
msp
Geometry & Topology 19 (2015) 2767–2799

Finite part of operator K–theory for groups
finitely embeddable into Hilbert space and

the degree of nonrigidity of manifolds

SHMUEL WEINBERGER

GUOLIANG YU

In this paper, we study lower bounds on the K–theory of the maximal C �–algebra
of a discrete group based on the amount of torsion it contains. We call this the
finite part of the operator K–theory and give a lower bound that is valid for a
large class of groups, called the finitely embeddable groups. The class of finitely
embeddable groups includes all residually finite groups, amenable groups, Gromov’s
monster groups, virtually torsion-free groups (eg Out.Fn/), and any group of analytic
diffeomorphisms of an analytic connected manifold fixing a given point. We apply
this result to measure the degree of nonrigidity for any compact oriented manifold
M with dimension 4k � 1 .k > 1/ . In this case, we derive a lower bound on
the rank of the structure group S.M / , which is roughly defined to be the abelian
group of all pairs .M 0; f / , where M 0 is a compact manifold and f W M 0!M is
a homotopy equivalence. In many interesting cases, we obtain a lower bound on
the reduced structure group zS.M / , which measures the size of the collections of
compact manifolds homotopic equivalent to but not homeomorphic to M by any
homeomorphism at all (not necessary homeomorphism in the homotopy equivalence
class). For a compact Riemannian manifold M with dimension greater than or
equal to 5 and positive scalar curvature metric, there is an abelian group P .M / that
measures the size of the space of all positive scalar curvature metrics on M . We
obtain a lower bound on the rank of the abelian group P .M / when the compact
smooth spin manifold M has dimension 2k � 1 .k > 2/ and the fundamental group
of M is finitely embeddable.

19K99; 20F99, 58D29

1 Introduction

The purpose of this paper is to find simple lower bounds for operator K–theory of
discrete groups of the conceptual simplicity of the dimension of a vector space and use
the lower bounds to study the degree of nonrigidity for compact manifolds and the size
of the space of positive scalar curvature metrics for compact manifolds. Our measure
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2768 Shmuel Weinberger and Guoliang Yu

of simplicity will be that “extending the ring” should not lose information. In other
words, we wish to have lower bounds for operator K–theory of discrete groups, that
survive any inclusion into larger groups.

The classical Novikov conjecture uses group homology to give lower bounds on K–
theory, but the existence of acyclic groups kills lower bounds that survive inclusion
into large groups (by Baumslag, Dyer and Miller [6], any finitely presented group can
be embedded into an acyclic group). The Baum–Connes conjecture and Farrell–Jones
conjecture give conjectural pictures of how K–theory and L–theory of groups should
be built out of group homology and K–theory and L–theory of finite groups. The
algebraic K–theory of finite groups is typically very complicated, but it seems that
very little survives inclusions; for example, the Whitehead group of symmetric groups
is trivial (see Oliver [18]).

However, the classical trace map on the group algebra can be used to detect K0 elements
of the group algebra coming from finite subgroups: for each finite-order element g in
the group, the map summing up all coefficients of group elements in the conjugacy
class of the element g is a trace on the group algebra; see Stallings [28]. This shows
that the number of conjugacy classes of the finite-order elements in the group is a lower
bound for K0 of the real group algebra. Our requirement that the K0 elements survive
inclusion into larger groups means that the best we can reasonably hope for would
be to have a copy of Z for every finite order that occurs among the elements of the
group; since any two elements of the same order in a group are conjugate in an HNN
extension containing that group.

Part of our interest in these type of questions comes from a basic problem in geometry
and topology. Suppose one wants to know, for instance, whether or not two manifolds
are homeomorphic, then surgery theory tells us to divide this problem in two parts:
first decide if they are homotopy equivalent, and then decide if a given homotopy
equivalence is homotopic to a homemorphism. The problem with this is that the
answer to the second question depends on which homotopy equivalence is chosen. If
one has an invariant that survives inclusion into larger groups, then by including the
fundamental group � into � Ì Aut.�/, one can remove dependence on identification
of fundamental group, and one has a chance of getting invariants that distinguish
manifolds (or concordance classes of metrics with positive scalar curvature) that cannot
be deduced from surgery theory. The theory we develop here suffices to provide such
invariants for many interesting class of groups including all linear groups, mapping
class groups and outer automorphism groups of free groups.

It is worth noting that the theory of L2 eta invariants developed by Cheeger and
Gromov [10] gives some nontrivial information about these kinds of problems; see
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Chang and Weinberger [9] and Piazza and Schick [19]. However, this theory can only
tell the difference between the presence and absence of torsion in the fundamental
group, and does not exploit the existence of elements of different orders. If the torsion is
central, then one can modify that construction to handle it along the lines we described
above without much difficulty, but in general, we have not had much success in pursuing
this direction. We shall approach these invariants from the point of view of K–theory
of C �–algebras. In that setting we succeed in somewhat more generality. We introduce
a general class of groups for which we can obtain a lower bound for operator K–theory.
This class of groups include all residually finite groups, amenable groups, hyperbolic
groups, Burnside groups, Gromov’s monster groups, virtually torsion-free groups
(eg Out.Fn/), and any group of analytic diffeomorphisms of an analytic connected
manifold fixing a given point. As explained, these results also have applications to
sizes of structure group and the size of concordance classes of metrics of positive scalar
curvature.

Now we describe our results in more detail.

Let G be a countable group. An element g 2 G is said to have order d if d is the
smallest positive integer such that gd D e , where e is the identity element of G . If no
such positive integer exists, we say that the order of g is 1.

If g 2G is an element in G with finite order d , then we can define an idempotent in
the group algebra QG by

pg D
1

d

� dX
kD1

gk

�
:

For the rest of this paper, we denote the maximal group C �–algebra of G by C �.G/.
We define Kfin

0
.C �.G//, the finite part of K0.C

�.G//, to be the abelian subgroup of
K0.C

�.G// generated by Œpg� for all elements g ¤ e in G with finite order.

We remark that rationally all representations of finite groups are induced from finite
cyclic groups; see Serre [26]. This explains that the finite part of K–theory, rationally,
contains all K–theory elements which can be constructed using finite subgroups, despite
being constructed using only cyclic subgroups.

Conjecture 1.1 Let fg1; : : : ;gng be a collection of elements in G with distinct finite
orders such that gi ¤ e for all 1� i � n.

(1) fŒpg1
�; : : : ; Œpgn

�g generates an abelian subgroup of Kfin
0
.C �.G// of rank n.

(2) Any nonzero element in the abelian subgroup of Kfin
0
.C �.G// generated by

fŒpg1
�; : : : ; Œpgn

�g is not in the image of the assembly map �W K0.BG/ '

KG
0
.EG/ ! K0.C

�.G//, where EG is the universal space for proper free
G –actions.
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In fact, we can state a stronger conjecture in terms of K–theory elements coming from
finite subgroups and the number of conjugacy classes of nontrivial finite-order elements.
Such a stronger conjecture follows from the strong Novikov conjecture but would not
survive inclusion into large groups.

The following concept is due to Gromov.

Definition 1.2 A countable discrete group G is said to be coarsely embeddable into
Hilbert space H if there exists a map f W G!H satisfying:

(1) For any finite subset F � G , there exists R > 0 such that if g�1h 2 F , then
d.f .g/; f .h//�R.

(2) For any S > 0, there exists a finite subset E �G such that if g�1h 2G �E ,
then d.f .g/; f .h//� S .

The class of groups coarsely embeddable into Hilbert space includes amenable groups
(Bekka, Cherix and Valette [7]), hyperbolic groups (Sela [25]), and linear groups
(Guentner, Higson and Weinberger [15]). However, Gromov’s monster groups are not
coarsely embeddable into Hilbert space (Gromov [13] and Arzhantseva and Delzant [1]).
The importance of the concept of coarse embeddability is due to the theorem that the
strong Novikov conjecture holds for groups coarsely embeddable into Hilbert space
(Yu [34] and Skandalis, Tu and Yu [27]). Kasparov and Yu [16] introduced a weaker
condition, coarse embeddability into Banach spaces with Property H, and proved the
strong Novikov conjecture for groups coarsely embeddable into Banach spaces with
Property H.

