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Discrete conformal maps and ideal hyperbolic polyhedra

ALEXANDER I BOBENKO

ULRICH PINKALL

BORIS A SPRINGBORN

We establish a connection between two previously unrelated topics: a particular
discrete version of conformal geometry for triangulated surfaces, and the geometry of
ideal polyhedra in hyperbolic three-space. Two triangulated surfaces are considered
discretely conformally equivalent if the edge lengths are related by scale factors
associated with the vertices. This simple definition leads to a surprisingly rich theory
featuring Möbius invariance, the definition of discrete conformal maps as circumcircle-
preserving piecewise projective maps, and two variational principles. We show how
literally the same theory can be reinterpreted to address the problem of constructing
an ideal hyperbolic polyhedron with prescribed intrinsic metric. This synthesis
enables us to derive a companion theory of discrete conformal maps for hyperbolic
triangulations. It also shows how the definitions of discrete conformality considered
here are closely related to the established definition of discrete conformality in terms
of circle packings.

52C26; 52B10, 57M50

1 Introduction

Recall that two Riemannian metrics g and zg on a smooth manifold M are called
conformally equivalent if

(1-1) zg D e2ug

for a function u 2 C1.M /. In the discrete theory that we consider here, smooth
manifolds are replaced with triangulated piecewise euclidean manifolds, and the discrete
version of a conformal change of metric is to multiply all edge lengths with scale factors
that are associated with the vertices (Definition 2.1.1). Apparently, the idea to model
conformal transformations in a discrete setting by attaching scale factors to the vertices
appeared first in the four-dimensional Lorentz-geometric context of the Regge calculus;
see Roček and Williams [37]. The Riemann-geometric version of this notion appeared
in Luo’s work on “combinatorial Yamabe flow” [24]. He showed that this flow is
the gradient flow of a locally convex function. Later, an explicit formula for this
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function was found (ET;‚;� defined in equation (4-1), with ‚ D 0), and this lead
to an efficient numerical method to compute discrete conformal maps, suitable for
applications in computer graphics; see the second and third authors and Schröder [40].
(Some basic theory of conformal equivalence and conformal maps in Section 2 and
the first variational principle in Section 4 are already covered or at least touched upon
in this earlier paper.) The variational principles described in Section 4 reduce the
discrete conformal mapping problems described in Section 3 to problems of convex
optimization. Figures 1 and 2 show examples of discrete conformal maps that were
obtained this way.

Figure 1: Discrete conformal map to a rectangle

Möbius transformations preserve the discrete conformal class (Section 2.5), and this
makes it possible to construct discrete conformal maps to regions bounded by circular
polygons (Section 3.3), discrete analogs of the classical Riemann maps.

The first variational principle (Section 4.1) involves a function of the (logarithmic)
scale factors u. The second variational principle (Section 4.3) involves a function of
the triangle angles. The two variational principles are Legendre duals in a precise way,
but we do not dwell on this point. The corresponding variational principles of the
classical smooth theory are discussed in Appendix B.

There are clear signs in Sections 2 and 4 that indicate a connection with hyperbolic
geometry: the appearance of Milnor’s Lobachevsky function L.x/, the fact that the
second variational principle is almost the same as Rivin’s variational principle for
ideal hyperbolic polyhedra with prescribed dihedral angles [34], and the definition
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Figure 2: Discrete Riemann maps
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of discrete conformal maps in terms of circumcircle-preserving piecewise projective
functions (Section 2.6). This connection with two- and three-dimensional hyperbolic
geometry is the topic of Section 5. Reversing a construction of Penner [32] and
Epstein and Penner [11], we equip a triangulated piecewise euclidean surface with
a canonical hyperbolic metric with cusps. Discrete conformal maps are precisely
the isometries with respect to this hyperbolic metric (Section 5.1). The logarithmic
edge lengths � (Section 2.1) and the length-cross-ratios that characterize a discrete
conformal class (Section 2.3) are Penner coordinates and shear coordinates, respectively,
of the corresponding hyperbolic surface (Section 5.3). The problem of flattening
a triangulation discretely conformally is equivalent to constructing an ideal hyper-
bolic polyhedron with prescribed intrinsic metric (Section 5.4). With this interpre-
tation of discrete conformality in terms of three-dimensional hyperbolic geometry,
the two variational principles of Section 4 are seen to derive from Schläfli’s differ-
ential volume formula and Milnor’s equation for the volume of an ideal tetrahedron
(Section 5.5).

Once this connection between discrete conformality and hyperbolic polyhedra is estab-
lished, it is straightforward to obtain a modified version of discrete conformality that
pertains to triangulations composed of hyperbolic triangles instead of euclidean ones
(Section 6). This is the theory of discrete conformal uniformization of triangulated
higher-genus surfaces over the hyperbolic plane. It has been applied, for example, for
the hyperbolization of euclidean ornaments; see von Gagern and Richter-Gebert [14]. (It
is equally straightforward to obtain a corresponding theory for spherical triangulations,
but the functions involved in the corresponding variational principles are not convex.
We do not pursue this branch of the theory here.)

The connection with hyperbolic polyhedra entrains a connection between the discrete
notion of conformality considered here and circle patterns, another discretization of
the same concept. Thurston introduced patterns of circles as an elementary geometric
visualization of hyperbolic polyhedra [42, Chapter 13]. He rediscovered Koebe’s
circle packing theorem [21] and showed that it followed from Andreev’s work on
hyperbolic polyhedra [2; 3]; see also Roeder, Hubbard and Dunbar [39]. Thurston’s
conjecture that circle packings could be used to approximate the classical Riemann
map, which was later proved by Rodin and Sullivan [38], set off a flurry of research that
led to a full-fledged theory of discrete analytic functions and conformal maps based on
packings and patterns of circles; see Stephenson [41]. (The circle packing version of
Luo’s “combinatorial Yamabe flow” is the “combinatorial Ricci flow” of Chow and
Luo [7] and Gu and Yau [16].) The relationship between these two theories of discrete
conformality is now clear: the circle packing theory deals with hyperbolic polyhedra
with prescribed dihedral angles and the notion of discrete conformality considered
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here deals with hyperbolic polyhedra with prescribed metric. In Appendix C.1 we
discuss the relationship between the variational principles for discrete conformal maps
(Section 4) and two variational principles for circle patterns. One is due to Rivin [34]
(see also the recent survey article by Futer and Guéritaud [13], which provides a
wealth of material that is otherwise difficult to find), and the other is again related to
it by the same sort of singular Legendre duality; see the first and third authors [6].
Variational principles for circle patterns are important in discrete differential geometry
in particular for constructing discrete minimal surfaces; see the first and third authors
and Hoffmann [4]. Instead of triangulations one can consider meshes composed of
polygons that are inscribed in circles (Section C.2), and we consider the problem to
map multiply connected domains to domains bounded by polygons inscribed in circles,
a discrete version of circle domains (Section C.3).

Two important questions are not addressed in this paper. The first is the question
of convergence. Of course we do believe (under not too restrictive assumptions that
have yet to be worked out) that discrete conformal maps approximate conformal maps
if the triangulation is fine enough. Figure 2 clearly suggests that a version of the
Rodin–Sullivan theorem [38] also holds in this case. But all this has yet to be proved.

The other question concerns the solvability of the discrete conformal mapping problems
of Section 3. A solution may not exist due to violated triangle inequalities. Fairly
obvious necessary conditions and how they relate to properties of the function ET;‚;�

appearing in the first variational principle are discussed in Appendix A. In the numerous
numerical experiments that we have made, we have observed that a solution exists
if the necessary conditions are satisfied, no triangles are almost degenerate to begin
with, and the triangulation is not too coarse. But to find necessary and sufficient
conditions for solvability seems to be an intractable problem in this setting. After all,
this would amount to giving necessary and sufficient conditions for the existence of a
(not necessarily convex) ideal hyperbolic polyhedron with prescribed intrinsic metric
and prescribed combinatorial type. The way out is to restrict oneself to convex polyhedra
while widening the concept of discrete conformal map to allow for combinatorial
changes (Section 5.1). Rivin proved that any hyperbolic metric with cusps on the
sphere is realized by a unique ideal polyhedron [35]. This translates into an existence
statement for discrete conformal maps. (Conversely, this suggests a variational proof
of Rivin’s theorem very similar to the recent constructive proof by the first author and
Izmestiev [5] of Alexandrov’s classical polyhedral realization theorem [1].)

Previous versions of this article have been available as the preprint arXiv:1005.2698
since May 2010. For the published version, the text has been restructured according to
the suggestions of the referee. The mathematical content has not changed.
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2 Discrete conformal equivalence and maps

2.1 Discrete conformal equivalence

A surface is a connected 2–dimensional manifold, possibly with boundary. A surface
triangulation, or triangulation for short, is a surface that is a CW–complex whose
faces (2–cells) are triangles which are glued edge-to-edge. We will denote the sets of
vertices (0–cells), edges (1–cells), and faces of a triangulation T by VT , ET , and TT ,
and we will often drop the subscript T if the triangulation is clear from the context.
We will also write AT for the set of triangle angles, where angles means corners, or
triangle-vertex incidences, not angle measures.

A euclidean surface triangulation, or euclidean triangulation for short, is a surface
triangulation equipped with a metric so that TnVT is locally isometric to the euclidean
plane, or half-plane if there is boundary, and the edges are geodesic segments. In other
words, a euclidean surface triangulation is a surface consisting of euclidean triangles
that are glued edge-to-edge. At the vertices, the metric may have cone-like singularities.

A euclidean triangulation is uniquely determined by a triangulation T and a function
`W ET!R>0 assigning a length to every edge in such a way that the triangle inequalities
are satisfied for every triangle in TT . We call such a positive function ` on the edges
that satisfies all triangle inequalities a discrete metric on T, and we denote the resulting
euclidean triangulation by .T; `/.

In this paper, we will assume for simplicity that the triangulations are simplicial
complexes. This means that a triangle may not be glued to itself at a vertex or along an
edge, and the intersection of two triangles is either empty or it consists of one vertex or
one edge. This restrictions to simplicial complexes allows us to use simple notation:
we will denote by ij the edge with vertices i and j , by ij k the triangle with vertices
i , j , and k , and by i

jk
the corner at vertex i in triangle ij k . If f;g; h, and � are

functions on V , E , T , and A, respectively, we will write fi , gij , hijk , and �i
jk

for
f .i/, g.ij /, h.ij k/, and �

�
i

jk

�
. But while this restriction to simplicial complexes is

notationally very convenient, it is a priori uncalled for. There are a few exceptions,
like Sections 3.2 and 3.3 on mapping to the sphere and disk, but in general the domain
of validity of the theory presented here extends beyond the simplicial case.

The vector spaces of real-valued functions on the sets of vertices, edges and angles will
be denoted by RV , RE and RA , respectively.

Definition 2.1.1 (Luo [24]) Two combinatorially equivalent euclidean triangulations,
.T; `/ and .T; z̀/, are discretely conformally equivalent if the discrete metrics ` and z̀
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are related by

(2-1) z̀
ij D e.uiCuj /=2`ij

for some u 2RV . This defines an equivalence relation on the set of discrete metrics
on T, of which an equivalence class is called a discrete conformal class of discrete
metrics, or a discrete conformal structure, on T.

Instead of the edge lengths ` we will often use the logarithmic lengths

(2-2) �D 2 log `:

(The reason for the factor of 2 will become apparent in Section 5.) In terms of these
logarithmic lengths, relation (2-1) between ` and z̀ becomes linear:

(2-3) z�ij D �ij Cui Cuj :

Remark 2.1.2 (Dimension of “discrete Teichmüller space”) The set of all discrete
metrics on a triangulation T is a manifold whose dimension is the number of edges, jEj.
This manifold of metrics is fibered by the discrete conformal classes, each of which is
a submanifold of dimension jV j, the number of vertices. The corresponding “discrete
Teichmüller space”, ie the manifold of discrete conformal classes, has dimension
jEj � jV j. If T triangulates a closed surface of genus g , one obtains jEj � jV j D
6g � 6C 2jV j, which is also the dimension of Tg;jV j , the Teichmüller space of a
genus-g Riemann surfaces with jV j punctures. This is no coincidence. The discrete
conformal classes actually correspond to points in the Teichmüller space Tg;jV j (see
Section 5.1).

2.2 The two most simple cases

(1) If the triangulation T consists of a single triangle ij k , then any two euclidean
triangulations .T; `/ and .T; z̀/ are discretely conformally equivalent, because the three
equations

z̀
ij D e.uiCuj /=2`ij ; z̀

jk D e.ujCuk/=2
j̀k ; z̀

ki D e.ukCui /=2`ki

always have a unique solution for ui , uj and uk :

eui D

z̀
ij j̀k

z̀
ki

`ij
z̀
jk`ki

; : : : :

(2) Now let T be the triangulation consisting of two triangles ij k and i lj glued
along edge ij as shown in Figure 3, and let ` and z̀ be two discrete metrics on T.
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j

l

i

k

j̀k `lj

`il`ki

lcrij D
`il j̀ k

`lj `ki

Figure 3: The length-cross-ratio on edge ij : the lengths of the bold solid
and bold dashed edges appear in the numerator and denominator, respectively.

