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Factorizations of diffeomorphisms
of compact surfaces with boundary

ANDY WAND

We study diffeomorphisms of compact, oriented surfaces, developing methods of
distinguishing those which have positive factorizations into Dehn twists from those
which satisfy the weaker condition of being right-veering. We use these to construct
open book decompositions of Stein-fillable 3–manifolds whose monodromies have
no positive factorization.

57R17

1 Introduction

Let † be a compact, orientable surface with nonempty boundary. The (restricted)
mapping class group of †, denoted MCG.†/, is the group of isotopy classes of
orientation preserving diffeomorphisms of † which restrict to the identity on @†. The
goal of this paper is to study the monoid DehnC.†/�MCG.†/ of products of right
Dehn twists, and apply this study to the question of the extent to which properties of a
contact three-manifold are captured by the data associated to an arbitrary supporting
(in the sense of Giroux) open book decomposition.

As was shown by Thurston in his proof of left-orderability of the braid group, and later
by Goodman [5] and Honda, Kazez and Matic [6] in the context of contact topology, a
neighborhood of the boundary of a properly embedded arc, in particular the information
of whether the arc is mapped “to the right or left” at that endpoint (Example 2.1),
carries important information about a given diffeomorphism. Indeed, as was shown in
[6], existence of an arc in a surface † which is mapped to the left at either endpoint by
' 2MCG.†/ is sufficient to conclude geometric flexibility, or overtwistedness, of the
contact structure associated to ' by the Giroux correspondence theorem.

The main new idea of this paper is to provide a framework for generalization of these
methods. The main tool introduced is that of a right position (Definition 3.1) for
the images of a collection � of disjoint properly embedded arcs in † under a given
diffeomorphism ' . Loosely speaking, this should be thought of as a collection of
points of � which are “fixable” under ' (Definition 3.8), or, for the case that ' is
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given as a product of Dehn twists, fixable under each successive twist. A right position
thus gives a decomposition of � \'.�/ into subarcs with fixed ends, analogous to the
collection � with which we started.

We then show how comparing such subarcs, through means of rectangular regions they
cut out of the surface, allows one to push the notions of “rightness” and “leftness” further
into the interior of the surface. Our particular interest is in detecting whether a given
mapping class lies in DehnC.†/, as this implies a particular rigidity, Stein fillability,
of the associated contact structure. We develop consistency conditions (Definition 3.6)
which allow us to prove:

Theorem 1.1 Let † be a compact surface with boundary, and ' 2 DehnC.†/. Then
for any collection of disjoint, properly embedded arcs, there exists a consistent right
position.

We use Theorem 1.1 to develop necessary conditions for elements of the set of curves
which can appear as twists in some positive factorization of a given ' 2MCG.†/:

Theorem 1.2 Let 
1 and 
2 be disjoint properly embedded arcs in a surface †,
' 2MCG.†/, and '.
1/ and '.
2/ flat with respect to some D . Then �˛ is a Dehn
twist in some positive factorization of ' only if ˛ is nested with respect to D .

(The non-standard terminology of Theorem 1.2 will be defined in Section 4.)

Finally, as an application of the above methods, we have:

Theorem 1.3 There exist open book decompositions which support Stein-fillable
contact structures but whose monodromies cannot be factorized into positive Dehn
twists.

Central to much of current research in contact geometry is the relation between the
monodromy of an open book decomposition and geometric properties of the contact
structure, such as overtwistedness and fillability. The starting point is the remarkable
theorem of Giroux [4], demonstrating a one-to-one correspondence between oriented
contact structures (up to isotopy) on a 3–manifold M and open book decompositions of
M up to positive stabilization. It has been shown by Giroux [4], Loi and Piergallini [8],
and Akbulut and Ozbagci [1], that any open book with monodromy which can be
factorized into positive Dehn twists supports a Stein-fillable contact structure, and that
every Stein-fillable contact structure is supported by some open book with monodromy
which can be factored into positive twists. The question of whether each open book
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which supports a Stein-fillable contact structure must be positive is then answered in
the negative by our Theorem 1.3.

Section 2 introduces some conventions and definitions, and provides motivation for
what is to come. Section 3 is devoted to the terminology and proof of Theorem 1.1.
We also construct simple examples of open books whose monodromies, though right
veering 2.2, have no positive factorization.

In Section 4 we use these results to address the question of under what conditions
various isotopy classes of curves on a surface can be shown not to appear as Dehn
twists in any positive factorization of a given monodromy. We obtain various necessary
conditions under certain assumptions on the monodromy, culminating in Theorem 1.2.

Finally, in Section 5, we construct explicit examples of open book decompositions
for an infinite family of 3–manifolds which support Stein-fillable contact structures
yet whose monodromies have no positive factorizations. For the construction we
demonstrate a method of modifying a certain mapping class group relation (the lantern
relation) into an “immersed” configuration, which we then use to modify certain open
books with positively factored monodromies (which therefore support Stein-fillable
contact manifolds) into stabilization-equivalent open books (which support the same
contact structures) whose monodromies now have non-trivial negative twisting. We
then apply the methods developed in the previous sections to show that in fact this
negative twisting is essential.

After a preliminary announcement of these results Baker, Etnyre, and Van Horn-
Morris [2] were able to construct similar examples of non-positive open books support-
ing Stein-fillable contact structures, all of which use the same surface, †2;1 , involved
in our construction. Their method for demonstrating non-positivity is on the one hand
substantially shorter, but on the other is quite restrictive, being entirely specific to this
surface, and also requiring complete knowledge of the Stein fillings of the contact
manifold in question, which is known only for a small class of contact manifolds.

Acknowledgements We would like to thank Danny Calegari for many helpful com-
ments on a previous version of this paper, Rob Kirby for his support and encouragement
throughout the much extended period over which it was completed, and the referees
for many helpful suggestions and comments. We would also like to acknowledge the
support and hospitality of the Max Planck Institute for Mathematics.

2 Preliminaries

Throughout, † denotes a compact, orientable surface with nonempty boundary. The
(restricted) mapping class group of †, denoted MCG.†/, is the group of isotopy
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classes of orientation preserving diffeomorphisms of † which restrict to the identity on
@†. In general we will not distinguish between a diffeomorphism and its isotopy class.

Let SCC.†/ be the set of simple closed curves on †. Given ˛ 2 SCC.†/ we may
define a self-diffeomorphism D˛ of † which is supported near ˛ as follows. Let a
neighborhood N of ˛ be identified by oriented coordinate charts with the annulus
fa2C j 1�kak� 2g. Then D˛ is the map a 7! e�i2�.kak�1/a on N , and the identity
on † nN . We call D˛ the positive Dehn twist about ˛ . The inverse operation, D�1

˛ ,
is a negative Dehn twist. We denote the isotopy class of D˛ by �˛ . It can easily be
seen that �˛ depends only on the isotopy class of ˛ .

We call ' 2MCG.†/ positive if it can be factored as a product of positive Dehn twists,
and denote the monoid of such mapping classes as DehnC.†/.

An open book decomposition .†; '/, where ' 2MCG.†/, for a 3–manifold M with
binding K , is a homeomorphism between ..†� Œ0; 1�/=�' ; .@†� Œ0; 1�/=�'/ and
.M;K/. The equivalence relation �' is generated by .x; 0/�' .'.x/; 1/ for x 2†

and .y; t/�' .y; t 0/ for y 2 @†.

A recurring theme of this paper is to use properly embedded arcs in † to understand
restrictions on possible positive factorizations of ' which can be derived from the
images of the arcs (relative to the arcs themselves). Our general method is as follows.
Let P be some property of pairs .'.
 /; 
 /, which we abbreviate by referring to P as
a property of the image '.
 /. Suppose that P holds for the case that ' is the identity,
and is preserved by positive Dehn twists. Suppose then that �˛ appears in some positive
factorization of ' . Conjugating (ie using so-called Hurwitz moves), we can assume �˛
is the final twist, and so the monodromy given by ��1

˛ ı' is also positive. It follows
that P holds for .��1

˛ ı'/.
 / as well.

Example 2.1 As a motivating example, consider a pair of arcs 
; 
 0W Œ0; 1� ,! †

which share an endpoint 
 .0/D 
 0.0/D x 2 @†, isotoped to minimize intersection.
Following [6], we say 
 0 is “to the right” of 
 , denoted 
 0 � 
 , if either the pair is
isotopic, or if the tangent vectors . P
 0.0/; P
 .0// define the orientation of † at x . The
property of being “to the right” of 
 (at x ) is then a property of the images '.
 /
which satisfies the conditions of the previous paragraph. We conclude that if '.
 / is to
the right of 
 , then ˛ can appear in a positive factorization of ' only if .��1

˛ ı'/.
 /

is to the right of 
 .

The main motivation for the use of properly embedded arcs to characterize properties
of mapping classes is the well-known result that a mapping class of a surface with
boundary is completely determined by the images of a set of properly embedded disjoint
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arcs whose complement is a disc (an application of the “Alexander method”, see eg [3]).
Perhaps the most well-known example of such a property is what is now generally
known as right veering:

Definition 2.2 [6] Let ' be a mapping class in MCG.†/, and 
 ,! † a properly
embedded arc with endpoint x 2 @†. Then ' is right-veering if for each such 
 and
x , the image '.
 / is to the right of 
 at x .

We denote the set of isotopy classes of right-veering diffeomorphisms as Veer.†/�
MCG.†/.

The right-veering property can perhaps best be thought of as a necessary condition of
positivity, and (by [6]), using the Giroux correspondence, also a necessary condition
for tightness of the supported contact structure. It was however shown in that paper that
right veering is far from a sufficient condition, indeed, that any open book decomposition
may be stabilized to a right-veering one.

The failure of right veering to capture either tightness or positivity is at least partially
due to two obvious shortcomings. Firstly, we observe that right veering “only sees
one arc at a time”. Referring back to the original motivation of the Alexander method,
we would rather have a property which can see arbitrary collections of (disjoint) arcs.
Secondly, right veering is “localized” to the boundary; in particular negative twisting
in the interior of a surface may be hidden by positivity nearer to the boundary. The
goal of Section 3 is to introduce a substantial refinement of right veering which takes
into account each of these issues.

3 Right position

This section is devoted to the proof of Theorem 1.1. We will begin with an introduction
to the rather non-standard terminology, and then turn to the various ideas involved in
the proof.

3.1 Definitions and examples

Let † be a closed surface with non-empty boundary. Throughout the paper, an arc in
† will refer to a properly embedded arc. We will refer to a set � of disjoint arcs as an
arc collection. A central object of study will be augmented open book decompositions
.†; '; �/. Given such a triple, and 
 2 � , a point p in 
 \ '.
 / may be given a
sign as follows: orienting 
 arbitrarily, and giving '.
 / the opposite orientation, p is
positive if the pair of tangent vectors at p along 
 and '.
 / in that order define the
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orientation of † at p , negative otherwise (Figure 1). The resulting sign is of course
independent of the choice of orientation.

Our main definition is the following.

Definition 3.1 Suppose .†; '; �/ is an augmented open book decomposition and
' 2 Veer.†/, with '.�/ isotoped to minimize � \ '.�/. Let A be a subset of the
positively oriented interior intersections in

S

2�.
 \'.
 //. Then the set @� [A is

a right position P D P.†; '; �/ for the augmented open book.

Note that we are thinking of the set I of positively oriented interior intersections inS

2�.
 \ '.
 // as depending only on the data of � and the isotopy class ' , and

thus independent of isotopy of � and '.�/ as long as intersection minimality holds.
In particular, the integer jI j clearly depends only on this data. Labeling � D f
ig

n
iD1

we may label elements of I with indices i and j , where j increases along 
i from
the distinguished endpoint ci . Right positions for the triple .†; '; �/ are thus in 1-1
correspondence with subsets of the set of these pairs of indices.

p1 p2

'.
 / '.
 /

 


Figure 1: p1 is a positive, p2 a negative, point of 
 \ '.
 / . This figure
introduces the conventions, to be followed throughout the paper, that elements
of a given arc collection � are drawn as straight lines, their images under
some diffeomorphism curved, while in any figure with multiple line weights,
the thickest is reserved for the boundary of † .

Associated to a right position is the set H.P/ WD fŒv; v0� � '.
 / j v; v0 2 P; 
 2 �g.
We denote these segments by hv;v0 , or, if only a single endpoint is required, simply use
hv to denote a subarc starting from v and extending as long as the context requires. In
this case the direction of extension along '.
 / will be clear from context.

A right position can thus be thought of as a way of decomposing '.�/ into “horizontal”
segments H.P/, separated by the points P (Figure 2). Note that for any right-veering
' , and any arc collection � , .†; '; �/ has a trivial right position consisting of the
points @.�/, and so there is a single horizontal segment hc;c0 D '.
 / for each 
 2 � .
Of course if I is nonempty, there are 2jI j� 1 non-trivial right positions. Intuitively,
the points in P play a role analogous to the boundary points of the arcs, allowing
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v

c0

'.
 /




c

Figure 2: P D fc; v; c0g is a right position of .†; '; f
 g/ . There are three
distinct horizontal segments: hc;v; hv;c0 , and hc;c0 .

us to localize the global “right”-ness of an arc image though the decomposition into
horizontal segments.

We are interested in using a right position to compare pairs of arcs, the idea being that
if ' is positive, we expect to be able to view any pair of horizontal segments as either
unrelated, or as belonging to the “same” horizontal segment.

To get started, we need to be able to compare horizontal segments. To that end we
have:

Definition 3.2 Let .†; '; �/ be an augmented open book decomposition. A rectangu-
lar region of .†; '; �/ is the image of an immersion of the standard disc Œ0; 1�� Œ0; 1�
such that the edges are embedded alternately in � and '.�/ and vertices map to
intersections � \'.�/.

Definition 3.3 Let .†; '; �/ be an augmented open book decomposition, and P D
P.†; '; �/ a right position. We let R.P/ denote the set of rectangular regions of
.†; '; �/ such that for each region, (1) there exist orientations of � which induce an
orientation of the boundary of the region, and (2) exactly two vertices lie in P (see
Figure 3). We refer to this collection as the initially parallel regions associated to P .

Given an initially parallel region, we refer to the pair of vertices in P as �–points,
ı–points otherwise (so ı–points and �–points alternate along the boundary of a region).
Throughout the paper, we will draw �–points as solid dots, ı–points as circles.

Definition 3.4 Let B1;B2 2 R.P/ (as in the previous definition), and orient � so
that the induced orientation of @.B1/ agrees with the standard (counterclockwise)
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orientation of the boundary of a region in an oriented surface. If these orientations then
induce the standard orientation of @.B2/, we say that the pair have the same orientation,
while if the orientations induce the opposite orientation on @.B2/, we say the regions
have the opposite orientations.

v


1 
1


1

'.
1/

'.
2/

'.
1/

B1B4

B2B3

Figure 3: Various initially parallel regions in a collection R.P/ , where we
have given the arcs the orientations which induce the standard orientation on
B1 . Region B1 has the opposite orientation of B2 and B3 (so B2 and B3

have the same orientation), while the given orientations do not orient B4 .

