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Surface bundles over surfaces
with arbitrarily many fiberings

NICK SALTER

In this paper we give the first example of a surface bundle over a surface with at least
three fiberings. In fact, for each n � 3 we construct 4–manifolds E admitting at
least n distinct fiberings pi W E!†gi

as a surface bundle over a surface with base
and fiber both closed surfaces of negative Euler characteristic. We give examples of
surface bundles admitting multiple fiberings for which the monodromy representation
has image in the Torelli group, showing the necessity of all of the assumptions made
in the main theorem of a recent paper of ours. Our examples show that the number
of surface bundle structures that can be realized on a 4–manifold E with Euler
characteristic d grows exponentially with d .
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1 Introduction

Let M 3 be a 3–manifold fibering over S1 with fiber †g .g � 2/. If b1.M / � 2,
Thurston [14] showed1 that there are in fact infinitely many ways to express M as a
surface bundle over S1 , with finitely many fibers of each genus h � 2. In contrast,
F E A Johnson [6] showed that every surface bundle over a surface †g!E4!†h

with g; h � 2 has at most finitely many fiberings (see also Hillman [5], Rivin [10]
or Proposition 3.1 for various accounts). It is possible to deduce from Johnson’s
work that there is a universal upper bound on the number of fiberings that any surface
bundle over a surface E4 can have, as a function of the Euler characteristic �.E/.
Specifically, Proposition 3.1 shows that if E4 satisfies �.E/D 4d , then E has at most
�0.d/.d C 1/2dC6 fiberings as a surface bundle over a surface, where �0.d/ denotes
the number of positive divisors of d .

1While the theory of the Thurston norm gives the most complete picture of the ways in which a
3–manifold fibers over S1 , earlier examples of this phenomenon were found by J Tollefson [15] and
D Neumann [9].

Published: 20 October 2015 DOI: 10.2140/gt.2015.19.2901

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57R22
http://dx.doi.org/10.2140/gt.2015.19.2901


2902 Nick Salter

The simplest example of a surface bundle over a surface with multiple fiberings2 is that
of a product †g�†h , which has the two projections onto the factors †g and †h . Prior
to the results of this paper, there was essentially one general method for constructing
nontrivial examples of surface bundles over surfaces with multiple fiberings, and they
all yielded bundles with only two known fiberings (although it is in theory possible that
these examples could admit three or more; see Question 3.4). Such examples were first
constructed by Atiyah [1] and Kodaira [7] (see also the account by Morita [8]), and
proceeded by taking a fiberwise branched covering of particular “diagonally embedded”
submanifolds of products of surfaces.

It is worth remarking that if one is willing to relax the requirement that both the base
and fiber surface have negative Euler characteristic, then it is possible to construct
examples of 4–manifolds E admitting infinitely many fibrations over the torus T 2 . If
M 3 is a 3–manifold admitting infinitely many fibrations over S1 , then EDM 3�S1

has the required properties. However, Johnson’s result indicates that when g; h� 2, the
situation is necessarily much more rigid and correspondingly richer. The mechanism
by which E DM 3 �S1 admits infinitely many fiberings is completely understood
via the theory of the Thurston norm. In contrast, in the case g; h � 2, entirely new
phenomena will necessarily occur.

This paucity of examples, combined with the interesting features of the known con-
structions, led to the author’s interest in surface bundles over surfaces with multiple
fiberings. In [12], the author established the following theorem which shows a certain
rigidity among a particular class of surface bundles over surfaces. Let Modg denote the
mapping class group of the closed surface †g , and let Ig denote the Torelli group, ie the
subgroup of Modg that acts trivially on H1.†g;Z/. The Johnson kernel Kg is defined
to be the subgroup of Ig generated by the set of Dehn twists about separating simple
closed curves. Recall that the monodromy of a surface bundle †g! E! B is the
homomorphism �W �1B!Modg recording the mapping class of the diffeomorphism
obtained by transporting a fiber around a loop in the base.

Theorem 1.1 (Uniqueness of fiberings [12, Theorem 1.2]) Let � W E ! B be a
surface bundle over a surface with monodromy in the Johnson kernel Kg . If E admits
two distinct structures as a surface bundle over a surface then E is diffeomorphic to
B �B0 , the product of the base spaces. In other words, any nontrivial surface bundle
over a surface with monodromy in Kg fibers as a surface bundle in a unique way.

2The most straightforward notion of “distinction” for fiberings is that of fiberwise diffeomorphism.
In this paper, we will also have occasion to consider a strictly stronger notion known as “�1 –fiberwise
diffeomorphism”. See Section 2 for the precise definition of �1 –fiberwise diffeomorphism, and see
Proposition 2.2, as well as Remark 2.4, for a discussion of why we adopt this convention.
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This result would seem to reinforce the impression that surface bundles over surfaces
with multiple fiberings are extremely rare, and that examples with three or more fiberings
should be even more exotic. However, the constructions of this paper show that there
is in fact a great deal of flexibility in constructing surface bundles over surfaces with
many fiberings. The following is a summary of the constructions given in Section 2.

Theorem 1.2 (Existence of multiple fiberings) (1) For each n � 3 and each
g1 � 2 there exists a 4–manifold E , integers g2; : : : ;gn (which can be chosen
so that g1; : : :gn are pairwise distinct), and maps pi W E!†gi

.i D 1; : : : ; n/

realizing E as the total space of a surface bundle over a surface in at least n

ways, distinct up to �1 –fiberwise diffeomorphism. If gi ¤ gj , the fibers of pi

and pj have distinct genera; consequently pi and pj are inequivalent up to
fiberwise diffeomorphism whenever gi ¤ gj .

(2) There exist constructions as in (1) for which at least one of the monodromy
representations �i W �1†gi

!Modhi
has image contained in the Torelli group

Ihi
�Modhi

.