What is the condition for .T; `/ and .T; z̀/ to be discretely conformally equivalent?
For each triangle considered separately, the corresponding equations (2-1) determine
unique solutions for the values of u on its vertices. For each of the common vertices i

and j one obtains two values and the necessary and sufficient condition for discrete
conformal equivalence is that they are equal, which is equivalent to the condition

`il j̀k

`lj`ki

D

z̀
il
z̀
jk

z̀
lj
z̀
ki

:

2.3 Length-cross-ratios

The simple reasoning of Section 2.2 extends to the general case: let T be any trian-
gulation, and let ` and z̀ be two discrete metrics on T. For each triangle ij k of T,
considered separately, equations (2-1) determine unique values for u. Thus, for each
vertex i 2 V , one obtains one value for ui per adjacent triangle. These values are in
general different. They agree for each vertex if and only if the discrete metrics ` and z̀

are discretely conformally equivalent. Since the vertex links are connected, it suffices
to consider values obtained from adjacent triangles. This leads to Proposition 2.3.2
below, where the condition for discrete conformal equivalence is given in terms of the
so-called length-cross-ratios:

Definition 2.3.1 For each interior edge ij between triangles ij k and i lj as in
Figure 3, define the length-cross-ratio induced by ` to be

(2-4) lcrij D
`il j̀k

`lj`ki

:

This definition implicitly assumes that an orientation of the triangulated surface has
been chosen. The other choice of orientation leads to reciprocal values for the length-
cross-ratios. (For nonorientable surfaces, the length-cross-ratios are well defined on
the interior edges of the oriented double cover.)
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If the quadrilateral i lj k is embedded in C , then the length-cross-ratio lcrij is just the
absolute value of the complex cross ratio of the vertex positions zi ; zl ; zj ; zk ,

cr.z1; z2; z3; z4/D
.z1� z2/.z3� z4/

.z2� z3/.z4� z1/
:

Discretely conformally equivalent metrics `, z̀ induce the same length-cross-ratios,
because the scale factors eu=2 cancel. By the reasoning above, the converse is also
true.

Proposition 2.3.2 Two euclidean triangulations .T; `/ and .T; z̀/ are discretely con-
formally equivalent if and only if for each interior edge ij 2ET , the induced length-
cross-ratios are equal: lcrij D elcrij .

2.4 The product of length-cross-ratios around a vertex

Let us denote the sets of interior edges and interior vertices by Eint and Vint , respectively.
Which functions Eint!R>0 can arise as length-cross-ratios? A necessary condition
is that the product of length-cross-ratios on the edges around an interior vertex is 1,
because all lengths ` cancel:

(2-5) for all i 2 Vint;
Y

j Wij2E

lcrij D 1:

If we ignore the triangle inequalities, this condition is also sufficient:

Proposition 2.4.1 Let lcrW Eint!R>0 be any positive function on the set of interior
edges. There exists a positive function `W E!R>0 on the set of edges satisfying (2-4)
for every interior edge ij if and only if condition (2-5) holds.

Proof It remains to show that if lcr 2 .R>0/
Eint satisfies condition (2-5), then the

system of equations (2-4) has a solution. In fact, we will explicitly construct such a
solution. To this end, we introduce auxiliary parameters c , which are defined on the
set of angles A of the triangulation: given ` 2 .R>0/

E , define c 2 .R>0/
A by

(2-6) ci
jk D

j̀k

`ij`ki

I

see Figure 4.

In terms of these parameters, the length-cross-ratios induced by ` are

(2-7) lcrij D

ci
jk

ci
lj

;
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k j

i

`ki

j̀k

`ij

ci
jk

Figure 4: The parameters ci
jk

, defined on the set of triangle angles A

where l , j , k occur in the link of i in this cyclic order, as in Figure 3. (For a geometric
interpretation of the parameters ci

jk
in terms of hyperbolic geometry, see Section 5.2.)

Now suppose lcr 2 .R>0/
Eint satisfies condition (2-5). Then it is easy to find a solution

c 2 .R>0/
A of equations (2-7), because each equation involves only two values of c

on consecutive angles at the same vertex. So one can freely choose one c–value per
vertex and successively calculate the values on neighboring angles around the same
vertex by multiplying (or dividing) with the values of lcr on the edges in between.

Next, solve equations (2-6) for `, where c is the solution to equations (2-7) just
constructed. This is also easy: the length of an edge ij is determined by the values
of c on the two adjacent angles on either side:

`ij D .c
i
jkc

j

ki
/�1=2:

(Check that the two c–values on the other side give the same value.) Thus we have
constructed a function ` 2 .R>0/

E satisfying equations (2-4) for the given function
lcr 2 .R>0/

Eint .

2.5 Möbius invariance of discrete conformal structures

The group of Möbius transformations of yRn D Rn [ f1g is the group generated by
inversions in spheres. (Planes are considered spheres through1.) The group of Möbius
transformations is also generated by the similarity transformations (which fix 1), and
inversion in the unit sphere. Möbius transformations are conformal, and a famous
theorem of Liouville says that for n> 2, any conformal map of a domain U �Rn is
the restriction of a Möbius transformation.

Let T be a triangulation and let k �k denote the euclidean norm on Rn , n� 2. Suppose
vW VT!Rn maps the vertices of each triangle to three affinely independent points. Then
v induces a discrete metric `ij Dkvi�vjk. Two maps v; zvW V !Rn� yRn are related
by a Möbius transformation if there is a Möbius transformation T such that zvD T ı v .
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Proposition 2.5.1 If two maps VT!Rn are related by a Möbius transformation, then
the induced discrete metrics are discretely conformally equivalent.

Proof The claim is obvious if the relating Möbius transformation is a similarity
transformation. For inversion in the unit sphere, x 7! 1

kxk2
x , it follows from the

identity 



 1

kpk2
p�

1

kqk2
q





D 1

kpkkqk
kp� qk:

Remark 2.5.2 For n D 2 there is an obvious alternative argument involving the
complex cross ratio. One can extend this argument to n> 2. The only difficulty is to
define a complex cross-ratio for four points in Rn if n> 2, such that it is invariant under
Möbius transformations. Such a cross-ratio can be defined up to complex conjugation by
identifying a 2–sphere through the four points conformally with the extended complex
plane yC . This involves several choices: a choice of 2–sphere if the four points are
cocircular, a choice of orientation of the 2–sphere, and choice of orientation-preserving
conformal map to yC . Only the choice of orientation makes a difference, the two choices
leading to conjugate values for the cross-ratio. The length-cross-ratio is the absolute
value of this complex cross-ratio, so the ambiguity with respect to complex conjugation
does not matter.

2.6 Discrete conformal maps

Figure 5: A coarsely triangulated domain in the plane (middle) is mapped to
a rectangle (right) by a discrete conformal map (see Definition 2.6.1). Instead
of using circumcircle-preserving piecewise projective interpolation, one can
also interpolate linearly in each triangle. The result (left) looks noticeably
“less smooth”.
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So far we have only talked about discrete conformal equivalence. This section deals
with the matching notion of discrete conformal maps (see Figure 5).

For any two euclidean triangles (with labeled vertices to indicate which vertices should
be mapped to which), there is a unique projective map that maps one triangle onto the
other and the circumcircle of one onto the circumcircle of the other (see Lemma 2.6.3
below). Let us call this map the circumcircle-preserving projective map between the
two triangles.

Definition 2.6.1 A discrete conformal map from one euclidean triangulation .T; `/
to a combinatorially equivalent euclidean triangulation .T; z̀/ is a homeomorphism
whose restriction to every triangle is the circumcircle-preserving projective map onto
the corresponding image triangle.

Consider two combinatorially equivalent euclidean triangulations .T; `/ and .T; z̀/.
For each individual triangle of .T; `/, there is a circumcircle-preserving projective map
to the corresponding triangle of .T; z̀/. But these maps do in general not fit together
continuously across edges. However, they do fit together, forming a discrete conformal
map, precisely if the euclidean triangulations are discretely conformally equivalent:

Theorem 2.6.2 The following two statements are equivalent.

(i) .T; `/ and .T; z̀/ are discretely conformally equivalent.

(ii) There exists a discrete conformal map .T; `/! .T; z̀/.

The rest of this section is concerned with the proof of Theorem 2.6.2. It follows easily
from Lemma 2.6.3 below, which provides an analytic description of the circumcircle-
preserving projective map between two individual triangles.

Consider two triangles � and z� in the euclidean plane, and let .xi ;yi/ and .zxi ; zyi/,
i 2 f1; 2; 3g, be the coordinates of their vertices in a Cartesian coordinate system.
Let `ij and z̀ij be the side lengths,

`2
ij D .xi �xj /

2
C .yi �yj /

2;

and similarly for z̀ij . Consider the euclidean plane as embedded in the projective
plane RP2 and let vi D .xi ;yi ; 1/ and zvi D .zxi ; zyi ; 1/ be the homogeneous coordinate
vectors of the vertices, normalized so that the last coordinate is 1. Then the projective
maps f W RP2

!RP2 that map � to z� correspond via f .Œv�/D ŒF.v/� to the linear
maps F W R3!R3 of homogeneous coordinates that satisfy

(2-8) F.vi/D �izvi

for some “weights” �i 2R n f0g.
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Lemma 2.6.3 The projective map f W Œv� 7! ŒF.v/� maps the circumcircle of � to the
circumcircle of z� if and only if

(2-9) .�1; �2; �3/D �.e
�u1 ; e�u2 ; e�u3/;

where u1;u2;u3 are the logarithmic scale factors satisfying the three equations (2-1)
for a single triangle and � 2R n f0g is an arbitrary factor.

Proof of Lemma 2.6.3 The circumcircle of � is

fŒv� 2RP2
j q.v/D 0g;

where q is the quadratic form

q.x;y; z/D x2
Cy2

C 2axzC 2byzC cz2

with a; b; c 2R uniquely determined by the condition that

(2-10) q.v1/D q.v2/D q.v3/D 0:

In the same fashion, let the quadratic form describing the circumcircle of z� be

zq.x;y; z/D x2
Cy2

C 2zaxzC 2zbyzCzcz2

so that

(2-11) zq.zv1/D zq.zv2/D zq.zv3/D 0:

We will also denote by q and zq the corresponding symmetric bilinear forms:

q.v/D q.v; v/ and zq.v/D zq.v; v/:

The projective map f maps circumcircle to circumcircle if and only if q and the
pullback F�zq are linearly dependent. That is, if and only if

�2q.v; w/D zq.F.v/;F.w//

for all v;w 2 R3 for some � 2 R. Since v1; v2; v3 is a basis of R3 and because of
equations (2-10) and (2-11), this is the case if and only if

(2-12) �2q.vi ; vj /D �i�j zq.zvi ; zvj /

for i; j 2 f1; 2; 3g, i 6D j . Now note that

`2
ij D q.vi � vj ; vi � vj /D�2q.vi ; vj /;

and similarly z̀2ij D�2zq.zvi ; zvj /. So condition (2-12) is equivalent to

�2`2
ij D �i�j

z̀2
ij :
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Solving equations (2-1) for ui to obtain (2-9) completes the proof of Lemma 2.6.3.

To prove Theorem 2.6.2, consider two euclidean triangulations .T; `/ and .T; z̀/, and
a pair of adjacent triangles ij k and j il of T . Embed the corresponding euclidean
triangles of .T; `/ simultaneously isometrically in the euclidean plane, and do the
same for the corresponding two euclidean triangles of .T; z̀/. Lemma 2.6.3 tells us
what the circumcircle-preserving projective maps are, and we might as well choose
�D 1 in both cases. These two maps fit together continuously along edge ij if and
only if the values of �i D e�ui and �j D e�uj from one triangle are proportional to
those of the other triangle. Since the value of e.uiCuj /=2 D z̀ij=`ij is the same for
both triangles, this is the case if and only if the values of �i and �j , hence also those
of ui and uj , coincide for both triangles. This holds for all interior edges if and only
if .T; `/ and .T; z̀/ are discretely conformally equivalent. This completes the proof of
Theorem 2.6.2.

3 Discrete conformal mapping problems

3.1 Prescribing angle sums at vertices

Consider the following type of discrete conformal mapping problem, which is a discrete
version of the problem considered by Troyanov [44]:

Problem 3.1.1 (Prescribed angle sums) Given

� a surface triangulation T,
� a discrete conformal class C of discrete metrics on T,
� a desired angle sum ‚i for each vertex i 2 VT ,

find a discrete metric z̀ in the conformal class C such that the euclidean triangulation
.T; z̀/ has angle sum ‚i around each vertex i 2 VT .

If, in particular, the given desired angle sum ‚i equals 2� for every interior vertex i ,
then Problem 3.1.1 asks for a flat euclidean triangulation in the given conformal class
which has prescribed angles at the boundary. A flat and simply connected euclidean
triangulation can be developed in the plane by laying out one triangle after the other.
Thus, Problem 3.1.1 comprises as a special case the following problem.

Problem 3.1.2 (Planar triangulation with prescribed boundary angles) Given

� a euclidean triangulation .T; `/ that is topologically a disc
� a desired angle sum ‚i for each boundary vertex i ,
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find a discretely conformally equivalent planar triangulation .T; z̀/ with the given angle
sums at the boundary. (The triangulated planar region may overlap with itself.)

We also consider a more general type of problem than Problem 3.1.1. Suppose the
discrete conformal class C is given in the form of a representative metric ` 2 .R>0/

E .
For some vertices i we may prescribe the (logarithmic) scale factor ui instead of the
angle sum ‚i :

Problem 3.1.3 (Prescribed angles sums and fixed scale factors) Given

� a triangulation T,
� a function ` 2 .R>0/

E representing a conformal class,
� a partition V D V0 P[V1 of the vertex set,
� a prescribed logarithmic scale factor ui 2R for each vertex i 2 V0

� a prescribed angle sum ‚i for each vertex i 2 V1 ,

find logarithmic scale factors ui 2 R for the remaining vertices i 2 V1 so that z̀

determined by equations (2-1) is a discrete metric and .T; z̀/ has the prescribed angle
sum ‚i around each vertex i 2 V1 .

