdga B

minimal at r 2 V D Spec B , an etale map i W V ,! U �X U 0 with i .r/ D q , and
morphisms of cdgas ˛W A! B , ˛0W A0 ! B with �U ı i ' Spec˛W V ! U and
�U 0 ı i ' Spec˛0W V !U 0 .

(ii) The pullbacks ˛�.!/D .˛�.!0/; 0; : : :/, ˛0�.!
0/D .˛0�.!

00/; 0; : : :/ are k –shifted
closed 2–forms on V D Spec B , which are equivalent as

˛�.!/� .Spec˛/� ı'�.!X /� i � ı��U ı'
�.!X /

� i � ı��U 0 ı'
0�.!X /� .Spec˛0/� ı'0�.!X /� ˛

0
�.!
0/:

Since B is minimal at r , ˛�.!/; ˛0�.!
0/ satisfy nondegeneracy properties near r . Also

d˛.ˆ/D 0, ddR˛.ˆ/Cd˛�.�/D 0, d˛0.ˆ0/D 0, ddR˛�.�/D˛�.!
0/, ddR˛

0.ˆ0/C

d˛0�.�
0/D 0, ddR˛�.�/D ˛�.!

0/, and if k D�1 then ˛.ˆ/jV red D 0D ˛0.ˆ0/jV red .
Therefore Proposition 2.4(c) applies, yielding ‰ 2 Bk and  2 .�1

B
/k�1 with

˛.ˆ/�˛0.ˆ0/D d‰ in BkC1,

˛�.�/�˛
0
�.�
0/D ddR‰C d in .�1

B/
k .

The data B;V ; i ; ˛; ˛0; r; ‰;  compare the Darboux presentations A;U ;'; !;ˆ; �

and A0;U 0;'0; !0; ˆ0; �0 for X near q .

Using this method in the case k D�1 yields the following comparison result for the
critical atlases of Corollary 2.11. We have replaced t0.U /;U.0/; t0.U

0/;U 0.0/; t0.V /;

V .0/;Spec˛0;Spec˛00 above by T;U;T 0;U 0;R;V; �; � 0 . The conclusion f ı � �
f 0 ı � 0 2 I2

R;V
is proved as in [4, Example 5.35].

Proposition 2.13 Let .X ; !X / be a �1–shifted symplectic derived Artin K–stack,
and X D t0.X/ the corresponding classical Artin K–stack. Suppose U; f W U !A1 ,
'W T DCrit.f /!X and U 0; f 0W U 0!A1 , '0W T 0DCrit.f 0/!X are two choices of
the data constructed in Corollary 2.11 for points p;p0 2X , with f jT red D 0D f 0jT 0red .
Let q 2T �';X ;'0 T

0 . Then there exist a smooth K–scheme V , a closed K–subscheme
R � V , a point r 2 R, and morphisms � W V ! U , � 0W V ! U 0 with �.R/ � T ,
� 0.R/� T 0 so the following diagram 2–commutes (homotopy commutes) in ArtK :

V
� 0

//

�

��

U 0

f 0
// A1

R
6 Vinc

ii

� 0jR

//

� jR

��

EM�

T 0

'0

��

6 V
inc

ii

U

f��

A1 T
6 Vinc

ii

'
// X;
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and the induced morphism R! T �X T 0 is étale and maps r 7! q . Furthermore
f ı� �f 0 ı� 02I2

R;V
, where IR;V�OV is the ideal of functions vanishing on R� V .

3 A truncation functor to d–critical stacks

Section 3.1 summarizes the theory of algebraic d–critical loci (on classical K–schemes)
from [14], and the truncation functor from �1–shifted symplectic derived K–schemes
to algebraic d–critical loci from [4, Section 6]. Section 3.2 explains the generalization
of d–critical loci to Artin stacks from [14], called d–critical stacks. Our main result
Theorem 3.18, extending the truncation functor of [4, Section 6] to (derived) Artin
stacks, is stated in Section 3.3 and proved in Section 3.4.

3.1 Algebraic d–critical loci, the K–scheme case

We now review the main ideas and results in the last author’s theory [14] of (alge-
braic) d–critical loci. Readers are referred to [14] for more details. Throughout K
is an algebraically closed field with char K¤ 2, though we will take char KD 0 in
Theorem 3.18 and its corollaries.

Let X be a K–scheme. Then [14, Theorem 2.1 and Proposition 2.3] define a natural
sheaf of K–algebras SX on X in either the Zariski or étale topologies (we will use
the étale version for the extension to Artin stacks), with the following properties:

(a) Suppose R�X is Zariski open, U is a smooth K–scheme, and i W R ,! U a
closed embedding. Define an ideal IR;U � i�1.OU / by the exact sequence

0 //IR;U
//i�1.OU /

i]
//OX jR

//0;

where OX ;OU are the sheaves of regular functions on X;U . Then there is an
exact sequence on R, where dW f C I2

R;U
7! df C IR;U � i

�1.T �U /

0 //SX jR

�R;U
// i
�1.OU /

I2
R;U

d
// i�1.T �U /

IR;U � i�1.T �U /
:

(b) Let R � S � X be Zariski open, U;V be smooth K–schemes, i W R ,! U ,
j W S ,! V closed embeddings, and ˆW U ! V a morphism with ˆ ı i D
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j jRW R! V . Then the following diagram of sheaves on R commutes:

(19)

0 // SX jR

id

��

�S;V jR
// j�1.OV /

I2
S;V

ˇ̌̌
R

i�1.ˆ]/��

d
// j�1.T �V /

IS;V � j�1.T �V /

ˇ̌̌
R

i�1.dˆ/��

0 // SX jR

�R;U
// i�1.OU /

I2
R;U

d
// i�1.T �U /

IR;U � i�1.T �U /

(c) There is a natural decomposition SX D S0
X
˚KX , where KX is the constant

sheaf on X with fibre K, and S0
X
� SX is the kernel of the composition

SX
//OX

i
]

X
//OX red ;

with iX W X
red ,!X the reduced K–subscheme of X .

(d) Let �W X ! Y be a morphism of K–schemes. Then there is a unique mor-
phism �?W ��1.SY / ! SX of sheaves of K–algebras on X , which maps
��1.S0

Y
/! S0

X
, such that if R�X , S � Y are Zariski open with �.R/� S ,

U;V are smooth schemes, i W R ,! U , j W S ,! V are closed embeddings, and
ˆW U ! V is a morphism with ˆ ı i D j ı�jRW R! V , then as for (19) the
following diagram of sheaves on R commutes:

(20)

0 // ��1.SY /jR
��1.�S;V /jR

//

�?jR

��

��1ıj�1.OV /jR
��1.I 2

S;V
/jR

i�1.ˆ]/
��

��1.d/

// ��1.j�1.T �V //jR
��1.IS;V �j�1.T �V //jR

i�1.dˆ/
��

0 // SX jR

�R;U
// i�1.OU /

I 2
R;U

d
// i�1.T �U /

IR;U �i�1.T �U /

(e) If X
�
�!Y

 
�!Z are smooth morphisms of K–schemes, then

. ı�/? D �? ı��1. ?/W . ı�/�1.SZ /D �
�1
ı �1.SZ / �! SX :

If �W X ! Y is idX W X !X then id?X D idSX
W id�1

X .SX /D SX ! SX .

Following [14, Definition 2.5] we define algebraic d–critical loci:

Definition 3.1 An (algebraic) d–critical locus over a field K is a pair .X; s/, where X

is a K–scheme and s 2H 0.S0
X
/, such that for each x 2X , there exists a Zariski open
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neighbourhood R of x in X , a smooth K–scheme U , a regular function f W U !
A1
D K, and a closed embedding i W R ,! U , such that i.R/ D Crit.f / as K–

subschemes of U , and �R;U .sjR/D i�1.f /CI2
R;U

. We call the quadruple .R;U; f; i/
a critical chart on .X; s/.

Let .X; s/ be an algebraic d–critical locus, and .R;U; f; i/ a critical chart on .X; s/.
Let U 0 � U be Zariski open, and set R0 D i�1.U 0/ � R, i 0 D i jR0 W R

0 ,! U 0 , and
f 0D f jU 0 . Then .R0;U 0; f 0; i 0/ is a critical chart on .X; s/, and we call it a subchart
of .R;U; f; i/. As a shorthand we write .R0;U 0; f 0; i 0/� .R;U; f; i/.

Let .R;U; f; i/; .S;V;g; j / be critical charts on .X; s/, with R � S � X . An
embedding of .R;U; f; i/ in .S;V;g; j / is a locally closed embedding ˆW U ,! V

such that ˆ ı i D j jR and f D g ıˆ. As a shorthand we write ˆW .R;U; f; i/ ,!
.S;V;g; j /. If ˆW .R;U; f; i/ ,! .S;V;g; j / and ‰W .S;V;g; j / ,! .T;W; h; k/

are embeddings, then ‰ ıˆW .R;U; i; e/ ,! .T;W; h; k/ is also an embedding.

A morphism �W .X; s/! .Y; t/ of d–critical loci .X; s/; .Y; t/ is a K–scheme mor-
phism �W X ! Y with �?.t/D s . This makes d–critical loci into a category.

There is also a complex analytic version, but we will not discuss it. Here are Propo-
sitions 2.8 and 2.30, Theorems 2.20 and 2.28, Definition 2.31, Remark 2.32 and
Corollary 2.33 from [14]:

Proposition 3.2 Let �W X ! Y be a smooth morphism of K–schemes. Suppose
t 2H 0.S0

Y
/, and set s WD�?.t/2H 0.S0

X
/. If .Y; t/ is a d–critical locus, then .X; s/ is

a d–critical locus, and �W .X; s/! .Y; t/ is a morphism of d–critical loci. Conversely, if
also �W X ! Y is surjective, then .X; s/ a d–critical locus implies .Y; t/ is a d–critical
locus.

Theorem 3.3 Suppose that .X; s/ is an algebraic d–critical locus, and .R;U; f; i/,
.S;V;g; j / are critical charts on .X; s/. Then for each x 2 R\ S � X there exist
subcharts .R0;U 0; f 0; i 0/� .R;U; f; i/, .S 0;V 0;g0; j 0/� .S;V;g; j / with x 2R0\

S 0�X , a critical chart .T;W; h; k/ on .X; s/, and embeddings ˆW .R0;U 0; f 0; i 0/ ,!
.T;W; h; k/, ‰W .S 0;V 0;g0; j 0/ ,! .T;W; h; k/.

Theorem 3.4 Let .X; s/ be an algebraic d–critical locus, and X red�X the associated
reduced K–subscheme. Then there exists a line bundle KX ;s on X red which we call
the canonical bundle of .X; s/, which is natural up to canonical isomorphism, and is
characterized by the following properties:
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(a) For each x 2X red , there is a canonical isomorphism

(21) �x W KX ;sjx
Š
�!.ƒtopT �x X /˝

2

;

where TxX is the Zariski tangent space of X at x .

(b) If .R;U; f; i/ is a critical chart on .X; s/, there is a natural isomorphism

(22) �R;U;f;i W KX ;sjRred �! i�.K˝
2

U
/jRred ;

where KU Dƒ
dim U T �U is the canonical bundle of U in the usual sense.

(c) In the situation of (b) let x 2R. Then we have an exact sequence

(23) 0 //TxX
dijx

//Ti.x/U
Hessi.x/ f

//T �
i.x/

U
dij�x

//T �x X //0;

and the following diagram commutes:

KX ;sjx

�R;U;f;i jx ,,

�x

// .ƒtopT �x X /˝
2

˛x;R;U;f;i
��

KU j
˝2

i.x/
;

where ˛x;R;U;f;i is induced by taking top exterior powers in (23).

Proposition 3.5 Suppose �W .X; s/! .Y; t/ is a morphism of d–critical loci with
�W X ! Y smooth, as in Proposition 3.2. The relative cotangent bundle T �

X=Y
is a

vector bundle of mixed rank on X in the exact sequence of coherent sheaves on X :

(24) 0 //��.T �Y /
d��

//T �X //T �
X=Y

//0

There is a natural isomorphism of line bundles on X red ,

(25) ‡� W �j
�

X red.KY;t /˝ .ƒ
topT �X=Y /

ˇ̌˝2

X red

Š
�!KX ;s;

such that for each x 2X red the following diagram of isomorphisms commutes:

(26)

KY;t j�.x/˝ .ƒ
topT �

X=Y
jx/
˝2

‡� jx

//

��.x/˝id
��

KX ;sjx

�x
��

.ƒtopT �
�.x/

Y /˝
2

˝ .ƒtopT �
X=Y
jx/
˝2

�
˝2

x
// .ƒtopT �x X /˝

2

;

where �x; ��.x/ are as in (21), and �x W ƒ
topT �

�.x/
Y ˝ƒtopT �

X=Y
jx ! ƒtopT �x X is

obtained by restricting (24) to x and taking top exterior powers.
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Definition 3.6 Let .X; s/ be an algebraic d–critical locus, and KX ;s its canonical
bundle from Theorem 3.4. An orientation on .X; s/ is a choice of square root line
bundle K

1=2
X ;s

for KX ;s on X red . That is, an orientation is a line bundle L on X red ,
together with an isomorphism L˝

2

D L˝L Š KX ;s . A d–critical locus with an
orientation will be called an oriented d–critical locus.

Remark 3.7 In view of equation (21), one might hope to define a canonical orienta-
tion K

1=2
X ;s

for a d–critical locus .X; s/ by K
1=2
X ;s

ˇ̌
x
DƒtopT �x X for x 2X red . However,

this does not work, as the spaces ƒtopT �x X do not vary continuously with x 2 X red

if X is not smooth. An example in [14, Example 2.39] shows that d–critical loci need
not admit orientations.

In the situation of Proposition 3.5, the factor .ƒtopT �
X=Y

/
ˇ̌˝2

X red in (25) has a natural
square root .ƒtopT �

X=Y
/jX red . Thus we deduce:

Corollary 3.8 Let �W .X; s/! .Y; t/ be a morphism of d–critical loci with �W X!Y

smooth. Then each orientation K
1=2
Y;t

for .Y; t/ lifts to a natural orientation K
1=2
X ;s
D

�j�
X red.K

1=2
Y;t
/˝ .ƒ>T �

X=Y
/jX red for .X; s/.

The following result from [4] will be generalized to stacks in Theorem 3.18.

Theorem 3.9 (Bussi, Brav and Joyce [4, Theorem 6.6]) Suppose .X ; !/ is a �1–
shifted symplectic derived scheme in the sense of Pantev et al [28] over an algebraically
closed field K of characteristic zero, and let X D t0.X/ be the associated classical
K–scheme of X . Then X extends naturally to an algebraic d–critical locus .X; s/. The
canonical bundle KX ;s from Theorem 3.4 is naturally isomorphic to the determinant
line bundle det.LX /jX red of the cotangent complex LX of X .

3.2 Extension to Artin stacks, and d–critical stacks

In [14, Sections 2.7–2.8] we extend the material of Section 3.1 from K–schemes to Artin
K–stacks. We work in the context of the theory of sheaves on Artin stacks by Laumon
and Moret-Bailly [23, Sections 12, 13, 15, 18], including quasicoherent, coherent
and constructible sheaves, and their derived categories. Unfortunately, Laumon and
Moret-Bailly wrongly assume that 1–morphisms of algebraic stacks induce morphisms
of lisse-étale topoi, so parts of their theory concerning pullbacks, etc, are unsatisfactory.
Olsson [27] rewrites the theory, correcting this mistake. Laszlo and Olsson study
derived categories of constructible sheaves, and perverse sheaves, on Artin stacks, in
more detail [20; 21; 22].
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1314 O Ben-Bassat, C Brav, V Bussi and D Joyce

All of [20; 21; 22; 23; 27] work with sheaves on Artin stacks in the lisse-étale topology.
We will not define these directly, but instead quote an alternative description from
Laumon and Moret-Bailly [23] that we find more convenient.

Proposition 3.10 (Laumon and Moret-Bailly [23]) Let X be an Artin K–stack. The
category of sheaves of sets on X in the lisse-étale topology is equivalent to the category
Sh.X / defined as follows.

(A) Objects A of Sh.X / comprise the following data:

(a) For each K–scheme T and smooth 1–morphism t W T ! X in ArtK , we are
given a sheaf of sets A.T; t/ on T , in the étale topology.

(b) For each 2–commutative diagram in ArtK

(27)

U
u

&&

KS
�

T

�
88

t

// X;

where T;U are schemes and t W T !X , uW U !X are smooth 1–morphisms
in ArtK , we are given a morphism A.�; �/W ��1.A.U;u//! A.T; t/ of étale
sheaves of sets on T .

This data must satisfy the following conditions:

(i) If �W T ! U in (b) is étale, then A.�; �/ is an isomorphism.