(3) There exists a sequence of surface bundles over surfaces En for which �.En/D

24n� 8 and such that En admits 2n fiberings as a surface bundle over a surface,
distinct up to �1 –fiberwise diffeomorphism.

The bound of Proposition 3.1 makes it sensible to define the following function:

N.d/ WDmax
�

n

ˇ̌̌̌
there exists E4; �.E/�4d , E admits n surface bundle
structures distinct up to �1 –fiberwise diffeomorphism

�
:

Phrased in these terms, Theorem 1.2(3), in combination with the upper bound of
Proposition 3.1 implies that

2.dC2/=6
�N.d/� �0.d/.d C 1/2dC6;

where �0.d/ denotes the number of positive divisors of d . This should be compared
to the previous lower bound N.d/� 2.

An additional corollary of Theorem 1.2 is that it demonstrates the optimality of
Theorem 1.1. The Johnson filtration is a natural filtration Ig.k/ on Modg recording
how mapping classes act on nilpotent quotients of �1†g . The first three terms in the
filtration are given by Ig.1/DModg , and Ig.2/D Ig , and Ig.3/D Kg . It follows
from Theorem 1.2(2) that Theorem 1.1 is optimal with respect to the Johnson filtration,
in that there exist surface bundles over surfaces with multiple fiberings with monodromy
contained in Ig and Modg .
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2 The examples

The basic construction To illustrate our general method we start by describing a
construction of a surface bundle over a surface E admitting four fiberings

p1;p2;p3;p4W E �!†g:

The monodromy of this bundle was first considered by Korkmaz,3 as an example of
an embedding of a surface group inside the Torelli group. Related constructions were
also used by Baykur and Margalit [2] to construct Lefschetz fibrations that are not
fiber-sums of holomorphic ones. For what follows it will be necessary to give a direct
topological construction of the total space.

The method of construction is to perform a “section sum” of two surface bundles over
surfaces (see [3] for a discussion of the section sum operation, including an equivalent
description on the level of the monodromy representation). Let †g1

!M1!†h and
†g2
!M2!†h be two surface bundles over a base space †h , and for i D 1; 2 let

�i W †h!Mi be sections of M1;M2 . If the Euler numbers of �1; �2 are equal up to
sign, then it is possible to perform a fiberwise connect-sum of M1;M2 along tubular
neighborhoods of Im.�i/ (possibly after reversing orientation), giving rise to a surface
bundle †g1Cg2

!M !†h . In what follows, we will give a more detailed description
of this construction and explain how it can be used to produce surface bundles over
surfaces with many fiberings.

Remark 2.1 We have chosen to present an example here where all of the fiberings
have the same genus. In fact, the four fiberings presented here are equivalent up to
fiberwise diffeomorphism, but not up to �1 –fiberwise diffeomorphism. We stress here
that this is not an essential feature of the general method of construction described
in the paper, but merely the simplest example which requires the least amount of

3Unpublished; communicated to the author by D Margalit.
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cumbersome notation. See Remark 2.4 for more on why �1 –fiberwise diffeomorphism
is an important notion of equivalence for our purposes, and see Theorem 2.12 for the
most general method of construction, which can produce 4–manifolds that fiber as
surface bundles in arbitrarily many ways with surfaces of distinct genera. It is worth
noting that if E4 fibers as a †g –bundle and a †h –bundle, for g ¤ h, then clearly
these two fiberings are distinct, up to bundle isomorphism, fiberwise diffeomorphism,
or �1 –fiberwise diffeomorphism, since the fibers are not even homeomorphic!

For g � 2, consider the product bundle E1 D†g �†g with projection maps

pV ;pH W E1 �!†g

onto the first (resp. second) factor. Let N be an open tubular neighborhood of the
diagonal �. The manifold E is then constructed as the double

E D .E1 nN /[@N .E1 nN /;

where the boundary components @N are identified via the identity map. We let EC;E�

denote the “upper” and “lower” copies of E1 nN contained in E . See Figure 1.

E

EC

E�

†g

†g

NC

N �

Figure 1: A cartoon rendering of E , depicted as shaded. The boundaries are identified.

E is equipped with four fiberings p1;p2;p3;p4W E!†g . These correspond to the
four combinations of horizontal and vertical fiberings on EC and E� . For each pi ,
we will exhibit collar neighborhoods of @E˙ relative to which the given pi will be
smooth.

To describe these collar neighborhoods, we endow †g with the structure of a Riemann
surface. Via uniformization, this gives rise to a Riemannian metric, inducing a path
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metric d on †g . Relative to d , there is a neighborhood N of the diagonal �, for
suitably small ", given via

N D f.z; w/ 2†g �†g j d.z; w/ < "g:

The boundary @N is parameterized via the Riemannian exponential map expz at each
z 2†g (for convenience we locally parameterize the circle of radius " about 02 Tz†g

using the complex exponential):

@N D f.z; w/ j jz�wj D "g D f.z; expz."e
i� // j � 2 Œ0; 2�/g

D f.expz.�"e
i� /; z/ j � 2 Œ0; 2�/g:

p1 is defined using the vertical projection pV on each component. A suitable collar
neighborhood (on either component) is given locally (for t 2 Œ1; 2/) by

�V .z; "; t/D .z; expz.t"e
i� //:

Similarly p2 is defined using the horizontal projection pH on each component. A
suitable collar neighborhood of either boundary component is now given locally (again
for t 2 Œ1; 2/) by

�H .z; "; t/D .expz.�t"ei� /; z/:

The remaining projections p3;p4 are defined using pV on one component and pH

on the other. To realize these as smooth maps it will be necessary to modify the
choice of boundary identification made in the construction of E . Consider the isotopy
ht W @N � Œ0; 1�! @N given locally by

ht .z; expz."e
i� //D .expz.�t"ei� /; expz..1� t/"ei� //:

More intrinsically, ht acts by rigidly translating the pair .z; w/ a distance t" along the
geodesic ray from w to z ; from this point of view it is clear that ht is a diffeomorphism,
and so h is indeed an isotopy.