Remark 3.5 It is helpful to think of a rectangular region as the image under the
covering map �W z†! † of an embedded disc in the universal cover. As such, we
will draw regions as embedded discs whenever doing so does not result in any loss of
essential information.

Definition 3.6 Let P be a right position for an augmented open book .†; '; �/. We
say that P is consistent if for each B 2 R.P/ there is a B0 2 R.P/ with the same
ı–points, and opposite orientation, as B . We refer to B0 as a completing region for B .

Example 3.7 The right position indicated in Figure 4(a) is consistent, with two com-
pleted pairs of regions, as indicated in (b). It is straightforward to verify that there are
no other regions in R.P/.

The configuration in Figure 5, however, admits no consistent right position: supposing
otherwise, then hc1

and hc2
are edges of an initially parallel region B , so there must

be v 2Pj
1
and w 2Pj
2

satisfying the compatibility conditions. The only candidates
are c0

1
and c0

2
, and these do not give a completing region. By Theorem 1.1, this is

sufficient to conclude that the mapping class has no positive factorization.

Finally, consider the open book decomposition indicated in Figure 6, where the mon-
odromy ' is ��2

˛ �
n1

ˇ1
�

n2

ˇ2
�ˇ3
�ˇ4

(we have drawn the case n1 D 1). Using the shaded
initially parallel region, observe that .†; '; f
1; 
2g/ admits no consistent right position:
indeed, for any n1; n2 > 0 this will clearly remain true, as the picture will only be
modified by twists about the boundary component parallel to ˇ2 . In particular, ' has
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v

v v

'.
1/

'.
2/

c01

c0
1 c01

c
1

c
1

c
1



1



1



1



2



2



2

w

w w

c
2

c2 c2

c02

c02 c02

(a)

(b)

Figure 4: (a): The triple .†; '; f
1; 
2g/ admits a consistent right position.
The pairs of completing discs are shaded in (b).

c
2

c
1 c02

c0
1

'.
2/

'.
1/ 
2


1

Figure 5: The augmented open book decomposition .†; '; f
1; 
2g/ does
not admit a consistent right position. The pair of brackets is meant to signify
an identification, ie what goes in one comes out the other. This convention is
followed throughout the paper.

no positive factorization for any n1 and n2 . On the other hand, it is a simple exercise
to show that for any positive n1 and n2 each boundary component is “protected”,
ie each properly embedded arc with endpoint on the boundary component under
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consideration maps to the right at that point (it suffices to check it for either of the
boundary components parallel to ˇ3 or ˇ4 ). In particular, each such monodromy is
right-veering. See eg [7] for a more in-depth examination of this example.


2


1

ˇ2 ˛

ˇ1

ˇ3

ˇ4
'

(a) (b)

Figure 6: (a) Surface and curves for the open book decomposition denoted
.†0;4; �

�2
˛ �n1

ˇ1
�n2
ˇ2
�ˇ3
�ˇ4
/ . (b) The triple .†; '; f
1; 
2g/ does not admit any

consistent right position, but ' is right-veering for all m; n� 1 .

3.2 The right position associated to a factorization

Let .†; '; �/ be an augmented open book decomposition, and ' admit a factorization
! into positive Dehn twists. The goal of this subsection is to associate to ! a consistent
right position P!.�/ of .†; '; �/. As mentioned in the introduction, we expect P!.�/
to play a role analogous to @� ; the particular property we are interested in is that of
being “away from” the support of (a representative of) ' . We are however working
with a particular factorization of ' , so require a somewhat more refined notion. Recall
that D˛ refers to the Dehn twist about fixed ˛ 2 Œ˛�, while �˛ is its isotopy class.

Definition 3.8 Let .†; '; �/ be an augmented open book, p 2 .� \ '.�//, and
˛ 2 SCC.†/. If there is a representative ˛0 2 SCC.†/ of the isotopy class Œ˛� such
that the image D˛0.'.�// can be isotoped to minimally intersect � while fixing a
neighborhood of p in D˛0.'.�//, we say p is fixable under the mapping class �˛ .
We will label the image p˛

0

. Of course the identification of p˛
0

2 .� \ .�˛ ı'/.�//

depends on ˛0 2 Œ˛�.

Our goal then is to prove Theorem 1.1 by showing that the right position given by the
set of all points of � \ '.�/ which are fixable under each successive twist in ! is
consistent.

As a simple example, Figure 7 illustrates distinct right positions of a pair .'; 
 /
associated to distinct factorizations of a mapping class ' .
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˛1

˛2
˛3

˛3

�ˇ1

�ˇ2

�˛2

�˛3

ˇ2

ˇ4
ˇ3

ˇ1

ˇ2

c0

c0

c

c

v

Figure 7: On the left are the curves of the well-known lantern relation on
†0;4 . Setting !1 D �ˇ4

�ˇ3
�ˇ2
�ˇ1
; !2 D �˛3

�˛2
�˛1

, the lantern relation tells
us that !1; !2 are factorizations of a common ' 2 MCG.†/ . Clearly, for
the arc 
 indicated, the intersection point v 2 '.
 /\ 
 in the upper right
figure is fixable under !1 . However, as is clear from the lower sequence of
figures, v is not fixable under the factorization !2 . Thus the right position
P!1

contains the point v as well as the endpoints of 
 , while P!2
contains

only the endpoints of 
 .

3.3 Tools

The goal of this subsection is to develop the tools necessary for keeping track of fixable
points through a given factorization.

Definition 3.9 Let .†; '; �/ be an augmented open book, ˛ 2 SCC.†/, and p 2

� \'.�/ fixable under �˛ . The image set of p under �˛ is

iŒ˛�.p/ WD fq 2 � \ .�˛ ı'/.�/ j 9˛ 2 Œ˛� such that qDp˛g D
[
˛2Œ˛�

p˛:

We begin with a brief description, with an illustrative example in Figure 8. Let .†; '; �/
be an augmented open book, 
 2 � , and ˛ a representative of Œ˛� which minimizes
˛\
 and ˛\'.
 /. Furthermore, choose support.D˛/ so as not to intersect any point
of 
 \'.
 / (see Figure 8(a)). Consider then the image D˛.'.
 //, which differs from
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'.
 / only in support.D˛/ (see Figure 8(b)). Now, each bigon bounded by the arcs
D˛.'.
 // and 
 contains vertices which were in some “triangular region” bounded
by 
 ['.
 /[˛ in the original configuration (T1 in the figure). In particular, there is
an isotopy of D˛.'.
 // over (possibly some subset of) these bigons which minimizes

 \ �˛.'.
 // (the issue of exactly when a proper subset of the bigons suffices is taken
up below, in Section 3.4.2). Thus each point of P which is not a vertex of such a
triangular region is fixable (see Figure 8(c)).

Note however that this description fails to see the full image set, and that moreover
this failure may again be expressed in terms of triangular regions. Indeed, if T is any
triangular region which does not become a bigon (eg T2 in the figure), we may isotope
the given ˛ over T (eg go from Figure 8(a) to Figure 8(d), with T D T2 ) to obtain
˛0 2 Œ˛� such that ˛0 \ 
 and ˛0 \ '.
 / are also minimal. This isotopy has then the
effect of changing the identification of our fixable point in the image (see Figure 8(f)).
In particular, our image set must include each of these points (see Figure 8(g)).

3.3.1 Fixable points and triangular regions As indicated in the previous subsection,
fixability may be characterized in an isotopy-invariant way by means of “triangular
regions”. We begin by setting out a precise framework for their study.

Definition 3.10 Suppose 
 and 
 0 are properly embedded arcs in a surface †, iso-
toped to minimize intersection. Then for ˛ 2 SCC.†/, a triangular region T (of the
triple .˛; 
; 
 0/) is the image of an immersion f W �#†, where � is a 2–simplex
and the image of each edge is contained in one of ˛; 
 or 
 0 .

Definition 3.11 A triangular region T for the ordered triple .˛; 
; 
 0/ is:

� Essential if ˛ can be isotoped relative to @.T /\˛ so as to intersect 
 and 
 0

in a minimal number of points.
� Upward (downward) if bounded by ˛; 
 and 
 0 in clockwise (counterclockwise)

order.

We continue with some technical results concerning triangular regions. Let 
; 
 0 be
properly embedded, non-isotopic arcs in †, with @.
 /D @.
 0/, isotoped to minimize
intersection. Our motivating example, of course, is the case 
 0D'.
 /. Let ˛2SCC.†/
be isotoped to be disjoint from 
 \ 
 0 . A bigon in this setup is an immersed disc B

bounded by the pair (˛ , 
 ) or by (˛ , 
 0 ). Similarly, a bigon chain is a set fBig
n
iD1

of bigons bounded exclusively by one of the pairs .˛; 
 /; .˛; 
 0/, for which the unionSn
iD1f˛ \ @.Bi/g is a connected segment of ˛ (see Figure 10(a)). Finally, we say

points p;p0 2 ˛\ .
 [ 
 0/ are bigon-related if they are vertices in a common bigon
chain.
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'.
 /

'.
 /

.�˛ ı'/.
 /

.�˛0 ı'/.
 /

�˛

�˛0

T1

T2

'

'

˛

˛0

v1 v1

v1 v1

v2 v2 v2

v2 v2 v2

v0

v

(a) (b) (c)

(d) (e) (f)

(g)

Figure 8: Top row: (a) The setup for the above discussion. The support
of the twist D˛ is shaded. (b) The result of D˛ . There is a single bigon,
in which v1 is a vertex. (c) The result of isotoping D˛.'.
 // over this
bigon so as to minimize intersection with 
 . Bottom row: Same as the top,
but with ˛0 . Note that while the images D˛.'.
 // and D˛0.'.
 // are of
course isotopic, the fixed points of (c) and (f) differ. Finally, (g) indicates the
isotopy-independent image set (ie the points v and v0 , along with @.
 /).

Suppose then that T is a triangular region in this setup, with vertex v 2 
 \ 
 0 .
We define the bigon collection associated to T , denoted BT , as the set of points
fp 2 ˛\ .
 [ 
 0/ j p is bigon-related to a vertex of T g (see Figure 10(b)). Note that
if a vertex of T along ˛ is not a vertex in any bigon, the vertex is still included in BT ,
so that, for example, the bigon collection associated to an essential triangle T is just
the vertices of T along ˛ .
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'.
 /

'.
 / '.
 /


 
 



 
 


T1

T2

T3 T4

˛

˛

˛

(a) (b) (c)

Figure 9: (a) If the shaded region is a maximal bigon chain, then T1 and
T4 are essential triangular regions for .˛; 
; '.
 // , T2 and T3 are not. (b)
Upward triangular regions. (c) Downward triangular regions.






 0 
 0


C


 0C
 0�


�

v v v

˛ ˛ ˛

T1T2

(a) (b)

Figure 10: (a) The shaded regions are distinct maximal bigon chains. (b) As
each chain from (a) has a vertex in each of the triangular regions T1;T2 , the
bigon collection BT1

D BT2
includes each intersection point of each chain.

In this example, �v.BT1
/D .0; 1; 1; 0/ , so the collection is downward. Note

that T1 is an essential downward triangular region (Definition 3.11), while
T2 is non-essential.

Now, orienting 
 and 
 0 so that the point v is positive, v separates each of 
 and

 0 into two segments, which we label 
C; 
�; 
 0C and 
 0� in accordance with the
orientation. For each bigon collection B associated to a triangle with vertex v , we
define �v.B/ WD .jB\ 
Cj; jB\ 
�j; jB\ 
 0Cj; jB\ 


0
�j/ 2 .Z2/

4 , where intersection
numbers are taken mod 2 (see Figure 10(b)).

Finally, we label a bigon collection B as

� upward (with respect to v ) if �v.B/ 2 f.1; 0; 1; 0/; .0; 1; 0; 1/g,

� downward if �v.B/ 2 f.1; 0; 0; 1/; .0; 1; 1; 0/g,

� non-essential otherwise (see Figure 10(b)).
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Thus the bigon collection associated to an upward (downward) essential triangular
region T is itself upward (downward).

Lemma 3.12 Let ˛ 2 Œ˛� be such that ˛\ 
 and ˛\ 
 0 are minimal, and v 2 
 0\ 
 .
Then the number of essential triangles with vertex v in the triple .˛; 
; 
 0/ depends
only on the isotopy class Œ˛�.

Proof Let ˛ be an arbitrary representative of Œ˛� (in particular ˛\ 
 and ˛\ 
 0 are
not necessarily minimal), and v a vertex. We define an equivalence relation on the set
of triangular regions with vertex v by T1 � T2() BT1

D BT2
. In particular there

is a 1-1 correspondence between ftriangular regions with vertex vg=� and the set of
bigon collections associated to triangular regions with vertex v .

Now, if ˛0 is another representative of the isotopy class Œ˛�, we may break the isotopy
into a sequence ˛ D ˛1 ' � � � ' ˛n D ˛

0 , where each isotopy ˛i ' ˛iC1 is either a
bigon birth, a bigon death, or does not affect either of j˛\
 j and j˛\
 0j. Note that if
B is upward or downward, an isotopy ˛i '˛iC1 which does not cross v does not affect
�v.B/, while an isotopy ˛i ' ˛iC1 which crosses v changes �v.B/ by addition with
.1; 1; 1; 1/. In either case, the type of the triangle is preserved, ie we can keep track of
an essential upward (downward) bigon collection through each isotopy. Furthermore,
any two distinct bigon collections will have distinct images under each such isotopy
(a bigon birth/death cannot cause two maximal bigon chains to merge). We therefore
have an integer a.v/, defined as the number of essential bigon collections B associated
to triangular regions with vertex v , which depends only on Œ˛�.

Finally, if we take ˛0 to be a representative of Œ˛� which intersects 
 and 
 0 minimally,
then ftriangular regions with vertex vg=� is by definition just the set of essential
triangular regions with vertex v , and has size a.v/.

Lemma 3.13 Let ˛ be a fixed representative of the isotopy class Œ˛� which has minimal
intersection with 
 and 
 0 , and v 2 
 \ 
 0 a vertex of an upward triangle T . Then v
is not a vertex of any downward triangular region T 0 with edge along ˛ .

Proof Consider a neighborhood of v , labeled as in Figure 11. As T is upward, it must
be T1 or T3 , while any downward T 0 must be T2 or T4 . Without loss of generality
then suppose T D T1 . But then neither of T2;T4 can be triangular regions without
creating a bigon, violating minimality.