The following concept is more flexible than coarse embeddability into Hilbert space.

Definition 1.3 A countable discrete group G is said to be finitely embeddable into
Hilbert space H if for any finite subset F � G , there exists a group G0 coarsely
embeddable into H such that there is a map �W F !G0 satisfying:

(1) �.gh/D �.g/�.h/ if g; h 2 F and gh 2 F .

(2) If g is a finite-order element in F , then order.�.g//D order.g/.

We mention that the class of groups finitely embeddable into Hilbert space include
all residually finite groups, amenable groups, hyperbolic groups, Burnside groups,
Gromov’s monster groups, virtually torsion-free groups (eg Out.Fn/), and any group
of analytic diffeomorphisms of an analytic connected manifold fixing a given point.
Narutaka Ozawa, Denis Osin and Thomas Delzant have independently constructed
examples of groups which are not finitely embeddable into Hilbert space. We can
similarly define a concept of finite embeddability into Banach spaces with Property H.
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The general validity of Conjecture 1.1 is still open. The following result proves
Conjecture 1.1 for a large class of groups.

Theorem 1.4 Conjecture 1.1 holds for groups finitely embeddable into Hilbert space.

We define Nfin.G/ to be the cardinality of the set

fd > 0 j 9g 2G; g ¤ e; order.g/D dg:

If M is a compact oriented manifold, the structure group S.M / in the topological
category is the abelian group of equivalence classes of all pairs .f;M 0/ such that
M 0 is a compact oriented manifold and f W M 0 !M , is an orientation-preserving
homotopy equivalence; see Ranicki [20]. The rank of S.M / measures the degree of
nonrigidity for M .

The following result explains why it is interesting to study the finite part of K0.C
�.G//.

Theorem 1.5 Let M be a compact oriented manifold with dimension 4k�1 .k > 1/

and �1.M /DG . If Conjecture 1.1 holds for G , then the rank of the structure group
S.M / is greater than or equal to Nfin.G/.

The following result is a consequence of Theorems 1.4 and 1.5.

Corollary 1.6 Let M be a compact oriented manifold with dimension 4k�1 .k > 1/

and �1.M /DG . If G is finitely embeddable into Hilbert space, then the rank of the
structure group S.M / is greater than or equal to Nfin.G/.

We conjecture that elements of the structure group distinguished by the method of this
paper are actually different manifolds. We shall make this precise in the following few
paragraphs.

Let M be a compact oriented manifold. Let S0.M / be the abelian subgroup of S.M /

generated by elements Œ.f;M 0/�� Œ. ıf;M 0/�, where f W M 0!M is an orientation-
preserving homotopy equivalence and  W M !M , is an orientation-preserving self
homotopy equivalence. We define the reduced structure group zS.M / to be the quotient
group S.M /=S0.M / (it is the coinvariants of the action of orientation-preserving self
homotopy equivalence of M on S.M /).

The following conjecture gives a lower bound on the “size” of the set of different
manifolds in the structure group.
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Conjecture 1.7 If M is a compact oriented manifold with dimension 4k � 1 .k > 1/

and �1.M /DG , then the rank of the reduced structure group zS.M / is greater than or
equal to Nfin.G/.

In an interesting case, we can prove this conjecture.

Theorem 1.8 If G has a homomorphism � to a residually finite group such that
kernel.�/ is torsion free, then the above conjecture holds.

Let M be a compact smooth manifold with dimension greater than or equal to 5. If
M has a metric with positive scalar curvature, following Stolz alone [30] and with
Rosenberg [23], we will introduce an abelian group P .M / of concordance classes of
all positive scalar curvature metrics on M (see Section 4 for a more precise definition).
The following theorem gives an estimation on the “size” of the space of positive scalar
curvature metrics on M when the fundamental group is finitely embeddable into Hilbert
space.

Theorem 1.9 (1) Let M be a compact smooth spin manifold with dimension 2k�1

.k > 2/. If M has a metric with positive scalar curvature and �1.M /D G is
finitely embeddable into Hilbert space, then the rank of the abelian group P .M /

is greater than or equal to Nfin.G/;

(2) Let M be a compact smooth spin manifold with dimension 4k � 1 .k > 1/.
If M has a metric with positive scalar curvature and �1.M / D G is finitely
embeddable into Hilbert space, then the rank of the abelian group P .M / is
greater than or equal to Nfin.G/+1.

We remark that the main results in this paper remain to be true under the weaker
condition of finite embeddability into Banach spaces with Property H.

In general, we also have the following results on the “size” of the space of positive
scalar curvature metrics on M .

Theorem 1.10 (1) Let M be a compact smooth spin manifold with a positive scalar
curvature metric and dimension 2k � 1 (k > 2). If �1.M / is not torsion free,
then the rank of the abelian group P .M / is greater than or equal to one.

(2) Let M be a compact smooth spin manifold with a positive scalar curvature
metric and dimension 4k � 1 (k > 1). If �1.M / is not torsion free, then the
rank of the abelian group P .M / is greater than or equal to two.
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Part (1) of the above theorem is motivated by and is a slight refinement of a theorem of
Piazza–Schick stating that if M is a compact smooth spin manifold with a positive
scalar curvature metric and dimension 2k � 1 (k > 2), and �1.M / is not torsion free,
than the moduli space of positive scalar curvature metrics on M has infinitely many
connected components; see Piazza and Schick [19]. Gromov and Lawson [14] proved
that the space of positive scalar curvature metrics on a compact spin manifold M has
infinitely many connected components if the dimension of M is 4k (k > 1).

This paper is organized as follows. In Section 2, we study the finite part of K–theory for
group C �–algebras. In Section 3, we discuss its application to nonrigidity of compact
oriented manifolds. In Section 4, we discuss its application to positive scalar metrics.
In Section 5, we study groups finitely embeddable into Hilbert space.

The authors wish to thank Sherry Gong, John Roe, Jonathan Rosenberg, Melissa
Liu, Rufus Willett, Zhizhang Xie, and Romain Tessera for very helpful discussions.
The authors thank the referee for providing detailed comments which improve the
exposition of this article. We also thank Narutaka Ozawa, Denis Osin and Thomas
Delzant for informing us their very interesting constructions of groups that do not
finitely embed into Hilbert space. This paper was written during the second author’s
stay at the Shanghai Center for Mathematical Sciences (SCMS). The second author
wishes to thank SCMS for providing a wonderful environment. The authors are partially
supported by NSF.

2 Finite part of K–theory for group C �–algebras

In this section, we study the finite part of K–theory for group C �–algebras. In particular,
we introduce a concept of finite representability and prove that Conjecture 1.1 is closed
under finite representability.

Definition 2.1 Let F be a family of countable groups. We say that a countable group
G is finitely representable in F if for any finite subset F � G , there exists a group
G0 2 F such that there is a map �W F !G0 satisfying:

(1) �.gh/D �.g/�.h/ if g; h 2 F and gh 2 F .

(2) If g is a finite-order element in F , then order.�.g//D order.g/.

Theorem 2.2 Let F be a family of countable groups for which Conjecture 1.1 holds.
If G is finitely representable in F , then Conjecture 1.1 holds for G .
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Proof Let fFkg
1
kD1

be an increasing family of finite subsets of G such that:

(1)
S1

kD1 Fk DG .

(2) For each k , there exists a group G0
k

in F and a map fk W Fk !G0
k

satisfying
fk.gh/D fk.g/fk.h/ for all g; h 2 Fk such that gh 2 Fk .

(3) If g is a finite-order element in Fk , then order.fk.g//D order.g/.

Let �k be the linear map CFk!C �.G0
k
/ extending fk . The family of maps f�kg

1
kD1

induces a �–homomorphism

�W CG!

1Y
kD1

C �.G0k/
.� 1M

kD1

C �.G0k/

�
; �.a/D

� 1Y
kDna

�k.a/

�
for a 2CG , where na is a positive integer such that the support of a is contained in
Fk for all k � na .

By the definition of the maximal group C �–algebra, � can be extended to a �–
homomorphism (still denoted by � )

�W C �G!