As h0 D id, there is a diffeomorphism

f W E �! .E1 nN /[h1
.E1 nN /:

p3 is defined on .E1 nN /[h1
.E1 nN / using pV on the first component and pH on

the second. Note that

pV .z; expz."e
i� //D .pH ı h1/.z; expz."e

i� //D z;

so p3 is well-defined. Moreover, p3 is smooth relative to the collar neighborhoods
�V on the first component and �H on the second.
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Completely analogously, p4 is defined on .E1 nN /[h1
.E1 nN / using pH on the

first component and pV on the second. See Figures 2 and 3 for some depictions of the
fibering p4 .

w

w

pV

pH

Figure 2: The fibering p4W E!†g . The fiber over w 2†g is shaded. On
the upper portion of the bundle it intersects each of the pV –fibers in a
single point.

It is clear that each pi is a proper surjective submersion; consequently by Ehresmann’s
theorem each pi realizes E as the total space of a fiber bundle. In each case the base
space is †g , while the fiber is †g #†g Š†2g .

We next recall the notion of �1 –fiberwise diffeomorphism from [12]. We say that
two fiberings p1W E ! B1 , p2W E ! B2 of a surface bundle are �1 –fiberwise
diffeomorphic if:

(1) The bundles p1W E! B1 and p2W E! B2 are fiberwise diffeomorphic. That
is, there exists a commutative diagram

E
� //

p1

��

E

p2

��
B1 ˛

// B2

with �; ˛ diffeomorphisms.

(2) The induced map �� preserves �1F1 , ie ��.�1F1/D �1F1 (here, as always,
Fi denotes a fiber of pi ).
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In [12, Proposition 2.1], we gave the following criterion for two bundle structures to be
distinct up to �1 –fiberwise diffeomorphisms:

Proposition 2.2 Suppose E is the total space of a surface bundle over a surface in two
ways: p1W E!B1 and p2W E!B2 . Let F1;F2 denote fibers of p1;p2 respectively.
Then the following are equivalent:

(1) The fiberings p1;p2 are �1 –fiberwise diffeomorphic.

(2) The fiber subgroups �1F1; �1F2 � �1E are equal.

If deg.p1 �p2/¤ 0 then the bundle structures p1 and p2 are distinct.

†g

†g

w

w

pV

pH

E�

EC

Figure 3: A second cartoon sketch of the fibering p4

With this characterization in mind, we will establish the following theorem.

Theorem 2.3 The fiberings pi W E ! †g for i D 1; 2; 3; 4 constructed above are
pairwise distinct up to �1 –fiberwise diffeomorphisms.

Proof To show that the projections pi as defined are pairwise distinct, we will appeal
to Proposition 2.2(2). For each i , the long exact sequence in homotopy of a fibration
reduces to a short exact sequence

1 �! �1Fi �! �1E
pi;�

�! �1†g �! 1:

Geometry & Topology, Volume 19 (2015)
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To show that �1Fi and �1Fj are distinct for distinct i; j , it therefore suffices to
produce an element x 2 �1Fi such that pj ;�.x/¤ 1 in �1†g . Let i and j be distinct.
Without loss of generality, suppose that pi is defined via pV on EC , while pj is
defined on EC via pH . Let Fi and Fj denote generic fibers of pi ;pj respectively.
Both of Fi \EC and Fj \EC are homeomorphic to †1

g , the surface of genus g and
one boundary component.

Let 
 �†1
g be a nonperipheral loop representing a nontrivial element of �1†

1
g , and

identify 
 with a loop in Fi . Then Œ
 � 2 �1Fi by construction (and is nontrivial),
while pj .
 / D pH .
 / D 
 . Here 
 is viewed as a loop in †g under the natural
inclusion of †1

g . As 
 was chosen to be nonperipheral and essential in †1
g , it remains

homotopically nontrivial in †g . It follows that �1Fi and �1Fj are distinct for all
distinct i; j 2 f1; 2; 3; 4g. Per Proposition 2.2, pi and pj are not �1 –fiberwise
diffeomorphic as claimed.

Remark 2.4 As remarked above, the four fiberings constructed above are in fact
fiberwise diffeomorphic, by applying factor-swapping involutions .x;y/! .y;x/ on
one or more of the components E˙ . This same phenomenon appears for trivial bundles
†g �†h . When g ¤ h the projections onto the first and second factors clearly yield
inequivalent bundles, as the fibers are not even the same manifold. On the other hand,
when g D h, the factor-swapping involution yields a bundle isomorphism between the
horizontal and vertical projections of †g�†g . However, in both of these examples the
fiberings are not �1 –fiberwise diffeomorphic. Moreover, Proposition 2.2 shows that
�1 –fiberwise diffeomorphism is equivalent to the natural notion of equivalence on the
group-theoretic level. For this reason, we believe that �1 –fiberwise diffeomorphism
is an important notion of equivalence for surface bundles over surfaces. By using the
techniques of Theorem 2.12, one can construct surface bundles over surfaces with
arbitrarily many fiberings for which the fibers all have distinct genera, and therefore
certainly give examples of bundles where the fiberings are not fiberwise diffeomorphic.

Remark 2.5 Via the Seifert–van Kampen theorem, it is possible to compute

(1) �1E Š � ��1U T†g
�;

where � D �1.†g �†g nN / and U T†g denotes the unit tangent bundle. Let

$1W †g �†g nN �!†g

denote the vertical projection, and define $2 similarly as the horizontal projection. Rel-
ative to the isomorphism of (1), the induced maps of the four fiberings .pi/�W �1E!