It follows from Lemmas 3.12 and 3.13 that we may unambiguously refer to a vertex
of an essential triangular region as downward, upward, or neither, in accordance with

Geometry & Topology, Volume 19 (2015)



2422 Andy Wand





 0v

˛

˛ ˛
T1

T1T1T1

T2T2T2T2 T3T3T3T3

T4T4T4T4

(a) (b) (c)

Figure 11: (a) A neighborhood of v . (b) The upward triangle T1 . (c) As ˛
has no self-intersection, T2 cannot be a triangular region without creating a
bigon.

any essential triangular region of which it is a vertex. In particular, if ˛ has minimal
intersection with both 
 and 
 0 , then all triangular regions are essential. Henceforth
we will drop the adjective “essential”.

Definition 3.14 Suppose T is a triangular region with vertex v 2 
 \ 
 0 . Consider
then an isotopy of ˛ , supported in a neighborhood of T , which crosses v , thus giving
another triangular region T 0 of the same type (upward/downward) as T with vertex v ,
and such that in some neighborhood of v , T \T 0 D v (see Figure 12). Note that if T

contains sub-regions with vertex v then the process involves isotoping the innermost
region first, and proceeding to T itself. We call such an isotopy a shift over v .

'.
 /

'.
 /

v v
˛ ˛

'

T

T 0

Figure 12: A shift over a vertex v

Observation 3.15 The relation between fixability and triangular regions is given by
the following readily verifiable facts:

� A downward point is always fixable (see Figure 13(a)).
� An upward point is not fixable (see Figure 13(b)), unless there is another upward

triangle sharing the other two vertices, corresponding to a canceling bigon in the
image (see Figure 13(c)). Note that, in this case, while either of the points v; v0

is individually fixable, the pair is not necessarily simultaneously fixable.
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� The reason for demanding that a neighborhood of the point be fixed is illustrated
in Figure 13(b): though the intersection-minimizing isotopy may be done without
removing the intersection point p , there is no fixable neighborhood, and so p is
not fixable.

p

˛



'.
 /

�˛ 

.�˛ ı'/.
 /

(a)

'.
 /
p

˛


 �˛ 


.�˛ ı'/.
 /

' 


(b)

˛

'.
 /

p0

p




�˛
.�˛ ı'/.
 /

 


'

(c)

p

˛

'.
 /

�˛
 
 


.�˛ ı'/.
 /

'

(d)

Figure 13

3.4 Image sets

Let .†; '; �/ be an augmented open book decomposition. We will use the results of the
previous subsection to describe the image set of an arbitrary point p 2�\'.�/ under a
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Dehn twist �˛ . We begin by choosing a representative ˛ of the isotopy class Œ˛� which
has minimal intersection with � ['.�/. Choose support.D˛/ to be disjoint from p .
We will find it helpful to explicitly notate the inclusion i˛W � \'.�/ ,! � \D˛'.�/.
We may then refer to fixability of i˛.p/, which simply means that there is a isotopy of
D˛'.�/, supported away from a neighborhood of i˛.p/, which minimizes intersection
with � .

A general observation of which we will make extensive use is that for a fixable point
p , the identification of p˛ in the image is unchanged by isotopies of ˛ which do not
cross p . To be precise:

Lemma 3.16 Let p 2 .� \ '.�// and ˛ 2 SCC.†/ be such that p is fixable under
the Dehn twist �˛ . If ht W †! † is an isotopy such that h0 D Id, and ht˛ does not
cross p , then ih1˛.p/ is also fixable, and p˛ D ph1˛ .

Proof Label � so that p2
1\'.
2/. By assumption there is an isotopy gt , supported
away from i˛.p/, such that g0 D Id and g1D˛.'.
2// has minimal intersection with

1 . Thus gt ıDh1�t˛.'.
2// is an isotopy from Dh1˛.'.
2// to g1D˛.'.
2// which
fixes ih1˛.p/. The second statement, that the image is unchanged, is immediate.

Now, if p 2 
1\'.
2/ is neither downward nor upward in .˛; 
1; '.
2//, then p is
clearly fixable, with a unique image point. Our interest then lies in downward/upward
points.

3.4.1 The image set of a downward point Let p 2 � \ '.�/ be downward with
respect to ˛ . As p is a vertex of no bigon in � [D˛..'.�//, we see that p˛ is a
unique point whose identification within the image set of p will (by Lemma 3.16)
hold for any isotopy of ˛ which does not involve a shift over p . Moreover, each such
shift will change the identification, so that if p is the vertex of m distinct downward
triangles, iŒ˛�.p/ will contain exactly mC 1 points (see Figure 14).

3.4.2 The image set of an upward point For the case that p 2 � \'.�/ is upward
with respect to ˛ , assume for the moment that ˛ has been isotoped such that the
triangular region Tp is embedded. Note then that Tp corresponds to a bigon R in
� [D˛..'.�// in which i˛.p/ is a vertex (see Figure 15(a), (b)). In particular, i˛.p/

is fixable only if there is an second bigon R0 , which intersects R in the vertex which
is not i˛.p/ (see Figure 15(c)). Observe then that R0 also corresponds to an upward
triangle, Tp0 , for a point p0 2 � \ '.�/, such that Tp \ Tp0 (for the given ˛ in its
isotopy class) consists of the two vertices along ˛ (see Figure 15(d)). We refer to
such Tp0 as the pair of Tp , and say that each of Tp and T 0p is paired. Note that each
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p

p

p









'.
 /
'.
 /

'.
 /

˛
˛

˛

a

a

a

a0

a0

a0

�˛
�˛

�˛

(a) (b)

(c)

Figure 14: The point p is downward in 2 distinct triangles. (a), (b), and (c)
show representatives of the possible shift-isotopy classes, each of which gives
a distinct point i˛.p/ , while iŒ˛�.p/ is the same for each.

of i˛.p/ and i˛.p
0/ are thus fixable, though not simultaneously, and have the same

image. If i˛.p/ is not fixable, we refer to Tp as unpaired. Note further that, while the
property of being paired depends on the representative ˛ , using Lemma 3.16 a paired
region on a point p will remain paired for any isotopy of ˛ which does not cross p

(though the regions may cease to be embedded).

p

p




'.
 /

'.
 /

˛

˛

i˛p0

i˛p

a

a

p0

R

R

R0 Tp0

Tp

Tp

x

D˛

D˛.'.
 //

(a) (b)

(c) (d)

Figure 15: (a) An upward point, and (b) a corresponding bigon in the image.
(c) Canceling bigons, and (d) corresponding paired regions.
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So, we see that for given ˛ , and fixable point p , i˛.p/ will be fixable if and only if
each upward triangle on p is paired. This motivates the following definition.

Definition 3.17 Let .†; '; �/ be an augmented open book decomposition, and ˛ 2
SCC.†/. Then ˛ is nice (with respect to � [ '.�/) if, whenever p 2 � \ '.�/ is
fixable, then i˛.p/ is fixable under some isotopy of D˛.'.�// which eliminates all
bigons with � (see Figure 16).

p1

p1

p2 p2

1 
1

'.
2/ '.
2/

˛ ˛0

(a) (b)

Figure 16: (a) The curve ˛ is not nice with respect to 
1 and '.
2/ , as
i˛.p1/ is not fixable. (b) The situation is remedied by a shift over p1 .

So, if ˛ is nice, then for each fixable p , i˛.p/ is fixable. As it turns out, niceness is
not a particularly demanding requirement. Indeed:

Lemma 3.18 Let .†; '; �/ be an augmented open book decomposition, and ˛ 2
SCC.†/. Suppose P � .� \'.�// is a collection of upward, fixable points such that
for each p 2P , i˛.p/ is fixable. Then there is a nice ˛0 2 Œ˛� such that for each p 2P ,
i˛0.p/D i˛.p/; ie all identifications are preserved.

Proof If ˛ is not nice, then there is some upward fixable point p1 such that the
associated triangle Tp1

is not paired. We may assume Tp1
is an innermost such region.

Using Lemma 3.16, we want to show that Tp1
contains no upward fixable point, so that

the shift over Tp1
changes no identifications. Suppose otherwise, so there is upward

fixable p2 2 Tp1
, with associated Tp2

� Tp1
(see Figure 17(a)); as we are assuming

Tp1
is innermost among unpaired regions, Tp2

is paired (see Figure 17(b)). To keep
track of things, we index the involved arcs so that p1 2 
1\'.
2/ and p2 2 
3\'.
4/.

Let Tp0
2

be the pair of Tp2
, so p0

2
2 
3 \ '.
4/. Now, Tp2

is such that each of
the 2 vertices along ˛ of Tp1

lies in the interior of the edge along ˛ of Tp0
2

(see
Figure 17 (b)). Thus following along 
1 and '.
2/ away from p1 into Tp0

2
, they must

intersect in some point p0
1

, thus giving a region Tp0
1
� Tp0

2
which is paired with Tp1

(see Figure 17(c)), a contradiction.

We may then shift ˛ over Tp1
, and repeat the process with any remaining innermost

unpaired regions to obtain a nice ˛0 as desired.
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˛

p1

p2


1
3

'.
2/
'.
4/


3

p2

p1

'.
4/

'.
4/

'.
2/


1

x

x

p0
2

p1

y

y p2

p0
2

p0
1

'.
2/

(a) (b) (c)

Figure 17: (a) Region Tp1
is lightly shaded, Tp2

is dark. (b) The pair of
regions Tp2

and Tp0
2

are darkly shaded. As usual, the figures are in the
universal cover, with all lifts of a given object given the same label as the
object. (c) The region pair Tp1

and Tp0
1

is shaded.

Definition 3.19 Motivated by the above, given nice ˛ , and not-necessarily-distinct arcs

1 and 
2 , we introduce an equivalence relation ˛

� on intersection points 
1\'.
2/,
where p

˛
�p0()p˛ Dp0˛ (see Figure 18). Associated to each such equivalence class

Œp�˛ are then the unique minimal connected sub-arcs of 
1 and '.
2/ which contain
each point of the class; we refer to these as the vertical (along 
1 ) and horizontal (along
'.
2/) spans of the class. Observe that the image under D˛ of the horizontal span
is entirely contained in the boundary of a bigon chain of even length in D˛.'.
2//

and 
1 .

p1

p2 p3

p4 p5


1 
1 
1

q1

q2

q3

�˛ �˛

r

Figure 18: Equivalence classes are shaded. In the left-most configuration, we
have i˛.p1/D i˛.p2/D q1; i˛.p3/D i˛.p4/D q2 , and i˛.p5/D q3 , while
in the second twist i˛.qi/D r for each i .

Lemma 3.20 For an arc � , and points a; b 2 � , let Œa; b�� denote the (closed) segment
of � from a to b . Suppose p;p0 2 
1\'.
2/ are consecutive (along 
1 ) elements of
the equivalence class Œp�˛ . Then any nice ˛ intersects each of Œp;p0�
1

and Œp;p0�'.
2/

exactly once.

Proof As p is fixable, we may isotope ˛ to ˛0 , so that there are paired, in particular
embedded, triangles Tp and Tp0 on the given points. Thus ˛0 satisfies the desired
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intersection conditions, and by Lemma 3.18 may be assumed nice. In particular, p
˛0
�p0 .

Now, the isotopy ˛ ˛0 can involve a shift over at most one of Tp and Tp0 , but either
of these will change the image under i˛ of exactly one of the points, so that p and p0

are no longer in the same equivalence class, a contradiction. So the isotopy crosses
neither point, and so ˛ satisfies the same intersection conditions.

Now, Lemma 3.20 implies in particular that if p;p0 2 
1 \ '.
2/ are consecutive
(along 
1 ) elements of the equivalence class Œp�˛ , then the closed curve obtained as
the union of Œp;p0�
1

and Œp;p0�'.
2/ along the endpoints is isotopic to ˛ through an
isotopy which crosses neither p nor p0 . Suppose then that there is a further point p00

such that the union of Œp0;p00�
1
and Œp0;p00�'.
2/ along the endpoints is a (nice) curve

˛0 again isotopic to ˛ . Then either ˛0\ Œp;p0�
1
¤∅, so that p00 2 Œp�˛ , or otherwise,

so there is an isotopy ˛ ˛0 given by a shift over a triangular region with vertex p0 .
Using this observation, we have:

Lemma 3.21 If p 2 
1\'.
2/, and ˛ a nice representative of Œ˛�, are such that Œp�˛
contains greater than 2 elements, then any nice ˛0 2 Œ˛� is isotopic to ˛ through an
isotopy which intersects no element of Œp�˛ , ie Œp�˛ D Œp�˛0 .

As an example of Lemma 3.21, consider again Figure 18. Observe that ˛ may be
isotoped over p2 and p4 to a nice representative ˛0 , thus changing the equivalence
relation to p2 � p3 and p4 � p5 . In the second picture (from either side), however,
there can be no nice representative of ˛ which does not preserve q1 � q2 � q3 .

3.5 Consistency

Having collected our tools, we return to Theorem 1.1, so consistency of the right
position P! given by the union of all fixable points under a given positive factorization
of a mapping class. Our proof will be by induction on the number of twists in our given
factorization ! , so we will consider a more general question: given a consistent right
position P D P.†; '; �/, and ˛ 2 SCC.†/, is the right position for .†; �˛ ı '; �/
given by

S
p2P iŒ˛�.p/, which we will denote simply by P˛ , again consistent?

We will for the remainder of the section consider only the case that our arc collection
� consists of exactly two arcs, which we label 
1 and 
2 . We will focus attention on
a region B 2R.P/. As such, B has an edge along each of 
i and '.
i/; i D 1; 2. We
will find it convenient to label the edges of B as ei , i D 1; 2; 3; 4, where e1 denotes
the edge along '.
2/, e1 the edge along '.
2/, and for i D 3; 4, ei is the edge along

i�2 . Finally, we let vi and yi respectively denote the �–point and ı–point of B

along 
i (see Figure 19).
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1


2

e3

e2

e1

e4

y1

y2v1

v2

B

Figure 19

With an eye toward somewhat reducing the combinatorial aspects of the lemmas to
come, we would like to exploit the symmetry between regions and their completions,
and also that between �–points and ı–points.

Remark 3.22 Given .†; '; �/ such that ' has factorization �˛n
� � � �˛1

, consider
.x†; x'; �/, where x† is gotten by reversing the orientation of †, and x' has factorization
��1
˛n
� � � ��1

˛1
. We refer to .x†; x'; �/ as the reflection of .†; '; �/. Note that, eg if

p 2 � \'.�/ is upward (for some ˛ ), then its reflection is downward. Furthermore,
given p 2 � \ '.�/ and q 2 � \ �˛.'.�//, we have q 2 iŒ˛�.p/ if and only if the
reflection of p is in the ˛�image set of the reflection of q (see Figure 20(a)). Finally,
if we have a right position P , and associated initially parallel regions R.P/, we obtain
a collection of regions in the reflection by simply switching ı–points and �–points;
ie if p is an �–point (ı–point) of a region, its reflection is a ı–point (�–point). We
denote the reflection of a region B by xB , and decorate the vertices accordingly (see
Figure 20(b)).

