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Projective deformations of weakly orderable
hyperbolic Coxeter orbifolds

SUHYOUNG CHOI

GYE-SEON LEE

A Coxeter n–orbifold is an n–dimensional orbifold based on a polytope with silvered
boundary facets. Each pair of adjacent facets meet on a ridge of some order m , whose
neighborhood is locally modeled on Rn modulo the dihedral group of order 2m

generated by two reflections. For n � 3 , we study the deformation space of real
projective structures on a compact Coxeter n–orbifold Q admitting a hyperbolic
structure. Let eC.Q/ be the number of ridges of order greater than or equal to 3 .
A neighborhood of the hyperbolic structure in the deformation space is a cell of
dimension eC.Q/� n if n D 3 and Q is weakly orderable, ie the faces of Q can
be ordered so that each face contains at most 3 edges of order 2 in faces of higher
indices, or Q is based on a truncation polytope.

57M50, 57N16; 53A20, 53C15

1 Introduction

In this paper, an n–orbifold Q is based on a quotient space of a simply connected
manifold zQ by a discrete group � acting on zQ properly discontinuously. An orbifold
structure on Q is given by a covering by open sets of the form �.U / with a model
.U;H; �/, where U is an open subset of zQ, H is a finite subgroup of � acting on U ,
and � induces a homeomorphism U=H ! �.U /. Here zQ is said to be a universal
cover of Q, and � is the fundamental group and is denoted by �1.Q/.

A Coxeter group is a group that has a presentation˝
ri

ˇ̌
.rirj /

nij .i; j 2 I/
˛
;

where I is a set, nii D 1 for each i 2 I , and nij 2 f2; 3; : : : ;C1g is symmetric. Note
that nij DC1 means there is no relation between ri and rj .

A point in an n–orbifold Q is called a silvered point if it has an open neighborhood
of the form �.U / with a model .U;Z=2Z; �/ for an open set U in zQ and a Z=2Z–
action on U fixing a hypersurface in U . A Coxeter n–orbifold yP is an n–dimensional

Published: 29 July 2015 DOI: 10.2140/gt.2015.19.1777

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M50, 57N16, 53A20, 53C15
http://dx.doi.org/10.2140/gt.2015.19.1777


1778 Suhyoung Choi and Gye-Seon Lee

orbifold whose base space is an n–dimensional polyhedron P with finitely many sides
where all interior points of the facets are silvered. The fundamental group �1. yP /

is isomorphic to a Coxeter group, and is generated by reflections about sides of the
fundamental domain P . We will study only compact ones in this paper, ie closed ones.
(More precisely, Davis [25; 26] calls such an orbifold a Coxeter orbifold of type III, an
orbifold of reflection type or a reflectofold.)

Let V be an .nC 1/–dimensional real vector space. The projective sphere Sn is the
space of rays in V and is a double-cover of RPn . Let

SL˙nC1.R/D fA 2 GLnC1.R/ j det.A/D˙1g:

The group SL˙nC1.R/ acts on Sn effectively in the standard manner and is a double-
cover of PGLnC1.R/. The elements of SL˙nC1.R/ are the projective automorphisms
of Sn and SL˙nC1.R/ the projective automorphism group of Sn . (We will also think of
SL˙nC1.R/ as a linear group when it is convenient.) Denote by … the natural projection
from V nf0g into Sn . A subspace of Sn is the image of a subspace of V with the origin
removed. In particular, a 2–dimensional subspace of V corresponds to a great circle
in Sn , and an n–dimensional subspace gives a great .n�1/–sphere in Sn . Furthermore,
a component of the complement of a great .n� 1/–sphere has the canonical structure
of an affine n–space, as the complement of a codimension-one subspace of RPn is an
affine subspace. We call this an affine subspace of Sn .

A convex segment in Sn is a connected arc contained in a great circle but not containing
a pair of antipodal points in its interior. A subset A of Sn is convex if any two points
of A are connected by a convex segment in A. An affine space has a notion of geodesics
as arcs in 1–dimensional affine subspaces. A subset of an affine subspace of Sn is
convex if and only if it is convex in the ordinary affine sense. A properly convex subset
of Sn is a bounded convex subset of an affine subspace; see Choi [15, Chapter 2].

A side of a compact properly convex set P is a maximal convex subset of the boundary
of P . A polytope is a compact properly convex domain in Sn with finitely many sides.
By a facet of a polytope, we mean a side of P of codimension one. By a ridge of a
polytope, we mean a side of P of codimension two. (A facet will be called a face and
a ridge an edge if P is three-dimensional.) If P is the base space of a Coxeter orbifold,
then each ridge where the facets Fi and Fj meet will be given an order nij � 2; ie a
ridge has an order nij if a model neighborhood of each interior point of the ridge is
given the usual product extension of the standard action of the dihedral group Dnij

of
order 2nij on the 2–plane.

Given a Lie group G acting on a manifold X transitively, we can consider a .G;X /–
structure on an orbifold Q as a pair consisting of an immersion DW zQ! X and a
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homomorphism hW �1.Q/!G satisfying

h. / ıD DD ı  for  2 �1.Q/:

For a given .G;X /–structure, .D; h/ is determined only up to the action

g.D; h. � //D .g ıD;gh. � /g�1/ for g 2G:

(In each case we are considering, D is an embedding.)

A real projective structure on Q is a .G;X /–structure on Q with

G D SL˙nC1.R/ and X D Sn
I

see also Section 2.1.

We can represent hyperbolic structures on an n–orbifold using the Klein projective
model. Let the Lorentzian inner product be given by

hx;yi D �x1y1Cx2y2C � � �CxnC1ynC1;

where xi for i D 1; : : : ; nC1 are components of x 2V and yi for i D 1; : : : ; nC1 are
ones for y 2 V . The hyperbolic space Hn is an open ball B in Sn that is the image of
positive time-like vectors under …. The group of hyperbolic isometries is the subgroup
PO.1; n/ of SL˙nC1.R/ acting on B . Hence a hyperbolic Coxeter orbifold, being of
the form Hn=� for a discrete subgroup � of PO.1; n/, naturally has an induced real
projective structure.

Real projective structures have been studied by many mathematicians including Kui-
per [39], Benzécri [9], Koszul [38], Vinberg [47], Goldman [31], Choi and Gold-
man [19], Choi [13; 14] and Benoist [4]. Sometimes the topic is studied as the theory
of linear representations of discrete groups, as by Koszul, Vinberg, Benoist and so on.
Kac and Vinberg [36] were the first to discover hyperbolic Coxeter 2–orbifolds where
the induced real projective structures deform into families of real projective structures
that are not induced from hyperbolic structures. Johnson and Millson [35] constructed
projective bending deformations of compact hyperbolic manifolds with embedded
totally geodesic hypersurfaces. Cooper, Long and Thistlethwaite [22; 23] investigated
whether the closed hyperbolic 3–manifolds of the Hodgson–Weeks census could be
deformed and showed some occurrence of deformability. Benoist [6], Choi [17],
Marquis [40] and Choi, Hodgson and Lee [20] investigated classes of deformable
projective Coxeter orbifolds. Heusener and Porti [34] provided infinite families of
hyperbolic 3–manifolds that are projectively rigid by Dehn filling; see also Ballas [1].
Surveys on real projective structures can be found in Benoist [7] and Choi [18].
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The deformation space D.Q/ of real projective structures on a closed orbifold Q is
the quotient space of the space of real projective structures on Q by the action of the
group of isotopies of Q. The space has a natural C s –topology for s � 1; for more,
see Choi [16; 18, Chapter 6].

Now we fix the dimension n � 3. Let P be an n–dimensional complete hyperbolic
convex polytope with dihedral angles that are submultiples of � ; we call P a hyperbolic
Coxeter n–polytope. Then P naturally has a Coxeter orbifold structure yP by silvering
the facets. When a ridge has the dihedral angle �=nij , the ridge has the order nij . The
point t in D. yP / is hyperbolic if a hyperbolic structure on yP represents t .

Definition 1.1 Let P be a compact hyperbolic Coxeter n–polytope, and let yP de-
note P with its Coxeter orbifold structure. Suppose that t is the corresponding
hyperbolic point of D. yP /. We call a neighborhood of t in D. yP / the local deformation
space of yP at t . We say that yP is projectively deformable at t , or simply deforms
at t , if the dimension of its local deformation space at t is positive. Conversely, we
say that yP is locally projectively rigid at t , or locally rigid at t , if the dimension of its
local deformation space at t is 0.

Definition 1.2 Let yP be a compact Coxeter 3–orbifold with a base polytope P .
Then yP is weakly orderable if the faces F1; : : : ;Ff of P can be labeled by integers
f1; : : : ; f g so that for each face Fi , the cardinality of

Fi WD fFj j j > i and the ridge Fi \Fj has order 2g

is less than or equal to 3.

In our case, the base polytope P is always realizable as a convex polytope in an affine
space since P is the fundamental polytope for a properly convex real projective Coxeter
orbifold. A compact properly convex n–polytope P is called simple if exactly n facets
meet at each vertex. Note that compact hyperbolic Coxeter n–polytopes are simple.
Denote by eC. yP / the number of ridges of order greater than or equal to 3 in yP .

We now state two results of the paper that follow from Theorem 4.1, the main result of
the paper.

Corollary 1.1 Let P be a compact hyperbolic Coxeter 3–polytope and let yP be
the Coxeter orbifold arising from P . Suppose that yP is weakly orderable. Then a
neighborhood of the hyperbolic point t in D. yP / is a cell of dimension eC. yP /� 3.

A weakly orderable compact hyperbolic Coxeter 3–orbifold yP is projectively de-
formable at t if eC. yP / > 3; otherwise, it is locally rigid at t .
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A truncation at a vertex v of a compact properly convex n–polytope P is an operation
where

� we take a hyperspace H meeting only the interiors of sides of P incident with v ,
and not v itself,

� take the component C of P �H containing v , and
� finally delete C .

An iterated truncation of P is an operation yielding Pn , where

P D P0) P1) � � � ) Pn

and PiC1 is obtained from Pi by truncation at a vertex of Pi . A truncation n–polytope
is a convex n–polytope obtained from an n–simplex by iterated truncation.

Corollary 1.2 Let P be a compact hyperbolic Coxeter n–polytope and a truncation
polytope. (Assume n � 3.) Let yP be the Coxeter orbifold arising from P . Then a
neighborhood of the hyperbolic point in D. yP / is a cell of dimension eC. yP /� n.

Earlier, Marquis [40] used the word ecimahedron in place of truncation 3–polytope and
showed that if yP is the Coxeter 3–orbifold arising from a compact hyperbolic Coxeter
ecimahedron P , then D. yP / is diffeomorphic to ReC. yP/�3 . (For n D 2, Goldman
proved this result in his senior thesis.)

There is recent thesis work by Greene [32] obtaining similar results using algebro-
topological methods. Also, Kapovich [37, Theorem 1] presents an analogous result for
flat conformal structures.

Our main results, Corollaries 1.1 and 1.2, follow from Theorem 4.1 which will be
stated and proved in Section 4.7, generalizing the notion of the weak orderability.

Almost all compact hyperbolic 3–orbifolds arising from 3–polytopes are weakly
orderable. To describe this in more detail, we introduce the following terminology.
An abstract 3–polyhedron is a cell complex homeomorphic to a compact 3–ball with
conditions that there exists a unique 3–cell, every 1–cell belongs to exactly two 2–
cells, a nonempty intersection of two 2–cells is a vertex or a 1–cell, and every 2–cell
contains no fewer than three 1–cells; see Roeder, Hubbard and Dunbar [43]. It is
simple if each vertex is contained in three 1–cells. The side structure of a properly
convex 3–polytope P gives it the structure of an abstract 3–polytope whose k –cells
correspond to the k –faces of P for k D 0; 1; 2; 3. The boundary complex @P of
an abstract 3–polyhedron P is the subcomplex of P consisting of all proper cells.
Let .@P /� be the dual complex of @P . A simple closed curve ˇ is called a k –circuit
if it consists of k edges of .@P /� for some positive integer k . A circuit ˇ is prismatic
if all endpoints of the edges of @P intersected by ˇ are distinct.
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Theorem 1.1 Let P be a compact properly convex simple 3–polytope but not a
tetrahedron. Suppose that P has no prismatic 3–circuit, and has at most one prismatic
4–circuit. Let Hd .P / be the number of compact hyperbolic Coxeter 3–orbifolds whose
base polytopes are combinatorially equivalent to P and the maximal edge orders are
less than or equal to d , and let WOd .P / denote the number of weakly orderable ones
among them. Then

lim
d!1

WOd .P /

Hd .P /
D 1:

In particular, there exist infinitely many weakly orderable hyperbolic Coxeter 3–
orbifolds with base polytopes of type P as above.

Question 1.1 Does the conclusion of Theorem 1.1 still hold if we assume only that P

is a convex simple 3–polytope?

Section 2 is a recap of some facts. In Section 2.1 we review some elementary results on
orbifolds and real projective structures. In Section 2.2 we describe Vinberg’s results on
the general properties satisfied by real projective reflection groups. We turn Vinberg’s
“semialgebraic” conditions (L1) and (L2) into the “algebraic” conditions (L1) and (L2) 0 .