For V0 D ∅, V1 D V , this is just Problem 3.1.1. (If the conformal class C is given
in the form of length-cross-ratios lcr 2 .R>0/

Eint , one can obtain a representative
` 2 .R>0/

E using the method described in the constructive proof of Proposition 2.4.1.)

Note that any instance of Problem 3.1.3 can be reduced to the special case where ui D 0

is prescribed for i 2 V0 : simply apply first a discrete conformal change of metric (2-1)
with the arbitrary prescribed ui for i 2 V0 .

Analytically, Problem 3.1.3 amounts to solving a system of nonlinear equations. For
the unknown logarithmic scale factors ui (i 2 V1 ), one has to solve the system of
angle-sum equations

(3-1)
X

jkWijk2T

z̨
i
jk D‚i ;

with one equation for each vertex i 2 V1 . Here, z̨i
jk

is the angle at i in triangle ij k

of .T; z̀/. The angles z̨ are nonlinear functions of the new lengths z̀. They can be
obtained by invoking, for example, the cosine rule or the half-angle formula

(3-2) tan
�
˛i

jk

2

�
D

s
.�`ij C j̀k C `ki/.`ij C j̀k � `ki/

.`ij � j̀k C `ki/.`ij C j̀k C `ki/
:

(Tilde marks over ˛ and ` have been omitted in this equation to avoid visual clutter.)
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Theorem 3.1.4 If Problem 3.1.3 has a solution, then the solution is unique if V0 6D∅
(ie at least one scale factor is fixed) and unique up to scale if V0 D∅. The solution can
be found by minimizing a convex function.

Proof This follows from Propositions 4.1.3, 4.1.4 and 4.1.5.

Corollary 3.1.5 If a solution to Problem 3.1.1 (or 3.1.2) exists, it is unique up to scale,
and it can be found by minimizing a convex function.

Remark 3.1.6 An important special case of Problem 3.1.3 is the following: prescribe
the angle sum ‚i D 2� for interior vertices, and ui on the boundary. This is analogous
to the following boundary value problem of the smooth theory: given a smooth 2–
manifold with boundary M equipped with a Riemannian metric g , find a conformally
equivalent flat Riemannian metric e2ug with prescribed uj@M . Suppose we measure
the relative distortion of a conformally equivalent Riemannian metric by the Dirichlet
energy of u, D.u/D 1

2

R
M du^�du. Then the conformally equivalent flat Riemannian

metrics with least distortion are those with uj@M D const. Thus, up to scale there is a
unique least distortion solution obtained by setting uj@M D 0 [40, Appendix E].

3.2 Mapping to the sphere

If one can solve Problem 3.1.3, one can also find discrete conformal maps from
euclidean triangulations that are topological spheres to polyhedra with vertices on
the unit sphere, and from euclidean triangulations that are topological disks to planar
triangulations with boundary vertices on the unit circle (Section 3.3).

Suppose .T; `/ is a euclidean triangulation that is topologically a sphere. To map it to
a polyhedron with vertices on the unit sphere, proceed as follows.

(1) Choose a vertex k and apply a discrete conformal change of metric (2-1) so that
afterwards all edges incident with k have the same length, say z̀ki D 1 for all
neighbors i of k . For example, let eui=2 D `�1

ki
if i is a neighbor of k and 1

otherwise.

(2) Let T0 be T minus the open star of k . This is topologically a closed disk.

(3) Solve Problem 3.1.3 for T 0 with prescribed ‚i D 2� for interior vertices i and
prescribed ui D 0 for boundary vertices. (Suppose a solution exists.) The result
is a planar triangulation.

(4) Map the vertices of this planar triangulation to the unit sphere by stereographic
projection. Add another vertex (the image of the removed vertex k ) on the
sphere at the center of the stereographic projection. Build a geometric simplicial
complex using these vertices and the combinatorics of T.
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Proposition 3.2.1 The result of this procedure is a polyhedron with vertices on the
sphere that is discretely conformally equivalent to .T; `/. (It may not be convex. It is
also possible that the planar triangulation obtained in step three overlaps with itself. In
this case the star of k in the image polyhedron is not embedded.)

Proof After step (1), the length-cross-ratio for an edge ki incident with k is the
quotient of the lengths of two consecutive edges mi , ij in the boundary of T 0 . This is
not changed in step (3) because uD 0 on the boundary. Further, the length-cross-ratio
for an edge ij opposite k as in Figure 3 is then the quotient `il=`lj . This is also not
changed in step (3) because uD 0 on the boundary. Now imagine that before step (4)
you reinsert k at 1 in the plane, which you identify with the (extended) complex
plane. Then the absolute values of the complex cross-ratios for all edges are the same
as in .T; `/.

Remark 3.2.2 The method presented here is a variation of a method described [40].
The old version requires an input triangulation that is immersed in some Rn with
straight edges.

3.3 Mapping to the disk

Suppose .T; `/ is a euclidean triangulation that is topologically a closed disk. To map
it to a triangulated circular polygon, proceed as follows (see Figure 6):

k

Figure 6: Mapping to the disk
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(1) Choose a boundary vertex k and apply a discrete conformal change of met-
ric (2-1) so that afterwards all edges incident with k have the same length, say
z̀
ki D 1 for all neighbors i of k . For example, let eui=2D `�1

ki
if i is a neighbor

of k and 1 otherwise.

(2) Let T0 be T minus the open star of k . Suppose this is topologically still a closed
disk.

(3) Solve Problem 3.1.3 for T0 , with prescribed ‚i D 2� for interior vertices of T0 ,
‚i D � for boundary vertices of T 0 that are not neighbors of k in T, and
prescribed ui D 0 for the neighbors of k in T. (Suppose a solution exists.) The
result is a planar triangulation. All boundary edges except the neighbors of k

in T are contained in one straight line.

(4) Apply a Möbius transformation to the vertices that maps this straight line to a
circle and the other vertices inside this circle. Reinsert k at the image point
of 1 under this Möbius transformation.

Proposition 3.3.1 The result of this procedure is a planar triangulation that is discretely
conformally equivalent to .T; `/ and has a boundary polygon that is inscribed in a
circle.

We omit the proof because no new ideas are needed.

Remark 3.3.2 Note that for Problem 3.1.3 in step 3 to be solvable, the triangulation T

should not have any ears (ie triangles on the boundary that are attached by one edge
only). Prescribing a total angle of � at boundary vertices forces such triangles to
degenerate.

4 Two variational principles

4.1 The first variational principle

The system of nonlinear equations described in the previous section turns out to be
variational. Solutions of the conformal mapping problems correspond to the critical
points of the function ET;‚;� defined as follows. The precise statement of this first
variational principle is Proposition 4.1.3.

Let T be a surface triangulation, ‚ 2RV and � 2RE . For now (we will later extend
the domain of definition to RV ) define the real-valued function ET;‚;�.u/ on the open
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subset of RV containing all u such that z̀ determined by (2-1) is a discrete metric (that
is, satisfies the triangle inequalities):

(4-1) ET;‚;�.u/D
X

ijk2T

.z̨k
ij
z�ij C z̨

i
jk
z�jk C z̨

j

ki
z�ki C 2L.z̨k

ij /C 2L.z̨i
jk/

C 2L.z̨j

ki
/� �

2
.z�ij C

z�jk C
z�ki//C

X
i2V

‚iui :

The first sum is taken over all triangles, z̨i
jk

denotes the angle at vertex i in triangle ij k

with side lengths z̀D e
z�=2 ,

(2-3) z�ij D �ij Cui Cuj ;

and L.x/ is Milnor’s Lobachevsky function,

(4-2) L.x/D�
Z x

0

log j2 sin.t/j dt:

(Figure 7 shows a graph of this function.) The second sum is taken over all vertices. It
is linear in u.

�
6

�
2

5�
6

�

�0:4

�0:2

0:2

0:4

x

y

Figure 7: Graph of Milnor’s Lobachevsky function, y D L.x/: it’s � –
periodic, odd and smooth except at x 2 �Z , where its tangents are vertical.

Remark 4.1.1 The notation L.x/, using a letter from the Cyrillic alphabet, and
the name “Lobachevsky function” are due to Milnor [27; 28]. Lobachevsky used
a slightly different function which is also known as the Lobachevsky function and
often denoted L.x/. To distinguish these two functions, we call L.x/ Milnor’s
Lobachevsky function. It is almost the same as Clausen’s integral (see Lewin [23]),
Cl2.x/D 1

2
L.2x/.

Proposition 4.1.2 (First derivative) The partial derivative of ET;‚;� with respect
to ui is

@

@ui
ET;‚;� D‚i �

X
jkWijk2T

z̨
i
jk ;

where the sum is taken over all angles around vertex i .
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Proof This follows from Equation (4-6) and Proposition 4.2.1.

Proposition 4.1.3 (First variational principle) Let C be a discrete conformal class
with representative metric ` D e�=2 , and let z̀D e

z�=2 where z� is the function of u

defined by equations (2-3). Then:
� z̀ solves Problem 3.1.1 if and only if u is a critical point of ET;‚;� .

� z̀ solves Problem 3.1.3 if and only if u is a critical point of ET;‚;� with fixed ui

for i 2 V0 . (In this case, the values of ‚ for i 2 V0 are irrelevant.)

Proof This follows immediately from Proposition 4.1.2 because @
@ui

ET;‚;� D 0 is
equivalent to the angle sum condition (3-1).

Proposition 4.1.4 (Local convexity) The function ET;‚;� is locally convex, that is,
its second derivative

P
@2ET;‚;�=@ui@uj dui duj is a positive semidefinite quadratic

form. The kernel is 1–dimensional and consists of the constants in RV .

Proof This follows from Equation (4-6) and Proposition 4.2.4.

Proposition 4.1.5 (Extension) The function ET;‚;� can be extended to a convex
continuously differentiable function on RV .

Proof This follows from Equation (4-6) and Proposition 4.2.5.

In fact, one has an explicit formula for the second derivative of ET;‚;� . This is helpful
from the practical point of view, because it allows one to use more powerful algorithms
to minimize ET;‚;� and thus solve the discrete conformal mapping problems. It is
also interesting from the theoretical point of view, because the second derivative of
ET;‚;� at u is the well-known finite-element approximation of the Dirichlet energy
(the cotan-formula) for a triangulation with edge lengths z̀; see Duffin [10] and the
second author and Polthier [33]:

Proposition 4.1.6 (Second derivative) The second derivative of ET;‚;� at u isX
i;j2V

@2ET;‚;�

@ui@uj
dui duj D

1

2

X
ij2E

wij .u/.dui � duj /
2;

where wij .u/D
1
2
.cot z̨k

ij C cot z̨l
ij / if ij is an interior edge with opposite vertices k

and l and wij .u/D
1
2

cot z̨k
ij if ij is a boundary edge with opposite vertex k . This

assumes all triangle inequalities are satisfied. If triangle inequalities are violated, the
cotangent terms for the corresponding triangles have to be replaced with 0.

Proof This follows from Equation (4-6) and Proposition 4.2.3.
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4.2 A peculiar triangle function

˛




ˇ

b
D

e
y a

D
e x

c D ez

R

Figure 8: Triangle with sides aD ex , b D ey , c D ez and angles ˛ , ˇ , 
 :
the radius of the circumcircle is RD a

2 sin˛ D
b

2 sinˇ D
c

2 sin
 .

Consider the function

(4-3) f .x;y; z/D ˛xCˇyC 
 zCL.˛/CL.ˇ/CL.
 /;

where ˛ , ˇ and 
 are the angles in a euclidean triangle with sides aD ex , b D ey

and c D ez as shown in Figure 8. Such a triangle exists if and only if the triangle
inequalities are satisfied. So f is (for now) only defined on the set

(4-4) AD f.x;y; z/ 2R3
j �ex

Cey
Cez > 0; ex

�ey
Cez > 0; ex

Cey
�ez > 0g:

Note that the function f .x;y; z/ is affine in the .1; 1; 1/–direction:

(4-5) f .xC h;yC h; zC h/D f .x;y; z/C�h:

This equation remains valid after the extension of f to R3 described in Proposition 4.2.5.
We will use it in Appendix A to prove Proposition A.1.1.

The function f .x;y; z/ is the fundamental building block of ET;‚;�.u/ since

(4-6) ET;‚;�.u/D
X

ijk2T

�
2f
� z�ij

2
;
z�jk

2
;
z�ki

2

�
�
�

2
.z�ijC

z�jkC
z�ki/

�
C

X
i2V

‚iui ;

and Propositions 4.1.2, 4.1.4, 4.1.5 and 4.1.6 follow from corresponding statements
regarding f .x;y; z/.

Proposition 4.2.1 (First derivative) The partial derivatives of f are

@f

@x
D ˛;

@f

@y
D ˇ;

@f

@z
D 
:
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Proof Using L0.x/D� log j2 sin.x/j we obtain from (4-3) that

@f

@x
D ˛C .x� log.2 sin˛// @˛

@x
C .y � log.2 sinˇ// @ˇ

@x
C .z� log.2 sin 
 // @


@x
:

Since
x� log.2 sin˛/D y � log.2 sinˇ/D z� log.2 sin 
 /D log R;

where R is the radius of the circumcircle, and since

@˛

@x
C
@ˇ

@x
C
@


@x
D 0

(because ˛CˇC 
 D � ), this implies @f
@x
D ˛ .

Remark 4.2.2 All closed one-forms of the form
P3

iD1 f .˛i/dg.̀ i/, where `1 , `2 , `3 ,
and ˛1 , ˛2 , ˛3 are the sides and angles of a (euclidean, hyperbolic, or spherical)
triangle, have been classified by Luo [25]; see also Dai, Gu and Luo [9]. In the
euclidean case, they are the one-forms ws D

P3
iD1.

R ˛i sins t dt/ d`i=`
sC1
i . Thus, the

function f is the integral of w0 .