'.
 /

˛

q1

q2

q3
�˛ �˛




p

(a)

y1

w

y2v

B xB

xv

xy1

xw

xy2

(b)

Figure 20: (a) A point p 2 
 \'.
 / , its image set iŒ˛�.p/ , and the reflections
of each of these (note that the dots here are simply for labeling purposes, and
not meant to indicate �–points). (b) Reflecting a region.

Definition 3.23 Let B 2R.P/ and let ˛ 2 SCC.†/ be a fixed, nice representative of
its isotopy class. We say B is collapsed (by ˛ ) if (1) each edge is contained in the
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span of the ˛�equivalence class of its ı–point vertex, and (2) ˛\B ¤∅. Similarly,
a region B˛ 2R.P˛/ is created (by ˛ ) if its reflection is collapsed (see Figure 21).

�˛ �˛

�˛

B xB


1 
1
2 
2

Figure 21: Above: To the left, a collapsed region B , and its (trivial) image.
To the right, the reflection of B is a created region xB . Below: The three
figures to the left are various regions in a common configuration, which is
mapped by �˛ to the right-most figure. From left to right, these 3 regions are
non-collapsed (satisfies condition (1) but not condition (2)), non-collapsed
(satisfies condition (2) but not condition (1)), and collapsed (but not embed-
ded).

We have:

Lemma 3.24 Suppose B 2 R.P/ (not necessarily consistent) is collapsed by some
˛ . Then there is a Bc 2R.P/ with the same �–points as B , and opposite orientation.
Similarly, if B˛ 2R.P˛/ is created by ˛ then there is a B˛c

2R.P˛/ with the same
ı–points as B˛ , and opposite orientation.

Proof We begin with the first statement. We begin by assigning a length l.B/ D

#jŒy1�˛ \ e1j and width w.B/ D #jŒy1�˛ \ e3j (so, eg, the region B in the upper
left corner of Figure 21 has length 1, width 2, while the collapsed but not embedded
example on the lower row has length = width = 1). Furthermore, we will order points
along a given oriented arc in accordance with that orientation, so if p and p0 are points
along oriented arc � , then p0 >� p means that the orientation of � points from p

to p0 .

We first consider the case l Dw D 1, and orient all arcs such that @B has the standard
(counterclockwise) orientation (see Figure 22(a)). By the collapsed condition, Œy1�˛
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contains at least one element greater than v1 along 
1 ; let y0
1

denote the minimal such
element. As w D l D 1, we see that y0

1
and y1 are consecutive in the class, and so

v1 2 Œy1;y
0
1
�
1

and v2 2 Œy1;y
0
1
�'.
2/ . In particular, y2 is a vertex of an embedded

upward triangular region Ty2
; by niceness of ˛ there is then a y0

2
and an embedded

pair Ty0
2

. Furthermore, v1 2 Œy2;y
0
2
�'.
1/ and v2 2 Œy2;y

0
2
�
2

. Now observe that by
isotoping ˛ to pass through each �–point, we may realize B as Ty1

[Ty2
. But then

the union of the complementary regions Ty0
1

and Ty0
2

gives a region Bc as desired.


1


2
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y24
y23
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v22
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Bc
1 Bc

2 Bc
3

B1 B2 B3

Bc
1

Bc
2

Bc
3

(c)

p

p q

q

y1 R

(d)

Figure 22

Consider then the case l.B/ > 1; w.B/ D 1 (see Figure 22(b)). Let y1i
2 Œy1�˛ ,

i D 1; : : : ; l C 1, be consecutive elements of the class, with y11
D y1 and y12

2 e1 .
As w D 1, we have y12

>
1
v1 . Now, each y1i

, 1 � i � l , is the endpoint of a
segment of 
1 which cuts across B ; let v1i

denote the opposite (on e2 ) endpoint of
this segment (so v11

Dv1 ). Similarly, we have y2i
2 Œy1�˛ , v2i

along e2 . For notational
convenience, we augment P to P 0 by including the vij . There are then Bi 2R.P 0/,
i D 1; : : : ; l , where each Bi is a subregion of B with vertices y1i

; v1i
;y2lC1�i

and
v2lC1�i

(see Figure 22(c)). In particular, each Bi is collapsed, and l.Bi/Dw.Bi/D 1,
so by the previous paragraph there are complementary regions Bc

i . But then the union
of the regions Bc

i with the complement in B of the Bi is a region Bc as desired.
Observe that w.Bc/D l.B/, and w.B/D l.Bc/; in particular, the argument for the
case w.B/ > 1; l.B/D 1 is identical, with the roles of the Bi and Bc

i swapped.
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Finally, suppose both l.B/<1 and w.B/<1. Let p denote the (unique) intersection of
˛ with Œy1;y12

�
1
, q the intersection with Œy12

;y13
�
1

. Then, lifting to the universal
cover (see Figure 22(d)), we find a rectangular region R bounded by ��1.˛/ and
��1.
1/, and whose vertices are consecutive (along ��1.˛/) lifts of p and q (where
�W z† 7!† is the covering map). But then �.R/ is an annulus in † bounded by two
copies of ˛ , a contradiction.

The second statement then follows immediately by reflection: if B is created by ˛ ,
it is the reflection of a collapsed (by ˛ ) region xB . There is thus xBc as above, whose
reflection Bc therefore shares the ı–points of B , and has the opposite orientation, as
desired.

Many of the arguments of this subsection will involve keeping track of equivalence
classes of upward vertices. An observation which will prove particularly useful through-
out is the following:

Lemma 3.25 Let .†; '; �/ be an augmented open book, and ˛ 2 SCC.†/. Suppose
p;p0 2 .�\'.�// are consecutive in Œp�˛ , and further that q; q0 2 .�\'.�// are such
that p;p0; q and q0 are the vertices of a rectangular region. Then there is an ˛0 2 Œ˛�
such that q and q0 are consecutive in Œq�˛0 .

Proof While this is obvious, the point of view which makes it so perhaps bears
reinforcing. As such, consider the case that the edges Œp;p0� and Œq; q0� of the given
rectangular region are along elements of � . Now, as p;p0 are consecutive in Œp�˛ ,
we have a pair of upward triangles Tp and Tp0 , which have in common 2 vertices,
one along an element of � , and one, which we label x , along an element of '.�/.
As usual, we picture the setup in the universal cover (see Figure 23(a)). Expanding
our view of the figure in the universal cover to include 2 copies of our original figure
(see Figure 23(b)), we find that q and q0 are themselves vertices in upward triangular
regions, and that using these regions ˛ may be isotoped to some nice ˛0 for which q

and q0 are consecutive in Œq�˛0 (see Figure 23(c)). The modifications necessary for the
case of edges along elements of '.�/ are clear (see Figure 23(d)).

Now, recall that, as in the discussion at the beginning of the previous subsection, if
some intersection p 2 .� \'.�// is both upward and fixable for a given ˛ , then there
is some p0 2 Œp�˛ , and upward triangular regions Tp and Tp0 such that the entirety
of ˛ is contained in their edges; it follows that in this case every triangular region of
.†; '; �/ is upward. As such, we refer to a region with fixable vertices as upward if
some vertex is in an upward triangular region.
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(a) (b) (c) (d)

p0 x q0

q
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q

q0

q0

q0
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p0

q

q

p

p

x

q
p x

p0

q0

Figure 23: Figures for Lemma 3.25

Our argument depends on being able to consider a given region of R.P˛/ as the “image”
under �˛ of a region in (possibly an augmentation of) R.P/. Now, it is clear intuitively
that a region should not have an image if it is collapsed, or if its vertices are not all
fixable under �˛ . We will further impose a minimality condition, to obtain:

Definition 3.26 Let .†; '; �/ be an augmented open book, and ˛ 2 SCC.†/. Let
B 2R.P/ be non-collapsed (for ˛ ), and have fixable ı–points. Then B is a preimage
for i˛ if

(1) B is not upward, and no downward triangular region on either �–point is
contained in B , or

(2) B is upward, and the equivalence class of neither ı–point contains any point in
the interior of an edge of B .

Definition 3.27 Given B 2R.P/, we refer to any region of R.P˛/ whose vertices
are each in the respective image sets of the vertices of B as an image of B .

As some justification for this terminology, we have the following three lemmas relating
pre-images and images, from which the proof of Theorem 1.1 will follow easily.

Lemma 3.28 Let B 2R.P/ be a preimage for i˛ . Then there is an image B˛ of B ,
such that i˛ maps the ı–points of B to those of B˛ .

Proof To simplify the picture, let zB be a lift of B to the universal cover z†, and fz̨ig
the connected components of ��1.˛/ (where �W z†! † is the covering map). The
lifted map zD˛ has disjoint support, each connected component of which contains some
z̨i ; let Dz̨i

denote the restriction of zD˛ to this component of the support. Now, a given
Dz̨i

affects zB non-trivially only if z̨i has non-empty intersection with at least one
of the edges ze1 and ze2 . These z̨i can then be distinguished as those which intersect
exactly one of the edges ze1 and ze2 , which we refer to as a corner intersection, and
those which intersect both edges, which we refer to as a vertical intersection.
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Now, if z̨i has a vertical intersection, Dz̨i
will slice each lift of B , and reattach to form

new regions whose vertices map to the correct vertices under � (see Figure 24(a)). We
are then done as long as no vertex is contained in a bigon in the resulting configuration.
This however follows easily from our assumptions: suppose otherwise, so z̨i \ zB is
contained in an edge of an upward triangular region, say on zy1 . Now, as y1 is fixable,
there is y0

1
2 Œy1�˛ , distinct from y1 . But then condition (2) of Definition 3.26 implies

that each edge of B with endpoint y1 is contained in the span of Œy1� (see Figure 24(b)).
Thus B is collapsed, a contradiction.

z̨i

B

Dz̨i B

B

y1

y0
1

˛

y01

y1

e1

e2

e3 e4

v1

v2


1 
2

v1

v2

v0
2

'.
2/

y2
z̨iz̨i


1 
1 
1 
2

p

p

p0

p0
Dz̨i


1 
1 
2

v1

v02

(a) (b)

(c) (d)

Figure 24: (a): A vertical intersection and the effect of the corresponding
Dz̨i on the lifted region. (b) If a vertical segment of ˛\B is contained in
an upward triangle, then B cannot be a pre-image. (c) A corner intersection,
and (d) the effect of Dz̨i .

Consider then an (upward) corner intersection; such z̨i is upward on a ı–point, say
zy1 (see Figure 24(c)). As y1 is fixable, and B not collapsed, there are then points
p;p0 2 
1\ e1 , p <
1

p0 consecutive in Œp�˛ , such that z̨ \ Œ zp; zp0�ze1
is a single point.

As z̨i exits zB through ze3 , the point p also lies along e3 (ie the edge of B contained
in 
1 ) (see Figure 24(d)). Now, traveling along ze1 from zy1 , turning right onto z̨i and
traveling exactly one length of ˛ , one thus arrives at a second lift of '.
2/, at a point in
the interior of zB . Letting zv0

2
denote the intersection of this lift with z
2 , by Lemma 3.25

we have v0
2
WD �. zv0

2
/ 2 Œv2�˛0 . In particular, i˛.v

0
2
/ 2 P˛

2
. The map Dz̨i

cuts each
component of ��1.'.
2// at its intersection with z̨i , and reattaches by inserting copies
of (a fundamental domain of) ˛ . So, after the cutting, A'.
2/ is attached to the lift of
'.
2/ through zv0

2
via a path in zB .

Thus, after performing zD˛ , we have a region zB˛ such that all bigons on the vertices
are exterior to the region, and contain no other vertices. We may therefore isotope
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the zD˛�
�1.'.
i// so as to eliminate bigons, and preserve zB˛ . As all isotopic bigon-

free configurations are isotopic through bigon-free configurations, the result is thus
equivalent to ��1�˛.'.
i//, and so �. zB˛/D B˛ 2R.P˛/ is a region as desired.

More generally, we would like to be able to find an image for any non-collapsed region
with fixable ı–points. We break the argument into two lemmas, for the cases of upward
and non-upward regions.

Lemma 3.29 Let P D P.†; '; f
1; 
2g/ be a right position. Suppose B 2 R.P/
is a non-collapsed upward region with fixable ı–points yi 2 
i , ˛ 2 SCC.†/, and
Oyi 2 iŒ˛�.yi/. Then Oy1 and Oy2 are the ı–points of an image of B .

Proof Let P 0 denote the maximal right position which both contains P , and is such
that .P 0/˛ D P˛ . We will show that R.P 0/ contains a preimage for i˛ which maps to
the desired region.

By assumption, at least one of the ı–points, say y1 , is upward. We then may fix a nice
˛ such that y˛

1
D Oy1 and Œy1�˛ contains more than one element.

Let S 0 denote the set of regions of R.P 0/ whose orientations match that of B , and
whose ı–points are simultaneously fixable to the given Oy1 and Oy2 , ie such that for
some ˛0 2 Œ˛�, i˛0 sends the ı–points to Oy1 and Oy2 . We will show firstly that S 0

contains a non-collapsed element.

Suppose then that B 62 S 0 , ie for i D 1; 2 the sets f˛ 2 Œ˛� j y˛i D Oyig are disjoint. Thus
by Lemma 3.21 Œy1�˛ has exactly two elements: y1 , and a point we label y0

1
. Let

Ty1
denote the upward triangular region on y1 . Then as y2 is also fixable, there is an

upward triangle Ty2
and a shift isotopy ht

Ty2 such that y˛
0

2
D Oy2 , where ˛0 D h1

Ty2˛

(see Figure 25(a)). As B 62 S 0 , this isotopy must cross y1 , so y1 lies in the interior
of Ty2

. Again by Lemma 3.21, the class Œy2�˛0 also contains exactly 2 points: y2 ,
and a point we label y0

2
. The points y0

1
and y0

2
thus lie in the exterior of Ty2

, so
y0
˛0

i Dy0
˛
i D Oyi for either i . Now, consider a neighborhood of y1 chosen small enough

that its intersection with 
1 [ '.
2/ is a pair of arcs intersecting at y1 , and let T�
denote the intersection of this neighborhood with Ty1

. We have two cases:

(1) T� 6� B (see Figure 25(b)). Pushing to the universal cover, let A'.
2/
0

denote
the lift of '.
2/ through zy0

1
; this arc enters zTy2

at its intersection with z̨ ,
so continues to intersect z
2 at a point we denote zv2

0 . Note then that using
Lemma 3.25, w0 WD �. zv2

0/ is in P 0
2

. Letting B1 denote the region obtained by
extending B along the 
i from v2 and y1 to v0

2
and y0

1
, and isotoping ˛ to ˛0 ,

we have B1 2 S 0 (see Figure 25(c)). As no edge is contained in the span of the
equivalence class of its ı–point, B1 is not collapsed, as desired.
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Ty1
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1

y1

˛

y2

y0
2

˛0
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˛
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2

˛0

y0
1

(a) (b) (c)

Figure 25: Figures for Lemma 3.29. The region Ty2
is lightly shaded in each.