�1†g correspond to the four amalgamations .$i/��.$j /�W � ��1U T†g
�!�1†g .

Geometry & Topology, Volume 19 (2015)
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As remarked above, the bundle p1W E!†g was originally considered by Korkmaz
(see [2, Footnote 1]), who constructed its monodromy representation as an example
of an embedding �W �1†g! I2g . We now give a description of this embedding. Let
Mod1

g denote the mapping class group of a surface with one boundary component
(where as usual the isotopies are required to fix the boundary component pointwise).
We will denote this boundary curve by �. Consider the embedding

f W �1.U T .†g// �!Mod1
g �Mod1

g;

˛ 7�! .Push.˛/;F�1
ıPush.˛/ ıF /;

where F W †1
g!†1

g is any orientation-reversing diffeomorphism. Compose this with
the map

hW Mod1
g �Mod1

g �!Mod2g

obtained by juxtaposing the mapping classes .x;y/ on the two halves of †2g . Let 
 2
�1.U T .†g// denote the loop around the circle fiber in U T†g in the positive direction
as specified by the orientation on †g . The map Push.
 / 2Mod.†1

g/ corresponds to a
positive twist about �. We claim that h.f .
 //D id. Indeed, the notion of “positive”
twist is relative to a choice of orientation, and after the boundary components of the
two copies of †1

g have been identified, the two twists correspond to a positive and
negative twist about �, and so the result is isotopic to the identity.

The element 
 2 �1.U T .†g// generates a normal subgroup, and the quotient

�1.U T .†g//=h
 i � �1†g:

Therefore, we arrive at an embedding �W �1†g!Mod2g as follows:

�1.U T .†g//
f //

��

Mod1
g �Mod1

g
h // Mod2g

�1†g

�

33

Lemma 2.6 The image of � is contained in the Torelli group I2g .

Proof Let f˛1; ˇ1; : : : ; ˛g; ˇgg be a collection of simple closed curves for which
the homology classes fŒ˛1�; : : : ; Œˇg�g comprise a generating set for H1.†

1
g/. Let

F W †1
g ! †1

g be the orientation-reversing map in the definition of f . We can then
view †2g as †1

g [@†1
g

F.†1
g/. Define

B D f˛1; : : : ; ˇg;F.˛1/; : : : ;F.ˇg/g:

Geometry & Topology, Volume 19 (2015)
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It follows that the homology classes fŒ˛1�; : : : ; Œˇg�; ŒF.˛1/�; : : : ; ŒF.ˇg/�g comprise a
generating set for H1.†2g/. To determine whether a mapping class � 2Mod.†2g/ is
contained in I2g , it suffices to show that the homology class of each ˛i ;ˇi ;F.˛i/;F.ˇi/

is preserved by � . Up to isotopy, � is preserved by the action of �1†g via � , so it
suffices to consider how �1†g acts on both copies of †1

g . If x 2 �1†g is given, then
on †1

g , the effect of �.x/ is to push the boundary component around a loop in †g in
the homotopy class of x . As is well known (see for example [4, Section 6.5.2]), the
curves 
 and �.x/.
 / are homologous, for any choice of x 2 �1†g and 
 a simple
closed curve on †1

g . In particular,

Œ�.x/.˛1/�D Œ˛1�; : : : ; Œ�.x/.ˇg/�D Œˇg�;

where these homologies hold in †1
g and so necessarily also in †2g . The element

x 2 �1†g acts on the other half of †2g via conjugation by F , and so similarly the
curves F.˛1/; : : : ;F.ˇg/ are preserved on the level of homology. As we have shown
that each homology class of a generating set for H1.†2g/ is preserved under Im.�/,
it follows that Im.�/� I2g as claimed.

Theorem 2.7 The monodromy of any of the surface bundle structures pi W E !

†g .i D 1; 2; 3; 4/ is the map �W �1†g! I2g described above.

Proof We begin by considering p1 . Let x 2 �1†g be given. The image of the
monodromy representation �.x/ 2Mod2g is computed by selecting some immersed
representative 
 for x , considering the pullback of the bundle E ! †g along the
immersion map S1! †g specified by 
 , and determining the monodromy of this
fibered 3–manifold.

The bundle p1W E!†g is constructed so that the fiber over w 2†g consists of two
disjoint copies of †g connect-summed along disks centered at w . This means that
as one traverses a loop 
 �†g , the effect of the monodromy is to drag the cylinder
connecting the two halves along the loops in either half corresponding to 
 . As a
mapping class, this is exactly the map �.x/ described above.

Now let �1E D � ��1U T†g
� as in Remark 2.5. There is an involution �W � ! �

induced from the factor-swapping map on †g �†g n �.�/. Let $1;$2 denote the
vertical (resp. horizontal) projection †g �†g n .�.�//! †g . Then .$i/� ı � D

.$iC1/� for i D 1; 2 interpreted mod 2. As � preserves �1U T†g , it can be ex-
tended to an automorphism of either factor of �1E D � ��1U T†g

� . In other
words, the four surface-by-surface group extension structures on �1E are in the
same orbit of the action of Aut.�1E/. Consequently, the monodromy representations
r W �1†g ! Out.�1†2g/ are the same. As r is identified with the topological mon-
odromy representation �W �1†g!Mod2g under the Dehn–Nielsen–Baer isomorphism
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Mod2g � OutC.�1†2g/, this shows that any of the four monodromy representations
are equal.

We summarize the results of the basic construction in the following theorem.

Theorem 2.8 For any g� 2, there exists a 4–manifold E which admits four fiberings
pi W E!†g; i D 1; 2; 3; 4 as a †2g –bundle over †g that are pairwise distinct up to
�1 –fiberwise diffeomorphism. For each i , the monodromy �i W �1†g !Mod2g of
pi W E!†g is contained in the Torelli group I2g .