Proposition 4.2.3 (Second derivative) The second derivative of f is

(4-7)

0@dx

dy

dz

1AT

0BBB@
@2f

@x2

@2f
@x@y

@2f
@x@z

@2f
@y@x

@2f

@y2

@2f
@y@z

@2f
@z@x

@2f
@z@y

@2f

@z2

1CCCA
0@dx

dy

dz

1AD cot˛ .dy � dz/2C cotˇ .dz� dx/2

C cot 
 .dx� dy/2:

Proof By Proposition 4.2.1,

0@dx

dy

dz

1AT

0BBB@
@2f

@x2

@2f
@x@y

@2f
@x@z

@2f
@y@x

@2f

@y2

@2f
@y@z

@2f
@z@x

@2f
@z@y

@2f

@z2

1CCCAD �d˛ dˇ d

�
;

so the left-hand side of equation (4-7) equals

d˛ dxC dˇ dyC d
 dz:

We will show that

(4-8) d˛ D cot 
 .dx� dy/C cotˇ .dx� dz/:

This and the analogous equations for dˇ and d
 imply

d˛ dxC dˇ dyC d
 dz D cot˛ .dy � dz/2C cotˇ .dz� dx/2C cot 
 .dx� dy/2;
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and hence Equation (4-7).

To derive Equation (4-8), differentiate the cosine rule

2bc cos˛ D b2
C c2

� a2

to get

�2bc sin˛ d˛C 2bc cos˛.dyC dz/D 2b2 dyC 2c2 dz� 2a2 dx:

Apply the cosine rule three more times to get

2bc sin˛ d˛ D .b2
� c2
C a2/ .dx� dy/C .�b2

C c2
C a2/ .dx� dz/

D 2ab cos 
 .dx� dy/C 2ac cosˇ .dx� dz/:

Divide through by 2bc sin˛ and apply the sine rule to obtain Equation (4-8).

Proposition 4.2.4 (Local convexity) The function f is locally convex, that is, the
second derivative (4-7) is a positive semidefinite quadratic form. Its kernel is one-
dimensional and spanned by .1; 1; 1/ 2R3 .

Proof Writing .dy � dz/ as ..dy � dx/� .dx� dz// we obtain

cot˛ .dy � dz/2C cotˇ .dz� dx/2C cot 
 .dx� dy/2

D .cot˛C cotˇ/.dx� dz/2C .cot˛C cot 
 /.dx� dy/2

� 2 cot˛.dx� dy/.dx� dz/:

Thus, in terms of .dx� dz/ and .dx� dy/, the matrix of this quadratic form is

M D

�
cot˛C cotˇ � cot˛
� cot˛ cot˛C cot 


�
:

We proceed as in [34, Section 2]. Using ˛CˇC 
 D � , we obtain

M D
1

sin˛ sinˇ sin 


�
sin2 
 � cos˛ sinˇ sin 


� cos˛ sinˇ sin 
 sin2 ˇ

�
and det M D 1. Since M11 > 0 and det M > 0, M is positive definite. The claim
about the second derivative of f follows.

Proposition 4.2.5 (Extension) Extend the definition of f from A to R3 as follows.
Define f .x;y; z/ by Equation (4-3) for all .x;y; z/ 2 R3 , where for .x;y; z/ 62 A
the angles ˛ , ˇ and 
 are defined to be � for the angle opposite the side that is too
long and 0 for the other two. The so extended function f W R3! R is continuously
differentiable and convex.
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Proof The so-defined functions ˛ , ˇ , 
 are continuous on R3 . This implies the
continuity of f and, together with Proposition 4.2.1, the continuity of its first derivative.
Since f is locally convex in A (Proposition 4.2.4) and linear outside, it is convex.

Figure 9 shows contour lines of the extended function f .x;y; z/ in the plane z D 0

and its graph.

Figure 9: On the left, we have the contour plot of .x;y/ 7! f .x;y; 0/:
the intersection of the domain A (see equation (4-4)) with the xy –plane is
shaded. On the right, we have the graph of the same function, also showing
contour lines.

We will need the following estimate in the proof of Proposition A.2.2.

Proposition 4.2.6 (Estimate) We have f .x;y; z/� � maxfx;y; zg.

Proof The inequality follows from Proposition 4.2.5 and the following two observa-
tions. First, the condition of convexity,

f ..1� t/p1C tp2/� .1� t/f .p1/C tf .p2/ if 0� t � 1;

is equivalent to

f ..1� t/p1C tp2/� .1� t/f .p1/C tf .p2/ if t � 0 or t � 1:

Second, for fixed y and z , if x is greater than some constant, then f .x;y; z/D �x .

Together, they imply f .x;y; z/ � �x . Equally, we have f .x;y; z/ � �y and
f .x;y; z/� �z .

Remark 4.2.7 (Amoebas and Ronkin functions) In fact, A is an amoeba, the ex-
tended f is a Ronkin function, and the convexity of f that we have proved by
elementary means follows also from a general theorem of Passare and Rullgård [31],
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which says that a Ronkin function is convex. Amoebas were introduced by Gelfand,
Kapranov and Zelevinsky [15]. The amoeba Ap of a complex polynomial p.z1; : : : ; zn/

with n indeterminates is defined as the domain in Rn that is the image of the set of
zeros of p under the map .z1; : : : ; zn/ 7! .log jz1j; : : : ; log jznj/. So the domain A
defined by Equation (4-4) is the amoeba of the linear polynomial z1C z2C z3 . The
Ronkin function of a polynomial p is defined as the function NpW Rn!R,

Np.x1; : : : ;xn/D
1

.2� i/n

Z
S1.ex1 /�����S1.exn /

log jp.z1; : : : ; zn/j
dz1

z1
^ � � � ^

dzn

zn
;

where S1.r/ is the circle in C around 0 with radius r . As it turns out,

f .x1;x2;x3/D �Nz1Cz2Cz3
.x1;x2;x3/:

We will not spoil the reader’s fun by presenting a proof here. The same Ronkin function
also appears in the work of Kenyon, Okounkov and Sheffield on the dimer model
(see [19; 20]) as the Legendre dual of a “surface tension” in a variational principle
governing the limit shape of random surfaces. (See in particular Kenyon’s survey article
on dimers [18] and Mikhalkin’s survey article on amoebas [26].) Whether or how this
is related to the variational principles discussed in this paper is unclear.

4.3 The second variational principle

The second variational principle has angles as variables. It is based on the two elemen-
tary observations that, first, the sine theorem lets us express the length-cross-ratios in
terms of angles,

(4-9) lcrij D

sin.˛j

il
/ sin.˛i

jk
/

sin.˛i
lj
/ sin.˛j

ki
/

(see Figure 10), and that, second, if we know the angles in a euclidean triangulation,
then we can (again using the sine theorem) reconstruct the lengths up to a global scale
factor.

For a triangulated surface T and � 2RE , define

ST;�W R
A
!R;

ST;�.˛/D
X

ijk2T

.2V .˛k
ij ; ˛

i
jk ; ˛

j

ki
/C˛k

ij�ij C˛
i
jk�jk C˛

j

ki
�ki/;

(4-10)

where

(4-11) V .˛; ˇ; 
 /DL.˛/CL.ˇ/CL.
 /:
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j

l

i

k

˛
j

ki
˛

j

il

˛i
jk
˛i

lj

Figure 10: The sine theorem lets us express the length-cross-ratios (see
Figure 3) in terms of angles.

Remark 4.3.1 The function ST;� is (up to an irrelevant additive constant) equal to
Rivin’s function VS defined in [34, Section 7]. But the variational principles considered
here (Propositions 4.3.3 and 4.3.4) are different. Rivin’s variational principle has an
additional constraint: only such variations are allowed that fix, for each edge, the sum
of opposite angles.

Proposition 4.3.2 (Rivin [34]) The function V is strictly concave on the domain

f.˛; ˇ; 
 / 2 .R>0/
3
j ˛CˇC 
 D �g:

So ST;� is also strictly concave on the domain of positive angle assignments that sum
to � in each triangle.

Proposition 4.3.3 (Second variational principle I) Let C be a discrete conformal
class on T with representative ` D e�=2 2 RE , let ‚ 2 RV , and define the subset
C‚ �RA by

(4-12) C‚ D

�
˛ 2RA

ˇ̌̌̌
˛ > 0; for all ij k 2 T : ˛i

jk C˛
j

ki
C˛k

ij D �;

for all i 2 V :
X

jkWijk2T

˛i
jk D‚i

�
:

Then z̨ 2 C‚ is the angle function of a solution z̀D e
z�=2 of Problem 3.1.1 if and only

if ST;�.z̨/ is the maximum of the restriction ST;�jC‚
.

Proof Consider the graph � that is obtained by choosing one point in each triangle of
T and connecting it to the vertices of the triangle (see Figure 11, left). The vertex set
V� is in one-to-one correspondence with VT[TT , and the edge set E� is in one-to-one
correspondence with the set of angles AT .
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j

l

i

k j

l

i

k
�1 C1

C1 �1

Figure 11: On the left, we have the triangulation T (solid) and the corre-
sponding graph � (dotted). On the right, we have the cycle of edges of �
(dashed) that corresponds to an interior edge ij 2ET , and the corresponding
tangent vector vij 2RA to C‚ .

The tangent space to C‚ �RA , which consists of those vectors in RA that sum to 0

in each triangle and around each vertex, is in one-to-one correspondence with the space
of closed edge chains of � with coefficients in R.

First, assume that z̨ is a critical point of ST;�jC . Suppose ij 2 ET is an interior
edge and consider the cycle of edges of � shown on the right in Figure 11. The
corresponding tangent vector to C‚ in RA is

(4-13) @

@˛
j

il

�
@

@˛i
lj

C
@

@˛i
jk

�
@

@˛
j

ki

;

�
@

@˛
j

il

�
@

@˛i
lj

C
@

@˛i
jk

�
@

@˛
j

ki

�
ST;�.z̨/D�2 log

�sin.z̨j

il
/ sin.z̨i

jk
/

sin.z̨i
lj
/ sin.z̨j

ki
/

�
C�il ��lj C�jk ��ki :

Provided that z̨ is in fact the system of angles of a discrete metric z̀ D e
z�=2 , this

implies that z̀ and ` are discretely conformally equivalent. It remains to show that z̨
is indeed the system of angles of a discrete metric. Construct such a metric as follows:
pick one edge ij 2ET and choose an arbitrary value for z�ij . To define z�lk for any
other edge lk 2ET , connect it to ij by an edge-connected sequence of triangles as
shown in Figure 12, let 
 be the chain of edges of the graph � as indicated in the
figure. Let w
 be the corresponding vector in RA and define

z�kl D
z�ij C dST;�jz̨.w
 /C�kl ��ij :

The value of z�kl obtained in this way is independent of the choice of triangle chain:
another triangle chain connecting ij to kl leads to an edge-chain 
 0 such that 
 0�
 is
a closed edge-chain so that w
 0 �w
 2 RA is tangent to C‚ . Further, z̀D e

z�=2 is
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a discrete metric with angles z̨ : if ij and kl belong to the same triangle (that is, if
the triangle chain consists of only one triangle) then this follows from the sine rule.
The general case follows by induction over the length of 
 . So z̀ is a solution of
Problem 3.1.1.

j

l

k

i

Figure 12: Edge-connected chain of triangles from edge ij to edge kl

of T: the corresponding chain 
 of � –edges (dotted) consists of the edges
of � opposite the initial edge ij , the terminal edge kl and the intermediate
connecting edges of the triangle chain.

The converse implication (solution of Problem 3.1.1 implies critical point) follows from
the fact that the cycle space of � is spanned by the cycles corresponding to interior
edges of T as shown in Figure 11(right) together with the cycles in � corresponding
to edge-connected triangle sequences as shown in Figure 12 but closed.

Solutions to the more general Problem 3.1.3 (with ujV0
D 0) are also in one-to-one

correspondence with critical points of ST;� . The only difference is that the angle sums
are not constrained for vertices in V0 :

Proposition 4.3.4 (Second variational principle II) Let C be a discrete conformal
class on T with representative `D e�=2 2RE , let V D V0 P[V1 be a partition of V , let
‚ 2RV1 , and define C 0

‚
�RA by

(4-14) C 0‚ D

�
˛ 2RA

ˇ̌̌̌
˛ > 0; for all ij k 2 T : ˛i

jk C˛
j

ki
C˛k

ij D �;

for all i 2 V1:
X

jkWijk2T

˛i
jk D‚i

�
:

Then z̨ 2 C 0
‚

is the angle function of a solution of Problem 3.1.3 with fixed ujV0
D 0

if and only if ST;�.z̨/ is the maximum of the restriction ST;�jC 0
‚

.
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We omit the proof because no essential new ideas are necessary beyond those used in
the proof of Proposition 4.3.3.

Remark 4.3.5 It also makes sense to consider critical points of ST;� under variations
of the type shown in Figure 11 alone, disallowing variations corresponding to homo-
logically nontrivial cycles in � . These correspond to discretely conformally equivalent
similarity structures, that is, “metrics” which may have global scaling holonomy.

5 The other side of the theory: Interpretation in terms of
hyperbolic geometry

5.1 Hyperbolic structure on a euclidean triangulation

This section deals with the inverse of a construction of Penner [32; 11], which equips a
hyperbolic manifold with cusps with a piecewise euclidean metric. Here, we construct
a natural hyperbolic metric with cusps on any euclidean triangulation.