(ii) For each 2–commutative diagram in ArtK

V
v

((

KS
�

U

 
66

u
// X;MU

�

T

�

OO

t

55

with T;U;V schemes and t;u; v smooth, we must have

A. ı�; .� � id�/ˇ �/DA.�; �/ ı��1.A. ; �// as morphisms

. ı�/�1.A.V; v//D ��1
ı �1.A.V; v// �!A.T; t/:
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(B) Morphisms ˛W A!B of Sh.X / comprise a morphism ˛.T; t/W A.T; t/!B.T; t/
of étale sheaves of sets on a scheme T for all smooth 1–morphisms t W T !X , such
that for each diagram (27) in (b) the following commutes:

��1.A.U;u//

��1.˛.U;u//��

A.�;�/
// A.T; t/

˛.T;t/
��

��1.B.U;u//
B.�;�/

// B.T; t/

(C) Composition of morphisms A
˛
�!B

ˇ
�!C in Sh.X / is .ˇ ı ˛/.T; t/D ˇ.T; t/ ı

˛.T; t/. Identity morphisms idAW A!A are idA.T; t/D idA.T;t/ .

The analogue of all the above also holds for (étale) sheaves of K–vector spaces, sheaves
of K–algebras, and so on, in place of (étale) sheaves of sets.

Furthermore, the analogue of all the above holds for quasicoherent sheaves, (or coherent
sheaves, or vector bundles, or line bundles) on X , where in (a) A.T; t/ becomes a
quasicoherent sheaf (or coherent sheaf, or vector bundle, or line bundle) on T , in (b)
we replace ��1.A.U;u// by the pullback ��.A.U;u// of quasicoherent sheaves (etc),
and A.�; �/; ˛.T; t/ become morphisms of quasicoherent sheaves (etc) on T .

We can also describe global sections of sheaves on Artin K–stacks in the above
framework: a global section s 2 H 0.A/ of A in part (A) assigns a global section
s.T; t/ 2H 0.A.T; t// of A.T; t/ on T for all smooth t W T ! X from a scheme T ,
such that A.�; �/�.s.U;u//D s.T; t/ in H 0.A.T; t// for all 2–commutative diagrams
(27) with t;u smooth.

In the rest of the paper we will use the notation of Proposition 3.10 for sheaves of all
kinds on Artin K–stacks. In [14, Corollary 2.52] we generalize the sheaves SX ;S0

X
in

Section 3.1 to Artin K–stacks:

Proposition 3.11 Let X be an Artin K–stack, and write Sh.X/K–alg and Sh.X/K–vect

for the categories of sheaves of K–algebras and K–vector spaces on X defined in
Proposition 3.10. Then:

(a) We may define canonical objects SX in both Sh.X /K–alg and Sh.X /K–vect by
SX .T; t/ WD ST for all smooth morphisms t W T ! X for T 2 SchK , for ST

as in Section 3.1 taken to be a sheaf of K–algebras (or K–vector spaces) on
T in the étale topology, and SX .�; �/ WD �

?W ��1.SX .U;u// D �
�1.SU /!

ST D SX .T; t/ for all 2–commutative diagrams (27) in ArtK with t;u smooth,
where �? is as in Section 3.1.
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1316 O Ben-Bassat, C Brav, V Bussi and D Joyce

(b) There is a natural decomposition SX DKX ˚ S0
X

in Sh.X /K–vect induced by
the splitting SX .T; t/D ST DKT ˚S0

T
in Section 3.1, where KX is a sheaf of

K–subalgebras of SX in Sh.X /K–alg , and S0
X

a sheaf of ideals in SX .

Here [14, Definition 2.53] is the generalization of Definition 3.1 to Artin stacks.

Definition 3.12 A d–critical stack .X; s/ is an Artin K–stack X and a global section
s 2H 0.S0

X
/, where S0

X
is as in Proposition 3.11, such that .T; s.T; t// is an algebraic

d–critical locus in the sense of Definition 3.1 for all smooth morphisms t W T ! X

with T 2 SchK .

In [14, Proposition 2.54] we give a convenient way to understand d–critical stacks
.X; s/ in terms of d–critical structures on an atlas t W T !X for X .

Proposition 3.13 Suppose we are given a 2–commutative diagram in ArtK ,

(28)
U

�1��

�2

//
FN

�

T

t ��

T
t

// X;

where X is an Artin K–stack, T;U are K–schemes, t; �1; �2 are smooth 1–morph-
isms, t W T !X is surjective, and the 1–morphism U ! T �t;X ;t T induced by (28)
is surjective. For instance, this happens if U � T is a groupoid in K–schemes, and
X D ŒU � T � the associated groupoid stack. Then:

(i) Let SX be as in Proposition 3.11, and ST ;SU be as in Section 3.1, regarded
as sheaves on T;U in the étale topology, and define �?i W �

�1
i .ST /! SU as in

Section 3.1 for i D 1; 2. Consider the map t�W H 0.SX /!H 0.ST / mapping
t�W s 7! s.T; t/. This is injective, and induces a bijection

(29) t�W H 0.SX /
Š
�!fs0 2H 0.ST / W �

?
1 .s
0/D �?2 .s

0/ in H 0.SU /g:

The analogue holds for S0
X
;S0

T
;S0

U
.

(ii) Suppose s 2 H 0.S0
X
/, so that t�.s/ 2 H 0.S0

T
/ with �?

1
ı t�.s/ D �?

2
ı t�.s/.

Then .X; s/ is a d–critical stack if and only if .T; t�.s// is an algebraic d–critical
locus, and then .U; �?

1
ı t�.s// is also an algebraic d–critical locus.

In [14, Example 2.55] we consider quotient stacks X D ŒT=G�.
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Example 3.14 Suppose an algebraic K–group G acts on a K–scheme T with action
�W G �T ! T , and write X for the quotient Artin K–stack ŒT=G�. Then as in (28)
there is a natural 2–Cartesian diagram

G �T

�T��

�
//

HP
�

T

t ��

T
t
// X D ŒT=G�;

where t W T !X is a smooth atlas for X . If s0 2H 0.S0
T
/ then �?

1
.s0/D�?

2
.s0/ in (29)

becomes �?
T
.s0/D�?.s0/ on G�T , that is, s0 is G –invariant. Hence, Proposition 3.13

shows that d–critical structures s on X D ŒT=G� are in one-to-one correspondence
with G –invariant d–critical structures s0 on T .

Here [14, Theorem 2.56] is an analogue of Theorem 3.4.

Theorem 3.15 Let .X; s/ be a d–critical stack. Using the description of quasicoherent
sheaves on X red in Proposition 3.10 there is a line bundle KX ;s on the reduced K–
substack X red of X called the canonical bundle of .X; s/, unique up to canonical
isomorphism, such that:

(a) For each point x 2X red �X we have a canonical isomorphism

(30) �x W KX ;sjx
Š
�!.ƒtopT �x X /˝

2

˝ .ƒ>Isox.X //
˝2

;

where T �x X is the Zariski cotangent space of X at x , and Isox.X / the Lie
algebra of the isotropy group (stabilizer group) Isox.X / of X at x .

(b) If T is a K–scheme and t W T !X a smooth 1–morphism, so that t redW T red!

X red is also smooth, then there is a natural isomorphism of line bundles on T red:

(31) �T;t W KX ;s.T
red; t red/

Š
�!KT;s.T;t/˝ .ƒ

topT �T=X /
ˇ̌˝�2

T red :

Here .T; s.T; t// is an algebraic d–critical locus by Definition 3.12, and from
Theorem 3.4, KT;s.T;t/! T red is its canonical bundle.

(c) If t W T ! X is a smooth 1–morphism, then we have a distinguished triangle
in Dqcoh.T /:

(32) t�.LX /
Lt

//LT
//T �

T=X
// t�.LX /Œ1�;

where LT ;LX are the cotangent complexes of T;X , and T �
T=X

the relative
cotangent bundle of t W T ! X , a vector bundle of mixed rank on T . Let
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1318 O Ben-Bassat, C Brav, V Bussi and D Joyce

p 2 T red � T , so that t.p/ WD t ı p 2 X . Taking the long exact cohomology
sequence of (32) and restricting to p 2 T gives an exact sequence

(33) 0 �! T �t.p/X �! T �p T �! T �T=X jp �! Isot.p/.X /
�
�! 0:

Then the following diagram commutes:

KX ;sjt.p/

�t.p/��

KX ;s.T
red; t red/jp

�T;t jp

// KT;s.T;t/jp˝ .ƒ
topT �T=X /

ˇ̌˝�2

p

�p˝id ��

.ƒtopT �
t.p/

X /˝
2

˝ .ƒ>Isot.p/.X //
˝2

˛2
p
// .ƒtopT �p T /˝

2

˝ .ƒtopT �
T=X

/
ˇ̌˝�2

p
;

where �p; �t.p/ , and �T;t are as in (21), (30) and (31), respectively, and
p̨W ƒ

topT �
t.p/

X ˝ƒtopIsot.p/.X /
Š
�!ƒtopT �p T ˝ƒtopT �

T=X
j�1
p is induced by

taking top exterior powers in (33).

Here [14, Definition 2.57] is the analogue of Definition 3.6:

Definition 3.16 Let .X; s/ be a d–critical stack, and KX ;s its canonical bundle from
Theorem 3.15. An orientation on .X; s/ is a choice of square root line bundle K

1=2
X ;s

for KX ;s on X red . That is, an orientation is a line bundle L on X red , together with
an isomorphism L˝

2

DL˝LŠKX ;s . A d–critical stack with an orientation will be
called an oriented d–critical stack.

Let .X; s/ be an oriented d–critical stack. Then for each smooth t W T !X we have
a square root K

1=2
X ;s

.T red; t red/. Thus by (31), K
1=2
X ;s

.T red; t red/˝ .ƒ>LT=X /jT red is a
square root for KT;s.T;t/ . This proves [14, Lemma 2.58]:

Lemma 3.17 Let .X; s/ be a d–critical stack. Then an orientation K
1=2
X ;s

for .X; s/ de-
termines a canonical orientation K

1=2

T;s.T;t/
for the algebraic d–critical locus .T; s.T; t//,

for all smooth t W T !X with T a K–scheme.

3.3 From �1–shifted symplectic stacks to d–critical stacks

Here is the main result of this section, the analogue of Theorem 3.9 from [4].

Theorem 3.18 Let K be an algebraically closed field of characteristic zero, .X ; !X /

a �1–shifted symplectic derived Artin K–stack, and X D t0.X/ the corresponding
classical Artin K–stack. Then there exists a unique d–critical structure s 2H 0.S0

X
/

on X , making .X; s/ into a d–critical stack, with the following properties:
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(a) Let U , f W U ! A1 , T D Crit.f / and 'W T ! X be as in Corollary 2.11,
with f jT red D 0. As in Section 3.1, there is a unique sT 2H 0.S0

T
/ on T with

�T;U .sT /D i�1.f /C I2
T;U

, and .T; sT / is an algebraic d–critical locus. Then
s.T; '/D sT in H 0.S0

T
/.

(b) The canonical bundle KX ;s of .X; s/ from Theorem 3.15 is naturally isomorphic
to the restriction det.LX /jX red to X red �X �X of the determinant line bundle
det.LX / of the cotangent complex LX of X .

We can think of Theorem 3.18 as defining a truncation functor

F W f1–category of �1–shifted symplectic derived Artin K–stacks .X ; !X /g

�! f2–category of d–critical stacks .X; s/ over Kg:

Let Y be a Calabi–Yau 3–fold over K, and M a classical moduli K–stack of coherent
sheaves in coh.Y /, or complexes of coherent sheaves in Db coh.Y /. There is a
natural obstruction theory �W E� ! LM on M, where E� 2 Dqcoh.M/ is perfect
in the interval Œ�2; 1�, and hi.E�/jF Š Ext1�i.F;F /� for each K–point F 2M,
regarding F as an object in coh.Y / or Db coh.Y /. Now in derived algebraic geometry
M D t0.M/ for M the corresponding derived moduli K–stack, and �W E�! LM
is Lt0

W LMjM ! LM . Pantev et al [28, Section 2.1] prove M has a �1–shifted
symplectic structure ! . Thus Theorem 3.18 implies:

Corollary 3.19 Suppose Y is a Calabi–Yau 3–fold over K of characteristic zero,
and M a classical moduli K–stack of coherent sheaves F in coh.Y /, or complexes of
coherent sheaves F� in Db coh.Y / with Ext<0.F�;F�/D 0, with obstruction theory
�W E�! LM . Then M extends naturally to an algebraic d–critical locus .M; s/. The
canonical bundle KM;s from Theorem 3.15 is naturally isomorphic to det.E�/jMred .

3.4 Proof of Theorem 3.18

Let .X ; !X / be a �1–shifted symplectic derived Artin K–stack, with char KD 0, and
X D t0.X/. For each p 2X , Corollary 2.11 gives data T D Crit.f W U !A1/ with
f jT red D 0, t 2 T and a smooth 'W T ! X with '.t/ D p . Choose Uj ; fj ;Tj ; 'j

from Corollary 2.11 for j in an indexing set J , such that j̀2J 'j W j̀2J Tj !X is
surjective. Then j̀2J 'j W j̀2J Tj !X is a smooth atlas for X . As in Section 3.1,
there is a unique sj 2H 0.S0

Tj
/ with �Tj ;Uj .sj /D i�1

j .fj /CI2
Tj ;Uj

, and .Tj ; sj / is an
algebraic d–critical locus for each j 2 J .

Let j ; k 2 J , and q 2 Tj �'j ;X ;'k
Tk . Applying Proposition 2.13 gives a smooth

K–scheme Vjk , a closed K–subscheme Rjk � Vjk , a point r 2Rjk , and morphisms
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�jk W Vjk ! Uj , � 0
jk
W Vjk ! Uk with �jk.Rjk/� Tj , � 0

jk
.Rjk/� Tk , such that the

following diagram 2–commutes in ArtK :

Vjk
� 0
jk

//

�jk

��

Uk
fk

// A1

Rjk

4 Tijk

gg

� 0
jk
jRjk

//

�jk jRjk

��

CK�jk

Tk

'k

��

4 T

ik

gg

Uj

fj��

A1 Tj

4 Tij

gg

'j
// X;

where ij ; ik ; ijk are the inclusions, and the induced morphism Rjk ! Tj �X Tk is
étale and maps r 7! q , and fj ı �jk �fk ı �

0
jk
2 I2

Rjk ;Vjk
.

As we can do this for each q2Tj�X Tk , we can choose a family of such V l
jk ;R

l
jk ; �

l
jk ;

� 0ljk ; �
l
jk ; i

l
jk for l 2 Kjk , where Kjk is an indexing set, such that the induced

morphism
`

l2Kjk
Rl

jk!Tj �X Tk is étale and surjective. We apply Proposition 3.13
to the 2–commutative diagrama

j ;k2J

a
l2Kjk

Rl
jk

`
j ;k;l �

l
jk
j
Rl
jk��

`
j ;k;l �

0l
jk
j
Rl
jk

//

HP`
j ;k;l �

l
jk

a
k2J

Tk

`
k 'k

��a
j2J

Tj

`
j 'j

// X:

Here j̀ 'j W j̀ Tj !X is smooth and surjective, and j̀ ;k;l Rl
jk
! j̀ ;k Tj �X Tk

étale and surjective, so the hypotheses of Proposition 3.13 hold.

Now for all j ; k 2 J and l 2Kjk , in the notation of Section 3.1, we have

�Rl
jk
;V l
jk
ı � l

jk

ˇ̌?
Rl
jk

.sj /D .i
l
jk/
�1.�

l]

jk
/ ı � l

jk

ˇ̌�1

Rl
jk

.�Tj ;Uj .sj //

D � l
jk

ˇ̌�1

Rl
jk

.i�1
j .fj /C I2

Tj ;Uj
/D .i l

jk/
�1.fj ı �

l
jk C I2

Rl
jk
;V l
jk

/

D .i l
jk/
�1.fk ı �

l 0
jk C I2

Rl
jk
;V l
jk

/D � 0ljk

ˇ̌�1

Rl
jk

.i�1
k .fk/C I2

Tk ;Uk
/

D .i l
jk/
�1.�

0l]

jk
/ ı � 0ljk

ˇ̌�1

Rl
jk

.�Tk ;Uk
.sk//D �Rl

jk
;V l
jk
ı � 0ljk

ˇ̌?
Rl
jk

.sk/;
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using (20) in the first and seventh steps, the definitions of sj ; sk in the second and
sixth, and fj ı �

l
jk
� fk ı �

0l
jk
2 I2

Rl
jk
;V l
jk

in the fourth. As �Rl
jk
;V l
jk

is injective, this
implies that

� l
jk j

?
Rl
jk
.sj /D �

0l
jk j

?
Rl
jk
.sk/

in H 0.S0
Rl
jk
/. Since this holds for all j ; k; l , we see that�a

j ;k;l

� l
jk jR

l
jk

�?�a
j

sj

�
D

�a
j ;k;l

� 0ljk jR
l
jk

�?�a
k

sk

�
in H 0.S 0̀

j ;k;l Rl
jk
/. Therefore Proposition 3.13(i) shows that there exists a unique

element s in the group H 0.SX / with

s

�a
j

Tj ;
a
j

'j

�
D

a
j

sj ;

that is, with s.Tj ; 'j / D sj for all j 2 J . Also, as . j̀ Tj ; j̀ sj / is an algebraic
d–critical locus, Proposition 3.13(ii) shows that .X; s/ is a d–critical stack.