(2) T��B (see Figure 26(a)). As Ty1
does not contain y2 , it follows that ˛\B¤∅.

Note that if y0
1

lies along neither e1 nor e3 , then each of these is contained in the
span of Œy1�˛ (see Figure 26(b)). But then as ˛ may be assumed nice, each of
e2 and e4 is contained in the span of Œy2�˛ , so B is collapsed, a contradiction.
Thus y0

1
lies along e1 or e3 (see Figure 26(c) and (d)). Then, again using

Lemma 3.25, y0
1

is the ı–point of a subregion B1 in S 0 whose edge along
'.
2/ is not contained in the span of Œy0

1
�˛ , so B1 is not collapsed (of course if

y0
1

lies in e1\e3 we have 2 such subregions, either of which serves our purpose).
Furthermore, as y0

1
does not lie in Ty2

, we may shift ˛ over Ty2
to realize B1

in S 0 .

y2y1

B

˛

v2

y2 y0
2

y1

y0
1

B
y2

y0
1

y0
2

y1

v1

y0
1

v0
1

y2

v2

B1

y1

y0
1
B1

v1
y2

v0
2

v2

(a) (b) (c) (d)

Figure 26: Figures for Lemma 3.29, case (2)

Finally, let B2 2 S 0 be minimal among non-collapsed regions, in the sense that it
contains no other. Observe then that no element of Œyi �˛ , for either i , lies in the interior
of an edge of B2 . Indeed, suppose otherwise, so that eg y0

1
2 Œy1�˛ is such that y0

1

lies along e1 (the other cases are essentially identical). Then y0
1

is the endpoint of a
segment of 
1\B which cuts across B2 , and whose other endpoint lies in P 0 , thus
determining a subregion. Such a subregion will again be non-collapsed, contradicting
minimality.

The region B2 is thus a preimage whose ı–points map to the given Oy1 and Oy2 . By
Lemma 3.28 these are then the ı–points of an image of B as desired.
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We require a similar statement for the non-upward case:

Lemma 3.30 Let P D P.†; '; f
1; 
2g/ be a right position. Suppose B 2R.P/ is a
non-upward region with ı–points y1 and y2 , ˛ 2 SCC.†/, and let Oyi 2 iŒ˛�.yi/ for
i D 1; 2. Then Oy1 and Oy2 are the ı–points of an image of B .

Proof Ideally, one would like to find ˛0 2 Œ˛� such that B is a preimage for i˛0 which
maps to the desired region. Supposing for the moment that this is possible, we will
break the isotopy ˛ ˛0 into a sequence of shifts, as follows: if y˛i ¤ Oyi for either i ,
there is a unique triangular region Ti such that y

1
hTi

1
.˛/ D Oyi (see Figure 27 (a)).

Assuming these shifts may be performed simultaneously, we obtain a curve ˛00 (see
Figure 27(b)) which gives the correct ı–point images. Now, for each �–point, let T3

(for v1 ) and T4 (for v2 ) denote the maximal triangular region contained in B and
with vertex the given �–point. Isotoping over each of these, we then obtain ˛0 with
only vertical intersections with B , so B is a preimage with image B˛

0

satisfying the
desired properties (see Figure 27(c)).

y1

v1 ˛

y2

v2
B B

˛00
y2

y1

˛0

B
y1

y2

(a) (b) (c)

Figure 27: Shift-isotoping ˛ so that B is the prescribed pre-image

Of course these shifts are not in general simultaneously realizable; we may however
get around this by passing to the universal cover. To see this, let zB be a lift of B to the
universal cover, and zTi , for each i , the lift of Ti (defined in the previous paragraph)
with a vertex in common with zB . Of course we may always assume ˛ has been
isotoped over T1 . But then, as zT2 has no interior intersection with zB , we may isotope
��1˛ over zT2 without crossing zy1 . Similarly, any downward region contained in zB
contains neither zyi , while any pair of such regions is either disjoint, or such that one
contains the other. In particular, the composition h

zT
t WD h

zT4
t h
zT3
t h
zT2
t isotopes ��1˛ to

a representative .��1˛/0 with the desired properties.

We then define Dh
zT
t .�
�1˛/W

z†! z† as the composition of the Dh
zT
t z̨j
WDh

zT
t
zD
j̨
.h
zT
t /
�1

for each connected component z̨j of ��1˛ . The map Dh
zT
1
.��1˛/ is thus isotopic to the

lift zD˛ , and fixes each zyi to a lift of y˛i (recall that intersection points of 
i\'.
j / are
only considered up to isotopy of '.
j / which involves no bigons). As all intersections
with zB are vertical, zB is a preimage, and in particular the zy˛i bound a region of
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v2
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Figure 28: Examples of the steps outlined in Lemma 3.30. In each of the two
figures, the lower left illustration is of some collection of triangular regions
in † whose shifts cannot be done simultaneously, while each upper row is in
the universal cover, and the squiggly arrows refer to, from left to right, the
isotopy .��1˛/ .��1˛/0 , the map Dh

zT
t .�
�1˛/ applied to the ��1.'.
j // ,

and finally the isotopy of these images back to the ��1.�˛.'.
j /// .

R.��1.P˛//, which is then mapped by � to a region of R.P˛/ as desired. As an
illustration, Figure 28 goes through the steps for 2 particular configurations.

We arrive finally at the proof of Theorem 1.1.

Proof of Theorem 1.1 Let 
1 and 
2 be disjoint properly embedded arcs in †,
and ' 2 MCG.†/ admit a positive factorization �˛n

� � � �˛1
. We will show by in-

duction on n that if Pj denotes the right position for the augmented open book
.†; �

j̨
� � � �˛1

; f
1; 
2g/ consisting of those points of 
k \'.
k/, for k D 1; 2, which
are fixable under each successive �˛i

, then Pj is consistent for each j .

For the base case nD 0, so ' D Id, we observe that, isotoping each '.
k/ to be to the
right of 
k at each endpoint and have no positive interior intersections (see Figure 29),
P0 is given by the trivial position @� . As this has no regions, it is trivially consistent.
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Id.
 /

Figure 29

Suppose then that Pj�1 is consistent, and let B˛ 2R.Pj /. Now, if B˛ is created by
˛ , then again by Lemma 3.24 it is completed, so we assume otherwise. Letting v˛

1

and v˛
2

denote the �–points of B˛ , by definition there are v1 and v2 in Pj�1 such
that v˛

1
2 iŒ˛�.v1/ and v˛

2
2 iŒ˛�.v2/. Let Ny1; Ny

˛
1
; Ny2 and Ny˛

2
denote the reflections of

v2; v
˛
2
; v1 and v˛

1
, respectively (see Figure 30(a)). We then have Nyi 2 iŒ˛�. Ny

˛/, for
i D 1; 2 (see Remark 3.22). Then, as Ny˛

1
and Ny˛

2
are the ı–points of the reflection xB˛

of B˛ , Lemmas 3.29 (if xB˛ is upward with respect to ˛ ) and 3.30 (otherwise) ensure
the Nyi are ı–points for a region xB . The reflection of xB , which we denote B , is thus
an element of R.Pj�1/, and such that B˛ is an image of B (see Figure 30(b)).

y˛
1 y˛1

y˛
2 y˛2v˛1 v˛1

B˛ B˛

B

xB˛ xB˛

Ny˛1 Ny˛1

Nv˛
1 Nv˛1

Nv˛2Nv˛2

Ny˛2 Ny˛2

Ny2Ny2

xB

v1 v1

v2v2

Ny1 Ny1

Nv2

Nv1

�˛ �˛ �˛ �˛

v˛
2 v˛2

y1

y2

(a) (b)

Figure 30

By Lemmas 3.29 and 3.30, any non-collapsed region with the opposite orientation
of B and ı–points in Œyi �˛ , for i D 1; 2, will have an image which completes B˛ .
Consider then the set S of regions of R.Pj�1/ with ı–points in Œyi �˛ , i D 1; 2, and
the opposite orientation of B . We will show that S contains a non-collapsed element.
Note firstly that by consistency, B itself has a completion B0 which lies in S , so S is
non-empty.

Now, we may order S by considering ı–points along 
1 in accordance with its standard
orientation (ie pointing from y1 to v1 ); let B0m denote a minimal element. Suppose
then that B0m is collapsed. Then by Lemma 3.24 there is a region BmC1 of opposite
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orientation and the same �–point set as B0m , and whose ı–points ymC1
i lie in Œyi �˛

(see Figure 31). In particular, BmC1 lies in R.Pj�1/, and so is completed by some
B0

mC1
which lies in S , but is such that its ı–point along 
1 is further along 
1 than

that of B0m , contradicting minimality. Thus B0m is non-collapsed, and so has an image
which completes B˛ .


1

B0
mC1

˛

BmC1

B0m

c1

Figure 31

4 Restrictions on pe.'/

In this section, we switch focus back to the entirety of a pair of distinct properly
embedded arcs 
1; 
2 in a surface †, and the images of these arcs under a right-
veering diffeomorphism ' . The motivating observation here is that, as the endpoints
of each arc are by definition included in any right position, the property of the initial
horizontal segments of the images determining an initially parallel region is independent
of right position, and so is a property of the pair '.
1/; '.
2/. In particular, for positive
' , if '.
1/ and '.
2/ are initially parallel, they must admit a consistent right position
in which the initially parallel region is completed (see Example 3.7).

Definition 4.1 For a surface † and positive mapping class ' , we define the positive
extension pe.'/� SCC.†/ as the set of all ˛ 2 SCC.†/ such that �˛ appears in some
positive factorization of ' .

We are interested in understanding what necessary conditions on ˛ 2 pe.'/ can be
derived from the information that '.
1/ and '.
2/ are initially parallel.

4.1 Restrictions from initial horizontal segments

Throughout the section, we will be considering rectangular regions R in †, and
classifying various curves and arcs by their intersection with such regions. We need:
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Definition 4.2 Let R be an embedded rectangular region with distinguished oriented
edge e1 , which we call the base of R. We label the remaining edges e2; e3; e4 in
order, using the orientation on e1 (see Figure 32). We classify properly embedded
(unoriented) arcs on R by the indices of the edges corresponding to their boundary
points, so that an arc with endpoints on ei and ej is of type Œi; j � (on R). We are only
concerned with arcs whose endpoints are not on a single edge. An arc on R is then

� horizontal if of type Œ2; 4�,

� vertical if of type Œ1; 3�,

� upward if of type Œ1; 2� or Œ3; 4�,

� downward if of type Œ1; 4� or Œ2; 3�,

� non-diagonal if horizontal or vertical.

e1

e2

e3

e4

R

Œ1; 2�

Œ1; 3�Œ3; 4�

Œ2; 3�

Œ2; 4�

Œ1; 4�

Figure 32: Representatives of each possible type of arc on R

Definition 4.3 Let R in † be a rectangular region with distinguished base as in
Definition 4.2. We say that ˛ 2 SCC.†/ is not downward on R if each arc ˛\R is
not downward on R.

Remark 4.4 Following Definition 4.2, we use a given pair of properly embedded arcs
to define a rectangular region D of † as follows. Suppose 
1 and 
2 are disjoint
properly embedded arcs, where @
i D fci ; c

0
ig, and N
1 is a given properly embedded

arc with endpoints c0
1

and c2 . Let N
2 be a parallel copy of N
1 with endpoints isotoped
along 
1 and 
2 to c1 and c0

2
. We then define D to be the rectangular region bounded

by 
1; 
2; N
1; N
2 (the endpoints are labeled so that c1 and c2 are diagonally opposite),
and base N
2 , oriented away from c1 (see Figure 33). For the remainder of this section,
D will always refer to this construction. Of course, for a given pair of arcs, D is
unique only up to the choice of N
1 .
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'.
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1

N
1


2

N
2
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Figure 33: Disc construction

Definition 4.5 We say the pair '.
1/; '.
2/ is initially parallel (on D ) if there exists
D such that '.
1/; '.
2/; 
1 and 
2 bound a rectangular region B ,!D on which
c1 and c2 are vertices. An initially parallel (on D ) pair of images is flat (on D ) if
'.
i/\ N
j D∅ for i; j 2 f1; 2g.

As expected, then, the pair of arcs '.
1/; '.
2/ is initially parallel exactly when the
horizontal segments hc1

and hc2
originating from the boundary of each pair of right

positions determine an initially parallel region. Using this, we immediately obtain:

Lemma 4.6 Let ' be positive, D be as in Remark 4.4 and the pair '.
1/; '.
2/ be
initially parallel on D . Then ˛ 2 pe.'/ only if ˛ is not downward on D .

Proof Suppose otherwise. Then ˛\D has an arc of type Œ1; 4� or Œ2; 3� on D . Now, if
˛ 2 pe.'/, there is some positive factorization of ' in which �˛ is the initial Dehn twist.
However, if ˛\D has an arc of type Œ1; 4� (resp. Œ2; 3�), then the initial segment of
�˛.
1/ (resp. �˛.
2/) is strictly to the right of '.
1/ (resp. '.
2/), a contradiction.

4.1.1 Motivating examples We begin with a pair of examples, meant to motivate
the various definitions to come.

Example 4.7 Consider a positive ' 2 MCG.†/, and a pair of properly embedded
arcs 
1 and 
2 such that the images '.
1/ and '.
2/ are flat in some disc D (see
Figure 34(a)). The segments hc1

and hc2
are of course initially parallel (along some

region B ), so there is some completing region (it is easiest to keep in mind the simplest
case in which the �–points of this completing region are the opposite endpoints of 
1

and 
2 , as in the figure). Let ˛ be a simple closed curve such that ˛\D has exactly
two diagonal arcs, each upward, and connected such that an orientation of ˛ gives each
of these arcs the same orientation. The arcs ��1

˛ .'.
i// are thus again initially parallel,
with ı–points which map to those of B under i˛ . One may then verify that there is a
unique completing region, which is collapsed by ˛ . Lemma 3.24 then guarantees that
the �–points of this completing region define initially parallel segments hv0 and hw0 .
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This new initially parallel region is then completed by (an image under i�1
˛ of) the

original completing region for B . Furthermore, the ı–points of the regions are each
fixable. The regions and points involved are illustrated in Figure 34(b).