Surface bundles over surfaces with n distinct fiberings We next extend the con-
struction given in the previous subsection to yield examples of surface bundles over
surfaces with n distinct (up to �1 –fiberwise diffeomorphism) fiberings for arbitrary n.
Let X be a connected bipartite graph with vertex set V .X / and edge set E.X / of car-
dinalities C;D respectively. As X is bipartite, it admits a coloring cW V .X /!fC;�g

in such a way that if v is colored with ˙, then all the vertices w adjacent to v are
colored �. Consequently we define ı˙W E.X /! V .X / be the map which sends e to
the vertex v 2 e colored ˙.

Let G be a finite group with jGj D n, where n is an integer such that every v 2 V .X /

has valence at most n. Assign labelings g˙W E.X /! G to the half-edges of X ,
subject to the restriction that g˙ is an injection when restricted to

fe 2E.X / j ı˙.e/D vg

for any v 2 V .X /. In other words, the set of half-edges adjacent to any vertex must
have distinct labelings. See Figure 4.

a b

c

d
1

1

1 1

C �

�

�

!

!2

X

Figure 4: An example of a graph X equipped with a labeling of the half-
edges by elements of G DZ=3� f1; !; !2g the group of third roots of unity.
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Let † be a surface admitting a free action of G , such as the one depicted in Figure 5.
For each v 2 V .X /, consider the 4–manifold Ev

1
D † � †, oriented so that the

orientations on Ev
1

and Ew
1

disagree whenever c.v/¤ c.w/. Each Ev
1

admits two
projections pv;1;pv;2W Ev

1
!†g onto the first (resp. second) factor.

For x 2G , let
�x
D f.w;x �w/ j w 2†g �†�†

be the graph of xW †!†. By abuse of notation we can view �x as embedded in any
of the Ev

1
. Let � be the disconnected surface embedded in E1 D

S
v2V .X /Ev

1
for

which
�\Ev

1 D

[
v2e

�gc.v/.e/:

Let N denote the "–neighborhood of �. There is a decomposition

N D
[

e2E.X /

N e

and a further decomposition

N e
DN e;C

[N e;� with N e;˙
�E

ı˙.e/
1

:

Each N e;˙ is the "–neighborhood of a single component of �.

x

! �x

!2 �x

Figure 5: A surface † admitting a free action of G D f1; !; !2g . With
respect to the labeling in Figure 4, the fiber of Ea

2
over x 2† has neighbor-

hoods of x; ! �x , and !2 �x removed.

Define
E2 DE1 n int.N /
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and, for v 2 V .X /,
Ev

2 DE2\Ev
1 :

The orientation convention ensures that for each e 2E , the Euler numbers of the disk
bundles N e;˙ are given by ˙�.†/. Their boundaries can therefore be identified via
an orientation-reversing diffeomorphism. As in the previous construction, it will be
convenient to specify the gluing maps only up to isotopy, and as before we will take
the isotopy class of the identity.

With these conventions in place, we define the (connected oriented) 4–manifold

EX D

[
v2V .X /

Ev
2

glued together as prescribed by the labeled graph X with all identifications of boundary
components in the isotopy class of the identity. Figure 5 depicts a portion of the fiber of
EX for the graph X of Figure 4. Figure 6 depicts the total space of EX . The portion
of the fiber shown in Figure 5 is the portion contained in the central component of
Figure 6.

Ea
2 Eb

2

Ec
2

Ed
2

�1

�!

�!
2

Figure 6: A schematic rendering of the 4–manifold EX associated to the
graph X of Figure 4 and the surface † of Figure 5. The lines connecting the
components indicate how the various zN e are attached.

Theorem 2.9 Let X be a finite bipartite graph, possibly with multiple edges, with
vertex set V .X / and edge set E.X / of cardinalities C;D respectively.
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(1) The manifold EX constructed above admits 2C fiberings pf W E ! † as a
surface bundle over a surface, indexed by the set of maps f W V .X /! f1; 2g.
The fiberings are pairwise-inequivalent up to �1 –fiberwise diffeomorphism.

(2) The fiber of any of the fiberings is a surface of the form z†D†#C #†1�CCD .

(3) The total space EX has the structure of a graph of groups modeled on X where
the vertex groups are free-by-surface group extensions � and the edge groups
are given by �1U T† (with notation as in Remark 2.5).

Proof Given f W V .X /! f1; 2g, define pf on each component Ev
2

via pv;f .v/ . To
realize pf as a smooth map, it is necessary to specify gluing maps identifying the
various components of E2 , as well as appropriate collar neighborhoods. We proceed
exactly as in Theorem 2.8. For each x 2G , there is an identification of (neighborhoods
of) �x with �1 via the action of the diffeomorphism id�x�1 of †�†. Relative to
these identifications, we will speak of identifying @.N e;C/ and @.N e;�/ via id or by
h1 as in Theorem 2.8. Likewise, we will speak of the collar neighborhoods �1 and �2

of @.N e;˙/ (referred to as �V and �H respectively in Theorem 2.8).

The identifications are indexed via E.X /. As in Theorem 2.8, identify @.N e;C/

and @.N e;�/ via id if f .ıC.e// D f .ı�.e// and via h1 otherwise. Then a collar
neighborhood of @.N e;˙/ for which pf is smooth is given by �f .ı˙.e// .

The argument that each of the fiberings are distinct up to �1 –fiberwise diffeomorphism
proceeds along the same lines as in Theorem 2.3. If f1; f2W V .X /!f1; 2g are distinct,
then there exists at least one v for which f1.v/¤ f2.v/. Arguing as in Theorem 2.3,
one produces an essential loop 
 �Ev

2
contained in the fiber of f1 that projects onto

an essential loop under f2 .

