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The topology of Stein fillable manifolds
in high dimensions, II
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APPENDIX BY BERND C KELLNER

We continue our study of contact structures on manifolds of dimension at least five
using surgery-theoretic methods. Particular applications include the existence of
“maximal” almost contact manifolds with respect to the Stein cobordism relation as
well as the existence of weakly fillable contact structures on the product M �S2 .
We also study the connection between Stein fillability and connected sums: we give
examples of almost contact manifolds for which the connected sum is Stein fillable,
while the components are not.

Concerning obstructions to Stein fillability, we show for all k > 1 that there are
almost contact structures on the .8k�1/–sphere which are not Stein fillable. This
implies the same result for all highly connected .8k�1/–manifolds which admit
almost contact structures. The proofs rely on a new number-theoretic result about
Bernoulli numbers.

32E10; 57R17, 57R65

1 Introduction

One of the driving questions in contact topology was to determine which smooth
closed oriented manifolds M of dimension 2qC1 admit a contact structure, where a
(coorientable) contact structure is a codimension-1 distribution � that is defined as the
kernel of a 1–form � 2�1.M / with the property that �^ .d�/q is a positive volume
form. Since a contact structure splits the tangent bundle of the .2qC1/–manifold M as
the direct sum of a trivial real line bundle and a complex q–dimensional subbundle, we
need to assume that the manifold in question is already equipped with such a splitting,
called an almost contact structure. The general existence question for almost contact
manifolds was recently answered by Borman, Eliashberg and Murphy:
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Theorem 1.1 [2] Suppose that .M; '/ is a closed oriented .2qC1/–dimensional
almost contact manifold. Then there is a contact structure on M homotopic to the
given almost contact structure.

Indeed, the construction of [2] provides a contact structure which contains an overtwisted
disk (cf [2, Section 2.5]), so in particular it is not symplectically fillable in any sense.
(For various notions of symplectic fillability, see Section 2.1 and Massot, Niederkrüger
and Wendl [24].) For this reason, constructions of fillable structures, and obstructions
for their existence seem essential in an effort to understand all contact structures (up to
contactomorphism or contact isotopy) on a given almost contact .2qC1/–manifold.
Such complete classifications are available for some classes of 3–dimensional manifolds,
although the complete picture is still to be discovered even in that dimension.

The strongest fillability notion is provided by Stein fillability. Recall that a compact
complex manifold W is a Stein domain if it admits a strictly plurisubharmonic function
for which the boundary is a regular level set. According to Eliashberg’s characterization,
a 2n–manifold with n� 3 admits a Stein structure if and only if it admits an almost
complex structure and a handle decomposition with handles of index at most n (see
Cieliebak and Eliashberg [9] and Eliashberg [11]). A Stein structure on W naturally
induces a contact structure on M D @W , and contact structures presentable in this
way are called Stein fillable. Using the above topological characterization of Stein
domains, modified surgery theory can be fruitfully applied in studying Stein fillability
as in Bowden, Crowley and Stipsicz [7].

This topological characterization of Stein domains easily generalizes to cobordisms,
providing the relation of topological Stein cobordism for almost contact manifolds:
Two almost contact manifolds .M0; '0/ and .M1; '1/ are in this relation if there is an
almost complex cobordism between them that is compatible with '0 and '1 on the two
ends, and admits a relative handle decomposition with handles of index at most half the
dimension when built on M0 � Œ0; 1�. For convenience we write .M0; '0/� .M1; '1/

in this case. (Notice that this relation is not symmetric.)

A surprising application of the surgery-theoretic approach to existence problems in
contact topology provides the following result about topological Stein cobordisms. (For
a more precise statement, see Proposition 3.1.)

Theorem 1.2 For a fixed dimension 2qC1 � 5 there is an almost contact .2qC1/–
manifold .Mmax; 'max/ such that for any almost contact .2qC1/–manifold .M; '/

we have
.M; '/� .Mmax; 'max/:
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This theorem should be compared with a result of Etnyre and Honda [12], showing
that in dimension three there are initial contact manifolds so that .Mmin; �min/ is Stein
cobordant to any other contact manifold .M; �/. In the case of almost contact 5–
manifolds whose almost contact structures have vanishing first Chern class, one can
even take .Mmax; 'max/D .S

5; 'std/ (cf Proposition 3.4).