1Y
kD1

C �.G0k/
.� 1M

kD1

C �.G0k/

�
:

We have the following six-term exact sequence:

K0

�
1L

kD1

C �.G0
k
/

�
K0

�
1Q

kD1

C �.G0
k
/

�
K0

�Q1
kD1 C �.G0

k
/L1

kD1 C �.G0
k
/

�

K1

�Q1
kD1 C �.G0

k
/L1

kD1 C �.G0
k
/

�
K1

�
1Q

kD1

C �.G0
k
/

�
K1

�
1L

kD1

C �.G0
k
/

�
i� ��

j�

@

Observe that j� is injective. By exactness, �� is surjective. If g is an element in G

with finite order d , there exists a positive integer Ng > 0 such that gm 2 FNg
for all

m. Let pk D �k.pg/ for all k �Ng . Define

p0g D

1Y
kDNg

pk :

Let fg1; : : : ;gng be a collection of elements in G with order.gl/ D dl such that
gl ¤ e for each l and order.gl1

/ < order.gl2
/ when 1� l1 < l2 � n. The rank of the

subgroup of K0.C
�.G// generated by fŒpg1

�; : : : ; Œpgn
�g is greater than or equal to

the rank of the abelian subgroup of K0.
Q1

kD1 C �.G0
k
/=.
L1

kD1 C �.G0
k
/// generated
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by fŒ�.pg1
/�; : : : ; Œ�.pgn

/�g. In the same time, the rank of the abelian subgroup
of K0.

Q1
kD1 C �.G0

k
/=.
L1

kD1 C �.G0
k
/// generated by fŒ�.pg1

/�; : : : ; Œ�.pgn
/�g is

the same as the rank of the abelian subgroup of K0.
Q1

kD1 C �.G0
k
// generated by

fŒp0g1
�; : : : ; Œp0gn

�g. This is because, if z is a nonzero element in the abelian subgroup
of K0.

Q1
kD1 C �.G0

k
// generated by fŒp0g1

�; : : : ; Œp0gn
�g, then z is not in the image of

i� . As a consequence, we have

��.z/¤ 0 in K0

� 1Y
kD1

C �.G0k/
.� 1M

kD1

C �.G0k/

��
:

By assumption, the rank of the abelian subgroup of K0.
Q1

kD1 C �.G0
k
// generated by

fŒp0g1
�; : : : ; Œp0gn

�g is n. Hence the rank of the abelian subgroup of

K0

� 1Y
kD1

C �.G0k/
.� 1M

kD1

C �.G0k/

��
generated by fŒ�.pg1

/�; : : : ; Œ�.pgn
/�g is n. It follows that the rank of the subgroup of

K0.C
�.G// generated by fŒpg1

�; : : : ; Œpgn
�g is also n.

Let x be a nonzero element in the abelian subgroup of Kfin
0
.C �.G// generated

by fŒpg1
�; : : : ; Œpgn

�g. Assume by contradiction that x is in the image of the map
�W KG

0
.EG/!K0.C

�.G//. Let N be a positive integer such that gk
i 2 FN for all

i and k . This implies that the element

1Y
kDN

��.x/ in
1Y

kD1

K0.C
�.G0k//

.� 1M
kD1

K0.C
�.G0k//

�
is in the image of the map Œ

Q1
kD1 ��:

1Y
kD1

K
G0

k

0
.EG0k/

.� 1M
kD1

K
G0

k

0
.EG0k/

�
!

1Y
kD1

K0.C
�.G0k//

.� 1M
kD1

K0.C
�.G0k//

�
:

This implies that ��.x/ is in the image of �W K
G0

k

0
.EG0

k
/!K0.C

�.G0
k
/ for some

large k �N . This contradicts the assumption that G0
k

satisfies Conjecture 1.1.

We remark that the above result is still open for reduced group C �–algebras.

Theorem 2.3 (1) If there exists an element g ¤ e in G with finite order, then
the rank of the abelian subgroup of K0.C

�.G// generated by Œpg� is one and
any nonzero element in the abelian subgroup is not in the image of the map
�W KG

0
.EG/!K0.C

�.G//.
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(2) If there exist two elements in G with finite orders such that the order of g1 is
not equal to the order of g2 , then the rank of abelian subgroup of K0.C

�.G//

generated by Œpg1
� and Œpg2

� is two.

Proof (1) Let trW CG!C be the canonical trace defined by

tr
�X

g2G

cgg

�
D ce:

It is easy to see that tr extends to a finite trace on both C �.G/ and C �r .G/. Let d be
the order of g . We have

tr.pg/D
1

d
:

This shows that the abelian subgroup generated by Œpg� in K0.C
�.G// or K0.C

�
r .G//

has rank one.

Let � be the trace on CG defined by

�

�X
g2G

cgg

�
D

X
g2G

cg:

� is a �–homomorphism from CG to C . By the definition of C �.G/, � extends to
a �–homomorphism from C �.G/ to C . It follows that � is a trace on C �.G/. Note
that � is the character of the trivial representation of G and �.pg/D 1.

Assume by contradiction that a nonzero element x in the abelian subgroup is in
the image of the map �W KG

0
.EG/!K0.C

�.G//. This means that there exists y 2

KG
0
.EG/ satisfying �.y/Dx . By Atiyah’s L2 index theorem in [2] and Theorem A.1

in the appendix of this paper, we have

tr.x/D �.x/D index.y/;

where index.y/ is the Fredholm index of K–homology class y . This is a contradiction
with the fact that tr.pg/� �.pg/¤ 0 and x is a nonzero multiple of Œpg�.

(2) We have

tr.pg1
/D

1

d1

; tr.pg2
/D

1

d2

; �.pg1
/D �.pg2

/D 1:

This proves that the abelian subgroup generated by Œpg1
� and Œpg2

� in K0.C
�.G//

has rank two.
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We remark that the first part of (1) in the above theorem holds for both maximal and
reduced group C �–algebras. It remains open to prove the reduced group C �–algebra
analogue of second part of (1) in the above theorem and the reduced group C �–algebra
analogue of part (2) in the above theorem. It is also an open question whether any
nonzero element in the abelian subgroup of K0.C

�
r .G// generated by Œpg1

� and Œpg2
�

is not in the image of the map �W KG
0
.EG/! K0.C

�
r .G// for any two nontrivial

finite-order elements g1 and g2 in G .

3 Applications to degree of nonrigidity of manifolds

In this section, we use the finite part of K–theory for maximal group C �–algebras to
estimate the degree of nonrigidity for compact manifolds. We also estimate the rank
of the finite part of K–theory for maximal group C �–algebras in terms of the size of
the set of finite-order elements when the groups are finitely embeddable into Hilbert
space. John Roe pointed out that it is possible to prove Lemma 3.2 of this section
using the Chern character constructions in [5] and [17]. Our proof of Lemma 3.2 is
self-contained and is based on a Lefschetz fixed-point-type argument.

Let G be a countable group. Let X be a locally compact space with a proper and free
cocompact action of G .

Let C0.X / be the algebra of all continuous functions on X vanishing at infinity. If
H is a X–module (ie H is a Hilbert space with an action of C0.X /), we define the
support of an operator T W H !H , support.T /, to be the complement of the subset
of X �X consisting of all points .x;y/ 2 X �X such that there exists f and g in
C0.X / such that f .x/¤ 0, g.y/¤ 0, and f Tg D 0. In this paper, all X–modules
are ample in the sense that no nonzero function of C0.X / acts the X–modules as a
compact operator.

We endow X with a G –invariant proper metric d (compatible with the topology of X ).
An operator on H is said to have finite propagation [21] if

propagation.T /D supfd.x;y/ j .x;y/ 2 support.T /g<1:

Recall that an operator T on H is called locally traceable if for any pair of compactly
supported functions f and g , f Tg is a trace class operator. For each p � 1, we can
similarly define the concept of locally Schatten-p class operators. Let .S1X /G be the
algebra of G–invariant and locally traceable operators on H with finite propagation.
We observe that .S1X /G is isomorphic to S1G , the group algebra over the ring S1 of
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all trace class operators. There is a canonical trace tr on S1G ,

tr
�X

g2G

sgg

�
D trace.se/:

We use the same notation tr to be the corresponding trace on .S1X /G .

Lemma 3.1 Let H be as above, let T 2 .S1X /G . If there exists ı > 0 such that

support.T /� f.x;y/ 2X �X j d.x;y/� ıg;

then tr.T /D 0.