By definition, a graph of groups on a graph X is constructed by connecting Eilenberg–
Mac Lane spaces K.�v; 1/ indexed by the vertices, along mapping cylinders induced
from homomorphisms �eW �e ! �v . In our setting, for each v 2 V .X /, the space
Ev

2
is a K.�1Ev

2
; 1/ space, since it is the total space of a fibration †0! Ev

2
! †,

where †0 is obtained from † by removing n open disks, one for each edge incident
to v . As the base and the fiber of this fibration are both aspherical, it follows from
the homotopy long exact sequence that Ev

2
is aspherical as well. The edge spaces are

given by @.N e;˙/, each of which is diffeomorphic to the aspherical space U T†. It
follows that EX is indeed a graph of groups.

Remark 2.10 In contrast with the construction in Theorem 2.8, the monodromy
representations associated to an arbitrary EX need not be contained in the Torelli
group. For example, let X be a graph with two vertices and two edges connecting
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them. We can take † to be a surface of genus 3. Then it is easy to find elements of
the monodromy that do not preserve the homology of the fiber. See Figure 7.

Figure 7: The lighter curve is taken to the darker one under the monodromy
action associated to the loop on the base surface. The dark and the light
curves are not homologous. The identifications of the boundary components
have been indicated by cylinders.

It can also be seen from this point of view that the images of the monodromy rep-
resentations will be contained in the Lagrangian mapping class group Lg , defined
as follows. The algebraic intersection pairing endows H1.†g;Z/ with a symplectic
structure, and there is a decomposition

H1.†g;Z/DLx˚Ly

as a direct sum, with the property that the algebraic intersection pairing restricts trivially
to Lx and to Ly . Then

Lg WD ff 2Modg j f .Lx/DLxg:

Suppose z† has been constructed from a finite graph X as in Theorem 2.9. Let
�W �1†!Mod.z†/ be the associated monodromy. There is a Lagrangian subspace of
H1.z†/ of the form

LD
M

v2V .X /

Lv˚ C;

where Lv is a Lagrangian subspace of the fiber of Ev
2

, and C �H1.z†/ is the (possibly
empty) subspace generated by the homology classes of the former boundary components
in z†. By construction, for all x 2Lv and all g 2 �1.†/, the equation

�.g/.x/D xC c
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holds in H1.z†/, for some appropriate c 2 C . As C is fixed elementwise by the action
of � , it follows that L is indeed a �–invariant Lagrangian subspace.

In [11], Sakasai showed that the first MMM class e1 2H 2.Modg;Z/ vanishes when
restricted to Lg . It follows that the surface bundles over surfaces constructed in this
section all have signature zero. More generally, suppose †g!E!†h is a surface
bundle over a surface with monodromy representation �W �1†h!� , where � �Modg

is a subgroup. We can view the bundle E! †h as giving rise to a homology class
ŒE� 2H2.�;Z/, eg by taking the pushforward ��.Œ†h�/ of the fundamental class.

Question 2.11 Do the examples of surface bundles over surfaces given in Theorem 2.9
determine nonzero classes in Lg ? For a fixed g , what is the dimension of the space
spanned in H2.Lg;Q/ by the examples in Theorem 2.9 with fiber genus g?

Further constructions It is possible to extend the constructions in Theorem 2.8 and
Theorem 2.9 to obtain examples where the base and fibers of distinct fiberings do not
all have the same genus. The author is grateful to D Margalit for suggesting the basic
idea underlying the constructions in this subsection.

Theorem 2.12 Let † be a surface admitting a free action by a finite group G of order
n, let X be a connected bipartite graph of maximal valence n, and let f vW z†! †v

for v 2 V .X / be covering maps, not necessarily distinct. Then there exists a 4–
manifold EX admitting jV .X /jC 1 fiberings p0;pv.v 2 V .X //, with p0W EX !†

and pvW EX !†v all projection maps for surface bundle structures on E , distinct up
to �1 –fiberwise diffeomorphism. If the surfaces †v and †w have distinct genera, the
fiberings pv;pw are distinct up to fiberwise diffeomorphism.

Proof Let †0 be a closed surface of genus g that admits coverings f 1W †0!†1

and f 2W †0! †2 of degree d1; d2 respectively. For i D 1; 2, consider the graphs
�i �†

0 �†i of the coverings f i . Thicken these to tubular neighborhoods N i . Each
@N i is an S1 –bundle over †0 with Euler number �.†0/. By reversing the orientation
on one of the components, it is therefore possible to fiberwise connect-sum †0 �†1

and †0 �†2 along N 1 and N 2 to make the 4–manifold E .

Let pV W E2!†0 and pi
H
W Ei

2
!†i be the vertical and horizontal projections. These

can be combined in various ways to define three distinct fiberings on E . The first
fibering p0W E!†0 is given by the projection onto the first factor on both coordinates
of E2 , so that the fiber is †1 #†2 . The second fibering p1W E!†1 is given by p1

H

on E1
2

, and by f 1 ıpV on E2
2

. Let F1 denote the fiber of p1 over w 2 †1 . Then
(relative to an appropriate metric d and a suitable " > 0)

F1\E1
2 D f.y; w/ 2†

0
�†1

j d.f 1.y/; w/� "g
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is a copy of †0 with d1 disks removed (recall that di is the degree of the covering
f i W †0!†i ). In turn,

F1\E2
2 D f.v;y/ 2†

0
�†2

j f 1.v/D w; d.f 2.v/;y/� "g

consists of d1 copies of †2 , each with one boundary component. In total then,

F1 D†
0 #
�
†2
�#d1 :

When d1 > 1, the monodromy of p1 is not contained in the Torelli group Ig . Let

 be a loop on †1 which lifts to an arc z
 � †0 with endpoints v1; v2 . Then the
component of F1\E2

2
lying over v1 2†

0 is sent to the component lying over v2 . If
x is a loop in the first component representing some nontrivial homology class in F1 ,
then �.
 /.x/ is a distinct homology class in F1 , and so the monodromy of p1 has a
nontrivial action on H1.†g;Z/.