Consider then a slightly more complicated configuration, in which ˛ has 4 diagonal
arcs, arranged as in Figure 34(c). Again, one may verify that any consistent right
positions for ..��1

˛ ı'/; 
i/ (see Figure 34(d)) must contain one of the two positions
indicated in Figure 34(e) and (f). Again, each of these determines a sequence of
(collapsed) regions and points which ends with the original completions. The goal of
the remainder of this section is to show that for any simple closed curve ˛ , any pair of
consistent right positions for ..��1

˛ ı'/; 
i/ must contain a similar sequence, which
then determines necessary conditions on ˛ 2 pe.'/.

(a) (b)

(c) (d)

��1
˛

��1
˛

(e) (f)

Figure 34

4.1.2 Notation and conventions Given a pair of arc images '.
1/ and '.
2/ flat
on some D , and a non-downward curve ˛ , let B˛ ,!D denote the initially parallel
region with �–points c1 and c2 , and y˛i 2 
i , i D 1; 2, the ı–points. Consider the
set of upward triangles of .˛; 
1; '.
2// with vertex y˛

1
(see Figure 35(a)); each of

course has a distinct vertex in 
1\˛ , which we label x1;x3; : : : ;xm1
so that indices
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decrease along 
i in the direction of the orientation of 
1 . Similarly we have upward
triangles with vertex y˛

2
, and vertices x2;x4; : : : ;xm2

along 
2 (see Figure 35(b)).
Let a1; a2; : : : am , where a1D 1, be the indices of the xi with order given by the order
in which they are encountered traveling along ˛ to the right from x1 . We associate to
˛ the list �˛ D .a1; a2; : : : am/, which for reasons that will become apparent in the
following subsection we define only up to cyclic permutation. We decorate an entry
with a bar, Naj , if for odd (resp. even) j , the orientation of the intersection point xj

agrees (resp. disagrees) with that of x1 .

.. .

. . 
.

. . 
.

. . .

(a) (b)


1 
1


2 
2

c1

c0
1

c2

c0
2

c1

c0
1

c2

c0
2

x1

x2x3

x4

xm1

xm2

˛

'.
1/

'.
2/

Figure 35: (a) Triangular regions on the ı–points of B˛ . (b) Labeling of arcs
and intersections. The paths �2;3 and �4;1 are components of a symmetric
multipath.

Given a pair xi 2 ˛\ 
2 and xj 2 ˛\ 
1 (so i is even, j odd), the pair splits ˛ into
two disjoint arcs. If the orientations of xi and xj disagree, we label these arcs �i;j

and �j ;i (where for even i , �i;j refers to the arc connecting xi and xj and initially
exterior to D at each endpoint, so for odd j , a neighborhood of each endpoint of �j ;i

is contained in D ). We refer to each such arc as a path of the pair .˛;D/. We say
paths � and �0 are parallel if, after sliding endpoints along the 
i so as to coincide,
they are isotopic as arcs (relative to their endpoints). Then a multipath of .˛;D/ is a
collection of more than one pairwise parallel path.

Of particular interest will be the following special case:

Definition 4.8 A multipath as described in the previous paragraph is symmetric if its
components are �a1;b1

; �a2;b2
; : : : ; �ar ;br

, where each pair fai ; brC1�ig is fj ; j � 1g

for some even j . So, for example, any symmetric path is �j ;j�1 or �j�1;j for some
even j . Figure 35(b) contains an example of a symmetric multipath with components
�2;3 and �4;1 .
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4.2 Necessary conditions for ˛ 2 pe.'/

This subsection is devoted to introducing the terminology of, and proving, Theorem 1.2.

Definition 4.9 Let ˛ 2 SCC.†/ be not downward on a region D . We call ˛ balanced
(with respect to D ) if each xi is an endpoint in either a symmetric path or a component
of a symmetric multipath. We say a balanced ˛ is nested with respect to D if its
associated �˛ can be reduced to the empty word by successive removals of pairs .i; j /
of consecutive entries, where �i;j is a symmetric path or component of a symmetric
multipath.

Note that in the absence of symmetric multipaths of more than one component, these
properties are encoded in �˛ . For example, .12N34/ is not balanced, .135462/ is
balanced but not nested, and .1N456N32/ is nested. On the other hand, .12N4N5N7N8N6N3/ is
not balanced in the absence of symmetric multipaths, but nested if �4;5 and �6;3 are
components of a symmetric multipath. Also note that each condition requires the
number of intersections j˛\ 
1j to equal j˛\ 
2j, ie m1C 1Dm2 .

We want to characterize the nested condition in terms of paths of ˛ . We need:

Definition 4.10 Let �a;b; �c;d � ˛ be paths, with a; b; c and d distinct. We refer to
the pair as nested if either one contains the other, or they are disjoint. Otherwise, the
pair is non-nested.

Observe then that if for some balanced ˛ , each pair of components of symmetric
multipaths is nested, then there is some “innermost” multipath whose paths contain no
other. In particular the indices of the endpoints of these paths are consecutive pairs in
�˛ . We have:

Lemma 4.11 Let balanced ˛ be such that each pair of components of symmetric
multipaths is nested. Then ˛ is nested.

To keep track of intersection points 
i \ �
�1
˛ .'.
j //, for i; j 2 f1; 2g, we begin with

the observation that each ı–point of the initially parallel region with �–points c1 and
c2 is fixable under ��1

˛ . As in the previous subsection we label these y˛
1
2 
1\'.
2/

and y˛
2
2 
2\'.
1/. There are then exactly .m1C 3/=2 points to which y˛

1
may be

fixed by i�1
˛ ; we label these y1;y3; : : : ;ym1C1 so that the indices increase along 
1

from c1 . Similarly, there are .m2C 2/=2 possible fixed preimages of y2 , which we
label y2;y4; : : : ;ym2C2 along 
2 from c2 .
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c
1

c0
1

c
2

c0
2

x1

x2

x3
x4

x5

x6

y˛
1

y˛
2

�˛ D 136542

a

a

b

b

c

c

d

de

e
f

f c
1

c0
1 c

2

c0
2

��1
˛

˛

y1

y2y7

y8

��1
˛ .'.
2//

��1
˛ .'.
1//

Figure 36: Above left, the various points of ˛\
i and ˛\'.
i/ . Above right,
the inverse image ��1

˛ .'.
i// , for ˛ with �˛ D 136542 (strands terminating
in brackets with like letters are meant to be identified).

4.2.1 The right position P� Our immediate goal is to show that, if the ��1
˛ .'.
i//,

i D 1; 2, admit a consistent right position, then any such right position has a particular
subposition whose regions extend non-trivially along the entire length of each arc, as
described in Example 4.7. Theorem 1.2 will then follow from various properties of
this right position.

Lemma 4.12 Let '.
1/ and '.
2/ be flat with respect to some D , ˛ 2 pe.'/, and
P be a consistent right position of .†; ��1

˛ ı '; f
ig/. Then there is a right position
P� D .fvj gnjD1

[fwj g
n
jD1

/� P , and fekg
2n
kD1
�N such that:

(1) v1 D c1 and vn D c0
1

, and w1 D c2 and wn D c0
2

, and the indices 1; : : : ; n

increase along each of 
i and ��1
˛ .'.
i// from the endpoint ci .

(2) For each j < n, segments hvj ;vjC1
and hwj ;wjC1

are initially parallel along a
region Bj , and completed along a region B0j with �–points vjC1 and wjC1 .
Furthermore, the set of ı–points for these regions are fixable, and the ı–points
of the completing pair Bj ;B

0
j are ye2j�1

and ye2j
(in the set fykg of fixable

points described above).

See Figure 37 for a schematic illustration.

Proof By assumption, hc1
and hc2

are initially parallel along a region B1 , with
fixable ı–points y1 and y2 , which for consistency must be completed by some region
B0

1
with �–points which we label v2 and w2 . We need then to show that the horizontal

segments hv2;c
0
1

and hw2;c
0
2

are themselves initially parallel along a region with ı–
points again in the fixable point set fykg. The result will then follow, as we may repeat
the construction until we hit one of the opposite endpoints.

Now, each of the sets fy1;y3; : : : ;ym1C2g and fy2;y4; : : : ;ym2C2g is of course just
the ˛�equivalence class (Definition 3.19) of each of its elements. In particular, each
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B1 B2 B3

B1

B2


1

1


1 
1

2


2


2


2

B0
1

B0
2

B0
3

B0
1

B0
2

Bn�1

Bn�1

B0
n�1

B0
n�2

v1

v2 v3v1

v2

vn�1

vn

wn�1

wn

w1

w2

w3

ye1

ye2

ye3

ye4

ye5

ye6

@

@

@
@

��1
˛ .'.
1//

��1
˛ .'.
2//

ye3

w3yp1

Figure 37: A schematic overview of the position P� constructed in
Lemma 4.12. The picture is of the universal cover of † , along a lift of
��1
˛ .'.
1// . As usual, all lifts of an object are given the same label as the

original object.

edge of B0
1

is contained in the span of the ˛–equivalence class of its ı–point; as ˛ may
be assumed to intersect B0

1
non-trivially, B0

1
is collapsed by ˛ , and so by Lemma 3.24

there is a complementary .B0
1
/c with ı–points in Œyi �˛ , as desired.

Continuing in this fashion, for each j , Bj D .B0
j�1

/c , we obtain a sequence of
points fvj g and fwj g satisfying condition (2), which continues until we hit an endpoint,
ie (assuming m1�m2�1), wnDc0

2
. Condition (1) will then be satisfied if m1Dm2�1,

so that the corresponding vn is the other endpoint c0
1

.

Suppose otherwise; we will show that Bn�1 has no completion, a contradiction. As
elsewhere in the paper, we will use the notation Œa; b�� to denote the segment of an arc
� between points a and b . Let B˛ 0 denote the completion of B˛ , and consider firstly
the case that ˛ \B˛ 0 has no vertical arcs (ie arcs connecting '.
1/ and '.
2/, see
Figure 38(a)). Then, by construction, y2n�2 is such that e WD Œy2n�2; c

0
1
���1
˛ .'.
1//

has
no interior intersection with Œy1; c

0
1
�
1

(see Figure 38(b)). As such, any completion of
Bn�1 has e as an edge, and c0

1
as a �–point. Thus Œy2n�3; c

0
1
�
1

is another edge.
However, it is clear that, for instance, the intersection number of this edge with
��1
˛ .'.
1// is greater than that of any candidate edge along 
2 , so we have no possible

region. The remaining case, that ˛ \B˛ 0 has vertical arcs, is almost identical: we
now take e to be Œy2n�2; c

0
2
�
2

, which now has no interior intersection with either
��1
˛ .'.
i//, so is an edge of any completion. Thus Œy2n�3; c

0
2
���1
˛ .'.
2//

is another
edge, and again considering intersections of ��1

˛ .'.
1// with the edges along the 
i

we conclude that no region exists.

We have the following immediate corollary, giving us “half” of Theorem 1.2:
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c0
1

c0
1

c0
2

c0
2

��1
˛

y2n�2

y2n�3

ym1C2
Bn�1

e

(a) (b)

B˛0

˛

Figure 38

Corollary 4.13 Let '.
1/ and '.
2/ be flat with respect to some D . Then ˛ 2 pe.'/
only if ˛ is balanced with respect to D .

4.2.2 Nestedness The proof of the remainder of Theorem 1.2, that nestedness is a
further necessary condition for consistency, in fact also follows easily from the previous
lemma, but keeping track of everything involved requires quite a bit of notation. We
begin by using Lemma 4.12 to characterize nestedness in terms of regions and �–points.

As in the previous section, we denote by R.P/ the set of initially parallel/completed
regions in a right position P . Recall from Lemma 3.24 that a collapsed region of length
l > 1 and width w D 1 (resp. length l D 1 and width w > 1) contains l � 1 (resp.
w� 1) collapsed subregions each of l D w D 1.

Definition 4.14 Given a pair of complementary paths �a;b and �b;a , where a is even,
let Ba;b and Bb;a be the collapsed pair of rectangular regions bounded by Œya;yaC2�
2

,
Œya;yaC2���1

˛ .'.
2//
, Œyb;ybC2�
1

, and Œyb;ybC2���1
˛ .'.
1//

, where Ba;b has vertices
ya and yb , and Bb;a has vertices yaC2 and ybC2 (see Figure 39(a)). Thus Ba;b and
Bb;a are collapsed regions satisfying length = width = 1. We refer to each such region
as basic. We refer to a pair of basic regions Ba;b and Bc;d as nested or non-nested if
the associated paths �a;b and �c;d are nested or non-nested. From the definitions, we
see that if Ba;b and Bc;d are nested, they are either disjoint, or intersect such that no
vertex is in the intersection, ie in “strips” as in Figure 39(b). Conversely, if the regions
are non-nested, they intersect in a “corner overlap” as in Figure 39(c). Finally, we call
a region B 2 R.P�/ nested if each basic subregion of B is nested with each basic
subregion of all other regions of R.P�/.

We can thus characterize nestedness in terms of regions as follows:

Observation 4.15 A balanced curve ˛ is nested if for any two regions A;B 2R.P�/,
any pair consisting of a basic region of A and a basic region of B is nested. Equivalently,
if each B 2R.P�/ is nested.
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��1
˛ .'.
2//

��1
˛ .'.
1//

ya

yb

yc yd

ya

yb

yc

yd

ya yaC2

ybybC2

1


2

Ba;b

Bb;a

˛

(a) (b) (c)

Figure 39: (a) The region Ba;b corresponding to the path �a;b , and com-
plementary Bb;a corresponding to �b;a . The curve ˛ is the dashed line.
(b) Nested, and (c) non-nested regions.

We need:

Definition 4.16 Given right positions P1 and P2 , we call a region B 2R.P1/ empty
(in P2 ) if neither the interior of B nor the interior of the edges which form @B contain
any points of P2 . Conversely, any point y which is a ı–point of some region in R.P1/

is isolated (in P2 ) if, for each B 2 R.P2/, y is in neither the interior of B nor the
interior of the edges which form @B .

Then:

Lemma 4.17 Let P� be the right position constructed in Lemma 4.12. Then if
B 2R.P�/ is empty (in P� ) with isolated ı–points, then B is nested.

Proof Suppose otherwise, so B is empty with isolated ı–points, and there is an
A 2 R.P�/ such that some basic region Ba;b of B and some basic region Bc;d of
A are non-nested. Now, as in the proof of Lemma 3.24, any collapsed region has
either width or length equal to 1; the cases are essentially identical, so we assume
l.B/D 1. Now, if l.A/¤ 1, note that Ba;b and Bd;c D .Bc;d /

c are also non-nested
(see Figure 40(a)), so we may replace A with its complementary region Ac , which
then satisfies l.Ac/D 1. It is then trivial to verify that if two collapsed regions each of
length one (or each of width one) have non-nested basic regions, then each of the pair
either contains a �–point of, or has a ı–point contained in, the other (see Figure 40(b)).
We therefore arrive at a contradiction.

