Volume 19, issue 4 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
The topology of the space of $J$–holomorphic maps to $\mathbb{C}\mathrm{P}^2$

Jeremy Miller

Geometry & Topology 19 (2015) 1829–1894
Abstract

The purpose of this paper is to generalize a theorem of Segal proving that the space of holomorphic maps from a Riemann surface to a complex projective space is homology equivalent to the corresponding space of continuous maps through a range of dimensions increasing with degree. We will address if a similar result holds when other almost-complex structures are put on a projective space. For any compatible almost-complex structure J on P2, we prove that the inclusion map from the space of J–holomorphic maps to the space of continuous maps induces a homology surjection through a range of dimensions tending to infinity with degree. The proof involves comparing the scanning map of topological chiral homology with analytic gluing maps for J–holomorphic curves . This is an extension of the author’s work regarding genus-zero case.

Keywords
almost-complex structure, little disks operad, gluing
Mathematical Subject Classification 2010
Primary: 53D05
Secondary: 55P48
References
Publication
Received: 21 November 2012
Revised: 6 October 2014
Accepted: 4 November 2014
Published: 29 July 2015
Proposed: Yasha Eliashberg
Seconded: Benson Farb, Leonid Polterovich
Authors
Jeremy Miller
Department of Mathematics
Stanford University
Building 380, Room 383A
Stanford, CA 94305
USA
http://math.stanford.edu/~jkmiller/