Proof Let Z �X be a Borel fundamental domain of X , ie a domain such that:

(1)
S

g2G gZ DX .

(2) gZ \Z D∅ for any g ¤ e .

(3) Z is bounded.

Let �Z be the characteristic function of Z . We have

tr.T /D trace.�Z T�Z /:

Note that the support of �Z T�Z is contained in f.x;y/ 2X �X j d.x;y/� ıg.

We decompose
Z DZ1[ � � � [ZN

such that
diameter.Zi/ <

1
2
ı:

Let HZ D �Z H;Hi D �Zi
H . Let Ti;j be the restriction of �Zi

T�Zj
to Hj and let

TZ be the restriction of �Z T�Z to HZ .

We have a Hilbert space decomposition

HZ D

NM
iD1

Hi :

We have a corresponding matrix representation of TZ ,

TZ D .Ti;j /1�i;j�N :

By the support condition on TZ , we have Ti;i D 0 for all i . This implies that
trace.TZ /D 0.
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Let G be a countable group and let S be the ring of Schatten class operators. Let
SG be the group algebra over the ring S [33]. Let j W CG ! SG be the inclusion
homomorphism defined by

j .a/D p0a

for all a 2CG , where p0 is a rank-one projection in S . We define the finite part of
K0.SG/ to be the abelian subgroup of K0.SG/ generated by j�Œpg� for all finite-order
elements g ¤ e in G .

Lemma 3.2 Any nonzero element in the finite part of K0.SG/ is not in the image of
the assembly map

AW H Or G
0 .EG;K.S/�1/!K0.SG/;

where the assembly map A is defined as in [12].

Proof Let g be a finite-order element g ¤ e in G . Let trgW CG! C; be the trace
defined by

trg

�X



c



�
D

X

2C.g/

c
 ;

where C.g/ is the conjugacy class of g , ie

C.g/D f
 2G j 9 h 2G; h�1
hD gg:

For any integer m> 0, let Sm be the ring of Schatten-m class operators. Let nD 2k

be the smallest even number greater than or equal to m. Define an n–cyclic cocycle
�
.n/
g on SmG by

� .n/g .a0; a1; : : : ; an/D
X


2C.g/

tr.
�1a0a1 � � � an/

for all ai 2 SmG , where C.g/ is the conjugacy class of g and trW S1G! C , is the
trace defined by

tr
�X

2�

b



�
D trace.be/:

If S is the suspension operator in Connes’ theory of cyclic cohomology theory [11],
then

.Sk trg/.a0; : : : ; an/D trg.a0 � � � an/

for all ai 2CG .

We have
Sk trg D j �� .n/g
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as cyclic cocycles over CG . In particular, this implies that the pairing between trg and
any idempotent p in the matrix algebra of CG is the same as the pairing between � .n/g

and j .p/, ie
� .n/g .j .p/; : : : ; j .p//D trg.p/;

where the cyclic cocycle � .n/g is naturally extended to a cyclic cocycle over the matrix
algebra of CG .

If an element Œz� is in the image of the assembly

AW H Or G
0 .EG;K.S/�1/!K0.SG/;

then there exist m> 0 and a locally compact simplicial complex X with a proper and
cocompact action of G such that Œz� is in the image of the assembly map

AW H Or G
0 .X;K.Sm/

�1/!K0..SmX /G/ŠK0.SmG/;

where X is endowed with a G –invariant proper metric d (compatible with the topology
of X ) and .SmX /G is the algebra of G –invariant and locally Schatten-m operators on
H with finite propagation (.SmX /G is isomorphic to SmG ). By cocompactness of
the G–action on X , there exists ı > 0 such that d.
x;x/ � 10ı for all x 2 X and

 ¤ e in G . If H is a G –X–module, let .SmX /G be the algebra of G –invariant and
locally Schatten-m class operators on H with finite propagation. The class Œz� can be
represented by

Œq��
�

1 0
0 0

�
;

where q is an idempotent in the matrix algebra of ..SmX /G/C (..SmX /G/C is ob-
tained from .SmX /G by adjoining a unit). We naturally extend the cyclic cocycle � .n/g

to a cyclic cocycle over the matrix algebra of ..SmX /G/C (still denoted by � .n/g ) by
setting � .n/g .a0; : : : ; an/D 0 if ai is a scalar matrix for some i .

In [4], Bartels, Farrell, Jones and Reich give a different definition of the assembly
map and prove that their definition coincides with the assembly map defined in [12]
(Corollary 6.3 in [4]). By the definition of the assembly map in [4], we can write

q D q1C
�

1 0
0 0

�
such that q1 is an element in the matrix algebra over the algebra of G–invariant
and locally Schatten-m class operators on a G –X–module H with finite propagation
satisfying

propagation.q1/ < ı=.nC 1/:

We have
propagation.qnC1

1
/ < ı:
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This, together with Lemma 3.1, implies

tr.
�1qnC1
1

/D 0

for all 
 ¤ e in G . It follows that

� .n/g .q; : : : ; q/D 0:

Recall that the pairing between the cyclic cocycle � .n/g and K0..SmX /G/ gives a
homomorphism .�

.n/
g /�W K0.SmG/!C . This implies that

(�) .� .n/g /�.z/D 0

for any finite-order element g ¤ e in G and any element Œz� in the image of the
assembly map

AW H Or G
0 .X;K.Sm/

�1/!K0..SmX /G/:

If x is a nonzero element in the finite part of K0.SG/, then x is a nonzero element in
the finite part of K0.SmG/ if m is some large natural number. We can write

z D

lX
iD1

ci Œj .pgi
/�

for some ci 2 Z and finite-order elements gi ¤ e 2 G . We can assume that the
conjugacy class of gi1

is different from the conjugacy class of gi2
when i1 ¤ i2

(otherwise Œj .pgi1
/� D Œj .pgi2

/� in K0.SmG/). Without loss of generality, we can
assume that cl ¤ 0 and order.gi1

/ � order.gi2
/ when i1 � i2 . Since the conjugacy

class of gi1
is different from the conjugacy class of gi2

when i1 ¤ i2 , we have

trgi
.pgi

/¤ 0; trgi2
.pgi1

/D 0 when i1 < i2:

The above facts, together with the identity

� .n/gl
.j .pgi

/; : : : ; j .pgi
//D trgl

.pgi
/;

imply that
.� .n/gl

/�.x/¤ 0:

Combining this with the equation (�), we obtain Lemma 3.2.

Lemma 3.3 If fg1; : : : ;gng is a collection of finite-order elements in G with dis-
tinct conjugacy classes, then fj�Œpg1

�; : : : ; j�Œpgn
�g generates an abelian subgroup of

K0.SG/ with rank n, where j� is as in Lemma 3.2. In particular, if fg1; : : : ;gng

is a collection of nontrivial finite-order elements in G with distinct orders, then
fj�Œpg1

�; : : : ; j�Œpgn
�g generates an abelian subgroup of K0.SG/ with rank n.
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Proof Lemma 3.3 essentially follows from the argument in the last paragraph of the
proof of Lemma 3.2.

It suffices to prove that fj�Œpg1
�; : : : ; j�Œpgn

�g generates an abelian subgroup of
K0.SmG/ with rank n for any natural number m� 1.

Let g be an element in G with finite order. Let trg be defined as in the proof of
Lemma 3.2. By assumption, g1; : : : ;gn have distinct conjugacy classes. Without
loss of generality, we can assume that order.gi1

/ � order.gi2
/ when i1 � i2 . As a

consequence, we have

trgi
.pgi

/¤ 0; trgi2
.pgi1

/D 0 when i1 < i2:

As in the proof of Lemma 3.2, trgi
can be lifted to a cyclic cocycle � .n/gi

on SmG when
nD 2k �m. Hence for each m, there exist homomorphisms .� .n/gi

/�W K0.SmG/!C
such that

.� .n/gi
/�.Œpgi

�/¤ 0; .� .n/gi2
/�.Œpgi1

�/D 0 when i1 < i2:

Now Lemma 3.3 follows.

Proof of Theorem 1.4 By Theorem 2.2, it suffices to prove Conjecture 1.1 for groups
coarsely embeddable into Hilbert space.