Lemma 4.18 Let P� be as in Lemma 4.12. Then if B 2R.P�/ is empty (in .P�/)
with isolated ı–points, then the same holds for Bc .
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(a) (b)

ya

yb

yc

yd

Ba;b

Bc;d

Bd;c ycC2

ydC2

Figure 40: (a) If a basic region is non-nested, so is its complementary region.
(b) Two collapsed, non-nested regions of length 1. Each is either non-empty,
or has non-isolated ı–points.

Proof Suppose that Bc is not empty, so contains some �–point v of some region
A 2R.P�/. Now, the complement in B of the basic regions of B is the same as the
complement in Bc of the basic regions of Bc , so, as B is empty, v lies in a basic
region of Bc (see Figure 41 (a)). But then the basic subregion of A with vertex v is
non-nested with a basic subregion of B , contradicting the previous lemma.

v

y

(a) (b)

Figure 41: Figures for Lemma 4.18. The region Bc is darkly shaded, the
basic regions of B lightly.

Similarly, if a ı–point y of Bc is not isolated, it is contained in some A (see
Figure 41(b)). Then, as by construction no basic region contains the ı–point of
any other, y must lie in the complement of the basic regions of A, ie in A\Ac . But
then A and B again contain non-nested basic regions, a contradiction.

Now, to connect P� with arbitrary consistent P , we require:

Lemma 4.19 Let 
i ; ';P;P� , i D 1; 2, be as in Lemma 4.12. Suppose region
Bj 2R.P�/ is empty in P , and the ı–points ye2j�1

and ye2j
are isolated in P . Then

the completing region B0j is also empty in P .

Proof Suppose that Bj is empty, while B0j is not, so there is some v 2 P such that
v 2B0j . Then v is the �–point of an initially parallel region B �B0j whose remaining
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�–point is a �–point of B0j (see Figure 42, where we have illustrated the case i D 1).
As B is a region of R.P/, it has a completion B0 . Then, letting v0 be the �–point of
B0 along 
1 , we see that, as the boundary of B0 is assumed to contain neither of the
pair ye2j�1

;ye2j
, then v0 is in the interior of two distinct edges of B0j . We thus have a

contradiction, as each region of R.P�/ is embedded by construction.

1 
2

wj

Bj

B0

1

vj v0 B
vjC1

��1
˛ ı'.
1/

ye2j B0j
v v0 B0

wjC1 wj
��1
˛ ı'.
2/

Bjye2j�1

vj
��1
˛ ı'.
1/

Figure 42: Figure for Lemma 4.19.

Observe then that, referring back to the sequence of regions created in Lemma 4.12,
if B1 is empty, Lemma 4.19 implies that B0

1
is empty, and so by Observation 4.15 it

follows that the collection of entries of �˛ up to the largest index of a basic region
of B0

1
(ie f1; 2; : : : ; e3 � 1g) appear in �˛ as a nested (not necessarily contiguous)

subword. Our strategy is then to proceed by modifying the surface † via a sequence
of punctures, which will have the effect of removing all regions R.P/ nR.P�/, and
isolating each of the fixed points yej . This will allow us to generalize Lemma 4.17 to
apply to each region of R.P�/, and then show that the “overlapping regions” which
characterize the non-nested case are an obstruction to consistency.

We begin by defining our sequence of modifications. Given P� as in Lemma 4.12, let
†j be the surface given by deleting a pair of points from a neighborhood of each of the
ı–points fyek

j ek � 2j g as in Figure 43. To be precise, we choose a neighborhood
about each of these points such that the restriction of f
1; 
2; �

�1
˛ .'.
1//; �

�1
˛ .'.
2//g

to this neighborhood is a pair of arcs with a single intersection point, so these arcs
divide the neighborhood into 4 “quadrants”, two of which are filled by the pair of
regions for which the given ı–point is a vertex. We then delete a neighborhood of a
point in the interior of each of the remaining two quadrants (see Figure 43). Note that
this has the effect of removing from R.P/ each region which contains either of these
points, so that each ı–point is isolated in the new region set.

Observe that our arcs 
i as well as their images are preserved by this construction, so
may be viewed as lying on each of the †j , and similarly the mapping class ��1

˛ ı'

can be viewed as an element of each �†j .
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We then inductively define a sequence of right-positions Pj for the augmented open
book .†; ��1

˛ ı '; f
ig/ for each surface †j , where P0 D P , and †0 D †, and for
j > 0, each Pj is obtained from Pj�1 by removing any point which lies either in the
interior of Bj or in the interior of its boundary.

B0j

Bj

B0j


1

2

��1
˛ ı'.
1/

��1
˛ ı'.
2/wj

vj

B0j

Bj

B0j


1

2

��1
˛ ı'.
1/

��1
˛ ı'.
2/wj

vj

Figure 43: Modification †j�1 †j . The thick circles indicate boundary
components introduced by the modification.

Finally:

Lemma 4.20 The above modification process is such that, for each †j , Pj is consis-
tent, and furthermore R.P�/�R.Pj /.

Proof The proof is by induction on j . The base step, that on † the original positions
Pi satisfy the conditions, is trivial. Suppose then that the conditions hold for †j�1

and Pj�1 . Observe that, as the deletion process ensures that for each k < j , Bk is
empty, and each pair ye2k�3

;ye2k�2
isolated, it follows from Lemma 4.19 that each

region B1;B
0
1
;B2; : : : ;Bj�1;B

0
j�1

is empty in .Pj�1/. Consider then †j and Pj .

We first show that Pj is consistent. There is an obvious inclusion of R.Pj / in
R.Pj�1/, so we must show that if B 2R.Pj�1/ does not survive the deletion process
(ie if B has an �–point in Bj or contains one of ye2j�1

;ye2j
), then the same is true for

any completing region B0 . Figure 44 indicates the setup. Observe that B cannot contain
Bj ; this is of course obvious for j D 1, while for j > 1 follows easily, as each such
region either has an �–point in B0

j�1
or contains one of the points fyek

j k � 2j � 2g.
Suppose then that B is a region with �–point v in Bj (see Figure 44(a)). Then, as
B0

j�1
is empty (for j > 1), and the pair ye2j�3

;ye2j�2
isolated, B has a ı–point in

Bj . But then any completing region B0 either contains one of the points fye2j�1
;ye2j

g,
or has an �–point in Bj . In either case B0 does not survive. If, on the other hand,
B has no �–point in Bj , then B must contain one of the points fye2j�1

;ye2j
g (see

Figure 44(b)), and again have a ı–point in Bj , so any completing B0 again does not
survive.
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It is left then to show that no region of R.P�/ is removed through the deletion
process. For the initial deletion, this follows by construction, as B1 is of course
empty and has isolated ı–points in .P�/, while the general case follows easily from
Lemma 4.18. Indeed, in the pair .†j�1;Pj�1/ the region B0

j�1
is empty and the points

fye2j�3
;ye2j�2

g are isolated, so by Lemma 4.18 the same holds for .B0
j�1

/c DBj .


2 
1 
2 
1

vjC1 ye2j�2
vj
��1
˛ ı'.
1/

B0j
ye2j�1

B0j�1

wjC1 Bj
wj ye2j�3

��1
˛ ı'.
2/

B
v

vj

ye2j

vjC1

��1
˛ ı'.
1/

B0j

wjC1

��1
˛ ı'.
2/

(a)


2 
1 
2 
1

vjC1 ye2j�2
vj
��1
˛ ı'.
1/

B0j
ye2j�1

B0j�1

wjC1 B wj ye2j�3

��1
˛ ı'.
2/

v Bj

vj

ye2j

vjC1

��1
˛ ı'.
1/

B0j

wjC1

��1
˛ ı'.
2/

(b)

Figure 44: The setup for the argument of Lemma 4.20. As usual, the figure
illustrates the situation in the universal cover of the surface; lifts of a common
object are labeled identically.

We are now able to complete Theorem 1.2.

Proof of Theorem 1.2 Let ˛ 2 pe.'/. By Corollary 4.13, ˛ is balanced, so let P be a
consistent right position for .†; ��1

˛ ı'; f
1; 
2g/, and let P��P be as in Lemma 4.12.
But by Lemma 4.20, each region B 2R.P�/ is empty in P� , with isolated ı–points,
and so by Lemma 4.17 each B is nested. Thus, using Observation 4.15, ˛ is nested.

5 Non-positive open books of Stein-fillable contact 3–folds

In this section we prove Theorem 1.3 by constructing explicit examples of open book
decompositions which support Stein-fillable contact structures yet whose monodromies
have no positive factorizations. We first introduce a construction, based on a mod-
ification of the lantern relation, which allows us to introduce essential left-twisting
into a stabilization-equivalence class of open book decompositions. As, by Giroux,
elements of such an equivalence class support a common contact manifold, proving the
essentiality of this left-twisting (accomplished here using the methods of the previous
sections) is sufficient to produce examples of non-positive open books which support
Stein-fillable contact structures.
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5.1 Immersed lanterns

For our construction, we recall the definition of a stabilization of an open book decom-
position.

Definition 5.1 Given an open book decomposition .†; '/, let � be a properly embed-
ded arc in †. Then if †0 denotes the result of adding a 1–handle to † with attaching
sphere @.�/, and s the (unique up to isotopy) simple closed curve in †0 obtained by
extending � over the core of this handle, then the open book decomposition .†0; �s ı'/

is a stabilization of .†; '/. The inverse operation is referred to as destabilization.

We start out then with a surface †0;4 of genus zero with 4 boundary components, and a
mapping class with factorization ��1

��2
, where �1 and �2 intersect exactly twice, with

opposite sign (so †0;4 is just a regular neighborhood of the pair, see Figure 45 (a)). It is
easy to see that this defines an open book decomposition of S1�S2 with the standard
(and unique) Stein-fillable contact structure. We use the well-known lantern relation
to give a mapping class equivalence between the words indicated in Figure 45(a) and
(b), thus introducing a left twist about the curve ˛ into the positive monodromy. To
make room for what is to come, we must enlarge the surface by adding a 1–handle
(see Figure 45(c)) to the surface, so that the associated open book decomposition is
now of #2.S1 �S2/, with its (also unique) Stein-fillable contact structure. We then
stabilize, use this stabilization curve to “braid” two of the lantern curves into a new
configuration in which the lantern relation does not apply, and then destabilize to a
book in which, as the lantern is unavailable, the left twist about ˛ can no longer be
canceled. The steps are indicated clearly in the remainder of Figure 45. As none of the
steps (c) through (f) affect the supported contact structure, we have obtained an open
book decomposition, supporting a Stein-fillable contact structure, which has no obvious
positive factorization. We refer to this construction as an immersed lantern relation.
To motivate this terminology, observe that the surface and curves of Figure 45 (f) are
obtained from those of Figure 45(b) by a self plumbing of the surface. Figure 46
summarizes the construction.

The remainder of this section uses the results of Section 4 to show:

Theorem 5.2 Let 'e1;e2
D �ı1

�ı2
�

e1

ˇ1
�

e2

ˇ2
��1
˛ , where all curves, and the surface † in

which they exist, are as in Figure 45 (f). Then for each pair of positive integers e1 and
e2 , the open book decomposition .†; 'e1;e2

/ supports a Stein-fillable contact structure,
yet 'e1;e2

admits no factorization into positive Dehn twists.

As a simple example, for the case e2D 1 it is simple to verify (eg by tracing backwards
through Figure 45) that we obtain an open book decomposition of .S1�S2/ # L.e1�

1; e1� 2/ for each e1 � 2 (see Figure 47).

Geometry & Topology, Volume 19 (2015)



Factorizations of diffeomorphisms of compact surfaces with boundary 2455

�2 �1

��1��2

(a)

ı01 ı02

˛

ˇ1 ˇ2

�ı0
1
�ı0

2
�ˇ1
�ˇ2
��1
˛

(c)

ı1 ı2

s

˛

ˇ1 ˇ2

�s�ı1�ı2�ˇ1
�ˇ2
��1
˛

(e)

lantern relation

add 1–handle

stabilize

re-factor via
conjugation

ı1 D �s0.ı
0
1/

ı2 D �s0.ı
0
2/

s D �ı2�ı1.s
0/

destabilize

ı0
1

ı0
2

˛

ˇ1 ˇ2

�ı0
1
�ı0

2
�ˇ1
�ˇ2
��1
˛

(b)

ı0
1

ı0
2s0

˛
ˇ1 ˇ2

�s0�ı0
1
�ı0

2
�ˇ1
�ˇ2
��1
˛

(d)

ı1 ı2

˛

ˇ1 ˇ2

.†2;1; �ı1�ı2�ˇ1
�ˇ2
��1
˛ /

(f)

Figure 45: .#2.S1 �S2/; �st / is supported by .†2;1; �ı1�ı2�ˇ1
�ˇ2
��1
˛ /

5.2 The positive extension of 'e1;e2

Recall from Definition 4.1 that the positive extension, pe.'/, of a positive mapping
class ' is simply the set of all simple closed curves ˛ such that �˛ appears in a positive
factorization of ' . Our method of demonstrating essentiality of the left twisting
introduced by the immersed lantern is as follows. Let ' D 'e1;e2

be as in Theorem 5.2,
for arbitrary positive integers e1 and e2 , and define '0 WD �˛ ı' D �ı1

�ı2
�

e1

ˇ1
�

e2

ˇ2
. Note

that ˛ has no intersection with any of the other curves, so �˛ commutes with each
twist. Suppose that ' has positive factorization �˛n

� � � �˛1
. Then we may factorize

'0D �˛�˛n
� � � �˛1

. Our goal is then to derive a contradiction by showing that ˛ 62pe.'0/.
The argument, to which the remainder of this subsection is devoted, comprises two
steps. Firstly, we show that ˛ has trivial intersection with each curve in pe.'0/, and
secondly use this to conclude that ˛ 62 pe.'0/.
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ı0
1

ı0
2

˛

ˇ1 ˇ2

˛ 2 pe.�ı0
1
�ı0

2
�ˇ1
�ˇ2
/

ı1 ı2

˛

ˇ1 ˇ2

˛ 62 pe.�ı1�ı2�ˇ1
�ˇ2
/

Figure 46: Immersing a lantern. To the left, curves of the lantern relation.
In particular, a positive twist about each boundary parallel curve is sufficient
to cancel a negative twist about the curve ˛ . To the right, the curves in
an “immersed” configuration for which the cancellation no longer holds.
Topologically, one obtains the immersed configuration by a self-plumbing
of the surface, ie an identification of the shaded rectangles via a 90ı twist
as in the figure. As open book decompositions, one gets from one picture to
the other by the steps of Figure 45. The effect on the contact manifold is a
connect sum with S1�S2 , with the standard (Stein-fillable) contact structure.