To show s 2H 0.SX / is independent of the choice of data J;Uj ; fj ;Tj ; 'j ;Kjk ;V
l

jk ;

Rl
jk ; �

l
jk ; �

0l
jk ; �

l
jk ; i

l
jk , suppose J 0;U 0j 0 ; f

0
j 0 ; : : : is another set of choices yielding

s0 2 H 0.SX / with s0.T 0j 0 ; '
0
j 0/ D s0j 0 for all j 0 2 J 0 . Applying the same argument

with J 00 D J qJ 0 and data Uj ; fj ;Tj ; 'j , j 2 J and U 0j 0 ; f
0

j 0 ;T
0
j 0;'
0
j 0 , j 0 2 J 0 , with

K00jk DKjk , V 00ljk DV l
jk ; : : : for j ; k 2J �J 00 , and K00j 0k0DK0j 0k0 , V 00lj 0k0DV 0lj 0k0 ; : : :

for j 0; k 0 2 J 0 � J 00 , and the remaining K00jk ;V
00l

jk ; : : : arbitrary, yields a third section
s00 2H 0.SX / satisfying s00.Tj ; 'j /D sj for all j 2 J and s00.T 0j 0 ; '

0
j 0/D s0j 0 for all

j 0 2 J 0 . So the uniqueness property of s; s0 gives s D s00 D s0 , and s is independent
of the choice of data J;Uj ; fj ; : : :.

Let U , f W U ! A1 , T D Crit.f / and 'W T ! X be as in Corollary 2.11, with
f jT red D 0. By defining s 2 H 0.SX / above using data J;Uj ; fj ; : : : chosen such
that Uj D U , fj D f , Tj D T , 'j D ' for some j 2 J , which is allowed as s

is independent of this choice, we see that s.T; '/ D sT in H 0.S0
T
/. This proves

Theorem 3.18(a).

For part (b), let U , f W U !A1 , T DCrit.f / and 'W T !X be as in Corollary 2.11,
with i W T ,! U the inclusion, so that s.T; '/ D sT in H 0.S0

T
/ with �T;U .sT / D

i�1.f /C I2
T;U

by (a). Then .T;U; f; i/ is a critical chart on the algebraic d–critical
locus .T; sT /, so Theorem 3.4(b) gives an isomorphism

(34) �T;U;f;i W KT;sT
�! i�.K˝

2

U
/jT red :

The data in Corollary 2.11 come from Theorem 2.10(a),(b) with k D �1, but with
different notation. To distinguish the two, we write ‘{’ over notation from Theorem 2.10.
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Then Theorem 2.10(a),(b) give affine derived K–schemes {U ; {V , a �1–shifted symplec-
tic structure {!B on {V , and morphisms {{W {U ! {V , {'W {U !X such that {'�.!X /�

{{�.{!B/, and {{ D t0.{{/W {U D t0. {U /! {V D t0. {V / is an isomorphism on the classical
schemes. These are related to the data of Corollary 2.11 by {V is the derived crit-
ical locus Crit.f W U ! A1/, and {V the classical critical locus T D Crit.f /, and
' D {' ı{{�1W T D {V !X .

We have standard fibre sequences on {U :

{'�.LX /
L{' //L {U //L {U =X // {'�.LX /Œ1�;

{{�.L {V /
L{{ //L {U //L {U = {V //{{�.L {V /Œ1�:

Taking determinants gives natural isomorphisms of line bundles on {U :

det L {U Š {'
�.det LX /˝ det L {U =X ;

det L {U Š{{
�.det L {V /˝ det L {U = {V :

(35)

Equation (14) gives L {U = {V ' T {U =X Œ2�. So taking determinants we have

(36) det L {U = {V Š det T {U =X Š .det L {U =X /
�:

Combining (35)–(36) and restricting to {U D t0. {U /� {U yields

(37) {'�.det LX jX /Š{{
�.det L {V j {V /˝ .det L {U =X j {U /

˝�2

:

Since {'W {U !X is smooth, so is {'W {U !X , and

(38) L {U =X j {U Š L {U =X Š T �
{U =X

:

As {{W {U ! {V D T is an isomorphism, we may apply .{{�1/� to (37). Using (38) and
.{{�1/� ı{{ � D id, .{{�1/� ı {'� D '� as ' D {' ı{{�1 gives

(39) '�.det LX jX /Š .det L {V jT /˝ .{{
�1/�.ƒtopT �

{U =X
/˝
�2

:

Since {V D Crit.f W U !A1/, we have

L {V jT ' ŒT U jT
@2f jT
����! T �U jT �;

with T U jT in degree �1 and T �U jT in degree 0. Therefore

(40) det L {V jT Š i�.K˝
2

U
/:

Also, as {{�1W T ! yU is an isomorphism, we have

(41) .{{�1/�.T �
{U =X

/Š T �T=X :
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Combining (39)–(41), restricting to T red and using (34) gives

(42) .'red/�.det LX jX red/ŠKT;sT
˝ .ƒtopT �T=X /

ˇ̌
˝�2

T red :

Substituting in the isomorphism �T;' in Theorem 3.15(b) from the smooth morphism
'W T !X gives a canonical isomorphism of line bundles on T red :

(43) .'red/�.det LX jX red/ŠKX ;s.T
red; 'red/:

This establishes the isomorphism KX ;s Š det.LX /jX red in Theorem 3.18(b) evaluated
on .T red; 'red/ for any U; f;T; ' coming from Corollary 2.11. Such 'redW T red!X red

form an open cover of X red in the smooth topology. To prove the isomorphism KX ;s Š

det.LX /jX red globally and complete the proof, there are two possible methods. Firstly,
we could prove that given two choices U; f;T; ' and U 0; f 0;T 0; '0 in Corollary 2.11,
the corresponding isomorphisms (43) agree on the overlap T red �'red;X ;'0red T 0red .

But as we are dealing with line bundles on a reduced stack X red , there is a second, easier
way: we can show that for each t 2 T red with 'red.t/D x 2 X red , the isomorphism
det LX jx ŠKX ;sjx from restricting (43) to t depends only on x 2X red , and not on
the choice of U; f;T; '; t . This holds as by Theorem 3.15(a) we have an isomorphism

(44) KX ;sjx Š .ƒ
topT �x X /˝

2

˝ .ƒtopIsox.X //
˝2

:

Since LX is perfect in the interval Œ�2; 1�, we have

(45) det LX jx Š

1O
iD�2

.ƒtopH i.LX jx//
.�1/i ;

where we have canonical isomorphisms

(46)
H 0.LX jx/Š T �x X; H 1.LX jx/Š Isox.X /

�;

H�1.LX jx/Š TxX; H�2.LX jx/Š Isox.X /;

the first line holding for any derived Artin stack X , and the second line holding from
H i.LX jx/ŠH�1�i.LX jx/

� as .X ; !X / is �1–shifted symplectic.

Combining (44)–(46) gives a canonical isomorphism det LX jx ŠKX ;sjx depending
only on x 2X red . Following through (34)–(43) restricted to t 2 T red with 'red.t/D x ,
we find that the restriction of (43) to t gives the same isomorphism. This completes
the proof of Theorem 3.18(b).
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4 Perverse sheaves on d–critical stacks

In [3, Theorem 6.9], given in Theorem 4.4 below, we constructed a natural perverse
sheaf P�

X ;s
on an oriented algebraic d–critical locus .X; s/. The main result of this

section, Theorem 4.8, generalizes this to oriented d–critical stacks.

We begin in Section 4.1 with some background on perverse sheaves on schemes.
Section 4.2 recalls results from [3], and proves in Proposition 4.5 a smooth pullback
property of the P�

X ;s
in Theorem 4.4. Section 4.3 discusses perverse sheaves on Artin

stacks. Once we have set up all the notation, Theorem 4.8 in Section 4.4 follows almost
immediately from Theorem 4.4 and Proposition 4.5. In this section the base field K
may be algebraically closed with char K¤ 2, except in Corollaries 4.9 and 4.10 when
we require char KD 0 to apply the results of Section 3.

4.1 Perverse sheaves on schemes

We will assume the reader is familiar with the theory of perverse sheaves on C–schemes
and K–schemes. An introduction to perverse sheaves on schemes suited to our purposes
can be found in [3, Section 2], and our definitions and notation follow that paper. Here
is a brief survival guide:

� We work throughout this section over an algebraically closed field K with
char K ¤ 2, for instance K D C . All K–schemes X;Y;Z; : : : are assumed
separated and of finite type.

� We work with constructible complexes and perverse sheaves over a commutative
base ring A. The allowed rings A depend on the field K. For KDC one can
define perverse sheaves using the complex analytic topology as in Dimca [7],
and then A can be essentially arbitrary, eg ADQ or Z.
If K ¤ C then one must define perverse sheaves using the étale topology, as
in Beilinson, Bernstein and Deligne [1]. Then the allowed possibilities are A

with char A > 0 coprime to char K, or the l –adic integers Zl , or the l –adic
rationals Ql , or its algebraic closure xQl , for l a prime coprime to char K. We
will refer to all these possibilities as l –adic perverse sheaves.

� For a K–scheme X , one defines the derived category Db
c .X / of constructible

complexes of A–modules on X . There is a natural t –structure on Db
c .X /, with

heart the abelian category Perv.X / of perverse sheaves on X .

� An example of a constructible complex on X is the constant sheaf AX with
fibre A at each point. If X is smooth then AX Œdim X � 2 Perv.X /.
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� Grothendieck’s “six operations on sheaves” f �; f !;Rf�;Rf!;RHom;
L

˝ act
on the categories Db

c .X /. There is a functor DX W D
b
c .X /! Db

c .X /
op with

DX ıDX Š idW Db
c .X /!Db

c .X /, called Verdier duality.

� Let U be a K–scheme and f W U ! A1 a regular function, and write U0

for the subscheme f �1.0/� U . Then one can define the nearby cycle functor
 

p

f
W Db

c .U /!Db
c .U0/ and the vanishing cycle functor �p

f
W Db

c .U /!Db
c .U0/.

Both map Perv.U /! Perv.U0/.

� Let U be a smooth K–scheme and f W U !A1 a regular function, and write
X DCrit.f /. Then we have a decomposition X D

`
c2f .X /Xc , where Xc �X

is the open and closed subscheme of points p 2X with f .p/D c . It turns out
that �p

f
.AU Œdim U �/ is supported on X0 �X � U .

Following [3, Section 2.4], define the perverse sheaf of vanishing cycles PV�
U;f

of U; f in Perv.X / or Perv.U / to be PV�
U;f
D
L

c2f .X / �
p

f�c
.AU Œdim U �/jXc

.
We also define a canonical Verdier duality isomorphism

�U;f W PV�U;f
Š
�!DX .PV�U;f /

and twisted monodromy operator

�U;f W PV�U;f
Š
�!PV�U;f :

Some references are [3, Section 2], Dimca [7] for perverse sheaves on C–schemes,
and Beilinson, Bernstein and Deligne [1], Ekedahl [8], Freitag and Kiehl [9], and Kiehl
and Weissauer [16] for perverse sheaves on K–schemes.

The theories of D –modules on K–schemes, and Saito’s mixed Hodge modules on
C–schemes, also share this whole package of properties, and our results also generalize
to D –modules and mixed Hodge modules, as in [3].

Here are some results connecting perverse sheaves and smooth morphisms. Theorem 4.2
(proved in [1, Theorem 3.2.4], see also [20, Section 2.3]) is the reason why perverse
sheaves extend to Artin stacks, as we discuss in Section 4.3.

Proposition 4.1 Let ˆW X ! Y be a scheme morphism smooth of relative dimen-
sion d . Then the (exceptional) inverse image functors ˆ�; ˆ!W Db

c .Y / ! Db
c .X /

satisfy ˆ�Œd �Šˆ!Œ�d �, where ˆ�Œd �; ˆ!Œ�d � are ˆ�; ˆ! shifted by ˙d . Furthermore
ˆ�Œd �; ˆ!Œ�d � map Perv.Y /! Perv.X /.

Theorem 4.2 Let X be a scheme. Then perverse sheaves on X form a stack (a kind
of sheaf of categories) on X in the smooth topology.
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Explicitly, this means the following. Let fui W Ui ! X gi2I be a smooth open cover
for X , so that ui W Ui!X is a scheme morphism smooth of relative dimension di for
i 2 I , with

`
i ui surjective. Write Uij DUi �ui ;X ;uj Uj for i; j 2 I with projections

� i
ij W Uij �! Ui ; �

j
ij W Uij �! Uj ; uij D ui ı�

i
ij D uj ı�

j
ij W Uij �!X:

Similarly, write Uijk D Ui �Uj �Uk for i; j ; k 2 I with projections

�
ij

ijk
W Uijk �! Uij ; � ik

ijk W Uijk �! Uik ; �
jk

ijk
W Uijk �! Ujk ;

� i
ijk W Uijk ! Ui ; �

j

ijk
W Uijk ! Uj ; �k

ijk W Uijk ! Uk ; uijk W Uijk !X;

so that � i
ijk
D� i

ij ı�
ij

ijk
, uijk Duij ı�

ij

ijk
Dui ı�

i
ijk

, and so on. All these morphisms
ui ; �

i
ij ; : : : ;uijk are smooth of known relative dimensions, so u�i Œdi �Š u!

i Œ�di � maps
Perv.X /! Perv.Ui/ by Proposition 4.1, and similarly for � i

ij ; : : : ;uijk . With this
notation:

(i) Suppose P�;Q� 2 Perv.X /, and we are given ˛i W u
�
i Œdi �.P�/! u�i Œdi �.Q�/ in

Perv.Ui/ for all i 2 I such that for all i; j 2 I we have

.� i
ij /
�Œdj �.˛i/D .�

j
ij /
�Œdi �. j̨ /W u

�
ij Œdi C dj �.P�/ �! u�ij Œdi C dj �.Q�/:

Then there is a unique ˛W P�!Q� with ˛i D u�i Œdi �.˛/ for all i 2 I .

(ii) Suppose we are given P�i 2 Perv.Ui/ for all i 2 I and isomorphisms

˛ij W .�
i
ij /
�Œdj �.P�i /! .�

j
ij /
�Œdi �.P�j /

in Perv.Uij / for all i; j 2 I with ˛ii D id and

.�
jk

ijk
/�Œdi �. j̨k/ ı .�

ij

ijk
/�Œdk �.˛ij /D .�

ik
ijk/
�Œdj �.˛ik/W .�

i
ijk/
�Œdj C dk �.P i/

�! .�k
ijk/
�Œdi C dj �.Pk/

in Perv.Uijk/ for all i; j ; k 2 I . Then there exists P� in Perv.X /, unique up to
canonical isomorphism, with isomorphisms ˇi W u

�
i .P
�/!P�i for each i 2 I , satisfying

˛ij ı .�
i
ij /
�.ˇi/D .�

j
ij /
�. ǰ /W u

�
ij .P

�/! .�
j
ij /
�.P�j / for all i; j 2 I .

Proposition 4.3 Let ˆW U ! V be a scheme morphism smooth of relative dimen-
sion d and gW V !A1 be regular, and set f D g ıˆW U !A1 . Then:

(a) There are natural isomorphisms of functors Perv.V /! Perv.U0/:

(47) ˆ�0 Œd � ı 
p
g Š  

p

f
ıˆ�Œd � and ˆ�0 Œd � ı�

p
g Š �

p

f
ıˆ�Œd �;

where U0 D f
�1.0/� U , V0 D g�1.0/� V and ˆ0 DˆjU0

W U0! V0 .
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(b) Write X D Crit.f / and Y D Crit.g/, so that ˆjX W X ! Y is smooth of
dimension d . Then there is a canonical isomorphism

(48) „ˆW ˆj
�
X Œd �.PV�V;g/

Š
�!PV�U;f in Perv.X /,

which identifies ˆj�
X
Œd �.�V;g/; ˆj

�
X
Œd �.�V;g/ with �U;f ; �U;f .

4.2 Perverse sheaves on d–critical loci

Here is [3, Theorem 6.9], which we will generalize to stacks in Theorem 4.8 below.
We use the notation of Sections 3.1 and 4.1 throughout.