Let EG be the universal space for proper G –action. We have the commutative diagram

H Or G
0

.EG;K.S/�1/ K0.SG/

KG
0
.EG/ K0.C

�.G//;

A

�

 � i�

where the right vertical map is induced by the inclusion map i and the left vertical
map is induced by a map at the spectra level.

The strong Novikov conjecture holds for groups coarsely embeddable into Hilbert
space, ie the bottom horizontal map � in the above diagram is injective [34; 27].
This, together with the fact that the left vertical map  � in the above diagram is
an isomorphism, implies that the right vertical map i� in the above diagram is an
isomorphism from the image of AW H Or G

0
.EG;K.S/�1/!K0.SG/, to the image of

�W KG
0
.EG/!K0.C

�.G//. We observe that the finite part of K0.SG/ is contained
in the image of the map AW H Or G

0
.EG;K.S/�1/ ! K0.SG/. The above facts,

together with Lemma 3.3, imply that the abelian subgroup of K0.C
�.G// generated

by fŒpg1
�; : : : ; Œpgn

�g has rank n, where fg1; : : : ;gng is a collection of finite-order
elements in G as in Conjecture 1.1.
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We also have the commutative diagram

H Or G
0

.EG;K.S/�1/ K0.SG/

KG
0
.EG/ K0.C

�.G//;

A

�

 � i�

where the left vertical map in the above diagram is compatible with the left vertical map
in the previous diagram via the natural homomorphism from H Or G

0
.EG;K.S/�1/ to

H Or G
0

.EG;K.S/�1/ and the natural homomorphism from KG
0
.EG/ to KG

0
.EG/.

Assume that by contradiction there is a nonzero element x in the abelian subgroup
of K0.C

�.G// generated by fŒpg1
�; : : : ; Œpgn

�g such that x D �.y/ for some y 2

KG
0
.EG/. The left vertical map  � in the above diagram is an isomorphism. This

implies y D  �.y
0/ for some y0 2H Or G

0
.EG;K.S/�1/. There exists an element x0

in the finite part of K0.SG/ such that i�.x
0/D x . We have

i�.A.y
0/�x0/D 0:

We recall that the finite part of K0.SG/ is contained in the image of the map

AW H Or G
0 .EG;K.S/�1/!K0.SG/:

As a consequence, we know that A.y0/�x0 is in the image of the map

AW H Or G
0 .EG;K.S/�1/!K0.SG/:

It follows from the isomorphism statement before the above diagram that A.y0/�x0D0.
Hence A.y0/D x0 . Observe that x0 is a nonzero element in the finite part of K0.SG/.
This is a contradiction with Lemma 3.2.

We remark that the argument in the above proof shows that the strong Novikov conjec-
ture implies Conjecture 1.1.

Theorem 3.4 Let M be a compact oriented manifold with dimension 4k�1 (k > 1).
Suppose �1.M /DG and g1; : : : ;gn be finite-order elements in G such that gi ¤ e

for all i and fŒpg1
�; : : : ; Œpgn

�g generates an abelian subgroup of K0.C
�.G// with rank

n. Suppose that any nonzero element in the abelian subgroup of K0.C
�.G// generated

by fŒpg1
�; : : : ; Œpgn

�g is not in the image of the map �W KG
0
.EG/!K0.C

�.G//, then
the rank of the structure group S.M / is greater or equal to n.

Proof We recall the surgery exact sequence

� � � !H4k.M;L/!L4k.ZG/! S.M /!H4k�1.M;L/! � � � :
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For each finite subgroup H of G , we have the commutative diagram

H H
4k
.EH;L/ L4k.ZH /

H G
4k
.EG;L/ L4k.ZG/,

A

A

where the vertical maps are induced by the inclusion homomorphism from H to G .
For each element g in H with finite order, pg gives an element in L0.QH /. Let Œqg�

be the corresponding element in L4k.QH / given by periodicity. Recall that

L4k.ZH /˝Q'L4k.QH /˝Q:

For each element g in H with finite order, we use the same notation Œqg� to denote
the element in L4k.ZH /˝Q corresponding to Œqg� 2 L4k.QH / under the above
isomorphism.

We have the commutative diagram

H G
4k
.EG;L/˝Q L4k.ZG/˝Q

KG
0
.EG/˝Q K0.C

�.G//˝Q,

A

�

where the left vertical map is induced by a map at the spectra level and the right vertical
map is induced by the inclusion map

L4k.ZG/!L4k.C
�.G//ŠK0.C

�.G//

(see [22] for the last identification).

The above commutative diagram, together with the assumption that any nonzero element
in the abelian subgroup of K0.C

�.G// generated by fŒpg1
�; : : : ; Œpgn

�g is not in the
image of the map �W KG

0
.EG/!K0.C

�.G//, implies that:

(1) Any nonzero element in the abelian subgroup of L4k.ZG/˝Q generated by
fŒqg1

�; : : : ; Œqgn
�g is not in the image of the rational assembly map

AW H G
4k.EG;L/˝Q!L4k.ZG/˝Q:

(2) The abelian subgroup of L4k.ZG/˝Q generated by fŒqg1
�; : : : ; Œqgn

�g has
rank n.
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By exactness of the surgery sequence, we know that the map: L4k.ZG/˝Q !
S.M / ˝ Q, is injective on the abelian subgroup of L4k.ZG/ ˝ Q generated by
fŒqg1

�; : : : ; Œqgn
�g. This, together with the fact that the abelian subgroup of L4k.ZG/˝

Q generated by fŒqg1
�; : : : ; Œqgn

�g has rank n, implies our theorem.

Corollary 3.5 Let G be a countable group. If G is finitely embeddable into Hilbert
space and M is a compact oriented manifold with dimension 4k � 1 .k > 1/ and
�1.M / D G , then the rank of the structure group S.M / is greater than or equal to
Nfin.G/.

Let G be a countable group. We define rfin.G/ to be the rank of the abelian subgroup
of K0.C

�.G// generated by Œpg� for all finite-order elements g in G . We emphasize
that here we allow g to be the identity e .

The proof of the following result is similar to that of Theorem 1.4 and is therefore
omitted.

Theorem 3.6 If G is a countable group finitely embeddable into Hilbert space, then
rfin.G/ is greater than or equal to Nfin.G/C 1.

The following result is a consequence of Theorem 3.4 and Theorem 2.3(1).

Corollary 3.7 Let M be a compact oriented manifold with dimension 4k�1 .k > 1/

and �1.M /DG . If there exists an element g¤ e in G with finite order, then the rank
of S.M / is greater than or equal to one.

The above corollary gives a different proof of a theorem of Chang and Weinberger [9].

Remark We mention that if the group satisfies the strong Novikov conjecture, then
the same method can be used to prove a stronger statement than Theorem 3.4. In
this case, one can show that the number of conjugacy classes of nontrivial finite-order
elements in the group is a lower bound for both the rank of the finite part of operator
K–theory and the rank of the structure group S.M / when the dimension of M is
4k�1 .k > 1/. To prove this result, we need to consider K–theory classes induced by
all representations of finite subgroups of the fundamental group. However, our method
doesn’t yield the same lower bound for finitely embeddable groups.

In surgery theory, if M is a compact oriented manifold, the elements in the struc-
ture group S.M / are pairs .f;M 0/, where M 0 is a compact oriented manifold and
f W M 0!M , is an orientation-preserving homotopy equivalence. When an element
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is nontrivial, it is often the case that M 0 and M are homeomorphic, but f is not
homotopy equivalent to a homeomorphism. In [9], Chang and Weinberger observed
that the von Neumann trace can be used to distinguish the manifolds, not just structures.

We conjecture that elements of the structure group distinguished by the method of this
paper are actually different manifolds.

Let M be a compact oriented manifold. Let S0.M / be the abelian subgroup of S.M /

generated by elements Œ.f;M 0/�� Œ. ıf;M 0/�, where f W M 0!M , is an orientation-
preserving homotopy equivalence and  W M !M , is an orientation-preserving self
homotopy equivalence. We define the reduced structure group zS.M / to be the quotient
group S.M /=S0.M / (it is the coinvariants of the action of orientation-preserving self
homotopy equivalences of M on S.M /).

The following conjecture gives a lower bound on the “size” of the set of different
manifolds in the structure group.