The notion of topological Stein cobordism introduced above allows for the following
interpretation of the main result of Bowden, Crowley and Stipsicz [6]. Recall that
according to a result of Bourgeois [4], for a contact manifold .M; �/ the product
M �T 2 carries an almost contact structure 'T which can be represented by a contact
structure �T . By Massot, Niederkrüger and Wendl [24, Example 5], if .M; �/ is weakly
fillable then so is �T . Since the main result of [6] shows that for some appropriately
chosen almost contact structure 'S on M�S2 we have .M�T 2; 'T /� .M�S2; 'S /,
this yields the following variant of the main result of [6]:

Theorem 1.3 Suppose that a contact manifold .M I �/ admits a weak symplectic
filling .W; !/ . Then the product M �S2 admits a weakly fillable contact structure.

Remark 1.4 Note that while all our other statements are concerned with almost contact
structures on manifolds, Theorem 1.3 is about genuine contact structures.

We now move from products to connected sums. The connected sum of two 3–manifolds
is Stein fillable if and only if both 3–manifolds are Stein fillable; see Eliashberg [10].
Recall that in higher dimensions, the diffeomorphism types of components of a con-
nected sum are only well-defined up to connect summing with homotopy spheres. In
contrast to dimension three, we have the following result.

Theorem 1.5 Let M D ST �S2kC1 be the unit cotangent bundle of the .2kC1/–
sphere. For every odd k � 5, M admits an almost contact structure ' such that
.M; '/ # .�M;�'/ admits a Stein fillable contact structure. However, for every
almost contact homotopy .4kC1/–sphere .†; '†/, neither .M # †; ' # '†/ nor
.�.M #†/;�.' #'†// is Stein fillable.

Dimension five appears to be intermediate between dimension three and higher di-
mensions, with regard to the Stein fillability of the summands of a Stein fillable
connected sum. In dimension five, there are no exotic spheres, and if .M; '/ is
an almost contact manifold where M is a connected sum M D M0 # M1 , then
.M; '/ D .M0; '/ # .M1; '1/ for almost contact structures 'i on Mi which are
uniquely defined up to homotopy (see Lemma 4.7). By abuse of notation we let

c1.'/W �2.M /! ZD �2.BU /
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denote the evaluation homomorphism given by the first Chern class of the almost
contact structure ' . We then have the following analogue of Eliashberg’s theorem.

Theorem 1.6 Let .M; '/ D .M0 # M1; '0 # '1/ be a Stein fillable almost contact
5–manifold. Assume that either c1.'/D 0 or that

c1.'/.�2.M0//D c1.'/.�2.M1//D ZD �2.BU /:

Then both .M0; '0/ and .M1; '1/ are Stein fillable.

We next consider Stein fillability of almost contact structures on spheres. Denote by
.S2qC1; �std/ the standard stable almost contact structure on the .2qC1/–dimensional
sphere, which is induced by the Stein .2qC2/–disk. When 2qC1 D 8k�1, basic
obstruction theory shows that S8k�1 has two stable almost contact structures, �std

and a nonstandard or exotic stable almost contact structure �ex . The exotic structure
�ex is harder to visualize than �std (see Section 5.2 for a description when k > 1). It
follows from Bowden, Crowley and Stipsicz [7] and Geiges [13] that .S7; �ex/ can be
represented by a Stein fillable contact structure. In contrast, for 8k�1> 7 we have the
following theorem.

Theorem 1.7 The exotic stable almost contact structure �ex on S8k�1 cannot be
represented by a Stein fillable contact structure once k � 2.