Theorem 4.4 Let .X; s/ be an oriented algebraic d–critical locus over C , with orien-
tation K

1=2
X ;s

. Then for any well-behaved base ring A, such as Z;Q or C , there exists a
perverse sheaf P�

X ;s
in Perv.X / over A, which is natural up to canonical isomorphism,

and Verdier duality and monodromy isomorphisms

†X ;sW P
�
X ;s �!DX .P

�
X ;s/; TX ;sW P

�
X ;s �! P�X ;s;

which are characterized by the following properties:

(i) If .R;U; f; i/ is a critical chart on .X; s/, there is a natural isomorphism

!R;U;f;i W P
�
X ;sjR �! i�.PV�U;f /˝Z=2Z QR;U;f;i ;

where �R;U;f;i W QR;U;f;i ! R is the principal Z=2Z–bundle parametrizing
local isomorphisms ˛W K1=2

X ;s
! i�.KU /jRred with ˛˝˛D �R;U;f;i , for �R;U;f;i

as in (22). Furthermore the following commute in Perv.R/:

(49)

P�
X ;s
jR

†X;s jR

��

!R;U;f;i

// i�.PV�
U;f

/˝Z=2Z QR;U;f;i

i�.�U;f /˝idQR;U;f;i ��

DR.P
�
X ;s
jR/

i�.DCrit.f /.PV�U;f //˝Z=2Z QR;U;f;i

ŠDR.i
�.PV�U;f /˝Z=2Z QR;U;f;i/;

DR.!R;U;f;i /
oo

(50)

P�
X ;s
jR

TX;s jR

��

!R;U;f;i

// i�.PV�
U;f

/˝Z=2Z QR;U;f;i

i�.�U;f /˝idQR;U;f;i

��

P�
X ;s
jR

!R;U;f;i
// i�.PV�

U;f
/˝Z=2Z QR;U;f;i :

(ii) If ˆW .R;U; f; i/ ,! .S;V;g; j / is an embedding of critical charts on .X; s/,
there is a compatibility condition [3, Theorem 6.9(ii)] between !R;U;f;i ; !S;V;g;j

which we will not give.
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Analogues hold for oriented algebraic d–critical loci .X; s/ over general fields K in
the settings of l –adic perverse sheaves and of D –modules, and for oriented algebraic
d–critical loci .X; s/ over C in the setting of mixed Hodge modules.

We prove a proposition on the behaviour of the perverse sheaves P�
X ;s

of Theorem 4.4
under smooth pullback, which will be the main ingredient in the proof of our main
result Theorem 4.8.

Proposition 4.5 (a) Let �W .X; s/! .Y; t/ be a morphism of algebraic d–critical
loci over C , in the sense of Section 3.1, and suppose �W X ! Y is smooth of relative
dimension d . Let K

1=2
Y;t

be an orientation for .Y; t/, and let K
1=2
X ;s

be the induced
orientation that Corollary 3.8 defines for .X; s/. Theorem 4.4 defines perverse sheaves
P�

X ;s
;P�

Y;t
on X;Y . Then there is a natural isomorphism

(51) �� W �
�Œd �.P�Y;t /

Š
�!P�X ;s in Perv.X /

which is characterized by the property that if .R;U; f; i/; .S;V;g; j / are critical charts
on .X; s/; .Y; t/ with �.R/ � S and ˆW U ! V is smooth of relative dimension d

with f D g ıˆ and ˆ ı i D j ı� , then the following commutes:

(52)

�j�
R
Œd �.P�

Y;t
/

�� jR��
�j�

R
Œd �.!S;V;g;j /

// �j�
R
Œd �.j �.PV�

V;g
/˝Z=2Z QS;V;g;j /

i�.„ˆ/˝˛ˆ ��

P�
X ;s
jR

!R;U;f;i
// i�.PV�

U;f
/˝Z=2Z QR;U;f;i ;

where „ˆ is as in (48) and ˛ˆW �j�R Œd �.QS;V;g;j /!QR;U;f;i is the natural isomor-
phism. Also �� identifies ��Œd �.†Y;t /; �

�Œd �.TY;t / with †X ;s;TX ;s .

(b) If  W .Y; t/! .Z;u/ is another morphism of algebraic d–critical loci over C
smooth of relative dimension e , then

(53) � ı� D�� ı�
�Œd �.� /W . ı�/

�Œd C e�.P�Z;u/
Š
�!P�X ;s:

(c) Analogues of (a), (b) hold for algebraic d–critical loci .X; s/ over general fields K
in the settings of l –adic perverse sheaves and of D –modules, and for algebraic d–
critical loci .X; s/ over C in the setting of mixed Hodge modules.

Proof Let �W .X; s/! .Y; t/, d;K
1=2
Y;t
;K

1=2
X ;s

;P�
X ;s
;P�

Y;t
be as in (a). If x 2X with

�.x/ D y 2 Y then the proof of [14, Proposition 2.8] shows that we may choose
critical charts .R;U; f; i/; .S;V;g; j / on .X; s/; .Y; t/ with x 2R, y 2 �.R/�S of
minimal dimensions dim U D dim TxX , dim V D dim TyY , and ˆW U ! V smooth
of relative dimension d with f D g ıˆ and ˆ ı i D j ı� .
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Choose such data .Ra;Ua; fa; ia/; .Sa;Va;ga; ja/; ˆa for a2A, an indexing set, such
that fRa W a 2Ag is an open cover for X . For each a 2A, define an isomorphism �a W

�j�
Ra
Œd �.P�

Y;t
/! P�

X ;s
jRa

to make the following diagram of isomorphisms commute,
the analogue of (52):

(54)

�j�
Ra
Œd �.P�

Y;t
/

�a��
�j�

Ra
Œd �.!Sa;Va;ga;ja /

// �j�
Ra
Œd �.j �a .PV�

Va;ga
/˝Z=2Z QSa;Va;ga;ja

/

i�a .„ˆa /˝˛ˆa ��

P�
X ;s
jRa

!Ra;Ua;fa;ia
// i�a .PV�

Ua;fa
/˝Z=2Z QRa;Ua;fa;ia

:

Combining the last part of Proposition 4.3(b) with (49)–(50) shows that this �a

identifies ��Œd �.†Y;t /jRa
; ��Œd �.TY;t /jRa

with †X ;sjRa
;TX ;sjRa

.

We claim that for all a; b 2 A we have �ajRa\Rb
D �bjRa\Rb

. To prove this,
let x 2 Ra \ Rb , with y D f .x/ 2 Sa \ Sb . By Theorem 3.3 we can choose
subcharts .R0a;U

0
a; f

0
a; i
0
a/ � .Ra;Ua; fa; ia/, .R0b;U

0
b
; f 0

b
; i 0

b
/ � .Rb;Ub; fb; ib/,

.S 0a;V
0

a;g
0
a; j
0
a/� .Sa;Va;ga; ja/, .S 0b;V

0
b
;g0

b
; j 0

b
/� .Sb;Vb;gb; jb/ with x 2R0a\

R0
b

, y 2 S 0a\S 0
b

, critical charts .Rab;Uab; fab; iab/; .Sab;Vab;gab; jab/ on .X; s/,
.Y; t/, and embeddings

‰aW .R
0
a;U

0
a; f

0
a; i
0
a/ ,! .Rab;Uab; fab; iab/;

‰bW .R
0
b;U

0
b; f

0
b; i
0
b/ ,! .Rab;Uab; fab; iab/;

�aW .S
0
a;V

0
a;g
0
a; j
0
a/ ,! .Sab;Vab;gab; jab/;

�bW .S
0
b;V

0
b;g
0
b; j
0
b/ ,! .Sab;Vab;gab; jab/:

By combining the proofs of Proposition 3.2 and Theorem 3.3 in [14], we can show that
we can choose this data such that ˆa.U

0
a/� V 0a , ˆb.U

0
b
/� V 0

b
, and with a morphism

ˆabW Uab! Vab smooth of relative dimension d such that

fab D gab ıˆab; ˆab ı iab D jab ı�ab;

ˆab ı‰a D�a ıˆajU 0a ; ˆab ı‰b D�b ıˆajU 0a :

As for (54) we have a commutative diagram

(55)

�j�
Rab

Œd �.P�
Y;t
/

�ab
��

�j�
Rab

Œd �.!Sab ;Vab ;gab ;jab
/

// �j�
Rab

Œd �.j �
ab
.PV�

Vab;gab
/˝Z=2Z QSab;Vab;gab;jab

/

i�
ab
.„ˆab

/˝˛ˆab ��

P�
X ;s
jRab

!Rab ;Uab ;fab ;iab
// i�

ab
.PV�

Uab;fab
/˝Z=2Z QRab;Uab;fab;iab

:
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Using [3, Theorem 6.9(ii)] for the embeddings ‰a; �a gives commutative diagrams

(56)

P�
X ;s
jR0a

!
R0a;U

0
a;f
0
a;i
0
a

//

!Rab ;Uab ;fab ;iab
j
R0a

��

i 0�a .PV�
U 0a;f

0
a
/˝Z=2Z QR0a;U

0
a;f
0

a;i
0
a

i0�a .‚‰a /˝id
��

i�
ab
.PV�

Uab;fab
/jR0a

˝Z=2ZQRab;Uab;fab;iab
jR0a

id˝ƒ‰a
// i 0�a .‰

�
a.PV�

Uab;fab
/˝Z=2Z P‰a

/

˝Z=2ZQR0a;U
0
a;f
0

a;i
0
a
;

(57)

P�
Y;t
jS 0a

!
S0a;V

0
a;g
0
a;i
0
a

//

!Sab ;Vab ;gab ;jab
j
S0a��

j 0�a .PV�
V 0a;g

0
a
/˝Z=2Z QS 0a;V

0
a;g
0
a;j
0
a

j�a .‚�a /˝id
��

j �
ab
.PV�

Vab;gab
/jS 0a

˝Z=2ZQSab;Vab;gab;jab
jS 0a

id˝ƒ�a
// j 0�a .�

�
a.PV�

Vab;gab
/˝Z=2Z P�a

/

˝Z=2ZQS 0a;V
0

a;g
0
a;j
0
a
:

Here P‰a
;P�a

are principal Z=2Z–bundles on R0a;S
0
a from [3, Definition 5.2],

and ‚‰a
; ‚�a

are isomorphisms of perverse sheaves from [3, Theorem 5.4(a)], and
ƒ‰a

; ƒ�a
are isomorphisms of principal Z=2Z–bundles from [3, Theorem 6.9(ii)].

From the definitions of P‰a
;P�a

; ‚‰a
; ‚�a

; ƒ‰a
; ƒ�a

one can show that there is a
natural isomorphism ˇaW ˆ

�
a Œd �.P�a

/! P‰a
such that the following commute:

(58)

ˆ�a Œd �.PV�
V 0a;g

0
a
/

„ˆa

��

ˆ�a Œd �.‚�a /

// ˆ
�
a Œd �.�

�
a.PV�

Vab;gab
/˝Z=2Z P�a

/D

‰�a ıˆ
�
ab
Œd �.PV�

Vab;gab
/˝Z=2Zˆ

�
a Œd �.P�a

/

‰�a .„ˆab
/˝ˇa ��

PV�
U 0a;f

0
a

‚‰a
// ‰�a.PV�

Uab;fab
/˝Z=2Z P‰a

;

(59)

�j�
Rab

Œd �.QSab;Vab;gab;jab
/

�j�
Rab

Œd �.ƒ�a /

//

˛ˆab

��

�j�
Rab

Œd �.j 0�a .P�a
/

˝Z=2ZQS 0a;V
0

a;g
0
a;j
0
a
/

i0�a .ˇa/˝˛ˆa

��
QRab;Uab;fab;iab

jR0a

ƒ‰a
// i 0�a .P‰a

/˝Z=2Z QR0a;U
0
a;f
0

a;i
0
a
:

Combining (54)–(59) we see that �ajR0a D�abjR0a . Similarly �bjR0
b
D�abjR0

b
, so

�ajR0a\R0
b
D�bjR0a\R0

b
, where R0a\R0

b
is an open neighbourhood of x in Ra\Rb .

As we can cover Ra \Rb by such open R0a \R0
b

, and (iso)morphisms of perverse
sheaves form a sheaf, it follows that �ajRa\Rb

D�bjRa\Rb
.

By the Zariski topology version of Theorem 4.2(i), there exists a unique isomor-
phism �� in (51) such that �� jRa

D �a for all a 2 A. As each �a identifies
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��Œd �.†Y;t /jRa
; ��Œd �.TY;t /jRa

with †X ;sjRa
;TX ;sjRa

from above, �� identifies
��Œd �.†Y;t /; �

�Œd �.TY;t / with †X ;s;TX ;s . By our usual argument involving taking
disjoint union of two open covers, we see that �� is independent of the choice of data A

and .Ra;Ua; fa; ia/; .Sa;Va;ga; ja/; ˆa for a 2 A. Let .R;U; f; i/; .S;V;g; j /; ˆ
be as in (a). By defining �� using data A; .Ra;Ua; fa; ia/; .Sa;Va;ga; ja/; ˆa with
.R;U; f; i/; .S;V;g; j /; ˆ equal to .Ra;Ua; fa; ia/; .Sa;Va;ga; ja/; ˆa for some
a 2A, we see that part (a) holds.

For (b), let x 2X with yD �.x/2Y and zD .z/2Z . The proof of Proposition 3.2
in [14] shows we may choose critical charts .R;U; f; i/; .S;V;g; j /; .T;W; h; k/ on
.X; s/; .Y; t/; .Z;u/ with x 2R, y 2 �.R/ � S , z 2  .S/ � T of minimal dimen-
sions dim U D dim TxX , dim V D dim TyY , dim W D dim TzZ , and ˆW U ! V ,
‰W V ! W smooth of relative dimensions d; e with f D g ıˆ, g D h ı ‰ and
ˆ ı i D j ı� , ‰ ı j D k ı . Consider the diagram of isomorphisms:

. ı�/j�
R
Œd C e�

.P�
Z;u

/

�j�
R
.� /��

� ı� jR

��

. ı�/j�
R
ŒdCe�.!T;W ;h;k/

// . ı�/j
�
R
Œd C e�

.k�.PV�
W ;h

/˝Z=2Z QT;W ;h;k/

�j�
R
.j�.„‰/˝˛‰/ ��

i�.„‰ıˆ/

˝˛‰ıˆ

��

�j�
R
Œd �.P�

Y;t
/

�� jR
��

�j�
R
Œd �.!S;V;g;j /

// �j�
R
Œd �.j �.PV�

V;g
/˝Z=2Z QS;V;g;j /

i�.„ˆ/˝˛ˆ
��

P�
X ;s
jR

!R;U;f;i
// i�.PV�

U;f
/˝Z=2Z QR;U;f;i

The two inner and the outer rectangles commute by (52). Also ˛‰ıˆ D ˛ˆ ı�j�R.˛‰/
is immediate and „‰ıˆ D„ˆ ıˆj�Crit.f /Œd �.„‰/ follows from the definition of „ˆ
in Proposition 4.3(b), so the right hand semicircle commutes. Therefore the left hand
semicircle commutes. This proves the restriction of (53) to R�X . As we can cover X

by such open R, equation (53) follows.

For part (c), all the facts we have used about perverse sheaves on C–schemes above
also hold in the other settings of l –adic perverse sheaves on K–schemes, D –modules,
and mixed Hodge modules. This completes the proof.

4.3 Perverse sheaves on Artin stacks

We first note that because of Proposition 4.1 and Theorem 4.2, any of the theories
of perverse sheaves on C–schemes or K–schemes mentioned in Section 4.1 can be
extended to Artin C–stacks or Artin K–stacks X in a naïve way, using the philosophy
discussed in Section 3.2 and [14, Section 2.7] of defining sheaves on X in terms of
sheaves on schemes T for smooth t W T !X , in particular Proposition 3.10:
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Definition 4.6 Fix one of the theories of perverse sheaves on K–schemes discussed
in Section 4.1, over an allowed base ring A, where we include the special case KDC
and A is general as in Dimca [7]. Let X be an Artin K–stack, always assumed locally
of finite type. We will explain how to define an abelian category Pervnaï.X / of naïve
perverse sheaves on X :

(A) Define an object P of Pervnaï.X / to assign
(a) for each K–scheme T and smooth 1–morphism t W T !X , a perverse sheaf

P.T; t/ 2 Perv.T / on T in our chosen K–scheme perverse sheaf theory;

(b) for each 2–commutative diagram in ArtK

(60)

U
u

&&

KS
�

T

�
88

t

// X;

where T;U are K–schemes and �; t;u are smooth with � of dimension d ,
an isomorphism P.�; �/W ��Œd �.P.U;u//! P.T; t/ in Perv.T /.