Consider a euclidean triangle with its circumcircle. If we interpret the interior of the
circumcircle as a hyperbolic plane in the Klein model, then the euclidean triangle
becomes an ideal hyperbolic triangle, that is, a hyperbolic triangle with vertices at
infinity. This construction equips any euclidean triangle (minus its vertices) with a
hyperbolic metric. If it is performed on all triangles of a euclidean triangulation .T; `/,
then the hyperbolic metrics induced on the individual triangles fit together so T nV

is equipped with a hyperbolic metric with cusps at the vertices. Thus, T becomes an
ideal triangulation of a hyperbolic surface with cusps.

Remark 5.1.1 We will see in Section 5.3 that �ij and log lcrij are Penner coordinates
and shear coordinates for this hyperbolic surfaces. It follows that the above construction
yields the same surface as a construction described (in terms of length-cross-ratios) by
Rivin [36, Section 7].

Theorem 5.1.2 Two euclidean triangulations .T; `/ and .T; z̀/ with the same com-
binatorics are discretely conformally equivalent if and only if the hyperbolic metrics
with cusps induced by the circumcircles are isometric. Discrete conformal maps are
isometries with respect to the induced hyperbolic metrics.

Proof This follows immediately from Theorem 2.6.2 (Section 2.6), because the
projective circumcircle-preserving maps between triangles are precisely the hyperbolic
isometries.
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Remark 5.1.3 Each discrete conformal structure on T corresponds therefore to a
point in the classical Teichmüller space Tg;n of a punctured surface. This explains the
dimensional agreement observed in Remark 2.1.2.

Theorem 5.1.2 also suggests a way to extend the concepts of discrete conformal
equivalence and discrete conformal maps to triangulations which are not combinatorially
equivalent:

Definition 5.1.4 Two euclidean triangulations .T; `/ and .zT; z̀/, which need not be
combinatorially equivalent, are discretely conformally equivalent if they are isometric
with respect to the induced hyperbolic metrics with cusps. The corresponding isometries
are called discrete conformal maps.

5.2 Decorated ideal triangles and tetrahedra

In this section we review some basic facts about ideal triangles and tetrahedra that will
be needed in subsequent sections.

All ideal hyperbolic triangles are congruent with respect to the group of hyperbolic
isometries. A decorated ideal triangle is an ideal hyperbolic triangle together with a
choice of horocycles, one centered at each vertex (see Figure 13).

vk

vjvi

ck
ij

pi
jk

pk
ij

C�ki D

pk
ij

p
j

ki

C D �jk

pi
jk
Cp

j

ki

D

�ij

v1 D 0 v2 D 1

v3 D1

p1

p1

p3 p3

p2

p2

i

iep3
c3 D e�p3

1C iep3

1C i

Figure 13: Decorated ideal triangle in the Poincaré disk model (left) and in
the half-plane model (right)

We denote by �ij the signed distance between the horocycles at vertices i and j as
measured along the edge ij and taken negatively if the horocycles intersect. Any
triple of real numbers .�ij ; �jk ; �ki/ 2R3 corresponds to one and only one choice of

Geometry & Topology, Volume 19 (2015)



Discrete conformal maps and ideal hyperbolic polyhedra 2185

horocycles. Figure 13 shows also the lines of symmetry of the ideal triangle. (They
are its heights as well.) We denote the signed distances from their base points to the
horocycles by pk

ij as shown. Clearly,

�ij D pi
jk Cp

j

ki
; �jk D p

j

ki
Cpk

ij ; �ki D pk
ij Cpi

jk ;

so

pk
ij D

1
2
.��ij C�jk C�ki/;

pi
jk D

1
2
.�ij ��jk C�ki/;

p
j

ki
D

1
2
.�ij C�jk ��ki/:

(5-1)

Lemma 5.2.1 (Penner [32]) The length ck
ij of the arc of the horocycle centered at vk

that is contained in an ideal triangle vivjvk as shown in Figure 13 (left) is

ck
ij D e�pk

ij D e.�ij��j k��ki /=2:

Proof See Figure 13 (right), which shows the ideal triangle in the half-plane model.
Recall that in the half-plane model, the hyperbolic plane is represented by fz 2 C j
Im z > 0g with metric ds D 1

Im z
jdzj.

Remark 5.2.2 Together with Proposition 5.3.2 of the next section, this provides a
geometric interpretation for the auxiliary parameters ci

jk
introduced in Section 2.4.

Not all ideal tetrahedra are isometric. There is a complex 1–parameter family of them,
the parameter being the complex cross-ratio of the vertices in the infinite boundary of
hyperbolic 3–space. A decorated ideal tetrahedron is an ideal hyperbolic tetrahedron
together with a choice of horospheres centered at the vertices. Figure 14 shows a
decorated ideal tetrahedron, truncated at its horospheres, in the half-space model.
Again, we denote the signed distances between the horospheres by �ij .

The intrinsic geometry of a horosphere in hyperbolic space is euclidean. So the
intersection of the tetrahedron with the horosphere centered at, say, vl is a euclidean
triangle with side lengths cl

ij , cl
jk

, cl
ki

determined by Lemma 5.2.1. One easily deduces
the following lemma.

Lemma 5.2.3 Six real numbers �ij , �jk , �ki , �il , �jl , �kl are the signed distances
between horospheres of a decorated ideal tetrahedron as shown in Figure 14 (which is
then unique) if and only if cl

ij , cl
jk

, cl
ki

determined by Lemma 5.2.1 satisfy the triangle
inequalities.
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vi
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vk

�ij
�jk

�ki

�il �ki �jk

cl
ij

cl
jk

cl
ki

vl

Figure 14: Decorated ideal tetrahedron in the half-space model

So the six parameters � determine the congruence class of the ideal tetrahedron (2 real
parameters) and the choice of horospheres (4 parameters).

Note that the angles of the euclidean triangles in which the tetrahedron intersects
the four horospheres are the dihedral angles of the tetrahedron. This implies that
the dihedral angles sum to � at each vertex, and further, that the dihedral angles at
opposite edges are equal. The space of ideal tetrahedra is therefore parametrized by
three dihedral angles ˛ij D ˛kl , j̨k D ˛il , ˛ki D j̨ l satisfying ˛ilC j̨ lC˛kl D � .

5.3 Penner coordinates and shear coordinates

In Section 5.1, we equipped a euclidean triangulation .T; `/ with a hyperbolic cusp
metric that turns it into an ideal hyperbolic triangulation. In this section, we will
identify the logarithmic edge lengths � (see Equation (2-2)) with the Penner coordi-
nates [32] and the logarithmic length-cross-ratios log lcr (see Equation (2-4)) with the
shear coordinates (see Fock [12] and Thurston [43]) for this ideal triangulation. (The
handbook [30] is a good reference for the pertinent aspects of Teichmüller theory.)

Warning Our notation differs from Penner’s in a potentially confusing way. His
“lambda-lengths” are

p
2e�=2D

p
2` in our notation. Our �s are the signed hyperbolic

distances between horocycles.

Since the sides of an ideal hyperbolic triangle are complete geodesics, there is a one-
parameter family of ways to glue two sides together. Penner coordinates and shear
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coordinates can be seen as two ways to describe how ideal triangles are glued together
along their edges to form a hyperbolic surface with cusps.

Suppose T is a triangulated surface and � 2RE . For each triangle ij k 2 T , take the
decorated ideal triangle with horocycle distances �ij , �jk , �ki , and glue them so that
the horocycles fit together (see Figure 15(left)).

vj

vl

vi

vk

�lj

�jl

�ki

�jk

�ij

vj

vl

vi

vk

Zij

Figure 15: Penner coordinates (left) and shear coordinates (right)

The result is a hyperbolic surface with cusps at the vertices, together with a particular
choice of horocycles centered at the cusps. In this way, the Penner coordinates �
parametrize the decorated Teichmüller space, that is, the space of hyperbolic cusp
metrics on a punctured surface (modulo isotopy) with horocycles centered at the cusps.

The shear coordinates represent another way to prescribe how ideal triangles are glued,
for which no choice of horospheres is necessary. The shear coordinate Z on an interior
edge of an ideal triangulation is the signed distance of the base points of the heights
from the opposite vertices (see Figure 15(right)). The following relation between
Penner coordinates and shear coordinates is well known.

Lemma 5.3.1 If � 2RE are the Penner coordinates for an ideal triangulation with a
particular choice of horocycles, then the shear coordinates Z 2REint are

Zij D
1
2
.�il ��lj C�jk ��ki/;

where k and l are the vertices opposite edge ij as in Figure 15.

Proof The claim follows from Zij D p
j

ki
�p

j

il
and (5-1).

Proposition 5.3.2 Let .T; `/ be a euclidean triangulation. The shear coordinates
Z 2REint for the corresponding ideal triangulation (see Section 5.1) are

(5-2) Zij D log lcrij
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(see Equation (2-4)). Thus, for a suitable choice of horocycles, the Penner coordinates
� 2RE are given by Equation (2-2).

Proof Consider an interior edge ij 2 E between triangles ij k and j il . Without
loss of generality, we may assume that the triangles have a common circumcircle. For
otherwise we can change ` discretely conformally so that this holds, and this changes
neither lcrij nor the hyperbolic cusp metric on T . We may further assume that ij

is a diameter of the common circumcircle. For otherwise we may apply a projective
transformation that maps the circle onto itself so that this holds. This is an isometry
with respect to the hyperbolic metric of the Klein model, and it is a discrete conformal
map of the quadrilateral formed by the two triangles. We arrive at the situation shown
in Figure 16 in the Klein model.

vj

vl

vi

vk
`il

j̀k b

a

`lj

`ki

Figure 16: Shear and length-cross-ratio (see proof of Proposition 5.3.2)

The hyperbolic heights are also the euclidean heights, and in the hyperbolic metric of
the Klein model, the distance between their base points a and b is

Zij D
1

2
log
javj jjbvi j

javi jjbvj j
;

where jxyj denotes the euclidean distance between x and y . Since by elementary
euclidean geometry

javj j

javi j
D

j̀k
2

`ki
2

and
jbvi j

jbvj j
D
`lj

2

`il
2
;

this implies Equation (5-2). Now Lemma 5.3.1 implies the statement about Penner
coordinates.

Geometry & Topology, Volume 19 (2015)



Discrete conformal maps and ideal hyperbolic polyhedra 2189

5.4 Ideal hyperbolic polyhedra with prescribed intrinsic metric

The discrete conformal mapping problems described in Section 3 are equivalent to
problems involving the polyhedral realization of surfaces with hyperbolic cusp metrics,
like the following.

Problem 5.4.1 Given an ideal triangulation T of a punctured sphere equipped with a
hyperbolic metric with cusps, find an isometric embedding of T as ideal hyperbolic
polyhedron in H 3 . The polyhedron is not required to be convex, but it is required that
the edges of the polyhedron are edges of T.

Theorem 5.4.2 For any vertex l of T, Problem 5.4.1 has at most one solution that is
star-shaped with respect to l .

Problem 5.4.1 is equivalent to (a special case of) Problem 3.1.3, so Theorem 5.4.2
follows from Theorem 3.1.4. Indeed, to solve Problem 5.4.1 one may proceed as
follows. Let � 2 RE be the Penner coordinates for the ideal triangulation T, and
let ` D e�=2 . Choose a vertex l of T and let the triangulation T0 be T minus the
open star of l . Solve Problem 3.1.3 for T0 , prescribing ‚i D 2� if i is an interior
vertex and ui D ��il if i is a boundary vertex. Suppose a solution u 2 RV 0

exists.
This leads to a flat triangulation .T0; z̀/. Suppose further that .T0; z̀/ does not overlap
with itself when developed in the plane. For each triangle ij k of T0 , construct the
decorated ideal tetrahedron (see Section 5.2) with horosphere-distances �ij , �jk , �ki ,
and �ui , �uj , �uk as shown in Figure 17.

They exist by Lemma 5.2.3, because by Lemma 5.2.1, the intersection of the ideal tetra-
hedron with the horosphere centered at the vertex opposite ij k is the euclidean triangle
with side lengths z̀ij , z̀jk , z̀ki as shown in the figure. Hence, all these ideal tetrahedra
fit together to form a solution of Problem 5.4.1 that is star-shaped with respect to l .

Conversely, any solution of Problem 5.4.1 that is star-shaped with respect to l yields a
solution without self-overlap of the corresponding instance of Problem 3.1.3.

Remark 5.4.3 Note the similarity with the procedure for mapping to a sphere described
in Section 3.2.

Numerous variations of Problem 5.4.1 can be treated in similar fashion. We mention
only the following.

Problem 5.4.4 Given an ideal triangulation T of a punctured torus equipped with
a hyperbolic metric with cusps, find an isometric embedding of the universal cover
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Figure 17: Discretely conformally flattening a euclidean triangulation is
equivalent to constructing an ideal polyhedron with prescribed hyperbolic
cusp metric.

of T as an ideal polyhedron in H 3 that is symmetric with respect to an action of the
fundamental group of T by parabolic isometries. The polyhedron is not required to be
convex, but it is required that the polyhedron is star-shaped with respect to the ideal
fixed point of the parabolic isometries and that the edges of the polyhedron are edges
of T .

Theorem 5.4.5 If Problem 5.4.4 has a solution, it is unique.

5.5 The variational principles and hyperbolic volume

The connection with hyperbolic polyhedra elucidates the nature and origin of the
variational principles for discrete conformal maps (Propositions 4.1.3, 4.3.3 and 4.3.4).
In this section, we will indicate how to derive these variational principles from Milnor’s
equation for the volume of an ideal tetrahedron and Schläfli’s formula.

Milnor [27; 28] showed that the volume of an ideal tetrahedron with dihedral an-
gles ˛ , ˇ , 
 is V .˛; ˇ; 
 / as defined by Equation (4-11). Schläfli’s differential volume
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formula (more precisely, Milnor’s generalization which allows for ideal vertices [29])
says that its derivative is

(5-3) dV D�
1

2

X
�ij d˛ij ;

where the sum is taken over the six edges ij , �ij is the signed distance between
horospheres centered at the vertices i and j , and ˛ij is the interior dihedral angle.
(The choice of horospheres does not matter because the dihedral angle sum at a vertex
is constant; see Section 5.2.)