Theorem 1.7 rests on Theorem 1.8 below, which improves a result of Yang [34]
about the existence of stable almost complex structures on .4k�1/–connected 8k–
manifolds. Before stating these results we first recall some notation and terminology.
Let F W BU ! BSO be the forgetful map between the classifying spaces for stable
unitary and stable oriented vector bundles. A necessary condition for an oriented
manifold X to admit a stable complex structure is that

Im.�X �/� F�.�4k.BU //� �4k.BSO/;

where �X �W �4k.X /! �4k.BSO/ is induced by the classifying map of the stable
tangent bundle of X , �X W X ! BSO. (Note that �4k.BSO/=F�.�4k.BU //D Z=2
when k is even.) According to the following theorem, once k > 1, this necessary
condition is also sufficient.

Theorem 1.8 A smooth closed oriented .4k�1/–connected 8k–manifold Y admits a
stable almost complex structure if and only if:

(1) k � 3 is odd.

(2) k D 1 and the signature �Y of Y is even.

(3) k is even and Im.�Y �/� F�.�4k.BU //.
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The improvement provided by Theorem 1.8 over Yang’s result is the removal of assump-
tions involving Bernoulli numbers. This step is made possible by a new divisibility
property of differences of reciprocals of Bernoulli numbers, which is proven in the
appendix written by Bernd Kellner.

Computing the appropriate bordism obstruction class to Stein fillability from [7],
Theorem 1.7 implies the following nonfillability result for highly connected manifolds:

Corollary 1.9 Let M be a .4k�2/–connected .8k�1/–manifold and k�2. Suppose
that M admits an almost contact structure. Then M admits an almost contact structure
which cannot be represented by any Stein fillable contact structure.

Outline of the paper In Section 2 we review some basic notions and recall the
definition of the obstruction class as introduced in [7] associated to an almost contact
manifold. We also prove Theorem 1.3 in this section. In Section 3 we present the proof
of Theorem 1.2. Section 4 is devoted to the study of the relation between Stein fillability
and connected sums, and in particular it contains the proofs of Theorems 1.5 and 1.6.
In Section 5 we examine the Stein fillability of stable almost contact structures on
.8k�1/–spheres, and in particular prove Theorem 1.7 and Corollary 1.9. Section 5 also
contains our improvement of Yang’s result given in Theorem 1.8 about the existence of
stable almost complex structures on highly connected 8k–manifolds. The appendix
contains the number-theoretic result about Bernoulli numbers needed for the proof of
Theorem 1.7, and was written by Bernd Kellner.

Acknowledgements The authors would like to thank the Max-Planck-Institute in
Bonn and the Laboratoire de Mathématiques Jean Leray in Nantes for their hospitality
which enabled parts of this work to be carried out. We would also like to thank
Pieter Moree for providing a bridge to the world of number theory and contacting
Karl Dilcher and Bernd Kellner. We are grateful to the referee for many helpful
comments and suggestions. JB was partially supported by DFG Grant BO4423/1-1.
DC acknowledges the support of the Leibniz Prize of Wolfgang Lück, granted by the
Deutsche Forschungsgemeinschaft. AS was partially supported by OTKA K100796, by
the Lendület program of the Hungarian Academy of Sciences and by ERC Advanced
Grant LDTBud. The present work is part of the authors’ activities within CAST, a
Research Network Program of the European Science Foundation.

2 Fillability and surgery

In their proof of the existence of contact structures on closed almost contact manifolds,
Borman, Eliashberg and Murphy [2] produce contact structures with the additional
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property that they are not fillable in any sense. For this reason we will focus on finding
fillable structures on various manifolds.

2.1 Fillable structures and Stein cobordisms

We begin by recalling the definitions of the various standard notions of fillability of
contact structures. For a more detailed account we refer to [15; 24]. Recall that a
symplectic manifold .W; !/ is a .2qC2/–dimensional manifold W with a closed
2–form ! such that !qC1 ¤ 0. Hence a symplectic manifold carries a canonical
orientation. Similarly, a cooriented contact structure � on a .2qC1/–manifold M

determines an orientation of M given by the form �^ .d�/q .