This data must satisfy the following condition:

(i) For each 2–commutative diagram in ArtK

V
v

))

KS
�

U

 
55

u
// X;MU

�

T

�

OO

t

44

with T;U;V K–schemes and �; ; t;u; v smooth with �; of dimen-
sions d; e , we must have

P. ı�; .� � id�/ˇ �/D P.�; �/ ı��Œd �.P. ; �// as morphisms

. ı�/�Œd C e�.P.V; v//D � � Œd � ı �Œe�.P.V; v// �! P.T; t/:

(B) Morphisms ˛W P!Q of Pervnaï.X / comprise a morphism ˛.T; t/W P.T; t/!
Q.T; t/ in Perv.T / for all smooth 1–morphisms t W T !X from a scheme T , such
that for each diagram (60) in (b) the following commutes:

��Œd �.P.U;u//
��Œd �.˛.U;u//��

P.�;�/
// P.T; t/

˛.T;t/ ��

��Œd �.Q.U;u//
Q.�;�/

// Q.T; t/
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(C) Composition of morphisms P
˛
�!Q

ˇ
�!R in Pervnaï.X / is .ˇ ı ˛/.T; t/ D

ˇ.T; t/ ı˛.T; t/. Identity morphisms idP W P! P are idP.T; t/D idP.T;t/ .

We can also define a category of naïve D –modules on X in the same way.

Remark 4.7 Definition 4.6 for P is modelled on Proposition 3.10 for A, with the
following differences:

(i) P.�; �/ is an isomorphism always, but A.�; �/ need only be an isomorphism
if � is étale. Now A in Proposition 3.10(A) is called a Cartesian sheaf on X if
A.�; �/ is an isomorphism always. So P is the perverse analogue of a Cartesian
sheaf A on X .

(ii) P.�; �/ is defined only when � is smooth, but A.�; �/ is defined without
requiring � smooth. For Cartesian sheaves A on X , it is enough to give the data
A.T; t/;A.�; �/ and check the conditions for � smooth; the remaining A.�; �/
for nonsmooth � are then determined uniquely.

(iii) Definition 4.6 uses shifted pullbacks ��Œd � where Proposition 3.10 uses sheaf
pullbacks ��1 . This is because of Proposition 4.1.

Using Proposition 4.1, Theorem 4.2 and formal arguments, we can deduce:
(a) For any Artin stack X , Pervnaï.X / is an abelian category, and if X is a scheme,

the functor Pervnaï.X /! Perv.X / mapping P 7! P.X; idX / is an equivalence
of categories with the category Perv.X / discussed in Section 4.1.

(b) If ˆW X ! Y is a 1–morphism of Artin stacks smooth of relative dimension d

then as in Proposition 4.1 there is a natural functor ˆ�naïŒd �W Pervnaï.Y / !

Pervnaï.X /.
(c) The analogue of Theorem 4.2 holds for the categories Pervnaï and pullbacks

ˆ�naïŒd �, taking the Ui ;Uij ;Uijk to be either schemes or stacks.

This ‘naïve’ model of perverse sheaves on Artin stacks follows from the scheme case
in an essentially trivial way, and is sufficient to prove the first part of the main result of
this section, Theorem 4.8 below.

However, for a satisfactory theory of perverse sheaves on Artin stacks, we want more:
we would like the category Perv.X / of perverse sheaves on X to be the heart of a
t –structure on a triangulated category Db

c .X / of ‘constructible complexes’, which may
not be equivalent to Db Perv.X /, and we would like Grothendieck’s “six operations
on sheaves” f �; f !;Rf�;Rf!;RHom;

L

˝ , and Verdier duality operators DX , to act
on these ambient categories Db

c .X /. Other than pullbacks f �; f ! by smooth 1–
morphisms f W X ! Y and operators DX , none of this is obvious using the definition
of perverse sheaves Pervnaï.X / above.
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Thus, the main issue in developing a good theories of perverse sheaves on Artin
stacks X is not defining the categories Perv.X / or Pervnaï.X / themselves, but defin-
ing the categories Db

c .X / and the six operations upon them, and then defining a
perverse t –structure on Db

c .X / with heart Perv.X /. If (a)–(c) above hold for these
Db

c .X /;Perv.X /, it will then be automatic [22, Section 7] that Perv.X /' Pervnaï.X /

for Pervnaï.X / as in Definition 4.6.

Here are the foundational papers on perverse sheaves and D –modules on Artin stacks
known to the authors:

� Laszlo and Olsson [20; 21; 22] generalize the Beilinson–Bernstein–Deligne
theory of perverse sheaves on K–schemes with finite and l –adic coefficients [1]
to Artin stacks. In [22, Section 7] they show that Perv.X / is equivalent to the
category Pervnaï.X / in Definition 4.6.

� Liu and Zheng [24; 25] develop a theory of perverse sheaves on higher Artin
stacks using Lurie’s 1–categories, and show it is equivalent to Laszlo and
Olsson’s version for ordinary Artin stacks.

� Gaitsgory and Rozenblyum [10] construct a theory of crystals on (derived)
schemes and stacks X . For classical schemes X , the categories of crystals
and D –modules on X are equivalent, so the authors argue that D –modules on
(derived) stacks should be defined to be crystals. The six functor formalism for
crystals was not complete at the time of writing.

� In a brief note, for an Artin C–stack X , Paulin [29] proposes definitions of
constructible complexes Db

c .X / over ADC , with its perverse t –structure, and
(for smooth X ) of the derived category Db

rh.X / of D –modules on X with t –
structure, claims the six functor formalism holds, and proves a ‘Riemann–Hilbert’
equivalence of these categories with t –structures.

4.4 The main result

Here is the main result of this section, the analogue of Theorem 4.4 from [3]. Apart
from the material in our previous papers [3; 14] and general properties of perverse
sheaves on Artin stacks, the only extra ingredient is Proposition 4.5.

We state Theorem 4.8 and Corollaries 4.9, 4.10 using Laszlo and Olsson’s l –adic
perverse sheaves on Artin stacks [20; 21; 22], but they would also work for any other
theory of perverse sheaves, or D –modules, or mixed Hodge modules, on Artin stacks,
which has the expected package of properties discussed in Section 4.3.
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Theorem 4.8 Let .X; s/ be an oriented d–critical stack over K (allowing KDC ) with
orientation K

1=2
X ;s

. Fix a theory of perverse sheaves on K–schemes from Section 4.1,
and let Pervnaï.X / be the corresponding category of naïve perverse sheaves on X

from Definition 4.6. Then we may define PX ;s 2 Pervnaï.X / and Verdier duality and
monodromy isomorphisms

†X ;sW PX ;s �!DX .PX ;s/; TX ;sW PX ;s �! PX ;s;

as follows:

(a) If t W T ! X is smooth with T a K–scheme, so that .T; s.T; t// is an alge-
braic d–critical locus with natural orientation K

1=2

T;s.T;t/
as in Lemma 3.17, then

PX ;s.T; t/D P�
T;s.T;t/

in Perv.T /, where P�
T;s.T;t/

is the perverse sheaf on the
oriented algebraic d–critical locus .T; s.T; t// over K given by Theorem 4.4.
Also †X ;s.T; t/D†T;s.T;t/ and TX ;s.T; t/D TT;s.T;t/ .

(b) For each 2–commutative diagram in ArtK

U
u

''

KS
�

T

�
88

t

// X

with T;U K–schemes and �; t;u smooth with � of dimension d , we have

PX ;s.�; �/D�� W �
�Œd �.PX ;s.U;u//D �

�Œd �.P�U;s.U;u//�! PX ;s.T; t/DP�T;s.T;t/;

where �� is as in Proposition 4.5.

If we work with perverse sheaves on K–schemes in the sense of [1] over a base ring A

with either char A > 0 coprime to char K, or A D Zl ;Ql or xQl with l coprime to
char K, then Pervnaï.X /' Perv.X / as in Section 4.3, where Perv.X /�Db

c .X / is the
category of perverse sheaves on X over A defined by Laszlo and Olsson [20; 21; 22].
Thus PX ;s corresponds to {P�

X ;s
2 Perv.X / unique up to canonical isomorphism, and

†X ;s;TX ;s correspond to isomorphisms

{†X ;sW
{P�X ;s �!DX . {P

�
X ;s/;

{TX ;sW
{P�X ;s �!

{P�X ;s in Perv.X /.

The analogue of the above will also hold in any other theory of perverse sheaves or
D –modules on schemes and Artin stacks with the package of properties discussed
in Section 4.3, including the six operations f �; f !;Rf�;Rf!;RHom;

L

˝ , Verdier
duality DX , and descent in the smooth topology as in Theorem 4.2.
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Proof Proposition 4.5(b) implies that the data PX ;s.T; t/;PX ;s.�; �/ in (a), (b) satisfy
Definition 4.6(A)(i). Thus PX ;s is an object of Pervnaï.X /. Similarly, the last part of
Proposition 4.5(a) implies that †X ;s;TX ;s are morphisms in Pervnaï.X /. The last part
is immediate from the discussion of Section 4.3.

Combining Theorems 2.10, 3.18 and 4.8 and Corollary 3.19 yields:

Corollary 4.9 Let K be an algebraically closed field of characteristic zero, .X ; !/ a
�1–shifted symplectic derived Artin K–stack, and X D t0.X/ the associated classical
Artin K–stack. Suppose we are given a square root det.LX /j

1=2
X

.

Then working in l –adic perverse sheaves on stacks [20; 21; 22], we may define a per-
verse sheaf {P�X ;! on X uniquely up to canonical isomorphism, and Verdier duality and
monodromy isomorphisms {†X ;! W

{P�X ;! ! DX . {P
�
X ;!/ and {TX ;! W

{P�X ;! !
{P�X ;! .

These are characterized by the fact that given a diagram

U D Crit.f W U !A1/ V
i

oo
'

//X

such that U is a smooth K–scheme, ' smooth of dimension n, LV =U ' TV =X Œ2�,
'�.!X / � i �.!U / for !U the natural �1–shifted symplectic structure on U D

Crit.f W U !A1/, and '�.det.LX /j
1=2
X
/Š i�.KU /˝ƒ

nTV =X , then '�. {P�
X ;!

/Œn�,
'�.{†�

X ;!
/Œn�, '�.{T�

X ;!
/Œn� are canonically isomorphic to i�.PVU;f /, i�.�U;f /,

i�.�U;f /, for PVU;f ; �U;f ; �U;f as in Section 4.1.

Corollary 4.10 Let Y be a Calabi–Yau 3–fold over an algebraically closed field K
of characteristic zero, and M a classical moduli K–stack of coherent sheaves F in
coh.Y /, or of complexes F� in Db coh.Y / with Ext<0.F�;F�/D 0, with obstruction
theory �W E�! LM . Suppose we are given a square root det.E�/1=2 .

Then working in l –adic perverse sheaves on stacks [20; 21; 22], we may define a natural
perverse sheaf {P�M 2 Perv.M/, and Verdier duality and monodromy isomorphisms
{†MW {P

�
M ! DM. {P

�
M/ and {TMW {P

�
M !

{P�M . The pointwise Euler characteristic
of {P�M is the Behrend function �M of M from Joyce and Song [15, Section 4], so
that {P�M is in effect a categorification of the Donaldson–Thomas theory of M.

Example 4.11 Suppose an algebraic K–group G acts on a K–scheme T with action
�W G�T !T , and write X for the quotient Artin K–stack ŒT=G�, and t W T ! ŒT=G�

for the natural quotient 1–morphism.

As in Example 3.14, there is a one-to-one correspondence between d–critical structures s

on X D ŒT=G� and G –invariant d–critical structures s0 on T , such that s0 D s.T; t/.
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Also, from Lemma 3.17 we see that there is a one-to-one correspondence between
orientations K

1=2
X ;s

for .X; s/, and G –invariant orientations K
1=2
T;s0

for .T; s0/, given by

K
1=2
T;s0
DK

1=2
X ;s

.T red; t red/˝ .ƒ>LT=X /jT red :

Choose such s; s0;K
1=2
X ;s

;K
1=2
T;s0

, so that Theorems 4.4 and 4.8 give perverse sheaves
P�

T;s0
; {P�

X ;s
on T;X . We would like to relate the hypercohomologies H�.T;P�

T;s0
/

and H�.X; {P�
X ;s
/. We have t�. {P�

X ;s
/Œdim G�Š P�

T;s0
and thus

Rqt�P
�
T;s0 ŠRqt�t

�. {P�X ;s/Œdim G�Š {P�X ;s˝AX
Rqt�.AT /Œdim G�;

where AT is the constant sheaf on T with fibre the base ring A. Therefore, the Leray–
Serre spectral sequence for the fibration t W T !X with fibre G , twisted by {P�

X ;s
, can

be interpreted as a spectral sequence

E�;� H)H�.T;P�T;s0/ with E
p;q
2
DHp.X; {P�X ;s˝AX

Rqt�.AT /Œdim G�/;

where Rqt�.AT /Œdim G� is locally constant on X with fibre H q�dim G.G;A/.

We also have a projection � W X D ŒT=G�! Œ�=G� for �D Spec K with fibre T . The
Leray–Serre spectral sequence for � gives a spectral sequence

E�;� H)H�.X; {P�X ;s/ with E
p;q
2
DHp.Œ�=G�;HqCdim G.T;P�T;s0//:

If G is finite we can consider the H�.T;P�
T;s0

/ as G –modules and H�.Œ�=G�;�/ as
group cohomology H�grp.G;�/, giving a spectral sequence

H p
grp.G;H

q.T;P�T;s0//H)HpCq.X; {P�X ;s/:

Example 4.12 Suppose that .X ; !X / is an oriented �1–shifted symplectic derived
Artin K–stack, and a finite group G acts on X preserving !X and the orientation.
Let Y be the derived Artin K–stack ŒX=G� equipped with the natural quotient �1–
shifted symplectic structure !Y and orientation, and write f W X ! Y for the étale
quotient morphism of derived Artin K–stacks. Then we have f �.!Y / � !X and
f �. {P�

Y ;!Y
/Š {P�

X ;!X
, and therefore

Rqf�P
�
X ;!X

ŠRqf�f
�. {P�Y ;!Y

/Š {P�Y ;!Y
˝AY

Rqf�.AX /:

Therefore, the Leray–Serre spectral sequence for the fibration f W X!Y with fibre G

can be interpreted as a spectral sequence

E�;� H)H�.X; {P�X ;!X
/ with E

p;q
2
DHp.Y; {P�Y ;!Y

˝AY
Rqf�.AX //:

Since G is finite, only q D 0 contributes and we get isomorphisms

Hp.X; {P�X ;!X
/ŠHp.Y; {P�Y ;!Y

˝AY
f�.AX //:
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We also have a projection �W Y D ŒX=G�! Œ�=G� for �D Spec K with fibre X . The
Leray–Serre spectral sequence for � gives a spectral sequence

E�;� H)H�.Y; {P�Y ;!Y
/ with E

p;q
2
DHp.Œ�=G�;Hq.X; {P�X ;!X

//:

We consider H�.X; {P�
X ;!X

/ as G–modules and observe that H�.Œ�=G�;�/ is the
same as group cohomology H�grp.G;�/, giving a spectral sequence

H p
grp.G;H

q.X; {P�X ;!X
//H)H�.Y; {P�Y ;!Y

/:

5 Motives on d–critical stacks

We now extend the results of [5] to d–critical stacks. Our main result Theorem 5.14 in
Section 5.4, proved in Section 5.5, states that an oriented d–critical stack .X; s/ which
is of finite type and locally a global quotient carries a natural motive in a certain ring
of motives SMX

st; y�, defined in Section 5.3.

In this section, K is an algebraically closed field of characteristic zero, and all K–
schemes and Artin K–stacks will be assumed to be of finite type unless we explicitly
say otherwise. From after Proposition 5.10, all Artin K–stacks will also be assumed to
have affine geometric stabilizers.

5.1 Rings of motives on K–schemes

We begin by defining rings of motives K0.SchX /;MX ;K
y�
0
.SchX /;M

y�
X

for a K–
scheme X . Some references are Denef and Loeser [6], Looijenga [26], and Joyce [13].
Our notation follows Bussi, Joyce and Meinhardt [5].

Definition 5.1 Let X be a K–scheme (always assumed of finite type). Consider
pairs .R; �/, where R is a K–scheme and �W R!X is a morphism. Call two pairs
.R; �/, .R0; �0/ equivalent if there is an isomorphism �W R ! R0 with � D �0 ı �.
Write ŒR; �� for the equivalence class of .R; �/. If .R; �/ is a pair and S is a closed
K–subscheme of R then .S; �jS /, .R nS; �jRnS / are pairs of the same kind. Define
the Grothendieck ring K0.SchX / of the category SchX of K–schemes over X to be
the abelian group generated by equivalence classes ŒR; ��, with the relation that for
each closed K–subscheme S of R we have

(61) ŒR; ��D ŒS; �jS �C ŒR nS; �jRnS �:

Define a product ‘ � ’ on K0.SchX / by

(62) ŒR; �� � ŒS; � �D ŒR��;X ;� S; � ı�R �:
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This is compatible with (61), and extends to a biadditive, commutative, associative prod-
uct � W K0.SchX /�K0.SchX /!K0.SchX /. It makes K0.SchX / into a commutative
ring, with identity 1X D ŒX; idX �.