Conjecture 3.8 If M is a compact oriented manifold with dimension 4k � 1 .k > 1/

and �1.M /DG , then the rank of the reduced structure group zS.M / is greater than or
equal to Nfin.G/.

In a special case, we can verify this conjecture.

Theorem 3.9 If G has a homomorphism � to a residually finite group such that
kernel.�/ is torsion free, then the above conjecture holds.

Proof For each integer m� 1, let Gm be the intersection of all normal subgroups of
G with index at most m. Observe that Gm is a finite-index subgroup of G and Gm

is preserved under the action of Aut.G/, the group of all automorphisms of G . As
a consequence, the semidirect product G Ì Aut.G/ has a homomorphism �m to the
finite group QDG=Gm Ì Aut.G=Gm/.

Let fg1; : : : ;gng be elements in G with distinct finite orders fd1; : : : ; dng. Without
loss of generality, we can assume that di < dj when i < j . Let g0i D �m.gi/ in
QDG=Gm Ì Aut.G=Gm/ for each i . By the assumption of our theorem, there exists
a sufficiently large integer m such that g0i has order di for all 1 � i � n. If N is
a compact oriented manifold with dimension 4k � 1 and �1.N / D G , there is an
associated map � W N ! BQ obtained as a composition of the classifying map from
N to BG with the map induced from the inclusion map: G!G Ì Aut.G/, and the
homomorphism �mW G Ì Aut.G/!Q. The bordism group of such pairs .N; �/ over
BQ is finite since Q is finite and 4k � 1 is odd. Hence there exists a positive integer
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l such that lN is the boundary of a compact oriented manifold W equipped with a
map hW W ! BQ that extends � . Let WQ and NQ be respectively the Q–covers of
W and N . We note that WQ is the pull back of the Q–principal bundle of EQ over
BQ by the map h. We define a gi –torsion invariant of .N;  / by

�gi
.N; �/D

1

l

�
tr.g0i jHC/� tr.g0i jH�/

�
;

where
H 2k.WQ;NQ/DH 2k

C .WQ;NQ/˚H 2k
� .WQ;NQ/

is the decomposition corresponding to the positive and negative parts of the sym-
metric bilinear form associated to the cup product on H 2k.WQ;NQ/, and HC D

H 2k
C .WQ;NQ/ and H� DH 2k

� .WQ;NQ/, and tr is the standard trace on the algebra
of all linear operators on the finite-dimensional vector space such that the trace of the
identity is the dimension of the vector space. It is not difficult to see that this invariant
is independent of the choice of .W; �/.

Note that if  is an orientation-preserving self homotopy equivalence of N , then

�gi
.N; �/D �gi

.N; � ı /:

The above identity can be shown as follows. Let  � be the element in Aut.G/ induced
by the map  and denote the element �m. �/ in Q by  0� . Observe that � ı is
homotopy equivalent to z ı � , where z is the map from BQ to BQ induced by the
homomorphism

Q!Q; q 7!  0�q. 
0
�/
�1:

Let zh be the map from W to BQ defined by zh D z ı h. It is easy to see that zh
extends the map � ı from N to BQ. By the definition of the gi –torsion invariant
of .N; � ı /, we have

�gi
.N; � ı /D

1

l

�
tr. 0�g

0
i. 
0
�/
�1
jHC/� tr. 0�g

0
i. 
0
�/
�1
jH�/

�
:

Now our desired identity follows from the above equation and the trace property.

The above identity implies that the homomorphism from S.M / to R defined by

.f;M 0/! �gi
.M 0; � ıf /

is 0 on S0.M /, where � is the map from M to BQ obtained by composing the
classifying map M ! BG with the map from BG to BQ derived from the inclusion
G!GÌAut.G/ and the homomorphism �m from GÌAut.G/ to Q. As a consequence,
this homomorphism from S.M / to R induces a homomorphism from zS.M / to R.
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Let qgi
be the element in L4k.ZG/ as in the proof of Theorem 3.4. There is a

cobordism Yi realizing qgi
such that @Yi DM [ .�Mi/ for some compact manifold

Mi and the maps

.fi ; @0fi ; @1fi/W .Yi ;M;Mi/! .M � Œ0; 1�;M � f0g;M � f1g/

satisfy the following conditions:

(1) @0fi , the restriction of fi to M , is the identity map from M to M .

(2) @1fi , the restriction of fi to Mi , is an orientation-preserving homotopy equiva-
lence from Mi to M .

We abbreviate �gi
.Mj ; � ı .@1fi// by �gi

.Mj / and �gi
.M; �/ by �gi

.M /. We have

�gi
.Mj /� �gi

.M /D c tr.g0ipg0
j
/;

where c is a nonzero constant and

pg0
j
D

1

dj

djX
kD1

.g0j /
k

and tr is the canonical trace on the group algebra of Q. It follows that

�gi
.Mj /� �gi

.M /¤ 0 if i D j , �gi
.Mj /� �gi

.M /D 0 if i > j .

This implies the abelian subgroup of zS.M / generated by

Œ.f1;M1/�� Œ.idM ;M /�; : : : ; Œ.fn;Mn/�� Œ.idM ;M /�

has rank n, where idM is the identity map on M .

Corollary 3.10 If G is residually finite, then Conjecture 3.8 holds.

We remark that the proof of Theorem 3.9 shows that elements of the structure group
distinguished by the method of this paper are indeed different manifolds in this spe-
cial case.

4 Applications to the space of positive scalar curvature
metrics

In this section, we apply our result on the finite part of K–theory for group C �–algebras
to estimate the size of the space of positive scalar curvature metrics on a compact
smooth spin manifold. This section is influenced by the previous work of Rosenberg
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and Stolz [23; 29; 30]. In the finite group case, our result follows from the work of
Stolz [29].

If a compact smooth spin manifold M has a positive scalar curvature metric and the
dimension of M is greater than or equal to 5, we introduce an abelian group P .M /

of equivalence classes of all positive scalar curvature metrics on M . We give a lower
bound on the rank of P .M / when the dimension of M is 2k � 1 with k > 2 and
the fundamental group �1.M / is finitely embeddable into Hilbert space. For general
group, we show that if �1.M / is not torsion free, then the rank of the abelian group
P .M / is at least one when dimension of M is 2k�1 .k > 2/ and is at least two when
dimension of M is 4k � 1 .k > 1/. We remark that we don’t need the spin condition
to define P .M /, but we require the spin condition to get a lower bound on its size.

Let M be a compact smooth manifold M with �1.M /DG and dimension greater
than or equal to five. Assume that M has a positive scalar curvature metric gM . Let
I be the closed interval. We first form a connected sum .M � I/ ] .M � I/, where
the connected sum is performed away from the boundary of each copy of M � I .
We define the generalized connected sum .M � I/ \ .M � I/ to be the manifold
obtained from .M � I/ ] .M � I/ by surgering the kernel of the homomorphism
from �1..M � I/ ] .M � I//DG �G to G . .M � I/ \ .M � I/ has four boundary
components, two components being M and the other two being �M , where �M is
the manifold M with reversed orientation. If g1 and g2 are positive scalar curvature
metrics on M , we place gM on one boundary component M and g1 and g2 on the
other two boundary components �M . By the surgery theorem [14; 24], there exists a
positive scalar curvature metric on .M � I/ \ .M � I/ such that it is a product metric
near the other boundary component M . We denote by g the positive scalar curvature
metric on this boundary component M .

We prove that if g and g0 are two positive scalar curvature metrics on M obtained
from the same pair of positive scalar curvature metrics g1 and g2 by the above process,
then g and g0 are concordant. We can glue the remaining boundaries of the two
generalized connected sums to form a cobordism of M to itself (the metric is a
product near the boundary and has positive scalar curvature) with the fundamental
group surjecting into G . We surger away the kernel of the surjection. We note that the
nullcobordisms of a given n–manifold N with a homomorphism of �1.N /!G are
torsors, ie given one nullcobordism, the remaining nullcobordisms, up to nullcobordism
relative to the boundary, form an abelian group .Š �nC1.N //. Here the preferred
null cobordism is N � I . We claim that the element given by our cobordism is trivial;
this is because we can glue the boundaries of the cylinders M � I in the cobordism
to obtain .M �S1/ \ .M �S1/ which bounds .M �D2/ \ .M �D2/. Consequently
we can apply the surgery theorem [14; 24] to this cobordism of .M;g/ to .M;g0/ to
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obtain a new positive scalar curvature metric cobordism to these manifolds where the
underlying manifold is M � I . Thus g and g0 are concordant.