Using the correspondence between ideal tetrahedra and euclidean triangles, the volume
function V can be reinterpreted as a function of the angles of a euclidean triangle,
whose derivatives ..@=@˛/� .@=@ˇ//V , etc, are logarithmic ratios of the sides. This is
the essential property of V used in the second variational principle (Propositions 4.3.3
and 4.3.4).

Now define

(5-4) yV .�12; �23; �31; �14; �24; �34/D
1

2

X
ij

˛ij�ij CV .˛14; ˛24; ˛34/;

where the dihedral angles ˛12 D ˛34 , ˛23 D ˛14 , ˛31 D ˛24 of the decorated tetra-
hedron are considered as functions of the �ij . (They are the angles in a euclidean
triangle with side lengths e.�12��14��24/=2 , e.�23��24��34/=2 , e.�31��34��14/=2 ; see
Section 5.2.) Then, by Equation (5-3),

(5-5) d yV D
1

2

X
˛ij d�ij :

This implies Proposition 4.1.2 on the partial derivatives of ET;‚;� , and therefore
Proposition 4.1.3 (the first variational principle), because using (5-4) (and (2-3)) we
can rewrite (4-1) as

(5-6) ET;‚;�.u/D
X

ijk2T

2 yV .�ij ; �jk ; �ki ;�ui ;�uj ;�uk/�
X

ij2E

ˆij�ijC

X
i2V

‚iui ;

where

(5-7) ˆij D

�
� if ij is an interior edge;
�=2 if ij is a boundary edge:

(See also Figure 17.)
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6 The discrete conformal equivalence of hyperbolic triangu-
lations

6.1 Definition and variational principle

In Section 5.5 we derived the first variational principle for discrete conformal maps
from Milnor’s equation for the volume of an ideal tetrahedron and Schläfli’s formula. A
straightforward modification of this derivation leads to a companion theory of discrete
conformality for hyperbolic triangulations. This makes it possible, for example, to
construct discretely conformal uniformizations of higher-genus surfaces as shown in
Figure 18.

Figure 18: Discretely conformal uniformization of a genus-two surface

We will present the basic theory in this section, and show how to derive it by hyperbolic
volume considerations in the next.

Suppose T is a surface triangulation and ` 2RE
>0

is a discrete metric, that is, a real-
valued function on the set of edges that satisfies all triangle inequalities. Then there
is not only a euclidean triangulation .T; `/ with these edge lengths. One can equally
construct hyperbolic triangles ij k with hyperbolic side lengths `ij , j̀k , `ki and glue
them together. The result is a hyperbolic triangulation which we denote by .T; `/h .

Definition 6.1.1 Two combinatorially equivalent hyperbolic triangulations, .T; `/h
and .T; z̀/h , are discretely conformally equivalent if the discrete metrics ` and z̀ are
related by

(6-1) sinh
z̀
ij

2
D e.uiCuj /=2 sinh

`ij

2

for some function uW V !R.
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Thus, in the hyperbolic version of the theory, (2-2) is replaced by

(6-2) �D 2 log sinh `
2
;

so that in terms of � and z�, the relation (6-1) is again equivalent to (2-3). The role of
ET;‚;�.u/ is played by the function

(6-3) Eh
T;‚;�.u/D

X
ijk2T

2 yVh.�ij ; �jk ; �ki ;�ui ;�uj ;�uk ; /C
X
i2V

‚iui ;

where

(6-4) 2 yVh.�12; �23; �31; �1; �2; �3/

D ˛1�1C˛2�2C˛3�3C˛12�12C˛23�23C˛31�31

CL.˛1/CL.˛2/CL.˛3/CL.˛12/CL.˛23/CL.˛31/

CL.1
2
.� �˛1�˛2�˛3//;

and ˛1 , ˛2 , ˛3 are the angles in a hyperbolic triangle with side lengths

z̀
23 D 2 arsinh.e.�23��2��3/=2/;

z̀
31 D 2 arsinh.e.�31��3��1/=2/;

z̀
12 D 2 arsinh.e.�12��1��2/=2/;

(6-5)

˛23 D
1
2
.� C˛1�˛2�˛3/;

˛31 D
1
2
.� �˛1C˛2�˛3/;

˛12 D
1
2
.� �˛1�˛2C˛3/:

(6-6)

Thus, yVh is defined only on the domain where z̀12 , z̀23 , z̀31 satisfy the triangle
inequalities. However, exactly as in the case of ET;‚;�.u/, we can extend the domain
of definition of Eh

T;‚;�
.u/ to the whole of RV :

Proposition 6.1.2 Extend the domain of definition of Eh
T;‚;�

.u/ to RV by declaring
the angles in “broken” triangles to be 0, 0, � , respectively. The resulting function is
continuously differentiable on RV .

Proof See Section 6.2.

Remark 6.1.3 To compute the angles ˛ , ˇ , 
 in a hyperbolic triangle with side
lengths a, b , c , one can use, for example, the hyperbolic cosine rule or the hyperbolic
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half-angle formula

tan
�
˛

2

�
D

s
sinh..a� bC c/=2/ sinh..aC b� c/=2/

sinh..�aC bC c/=2/ sinh..aC bC c/=2/
:

Proposition 6.1.4 Let ` 2 RE , let � be defined by (6-2), and suppose u 2 RV is in
the domain where z̀ defined by (6-1) satisfies all triangle inequalities. Then the partial
derivative of Eh

T;‚;�
with respect to ui is

@

@ui
Eh

T;‚;� D‚i �

X
jkWijk2T

z̨
i
jk ;

where z̨ are the angles in the hyperbolic triangulation .T; z̀/h , and the sum is taken
over all angles around vertex i .

Proof See Section 6.2.

Proposition 6.1.5 The function Eh
T;‚;�

.u/ is convex on RV and locally strictly
convex in the domain where z̀ defined by (6-1) satisfies all triangle inequalities.

Proof See Section 6.2.

Consider the discrete conformal mapping problems for hyperbolic triangulations that are
analogous to those for euclidean triangulations described in Section 3. Propositions 6.1.4
and 6.1.5 imply the following hyperbolic version of Theorem 3.1.4.

Theorem 6.1.6 If the discrete mapping problems for hyperbolic triangulations have
a solution, it is unique and can be found by minimizing Eh

T;‚;�
.u/.

The following relatively simple explicit formula for the second derivative facilitates the
numerical minimization of Eh

T;‚;�
.

Proposition 6.1.7 The second derivative of Eh
T;‚;�

at u is

(6-7)
X

i;j2V

@2Eh
T;‚;�

@ui@uj
dui duj

D
1

2

X
ij2E

wij .u/
�
.dui � duj /

2
C tanh2

�
z̀

ij

2

�
.dui C duj /

2
�
;

with z̀ defined by (6-1) and

(6-8) wij .u/D
1
2
.cot.1

2
.� � z̨i

jk � z̨
j

ki
C z̨

k
ij //C cot.1

2
.� � z̨

j

il
� z̨

i
lj C z̨

l
ji///
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for interior edges ij with opposite vertices k and l if z̀ satisfies the triangle inequalities
for ij k and j il (so that the corresponding angles z̨ are positive and smaller than � ).
If ij is a boundary edge, there is only one cotangent term. For “broken” triangles,
replace the three corresponding cotangent terms with 0.

We omit the proof, which consists of a lengthy but elementary calculation.

Remark 6.1.8 When are a euclidean and a hyperbolic triangulation discretely con-
formally equivalent? We propose the following definition: a euclidean triangulation
.T; `/ and a hyperbolic triangulation .T; z̀/h are discretely conformally equivalent if `
and z̀ are related by

(6-9) sinh
z̀
ij

2
D e.uiCuj /=2`ij

for some function u 2RV .

This is based on the following interpretation of (6-2) and (2-3). Consider the hyperboloid
model of the hyperbolic plane, H 2 D fx 2R2;1 j hx;xi D �1;x3 > 0g; where h � ; � i
denotes the indefinite scalar product hx;yi D x1y1Cx2y2�x3y3; and the hyperbolic
distance dh.x;y/ between two points x;y 2H 2 satisfies

cosh dh.x;y/D�hx;yi:

This implies
kx�ykh D 2 sinh.1

2
dh.x;y//;

where we have kvkh D
p
hv; vi. To every hyperbolic triangle in H 2 with sides of

length `12 , `23 , `31 , there corresponds a secant triangle in R2;1 whose sides are the
straight line segments in R2;1 connecting the vertices. Their lengths, as measured
by k � kh , are therefore 2 sinh.`ij=2/.

Note that the following statements are equivalent.

(i) The restriction of the indefinite scalar product h � ; � i of R2;1 to the affine plane
of the secant triangle is positive definite and therefore induces a euclidean metric
on that plane.

(ii) The side lengths of the secant triangle satisfy the triangle inequalities.

(iii) The circumcircle of the hyperbolic triangle is a proper circle. (The circumcircle
of a hyperbolic triangle is either a proper circle or a horocycle or a curve of
constant distance from a geodesic.)
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(The analogous statement for the secant triangles of decorated ideal hyperbolic triangles
is Penner’s Lemma 2.2 [32].)

Now let .T; `/h and .T; z̀/h be two hyperbolic triangulations. The edge lengths of the
secant triangles of .T; `/h are 2e�=2 with � defined by (6-2), and similarly for .T; z̀/h .
We have that .T; `/h and .T; z̀/h are discretely conformally equivalent if and only if
`0 D e�=2 and z̀0 D e

z�=2 are related by (2-1), that is, related like discrete metrics of
discretely conformally equivalent euclidean triangulations.

6.2 Derivation by volume considerations

The theory of discrete conformal equivalence for hyperbolic triangulations is based on
volume considerations for the type of polyhedron shown in Figure 19.

p1
p3

v3

v2

v1

z̀
31

�3

�23
�12

�1

z̀
12

z̀
23

�2

p2

�31

Figure 19: The polyhedral building block (shown in the Poincaré ball model)
used to derive the theory of discrete conformal equivalence of hyperbolic
triangulations

From the vertices p1 , p2 , p3 of a triangle in hyperbolic 3–space, three rays run
orthogonally to the plane of the triangle until they intersect the infinite boundary in
the ideal points v1 , v2 , v3 . The convex hull of these six points is a prism with three
ideal vertices and right dihedral angles at the base triangle p1p2p3 . Let the dihedral
angles at the three rays from p1 , p2 , p3 be ˛1 , ˛2 , ˛3 . Since the dihedral angles
sum to � at the ideal vertices, the dihedral angles ˛12 , ˛23 , ˛31 at edges v1v2 , v2v3 ,
v3v1 satisfy (6-6). Let z̀ij be the lengths of the finite edges, and let �i and �ij be
the lengths of the infinite edges truncated at some horospheres centered at the ideal
vertices vi , as shown in Figure 19.
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Lemma 6.2.1 (Leibon [22]) The (truncated) edge lengths of the prism shown in
Figure 19 are related by (6-5).

Proof We consider the case when �1 D �2 D �3 D 0 (that is, when the truncating
horospheres touch the base plane in p1 , p2 , p3 ), from which the general case follows
easily.

1 e
z̀

i

z̀

ie
z̀

�
�1

�2

�1

�2

a
�

Figure 20: On the left, we have the proof of Lemma 6.2.1. On the right, the
angle � and the side length a in a right angled hyperbolic triangle with an
ideal vertex satisfy the equation aD log cot.�=2/ .

Figure 20(left) shows one of the side quadrilaterals of the prism in the half-plane model.
We will show that

(6-10) �D 2 log sinh
� z̀

2

�
;

which proves this special case. We have

�1 D 2 arccot
�

e
z̀
�1

2

�
; �2 D 2 arccot

�
2e
z̀

e
z̀
�1

�
:

The equation for the “angle of parallelity” (see Figure 20(right)) implies that

�D log cot.�1=2/� log cot.�2=2/;

and hence (6-10) holds.
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The volume of the polyhedron shown in Figure 19 is

(6-11) Vh.˛1; ˛2; ˛3/D
1
2
.L.˛1/CL.˛2/CL.˛3/CL.˛12/

CL.˛23/CL.˛31/CL.1
2
.� �˛1�˛2�˛3///:

This was shown by Leibon [22], who also showed that the volume function Vh is
strictly concave on its domain of definition,

f.˛1; ˛2; ˛3/ 2R3
j ˛1 > 0; ˛2 > 0; ˛3 > 0; ˛1C˛2C˛3 < �g:

By Schläfli’s formula,

dVh D�
1
2
.�1 d˛1C�2 d˛2C�3 d˛3C�12 d˛12C�23 d˛23C�31 d˛31/:

(The choice of horospheres does not matter because the angle sum at the ideal vertices
is constant. Also note that the lengths z̀ij of the finite edges do not appear in the
equation because their dihedral angles are constant.)