Define LD ŒA1
�X; �X � in K0.SchX /. We denote by

(63) MX DK0.SchX /ŒL
�1�

the ring obtained from K0.SchX / by inverting L. When X D Spec K we write
K0.SchK/;MK instead of K0.SchX /;MX .

The external tensor products �W K0.SchX /�K0.SchY /!K0.SchX�Y /, �WMX �

MY !MX�Y are

(64)
�X

i2I

ci ŒRi ; �i �

�
�
�X

j2J

dj ŒSj ; �j �

�
D

X
i2I; j2J

cidj ŒRi �Sj ; �i � �j �;

for finite I;J . They are biadditive, commutative, and associative. Taking Y D Spec K,
we see that � makes K0.SchX /;MX into modules over K0.SchK/;MK .

Let �W X!Y be a morphism of K–schemes. Define the pushforwards ��W K0.SchX /!

K0.SchY / and ��WMX !MY by

(65) ��W

nX
iD1

ci ŒRi ; �i � 7�!

nX
iD1

ci ŒRi ; � ı �i �:

Define pullbacks ��W K0.SchY /!K0.SchX / and ��WMY !MX by

(66) ��W

nX
iD1

ci ŒRi ; �i � 7�!

nX
iD1

ci ŒRi ��i ;Y;� X; �X �:

Pushforwards and pullbacks have the obvious functoriality properties. As in [13, Theo-
rem 3.5], pushforwards and pullbacks commute in Cartesian squares, that is, if

(67)

W
�
//

�
��

Y

 
��

X
�
// Z

is a Cartesian square
in the category SchK

then the square

MW
��

// MY

MX

��
//

��

OO

MZ

 �

OO

commutes and the analogue holds for K0.SchW /; : : : ;K0.SchZ /.

Definition 5.2 For nD 1; 2; : : :, write �n for the group of all nth roots of unity in K,
which is assumed algebraically closed of characteristic zero, so that �n ŠZn . The �n

form a projective system, with respect to the maps �nd ! �n mapping x 7! xd .
Define the group y� to be the projective limit of the �n .
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Let R be a K–scheme. A good �n –action on R is a group action rnW �n �R!R

such that such that each orbit is contained in an open affine subscheme of R and
� ı rn. /Š � for all  2�n . A good y�–action on R is a group action yr W y��R!R

which factors through a good �n –action, for some n. We will write y�W y��R!R for
the trivial y�–action on R, which is automatically good.

Consider triples .R; �; yr/, where R is a K–scheme, �W R! X a morphism, and
yr W y� �R! R a good y�–action on R. Call two such triples .R; �; yr/; .R0; �0; yr 0/
equivalent if there exists a y�–equivariant isomorphism �W R! R0 with � D �0 ı �.
Write ŒR; �; yr � for the equivalence class of .R; �; yr/.

The monodromic Grothendieck group K
y�
0
.SchX / is the abelian group generated by

such equivalence classes ŒR; �; yr �, with the relations:

(i) For each closed y�–invariant K–subscheme S of R, we have

ŒR; �; yr �D ŒS; �jS ; yr jS �C ŒR nS; �jRnS ; yr jRnS �:

(ii) Given ŒR1; �1; yr1�; ŒR2; �2; yr2� with � W R2!R1 a y�–equivariant vector bundle
of rank d over R1 and �2 D �1 ı� , then

ŒR2; �2�D ŒR1 �Ad ; �1 ı�; yr1 �y� �:

There is a natural biadditive product ‘ � ’ on K
y�
0
.SchX / given by

(68) ŒR; �; yr � � ŒS; �; ys�D ŒR��;X ;� S; � ı�R; yr �ys�;

making K
y�
0
.SchX / into a commutative ring, with identity 1X D ŒX; idX ;y� �.

Define LD ŒA1
�X; �X ;y� � in K

y�
0
.SchX /. We denote by

My�
X
DK

y�
0
.SchX /ŒL

�1�

the ring obtained from K
y�
0
.SchX / by inverting L. When X D Spec K we write

K
y�
0
.SchK/;M

y�
K instead of K

y�
0
.SchX /;M

y�
X

.

The external tensor products �W K y�
0
.SchX /�K

y�
0
.SchY /!K

y�
0
.SchX�Y /, �WMy�

X
�

My�
Y
!My�

X�Y
are

(69)
�X

i2I

ci ŒRi ; �i ; yri �

�
�
�X

j2J

dj ŒSj ; �j ; ysj �

�
D

X
i2I; j2J

cidj ŒRi �Sj ; �i � �j ; yri �ysj �;

for finite I;J . Pushforwards �� and pullbacks �� are defined for K
y�
0
.SchX /;M

y�
X

in the obvious way, and the analogue of (67) holds.
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There are natural morphisms of commutative rings

(70)
iX W K0.SchX / �!K

y�
0
.SchX /; iX WMX �!My�

X
;

…X W K
y�
0
.SchX / �!K0.SchX /; …X WM

y�
X
�!MX ;

given by iX W ŒR; �� 7! ŒR; �;y� � and …X W ŒR; �; yr � 7! ŒR; ��.

Following Looijenga [26, Section 7] and Denef and Loeser [6, Section 5], we introduce
a second multiplication ‘ˇ’ on K y�

0
.SchX /;My�

X
(written ‘�’ in [26; 6]).

Definition 5.3 Let X be a K–scheme and ŒR; �; yr � and ŒS; �; ys� be generators of
K
y�
0
.SchX /. Then there exists n > 1 such that the y�–actions yr ; ys on R;S factor

through �n –actions rn; sn . Define Jn to be the Fermat curve

Jn D f.t;u/ 2 .A
1
n f0g/2 W tn

Cun
D 1g:

Let �n ��n act on Jn � .R�X S/ by

.˛; ˛0/ � ..t;u/; .v; w//D ..˛ � t; ˛0 �u/; .rn.˛/.v/; sn.˛
0/.w///:

Write Jn.R;S/D .Jn� .R�X S//=.�n��n/ for the quotient K–scheme, and define
a �n –action �n on Jn.R;S/ by

�n.˛/..t;u/; v; w/.�n ��n/D ..˛ � t; ˛ �u/; v; w/.�n ��n/:

Let y� be the induced good y�–action on Jn.R;S/, and set

(71) ŒR; �; yr �ˇ ŒS; �; ys�D .L� 1/ � Œ.R�X S/=�n;y� �� ŒJn.R;S/; y��

in K
y�
0
.SchX / and My�

X
. This turns out to be independent of n, and defines commutative,

associative products ˇ on K
y�
0
.SchX / and My�

X
.

Let X;Y be K–schemes. As for Definitions 5.1 and 5.2, we define products

�W K y�
0
.SchX /�K

y�
0
.SchY /!K

y�
0
.SchX�Y /; �WMy�

X
�My�

X
!My�

X�Y

by following the definition above for ˇ, but taking products R�S rather than fibre
products R�X S . These � are commutative and associative. Taking Y D Spec K,
we see that � makes K

y�
0
.SchX /;M

y�
X

into modules over K
y�
0
.SchK/;M

y�
K .

For generators ŒR; �; yr � and ŒS; �;y� �D iX .ŒS; � �/ in K y�
0
.SchX / or My�

X
where ŒS; �;y� �

has trivial y�–action y�, one can show that

ŒR; �; yr �ˇ ŒS; �;y� �D ŒR; �; yr � � ŒS; �;y� �:

Thus iX is a ring morphism

.K0.SchX /; � /! .K y�0 .SchX /;ˇ/ and .MX ; � /! .My�
X ;ˇ/:

Geometry & Topology, Volume 19 (2015)



1342 O Ben-Bassat, C Brav, V Bussi and D Joyce

However, …X is not a ring morphism

.K y�0 .SchX /;ˇ/! .K0.SchX /; � / or .My�
X ;ˇ/! .MX ; � /:

Since LD ŒA1
�X; �X ;y� � this implies that

M �LDM ˇL

for all M in K y�
0
.SchX /;My�

X
.

Definition 5.4 Define the element L1=2 in K
y�
0
.SchX / and My�

X
by

(72) L1=2
D ŒX; idX ;y� �� ŒX ��2; yr �;

where ŒX; idX ;y� � with trivial y�–action y� is the identity 1X in K
y�
0
.SchX /;M

y�
X

, and
X ��2 DX � f1;�1g is two copies of X with nontrivial y�–action yr induced by the
left action of �2 on itself, exchanging the two copies of X . Applying (71) with nD 2,
we can show that L1=2

ˇL1=2
D L. Thus, L1=2 in (72) is a square root for L in the

rings .K y�
0
.SchX /;ˇ/; .M

y�
X
;ˇ/. Note that L1=2

�L1=2
¤ L.

Equivalently, we could have defined

(73) L1=2
X
D ŒX; idX ;y� ��L1=2

K 2K
y�
0
.SchX /;

where L1=2
K 2K

y�
0
.SchK/. We can now define

Ln=2
2K

y�
0
.SchX / for n> 0 and

Ln=2
2My�

X
for n 2 Z

in the obvious way, such that Lm=2
ˇLn=2

D L.mCn/=2 .

Next, following [5, Section 2.5], which was motivated by ideas in Kontsevich and
Soibelman [17, Section 4.5], we define principal Z=2Z–bundles P !X , associated
motives ‡.P /, and a quotient ring of motives SM y�

X in which ‡.P ˝Z=2Z Q/ D

‡.P /ˇ‡.Q/ for all P;Q.

Definition 5.5 Let X be a K–scheme. A principal Z=2Z–bundle P!X is a proper,
surjective, étale morphism of K–schemes � W P !X together with a free involution
� W P ! P , such that the orbits of Z=2Z D f1; �g are the fibres of � . The trivial
Z=2Z–bundle is �X W X � Z=2Z ! X . We will use the ideas of isomorphism of
principal bundles �W P ! Q, section sW X ! P , tensor product P ˝Z=2Z Q, and
pullback f �.P /! Y under a 1–morphism of stacks f W Y ! X , all of which are
defined in the obvious ways.

Geometry & Topology, Volume 19 (2015)



A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks 1343

Write .Z=2Z/.X / for the abelian group of isomorphism classes ŒP � of principal Z=2Z–
bundles P!X , with multiplication ŒP � � ŒQ�D ŒP˝Z=2Z Q� and identity ŒX �Z=2Z�.
Since P ˝Z=2Z P Š X �Z=2Z for each P ! X , each element of .Z=2Z/.X / is
self-inverse, and has order 1 or 2.

If � W P !X is a principal Z=2Z–bundle over X , define a motive

‡.P /D L�1=2
ˇ .ŒX; id;y� �� ŒP; �; yr �/ 2My�

X
;

where yr is the y�–action on P induced by the �2 –action on P from the principal
Z=2Z–bundle structure, as �2 Š Z=2Z. If P DX �Z=2Z is trivial then

‡.X �Z=2Z/D L�1=2
ˇ .ŒX; id;y� �� ŒX �Z=2Z; �; yr �/

D L�1=2
ˇL1=2

ˇ ŒX; id;y� �D ŒX; id;y� �;

using (72). Note that ŒX; id;y� � is the identity in the ring My�
X

.

As ‡.P / only depends on P up to isomorphism, ‡ factors via .Z=2Z/.X /, and we
may consider ‡ as a map .Z=2Z/.X /!My�

X
.

For our applications, we want ‡ W .Z=2Z/.X /!My�
X

to be a group morphism with
respect to the multiplication ˇ on My�

X
, but we cannot prove that it is. Our solution is to

pass to a quotient ring SMX
y� of My�

X
such that the induced map ‡ W .Z=2Z/.X /! SMX

y�

is a group morphism. If we simply defined SMX
y� to be the quotient ring of My�

X
by the

relations
‡.P ˝Z=2Z Q/�‡.P /ˇ‡.Q/D 0

for all ŒP �; ŒQ� in .Z=2Z/.X / then pushforwards ��W SMX
y�
! SMY

y� would not be defined
for general �W X ! Y . So we impose a more complicated relation.

For each K–scheme Y , define I y�
Y

to be the ideal in the commutative ring .My�
Y
;ˇ/ gen-

erated by elements ��.‡.P˝Z=2Z Q/�‡.P /ˇ‡.Q// for all K–scheme morphisms
�W X ! Y and principal Z=2Z–bundles P;Q ! X , and define SMY

y�
DMy�

Y
=I y�

Y

to be the quotient, as a commutative ring with multiplication ‘ˇ’, with projection
…y�

Y
WMy�

Y
! SMY

y�. Kontsevich and Soibelman [17, Section 4.5] introduce a relation in
their motivic rings which has a similar effect.

Note that in SMY
y� we do not have the second multiplication ‘ � ’, since we do not require

I y�
Y

to be an ideal in .My�
Y
; � /. Also

� and …Y WMy�
Y !MY

on My�
Y

do not descend to SM y�
Y . Apart from this, all the structures on My�

Y
above

descend to SMY
y�: operations ˇ and �, pushforwards �� and pullbacks �� , and
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elements L;L1=2; ‡.P /. By definition, SMX
y� has the property that

‡.P ˝Z=2Z Q/D ‡.P /ˇ‡.Q/ in SM y�
X

for all principal Z=2Z–bundles P;Q!X .

5.2 Motivic vanishing cycles, and d–critical loci

Following Denef and Loeser [6], we define motivic nearby cycles, motivic Milnor
fibres, and motivic vanishing cycles:

Definition 5.6 Let U be a smooth K–scheme and f W U !A1 a regular function, and
set U0D f

�1.0/�U . Then Denef and Loeser [6, Section 3.5] and Looijenga [26, Sec-
tion 5] define the motivic nearby cycle of f , an element MFmot

U;f
of My�

U0
or SMU0

y� . It
has an intrinsic definition using arc spaces and the motivic zeta function, which we
will not explain, but we will give a formula [6, Section 3.3; 26, Section 5] for MFmot

U;f

involving choosing a resolution of f .

If f D 0 then MFmot
U;f
D 0, so suppose f is not constant. By Hironaka’s theorem [12]

we can choose a resolution . zU ; �/ of f . That is, zU is a smooth K–scheme and
� W zU !U a proper morphism, such that �j zUn��1.U0/W

zU n��1.U0/!U nU0 is an
isomorphism, and ��1.U0/

red has only normal crossings as a K–subscheme of zU .

Write Ei , i 2 J for the irreducible components of ��1.U0/. For each i 2 J , denote
by Ni the multiplicity of Ei in the divisor of f ı� on zU , and by �i�1 the multiplicity
of Ei in the divisor of ��.dx/, where dx is a local non vanishing volume form at any
point of �.Ei/. For I � J , we consider the smooth K–scheme Eı

I
D .

T
i2I Ei/ n

.
S

j2J nI Ej /.

Let mI D gcd.Ni/i2I . We introduce an unramified Galois cover zEı
I

of Eı
I

, with
Galois group �mI

, as follows. Let zU 0 be an affine Zariski open subset of zU , such that,
on zU 0 , f ı� D uvmI , with uW zU 0!A1

n f0g and vW zU 0!A1 . Then the restriction
of zEı

I
above Eı

I
\ zU 0 , denoted by zEı

I
\ zU 0 , is defined as

zEıI \
zU 0 D f.z; w/ 2A1

� .EıI \
zU 0/ W zmI D u.w/�1

g:

Gluing together the covers zEı
I
\ zU 0 in the obvious way, we obtain the cover zEı

I
of Eı

I

which has a natural �mI
–action �I , obtained by multiplying the z–coordinate by

elements of �mI
. This �mI

–action on zEı
I

induces a y�–action y�I on zEı
I

. Then

(74) MFmot
U;f D

X
∅¤I�J

.1�L/jI j�1Œ zEıI ; �U0
; y�I � in My�

U0
.
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It is independent of the choice of resolution . zU ; �/. The fibre MFmot
U;f
jx at each x 2U0

is called the motivic Milnor fibre of f at x .

Now let X D Crit.f /� U , as a closed K–subscheme of U . Since f is constant on
the reduced scheme X red , f .X / is finite, and we may write X D

`
c2f .X /Xc , where

Xc �X is the open and closed K–subscheme with X red
c D f j

�1
X red.c/.

Consider the restriction MFmot
U;f jU0nX0

in My�
U0nX0

or SM y�
U0nX0

. We can choose . zU ; �/
above with

�j zUn��1.X0/
W zU n��1.X0/! U nX0

an isomorphism. Write D1; : : : ;Dk for the irreducible components of ��1.U0nX0/Š

U0 nX0 . They are disjoint as ��1.U0 nX0/ is nonsingular. The closures xD1; : : : ; xDk

(which need not be disjoint) are among the divisors Ei , so we write xDa D Eia
for

aD 1; : : : ; k , with fi1; : : : ; ikg � I . Clearly Nia
D �ia

D 1 for aD 1; : : : ; k .