Section 3 gives various descriptions of the deformation space of real projective structures
on a Coxeter orbifold yP . In Section 3.1 we introduce a space of representations of the
fundamental group �1. yP / and identify this representation space with the deformation
space of real projective structures. In Section 3.2 we introduce a solution space of some
polynomial equations, a space of matrices satisfying certain conditions. We establish
the equivalence of these spaces following Vinberg [47].

Section 4 discusses the results on a neighborhood of the hyperbolic structure in the
deformation space of real projective structures on a compact Coxeter n–orbifold yP .
In Section 4.1 we study the Zariski tangent space of the solution space of polynomial
equations giving real projective structures on yP . In Section 4.2 we introduce polynomial
equations defining hyperbolic structures on yP , and in Section 4.3 we describe the
Zariski tangent space of the solution space of these polynomial equations. In Section 4.4
we state Theorem 4.1, the main result of the paper. In Section 4.5 we compare the two
Zariski tangent spaces at a hyperbolic point, and in Section 4.6 we combine this with
Weil infinitesimal rigidity to prove Theorem 4.1.

Section 5 provides several examples. In Section 5.1 we use two combinatorial results
of Tutte and Fouquet–Thuillier to prove Theorem 1.1. In Section 5.2 and Section 5.3
we give examples satisfying only one of the two assumptions in Theorem 4.1.
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2 Preliminaries

This section reviews the basic background material used in this article. In Section 2.1,
we review some basic material on orbifolds and geometric structures; see Choi [18,
Chapters 3, 4, and 6] for details. In Section 2.2 we describe Vinberg’s results.

2.1 Notation

An orbifold Q is a second countable Hausdorff space jQj with an orbifold structure,
ie a covering of jQj by a collection of open sets of form �.U / for a model .U;H; �/,
where U is an open subset of Rn with a finite group H acting on it effectively and �
induces a homeomorphism U=H!�.U /. We require that these models are compatible
with one another in the standard way. A model .U;H; �/ is also called a chart of Q.
A singular point is a point x of Q where H is not trivial for every choice of a chart
.U;H; �/ containing x .

An orbifold Q1 covers an orbifold Q2 by a covering map p if each point of Q2 has
a connected open neighborhood �2.U2/ with a model .U2;H2; �2/ such that each
component �1.U1/ of the inverse image U 0

1
D p�1.�2.U2// has model .U1;H1; �1/

where

U1

�1 //

yp

��

�1.U1/

p

��
U2

�2 // �2.U2/
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is commutative for a diffeomorphism yp equivariant with respect to an injective homo-
morphism H1!H2 .

For an orbifold Q, we denote by jQj the base space of Q. Two orbifolds Q1 and Q2

are diffeomorphic if a homeomorphism f W jQ1j ! jQ2j lifts to a smooth embedding
for each choice of local model.

A good orbifold is an orbifold Q that is covered by a manifold. It has a simply
connected covering manifold zQ called a universal cover with a covering map pQ .
The group of diffeomorphisms f W zQ! zQ so that pQ ı f D pQ is called the deck
transformation group and is denoted by �1.Q/. The base space of Q is homeomorphic
to the quotient space zQ=�1.Q/.

Conversely, given a simply connected manifold M and a discrete group � acting on it
properly discontinuously (but not necessarily freely), M=� has a natural structure of
an orbifold.

A geodesic in RPn is a connected arc in a 1–dimensional subspace. A geodesic in Sn

is a connected arc in a 1–dimensional great circle in Sn , which is a lift of a geodesic
of RPn . An affine space An is Rn equipped with the affine transformation group
acting on it. The complement of a codimension-one subspace in RPn can be identified
with an affine space An . The group of projective transformations acting on An is
the affine transformation group. Moreover, the geodesics in Sn restricts to geodesics
in An .

An open hemisphere in Sn is identifiable with an affine space under the double-covering
map Sn!RPn . An open hemisphere is said to be an affine subspace of Sn . A polytope
is a compact properly convex domain in an affine subspace with finitely many sides.
(For these, the ordinary theory of convex domains in the Euclidean space applies.)

For a Lie group G acting transitively on a smooth manifold X , a .G;X /–structure on
an n–dimensional orbifold Q is a maximal atlas of charts of form .U;H; �/, where
U is an open subset of X and H is a finite subgroup of G acting on U , where

� every inclusion map �W  .V /! �.U / for charts .V;J;  / and .U;H; �/ lifts
to a map kjV W V ! U for k 2G equivariant with respect to a homomorphism
J !H , and

� each point x 2Q is in �.U /, where .U;H; �/ is in the maximal atlas of the
orbifold structure of Q and U � X is identified with an open set in Rn by a
smooth map (a compatibility condition).

The existence of a .G;X /–structure implies that Q is good.
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Let yP denote a compact real projective n–orbifold. Let zP denote the universal cover
of yP and let �1. yP / denote the group of deck transformations. A real projective
structure on yP gives us an immersion DW zP ! Sn , called a developing map, and a
homomorphism hW �1. yP /! SL˙nC1.R/, called a holonomy homomorphism, so that
Dı D h. /ıD for each  2�1. yP /. Here .D; h/ is determined only up to the action

.D; h. � // 7�! .g ıD;g ı h. � / ıg�1/ for g 2 SL˙nC1.R/:

Conversely, the development pair .D; h/ determines the real projective structure; see
Choi [16; 17; 18] and Thurston [44; 45] for the details.

Note the double-covering map Sn!RPn , where the group PGLnC1.R/ acts on RPn

transitively. We can equivalently define a real projective structure as a .G;X /–structure
with X DRPn;G D PGLnC1.R/ since SL˙nC1.R/ is precisely the group consisting
of automorphisms of Sn lifting elements of PGLnC1.R/; see Thurston [45, page 143]
and Choi [13].

2.2 Vinberg’s results

This subsection gives a summary of the groundbreaking article of Vinberg [47]; see
also Benoist [8]. The English translated terminology of Vinberg is slightly different
from the current one; for example the term “strictly convex” is now “properly convex.”

Let V be an .nC1/–dimensional real vector space and let V � be its dual vector space.

Let O denote the origin of V . A cone C in V is a subset of V with O 2 C so that if
any point v 2 V is in C , then sv 2 C for each s > 0. In our terms, the definition of a
convex cone in [47] is the following. A cone C in V is a convex cone if ….C �fOg/
is a convex set in Sn .

A reflection R is an element of order 2 of SL˙nC1.R/ which is the identity on a
hyperplane of V . All reflections are of the form

RD IV �˛˝ b

for some linear functional ˛ 2 V � and a vector b 2 V with ˛.b/ D 2, and are in
SL˙nC1.R/. Observe that the kernel of ˛ is the subspace U of fixed points of R and b

is the reflection vector, ie an eigenvector corresponding to the eigenvalue �1. Hence
the set of fixed points of a reflection is a subspace of codimension one in Sn and the
point corresponding to the reflection vector is sent to its antipode, called the antipodal
fixed point.

A rotation is an element of SL˙nC1.R/ which restricts to the identity on a subspace
of codimension two and acts on the complementary space by a matrix of the form� cos �

sin �
� sin �
cos �

�
with respect to some basis. The real number � is the angle of the rotation.
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As a matter of notation, given a convex n–polytope P in Sn , cone.P / will denote the
convex polyhedral cone …�1.P /[fOg in V .

Let P be a properly convex n–polytope in Sn with sides F1; : : : ;Ff of codimension
one. For each facet Fi of P , take a linear functional ˛i for Fi and choose a reflection
Ri D IV � ˛i ˝ bi with ˛i.bi/D 2 which fixes Fi . By making a suitable choice of
signs, we may assume that P is defined by the inequalities

˛i � 0; i 2 I D f1; : : : ; f g:

The group � � SL˙nC1.R/ generated by all these reflections Ri is called a (real)
projective Coxeter group if

 VP \ VP D¿ for every  2 �nf1g;

where VP is the interior of P . Note that Vinberg [47] used the term linear Coxeter
group in place of projective Coxeter group. The f �f matrix AD .aij /, aij D˛i.bj /,
is called the Cartan matrix of the group � and P is called a fundamental chamber
of � . For x 2P , let �x denote the subgroup of � generated by fRi j x 2Fig. Define
P s D fx 2 P j �x is finiteg.

Theorem 2.1 [47, Theorem 1 and Propositions 6 and 17] The following conditions
are necessary and sufficient for any group � , generated by the reflections R1; : : : ;Rf
fixing respectively facets F1; : : : ;Ff of the properly convex n–polytope P , to be a
projective Coxeter group:

(L1) aij � 0 for i ¤ j , and aij D 0 if and only if aji D 0.

(L2) aii D 2, and for i; j with i ¤ j ,

(i) if Fi and Fj are adjacent, ie meet in a ridge, then aij ajiD4 cos2
�
�

nij

�
<4

for an integer nij � 2,
(ii) else aij aji � 4.

Proof [47, Proposition 17] gives the necessity of the conditions (L1) and (L2).

Given (L1) and (L2), [47, Proposition 7 and Theorem 1] show that � is a projective
Coxeter group with the fundamental chamber P ; see also [8, Theorem 1.5].

In fact, if aij aji D 4 cos2.�=nij /, then the product RiRj is a rotation of angle 2�=nij

and the group generated by the two reflections Ri and Rj is the dihedral group Dnij
.

In particular, if aij D aji D 0 then RiRj is a rotation of angle �=2 and Ri and Rj

generate a dihedral group of order 4, ie a Klein four group. If aij aji � 4 then Ri

and Rj generate an infinite group and nij DC1; see [47, Section 2].

Geometry & Topology, Volume 19 (2015)



Projective deformations of hyperbolic Coxeter orbifolds 1787

The group generated by R1; : : : ;Rf is isomorphic to a Coxeter group, and is also
called the projective reflection group generated by R1; : : : ;Rf .

For each reflection Ri , ˛i and bi are determined up to a positive scalar by

(2-1) ˛i 7! di˛i ; bi 7! d�1
i bi with di > 0:

Hence the Cartan matrix A of � is determined up to the conjugation action of a group
of diagonal f �f matrices with positive diagonal entries.

Theorem 2.2 [47, Theorem 2] Let � be a projective Coxeter group and P its
fundamental chamber. The subset fx 2 P j �x is finiteg is denoted by P s . Then the
following statements hold:

� �� D
S
2�

P is convex.

� � is a discrete subgroup of SL˙nC1.R/ preserving the interior V�� of �� .

� V�� \P D P s , and is homeomorphic to V��=� .

An easy consequence of the theorem is that the group � acts on V�� properly dis-
continuously. Thus V�� gives a convex open subset of the projective sphere Sn , and
V��=� determines a convex real projective structure on the Coxeter n–orbifold with
the fundamental domain homeomorphic to P s . For example, let P be a hyperbolic
Coxeter n–polytope of finite volume. Suppose that � is the discrete group generated by
the isometric reflections with respect to facets of P in the hyperbolic space Hn in the
Klein model in Sn . Then V�� DHn and V��=� is a hyperbolic Coxeter n–orbifold.

A projective Coxeter group � is elliptic, parabolic and hyperbolic if � is conjugate to
a discrete group generated by reflections in the sphere, the Euclidean space and the
hyperbolic space respectively, provided that neither any proper plane in the hyperbolic
space nor any point at infinity is �–invariant.

A Cartan matrix is indecomposable if it is not a direct sum of two matrices. Thus
every matrix A decomposes into a direct sum of indecomposable matrices, which are
components of A. By Frobenius’s theorem, any indecomposable matrix A satisfying
condition (L1) has a real eigenvalue (see Gantmacher [29]). An indecomposable Cartan
matrix A is positive, zero and negative type if the smallest real eigenvalue is positive,
zero and negative respectively. Denote by AC (resp. A0 , A� ) the direct sum of its
components of positive type (resp. zero type, negative type). Any matrix A satisfying
condition (L1) is a direct sum of AC , A0 and A� .
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Proposition 2.1 [47, Proposition 22] Let � be a projective Coxeter group with a
properly convex n–dimensional fundamental chamber in Sn , and let A be the Cartan
matrix of � . Then � is elliptic if and only if ADAC if and only if � is finite.

Proposition 2.2 [47, Proposition 23] Let � be a projective Coxeter group with a
properly convex n–dimensional fundamental chamber in Sn , and let A be the Cartan
matrix of � . Then � is parabolic if and only if ADA0 and rank AD n.

We shall consider only the case when P D P s , or equivalently, �� D V�� ; we call �
perfect. The following three statements are equivalent.

(1) � is perfect.

(2) The base space P s of the associated orbifold yP equals P exactly.

(3) yP is compact.

The following is a fairly well-known and commonly used consequence of [47].

Proposition 2.3 [47, Lemma 15 and Propositions 19 and 26] Let � be a perfect
projective Coxeter group with a properly convex n–dimensional fundamental cham-
ber P in Sn and let A be the Cartan matrix of � . Then exactly one of the following
statements holds.

� � is elliptic.

� � is parabolic.

� A is indecomposable and of negative type, and rank AD dim V D nC 1.

Moreover, if � is neither elliptic nor parabolic, then � is irreducible and �� is properly
convex.

Proof By [47, Proposition 26], we have only the above three possibilities or � is the
direct product of a parabolic group and Z=2Z. In this case, � is not perfect as we can
see from [47, Lemma 17].

In the third case, we only have to prove the last statement. Since our fundamental
domain P is properly convex, [47, Proposition 18] implies that � is reduced. The last
statement follows from [47, Lemma 15].

