Volume 19, issue 5 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Indefinite Morse $2$–functions: Broken fibrations and generalizations

David T Gay and Robion Kirby

Geometry & Topology 19 (2015) 2465–2534
Bibliography
1 S Akbulut, Ç Karakurt, Every 4–manifold is BLF, J. Gökova Geom. Topol. 2 (2008) 83 MR2466002
2 D Asimov, Round handles and nonsingular Morse–Smale flows, Ann. of Math. 102 (1975) 41 MR0380883
3 D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043 MR2140998
4 R I Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. 2008 (2008) MR2439543
5 R I Baykur, N Sunukjian, Round handles, logarithmic transforms and smooth 4–manifolds, J. Topol. 6 (2013) 49 MR3029421
6 J Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudoisotopie, Inst. Hautes Études Sci. Publ. Math. (1970) 5 MR0292089
7 D T Gay, R C Kirby, Constructing Lefschetz-type fibrations on four-manifolds, Geom. Topol. 11 (2007) 2075 MR2350472
8 D T Gay, R C Kirby, Fiber-connected, indefinite Morse 2–functions on connected n–manifolds, Proc. Natl. Acad. Sci. USA 108 (2011) 8122 MR2806648
9 A Hatcher, J Wagoner, Pseudoisotopies of compact manifolds, 6, Soc. Math. France (1973) MR0353337
10 K Honda, Local properties of self-dual harmonic 2–forms on a 4–manifold, J. Reine Angew. Math. 577 (2004) 105 MR2108214
11 K Honda, Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004) 629 MR2072799
12 R C Kirby, A calculus for framed links in S3, Invent. Math. 45 (1978) 35 MR0467753
13 R C Kirby, P Melvin, P Teichner, Cohomotopy sets of 4–manifolds, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 161 MR3084237
14 C LeBrun, Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535 MR1487727
15 Y Lekili, Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009) 277 MR2469519
16 T Perutz, Lagrangian matching invariants for fibred four-manifolds, I, Geom. Topol. 11 (2007) 759 MR2302502
17 T Perutz, Lagrangian matching invariants for fibred four-manifolds, II, Geom. Topol. 12 (2008) 1461 MR2421133
18 O Saeki, Elimination of definite fold, Kyushu J. Math. 60 (2006) 363 MR2268242
19 C H Taubes, Seiberg–Witten and Gromov invariants for symplectic 4–manifolds (editor R Wentworth), 2, International Press (2000) MR1798809
20 L R Taylor, The principal fibration sequence and the second cohomotopy set, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 235 MR3084240
21 M Usher, The Gromov invariant and the Donaldson–Smith standard surface count, Geom. Topol. 8 (2004) 565 MR2057774
22 G Wassermann, Stability of unfoldings in space and time, Acta Math. 135 (1975) 57 MR0433497
23 J Williams, The h–principle for broken Lefschetz fibrations, Geom. Topol. 14 (2010) 1015 MR2629899