Then in (74) the only nonzero contributions to MFmot
U;f
jU0nX0

are from I D fiag for
a D 1; : : : ; k , with zEı

fiag
Š Eı

fiag
Š Da , and the y�–action on zEı

fiag
is trivial as it

factors through the action of �1 D f1g. Hence

MFmot
U;f jU0nX0

D

kX
aD1

Œ zEı
fiag
; �U0nX0

;y� �D

kX
aD1

ŒDa; �U0nX0
;y� �D ŒU0 nX0; idU0nX0

;y� �:

Therefore ŒU0; idU0
;y� ��MFmot

U;f
is supported on X0 � U0 , and by restricting to X0

we regard it as an element of My�
X0

or SM y�
X0

.

Define the motivic vanishing cycle MFmot;�
U;f

of f in My�
X

or SM y�
X by

(75) MFmot;�
U;f
jXc
D L� dim U=2

ˇ .ŒUc ; idUc
;y� ��MFmot

U;f�c/jXc

for each c 2 f .X /, where ˇ and L� dim U=2 are as in Definitions 5.3 and 5.4.

Here is [5, Theorem 5.10], which we will generalize to stacks in Theorem 5.14.

Theorem 5.7 Let .X; s/ be an algebraic d–critical locus with orientation K
1=2
X ;s

, for X

of finite type. Then there exists a unique motive MFX ;s 2 SM
y�
X with the property that

if .R;U; f; i/ is a critical chart on .X; s/, then

(76) MFX ;sjR D i�.MFmot;�
U;f

/ˇ‡.QR;U;f;i/ in SM y�
R ,

where QR;U;f;i!R is the principal Z=2Z–bundle parametrizing local isomorphisms

˛W K
1=2
X ;s
jRred ! i�.KU /jRred

with ˛˝˛ D �R;U;f;i , for �R;U;f;i as in (22).
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We prove a result on smooth pullbacks and pushforwards of the motives MFX ;s of
Theorem 5.7, a motivic analogue of Proposition 4.5(a).

Proposition 5.8 Let �W .X; s/! .Y; t/ be a morphism of (finite-type) algebraic d–
critical loci in the sense of Section 3.1, and suppose �W X ! Y is smooth of relative
dimension n. Let K

1=2
Y;t

be an orientation for .Y; t/, so Corollary 3.8 defines an induced
orientation K

1=2
X ;s

for .X; s/. Theorem 5.7 now defines motives MFX ;s;MFY;t on X;Y .
These are related by

��.MFY;t /D Ln=2
ˇMFX ;s 2 SM

y�
X ;(77)

��.MFX ;s/D L�n=2
ˇMFY;t ˇ ŒX; �;y� � 2 SM

y�
Y :(78)

Proof If x 2X with �.x/D y 2 Y then the proof of Proposition 3.2 above in [14]
shows we may choose critical charts .R;U; f; i/; .S;V;g; j / on .X; s/; .Y; t/ with
x 2R, y 2 �.R/� S of minimal dimensions dim U D dim TxX , dim V D dim TyY ,
and ˆW U ! V smooth of relative dimension n with f D g ıˆ and ˆ ı i D j ı� .

Let � W zV !V be an embedded resolution of singularities of g . Then zU WDU�ˆ;V;� zV

is an embedded resolution of singularities of f , since ˆ is smooth and f D g ıˆ.
As in Definition 5.6, let Fi for i 2 J be the irreducible components of ��1.V0/, so
that ��1.V0/ D

S
i2J Fi , with multiplicities Ni in the divisor of g ı � on zV , and

�i�1 in the divisor of ��.dx/, and define Fı
I
D .

T
i2I Fi/n.

S
j2J nI Fj / and covers

zFı
I
! Fı

I
for all I � J .

Define Ei D U �ˆ;V;�jFi
Fi � �

�1.U0/� zU . Then ��1.U0/D
S

i2J Ei . The Ei

need not be irreducible, or nonempty, but this is not important. Neglecting this, we can
treat the Ei , i 2 J as the components for . zU ; �/ in Definition 5.6, and then they have
the same multiplicities Ni ; �i as the Fi for . zV ; �/, and the Eı

I
; zEı

I
for I � J defined

in Definition 5.6 satisfy Eı
I
Š U �V Fı

I
and zEı

I
Š U �V

zFı
I

. Thus we have

MFmot
U;f D

X
∅¤I�J

.1�L/jI j�1Œ zEıI ; �U0
; y�I �

D

X
∅¤I�J

.1�L/jI j�1Œ zFıI ��V0
;V0;ˆjU0

U0; �U0
; y�I �

Dˆj�U0

� X
∅¤I�J

.1�L/jI j�1Œ zFıI ; �V0
; y�I �

�
Dˆj�U0

.MFmot
V;g/:

So from (75) we deduce that

(79) ˆj�Crit.f /.MFmot;�
V;g

/D Ln=2
ˇMFmot;�

U;f
;
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using

ˆj�Uc
.ŒVc ; idVc

;y� �/D ŒUc ; idUc
;y� �;

where the factor Ln=2 is to convert the factor L� dim U=2 in MFmot;�
U;f

to the factor
L� dim V =2 in MFmot;�

V;g
.

Combining (79) with (76) for .X; s/; .R;U; f; i/ and the pullback of (76) for .Y; t/,
.S;V;g; j / by �jRW R!S , and noting that ��ıj �D i�ıˆj�Crit.f / since j ı�Dˆıi ,
we deduce the restriction of (77) to R�X . As we can cover X by such open R, this
proves (77). Equation (78) follows by applying �� and noting that �� ı ��.M / D

M ˇ ŒX; �;y� � for all �W X ! Y and M 2 SM y�
Y .

5.3 Rings of motives over Artin stacks

We now generalize the material of Section 5.1 to Artin stacks. Our definitions are
new, but very similar to work by Joyce [13] on ‘stack functions’, and Kontsevich
and Soibelman [18, Sections 4.1– 4.2]. As in [13], we restrict our attention to Artin
K–stacks X (always assumed of finite type) with affine geometric stabilizers. In
Sections 5.4–5.5 we will restrict further, to stacks which are locally a global quotient.

Definition 5.9 An Artin K–stack X has affine geometric stabilizers if the stabilizer
group IsoX .x/ is an affine algebraic group for all points x 2X .

An Artin K–stack X is locally a global quotient if we may cover X by Zariski open
K–substacks Y � X equivalent to global quotients ŒS=GL.n;K/�, where S is a
K–scheme with a GL.n;K/–action.

If X is locally a global quotient then it has affine geometric stabilizers, since the
stabilizer groups of ŒS=GL.n;K/� are closed K–subgroups of GL.n;K/, and so are
affine. The authors do not know any example of an Artin K–stack with affine geometric
stabilizers which is not locally a global quotient.

Deligne–Mumford stacks have affine geometric stabilizers, and are locally a global
quotient if their stabilizers are generically trivial. If M is a moduli stack of coherent
sheaves F on a projective scheme Y , then using Quot-schemes one can show that M
is locally a global quotient. If M is a moduli stack of complexes F� in Db coh.Y /
with Ext<0.F�;F�/D 0 then M has affine geometric stabilizers, since IsoM.F

�/ is
the invertible elements in the finite-dimensional algebra Hom.F�;F�/, and so is affine.
We require affine geometric stabilizers to use a result of Kresch [19, Proposition 3.5.9]:
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Proposition 5.10 (Kresch) Let X be a (finite-type) Artin K–stack with affine geo-
metric stabilizers. Then X admits a stratification X D

`
i2I Xi , for I a finite set and

Xi � X a locally closed K–substack, such that Xi is equivalent to a global quotient
stack ŒSi=GL.ni ;K/� for each i 2 I , where Si is a (finite-type) K–scheme with an
action of GL.ni ;K/. Conversely, any Artin K–stack X admitting such a stratification
has affine geometric stabilizers.

For the rest of this paper, all Artin K–stacks X are assumed to have affine geometric
stabilizers. Here are the analogues of Definitions 5.1 and 5.2:

Definition 5.11 Let X be an Artin K–stack (always assumed to be of finite type,
with affine geometric stabilizers). Consider pairs .R; �/, where R is a K–scheme and
�W R! X a 1–morphism. Call two pairs .R; �/, .R0; �0/ equivalent if there exists
an isomorphism �W R! R0 such that �0 ı � and � are 2–isomorphic 1–morphisms
R!X . Write ŒR; �� for the equivalence class of .R; �/. Define the Grothendieck ring
K0.SchX / of the category of K–schemes over X to be the abelian group generated
by equivalence classes ŒR; ��, such that as for (61) for each closed K–subscheme S

of R we have
ŒR; ��D ŒS; �jS �C ŒR nS; �jRnS �:

When X D Spec K we write K0.SchK/ instead of K0.SchX /.

Define a biadditive, commutative, associative product ‘ � ’ on K0.SchX / as in (62).
It makes K0.SchX / into a commutative ring, in general without identity. If X is a
K–scheme K0.SchX / is as in Definition 5.1, with identity ŒX; idX �.

For Artin K–stacks X;Y , define a biadditive, commutative, associative external tensor
product �W K0.SchX /�K0.SchY /!K0.SchX�Y / by (64). Taking Y D Spec K we
see that � makes K0.SchX / into a module over K0.SchK/.

Next we will define a stack analogue Mst
X

of the motivic ring MX of (63) for K–
schemes X . Since we have no identity in K0.SchX / if X is not a scheme, and we
have not defined a Tate motive L in K0.SchX /, the analogue of (63) does not make
sense. Instead, we use the K0.SchK/–module structure, and define

(80) Mst
X DK0.SchX /˝K0.SchK/K0.SchK/ŒL

�1; .Lk
� 1/�1; k D 1; 2; : : :�;

where L 2K0.SchK/ is as in Definition 5.1. The product ‘ � ’ descends to Mst
X

. When
X D Spec K we write Mst

K instead of Mst
X

.

Note that for X a K–scheme, Mst
X

is not isomorphic to MX in (63), since we invert
Lk
�1 in Mst

X
but not in MX . There is a natural projection MX !Mst

X
. The reason
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we invert Lk
� 1 as well as L is that the motive of GL.n;K/ in MK is

ŒGL.n;K/� WD ŒGL.n;K/; �Spec K�D Ln.n�1/=2
nY

kD1

.Lk
� 1/;

so that ŒGL.n;K/� is invertible in Mst
K .

Let X be an Artin K–stack (as usual of finite type, with affine geometric stabiliz-
ers). Then Proposition 5.10 gives a finite stratification X D

`
i2I Xi with Xi '

ŒSi=GL.ni ;K/�. Write �i W Si ! X for the composition of 1–morphisms Si !

ŒSi=GL.ni ;K/�
�

�!Xi ,!X . Define elements 1X ;L 2Mst
X

by

1X D

X
i2I

ŒGL.ni ;K/�
�1� ŒSi ; �i �;

LD
X
i2I

ŒGL.ni ;K/�
�1� ŒA1

�Si ; �i ı�Si
�;

(81)

where ŒGL.ni ;K/��1 2Mst
K exists as above. It is easy to show that these 1X ;L are

independent of the choice of I;Xi ;Si ; ni , and 1X is the identity in .Mst
X
; � /.

Let �W X ! Y be a 1–morphism of Artin K–stacks. Define the pushforwards
��W K0.SchX /!K0.SchY / and ��WMst

X
!Mst

Y
by (65). If � is representable in K–

schemes we may also define pullbacks ��W K0.SchY /!K0.SchX / and ��WMst
Y
!

Mst
X

by (66). (Here � is representable in K–schemes if X ��;Y;u U is a K–scheme
for all uW U ! Y with U a K–scheme.) But if � is not representable in K–schemes
then Ri ��i ;Y;� X in (66) may not be a K–scheme, so (66) does not make sense.

However, for general 1–morphisms �W X!Y we can still define a pullback morphism
��WMst

Y
!Mst

X
as follows. Proposition 5.10 gives a finite stratification X D

`
i2I Xi

with Xi ' ŒSi=GL.ni ;K/�. Let �i W Si!X be as above, and define a group morphism
��WMst

Y
!Mst

X
by

(82) ��W

nX
jD1

cj ŒRj ; �j � 7�!

nX
jD1

cj

X
i2I

ŒGL.ni ;K/�
�1� ŒRj ��j ;Y;�ı�i

Si ; �X �:

If � is representable in K–schemes, this is the result of multiplying (66) by equation
(81) for 1X , and so the two definitions of �� agree. As for 1X ;L one can show
that �� is independent of the choice of I;Xi ;Si ; ni , and that pullbacks �� have the
usual functoriality properties. As in [13, Theorem 3.5], the analogue of (67) holds for
2–Cartesian squares in Artin K–stacks.

Definition 5.12 Let X be an Artin K–stack. Consider triples .R; �; yr/, where R is
a K–scheme, �W R!X a 1–morphism, and yr W y��R!R a good y�–action on R,
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in the sense of Definition 5.2. Call two such triples .R; �; yr/; .R0; �0; yr 0/ equivalent if
there exists a y�–equivariant isomorphism �W R!R0 and a 2–isomorphism �Š �0 ı �.
Write ŒR; �; yr � for the equivalence class of .R; �; yr/.

The monodromic Grothendieck group K
y�
0
.SchX / is the abelian group generated by

such equivalence classes ŒR; �; yr �, with relations (i), (ii) as in Definition 5.2, except
that we require a 2–isomorphism �2 Š �1 ı� rather than equality �2 D �1 ı� in (ii).
Define a biadditive, commutative, associative product ‘ � ’ on K y�

0
.SchX / as in (68).

As for K0.SchX / in Definition 5.11, this makes K y�
0
.SchX / into a commutative ring,

in general without identity. If X is a K–scheme K y�
0
.SchX / is as in Definition 5.2,

with identity ŒX; idX ;y� �.

For Artin K–stacks X;Y , define a biadditive, commutative, associative external tensor
product

�W K y�0 .SchX /�K y�0 .SchY /!K y�0 .SchX�Y /

by (69). Taking Y D Spec K, this makes K y�
0
.SchX / into a module over K y�

0
.SchK/.

As for (80), using the K
y�
0
.SchK/–module structure on K

y�
0
.SchX / define

Mst;y�
X
DK

y�
0
.SchX /˝K

y�

0
.SchK/

K
y�
0
.SchK/ŒL

�1; .Lk
� 1/�1; k D 1; 2; : : :�:

The product ‘ � ’ descends to Mst;y�
X

. When X D Spec K we write Mst;y�
K instead

of Mst;y�
X

. Using the data Xi ;Si ; ni of Proposition 5.10, as in (81) define elements
1X ;L 2M

st;y�
X

by

1X D

X
i2I

ŒGL.ni ;K/�
�1� ŒSi ; �i ;y� �;

LD
X
i2I

ŒGL.ni ;K/�
�1� ŒA1

�Si ; �i ı�Si
;y� �:

(83)

These are independent of choices, and 1X is the identity in Mst;y�
X

.

Let �W X ! Y be a 1–morphism of Artin K–stacks. Define the pushforwards
��W K

y�
0
.SchX /! K y�

0
.SchY / and ��WMst;y�

X
!Mst;y�

Y
by the analogue of (65). If

� is representable in K–schemes we may also define pullbacks ��W K y�
0
.SchY /!

K y�
0
.SchX / and ��WMst;y�

Y
!Mst;y�

X
by the analogue of (66). If � is not representable

in K–schemes, we can still define ��WMst;y�
Y
! Mst;y�

X
by the analogue of (82).

Pushforwards and pullbacks have the usual functoriality properties, and the analogue
of (67) holds for 2–Cartesian squares in ArtK .

As for (70), there are natural morphisms of commutative rings

iX W K0.SchX / �!K
y�
0
.SchX /; iX WMst

X �!Mst;y�
X
;

…X W K
y�
0
.SchX / �!K0.SchX /; …X WM

st;y�
X
�!Mst

X ;
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given by iX W ŒR; �� 7! ŒR; �;y� � and …X W ŒR; �; yr � 7! ŒR; ��. If X is a K–scheme,
there is a natural projection My�

X
!Mst;y�

X
.

The analogue of Definition 5.3, defining another associative, commutative product ‘ˇ’
on K y�

0
.SchX /;Mst;y�

X
and an external version ‘�’, works essentially without change.

For the analogue of Definition 5.4, following (73) we define L1=2 in Mst;y�
X

only by

L1=2
D 1X �L1=2

K 2Mst;y�
X ;

where 1X is as in (83), and L1=2
K 2Mst;y�

K as in (72). Then we have that

L1=2
ˇL1=2

D L

in Mst;y�
X

, and we define Ln=2 in Mst;y�
X

for all n 2 Z in the obvious way.