Let P be a properly convex n–polytope in Sn and the polyhedral cone K D cone.P /
be given. Again a side of K is a maximal convex subset of K . The complex of K ,
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denoted by FK , is the set of its (closed) sides, partially ordered by inclusion. Let
K1; : : : ;Kf be the facets of K , and let ID f1; : : : ; f g. For any sides L of K , define

�.L/D fi 2 I jKi �Lg and �.FK/D f�.L/� I jL 2 FKg:

For any subset S of I , the standard subgroup �S of � is the subgroup generated
by the reflection Ri , i 2 S , and the principal submatrix AS of A is the submatrix
of A consisting of the entries aij for each i; j 2 S . Denote by SC (resp. S0 , S� )
the subset T of S such that AT DAC

S
(resp. A0

S
, A�

S
). We define Z.S/ WD fi 2 I j

aij D 0 for each j 2 Sg.

Proposition 2.4 [47, Theorems 4] Let � be a projective Coxeter group, let P be its
fundamental chamber and let K be cone.P /. Assume that a subset S of I satisfies
two conditions: S D S0 and Z.S/0 D¿. Then S 2 �.FK/.

Proposition 2.5 [47] Let � be a perfect projective Coxeter group, let P be its
fundamental chamber and let K D cone.P /. Then S 2 �.FK/ if and only if �S is
finite or S D I .

Proof This is the statement of [47, Equation 8].

Lemma 2.1 Let � be a perfect projective Coxeter group, and let A be the Cartan
matrix of � . If A has a principal submatrix of zero type, then � is parabolic.

Proof Suppose that S DS0 for some nonempty S � I . Define T WDZ.S/0 . Observe
that S[T D .S[T /0 and Z.S[T /0D¿, and thus by Proposition 2.4, S[T 2�.FK/

with K D cone.P /.

Suppose that S [T ¤ I . Then �S is finite by Proposition 2.5, and S D S0 should be
empty, a contradiction.

If we have S [ T D I , then � is either elliptic or parabolic by Proposition 2.3 as
I0 D I . If � is elliptic, then IC D I , a contradiction as S is not empty. Hence � is
parabolic; see also the proof of [47, Theorem 7].

Proposition 2.6 Let � be a perfect projective Coxeter group, and let A D .aij / be
the Cartan matrix of � . If � is not parabolic, then aij aji > 4 holds if Fi and Fj are
not adjacent and i ¤ j .

Proof If aij aji D 4 holds for some i ¤ j , then the principal submatrix
�

2
aj i

aij

2

�
of A is of zero type. By Lemma 2.1, � is parabolic.
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Proposition 2.6 shows that for negative-type perfect projective Coxeter groups, we can
now replace the semialgebraic condition (L2) with an open condition (L2) 0 where we
replace (L2)(ii) with:

(L2) 0 (ii) If Fi and Fj are not adjacent, then aij aji > 4.

The following was one of the main results of [47].

Theorem 2.3 [47, Corollary 1] Let A be an f � f matrix satisfying (L1) and
(L2), and let rank AD nC 1. Suppose that A has no component of zero type. Then
there exists a projective Coxeter group � � SL˙nC1.R/ with the Cartan matrix A.
Furthermore, � is unique up to the conjugations in SL˙nC1.R/.

3 Deformation spaces of real projective structures

Through this section, we give three descriptions of the deformation space of real
projective structures on a compact n–dimensional Coxeter orbifold yP , when yP admits
a real projective structure but does not admit a spherical or Euclidean structure. In
Section 3.1, we describe the deformation space in terms of representations from �1. yP /

into SL˙nC1.R/. In Section 3.2, we describe this representation space in terms of
polynomial equations and Cartan matrices following Vinberg respectively.

3.1 Deformation spaces and the representation spaces

We restate the results of Vinberg [47] for perfect groups under the orbifold viewpoint.

Proposition 3.1 (Vinberg) Let yP be a compact real projective Coxeter n–orbifold
where yP does not admit a spherical or Euclidean structure. Then each developing
map D of the universal cover zP of yP is a diffeomorphism to an open properly convex
domain in Sn . Furthermore, D.P / is a fundamental chamber for the fundamental
domain P of zP , a properly convex n–polytope, the projective Coxeter group h.�1. yP //,
where hW �1. yP /! SL˙nC1.R/ is the holonomy homomorphism associated with D .

Given a Coxeter orbifold yP , the choice of the fundamental polytope P in the universal
cover gives us the fundamental set of generators in �1. yP / associated with each facet
of P . They are labeled by r1; : : : ; rf , where f is the number of facets of P . Call
these the fundamental generators. Since we can imbed Hom.�1. yP /;SL˙nC1.R// as
an algebraic subset of SL˙nC1.R/

f for the number f of fundamental generators of

Geometry & Topology, Volume 19 (2015)



Projective deformations of hyperbolic Coxeter orbifolds 1791

�1. yP /, we let Hom.�1. yP /;SL˙nC1.R// be a real algebraic set with the standard point-
set topology of the subspace.

The SL˙nC1.R/–action on Hom.�1. yP /;SL˙nC1.R// by conjugation is not effective
since ˙IV is in the kernel and

Hom.�1. yP /;SL˙nC1.R//=SL˙nC1.R/

is equivalent to
Hom.�1. yP /;SL˙nC1.R//=PGLnC1.R/:

We will study the later space only.

A discrete subgroup � of SL˙nC1.R/ is dividing if � acts faithfully and properly
discontinuously on a properly convex open subset � of Sn so that the quotient �=�
is compact; see Benoist [4]. Let D0rep.

yP / denote the space of dividing faithful repre-
sentations of �1. yP /. Define the subspace Drep. yP / by h 2 Drep. yP / if h is discrete
and faithful and h.�1. yP // acts as a dividing projective Coxeter group on a properly
convex domain.

Question 3.1 Is D0rep.
yP /DDrep. yP / for a compact Coxeter n–orbifold yP ?

We combine the works of Benoist, Charney and Davis, Choi, Koszul, Qi and finally
Davis to prove the following theorem. Let D. yP / be the deformation space of real
projective structures on yP . (Of course, this set could be empty.)

Theorem 3.1 Let yP be a compact Coxeter n–orbifold. Assume that yP admits a real
projective structure, but does not admit a spherical or Euclidean structure.

� Drep. yP / is a union of components of Hom.�1. yP /;SL˙nC1.R//, PGLnC1.R/
acts properly and freely on it, and the quotient space Drep=PGLnC1.R/ is a
Hausdorff space.

� D. yP /!Drep. yP /=PGLnC1.R/ is a homeomorphism.
� For each element hW �1. yP /! SL˙nC1.R/ of Drep. yP /, the sphere Sn contains a

unique properly convex open subset � of Sn so that �=h.�1. yP // is diffeomor-
phic to yP . Here � is determined up to the antipodal map A WD �IV

Proof The fundamental group �1. yP / of yP is an infinite, nonaffine and irreducible
Coxeter group by Proposition 2.3. Hence, by Qi [41, Theorem 1.1], the center of any
finite-index subgroup of �1. yP / is trivial, and so by Benoist [4, Theorem 2.2; 5, Theo-
rem 1.1], D0rep.

yP / is a union of components of Hom.�1. yP /;SL˙nC1.R//, consisting of
dividing discrete faithful representations. (For each element h2D0rep.

yP /, �=h.�1. yP //

is a compact orbifold when � is a properly convex domain by Benoist [5].)
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Now, Drep. yP / is an open subset of D0rep.
yP / by Koszul [38]; see Choi [17]. The subset

is closed in the second space: let hi be a sequence of representations in Drep. yP /

converging to an element h of D0rep.
yP /. For a set of fundamental generators rj ,

j D 1; : : : ; f , hi.rj / is a reflection fixing points of a side Fj ;i of a compact convex
polytope Pi . Let �i be a properly convex domain in Sn where hi.�1. yP // acts as
a projective Coxeter group. We have hi.rj /! h.rj / for each j , where h.rj / is a
reflection and fixes points of a hyperspace Hj . Since h.�1. yP //, h 2D0rep.

yP /, acts on
a properly convex open domain �� Sn , each Hj meets �. Here fHlglD1;:::;f are
mutually distinct since otherwise we loose the faithfulness of the action.

Denote by Hl;i the hyperspace in Sn fixed by hi.rl/. For a subset S of f1; : : : ; f g,
let �S denote the subgroup of �1. yP / generated by rl for l 2S . Since hi.�1. yP // acts
properly discontinuously on �, hi.�S / is finite if

T
l2S Hl;i\�i ¤¿. The converse

is true by Vinberg [47, Theorem 7], and the condition also implies
T

l2S Fl;i ¤ ¿.
Thus, the combinatorial intersection pattern of fHl;i \�iglD1;:::;f is the same as that
of facets fFl;iglD1;:::;f for Pi ; see also Davis [24, Example 7.1.4]. Similarly, h.�S /

is finite if
T

l2S Hl \� ¤ ¿. The converse is also true: we consider the properly
convex cone …�1.�/[ fOg. Given a linear finite group action on …�1.�/[ fOg

with the subspace P of fixed points, dim P � 1, we must have P \…�1.�/ ¤ ¿.
Hence,

T
l2S Hl \�i ¤¿. We thus have

(3-1)
\
l2J

Fl;i ¤¿ ,

\
l2J

Hl;i \�i ¤¿ ,

\
l2J

Hl \�¤¿

for any subset J of f1; : : : ; f g.

We may also assume that the sequence f x�ig of the closures of �i geometrically
converges to a compact convex set K by choosing a subsequence; see Choi [15, Propo-
sitions 2.8 and 2.10]. The set K is properly convex and has nonempty interior since
otherwise h is reducible; see Choi and Goldman [19, Lemma 1] and what follows.
We may identify K D x�. Also, we assume that fPig geometrically converges to a
compact convex set P 0 in Sn . Hence, P 0 is properly convex since P 0 � x�. By taking
a subsequence if necessary, we may assume that each sequence fSig of sides of Pi

geometrically converges to a compact convex subset S1 of Sn . If dim Si D 0 for
all i , then S1 2 � by (3-1). Since S1 is a properly convex set, we can deduce
that S1 is the convex hull of its vertices. Since � is properly convex also, we obtain
S1 � �. Any sequence f.Si ;Ti/g of disjoint pairs of sides of Pi geometrically
converges to a disjoint pair of subsets by (3-1). We deduce that

T
l2J Fl;1 ¤ ¿ if

and only if
T

l2J Fl;1 ¤¿. The facets of P 0 have the same intersection pattern as
fHl;1\�1glD1;:::;f . Also, P 0\�DP 0 since otherwise �=h.�1. yP // is not compact.
Hence h.�1. yP // is a projective Coxeter group based on P 0 .
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By Lemma 3.1, the conjugation action by PGLnC1.R/ is proper and free. This proves
the first item.

The holonomy homomorphism h is in Drep. yP / by Proposition 3.1. By Choi [16, The-
orem 1] and the first item, the map from a real projective structure to its holonomy
homomorphism induces a local homeomorphism

holW D. yP /!Drep. yP /=PGLnC1.R/:

Now we show that hol is injective. Suppose that �k for each k D 1; 2 is a properly
convex open subset of Sn on which � WD h.�1. yP // acts for h 2Drep. yP / as a dividing
projective Coxeter group. Let z� denote the torsion-free finite index subgroup by
Selberg’s lemma.

If �1\�2¤¿, then �0D�1\�2 is a connected properly convex open domain where
� acts properly discontinuously. Each map �0=z�!�k=z�; k D 1; 2 of closed mani-
folds is surjective by a homology theory since both are K.z�; 1/–spaces. This implies
that �1D�2 or �1\�2D¿; see the proof of Cooper and Delp [21, Proposition 2.2].
Since the antipodal map AW Sn!Sn conjugates from h.�1. yP // to itself, �2DA.�1/

or �2\A.�1/D¿ by the same reasoning.

Assume that �1\�2 D¿ and �2\A.�1/D¿. By Benoist [3, Proposition 1.1], �
contains an element  with an attracting fixed point y in the boundary of �1 so
that the eigenvalue of the vector in the direction of y has a norm strictly greater than
those of all other eigenvalues. The element  acts on a great .n� 1/–sphere S whose
complement contains y . The pair y and its antipode y� are the unique attracting fixed
points of the components of Sn�S containing them respectively. We can choose a
point z in �2 �S . As m!1, the sequence m.z/ converges to y or y� . Thus,
y 2 x�2\

x�1 ¤¿ or y� 2 x�2\A.x�1/¤¿. The nonempty set gives a � –invariant
convex subset of dimension less than n; however, h is irreducible by Proposition 2.3.
This is a contradiction.

Therefore, �2 D �1 or �2 D A.�1/. Hence, �2=� D �1=� or A induces a
projective diffeomorphism �2=�!�1=� . This proves the injectivity of hol.

The surjectivity of hol is shown as follows. By definition, each element of Drep. yP /

acts cocompactly on a properly convex open subset of Sn as a projective Coxeter
group. We now show that the quotient orbifold is diffeomorphic to yP . Consider
yPh WD�=h.�1. yP // for h in Drep. yP /. Since h.�1. yP // is isomorphic to �1. yP /, by

Charney and Davis [12], the Coxeter diagrams are the same for the two groups, and a
properly convex fundamental domain Fh of yPh has the same facial incident relation as
that of a properly convex fundamental domain F of yP ; see Davis [24, Section 13.1].
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By Davis [26, Corollary 1.3], yPh is diffeomorphic to yP ; see also Wiemeler [51, Corol-
lary 5.3]. Therefore, hol is a homeomorphism as hol is a local homeomorphism.