ˇ1 �2 �1

.†0;4; ��1��2�
e1�1

ˇ1
/

ˇ1

.†1;1; �
e1�1

ˇ1
/

Figure 47: One may easily verify that the open book to the left may be
destabilized twice to give the one to the right, which obviously supports
..S1 �S2/ # L.e4� 1; e4� 2/; �st / .

For the first step, we wish to apply the results of Section 4 to the pair 
1; 
2 shown in
Figure 48 to conclude that each curve in pe.'0/ may be isotoped so as not to intersect
˛ . Note that '.
i/ is isotopic to �ı1

�ı2
.
i/ for each i ; in particular, this data does not

depend on e1 and e2 . Now, † n f
1; 
2g is a pair of pants bounded by ˇ1; ˇ2 , and ˛ ,
and so these three curves are the only elements of SCC.†/ which have no intersection
with f
1; 
2g. The pair '.
1/,'.
2/ is flat (Definition 4.5), and so by Theorem 1.2,
each curve � 2 pe.'0/ n fˇ1; ˇ2; ˛g is nested.

So as to simplify our view of the situation, we begin by cutting † along N
i ; i D 1; 2

(see Figure 48). The resulting surface is a pair of pants †0 with boundary components
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@i ; i D 1; 2; 3, labeled such that ˛ is parallel to @1 . As � is balanced, we have
#j�\ N
1j D #j�\ N
2j.

Examples are given in Figure 49.

ı1 ı2

˛
N
1


1 D 
2

ˇ1
N
2 ˇ2

N
1

@3

˛
@2

N
2 @1

'.
1/ '.
2/

N
1

@3

@2

N
2 @1

Figure 48: To the left, various curves and arcs in the surface † . To the right,
the result †0 of cutting † along the N
i .

˛
�

�� D .1; 2/ (a)

@2

@3

@1

� ˛

�� D .1; N2; N4/ (b)

Figure 49: (a) A nested curve � in † , and the result of cutting † as described
above. (b) A curve � which is neither nested nor balanced.

We summarize various observations concerning arcs �\†0 , for � 2 SCC.†/, in the
following lemma and corollary.
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Lemma 5.3 Let †;†0; ˛ and D be as above. Then if � is a nested curve on D ,

(1) No component of �\†0 has both endpoints in @2 or both endpoints in @3 .

(2) Any component of �\†0 with both endpoints in @1 is boundary-parallel.

Proof For (1), suppose there is some component 
 of �\†0 with each endpoint on
@2 . Now if 
 is boundary-parallel, then it corresponds to either a bigon bounded by
� and one of the N
i , contradicting intersection minimality, or a downward arc �\D ,
contradicting Lemma 4.6. The same argument shows that there is no boundary parallel
arc with both endpoints on @3 . If however 
 is not boundary parallel, it separates
†0 into two annulus components, one of which contains a proper subset of �\ @2 on
one boundary component, while the other boundary component is the original @3 . As
nestedness implies that #j�\ @2j D #j�\ @3j, this second annulus must then contain
some boundary parallel arc connecting points of @3 , a contradiction.

For (2), any arc with each endpoint on @1 which is not boundary-parallel would
separate †0 into two annuli so that one annulus had the points �\ @2 on one boundary
component, and some subset of the points �\ @1 on the other, while the other annulus
had the points � \ @3 on one boundary component, again some subset of the points
�\ @1 on the other. But, letting mD #j�\ @2j D #j�\ @3j D

1
2
.#j�\ @1j/, there are

a total of 2m� 2 remaining points of �\ @1 . This would then necessitate some arc
parallel to @2 or @3 , contradicting (1).

Corollary 5.4 Given †; ı1 , and ı2 as above (see Figure 48), let  2 DehnC.†/ be
such that  .
i/ is isotopic to �ı1

�ı2
.
i/, for i D 1; 2. Then for each � 2 pe. / which

is not isotopic to any ıi or 
i , any horizontal component of � \D is contained in a
component of �\†0 which intersects neither  .
i/ and has endpoints on @2 and @3 .
Similarly, any vertical component of � \D is contained in a component of � \†0

which intersects neither 
i and has endpoints on @2 and @3 .

Proof Let � be a connected component of �\†0 which contains a horizontal segment
of �\D . Now, such a � is not parallel to @1 , so Lemma 5.3 tells us that the endpoints
of � are on distinct boundary components. Assume then that � has an endpoint on
@2 (the case of an endpoint on @3 is identical). We consider firstly the case that the
remaining endpoint is on @3 . As ı1 and ı2 are isotopic to @2 and @3 respectively, �
is isotopic to � t1

ı1
�

t2

ı2
.
 /, for some integers t1 and t2 , and properly embedded arc 


parallel to 
2 . Now, if either ti were negative, we would have a downward arc of �\D

(see Figure 50(a)). On the other hand, if either ti were greater than 1, we would have
(for i D 2) ��.
2/ >  .
2/ (from c0

2
), see Figure 50(b). We thus have ti 2 f0; 1g for
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each i . It is immediate to check that the case t1D t2D 1 is the unique case containing
a horizontal arc, and further that it intersects neither '.
i/, as desired.

Suppose then that the remaining endpoint is on @1 , so that � is isotopic to � t1

ı1
�

t3
˛ .


0/,
where 
 0 is an arc from @1 to @3 satisfying 
 0 \ 
1 D ∅ and #j
 0 \ 
2j D 1 (see
Figure 50(c)). Then, for horizontality, we must have t1 > 0, in which case again
��.
2/ >  .
2/ (from c0

2
), giving a contradiction.

The vertical case is of course trivial, as a vertical arc of �\D is by definition itself an
arc of �\†0 which intersects neither 
i and has endpoints on @2 and @3 .

N
1

ı2

ı1 �
˛

N
2 @1

(a)

N
1

 .
2/
�

c02

N
2

(b)

N
1

 .
2/


 0

N
2

(c)

Figure 50: Arcs of �\†0

Throughout the rest of this section, we will be interested in positive factorizations of
a given monodromy only up to conjugation. As such, we write ! b

� !0 to indicate
that !;!0 2 FacC. / are related through conjugation, and Œ!�b for the associated
equivalence class. Our main lemma is the following.

Lemma 5.5 Let  be as in the previous corollary, and ! a positive factorization of
 . Then there is !0 b

� ! such that no curve in !0 has any diagonal arc on D .

Proof Observe firstly that, through conjugation, we may assume any given factoriza-
tion of  is �e

˛!h!d!v , for some e � 0, where the restriction to D of each curve
involved in !h is a collection of horizontal arcs, those in !v are vertical, and each
element of !d has some diagonal arc. We will further assume our given factorization is
chosen from its conjugation-equivalence class such that the length of !d is minimized,
and non-zero, and derive a contradiction. Let !d D ��n

��n�1
� � � ��1

.

Throughout the remainder of the proof, we will refer to a curve � 2 SCC.†/ as vertical
(horizontal) if its restriction to D contains a vertical (horizontal) arc. We begin with
the case that no �i is horizontal. Recalling the ordering on arcs with common endpoint
described at the beginning of this paper in Example 2.1, observe that we may order
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SCC.†/ by considering the images of a given arc under twists about the curves. For
our purposes, for �; �0 2 SCC.†/, we set � � �0() ��.
1/� ��0.
1/ from c1 .

We let S denote the set of elements of Œ!d �b which maximize the index m WDmaxfi j
�i � �j8j � ig, and then S 0 � S those elements of S for which the intersection
number j�m\ 
1j is minimized. Note that, as each curve is nested, any curve whose
intersection with D contains a diagonal arc intersects each of 
1 and 
2 ; in particular
j�m\ 
1j> 0. We may then assume !d 2 S 0 .

Now, let x denote the initial point of ��m
.
1/\ N
1 from c1 . As �m is not horizontal,

Œc1;x���m .
1/ is contained in D . As  .
1/ is flat, there is some k >m such that x is a
vertex of a downward triangular region of the triple .�k ; ��m

.
1/; N
1/ (see Figure 51(a)).
After conjugation, we may assume k DmC 1. Now, using Lemma 4.6, the segment
of �k \D which extends from this triangular region cannot be downward on c2 , thus
is vertical. We then have a bigon of D�k

.��m
.
1// and N
2 ; as ��k

��m
.
1/ cannot

be further to the right from c1 than  .
1/, we must have a canceling bigon (see
Figure 51(b)), and point x0 2 ��m

.
1/\ N
2 corresponding to a vertex of this bigon (see
Figure 51(c)).

N
1 c2
x

��m.
1/

D

1 �k

c1 N
2

(a)


1

��k ��m.
1/

c1

(b)

x
��m.
1/


1 �k

c1 x0

(c)

Figure 51

Let A denote a closed support neighborhood of the twist diffeomorphism D�m
. We

label the points 
1\ @A as z0; z1; z2; : : : increasing along 
1 from c1 , so for instance
for even i , Œzi ; ziC1�
1

is contained in A (see Figure 52(a)). Each zi is thus in
D�m

.
1/\ 
1 ; as D�m
.
1/ and 
1 bound no bigons, we may assume ��m

.
1/ passes
through each zi , so for even i , Œzi ; ziC1���m .
1/ is isotopic to ��m

.Œzi ; ziC1�
1
/. Let r

denote maxfi j zi 2 Œx;x
0���m .
1/g, so �k \D has r C 1 connected components (see

Figure 52(b)).

We note firstly that r � 1. Indeed, supposing otherwise, letting y denote the unique
point �m\ Œz0; z1�
1

we see that y is not upward in .�k ; 
1; �m/ (see Figure 53(a)), and
so ��k

.�m/>�m>�k (see Figure 53(b)). We may then conjugate ��k
��m
 ���k

.�m/��k
,

obtaining a new element of Œ!d �b which contradicts our maximality assumption on the
index m.
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N
1 N
2
z1 z1

x0

�m
A

x
z0 z0

1 (a)

N
1 N
2z1 z1

x0

��m.
1/ x
z0 �k

zr z0

1 (b)

Figure 52: The neighborhood A of �m , and the various arcs it intersects.
Dark vertical lines are segments of 
1 .

N
1 N
2
z1 z1

�m
y y

�kz0 z0

1

(a)

N
1 N
2
z1 z1

��k .�m/

z0 z0

1

(b)
Figure 53

In general then, we see that �m intersects each component of A\
1 (see Figure 54(a)),
while ��1

�m
.�k/ intersects each such component at most once, and does not intersect

the component Œzr ; zrC1�
1
(see Figure 54(b)). As all intersections �k \ 
1 were by

construction contained in A, we conclude that #j��1
�m
.�k/\
1j<#j�m\
1j<#j�k\
1j.

But then through conjugation ��k
��m
 ��m

���1
�m .�k/

, we have ��1
�m
.�k/ > �m , so that

our new word is in S , and thus a contradiction of our minimality assumption on
intersection with 
1 .

N
1 N
2z1 z1

z0 zr z0

1

�k

(a)

��1
�m

N
1 N
2z1 z1

��1
�m
.�k/

z0 zr z0

1

(b)
Figure 54

The remaining case, that some �i is horizontal, follows from a similar argument.
In particular, we now order our curves with respect to 
2 and its endpoint c0

2
, so

� � �0() ��.
2/� ��0.
2/ from c0
2

, and again assume !d is chosen from Œ!d �b such
that the index m WD maxfi j �i � �j8j � ig is maximized. Now x will refer to the
initial point of ��m

.
2/\ N
1 , and there is some k > m such that x is a vertex of a
downward triangular region of the triple .�k ; �m; N
2/. As �k \D contains no vertical
component (else ��k

�m is downward), the component extending from this triangle is
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upward on c0
1

(see Figure 55(a)). Note that as Corollary 5.4 ensures that any horizontal
curve is strictly greater than any non-horizontal curve, �m is horizontal, and the point
of �m\
2 closest to c0

2
is contained in an arc component � of �m\†

0 which connects
@2 and @3 , intersecting neither of the  .
i/.

x

�k

��m.
2/ �

c0
2(a)

c01

��k ��m.
2/

c0
2(b)

x

x0

c0
2(c)

Figure 55: The neighborhood A of �m , and the various arcs it intersects.
Dark vertical lines are now segments of 
2 .

In particular, the segment Œc0
2
;x���m .
2/ is isotopic to Œc0

2
;x� .
2/ up to its 2nd in-

tersection with 
1 . Thus it again follows that we have a canceling pair of bigons
in D�k

.��m
.
2//, else ��k

��m
.
2/ is further to the right from c0

2
than  .
2/ (see

Figure 55(b)). We now let x0 2 ��m
.
2/\ 
1 be the point corresponding to a vertex of

this bigon (see Figure 55(c)).

We again consider the support neighborhood A of ��m
and label the points in 
2\ @A

by z0; z1; z2; : : : , increasing along 
2 from c0
2

(see Figure 56(a)). Exactly as in the
vertical case, our maximality condition on m implies that z1 2 Œx;x

0���m .
2/ , but then
#j��1

�m
.�k/\
2j< #j�k\
2j (see Figure 56(b)), contradicting our minimality condition.

N
1 
1z1 z1

x0

x
z0 zr z0

��m.
2/ �k (a)

N
1 
1z1 z1

��1
�m
.�k/

z0 zr z0

2

(b)
Figure 56

We bring all of this together with:

Proof of Theorem 5.2 Suppose that 'e1;e2
is positive, so ��1

˛ �ı1
�ı2
�

e1

ˇ1
�

e2

ˇ2
has

some positive factorization �˛n
� � � �˛1

. Then letting '0 D �˛ ı 'e1;e2
, we have '0 D

�ı1
�ı2
�

e1

ˇ1
�

e2

ˇ2
D �˛�˛n

� � � �˛1
; ie ˛ 2 pe.'0/. At the same time, Lemma 5.5 ensures that

Œ�˛�˛n
� � � �˛1

�b contains an element ��n
� � � ��1

with the property that for all i , �i is
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either disjoint from, or isotopic to, ˛ . As this property is preserved under conjugation,
it holds for �˛�˛n

� � � �˛1
as well. It follows that if 
 is a properly embedded arc

which intersects ˛ exactly once, then there are points x;x0 2 '0.
 / \ 
 such that
Œx;x0�'0.
 /[ Œx;x

0�
 is a simple closed curve isotopic to ˛ . The choice of 
 shown in
Figure 57 then gives a contradiction. We have drawn the image for the case e1D e2D1;
the general case follows immediately.

˛



'0.
 /

Figure 57: The arc 
 , and its image '0.
 / .
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