The function yVh defined by (6-4) is

yVh.�12; �23; �31; �1; �2; �3/

D
1
2
.˛1�1C˛2�2C˛3�3C˛12�12C˛23�23C˛31�31/CVh.˛1; ˛2; ˛3/;

so that

d yVh D
1
2
.˛1 d�1C˛2 d�2C˛3 d�3C˛12 d�12C˛23 d�23C˛31 d�31/:

From this one obtains Proposition 6.1.4 on the partial derivatives of Eh
T;‚;� . By

extending yVh using essentially the same argument as in the proof of Proposition 4.1.5,
one obtains Proposition 6.1.2 on the extension of Eh

T;‚;� . To prove the convexity of
Eh

T;‚;� (Proposition 6.1.5), note that the function

yVh.�12; �23; �31; �1; �2; �3/�
�

4
.�12C�23C�31/

really only depends on the three parameters

x1 D
1
4
.C�12��23C�31� 2�1/D

@Vh

@˛1
;

x2 D
1
4
.C�12C�23��31� 2�2/D

@Vh

@˛2
;

x3 D
1
4
.��12C�23C�31� 2�3/D

@Vh

@˛3
;
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As function of these parameters, it is minus the Legendre transform of the strictly
concave function Vh :

yVh�
�

4
.�12C�23C�31/D�˛1x1�˛2x2�˛3x3CVh:

Therefore, yVh is a locally strictly convex function of x1 , x2 , x3 , and hence also
of �1 , �2 , �3 , if �12 , �23 , �31 are considered constant. The C 1 extension of yVh

is linear outside the domain where the triangle inequalities are satisfied, hence still
convex.

Remark 6.2.2 In the same way, one can derive a theory of discrete conformal equiv-
alence for spherical triangulations. In this case, the polyhedral building block is a
tetrahedron with one finite and three ideal vertices. The functions involved in the
corresponding variational principles are not convex. So in this case, the variational
principles do not immediately lead to a uniqueness theorem, nor to a computational
method for discrete conformal maps.

Appendix A: Necessary conditions for the existence of a solu-
tion of the discrete conformal mapping problems

In this appendix, we will discuss some rather obvious and rather mild necessary
conditions for the solvability of the discrete mapping problems and how they relate to
the behavior of the function ET;‚;�.u/. In short, the conditions are necessary for the
problems to have a solution and sufficient to ensure that ET;‚;�.u/ behaves “sanely”,
so that the following solvability alternative (see the corollary to Proposition A.2.2)
holds: provided that we are able to find a minimizer of a convex function if it exists,
then the variational principle allows us to either solve a discrete conformal mapping
problem or to ascertain that it is not solvable.

A.1 The discrete Gauss–Bonnet condition

Condition A We have
P
i2V

‚i D �jT j.

If Problem 3.1.1 has a solution then clearly Condition A is satisfied (because the sum of
angle sums around vertices equals the sum of angle sums in triangles). This is actually
a discrete version of the Gauss–Bonnet formula. If we set Ki D 2� �‚i for interior
vertices and �i D � �‚i for boundary vertices then Condition A is equivalent toX

i2Vint

Ki C

X
i2Vbdy

�i D 2�.jT j � jEjC jV j//:
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Proposition A.1.1 The function ET;‚;�.u/ is scale-invariant, that is,

ET;‚;�.uC h1V /DET;‚;�.u/;

if and only if Condition A is satisfied.

Proof Adding h to every ui results in an added 2h to every z�ij ; see (2-3). Using (4-5)
and (4-6), one obtains

ET;‚;�.uC h1V /DET;‚;�.u/C h

�X
i2V

‚i ��jT j

�
:

A.2 The solvability alternative

The following stronger Conditions B and C are also obviously necessary for the existence
of a solution to Problem 3.1.1. Moreover, if a solution to the general Problem 3.1.3
exists (where ‚i is prescribed only for i 2V1 ), then positive ‚–values can be assigned
also to the vertices in V0 so that Conditions B and C are satisfied.

Condition B There exists a system of angles y̨ > 0, such that

(A-1)
y̨

i
jk C y̨

j

ki
C y̨

k
ij D � for all ij k 2 T;X

jkWijk2T

y̨
i
jk D‚i for all i 2 V:

Condition C If T1 is any subset of T and V1 � V is the set of all vertices of the
triangles in T1 , that is,

V1 D

[
ijk2T1

fi; j ; kg;

then
�jT nT1j �

X
i2V nV1

‚i ;

where equality holds if and only if T1 D∅ or T1 D T .

Proposition A.2.1 Conditions B and C are equivalent.

Proof The implication ‘Condition B ) Condition C’ is easy to see. Regarding the
converse implication, Colin de Verdière proves a similar statement using the feasible
flow theorem [8, Section 7]. It is straightforward to adapt his proof for Proposition A.2.1.
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Proposition A.2.2 If Condition B or C is satisfied (and hence both of them are), then

ET;‚;�.u/!1 if max
i2V

ui �min
i2V

ui!1:

Definition A.2.3 (Reasonably posed mapping problems) We say that Problem 3.1.1
is reasonably posed if Condition B or Condition C is satisfied (and hence both of them
and Condition A are). We say that Problem 3.1.3 (where ‚i is prescribed only for
i 2 V1 ) is reasonably posed if positive ‚–values can be assigned also to the vertices in
V0 so that Conditions B or C are satisfied (and hence both of them and Condition A are).

Corollary A.2.4 (Solvability alternative) If Problem 3.1.1 or Problem 3.1.3 are
reasonably posed, then ET;‚;�.u/ (maybe with some variables ui fixed) has a min-
imizer umin . Either umin is contained in the domain where all triangle inequalities
are satisfied, in which case it is unique (up to an additive constant if no variables are
fixed) and corresponds to the solution of the discrete conformal mapping problem, or it
lies outside that domain, in which case the corresponding discrete conformal mapping
problem does not have a solution.

Proof of Proposition A.2.2 Using the (constant) angles y̨ we can rewrite the sum
over vertices on the right-hand side of (4-6) as a sum over triangles:X

i2V

‚iui D

X
ijk2T

.y̨i
jkui C y̨

j

ki
uj C y̨

k
ij uk/:

Expressing u in terms of z� and �, we obtain

y̨
i
jkui C y̨

j

ki
uj C y̨

k
ij uk

D .�
2
� y̨

k
ij /.
z�ij ��ij /C .

�
2
� y̨

i
jk/.
z�jk ��jk/C .

�
2
� y̨

j

ki
/.z�ki ��ki/;

so

ET;‚;�.u/D
X

ijk2T

�
2f
� z�ij

2
;
z�jk

2
;
z�ki

2

�
� y̨

k
ij
z�ij � y̨

i
jk
z�jk � y̨

j

ki
z�ki

�
C const.;

where here and in the following “const.” stands for terms that do not depend on u.
Using the estimate of Proposition 4.2.6 and (A-1), one obtains

ET;‚;�.u/�
X

ijk2T

.� maxfz�ij ; z�jk ; z�kig� y̨
k
ij
z�ij � y̨

i
jk
z�jk � y̨

j

ki
z�ki/C const.

D

X
ijk2T

.y̨k
ij .maxf � � � g � z�ij /C y̨

i
jk.maxf � � � g � z�jk/

C y̨
j

ki
.maxf � � � g � z�ki//C const.
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� min
k
ij
2A

fy̨
k
ij g

X
ijk2T

.maxfz�ij ; z�jk ; z�kig�minfz�ij ; z�jk ; z�kig/C const.

Now if ij k 2 T , then ui �uj D
z�ki �

z�jk ��ki C�jk , so

maxfui ;uj ;ukg�minfui ;uj ;ukg�maxfz�ij ; z�jk ; z�kig�minfz�ij ; z�jk ; z�kigCconst.;

and because the triangulated surface is connected this implies

ET;‚;�.u/�minfy̨k
ij g

�
max
i2V

ui �min
i2V

ui

�
C const.

Appendix B: The corresponding smooth conformal mapping
problems and variational principles

A natural question regarding the two variational principles for discrete conformal maps
presented in Sections 4.1 and 4.3 is: “What are the corresponding variational principles
in the classical smooth theory of conformal maps?” In fact, even the question “What
exactly are the corresponding smooth mapping problems?” deserves a comment. For
the second variational principle it is not even obvious how the variables — triangle
angles — translate to the smooth theory.

B.1 Background: Curvature, unit vector fields and conformal metrics

Before we address these questions in Sections B.2 and B.3, we outline some classical
background material from the differential geometry of surfaces. The purpose is twofold:
first, to fix notation; second, our exposition takes a particular point of view, focusing
on unit vector fields, which prepares the discussion of the second variational principle
in Section B.3.

Let M be a smooth oriented surface, possibly with boundary, equipped with a Rie-
mannian metric g and the induced Levi–Civita connection r . The Riemannian metric
and orientation induce a 90ı–rotation tensor

J W TM ! TM

and an area 2–form
� D g.J � ; � /:

A unit vector field on M is a tangent vector field Y with g.Y;Y / D 1. Of course,
the existence of a unit vector field imposes restrictions on the topology of M . In any
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case, unit vector fields exist locally, so purely local considerations remain valid for
arbitrary M . The Gauss curvature K 2 C1.M / is defined by the equation

K D�g.R.Y;J Y /Y;J Y /;

where Y is any unit vector field, and R denotes the Riemann curvature tensor,

(B-1) R.X;Y /Z DrXrY Z �rY rX Z �rŒX ;Y �Z:

The curvature 2–form is defined by

�DK�:

For a unit vector field Y , we define the rotation 1–form �Y by

�Y .X /D g.rX Y;J Y /:

Proposition B.1.1 For any unit vector field Y ,

d�Y D��:

Proof The claim follows from the definition of the Riemann curvature tensor (B-1),
by a straightforward calculation:

d�Y .Y;J Y /DY �g.rJ Y Y;J Y /� .J Y / �g.rY Y;J Y /�g.rŒY;J Y �Y;J Y /

Dg.rY rJ Y Y;J Y /Cg.rJ Y Y;rY J Y /„ ƒ‚ …
D0

�g.rJ Y rY Y;J Y /�g.rY Y;rJ Y J Y /„ ƒ‚ …
D0

�g.rŒY;J Y �Y;J Y /

Dg.R.Y;J Y /Y;J Y /D�K:

We have used that rV Y ? Y and rV J Y ? J Y for any vector field V , so that,
because M is two-dimensional, g.rV Y;rW J Y /D 0 for any V;W .

Now consider a conformal change of metric with conformal factor eu determined
by (1-1). Note that a conformal change of metric is also characterized by the fact
that the 90ı–rotation with respect to the new metric zg is the same tensor J . The
Levi–Civita connection zr of zg is related to the Levi–Civita connection r of g by

(B-2) zrX Z DrX ZCg.X;G/ZCg.Z;G/X �g.X;Z/G;

where G D gradg u, that is, du D g.G; � /. A unit vector field Y with respect to g

naturally determines a unit vector field

zY D e�uY
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with respect to zg . Its rotation 1–form is

z� zY .X /D zg.
zrX
zY ;J zY /:

Proposition B.1.2 The rotation 1–forms �Y , z� zY are related by

z� zY D �Y C�du;

where � denotes the Hodge star operator for g .

The Hodge star operator � maps a 1–form ! to the 1–form �! D�!.J � /. It also
maps a function (0–form) f to the 2–form �f D f � and vice versa, �f � D f . Note
that on a 2–dimensional manifold, the action of the Hodge star operator on 1–forms
depends only on the conformal class of the metric.

Proof of Proposition B.1.2 By the product rule,

zrX
zY D e�u.�du.X /Y C zrX Y /;

so z� zY .X /D g.zrX Y;J Y /: Using (B-2) one obtains

z� zY .X /D �Y .X /Cg.Y;G/g.X;J Y /�g.X;Y /g.G;J Y /:

Finally, since J is skew, J 2 D�1, and .Y;J Y / is an orthonormal frame,

g.Y;G/g.X;JY /�g.X;Y /g.G;JY /D�g.G;Y /g.Y;JX /�g.G;JY /g.JY;JX /

D�g.G;JX /D�du.JX /D �du.X /:

This completes the proof.

As a corollary of Propositions B.1.1 and B.1.2, we obtain the equation relating the
curvature 2–forms of g and zg ,

(B-3) z�D�� d � du;

and hence Liouville’s equation for the curvatures,

(B-4) e2u zK DKC�u;

where � is the Laplace–Beltrami operator with respect to g ,

�f D��d�df :

(We use the sign convention for the Laplace operator that renders it positive semidefi-
nite.)
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B.2 Smooth mapping problems and the first variational principle

Which problems in the smooth theory are analogous to the discrete conformal mapping
problems discussed in this paper? There are two fairly obvious candidates:

Problem B.2.1 Given .M;g/ and the function zK , find a conformally equivalent
Riemannian metric zg D e2ug with curvature zK .

This amounts to solving Liouville’s equation (B-4) for u.

Problem B.2.2 Given .M;g/ and the 2–form z�, find a conformally equivalent
Riemannian metric zg D e2ug with curvature 2–form z�.

Prescribing the target curvature 2–form is equivalent to prescribing e2u zK instead of
the target curvature zK . Problem B.2.2 amounts to solving (B-3), which is equivalent
to Poisson’s equation

�uD f

with right-hand side f D �z��K .

For both problems, one may prescribe either u on the boundary (Dirichlet conditions)
or �dujT @M with

R
@M �duD�

R
M . z���/ (Neumann conditions).

Both Liouville’s equation (B-4) and the Poisson equation (B-3) are variational, with
the respective functionals

(B-5) EA.u/D

Z
M

�
1
2
du^�du�

�
1
2
e2u zK�uK

�
�
�

for Liouville’s equation, where zK and K are fixed given functions on M , and

(B-6) EB.u/D

Z
M

�
1
2
du^�du�u. z���/

�
for (B-3), where z� and � are fixed given 2–forms on M .

Question Which of the two candidates, Problem B.2.1 or Problem B.2.2, is the smooth
version of the discrete mapping problems described in Section 3?

Answer Comparing the scaling behavior shows that the discrete mapping problems
are discretization of Problem B.2.2 and not of Problem B.2.1. The function ET;‚;� of
the first variational principle corresponds to EB and not to EA .