The third item was proved while proving the second one.

The following lemma is a generalization of Choi [17, Lemma 1].

Let R.nC 1/ denote the subspace SL˙nC1.R/ of all reflections. For each element
g 2 SL˙nC1.R/, let Œg� 2 PGLnC1.R/ denote the corresponding element.

Lemma 3.1 Let U �R.1C n/f denote the subspace of all .g1; : : : ;gf / generating
an irreducible dividing projective Coxeter group � . Then the PGLnC1.R/–action on U
by conjugation

Œg� ı .g1; : : : ;gf /D .gg1g�1; : : : ;ggf g�1/; g 2 SL˙nC1.R/

is proper and free.

Proof The proof for the properness directly generalizes that of Choi [17, Lemma 1]
as the group � is irreducible.

Suppose that an element zg of SL˙nC1.R/ satisfies zggi D gi zg for i D 1; : : : ; f . We
have a compact properly convex polytope P as a properly convex fundamental domain
of � since � is a dividing projective Coxeter group. Choosing generators differently
if necessary, we may assume without loss of generality that each side Si of P is fixed
by gi for i D 1; : : : ; f . Since zg commutes with gi , zg acts on the subspace S 0i � Sn

containing Si and each pair fri ;A.ri/g of antipodal fixed points of gi . Therefore, zg
acts on fv1; : : : ; vm;A.v1/; : : : ;A.vm/g for vertices v1; : : : ; vm of P . As P has nC1

vertices in a general position, zg is diagonalizable over R. Since zgW V ! V is a � –
module morphism, we obtain zg D �IV for �D˙1 by Schur’s lemma for R.

One related question is:

Question 3.2 Can D. yP / for a compact hyperbolic Coxeter orbifold yP be compact
and have dimension greater than or equal to 1?

This question was first asked by Benoist in 2005 as far as the authors know (see
Marquis [40] for examples).
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3.2 The reinterpretations of the deformation spaces as solution spaces

Let V be an .nC1/–dimensional real vector space. Denote by Ms�t .R/ the set of s�t

matrices with real entries. We will identify V and V � with M.nC1/�1.R/DRnC1 and
M1�.nC1/.R/D .R

nC1/� respectively as follows: we choose a basis fe1; : : : ; enC1g of
V . Let fe�

1
; : : : ; e�

nC1
g be the dual basis of V � . If ˛iD˛i;1e�

1
C� � �C˛i;nC1e�

nC1
2V � ,

then ˛i is identified with the 1 � .n C 1/ matrix .˛i;1; : : : ; ˛i;nC1/. Similarly, if
bj D bj ;1e1 C � � � C bj ;nC1enC1 2 V , then bj is identified with the .n C 1/ � 1

matrix .bj ;1; : : : ; bj ;nC1/
t , where At means the transpose of a matrix A. Hence

˛i.bj /D ˛ibj , where the right-hand side is the scalar obtained as the matrix product of
a 1� .nC1/ matrix with an .nC1/�1 matrix. Denote by InC1 the .nC1/� .nC1/

identity matrix. With this matrix notation, a reflection R is of form InC1 � b˛ for
˛ 2 V � and b 2 V with ˛b D 2.

Let yP be a compact Coxeter n–orbifold with the fundamental chamber a properly
convex n–polytope P with f facets in Sn , and let I yP D f1; : : : ; f g be the index set
of the facets. The orbifold structure of yP gives us the order nij of the ridge Fi \Fj ,
i; j 2 I yP ; i ¤ j . Let P be given by a system of linear inequalities ˛i � 0 (i 2 I yP ) for
˛i in V � . Let bi be a vector with ˛ibi D 2 for each i , and let Ri be the reflection
InC1 � bi˛i for each i 2 I , and let � � SL˙nC1.R/ be the group generated by the
reflection Ri .

Define

E
1; yP
D f.i; j / 2 I yP � I yP j i D j g;

E
2; yP
D f.i; j / 2 I yP � I yP j i < j ; Fi and Fj are adjacent in P and nij D 2g;

E
3; yP
D f.i; j / 2 I yP � I yP j i < j ; Fi and Fj are adjacent in P and nij � 3g;

E
4; yP
D f.i; j / 2 I yP � I yP j i < j ; Fi and Fj are not adjacent in Pg:

Vinberg’s result leads us to solve the following system of polynomial equations:

� aii D ˛ibi D 2 for .i; i/ 2E
1; yP

.
� aij D ˛ibj D 0 and aji D j̨ bi D 0 for .i; j / 2E

2; yP
.

� aij aji D ˛ibj j̨ bi D 4 cos2
�
�

nij

�
for .i; j / 2E

3; yP
.

We call these polynomial equations Vinberg’s equations. The ˛i and bi are variables.
Denote by e the number of ridges and e2 the number of ridges of order 2. N yP D

f CeCe2 is the number of Vinberg’s equations. Let fˆkg
N yP
kD1

be the set of polynomials
in Vinberg’s equations, and define a map

ˆ yP W .V
�/f �V f

!RN yP ; .˛1; : : : ; f̨ ; b1; : : : ; bf / 7! .ˆ1; : : : ; ˆN yP
/:
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Let RC be the set of positive real numbers. Denote by

� W . zG WDRfC �SL˙nC1.R//� .V
�/f �V f

! .V �/f �V f

the action given by

(3-2) .d1; : : : ; df ;g/ � .˛1; : : : ; f̨ ; b1; : : : ; bf /

D .d1˛1g�1; : : : ; df f̨ g�1; d�1
1 gb1; : : : ; d

�1
f gbf /;

where di 2RC for each i 2 I yP and g 2 SL˙nC1.R/. Then we have the invariance

(3-3) ˆ yP ı �.d1; : : : ; df ;g/Dˆ yP :

Define an open set

(3-4) U yP of elements .˛1; : : : ; f̨ ; b1; : : : ; bf / 2 .V
�/f �V f

that satisfy

� there exists Ev ¤O such that ˛i.Ev/ > 0 for each i ,
� h˛1; : : : ; f̨ i D V � ,
� aij < 0 and aji < 0 if .i; j / 2E3; yP [E4; yP ,
� aij aji > 4 if .i; j / 2E4; yP ,

and where we replaced the condition (L2) with (L2) 0 .

We define the solution set
zD. yP / WDˆ�1

yP
.0/\U yP :

By invariance, zG acts on U yP and on zD. yP /. Applying the action �.di ;g/ on zD. yP /,
we have

InC1� .d
�1
i gbi/.di˛ig

�1/D g.InC1� bi˛i/g
�1
D gRig

�1 for i 2 I yP :

So, the action �.d1; : : : ; df ;g/ on zD. yP / corresponds to the conjugation in SL˙nC1.R/.

Define M as the submanifold of .V �/f �V f of elements .˛1; : : : ; f̨ ; b1; : : : ; bf /,
where ˛ibi D 2 for every i D 1; : : : ; f . Define a map

I 0SL˙nC1.R/WM!R.nC 1/f

by sending .˛1; : : : ; f̨ ; b1; : : : ; bf / to .r1; : : : ; rf / given by

ri. � /D IV �˛i. � /bi W V ! V for each i D 1; : : : ; f:

The map sends the information on the reflection subspace and the vertex to the reflection
itself. Since a reflection is determined by its fixed-point subspace and the antipodal fixed
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point, the group RfC � f˙IV g
f acts simply transitively on the fibers of I 0SL˙nC1.R/ .

Therefore, we obtain a principal fibration

(3-5)

RfC � f˙IV g
f // M

I0
SL˙

nC1
.R/

��

R.nC 1/f :

Theorem 3.2 Let yP be a compact Coxeter n–orbifold. Assume that yP admits a real
projective structure, but does not admit a spherical or Euclidean structure. We consider
the solution set

zD. yP / WDˆ�1
yP
.0/\U yP �M

for Vinberg’s equations ˆ yP .

� There exists a PGLnC1.R/–equivariant surjective map

IW zD. yP /=.RfC � f˙IV g/!Drep. yP /:

� Drep. yP / is homeomorphic to zD. yP /=.RfC � f˙IV g/.

� The deformation space D. yP / of real projective structures on the Coxeter orb-
ifold yP is homeomorphic to a union of components of

zD. yP /= zG DDrep. yP /=PGLnC1.R/; where zG DRfC �SL˙nC1.R/:

Proof The conditions of (3-4) imply that we have a nontrivial properly convex polytope
as a fundamental chamber. Vinberg’s equation, Theorem 2.1 and Proposition 2.3
imply that the image points are discrete faithful dividing reflection representations
�1. yP /! SL˙nC1.R/.

Conversely, the collection of reflections generating the discrete faithful dividing reflec-
tion representation gives some point in zD. yP /, ie in ˆ�1

yP
.0/\ U yP , since it satisfies

(L1) and (L2) 0 as we showed in Section 2.2. Hence the map is surjective.

A representation given by assigning the fixed points and reflection facets to fundamental
generators has ambiguity understood by (3-2). Thus, the fibers are again given as orbits
of RfC�f˙IV g, and I 0SL˙nC1.R/ restricts to a fibration zD. yP /!Drep. yP /. The second
item follows. The third item follows by Theorem 3.1 and the second item.
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Let PV . yP / denote the space of f � f matrices AD .aij / satisfying (L1) and (L2) 0

with rank A D nC 1 and no component of zero type. We recall from (2-1) that a
diagonal matrix group RfC acts on PV . yP / by

(3-6) .d1; : : : ; df / ı .aij /D .did
�1
j aij /:

Corollary 3.1 Let yP be a compact Coxeter n–orbifold. Assume that yP admits a real
projective structure, but does not admit a spherical or Euclidean structure. Then there
exists a homeomorphism between each pair of the spaces below:

D. yP / !Drep. yP /=PGLnC1.R/ ! zD. yP /= zG ! PV . yP /=RfC:

Proof Theorems 3.1 and 3.2 give the first and second correspondences. The map from
the second one to the fourth one is obtained by going to the third one and taking ˛i.bj /

as the entries of the Cartan matrices. Theorem 2.3 and Proposition 2.3 give us the map
from the fourth one to the second one. These maps are inverses of each other by the
uniqueness part of Theorem 2.3.

4 Real projective structures near the hyperbolic structure

We will obtain the information of real projective structures near the hyperbolic structure
in terms of Zariski tangent spaces.

Recall in the previous section that real projective structures in the deformation space
of a compact Coxeter orbifold yP correspond to solutions to Vinberg’s equations. In
Section 4.1 we study the Zariski tangent space to this solution space. In Section 4.2
we describe the space of hyperbolic structures of yP in terms of polynomial equations,
forming so-called hyperbolic equations. In Section 4.3 we study the Zariski tangent
space to the solution space of the hyperbolic equations. We compute the rank of the
differential of the polynomial map from the hyperbolic equation in Proposition 4.1. In
Section 4.5 we compare these two Zariski tangent spaces and combine this observation
with the weak orderability of yP to prove Lemma 4.1, computing the rank of the
differential of the polynomial map from Vinberg’s equation. Finally, in Section 4.6, we
prove the main result Theorem 4.1.

4.1 The Zariski tangent space to Vinberg’s equations

Let yP be a Coxeter orbifold based on a properly convex n–polytope P with f facets
in Sn , and let I yP D f1; : : : ; f g be the index set of the facets. Assume that P is given
by a system of linear inequalities, ˛i � 0 (i 2 I yP ) for ˛i 2 V � . Suppose that each bi ,
i D 1; : : : ; f , is a reflection vector with ˛ibi D 2.
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As in Section 3.2, we have variables ˛i 2 V � D .RnC1/� and bi 2 V D RnC1 for
i 2 I yP D f1; : : : ; f g, and Vinberg’s equations are of the following form:

� ˆii D ˛ibi � 2D 0 for .i; i/ 2E
1; yP

.

� ˆ
Œ1�
ij D ˛ibj D 0 and ˆŒ2�ij D j̨ bi D 0 for .i; j / 2E

2; yP
.

� ˆij D ˛ibj j̨ bi � 4 cos2
�
�

nij

�
for .i; j / 2E

3; yP
.

Recall that N yP is the number of Vinberg’s equations, ie N yP D f C eC e2 . Let

�
Œ1�
i W .V

�/f �V f
! V � and �

Œ2�
i W .V

�/f �V f
! V

denote the projections onto the i th factor V � and the .f C i/th factor V , for ev-
ery i 2 I yP , respectively. For each .i; j / 2 E

3; yP
, the derivative of ˆij at p D

.˛1; : : : ; f̨ ; b1; : : : ; bf /, considered as a linear map, is

Dˆij . Pp/D aji P̨ ibj C aij P̨j bi C aij j̨
Pbi C aji˛i

Pbj

D aji�
Œ1�
i . Pp/bj C aij�

Œ1�
j . Pp/bi C aij j̨�

Œ2�
i . Pp/C aji˛i�

Œ2�
j . Pp/

for Pp D . P̨1; : : : ; P̨f ; Pb1; : : : Pbf / 2 .V
�/f �V f , and entries aij of the Cartan matrix

of yP . Similarly, for each .i; i/ 2E
1; yP

,

Dˆii. Pp/D �
Œ1�
i . Pp/bi C˛i�

Œ2�
i . Pp/;

and for each .i; j / 2E
2; yP

,

Dˆ
Œ1�
ij . Pp/D �

Œ1�
i . Pp/bj C˛i�

Œ2�
j . Pp/ and Dˆ

Œ2�
ij . Pp/D �

Œ1�
j . Pp/bi C j̨�

Œ2�
i . Pp/:

More explicitly, combining Vinberg’s equations gives a function ˆ yP W .V
�/f �V f !