The construction of p2W E!†2 is completely analogous. The fibering p2 is given
by f 2 ıpV on E1

2
and by p2

H
on E2

2
. The fiber is of the form

F2 D†
0 #
�
†1
�#d2 :

As in the previous constructions it is necessary to specify the precise identification maps
as well as collar neighborhoods. The internal details proceed along similar lines as
before, except that the boundary identifications require some further comment. Realize
@N i as a subset of †0 �†i . Then @N i is the total space of two different fiber bundle
structures inherited respectively from pV and pi

H
. The identification maps for the

various pi will be constructed so as to preserve fibers of these various fiberings.

For p0 , identify @N 1 and @N 2 in a fiber-preserving way with respect to pV on
both @N1 and @N2 . For p1 , identify @N 1 and @N 2 so that p1

H
–fibers on @N1

correspond to pV –fibers @N2 . More precisely, given z 2 †1 , the p1
H

–fiber of
z consists of d1 disjoint circles projecting down to circles in †0 centered at the
points of .f 1/�1.z/. For every x 2†0 , the identification of @N1 and @N2 identifies
p�1

V
.x/ with the component of .p1

H
/�1.f 1.x// centered over x . The identification

of @N 1; @N 2 appropriate for p2 is constructed analogously, matching pV –fibers of
@N1 with p2

H
–fibers of @N2 .

The straight-line isotopy ht constructed in the course of Theorem 2.8 was purely
local in its definition. The same formulas as before show that the three gluing maps
constructed in the above paragraph are mutually isotopic, and the construction proceeds
as before.

It is also possible to generalize the construction of Theorem 2.9, so that the surfaces
used in the construction of EX are all covered by †. For v 2 V .X /, let f vW †!†v
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be a covering. Suppose that each †v admits a free action of a group Gv , such that jGvj
is at least the valence of v . We may then repeat the construction of Theorem 2.9, taking
Ev

1
D†�†v . Since Gv acts freely, for g; h2Gv , the graphs of gıf v and hıf v are

disjoint as submanifolds of Ev
1

. We may then remove neighborhoods of these graphs
to produce Ev

2
and connect the boundaries as in Theorem 2.9. The resulting EX has

at least jV .X /j C 1 fiberings p0;pv.v 2 V .X //. The first fibering p0 is defined on
each Ev

2
via pV , and the result is a fiber bundle p0W EX !†. For v 2 V .X /, define

pv on the components Ev
2

via

pvjEw
2

�
pv

H
w D v;

f v ıpV w ¤ v:

The result is a fibering pvW EX !†v .

Example 2.13 Let † be a surface admitting a free action of Z=2n for some n. For
0 � k � n define †k D †=.Z=2k/. Let f k W †! †k be the associated covering.
Each †k admits an action of Z=2n�k , so that for k � n� 1, each †k admits a free
involution �k . Let X be the “line graph” with vertex set V .X /D f0; 1; : : : ; ng, such
that fi; j g 2E.X / whenever ji � j j D 1.

In this setting, the construction of Theorem 2.12 produces a 4–manifold E4 which fibers
as a surface bundle over †k for each 0� k � n. In more detail, define Ek

1
D†�†k .

For 0� k � n� 1, the graphs of f k and �k ı f k are disjoint, and we attach Ek
1

to
EkC1

1
by joining the graph of �k ıf k �Ek

1
to the graph of f kC1�EkC1

1
. Although

En
1

does not necessarily admit a free involution, the vertex n 2 X has valence 1,
and En�1

1
can still be joined to En

1
using the rule described above, resulting in a

4–manifold EX .

For 0� k � n, there are fiberings pk W EX !†k defined on components E
j
2
�EX

via

pk jEj

2

D

�
pk

H
j D k;

f k ıpV j ¤ k:

Together, these realize EX as the total space of a surface bundle over †k for each
0� k � n.

3 Further questions

In this final section we collect together some questions about surface bundles over
surfaces with multiple fiberings. Our first line of inquiry concerns the number of
possible fiberings that surface bundles over a surface with given Euler characteristic
can admit.
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Proposition 3.1 Let E4 be a 4–manifold with �.E/D 4d . Then E admits at most4

F.d/D �0.d/.d C 1/2dC6

fiberings as a surface bundle over a surface which are distinct up to �1 –fiberwise
diffeomorphism, where �0.d/ denotes the number of divisors of d .

Proof To obtain the explicit bound given above, we will first reproduce F E A Johnson’s
original argument, incorporating some improvements suggested by J Hillman. Let
pW E!†h be the projection for a †g –bundle structure on E . There is an associated
short exact sequence of fundamental groups

(2) 1 �!K �! �1E �! �1†h �! 1;

with K � �1†g the fundamental group of the fiber.

We will first show that if g < h, then p determines the unique †g –bundle structure on
E , up to �1 –fiberwise diffeomorphism. Equivalently (by Proposition 2.2), it suffices
to show that (2) is the unique splitting of �1E as an extension of �1†h by �1†g .

Suppose p0W E!†h is a second fibering, giving rise to a short exact sequence

1 �!K0 �! �1E �! �1†h �! 1:

Consider the projection p�jK 0 . Suppose first that p�.K
0/ D f1g, or equivalently

K0 � ker p� DK . As K and K0 are both isomorphic to �1†g , in this case K DK0 .

Suppose next that Im.p�jK 0/ is nontrivial. In this case, the image p�.K
0/ is a nontrivial

finitely generated normal subgroup of the surface group �1†h . It is a general fact that if
N C�1†h is any nontrivial finitely generated normal subgroup, then N has finite index
in �1†h (see [10, Theorem 3.1]). No finite-index subgroup of �1†h is generated by
strictly fewer than 2h generators. On the other hand, K0 is generated by 2g generators
by assumption. This is a contradiction, and it follows that Im.p�jK 0/ D f1g. By
the argument of the previous paragraph, this shows that necessarily K DK0 , and so
pW E!†h is the unique †g –bundle structure on E as claimed.