Here is the stack analogue of Definition 5.5:

Definition 5.13 For each Artin K–stack Y , define I st;y�
Y

to be the ideal in the commu-
tative ring .Mst;y�

Y
;ˇ/ generated by elements ��.‡ st.P˝Z=2ZQ/�‡.P /stˇ‡ st.Q//

for all 1–morphisms �W X ! Y with X a K–scheme and principal Z=2Z–bundles
P;Q ! X , where ‡ st.P /; ‡ st.Q/; ‡ st.P ˝Z=2Z Q/ are the images in Mst;y�

X
of

the elements ‡.P /; ‡.Q/; ‡.P ˝Z=2Z Q/ in My�
X

from Definition 5.5. Define
SMY

st; y�
DMst;y�

Y
=I st;y�

Y
to be the quotient, as a commutative ring with multiplication

‘ˇ’, with projection …y�
Y
WMy�

Y
! SMY

y�.

The second multiplication ‘ � ’, external product �, and projection

…Y WMst;y�
Y !Mst

Y

on Mst;y�
Y

do not descend to SMY
st; y�. The other structures ˇ;�; 1Y ;L; ��; �

�; iY ;L
1=2

do descend to SMY
st; y�. If X is a K–scheme, we have a natural projection

SM y�
X !

SM st;y�
X :

So in particular, the motives MFX ;s 2 SM
y�
X in Theorem 5.7 also make sense in SM st;y�

X .
We will use this in Theorem 5.14.

5.4 The main result

Here is the main result of this section, the analogue of Theorem 5.7 from [5]. The
proof uses our previous results from [5; 14], the theory of rings of motives SMX

st; y� on
Artin stacks X from Section 5.3, and two new ingredients: Proposition 5.8, which says
that the motives MFX ;s from [5, Theorem 5.10] pull back as one would expect under
smooth morphisms of d–critical loci, and Proposition 5.19, which is a cunning trick to
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get round the fact that motives do not have descent in the smooth topology, that is, we
do not have a motivic analogue of Theorem 4.2.

Theorem 5.14 Let .X; s/ be an oriented d–critical stack, with orientation K
1=2
X ;s

,
where X is assumed of finite type and locally a global quotient. Then there exists a
unique motive MFX ;s 2 SMX

st; y� such that if T is a finite-type K–scheme and t W T !X

is smooth of relative dimension n, so that .T; s.T; t// is an algebraic d–critical locus
over K with natural orientation K

1=2

T;s.T;t/
as in Lemma 3.17, then

(84) t�.MFX ;s/D Ln=2
ˇMFT;s.T;t/ in SM st;y�

T ,

where MFT;s.T;t/ 2
SMT

st; y� is as in Theorem 5.7, projected from SM y�
T in Section 5.1 to

SMT
st; y� in Section 5.3, and t�W SMX

st; y�
! SMT

st; y� is the pullback.

We discuss how to relax the assumptions in Theorem 5.14 that X is of finite type, and
locally a global quotient.

Remark 5.15 (a) Let X be an Artin K–stack locally of finite type (but not necessarily
of finite type), with affine geometric stabilizers. Then one can define motivic rings
K0.SchX /;Mst

X
;K
y�
0
.SchX /;MX

st; y�
; SMX

st; y� generalizing those in Section 5.3, using
the idea of ‘local stack functions’ LSF.X / from Joyce [13, Definition 3.9].

Elements of K0.SchX / are �–equivalence classes of sums
P

i2I ci ŒRi ; �i � for I a
possibly infinite indexing set, Ri a K–scheme locally of finite type, �i W Ri ! X a
finite-type 1–morphism, and ci 2Z for i 2 I , such that for any finite-type K–substack
Y �X , we have Ri�X Y ¤∅ for only finitely many i 2 I . We set

P
i2I ci ŒRi ; �i ��P

j2J dj ŒSj ; �j � if for all finite-type Y �X , we have
P

i2I ci ŒRi ��i ;X ;inc Y; �Y �DP
j2J dj ŒSj ��j ;X ;inc Y; �Y � in K0.SchY /, where K0.SchY / is as in Section 5.3 as Y

is of finite type.

Then pushforwards �� on K0.SchX /;Mst
X
; : : : can be defined only if �W X ! Y is a

finite-type 1–morphism, but pullbacks �� can be defined for arbitrary � (requiring �
representable in K–schemes for K0.SchX /;K

y�
0
.SchX /).

As was discussed in [5, Remark 5.11] for K–schemes, it is now easy to generalize
Theorem 5.14 to d–critical stacks .X; s/ which are locally of finite type rather than
of finite type, giving a unique MFX ;s 2 SMX

st; y� satisfying (84), where it is enough to
consider only finite-type K–schemes T . Note that we cannot push MFX ;s forward to
SMK

st; y� if X is not of finite type, since � W X! Spec K is not a finite-type 1–morphism,
and ��W SMX

st; y�
! SMK

st; y� is not defined.
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(b) The assumption in Theorem 5.14 that X is locally a global quotient is used to
prove Proposition 5.19 in Section 5.5. We would have preferred to make the weaker
assumption that X has affine geometric stabilizers.

The issue is this: we want to characterize MFX ;s 2 SMX
st; y� by prescribing t�.MFX ;s/ 2

SMT
st; y� whenever T is a K–scheme and t W T !X is a smooth 1–morphism. However,

if X is not locally a global quotient, it seems conceivable this may not determine MFX ;s

uniquely, as there might exist 0¤M 2 SMX
st; y� with t�.M /D 0 for all such t W T !X .

One way to fix this might be to expand our whole set-up to include a suitable class
of formal schemes, and then prescribe t�.MFX ;s/ when T is a formal scheme and
t W T !X a smooth 1–morphism. If X has affine geometric stabilizers, there should
be enough such t W T !X to determine MFX ;s uniquely.

Combining Theorems 2.10, 3.18 and 5.14 and Corollary 3.19, and noting as in
Section 5.1 that moduli stacks of coherent sheaves are locally global quotients, yields:

Corollary 5.16 Let .X ; !/ be a �1–shifted symplectic derived Artin K–stack in
the sense of Pantev et al [28], and X D t0.X/ the associated classical Artin K–stack,
assumed of finite type and locally a global quotient. Suppose we are given a square root
det.LX /j

1=2
X

for det.LX /jX . Then we may define a natural motive MFX ;! 2
SMX

st; y�,
which is characterized by the fact that given a diagram

U D Crit.f W U !A1/ V
i

oo
'

//X

such that U is a smooth K–scheme, ' is smooth of dimension n, LV =U ' TV =X Œ2�,
'�.!X / � i �.!U / for !U the natural �1–shifted symplectic structure on U D

Crit.f W U !A1/, and '�.det.LX /j
1=2
X
/Š i�.KU /˝ƒ

nTV =X , then

'�.MFX ;!/D Ln=2
ˇ i�.MFmot;�

U;f
/

in SMV
st; y�.

Corollary 5.17 Let Y be a Calabi–Yau 3–fold over K, and M a finite-type classi-
cal moduli K–stack of coherent sheaves in coh.Y /, with natural obstruction theory
�W E�! LM . Suppose we are given a square root det.E�/1=2 for det.E�/. Then we
may define a natural motive MFM 2 SMM

st; y�.

Corollary 5.17 is relevant to Kontsevich and Soibelman’s theory of motivic Donaldson–
Thomas invariants [17]. Our square root det.E�/1=2 roughly coincides with their
orientation data [17, Section 5]. In [17, Section 6.2], given a finite-type moduli
stack M of coherent sheaves on a Calabi–Yau 3–fold Y with orientation data, they
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define a motive
R
M 1 in a ring D� isomorphic to our SMK

st; y�. We expect this should
agree with ��.MFM/ in our notation, with � WM! Spec K the projection. This

R
M 1

is roughly the motivic Donaldson–Thomas invariant of M. Their construction involves
expressing M near each point in terms of the critical locus of a formal power series.
Kontsevich and Soibelman’s constructions were partly conjectural, and our results may
fill some gaps in their theory.

Example 5.18 As in [13, Definition 2.1], an algebraic K–group G is called special
if every étale locally trivial principal G–bundle over a K–scheme is Zariski locally
trivial. Any special K–group can be embedded as a closed K–subgroup G�GL.n;K/,
and then GL.n;K/! GL.n;K/=G is a Zariski locally trivial principal G –bundle, so
taking motives in Mst

K gives ŒGL.n;K/�D ŒG� � ŒGL.n;K/=G�. Hence ŒG� is invertible
in Mst

K , with ŒG��1 D ŒGL.n;K/=G� � ŒGL.n;K/��1 .

Some examples of special K–groups are Gm;GL.n;K/;SL.n;K/;Sp.2n;K/, and the
group of invertible elements A� of any finite-dimensional K–algebra A. Products
of special groups are special. Special K–groups are always affine and connected, so
nontrivial finite groups are not special.

Suppose a special K–group G of dimension n acts on a finite-type, oriented algebraic
d–critical locus .T; s0/ over K preserving s0 2 H 0.S0

T
/ and the orientation K

1=2
T;s0

.
Write X D ŒT=G� for the quotient stack and t W T ! X for the projection. Then s0

descends to a unique d–critical structure s on X with s0 D s.T; t/ as in Example 3.14,
and using Theorem 3.15 we also find that the orientation K

1=2
T;s0

descends to a unique
orientation K

1=2
X ;s

on the d–critical stack .X; s/ with

K
1=2
X ;s

.T red; t red/ŠK
1=2
T;s0
˝ .ƒtopT �T=X /

ˇ̌
˝�1

T red :

Theorem 5.14 gives MFX ;s 2 SMX
st; y� with

t�.MFX ;s/D Ln=2
ˇMFT;s0

in SMT
st; y�. Applying t� and using t� ı t�.M /D ŒT; t;y� �ˇM for M 2 SMX

st; y� gives

(85) MFX ;sˇ ŒT; t;y� �D Ln=2
ˇ t�.MFT;s0/:

Now t W T !X is a principal G –bundle, and so Zariski locally trivial as G is special.
Therefore ŒT; t;y� �D ŒG;y� ��1X , where ŒG;y� �D iK.ŒG�/ 2M

st;y�
K . As ŒG� is invertible,

so is ŒG;y� �. Thus multiplying (85) by ŒG;y� ��1 gives

MFX ;s D ŒG;y� �
�1� .Ln=2

ˇ t�.MFT;s0//:
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5.5 Proof of Theorem 5.14

We begin with the following result, related to Proposition 5.10.

Proposition 5.19 Let X be a finite-type Artin K–stack which is locally a global
quotient. Then we can find a stratification X D j̀2J Xj , for J a finite set and
Xj � X a locally closed K–substack, and 1–morphisms �j W Sj ! X smooth of
relative dimension nj with Sj a K–scheme such that ŒSj �X Xj ; �Xj � is an invertible
element of Mst

Xj
for all j 2 J .

Proof As X is of finite type and locally a global quotient, there exist Zariski open
K–substacks Yj � X and equivalences Yj ' ŒSj=GL.nj ;K/� for j D 1; : : : ;m,
where Sj is a K–scheme with a GL.nj ;K/–action, such that X D Y1 [ � � � [ Ym .
Define �j W Sj ! X to be the composition Sj ! ŒSj=GL.nj ;K/� �!

�
Yj ,! X . For

j D1; : : : ;m, define a locally closed K–substack Xj �X by XjDYjn.Y1[� � �[Yj�1/.
Set J D f1; : : : ;mg. Then X D j̀2J Xj as X D Y1[ � � � [Ym .

Since Xj � Yj and �j W Sj ! Yj is a principal GL.nj ;K/–bundle, we see that
�Xj W Sj �X Xj !Xj is a principal GL.nj ;K/–bundle, which is automatically Zariski
locally trivial. Hence ŒSj �X Xj ; �Xj �D ŒGL.ni ;K/��1Xj , which is invertible in Mst

Xj

with inverse ŒGL.ni ;K/��1� 1Xj .

We now prove Theorem 5.14. Suppose first that there exists MFX ;s 2 SMX
st; y� such

that (84) holds for all t W T ! X smooth of dimension n with T a K–scheme. Let
J;Xj ;Sj ; �j ; nj be as in Proposition 5.19, and write �j W Xj ,! X for the inclusion.
Then we have

MFX ;s D

X
j2J

.�j /�.�
�
j .MFX ;s//(86)

D

X
j2J

.�j /�.ŒSj �X Xj ; �Xj ;y� �
�1
ˇ ŒSj �X Xj ; �Xj ;y� �ˇ �

�
j .MFX ;s//

D

X
j2J

.�j /�.ŒSj �X Xj ; �Xj ;y� �
�1
ˇ ��j .ŒSj ; �j ;y� �ˇMFX ;s///

D

X
j2J

.�j /�.ŒSj �X Xj ; �Xj ;y� �
�1/ˇ ..�j /� ı�

�
j .MFX ;s//

D

X
j2J

.�j /�.ŒSj �X Xj ; �Xj ;y� �
�1/ˇ ..�j /�.L

nj =2ˇMFSj ;s.Sj ;�j ///;

using X D j̀2J Xj in the first step, ŒSj �X Xj ; �Xj � invertible in Mst
Xj

so that

ŒSj �X Xj ; �Xj ;y� �D iXj .ŒSj �X Xj ; �Xj �/
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is invertible in SM st;y�
Xj

in the second, ŒSj �X Xj ; �Xj ;y� �D �
�
j .ŒSj ; �j ;y� �/ and ��j multi-

plicative for ˇ in the third, ŒSj ; �j ;y� �ˇD .�j /� ı�
�
j and

.�j /�.M ˇ �
�
j .N //D ..�j /� ı �

�
j .M //ˇN

in the fourth, and (84) with Sj ; �j ; nj in place of T; t; n in the fifth. Equation (86)
proves MFX ;s in Theorem 5.14 is unique if it exists, and gives a formula for it.

Now define MFX ;s to be the bottom line of (86). Suppose t W T ! X is smooth
of dimension n, with T a K–scheme. Define Tj D Xj ��j ;X ;t T � T and Uj D

Sj ��j ;X ;t T for each j 2 J . Then Tj ;Uj are K–schemes as Xj ,!X and Sj !X

are representable in K–schemes, and we have 2–Cartesian squares

(87)

Tj
�T

//

�Xj��
EM

T

t ��
Xj

�j
// X;

Uj
…T

//

…Sj��
EM

T

t
��

Sj

�j
// X:

Then

(88) t�.MFX ;s/

D

X
j2J

t� ı .�j /�.ŒSj �Xj ; �Xj ;y� �
�1/ˇ t� ı .�j /�.L

nj =2ˇMFSj ;s.Sj ;�j //

D

X
j2J

.�T /� ı�
�
Xj
.ŒSj �X Xj ; �Xj ;y� �

�1/

ˇ .…T /� ı…
�
Sj
.Lnj =2ˇMFSj ;s.Sj ;�j //

D

X
j2J

.�T /�..�
�
Xj
.ŒSj �Xj ; �Xj ;y� �//

�1/

ˇ .…T /�.L
.nCnj /=2ˇMFUj ;s.Uj ;�j ı…Sj

//

D

X
j2J

.�T /�.ŒSj�X Xj�Xj Tj ; �Tj ;y� �
�1/ˇ.…T /�ı…

�
T .L

n=2
ˇMFT;s.T;t//

D

X
j2J

.�T /�.ŒUj �T Tj ; �Tj ;y� �
�1/ˇ ŒUj ;…T ;y� �ˇLn=2

ˇMFT;s.T;t/

D

X
j2J

.�T /�.�
�
T .ŒUj ;…T ;y� �/

�1
ˇ��T .ŒUj ;…T ;y� �//ˇLn=2

ˇMFT;s.T;t/

D

X
j2J

.�T /�.1Tj /ˇLn=2
ˇMFT;s.T;t/

D

�X
j2J

ŒTj ; �T ;y� �

�
ˇLn=2

ˇMFT;s.T;t/

D ŒT; idT ;y� �ˇLn=2
ˇMFT;s.T;t/ D Ln=2

ˇMFT;s.T;t/;
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using (86) and t� multiplicative for ˇ in the first step, the analogue of (67) for the
2–Cartesian squares (87) in the second, that ��

Xj
is a ring morphism for ˇ and (77)

for the morphism …Sj W .Uj ; s.Uj ; �j ı…Sj //! .Sj ; s.Sj ; �j // of oriented d–critical
loci which is smooth of dimension n in the third, the definition of ��

Xj
and (77)

for …T W .Uj ; s.Uj ; �j ı…Sj //! .T; s.T; t// smooth of dimension nj in the fourth,
Sj �X Xj �Xj Tj Š Sj �X Tj D Uj �T Tj and .…T /� ı…

�
T
D ŒUj ;…T ;y� �ˇ in the

fifth, .�T /�.M /ˇN D .�T /�.M ˇ �
�
T
.N // in the sixth, and T D j̀ Tj in the

ninth.

Equation (88) proves (84) for all t W T ! X smooth of dimension n with T a K–
scheme, as we want, for MFX ;s the bottom line of (86). The argument of (86) shows
MFX ;s is unique, and is in particular independent of the choice of J;Xj ;Sj ; �j ; nj in
Proposition 5.19. This completes the proof.
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