RN yP and the rows of the N yP � 2.nC 1/f Jacobian matrix ŒDˆ yP � are made up of
.nC 1/–entry blocks.

For each .i; i/ 2E
1; yP

,

ŒDˆii �D .0; : : : ; 0; bi;1; : : : ; bi;nC1; 0; : : : ; 0; ˛i;1; : : : ; ˛i;nC1; 0; : : : ; 0/

D .0; : : : ; 0; bt
i„ƒ‚…

ithblock

; 0; : : : ; 0; ˛i„ƒ‚…
.fCi/thblock

; 0; : : : ; 0/:

For .i; j / 2E
2; yP

,

ŒDˆ
Œ1�
ij �

D .0; : : : ; 0; bt
j„ƒ‚…

ith

; 0; : : : ; 0; 0„ƒ‚…
j th

; 0; : : : ; 0; 0„ƒ‚…
.fCi/th

; 0; : : : ; 0; ˛i„ƒ‚…
.fCj/th

; 0; : : : ; 0/;
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ŒDˆ
Œ2�
ij �

D .0; : : : ; 0; 0„ƒ‚…
ith

; 0; : : : ; 0; bt
i„ƒ‚…

j th

; 0; : : : ; 0; j̨„ƒ‚…
.fCi/th

; 0; : : : ; 0; 0„ƒ‚…
.fCj/th

; 0; : : : ; 0/:

For .i; j / 2E
3; yP

,

(4-1) ŒDˆij �D .0; : : : ; 0; ajib
t
j„ƒ‚…

ith

; 0; : : : ; 0; aij bt
i„ƒ‚…

j th

; 0; : : : ; 0; aij j̨„ƒ‚…
.fCi/th

; 0; : : : ; 0;

aji˛i„ƒ‚…
.fCj/th

; 0; : : : ; 0/:

Suppose that p is a point of ˆ�1
yP
.0/. Then the Zariski tangent space at p is the kernel

of the Jacobian matrix ŒDˆ yP � evaluated at p .

4.2 The hyperbolic equations

We let V be an .nC 1/–dimensional real vector space with coordinate functions
x1; : : : ;xnC1 , and let yP be a compact hyperbolic Coxeter orbifold with the fundamental
chamber equal to a compact n–polytope P in the Klein projective model of the n–
dimensional hyperbolic space Hn . Let P have facets Fi for i 2 I yP D f1; 2; : : : ; f g.

Denote by �i 2 V the inward unit normal to the subspace spanned by vectors in
directions of Fi with respect to the Lorentzian inner product on V . Then the following
system of linear inequalities define P :

h�i ;xi � 0 for each i 2 I yP and x1 D 1:

To construct a hyperbolic Coxeter n–polytope P with prescribed dihedral angles �=nij ,
we need to solve the equations

h�i ; �ii D 1 for each i 2 I yP ;

h�i ; �j i D � cos
�
�

nij

�
if facets Fi and Fj are adjacent in P :

(4-2)

We call these equations hyperbolic equations. To compare the hyperbolic equations
with Vinberg’s equations, the system of linear inequalities defining P is given by

˛i.x/� 0 for i 2 I yP and x1 D 1;x 2 V;

where the linear functional ˛i 2 V � is given by ˛i.v/ D 2h�i ; vi. The hyperbolic
reflection in the facet Fi is a map

Ri.v/D v� 2h�i ; vi�i D v�˛i.v/bi
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for bi D �i . Thus taking ˛i D 2h�i ; � i and bi D �i gives a hyperbolic point t in the
space ˆ�1

yP
.0/ corresponding to the hyperbolic structure on yP . We rewrite the equation

in another way. If facets Fi and Fj are adjacent in P , then

aij D ˛i.bj /D 2h�i ; �j i D �2 cos
�
�

nij

�
and thus

aii D 2h�i ; �ii D 2 for .i; i/ 2E
1; yP
;

aij D 0 and aji D 0 for .i; j / 2E
2; yP
;

aij aji D 4 cos2
�
�

nij

�
for .i; j / 2E

3; yP
:

4.3 The Zariski tangent space to the hyperbolic equations

As in Section 4.2, we assume that P is a compact hyperbolic Coxeter n–polytope
where the dihedral angle at each ridge Fij D Fi \ Fj equals �=nij for an integer
nij � 2. Constructing such a hyperbolic n–polytope P is the same as solving the
system of hyperbolic equations (4-2) for the unit normals �i . Equivalently we can write
these equations in terms of the reflection vectors bi D �i . This gives the following
system of mD f C e equations:

(4-3)
‰ii D 2hbi ; bii � 2D 0 for .i; i/ 2E

1; yP
;

‰ij D 2hbi ; bj iC 2 cos
�
�

nij

�
D 0 for .i; j / 2E

2; yP
[E

3; yP
:

Combining these gives a function ‰ yP W V
f DR.nC1/f !Rm , and ‰�1

yP
.0/ contains

Coxeter n–polytopes in Hn with the desired dihedral angles.

We define an open manifold

(4-4) W yP WDf.b1; : : : ; bf /2V f
j hbi ; biiD1; i 2I yP ; hbi ; bj i<�2 if .i; j /2E

4; yP
g:

The f –tuple .b1; : : : ; bf / of normal vectors to facets for a compact hyperbolic polytope
satisfies (4-3) and is in W yP (see Roeder, Hubbard and Dunbar [43]).

Now we compute the derivative D‰ yP at a hyperbolic point t . Setting ˛i D 2h�i ; � i,
i D 1; : : : ; f , to be the linear functionals defining the facets of P , we obtain

D‰ij . Pb/D 2h Pbi ; bj iC 2hbi ; Pbj i D j̨
Pbi C˛i

Pbj

for Pb WD . Pb1; : : : ; Pbf / 2 V f ; Pbi 2 V; i D 1; : : : ; f . For i D j , this becomes

D‰ii. Pb/D 2˛i
Pbi for Pb D . Pb1; : : : ; Pbf / 2 V f :

Equivalently, the rows of the m� .nC 1/f Jacobian matrix ŒD‰ yP � consist of blocks,
each consisting of .nC 1/ entries.
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For each .i; i/ 2E
1; yP

,

ŒD‰ii �D .0; : : : ; 0; 2˛i;1; : : : ; 2˛i;nC1; 0; : : : ; 0/

D .0; : : : ; 0; 2˛i„ƒ‚…
ith block

; 0; : : : ; 0/

and for each .i; j / 2E
2; yP
[E

3; yP
,

ŒD‰ij �D .0; : : : ; 0; j̨„ƒ‚…
ith block

; 0; : : : ; 0; ˛i„ƒ‚…
j th block

; 0; : : : ; 0/:

Then the Zariski tangent space to ‰�1
yP
.0/\W yP at t is ker D‰ yP .

Recall that Hom.�1. yP /;PO.1; n// is an algebraic subset of the space PO.1; n/f ,
where f is the number of fundamental generators, ie the number of facets of P . We
give it the standard subspace topology.

Proposition 4.1 Let P be a compact hyperbolic Coxeter n–polytope. Suppose that
yP is the Coxeter orbifold arising from P , with the associated holonomy representation
h0 , and let xb0 denote the f–tuple of vectors normal to the facets of P in the Lorentzian
spaces. Then we have the following.

� The orbit of h0 under PO.1; n/ contains an open neighborhood of h0 in

Hom.�1. yP /;PO.1; n//

and this is a smooth n.nC1/
2

–manifold in a neighborhood of h0 .

� A neighborhood of xb0 at ‰�1
yP
.0/ is diffeomorphic to a neighborhood of h0 in

the real algebraic set Hom.�1. yP /;PO.1; n//.

� dim ker D‰ yP ;xb0
D dim so.1; n/D n.nC1/

2
.

Proof Let �1. yP / act on the Lie algebra so.1; n/ of PO.1; n/ by the representation
Ad ıh0 . By the work of Weil [50], the Zariski tangent space to Hom.�1. yP /;PO.1; n//
at h0 is isomorphic to the vector space Z1.�1. yP /; so.1; n/Ad ıh0

/ of 1–cocycles for
computing the group cohomology; see also Raghunathan [42, Chapters 6 and 7] and
Goldman [30, Section 1] for a material on cycles and cocycles.

A neighborhood of Hom.�1. yP /;PO.1; n// of h0 consists of holonomies of hyperbolic
Coxeter orbifolds diffeomorphic to yP by Choi [16, Theorem 1]. The Mostow rigidity
shows that a neighborhood of h0 in Hom.�1. yP /;PO.1; n// is inside the orbit of h0

under the conjugation action of PO.1; n/. The orbit is a smooth 1
2
n.nC 1/–manifold

in a neighborhood of h0 by an easy real algebraic group action theory argument since

Geometry & Topology, Volume 19 (2015)



Projective deformations of hyperbolic Coxeter orbifolds 1803

the hyperbolic holonomy group h0.�1. yP // has a trivial centralizer in PO.1; n/. This
proves the first item.

Let R.1; n/ denote the subspace of PO.1; n/ of reflections fixing a hyperplane meeting
the positive cone, and

Uf WD f.b1; : : : ; bf / 2 V f
j hbi ; bii D 1; i 2 I yP g;

which is a smooth manifold. Define the map

I 0PO.1;n/W Uf !R.1; n/f

by sending .b1; : : : ; bf / to .r1; : : : ; rf / such that

ri. � /D IV � 2hbi ; � ibi ; i D 1; : : : ; f:

Here, f˙IV g
f acts on fibers transitively and the map is a covering map. Consider the

restriction

I 00W ‰�1
yP
.0/\W yP �W yP ! Hom.�1. yP /;PO.1; n//�R.1; n/f ;

where W yP is an open subset of Uf . The relations defining

‰�1
yP
.0/ and Hom.�1. yP /;PO.1; n//

coincide under I 00 and the above restriction I 00 of I 0PO.1;n/ is a local diffeomorphism
to its image. Here, f˙IV g acts transitively on fibers. This proves the second item.
(We are in the situation of diffeomorphic coordinate variable changes, heuristically
speaking.)

We also obtain

dim ker D‰ yP ;xb0
D dim Z1.�1. yP /; so.1; n/Ad ıh0

/

since the second Zariski tangent space is again given by a system of algebraic equations
on R.1; n/f . By Weil infinitesimal rigidity [49], H 1.�1. yP /; so.1; n/Ad ıh0

/D 0, and
it follows that

dim Z1.�1. yP /; so.1; n/Ad ıh0
/D dim B1.�1. yP /; so.1; n/Ad ıh0

/:

Since PO.1; n/ acts freely on Hom.�1. yP /;PO.1; n// with smooth orbits, the di-
mension dim B1.�1. yP /; so.1; n/Ad ıh0

/ of the tangent space of the orbit passing h0

is dim so.1; n/ D .n.nC 1//=2. This proves the third item; see also the proof of
Choi [20, Theorem 1].
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4.4 The main theorem

Definition 4.1 A real projective Coxeter n–orbifold yP is weakly orderable if the
facets of the fundamental polytope P in Sn can be labeled by integers f1; : : : ; f g so
that for each facet Fi ,

� the cardinality of the collection

Fi WD fFj j j > i and the ridge Fi \Fj has order 2g

is less than or equal to n,

� the collection Fi is in general position whenever Fi is not empty.

Here, the general position for a collection of facets means that the defining linear
equations of the facets are linearly independent. For nD 3, we automatically have the
last general position condition by Choi [20, Lemma 3]. Thus, the second definition
generalizes the earlier definition for nD 3.

Recall that a n–polytope P in Sn is simple if exactly n facets meet at each vertex.
Let f and e be the numbers of facets and ridges of P respectively. We introduce an
integer

ıP D e� nf C 1
2
n.nC 1/

which depends only on the polytope P but not on the orbifold structure. Barnette [2]
showed for simple polytopes P that ıP � 0; see also Greene [32]. In our context,
ıP D 0 indicates the full rank property of hyperbolic equations; see (4-8).

Theorem 4.1 Let P be a compact hyperbolic Coxeter n–polytope, and suppose that yP
is the Coxeter orbifold arising from P . Suppose that

(C1) ıP D 0,

(C2) yP is weakly orderable.

Then a neighborhood of the hyperbolic point in D. yP / is homeomorphic to a cell of
dimension eC. yP /� n.