Returning to the general setting, suppose pW E ! †h is a †g –bundle over †h .
As before, let K � �1†g denote the fundamental group of the fiber. The Euler
characteristic is multiplicative for fiber bundles:

�.E/D �.†g/�.†h/D 4.g� 1/.h� 1/:

4In fact, an additional argument, such as the one given in [5, Section 5.2], can be used to obtain the
slightly better bound �0.d/d

2dC6 . The bound given here is good enough for our purposes.
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Let d D .g� 1/.h� 1/, so that �.E/D 4d . Any .d C 1/–sheeted cover of †h has
genus .h� 1/d C hD .h� 1/2.g� 1/C h, and this quantity is strictly larger than g .
Let z†!†h be such a cover, and let zpW zE! z† denote the pullback of p along this
cover. Then zp has the property that the genus of the fiber is strictly smaller than the
genus of the base. By the above argument, K is the unique normal subgroup of �1

zE

isomorphic to �1†g with surface group quotient.

Let z̨W �1E ! Z=.d C 1/Z be an epimorphism. If z̨.K/ D 0, then z̨ is induced
from a map ˛W �1†h! Z=.d C 1/Z. Let z† denote the cover of †h associated to ˛ .
Carrying out the construction of the previous paragraph, it follows that to each such
z̨ there is at most one †g –bundle structure on E . As �.†g/ must divide �.E/, it
follows that E can be the total space of a †g –bundle for only finitely many g . As
Hom.�1E;Z=.d C 1/Z/ is finite, this completes the portion of the argument due to
F E A Johnson.

Our own extremely modest contribution to Proposition 3.1 is to determine an explicit
upper bound on the maximal cardinality of Hom.�1E;Z=.d C 1/Z/ over all possible
surface bundles E of a fixed Euler characteristic 4d . It follows from (2) that a surface
bundle †g ! E ! †h admits a generating set for �1E of size 2gC 2h. As g; h

range over all possible pairs such that .g�1/.h�1/D d , the largest value of 2gC2h

is obtained for gD dC1; hD 2. This shows that any surface bundle over a surface E

with �.E/D 4d has a generating set with at most 2d C 6 generators. It follows that

jHom.�1E;Z=.d C 1/Z/j � .d C 1/2dC6:

As noted above, for each ˛ 2 Hom.�1E;Z=.d C 1/Z/, the corresponding cover zE
has at most one †g –bundle structure for each g � 2 such that g� 1 divides d . The
bound in the statement of the proposition follows.

We defined the function N.d/ in Section 1,

N.d/ WDmax
�

n

ˇ̌̌̌
there exists E4; �.E/�4d , E admits n surface bundle
structures distinct up to �1 –fiberwise diffeomorphism

�
:

Proposition 3.1 shows that N.d/ � �0.d/.d C 1/2dC6 . Prior to the results of this
paper, the best known lower bound on N.d/ was N.d/ � 2. Drastic improvements
can be made by making use of the construction of Theorem 2.9. Let † be a surface
of genus 3 admitting a free involution � , and let X be the “line graph” with vertex
set V .X /D f1; 2; : : : ; ng, such that fi; j g 2E.X / whenever ji � j j D 1. According
to Theorem 2.9, the corresponding EX has 2n fiberings. For each fibering, the base
has genus 3 and the fiber has genus 3n; consequently �.EX /D 4 � 2 � .3n� 1/. This
shows that

N.6n� 2/� 2n:
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Combining this with Johnson’s upper bound, we obtain

2.dC2/=6
�N.d/� �0.d/.d C 1/2dC6:

Problem 3.2 Study the function N.d/. Sharpen the known upper bounds on N , and
construct new examples of surface bundles over surfaces to improve the lower bounds.

One feature of the constructions given here is that they all take place within the smooth
category, and cannot be given complex or algebraic structures. Indeed, all of the
monodromy representations of the constructions of Section 2 globally fix the isotopy
class of a curve contained in the fiber (one of the former boundary components).
H Shiga [13] has shown that if E is a 4–manifold with a complex structure, B a
Riemann surface, and pW E!B a holomorphic map realizing E as the total space of
a holomorphic family of Riemann surfaces, then the monodromy cannot globally fix
the isotopy class of any curve. On the other hand, it has been shown independently
by J Hillman, M Kapovich and D Kotschick (see [5, Theorem 13.7]) that if E and
B are as above and pW E! B is a smooth fibration of E over B , then there exists
a holomorphic map p0W E! B that realizes E as the total space of a holomorphic
family of Riemann surfaces. Combining these results with the known reducibility of
the monodromies of the examples in this paper, one sees that our examples cannot be
given complex structures. On the other hand, the examples of Atiyah and Kodaira that
admit two fiberings take place in the algebraic category, prompting the following.

Question 3.3 Let E4 be a complex surface that is the total space of a surface bundle
over a surface pW E!X . Can such an E admit three or more such fiberings? More
generally, can a 4–manifold with nonzero signature admit three or more structures as a
surface bundle over a surface?

This question is closely related to a point raised briefly in the introduction, and we
remark that it is possible that the list of known fiberings of a given 4–manifold need
not be exhaustive. There can be “hidden” fiberings that are not immediately apparent.

Question 3.4 Are the two known fiberings of surface bundles over surfaces of the
Atiyah–Kodaira type the only surface bundle structures on these manifolds? Do the
manifolds constructed in Section 2 admit more fiberings than described in this paper?
Is there some finite-sheeted cover of an Atiyah–Kodaira manifold that admits three or
more fiberings?
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