Two positive scalar curvature metrics g and g0 on M are defined to be equivalent if
and only if they are concordant. We define the equivalence class Œg� to be the sum of
the equivalence classes of Œg1� and Œg2� with respect to ŒgM �. By argument similar to
that in the previous paragraph, we can show that the set of the concordance classes of
all positive scalar curvature metrics on M is an abelian semigroup with respect to this
sum operation. We define the abelian group P .M / to be the Grothendieck group of the
above abelian semigroup. We point put that our definition of P .M / is closely related
to Stolz’s group Rn of concordance classes of positive scalar curvature metrics [30].

Recall that rfin.G/ is the rank of the abelian subgroup of K0.C
�.G// generated by Œpg�

for all finite-order elements g in G . Here g is allowed to be the identity element e .

Theorem 4.1 (1) Let M be a compact smooth spin manifold with a positive scalar
curvature metric and dimension 2k � 1 (k > 2). The rank of the abelian group
P .M / is greater than or equal to rfin.G/� 1.

(2) Let M be a compact smooth spin manifold with a positive scalar curvature
metric and dimension 4k � 1 (k > 1). The rank of the abelian group P .M / is
greater than or equal to rfin.G/.

The following result is a consequence of the above theorem and Theorem 3.6.

Corollary 4.2 (1) Let M be a compact smooth spin manifold with a positive scalar
curvature metric and dimension 2k � 1 (k > 2). If �1.M / D G is finitely
embeddable into Hilbert space, then the rank of the abelian group P .M / is
greater than or equal to Nfin.G/.

(2) Let M be a compact smooth spin manifold with a positive scalar curvature
metric and the dimension 4k�1 (k > 1). If �1.M /DG is finitely embeddable
into Hilbert space, then the rank of the abelian group P .M / is greater than or
equal to Nfin.G/C 1.

The following result is a consequence of Theorem 4.1 and Theorem 2.3(2).

Corollary 4.3 (1) Let M be a compact smooth spin manifold with a positive scalar
curvature metric and dimension 2k � 1 (k > 2). If �1.M / is not torsion free,
then the rank of the abelian group P .M / is greater than or equal to one;

(2) Let M be a compact smooth spin manifold with a positive scalar curvature
metric and the dimension 4k � 1 (k > 1). If �1.M / is not torsion free, then the
rank of the abelian group P .M / is greater than or equal to two.
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Piazza and Schick used a different method to prove that the space of positive scalar
curvature has infinitely many connected components when M is a compact smooth
spin manifold with a positive scalar curvature metric and dimension 2k � 1 (k > 2),
and the fundamental group �1.M / is not torsion free [19].

We need some preparation to prove the main result in this section. Let F be a finite
group and N be a F –manifold. We say that N is F –connected if N=F is connected.

Proposition 4.4 Let d and k be positive integers.

(1) There exist Z=dZ–connected compact smooth spin Z=dZ–manifolds N1; : : : ;Nn

such that the dimension of each Ni is 2k , the Z=dZ–equivariant indices of
the Dirac operators on N1; : : : ;Nn rationally generate RO.Z=dZ/˝Q modulo
rational multiples of the regular representation (here RO.Z=dZ/ is the real
representation ring of Z=dZ), and the Z=dZ action on each Nl (1� l � n) is
free except for finitely many fixed points of the Z=dZ action.

(2) There exist Z=dZ–connected compact smooth spin Z=dZ–manifolds N1; : : : ;Nn

such that the dimension of each Ni is 4k and the Z=dZ–equivariant indices
of the Dirac operators on N1; : : : ;Nn rationally generate RO.Z=dZ/˝Q, and
the Z=dZ action on each Nl (1� l � n) is free except for finitely many fixed
points of the Z=dZ action.

Proof (1) Let fa1; : : : ; adg be distinct points in C�f0g. Define a two-dimensional
smooth compact surface S by

S D fŒx;y; z� 2CP2
j yd
D .x� a1z/ � � � .x� adz/g:

Observe that S is a surface with genus 1
2
.d � 1/.d � 2/. We have:

(a) Œ0; 1; 0� is not in S .

(b) The map � W S ! CP1 sending Œx;y; z� to Œx; z� is a branched covering with
degree d .

(c) The map � has exactly d branch points Œa1; 1�; : : : ; Œad ; 1� in CP1 .

For each positive integer 1� l � d , we have a natural action Z=dZ on S by

˛l.Œm�/Œx;y; z�D
�
x; exp.2� iml=d/y; z

�
for any Œm� 2 Z=dZ and Œx;y; z� 2 S .

We shall prove Proposition 4.4(1) by induction. We first deal with the special case that
d is 2 or a prime number.
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Let Nl be the product of k number of copies of S with the diagonal action of ˛l . The
assumption that d is 2 or a prime number implies that the action of Z=dZ on each
Nl is free except for finitely many fixed points.

By Atiyah and Bott [3, Theorem 8.35], we know that the Z=dZ–equivariant indices
of the Dirac operators on fN1; : : : ;Ndg generate RO.Z=dZ/˝Q modulo rational
multiples of the regular representation.

Assume by induction that the proposition is true for any divisor of d less than d . Let
fN1; : : :Nsg be the set of Z=dZ–connected compact smooth spin Z=dZ–manifolds
whose Z=dZ–equivariant indices of Dirac operators rationally generate all real repre-
sentations induced from all proper subgroups modulo rational multiples of the regular
representation. It suffices to construct a set of Z=dZ–connected compact smooth
spin Z=dZ–manifolds with dimension 2k whose Z=dZ–equivariant indices of Dirac
operators rationally generate all real representations with characters supported on each
generator of the abelian group Z=dZ and its inverse.

Let fŒl1�; : : : ; Œlm�g be the set of all generators of the abelian group Z=dZ. Let NsCli

be the product of k number of copies of S with the diagonal action of ˛li
. The fact

that li is a generator of the abelian group Z=dZ implies that the action of Z=dZ on
each NsCli

is free except for finitely many fixed points. By the induction hypothesis
and Atiyah and Bott [3, Theorem 8.35], we know that the Z=dZ–equivariant indices of
the Dirac operators on fNsCl1

; : : : ;NsClm
g rationally generate all real representations

with characters supported on each generator of the abelian group Z=dZ and its inverse
modulo the abelian subgroup rationally generated by all representations induced from
proper subgroups of Z=dZ. This, together with the induction hypothesis, implies that
Z=dZ–equivariant indices of the Dirac operators on fN1; : : : ;Ns;NsCl1

; : : : ;NsClm
g

generate RO.Z=dZ/˝Q modulo rational multiples of the regular representation.

(2) For the second part of the proposition, when d D 1, Z=dZ is a trivial group and
we can take a 4k–dimensional compact smooth spin manifold whose Dirac operator
has nonzero index. For example, we can take the product of k copies of the Kummer
(or K3) surface

f.z0; z1; z2; z3/ j z
4
0 C z4

1 C z3
2 C z4

3 D 0g �CP3:

This proves part (2) for the trivial group case. The rest of the proof goes exactly the
same as in the proof of part (1) with the dimension of the manifold changed to 4k .
We point out that in the induction process, the trivial subgroup induces the regular
representation.

We remark that Proposition 4.4 can be generalized to any finite group by using repre-
sentations induced from its cyclic subgroups.
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Now we are ready to prove Theorem 4.1.

Proof Let zM be the universal cover of M . We will prove Theorem 4.1 when the
dimension of M is 4k � 1, the proof is completely similar when the dimension is
2k � 1.

For each finite-order element g in G with order d . By Proposition 4.4, there exist
Z=dZ–connected compact smooth spin Z=dZ–manifolds fN1; : : : ;Nng such that the
dimension of each Ni is 4k and the sum of the Z=dZ–equivariant indices of the Dirac
operators on fN1; : : : ;Nng is a nonzero multiple of the trivial representation of Z=dZ.

Let Ng;l D G �Z=dZ Nl ; where Z=dZ acts on Nl as in Proposition 4.4 and Z=dZ
acts on G by Œm�h D hgm for all h 2 G and Œm� 2 Z=dZ. Observe that Ng;l is a
G –manifold.