4.5 The main lemma

The proof of Lemma 4.1 is technical, hence in Example 4.1 we will introduce a simple
example to explain the procedure.
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Lemma 4.1 Let P be a compact hyperbolic Coxeter n–polytope, and suppose that yP
is the Coxeter orbifold arising from P . Let e2 be the number of ridges of order 2,
and let xb0 2 V f be the f –tuple .b1; : : : ; bf / of normal unit vectors for facets of P ,
and x̨0 2 V �f the f –tuple .˛1; : : : ; f̨ / of dual vectors ˛i D 2hbi ; � i. If yP is weakly
orderable, then

rank Dˆ yP ;.x̨0;xb0/
D rank D‰ yP ;xb0

C e2:

Proof Since yP is weakly orderable, we order the facets of P so that each facet
contains at most n ridges of order 2 in facets of higher indices. Define

I yP .k/D fi 2 I yP j i > k and Fi \Fk is a ridge of order 2g and i.k/D jI yP .k/j:

The set can be empty and i.k/D 0. We may enumerate

I yP .k/D fI yP .k; 1/; : : : ; I yP .k; i.k//g

such that if s < t , then I yP .k; s/ < I yP .k; t/. Clearly,

(4-5) k < I yP .k; l/ for 1� l � i.k/:

That is,

1< I yP .1/D fI yP .1; 1/ < I yP .1; 2/ < � � �< I yP .1; i.1//g;

2< I yP .2/D fI yP .2; 1/ < I yP .2; 2/ < � � �< I yP .2; i.2//g;

:::

q < I yP .q/D fI yP .q; 1/ < I yP .q; 2/ < � � �< I yP .q; i.q//g;

for some q; 1� q < f . Then we have

E
2; yP
D f.1; I yP .1; 1//; .1; I yP .1; 2//; : : : ; .1; I yP .1; i.1///;

.2; I yP .2; 1//; .2; I yP .2; 2//; : : : ; .2; I yP .2; i.2///;

:::

.q; I yP .q; 1//; .q; I yP .q; 2//; : : : ; .q; I yP .q; i.q///g;

where i.k/� n. We note that

qX
kD1

i.k/D jE
2; yP
j D e2:
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Define the 1� .nC 1/f matrices

˛
Œj �

Œi�
D .0; : : : ; 0; ˛i„ƒ‚…

j th block

; 0; : : : ; 0/ and b
Œj �

Œi�
D .0; : : : ; 0; bt

i„ƒ‚…
j th block

; 0; : : : ; 0/:

Denote by J the .nC1/� .nC1/–diagonal matrix with diagonal entries �1; 1; : : : ; 1.
(We will now omit from Dˆ

ij ;.x̨;xb/
the subscripts .x̨; xb/ to simplify.)

We note that ˛i D 2bt
i J and aij D aij at the hyperbolic point by Vinberg [47, Propo-

sition 24] and the rows of the N yP � 2.nC 1/f matrix ŒDˆ yP � are as follows:

(4-6)

ŒDˆii �D .b
Œi�

Œi�
; ˛
Œi�

Œi�
/ .i; i/ 2E

1; yP
;

ŒDˆ
Œ1�
ij �D .b

Œi�

Œj �
; ˛
Œj �

Œi�
/ .i; j / 2E

2; yP
;

ŒDˆ
Œ2�
ij �D .b

Œj �

Œi�
; ˛
Œi�

Œj �
/ .i; j / 2E

2; yP
;

ŒDˆij �D .aij b
Œj �

Œi�
C ajib

Œi�

Œj �
; aji˛

Œj �

Œi�
C aij˛

Œi�

Œj �
/ .i; j / 2E

3; yP
;

by (4-1). (Here, we merely indicate the rows and not write the whole matrix.)

Before completing the proof, let us give an example to illustrate.

Example 4.1 As an example, we use a compact 3–dimensional hyperbolic tetrahedron
to illustrate the method in the proof of Lemma 4.1; see Figure 1. Here, if an edge is
labeled l , then its dihedral angle is �= l . We will simply use the inherited notation
here with obvious meaning.

F1
F2

F3

F4

2 2
3

3

5 2

Figure 1: A compact hyperbolic tetrahedron

Then

I yP .1/D fI yP .1; 1/D 3< I yP .1; 2/D 4g; I yP .2/D fI yP .2; 1/D 4g;

E
2; yP
D f.1; 3/; .1; 4/; .2; 4/g; E

3; yP
D f.1; 2/; .2; 3/; .3; 4/g;

E
1; yP
D f.1; 1/; .2; 2/; .3; 3/; .4; 4/g;
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and hence

ŒDˆ yP �D

26666664
Dˆ

Œ1�
ij .i; j / 2E

2; yP

Dˆ
Œ2�
ij .i; j / 2E

2; yP

Dˆij .i; j / 2E
3; yP

Dˆii .i; i/ 2E
1; yP

37777775D

26666666666666666666666666666666664

Dˆ
Œ1�
13

Dˆ
Œ1�
14

Dˆ
Œ1�
24

DˆŒ2�
13

Dˆ
Œ2�
14

Dˆ
Œ2�
24

Dˆ12

Dˆ23

Dˆ34

Dˆ11

Dˆ22

Dˆ33

Dˆ44

37777777777777777777777777777777775

D

266666666666666666666666666666664

bt
3

0 0 0 0 0 ˛1 0

bt
4

0 0 0 0 0 0 ˛1

0 bt
4

0 0 0 0 0 ˛2

0 0 bt
1

0 ˛3 0 0 0

0 0 0 bt
1

˛4 0 0 0

0 0 0 bt
2

0 ˛4 0 0

a21bt
2

a12bt
1

0 0 a12˛2 a21˛1 0 0

0 a32bt
3

a23bt
2

0 0 a23˛3 a32˛2 0

0 0 a43bt
4

a34bt
3

0 0 a34˛4 a43˛3

bt
1

0 0 0 ˛1 0 0 0

0 bt
2

0 0 0 ˛2 0 0

0 0 bt
3

0 0 0 ˛3 0

0 0 0 bt
4

0 0 0 ˛4

377777777777777777777777777777775
where 0 is the zero 1� 4 matrix.
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First, for each .i; j / 2 E
2; yP

, add a row ŒDˆ
Œ1�
ij � of ŒDˆ yP � to another row ŒDˆ

Œ2�
ij �.

This gives

(4-7)

26666666666666666666666666666664

bt
3

0 0 0 0 0 ˛1 0

bt
4

0 0 0 0 0 0 ˛1

0 bt
4

0 0 0 0 0 ˛2

bt
3

0 bt
1

0 ˛3 0 ˛1 0

bt
4

0 0 bt
1

˛4 0 0 ˛1

0 bt
4

0 bt
2

0 ˛4 0 ˛2

a21bt
2

a12bt
1

0 0 a12˛2 a21˛1 0 0

0 a32bt
3

a23bt
2

0 0 a23˛3 a32˛2 0

0 0 a43bt
4

a34bt
3

0 0 a34˛4 a43˛3

bt
1

0 0 0 ˛1 0 0 0

0 bt
2

0 0 0 ˛2 0 0

0 0 bt
3

0 0 0 ˛3 0

0 0 0 bt
4

0 0 0 ˛4

37777777777777777777777777777775

:

Second, for .i; j / 2E
3; yP

, multiply a row ŒDˆij � of ŒDˆ yP � by a�1
ij :26666666666666666666666666666664

bt
3

0 0 0 0 0 ˛1 0

bt
4

0 0 0 0 0 0 ˛1

0 bt
4

0 0 0 0 0 ˛2

bt
3

0 bt
1

0 ˛3 0 ˛1 0

bt
4

0 0 bt
1
˛4 0 0 ˛1

0 bt
4

0 bt
2

0 ˛4 0 ˛2

bt
2

bt
1

0 0 ˛2 ˛1 0 0

0 bt
3

bt
2

0 0 ˛3 ˛2 0

0 0 bt
4

bt
3

0 0 ˛4 ˛3

bt
1

0 0 0 ˛1 0 0 0

0 bt
2

0 0 0 ˛2 0 0

0 0 bt
3

0 0 0 ˛3 0

0 0 0 bt
4

0 0 0 ˛4

37777777777777777777777777777775

:
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Third, for each .i; i/ 2E
1; yP

, multiply a row ŒDˆii � of ŒDˆ yP � by 2:2666666666666666666666666664

bt
3

0 0 0 0 0 ˛1 0

bt
4

0 0 0 0 0 0 ˛1

0 bt
4

0 0 0 0 0 ˛2

bt
3

0 bt
1

0 ˛3 0 ˛1 0

bt
4

0 0 bt
1

˛4 0 0 ˛1

0 bt
4

0 bt
2

0 ˛4 0 ˛2

bt
2

bt
1

0 0 ˛2 ˛1 0 0

0 bt
3

bt
2

0 0 ˛3 ˛2 0

0 0 bt
4

bt
3

0 0 ˛4 ˛3

2bt
1

0 0 0 2˛1 0 0 0

0 2bt
2

0 0 0 2˛2 0 0

0 0 2bt
3

0 0 0 2˛3 0

0 0 0 2bt
4

0 0 0 2˛4

3777777777777777777777777775

:

Fourth, multiply the left 16 columns of ŒDˆ yP � by 2 and the .4i � 3/th columns
.i 2 I yP D f1; 2; 3; 4g/ of ŒDˆ yP � by �1 respectively:266666666666666666666664

˛3 0 0 0 0 0 ˛1 0

˛4 0 0 0 0 0 0 ˛1

0 ˛4 0 0 0 0 0 ˛2

˛3 0 ˛1 0 ˛3 0 ˛1 0

˛4 0 0 ˛1 ˛4 0 0 ˛1

0 ˛4 0 ˛2 0 ˛4 0 ˛2

˛2 ˛1 0 0 ˛2 ˛1 0 0

0 ˛3 ˛2 0 0 ˛3 ˛2 0

0 0 ˛4 ˛3 0 0 ˛4 ˛3

2˛1 0 0 0 2˛1 0 0 0

0 2˛2 0 0 0 2˛2 0 0

0 0 2˛3 0 0 0 2˛3 0

0 0 0 2˛4 0 0 0 2˛4

377777777777777777777775
ie 2664

˛3 0 0 0 0 0 ˛1 0

˛4 0 0 0 0 0 0 ˛1

0 ˛4 0 0 0 0 0 ˛2

ŒD‰ yP � ŒD‰ yP �

3775 I
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see Section 4.3 for definition of ŒD‰ yP �. Here we note that

ŒD‰ yP �D

264 D‰ij .i; j / 2E
2; yP

D‰ij .i; j / 2E
3; yP

D‰ii .i; i/ 2E
1; yP

375D

2666666666666666666664

D‰13

D‰14

D‰24

D‰12

D‰23

D‰34

D‰11

D‰22

D‰33

D‰44

3777777777777777777775

D

2666666666666666666664

˛3 0 ˛1 0

˛4 0 0 ˛1

0 ˛4 0 ˛2

˛2 ˛1 0 0

0 ˛3 ˛2 0

0 0 ˛4 ˛3

2˛1 0 0 0

0 2˛2 0 0

0 0 2˛3 0

0 0 0 2˛4

3777777777777777777775

:

Finally, using elementary column operations, we obtain26664
˛3 0 �˛1 0 0 0 ˛1 0

˛4 0 0 �˛1 0 0 0 ˛1

0 ˛4 0 �˛2 0 0 0 ˛2

O10�4 O10�4 O10�4 O10�4 ŒD‰ yP �

37775
where Os�t is the s � t zero matrix. Hence, the matrix is of rank D rankŒD‰ yP �C e2 .

Now, we continue with the proof of Lemma 4.1. Using the notation as before, we recall
our matrix ŒDˆ yP � in (4-6). Now we use elementary row and column operations of
ŒDˆ yP � to obtain a matrix whose rank is easier to compute. The step will correspond
to one after (4-7) in the above example.

First, for .i; j / 2E
2; yP

, add a row ŒDˆ
Œ1�
ij � of ŒDˆ yP � to another row ŒDˆ

Œ2�
ij �:

.b
Œj �

Œi�
; ˛
Œi�

Œj �
/! .b

Œj �

Œi�
C b

Œi�

Œj �
; ˛
Œj �

Œi�
C˛

Œi�

Œj �
/:

Second, for .i; j / 2E
3; yP

, multiply a row ŒDˆij � of ŒDˆ yP � by a�1
ij :

.aij b
Œj �

Œi�
C ajib

Œi�

Œj �
; aji˛

Œj �

Œi�
C aij˛

Œi�

Œj �
/! .b

Œj �

Œi�
C b

Œi�

Œj �
; ˛
Œj �

Œi�
C˛

Œi�

Œj �
/:

Recall that for .i; j / 2E
3; yP

each aij is nonzero and aij D aji at the hyperbolic point
in ˆ�1.0/.
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Third, for .i; i/ 2E
1; yP

, multiply a row ŒDˆii � of ŒDˆ yP � by 2:

.b
Œi�

Œi�
; ˛
Œi�

Œi�
/! .2b

Œi�

Œi�
; 2˛

Œi�

Œi�
/:

Fourth, multiply the left .nC 1/f columns of ŒDˆ yP � by 2 and the .i.nC 1/� n/th

columns .i 2 I yP / of ŒDˆ yP � by �1 respectively (The fact that

˛i D 2�t
i J and bi D �i

is used here):

ŒDˆ
Œ1�
ij �! .˛

Œi�

Œj �
; ˛
Œj �

Œi�
/ .i; j / 2E

2; yP
;

ŒDˆ
Œ2�
ij �! .˛

Œj �

Œi�
C˛

Œi�

Œj �
; ˛
Œj �

Œi�
C˛

Œi�

Œj �
/ .i; j / 2E

2; yP
;

ŒDˆij �! .˛
Œj �

Œi�
C˛

Œi�

Œj �
; ˛
Œj �

Œi�
C˛

Œi�

Œj �
/ .i; j / 2E

3; yP
;