Indeed, although we did denote the angle defect 2��‚i at a vertex i of a triangulation
by Ki in Appendix A, this angle defect is a discretization of the curvature 2–form �
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and not of the Gauss curvature K , the latter being an angle defect per surface area. The
difference manifests itself in the scaling behavior: the angle defects at vertices and the
curvature 2–form remain invariant if lengths are scaled by a constant factor. The Gauss
curvature, on the other hand, is inversely proportional to the square of the scale factor.
Thus, prescribing the angle defects Ki at the vertices of a triangulation corresponds to
prescribing the curvature 2–form � of a smooth surface, as in Problem B.2.2, and not
the Gauss curvature K , as in Problem B.2.1.

Remark B.2.3 For zK D 0 and z�D 0 there is no difference between Problems B.2.1
and B.2.2, and EA DEB .

Remark B.2.4 Consider the gradient flow of the discrete functional ET;‚;� . For a
closed triangulated surface with prescribed angle sum ‚i D 2� for all vertices, this
gradient flow is equal to

(B-7) Pui.t/D�Ki.t/;

where Ki.t/ is the angle defect around vertex i at time t . At first glance, this looks
like a discrete version of the Ricci flow for surfaces [24]. For surfaces, Ricci flow is
the same as Yamabe flow because the Ricci tensor is proportional to the Riemannian
metric. The Riemannian metric evolves conformally, gt D e2ut g0 , according to the
law

(B-8) Put D�Kt ;

where Kt is the Gauss curvature at time t .

However, the above comparison of the scaling behaviors of angle defect Ki and Gauss
curvature K shows that (B-7) is not a discretization of (B-8). In fact, the flow (B-7) is
a discretization of the gradient flow of EB ,

Put D�e2ut Kt ;

which is a curvature flow for surfaces that is different from the Ricci/Yamabe flow.

The same scaling argument applies to other flows that have mistakenly been tagged
combinatorial or discrete Ricci flow [7; 16].

B.3 The second variational principle and harmonic unit vector fields

The variables of the second variational principle (Section 4.3) are assignments of
new angles in a euclidean triangulation. How do these variables translate to smooth
manifolds? Consider an angle vector ˛ 2 .R>0/

AT that assigns angle values ˛i
jk
> 0
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to the corners i
jk
2AT of the triangles in such a way that the sum is � in each triangle.

While such an angle assignment fixes the shape of each triangle (up to similarity), a
consistent assignment of edge lengths is generally not possible. The assigned angles
do, however, induce a sensible definition of parallel transport of unit vectors from edge
to edge: the unit vector that makes an angle ˇij with the directed edge ij in triangle
ij k is transported to the unit vector that makes an angle ǰk D ˇij C ˛

j

ki
�� with

edge j k (see Figure 21).

i j

k

ǰk

ˇij ˛
j

ki

Figure 21: Parallel transport of directions from edge to edge

Thus, an angle assignment ˛ 2 .R>0/
AT in a euclidean triangulation corresponds to a

connection of the unit tangent bundle T1M of the smooth surface M .

For simplicity, our discussion of the second variational principle will focus on the
special case when the triangulation is topologically a closed disk and the prescribed
angle sums at interior vertices are 2� . In the smooth setting, angle assignments that
sum to � in each triangle and to 2� around each vertex correspond to flat connections
of the unit tangent bundle. Since the surface is assumed to be simply connected, for
any such flat connection there exists a parallel unit vector field and this is unique up to
rotation by a constant angle. Conversely, any unit vector field is parallel for a unique
flat connection. Thus, this special case allows a more intuitive treatment involving unit
vector fields and rotation 1–forms instead of connections and connection 1–forms. At
the end of this section, we will indicate how to treat the general case.

So assume for now that M is diffeomorphic to a closed disk and consider Problem B.2.2
with z� D 0. That is, we are looking for a conformally equivalent flat metric. The
Dirichlet energy of a unit vector field Y is

(B-9) S.Y /D
1

2

Z
M

�Y ^��Y :

Critical points of this Dirichlet energy are the harmonic sections of the unit tangent
bundle. Admissible variations are within the space of unit vector fields, fixing the
values on the boundary.
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Proposition B.3.1 (First variation) Let Yt be a variation of the unit vector field
Y D Y0 with

d

dt

ˇ̌̌
tD0

Yt D hJ Y;

where h 2 C1.M /. Then

d

dt

ˇ̌̌
tD0

S.Yt /D�

Z
M

hd��Y C

Z
@M

h��Y :

Proof This follows from the equation d
dt

ˇ̌
tD0

�Yt
D dh.

Corollary B.3.2 A unit vector field Y is a critical point of S under variations that
fix Y on the boundary @M if and only if

d��Y D 0:

It is also a critical point of S under arbitrary variations if and only if, additionally,

(B-10) ��Y jT @M D 0:

Loosely speaking, the following proposition says that straightest unit vector fields with
respect to g are parallel with respect to a conformally equivalent flat metric zg with
trivial global holonomy.

Proposition B.3.3 (Smooth version of the second variational principle) Suppose the
unit vector field Y is a critical point of S under variations that fix Y on the boundary.
Define the function u up to an additive constant by

duD ��Y :

(This is possible since ��Y is closed by the above corollary and we assumed that M

was diffeomorphic to a disk.) Let zg D e2ug . Then we have the following.

(i) The unit vector field zY D e�uY is parallel with respect to zg , so zg is flat.

(ii) The geodesic curvature of the boundary @M with respect to zg is

z� D � � �Y .T /;

where � is the geodesic curvature with respect to g and T is the positively
oriented unit tangent vector field to @M .

(iii) If Y is also a critical point of S under arbitrary variations, then uj@M is constant.
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Proof Since �duD��Y , the rotation form of z� zY vanishes by Proposition B.1.2. This
implies (i). The geodesic boundary curvatures are �D�T .T / and z�D z� zT . zT /. (Locally
extend the unit vector field T inwards from the boundary.) Again by Proposition B.1.2,
this implies (ii). Finally, (iii) follows immediately from (B-10).

In the general case, M is not restricted to be diffeomorphic to a closed disk and one is
looking for a conformally equivalent metric zg with prescribed curvature 2–form z�.
To treat this case variationally, consider the functional

S.�/D
1

2

Z
M

�^��

on the affine space of 1–forms � satisfying d�D z���. We leave the details to the
reader, not because they are tedious but because they are interesting. The critical points
correspond to conformally equivalent similarity structures, that is, “metrics” which
may have global scaling holonomy. (Compare the remark at the end of Section 4.3.)

Appendix C: Relation to circle patterns

C.1 Two variational principles for circle patterns

While the discrete conformal mapping problems essentially ask for ideal hyperbolic
polyhedra with prescribed metric, the circle pattern problem below asks for an ideal
polyhedron with prescribed dihedral angles. Rivin’s variational principle for this
type of problem [34] is very similar to our second variational principle for discrete
conformal maps. The function is essentially the same, only the constraints placed on
the angle assignments are stronger. Also, the first variational principle needs only a
slight modification to become a variational principle for circle patterns.

Problem C.1.1 (Circle pattern problem) Given a surface triangulation T and a
function ˆ 2 .0; ��E , find a discrete metric z̀ so that the euclidean triangulation .T; z̀/
has circumcircle intersection angles ˆij as shown in Figure 22.

Proposition C.1.2 (Rivin [34]) The angles z̨ 2 RA are the angles of a euclidean
triangulation .T; z̀/ that solves Problem C.1.1 if and only if ST;�.z̨/ is the maximum
of ST;� on the set of all ˛ 2RA that satisfy:

(i) ˛ > 0.

(ii) ˛k
ij C˛

i
jk
C˛

j

ki
D � for all triangles ij k 2 T .

(iii) ˛k
ij C˛

l
jk
Dˆij for all interior edges ij 2Eint .

(iv) ˛k
ij Dˆij for all boundary edges ij 2Ebdy .
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j

l

i

k ˛k
ij

ˆij

˛l
ji

Figure 22: Circumcircle intersection angles ˆij D ˛
k
ij C˛

l
ji : for a boundary

edge ij 2Ebdy , define ˆij D ˛
k
ij .

Due to conditions (iii) and (iv), the choice of the parameter � 2RE of ST;� does not
matter because

ST;�.˛/D ST;0.˛/C
X

ij2E

ˆij�ij :

So in connection with circle patterns, it makes sense to consider only

ST;0.˛/D
X

L.˛k
ij /:

Now consider the first variational principle for discrete conformal maps. For ˆ 2RE ,
‚ 2RV define

ET;ˆ;‚W RE
�RV

!R;

ET;ˆ;‚.�;u/D
X

ijk2T

2 yV .�ij ; �jk ; �ki ;�ui ;�uj ;�uk/

�

X
ij2E

ˆij�ij C

X
i2V

‚iui I

(C-1)

compare (5-6). If ˆ is defined by (5-7), then

ET;ˆ;‚.�;u/DET;‚;�.u/:

So if we fix � and vary u, then we obtain the first variational principle for discrete
conformal maps. If, on the other hand, we fix u and vary �, then we obtain a variational
principle for circle patterns (see Proposition C.1.3 below). Interpret the circumcircles
and triangle sides as hyperbolic planes in the half-plane model. Then, using (5-5) and
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the fact that opposite dihedral angles in an ideal tetrahedron are equal, one gets for an
interior edge ij 2Eint that

@

@�ij
ET;ˆ;‚ D z̨k

ij C z̨
l
ji �ˆij ;

where z̨ are the angles in the euclidean triangulation .T; z̀/ with z̀ determined by (2-1)
and (2-2). (Here we assume that z̀ satisfies the triangle inequalities. Otherwise the
angles are 0 or � as stipulated in Proposition 4.2.5.) In the same way, one gets for a
boundary edge ij

@

@�ij
ET;ˆ;‚ D z̨k

ij �ˆij ;

implying the following variational principle for circle patterns. (Note that ET;ˆ;‚.�;u/
is also convex if we fix u and consider � as variables.)

Proposition C.1.3 The function z̀ 2 RE
>0

defined in terms of � and u by (2-1)
and (2-2) is a solution of Problem C.1.1 if and only if z̀ satisfies all triangle inequalities
and ET;�;‚.�;u/ is the minimum of the function � 7! ET;�;‚.�;u/. That is, u is
arbitrary but constant. (Without loss of generality one could fix uD 0.)

C.2 Discrete conformal equivalence for circular polyhedral surfaces

In this section, we generalize the notion of discrete conformal equivalence from surfaces
composed of triangles to surfaces composed of polygons inscribed in circles. The
variational principle described below is like a mixture of the first variational principle
for discrete conformal maps of Proposition 4.1.3 and the variational principle for circle
patterns of Proposition C.1.3.

An (abstract) polyhedral surface is a surface that is a CW–complex. A euclidean
polyhedral surface is a polyhedral surface obtained by gluing euclidean polygons
edge-to-edge. If all of the polygons have a circumscribed circle, we speak of a (eu-
clidean) circular polyhedral surface. A circular polyhedral surface is determined by
the polyhedral surface P and the function ` 2 .R>0/

EP that assigns to each edge its
length. Conversely, a function ` 2 .R>0/

EP defines a circular polyhedral surface if and
only if it satisfies the “polygonal inequalities”: in each polygon, the length of any edge
is smaller then the sum of lengths of the other edges. If ` satisfies these conditions, we
denote the resulting circular polyhedral surface by .P; `/.

Definition C.2.1 Two circular polyhedral surfaces, .P; `/ and .P; z̀/, are discretely
conformally equivalent if ` and z̀ are related by (2-1) for some function u 2RVP .
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To solve the discrete conformal mapping problems for circular polyhedral surfaces that
are analogous to those described in Section 3, proceed as follows: first triangulate the
nontriangular faces of the given circular polyhedral surface .P; `/ to obtain a euclidean
triangulation .T; ỳ/ (where ỳW ET! R>0 , ỳjEP

D `). Then define ˆ by (5-7) and
minimize ET;ˆ;‚.�;u/, where �ij D 2 log ỳij is held fixed if ij 2EP and considered
a variable if ET nEP , and the ui are variables or fixed depending on the mapping
problem, as in the case of triangulations. If z̀ determined by (2-1) and (2-2) for the
minimizing .�;u/ satisfies the triangle inequalities, it is a solution of the mapping
problem.

Note that the values ỳij for edges ij 2ET nEP do not enter because the correspond-
ing �ij are variables.

C.3 Discrete circle domains

A domain in the Riemann sphere yC is called a circle domain if every boundary
component is either a point or a circle. Koebe conjectured that every domain in C
is conformally equivalent to a circle domain. For a simply connected domain, this is
just the Riemann mapping theorem. Koebe himself proved the conjecture for finitely
connected domains, and after various generalizations by several other people, He and
Schramm gave a proof for domains with at most countably many boundary compo-
nents [17]. (Their proof is based on circle packings.)

The method for mapping to the sphere described in Section 3.2 works (mutatis mutandis)
also for the circular polyhedral surfaces discussed in the previous section. This allows
us to map euclidean triangulations to “discrete circle domains”, that is, domains in the
plane that are bounded by circular polygons.

Suppose .T; `/ is a euclidean triangulation that is topologically a disc with holes. To
map .T; `/ to a discrete circle domain, simply fill the holes by attaching a face to each
boundary polygon and map the resulting circular polyhedral surface to the sphere.

Note that for a topological disk with 0 holes, we recover in a different guise the
procedure for mapping to a disk that was described in Section 3.3.
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The other figures of discrete conformal maps were made with Blender and Python
scripts written by the third author, which rely on other libraries to do the real work:
the GNU Scientific Library, providing an implementation of Clausen’s integral, the
convex optimization library CVXOPT by M Andersen, J Dahl and L Vandenberghe,
and J Shewchuk’s mesh generator Triangle.
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