Let fg1; : : : ;gr g be a collection of finite-order elements such that fŒpg1
�; : : : ; Œpgr

�g

generates an abelian subgroup of K0.C
�.G// with rank r . Let

Ngi
D

jiG
lD1

Ngi ;l

be the disjoint union of all G –manifolds described as above. Let I be the unit interval
Œ0; 1�. We first form a generalized G –equivariant connected sum . zM � I/ \Ngi

along
a free G–orbit of each Ngi ;l and away from the boundary of zM � I as follows.
We first obtain a G�ji –equivariant connected sum . zM � I/ ]Ngi

along a free G–
orbit of each Ngi ;l and away from the boundary of zM � I , where G�ji is the free
product of ji copies of G . More precisely, we inductively form the G�ji –equivariant
connected sum .� � � .. zM � I/ ]Ngi ;1/ � � � / ]Ngi ;ji

, where the equivariant connected
sum is inductively taken along a free orbit and away from the boundary. We denote
this space by . zM � I/ ]Ngi

. We then perform surgeries on . zM � I/ ]Ngi
to obtain a

G –equivariant cobordism between two copies of G –manifold zM .

For any positive scalar curvature metric h on M , by [24, Theorem 2.4], the above
cobordism gives us another positive scalar curvature metric hi on M . By the assump-
tion on fŒpg1

�; : : : ; Œpgr
�g, the relative higher index theorem [32], the relative higher

index of the Dirac operator M �R associated to the positive scalar curvature metrics of
hi and gM is Œpgi

� in K0.C
�.G//. As a consequence, we know that fŒh1�; : : : ; Œhr �g

generates an abelian subgroup of P .M / with rank r .

We mention that if the fundamental group satisfies the strong Novikov conjecture,
then the same method can be used to prove that the rank of P .M / is greater than
or equal to the number of conjugacy classes of nontrivial finite-order elements in the
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fundamental group when the dimension of M is 2k�1 .k> 2/, and the rank of P .M /

is greater than or equal to the number of conjugacy classes of finite-order elements in
the fundamental group when the dimension of M is 4k � 1 .k > 1/. To prove this
result, we need to consider K–theory classes induced by all representations of finite
subgroups of the fundamental group.

5 Groups finitely embeddable into Hilbert space

In this section, we show that various classes of groups are finitely embeddable into
Hilbert space. In particular, we show that this class of groups include all residually finite
groups, amenable groups, Gromov’s monster groups, all virtually torsion-free groups
(eg Out.Fn/), and all groups of analytic diffeomorphisms of an analytic connected
manifold fixing a given point.

We first introduce a concept of groups locally embeddable into Hilbert space.

Definition 5.1 A countable discrete group G is said to be locally embeddable into
Hilbert space H if for any finite subset F � G , there exists a group G0 coarsely
embeddable into H such that there is a map �W F !G0 satisfying:

(1) �.e/D e if e 2 F .

(2) �.gh/D �.g/�.h/ if g; h 2 F and gh 2 F .

(3) � is injective.

Clearly groups locally embeddable into Hilbert spaces are finitely embeddable into
Hilbert space. Recall that a group G is said to be locally embeddable into finite groups
(LEF) if the group G0 in the above definition can always to be chosen to be a finite
group. Observe that all residually finite groups are LEF.

Proposition 5.2 Let N be an analytic connected manifold and x0 2 N . If G is a
countable group of analytic diffeomorphisms fixing the point x0 , then G is locally
embeddable into Hilbert space.

Proof For any positive integer k , let Jk be the finite-dimensional vector space of all
k –jets at x0 . Let GL.Jk/ be the Lie group of all linear isomorphisms from Jk to Jk .
Any diffeomorphism of N fixing x0 induces an isomorphism of Jk . It follows that, for
each k , there is a natural homomorphism  k from G to GL.Jk/. Let G0 D  k.G/.
G0 is coarsely embeddable into Hilbert space since GL.Jk/ is a Lie group with finitely
many connected components [15]. For any finite subset F of G , we restrict  k to F

to obtain a map � from F to G0 . By analyticity, we can verify that G0 and � satisfy
the conditions in Definition 5.1 when k is large enough.
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It is an open question whether an arbitrary countable group of analytic diffeomorphisms
on an analytic connected manifold is locally or finitely embeddable into Hilbert space.
More generally, it is an open question whether an arbitrary countable group of dif-
feomorphisms on a smooth connected manifold is locally or finitely embeddable into
Hilbert space.

The next result states that certain limit groups are locally embeddable into Hilbert
space.

Proposition 5.3 If G is the limit of a sequence of groups fGkg
1
kD1

coarsely embed-
dable into Hilbert space such that, for each finite subset F � Gk for some k , there
exists l � k such that the map from the image of F in Gl to G is injective, then G is
locally embeddable into Hilbert space.

We point out that in the above proposition the homomorphism from Gk to Gl (k > l )
is not assumed to be injective. Examples of groups satisfying the above proposition
include Burnside groups and Gromov’s monster groups [1; 13]. The proof of the above
result is straightforward and is therefore omitted.

Proposition 5.4 If G has a torsion-free normal subgroup G0 such that G=G0 is
residually finite, then G is finitely embeddable into Hilbert space.

Proof Let � be the quotient homomorphism from G to G0 D G=G0 . We have
order.�.g// D order.g/ for all finite-order elements g in G . This can be seen as
follows. The order of �.g/ is a divisor of the order of g . If by contradiction that g is
a finite-order element in G whose order is greater than 1 and order.�.g//¤ order.g/,
then order.g/ D n order.�.g// for some positive integer n > 1. This would imply
that gn is in the kernel of � . Hence gn is in G0 . But gn is a nontrivial finite-order
element. This is a contradiction with the assumption that G0 is torsion free. Now our
proposition follows from the definition of residual finiteness of G0 .

Corollary 5.5 If G is virtually torsion free, then G is finitely embeddable into Hilbert
space.

An example of a group satisfying the assumption in the above corollary is Out.Fn/ [8,
Proposition 1.2].

Sofic groups have many common examples with finitely embeddable groups. It is an
open question if sofic groups are finitely embeddable into Hilbert space.
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Appendix

In this appendix, we prove the following analogue of Atiyah’s L2 index theorem for
the maximal group C �–algebra. This result is folklore. For completeness, we include
a proof here.

Theorem A.1 Let G be a countable group. Let X be a locally compact space with
a proper, free, and cocompact action of G . Let � be the assembly map KG

0
.X /!

K0.C
�.G//. If � is the trace on C �.G/ given by �.

P
cgg/D

P
cg , then

�.�Œ.F;H /�/D index.F /

for any K–homology class Œ.F;H /� in KG
0
.X /, where index.F / is the Fredholm index

of F .

Proof In [31], we give a different proof of Atiyah’s L2 index theorem. We shall use
a key ingredient in this proof.

Let d be a G–invariant metric on X (compatible with the topology of X ). The
assumption that the G action on X is proper and free implies that there exists ı > 0

such that d.x;gx/ � 10ı for all x 2 X and g ¤ G in G . By the proof of Atiyah’s
L2 index theorem [31, page 1402], we can write

�Œ.F;H /�D Œp��
�

1 0
0 0

�
;

where
p D p1C

�
1 0
0 0

�
such that p1 is an element in the matrix algebra over .S1X /G , the algebra of G–
invariant and locally traceable operators on a G –X–module H with finite propagation,
satisfying

propagation.p1/ < ı:

Note that .S1X /G is isomorphic to S1G , the group algebra of G over the ring S1 .
We can extend the trace � naturally to a trace on S1G . We have

�.�Œ.F;H /�/D �.p1/D
X
g2G

tr.g�1p1/;

where tr is the canonical trace on S1G as in Lemma 3.1. We also note that the sum in
the above identity is a finite sum since p1 has finite propagation. Now by Lemma 3.1
and the choice of ı , we have tr.g�1p1/D 0 for all g¤ e . As a consequence, we have
�.p1/D tr.p1/. By Atiyah’s L2 index theorem [2], we have tr.p1/D index.F /. It
follows that �.�Œ.F;H /�/D index.F /.
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