ŒDˆii �! .2˛
Œi�

Œi�
; 2˛

Œi�

Œi�
/ .i; i/ 2E

1; yP
:

Similarly, the rows of the .f C e/� .nC 1/f Jacobian matrix ŒD‰ yP � are as follows:

ŒD‰ij �D ˛
Œj �

Œi�
C˛

Œi�

Œj �
; .i; j / 2E

2; yP
[E

3; yP
;

ŒD‰ii �D 2˛
Œi�

Œi�
; .i; i/ 2E

1; yP
I

see Section 4.3 for definition of ŒD‰ yP �. Comparing these two matrices and rearranging,
we observe that ŒDˆ yP � became26666666666666666664

˛
Œ1�

ŒI yP .1;1/�
˛
ŒI yP .1;1/�

Œ1�

:::
:::

˛
Œ1�

ŒI yP .1;i.1//�
˛
ŒI yP .1;i.1//�

Œ1�

:::
:::

˛
Œq�

ŒI yP .q;1/�
˛
ŒI yP .q;1/�

Œq�

:::
:::

˛
Œq�

ŒI yP .q;i.q//�
˛
ŒI yP .q;i.q//�

Œq�

ŒD‰ yP � ŒD‰ yP �

37777777777777777775
which is an N yP � 2.nC 1/f matrix divided into two e2 � .nC 1/f –matrices. The
top ones correspond to the copies of E

2; yP
–rows, and two bottom .f Ce/� .nC1/f –

matrices equal ŒD‰ yP �.
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Using elementary column operations, we obtain2666666666666666664

˛
Œ1�

ŒI yP .1;1/�
�˛

ŒI yP .1;1/�

Œ1�
˛
ŒI yP .1;1/�

Œ1�

:::
:::

˛
Œ1�

ŒI yP .1;i.1//�
�˛

ŒI yP .1;i.1//�

Œ1�
˛
ŒI yP .1;i.1//�

Œ1�

:::
:::

˛
Œq�

ŒI yP .q;1/�
�˛

ŒI yP .q;1/�

Œq�
˛
ŒI yP .q;1/�

Œq�

:::
:::

˛
Œq�

ŒI yP .q;i.q//�
�˛

ŒI yP .q;i.q//�

Œq�
˛
ŒI yP .q;i.q//�

Œq�

0 ŒD‰ yP �

3777777777777777775

:

Now rewriting this matrix into the union of f of N yP � .nC 1/–matrices and an
N yP �f .nC 1/ matrix, we obtain266666666666666666666664

˛I yP .1;1/
� � � � � � �

:::
:::

:::
:::

: : :
:::

˛I yP .1;i.1//
� � � � � � �

0 ˛I yP .2;1/
� � � � � �

:::
:::

:::
:::

: : :
:::

0 ˛I yP .2;i.2//
� � � � � �

:::
:::

: : :
:::

: : :
:::

0 0 � � � ˛I yP .q;1/
� � � �

:::
:::

:::
:::

: : :
:::

0 0 � � � ˛I yP .q;i.q//
� � � �

0 0 � � � 0 0 ŒD‰ yP �

377777777777777777777775
where 0’s are zero matrices. The matrix is so that26664

˛I yP .k;1/

˛I yP .k;2/
:::

˛I yP .k;i.k//

37775
is in the k th column from rows

Pk�1
jD1 i.j /C 1 to

Pk
jD1 i.j / and every entry below

is zero for k D 1; : : : ; q .
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The general position condition of the weak orderability implies that for each k 2

f1; 2; : : : ; qg,
˛I yP .k;1/

; ˛I yP .k;2/
; : : : ; ˛I yP .k;i.k//

are linearly independent, ie all submatrices26664
˛I yP .k;1/

˛I yP .k;2/
:::

˛I yP .k;i.k//

37775
are of full rank. This establishes the result.

4.6 Proof of Theorem 4.1

Let yP be a compact Coxeter n–orbifold admitting a hyperbolic structure. Assume
that yP admits a real projective structure, but does not admit a spherical or Euclidean
structure. Define

V yP WD fp 2 U yP � .V
�/f �V f

jDpˆ yP is surjectiveg;

zD. yP /r WD zD. yP /\V yP Dˆ
�1
yP
.0/\V yP :

The second one is an open subset since the maximal rank condition is an open condition
since the rank condition expresses the independence of the row vectors of the differential.

Since ˆ yP is zG –invariant, zG acts on zD. yP /r . The action of zG on zD. yP /r is induced
from the action � on zD. yP / in (3-2). Recall that N yP D f CeCe2 , where f , e and e2

are the number of facets, ridges and ridges of order 2 of yP respectively.

We use the following steps:

(1) zD. yP /r is a smooth manifold of dimension 2.nC 1/f �N yP if zD. yP /r ¤¿.

(2) The orbit space D. yP /r WD zD. yP /r= zG is a smooth manifold of dimension
dim zD. yP /r � dim zG , and it identifies with an open subset of D. yP /.

(3) Moreover, if P satisfies the condition (C1), then the manifold D. yP /r is of
dimension eC. yP /� n.

(4) Furthermore, if yP admits a hyperbolic structure and satisfies the condition (C2),
the hyperbolic point t is in D. yP /r . This will complete the proof of Theorem 4.1.

We now prove them one by one.
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(1) The set V yP is an open subset of U yP � .V
�/f �V f and the restriction to V yP of the

map ˆ yP is a submersion. Thus each level set of ˆ yP jV yP is an embedded submanifold
in V yP whose codimension is N yP . The conclusion is immediate.

(2) As we defined above, zD. yP /r is an open subset of zD. yP / that is the complement of
an algebraic closed set and zG acts on both sets. By Lemma 4.2, zG acts smoothly, freely
and properly on a smooth manifold zD. yP /r , and hence the orbit space zD. yP /r= zG is a
smooth manifold of dimension dim zD. yP /r � dim zG . Therefore, zD. yP /r= zG identifies
with an open subset of D. yP / by Theorem 3.2.

(3) The equation dim zD. yP /r � dim zG D .2.nC 1/f �N yP /� .f C .nC 1/2� 1/D

eC�n� 2ıP holds. Since ıP D 0, we obtain dim zD. yP /r � dim zG D eC. yP /�n, and
hence the step (2) implies the conclusion.

(4) Proposition 4.1 yields ker D‰ yP D
1
2
n.nC 1/ at the hyperbolic point t . Hence

(4-8) rank D‰ yP D .nC 1/f � 1
2
n.nC 1/D f C e� ıP

holds where ıP D e � nf C 1
2
n.nC 1/. Since ıP D 0 and yP is weakly orderable,

rank Dˆ yP D rank D‰ yP C e2 D f C eC e2 at t by Lemma 4.1, and so Dˆ yP at t is
of full rank.

Lemma 4.2 Let yP be a compact Coxeter n–orbifold. Assume that yP admits a real
projective structure, but does not admit a spherical or Euclidean structure. Then zG acts
smoothly, freely and properly on a smooth manifold zD. yP /r .

Proof We show that zG acts freely on a smooth manifold zD. yP /r , a locally compact
metric space. Suppose that

.d1; : : : ; df ;g/ � .˛1; : : : ; f̨ ; b1; : : : ; bf /D .˛1; : : : ; f̨ ; b1; : : : ; bf /;

where d1; : : : ; df 2RC and g 2 SL˙nC1.R/. That is,

di˛ig
�1
D ˛i and d�1

i gbi D bi for every i 2 I:

Hence, did
�1
j aij D aij holds, and di D dj if ˛i.bj /¤ 0.

By Proposition 2.3, for any holonomy group � of �1. yP /, the Cartan matrix of �
is indecomposable. It follows that d1 D � � � D df . Denote the common value by d .
Choose .nC1/ linearly independent linear functionals ˛i0

; ˛i1
; : : : ; ˛in

from the facets
of yP since the fundamental domain is a properly convex polytope by the condition
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of U yP . Let S be an invertible .nC 1/� .nC 1/ matrix

S D

26664
˛i0

˛i1

:::

˛in

37775 :
Then dSg�1 D S and hence dnC1 D det.g/D 1. Observe that d D 1 and g D InC1

establishing the result.

Next, we show that zG acts properly on a smooth manifold zD. yP /r . Suppose that a
sequence fpk D .˛1;k ; : : : ; f̨;k ; b1;k ; : : : ; bf;k/g in zG is such that

fpkg ! .˛1; : : : ; f̨ ; b1; : : : ; bf / 2 zD. yP /r ;

and fqk D .d1;k ; : : : ; df;k ;gk/g is a sequence in zG such that

qk �pk ! .z̨1; : : : ; z̨f ; zb1; : : : ; zbf / 2 zD. yP /r as k!1:

That is,

(4-9) fdi;k˛i;kg�1
k g ! z̨i and fd�1

i;k gkbi;kg !
zbi for each i 2 I:

Since we are in a metric space, we show that fqkg is bounded to prove the properness
of the action: We have

fdi;kd�1
j ;k˛i;kbj ;kg ! z̨i

zbj ;

hence
fdi;kd�1

j ;kg ! z̨i
zbj .˛ibj /

�1 if ˛ibj ¤ 0:

Moreover,
z̨i
zbj ; z̨j zbi ; ˛ibj ; j̨ bi < 0; .i; j / 62E1[E2:

Since the Cartan matrices A D .aij /, aij D ˛ibj and zA D .zaij /, zaij D z̨i
zbj , are

indecomposable,

(4-10) fdi;kd�1
j ;kg ! cij > 0 for every .i; j / 2 I� I:

Define .nC 1/� .nC 1/ matrices

zS D

26664
z̨i0

z̨i1

:::

z̨in

37775 ; S D

26664
ci0i0

˛i0

ci1i0
˛i1

:::

cini0
˛in

37775 and Sk D

26664
di0;k˛i0;k

di1;k˛i1;k
:::

din;k˛in;k

37775 :
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Since zS and S are invertible, (4-9) and (4-10) show that

fSkg�1
k g !

zS and fd�1
i0;k

Skg ! S I

hence
fdi0;kg�1

k g ! S�1 zS :

As det gk D˙1, the sequence fdnC1
i0;k
g converges to a positive number

jdet.S�1 zS/j:

Denote by di0
the positive .nC 1/th root of this limit. fdi0;kg ! di0

and fgkg limits
to fdi0

zS�1Sg respectively. Since we can choose a collection of faces to include ˛i0

for any i0 , fqkg is convergent.

4.7 Proofs of Corollaries 1.1 and 1.2

Proof of Corollary 1.1 We have that ıP D 0 for any 3–dimensional simple poly-
tope P by Euler’s formula. Hence, Theorem 4.1 gives us the conclusion.

Proof of Corollary 1.2 Let yP be a hyperbolic truncation Coxeter orbifold with the
fundamental polytope P � Sn . For nD 3, this is the work of Marquis [40]. For n� 4,
as shown in Brøndsted [11, Section 19], P is a truncation n–polytope if and only if
ıP D 0.

By Lemma 4.3, an orbifold based on a truncation n–polytope P is weakly orderable
since a compact Coxeter orbifold based on an n–simplex is weakly orderable.

Lemma 4.3 Let a polytope P2 be obtained from a polytope P1 by iterated truncation.
Suppose that a compact Coxeter orbifold yP2 has the base polytope P2 and another
compact Coxeter orbifold yP1 has the base polytope P1 , yP2 has the ridge orders
extending those of yP1 , and yP1 is weakly orderable. Then yP2 is weakly orderable.

Proof By induction, suppose that P2 obtained from P1 by a truncation at a vertex v
of P1 . We give an ordering of faces of P2 by labeling the new facet to be the lowest
one F1 and the remaining ones are to be denoted FiC1 when they were labeled by Fi

before. Then we need to check for F1 only since the other faces already satisfy the
weak orderability condition for those faces. However, F1 meets only n facets by the
simplicity of P1 and since these n facets were meeting at a vertex only, F1 can only
be an .n � 1/–dimensional simplex. This implies that any collection of the facets
meeting F1 are in a general position.
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5 Examples

Section 5 provides several examples of weakly orderable compact hyperbolic Coxeter
3–orbifolds and gives two examples satisfying only one of the two conditions (C1)
and (C2) where the conclusion of Theorem 4.1 does not hold.

5.1 Weakly orderable compact hyperbolic Coxeter 3–orbifolds

Every compact hyperbolic Coxeter 3–orbifold whose base polytope has the combinato-
rial type of a cube is weakly orderable. Theorem 1.1 shows that almost all compact
hyperbolic Coxeter 3–orbifolds, with the combinatorial type of a dodecahedron, are
weakly orderable while there are ones not weakly orderable.

Before going to the proof of Theorem 1.1, we state Tutte’s theorem [46].

A 1–dimensional cell complex G is a graph. It consists of vertices (0–cells) to which
edges (1–cells) are attached. We deal with only simple graphs, that have no loops and
no more than one edge between any two vertices. The degree of a vertex in a graph is
the number of edges with which it is incident. If all the vertices in a graph G have
degree d , G is said to be regular of degree d .

A subgraph of G is a graph having all of its vertices and edges in G . A graph G with
at least kC 1 vertices is k –connected if every subgraph of G , obtained by omitting
from G any k � 1 or fewer vertices and the edges incident to them, is connected. A
spanning subgraph of G is a subgraph containing all the vertices of G . A factor is a
spanning subgraph which is regular of degree 1.

Theorem 5.1 (Tutte [46]) Let G be a finite graph. If G is a d –connected graph
having the even number of vertices and is regular of degree d , then G has a factor.
Moreover, if in addition e is any edge of G , then G has a factor containing e.

Lemma 5.1 Let P be a properly convex compact 3–polytope but not a tetrahedron.
Suppose that P has no prismatic 3–circuit and has at most one prismatic 4–circuit.
Then there exists a compact hyperbolic Coxeter 3–orbifold yP with the base polytope P

such that each vertex is incident with exactly two edges of order 2.

Proof Assume that four 2–cells Fi , Fj , Fk and Fl of P form a prismatic 4–circuit.
Denote the edge Fi \Fj by e. By Steinitz’s theorem, the graph G D G.P / of P

is 3–connected; see Grünbaum [33, Chapter 13]. Since P is simple, G is regular of
degree 3 and the number of vertices is even. By Tutte’s theorem, G has a factor F
containing e. If P has no prismatic 4–circuit, then we choose an arbitrary factor F
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of G . Every vertex of P is incident with two edges in GnF and one edge in F .
Observe that

�
k
C
�
2
C
�
2
> � and �

k
C
�
2
C
�
2
C
�
2
< 2� for every integer k � 3:

Andreev’s theorem (see Roeder, Hubbard and Dunbar [43, Theorem 1.4 and Propo-
sition 1.5]) yields a compact hyperbolic Coxeter 3–orbifold yP such that every edge
in GnF (resp. F ) is of order 2 (resp. of order k ¤ 2), corresponding to a dihedral
angle �=2 (resp. �=k ).

Let G be a finite graph, and let L be a set. Denote by E.G/ the set of edges of G . A
function # W E.G/!L is called an edge-labeling function, and we call a pair .G; #/
an edge-labeled graph. An edge e is called an l –edge if #.e/D l .

In this section, we consider the edge-labeled graph .G; #/ satisfying the following
conditions.

(E1) G is simple, planar and 3–connected.

(E2) G is regular of degree 3.

(E3) The set L of labels is f0; 1g.

(E4) Every vertex of G is incident with three edges e1 , e2 and e3 such that

#.e1/C#.e2/C#.e3/� 1 .mod 2/:

If .G; #/ can be ordered so that each face contains at most three 0–edges in faces of
higher indices, .G; #/ is said to be weakly orderable. (Here (E1) holds if and only
if G is isomorphic to the 1–skeleton of a properly convex 3–polytope by Steinitz’s
theorem.)

Let P be a properly convex 3–polytope, and let G be the 1–skeleton of P as an
abstract 3–polyhedron. The graph G is embedded in the 2–dimensional sphere S2

homeomorphic to the boundary of P . We call a face of P a face of G . The respective
numbers of vertices, edges and faces of G shall be denoted by v , e and f .

Lemma 5.2 Let .G; #/ be an edge-labeled graph satisfying the conditions (E1)–(E4).
Then the number of 0–edges of at least one face F of G is less than or equal to 3.

Proof Denote by e2 the number of 0–edges. Condition (E1) implies that v�eCf D2,
(E2) implies that 2e D 3v , and (E3) and (E4) imply that 2e2 � 2v . By an elementary
computation, we obtain 2e2 � 4.f � 2/ < 4f . The conclusion is immediate.
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We define an edge-deletion for an edge-labeled graph satisfying conditions (E1)–(E4).
When each pair of edges ending at a vertex a or b of an edge e in .G; #/ have the
same labels, we can delete e from .G; #/ and amalgamate the pair of edges incident
to a and the pair for b (see Figure 2). We define the edge-deletion on G satisfying
(E1) and (E2) similarly. Edge-deletion preserves conditions (E2)–(E4) for .G; #/ (just
(E2) for G ).

a

b

e �!

Figure 2: An edge-deleting operation

Let G be a graph satisfying conditions (E1)–(E2). An edge e of G is said to be
removable when the graph obtained from G by deleting the edge e remains to satisfy
the condition (E1) (and (E2) obviously).

Theorem 5.2 (Fouquet [28, Corollary 2.7]) Let G be a graph with more than 6

edges satisfying conditions (E1)–(E2), and let C be a cycle of G . Then C contains at
least two removable edges.

Lemma 5.3 Let P be a properly convex compact 3–polytope, and let yP be the
Coxeter 3–orbifold arising from P . Assume that every vertex of yP is incident with two
edges of order 2 and one edge of order greater than or equal to 3. Then yP is weakly
orderable.

Proof Let yG be the graph of the 3–polytope P . Define the edge-labeling function y#
by

y#.e/D

�
0 if the edge e is of order 2;

1 otherwise:

Then the edge-labeled graph . yG; y#/ satisfies conditions (E1)–(E4) by Steinitz’s theo-
rem.

Given a labeled graph .G; #/ satisfying (E1)–(E4) and a face F , we can reverse
the label for every edge of F and the new labeling function on G will still satisfy
(E1)–(E4).
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We show that if .G; #/ satisfies conditions (E1)–(E4), then .G; #/ is weakly orderable.

The proof proceeds by induction on the number f of faces of G . The condition (E1)
implies f � 4. We have f D 4 if and only if G is the graph of a tetrahedron. In this
case G is weakly orderable.

Now assume that G has f faces for f � 5 and that any labeled graph .G0; # 0/
satisfying (E1)–(E4) is weakly orderable provided that the number of faces is less
than f . By Lemma 5.2, G has a face F such that the number of 0–edges of F is less
than or equal to 3 as e D 3.f � 2/ by Euler’s formula. By Theorem 5.2, the cycle @F
contains a removable edge e.

� If we have #.e/D 1, then each pair of edges which are adjacent to a vertex of e
have the same label. Then let # 0 WD # .

� Otherwise, #.e/ D 0. We relabel every edge in the cycle @F to become the
edge of the opposite label, and obtain the new label function # 0 of G such that
# 0.e/D 1. The resulting edge-labeled graph .G; # 0/ still satisfies the conditions
(E1)–(E4). Also each pair of edges which are adjacent to a vertex of e have the
same label.

Denote by F 0 the face adjacent to F such that F\F 0D e. We can delete the edge e of
.G; # 0/. Two adjacent faces F and F 0 are amalgamated into a face F 00 (see Figure 3).

F F 0e �! F 00

Figure 3: Amalgamating two adjacent facets into a facet

Now, the resulting edge-labeled graph . zG; z#/ has fewer faces but still satisfies all
conditions (E1)–(E4) since e is removable. Using the induction hypothesis, the edge-
labeled graph . zG; z#/ is weakly orderable, and hence we label the faces of zG with the
indices f2; 3; : : : ; f g. Now we reinsert e and recover the old labels # of G by

� doing nothing, or

� reversing the labels of the edges of F provided that we reversed the labels of
edges of F above.
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Let F be the first face of .G; #/, and we label all the other faces of .G; #/ by inheriting
the ordering of faces of . zG; z#/. Since the number of 0–edges of F under # is less
than or equal to 3, .G; #/ is weakly orderable with the indices f1; 2; : : : ; f g.

Proof of Theorem 1.1 By Lemma 5.1, there exists a compact hyperbolic Coxeter
orbifold yP whose base polytope is combinatorially equivalent to P . Let e be the
number of edges of P , and let p D 1

3
e . Observe that p 2 ZC by the vertex incidence

condition. Let N .d/ be the set of compact hyperbolic Coxeter orbifolds whose base
polytopes are combinatorially equivalent to P and whose edge orders are less than or
equal to d . For each integer d � 7 and j 2 f0; 1; : : : ; eg, we define

N!.d/Df yP 2N .d/ j yP is weakly orderableg;

Nj .d/Df yP 2N .d/ j the number of edges of order greater than or equal to 7 in yPg:

Assume that yP is a compact hyperbolic Coxeter 3–orbifold. By the orbifold condition,
if an edge e of yP is of order � 7, then edges which are adjacent to e are of order 2.
Therefore the number of edges of order � 7 in yP is less than or equal to p D 1

3
e . In

other words, Nj .d/D¿ for every j > p .

We have

jN .d/j D
pX

jD0

jNj .d/j:

Moreover, observe that yP 2Np.d/ if and only if every vertex of yP is incident with
two edges of order 2 and one edge of order greater than or equal to 7. For any fixed
integers l;m� 2,

1
k
C

1
l
C

1
m
> 1 for some integer k � 7 ,

1
k
C

1
l
C

1
m
> 1 for each integer k � 7:

Consequently for each d 2 f7; 8; : : :g we have

jNj .d/j D jNj .7/j � .d � 6/j :

Lemma 5.1 shows that Np.7/¤¿ and Lemma 5.3 implies that

jN!.d/j
jN .d/j

�
jNp.d/j

jN .d/j
D

jNp.7/j � .d � 6/pPp
jD0
jNj .7/j � .d � 6/j

establishing the result.

Example 5.1 Let m be an integer greater than or equal to 5. A Löbell 3–polytope
L.m/ is a 3–polytope with .2mC 2/ faces where upper and lower sides are m–gons,
and the complementary surface is a union of 2m pentagons, arranged similarly as in
the dodecahedron. Figure 4 shows the case when mD 6.
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Figure 4: A Löbell 3–polytope L.6/

For each m� 5, the Löbell 3–polytope L.m/ has no prismatic 3– or 4–circuits. By
Theorem 1.1 almost all compact hyperbolic Coxeter 3–orbifolds with the combinatorial
type of L.m/ are weakly orderable.

5.2 An example satisfying only the condition (C1)

Let d be a fixed integer greater than 3. We consider the compact hyperbolic Coxeter
3–polytope P shown in Figure 5. Here, if an edge is labeled d , then its dihedral angle
is �=d . Otherwise, its dihedral angle is �=2.

F F 0

d

d

d

Figure 5: A compact hyperbolic Coxeter 3–polytope

Obviously, eC. yP /� 3 D 0. However yP is not weakly orderable, since every facet
in yP contains four edges of order 2.

Observe that the cell structure of P has a reflection-type topological symmetry in-
terchanging F and F 0 . Hence, the Coxeter 3–orbifold yP arising from P has an
order-two isometry fixing an embedded totally geodesic 2–dimensional suborbifold S

by the Mostow rigidity. Projective bendings along S provide nontrivial deformations
in D. yP / by Johnson and Millson [35, Lemma 5.1]. Hence a neighborhood of the
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hyperbolic point in D. yP / is not a manifold of dimension 0 while D. yP / could still be
a manifold; see Choi, Hodgson and Lee [20, Theorem 10] also.

5.3 An example satisfying only the condition (C2)

In 1996, Esselmann [27] classified all the compact hyperbolic Coxeter polytopes whose
combinatorial types are the products of two simplices of dimension greater than 1.
Let P be the compact hyperbolic Coxeter 4–polytope whose combinatorial type is the
product of two triangles and whose Coxeter graph is shown in Figure 6; see Vinberg [48]
or Bourbaki [10] for the definition of Coxeter graphs.

1

2

3

4

5

6

Figure 6: One of Esselmann’s polytopes

Since the 4–polytope P has 6 facets and 15 ridges,

ıP D e� nf C n.nC1/
2
D 1¤ 0;

ie P does not satisfy condition (C1).

However the Coxeter orbifold yP arising from P is weakly orderable, ie yP satisfies
condition (C2). This can be shown by checking explicitly.

We show that the hyperbolic point in D. yP / for the hyperbolic Coxeter orbifold yP is
singular.

Assume that � is a projective Coxeter group so that ��=� is homeomorphic to yP ,
and A is the Cartan matrix of � . We make the Cartan matrix A by a unique diagonal
action (see (3-6)) so that

a12 D a21 D�2 cos
�
�
5

�
;

a23 D a32 D�2 cos
�
�
5

�
;

a34 D a43 D�2 cos
�
�
3

�
;

a45 D a54 D�2 cos
�
�
3

�
;

a56 D a65 D�2 cos
�
�
5

�
:
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Define x D�a14 and y D�a46 . The Cartan matrix AD .aij / of � is

AD

26666666664

2 �
1C
p

5
2

0 �x 0 0

�
1C
p

5
2

2 �
1C
p

5
2

0 0 0

0 �
1C
p

5
2

2 �1 0 0

�x�1 0 �1 2 �1 �y

0 0 0 �1 2 �
1C
p

5
2

0 0 0 �y�1 �
1C
p

5
2

2

37777777775
:

Moreover, rank AD 5 if and only if det.A/D 0. By simple calculation, we obtain

det.A/D 1
2xy

�
8x� .5C

p
5/y � .6� 2

p
5/xy � .5C

p
5/x2yC 8xy2

�
D 0:

Note that x and y are positive. By Corollary 3.1, the deformation space D. yP / is
homeomorphic to the solution space

SDf.x;y/2R2
C j f .x;y/WD8x�.5C

p
5/y�.6�2

p
5/xy�.5C

p
5/x2yC8xy2

D0g;

pictured in Figure 7.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Figure 7: The equation 8x� .5C
p

5/y � .6� 2
p

5/xy � .5C
p

5/x2yC

8xy2 D 0

By Vinberg [47, Proposition 24], .1; 1/ 2 S corresponds to the unique hyperbolic point
in D. yP /, and hence any neighborhood of the hyperbolic point of D. yP / is singular.
(The polynomial f .x;y/ is irreducible.)
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