Definition 2.1 A contact manifold .M; �/ is weakly symplectically fillable if it is the
oriented boundary of a compact symplectic manifold .W; !/ and there is an almost
complex structure J that is tamed by ! so that J.TM /\TM D � and for a contact
form � defining � we have d�.v;Jv/ > 0 (for all 0¤ v 2 � ).

This definition was introduced in [24], where it was shown to be strictly weaker than
the more standard notion of strong fillability.

Definition 2.2 A contact manifold .M; �/ is called strongly symplectically fillable
if it bounds a compact symplectic manifold .W; !/ and there is an outward pointing
vector field V near @W such that the Lie derivative satisfies LV ! D ! and �D �V !
is a defining 1–form for � . If the symplectic form ! is also exact then we say that
.M; �/ is exactly fillable.

Note that strong fillability is equivalent to weak fillability plus the condition that the
symplectic form is exact near the boundary [24, Remark 1.11]. A further specialization
of the fillability notion is that of Stein fillability. Recall that a Stein domain is a compact,
complex manifold .W;J / with boundary that admits a function f W W ! Œ0; 1� so that
f �1.1/ D @W is a regular level set and ! D �dd Cf is a symplectic form (where
dCf .X /D df .JX /).

Definition 2.3 A contact manifold .M; �/ is Stein fillable if it bounds a Stein domain
.W;J / such that � D J.TM /\TM .

These notions of fillability fit into the following sequence of inclusions of contactomor-
phism classes of contact manifolds, all of which are known to be strict:

fStein fillable} � {exactly fillable} � {strongly fillable} � {weakly fillable}:

The applicability of surgery-theoretic methods in the study of fillable contact structures
is provided by the following fundamental result of Eliashberg:
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Theorem 2.4 (Eliashberg’s h–principle [9; 11]) Let .W;J / be a compact .2qC2/–
dimensional almost complex manifold admitting a handle decomposition with handles
of index qC1 or less, and suppose that q � 2. Then J is homotopic to a complex
structure zJ so that .W; zJ / is a Stein filling of a contact structure � on M D @W .

The concept of Stein domains can be generalized to cobordisms as follows:

Definition 2.5 A smooth cobordism W between contact manifolds .M0; �0/ and
.M1; �1/ is a Stein cobordism if:

� @W D�M0 tM1 .

� W admits a complex structure J and a map f W W ! Œ0; 1� such that M0 WD

f �1.0/ and M1 WD f
�1.1/ are regular level sets.

� ! D�dd Cf is a symplectic form.

� �i D J.TMi/\TMi , ie the complex structure J induces the contact structures
�i on the ends of the cobordism. The contact manifold .M0; �0/ is usually called
the concave end and .M1; �1/ the convex end of the Stein cobordism .W;J /.

The proof of Theorem 2.4 proceeds by inductively adding handles to the standard
contact structure on the sphere S2qC1 (which is regarded as the boundary of the
standard complex ball), and showing that the traces of these handle attachments can be
endowed with the structure of a Stein cobordism:

Theorem 2.6 Let .M 2qC1; �/ be a contact manifold of dimension 2qC1 � 5. Sup-
pose that k � qC1 and that M 0 is obtained from M via an almost complex handle
attachment of index k with trace .M � I/[ hk . Then the almost complex structure
J on the trace is homotopic to a complex structure zJ so that ..M � I/[ hk ; zJ / is a
Stein cobordism from .M; �/ to .M 0; � 0/ (with some contact structure � 0 on M 0 ).

Remark 2.7 By equipping the product M0 � I with the symplectic structure given
by the symplectization !sp.�0/ of the contact structure �0 and isotoping the attaching
sphere of the handle hk to an isotropic sphere, the symplectic form !sp.�0/ was
extended by Weinstein [32] to the trace .M0 � I/ [ hk . The existence of a Stein
structure on the trace (in particular, the construction of the appropriate function f of
the definition) is due to Eliashberg [9; 11]. When the symplectic or Stein structures are
implicitly assumed in our later arguments, we will refer to such handles and handle
attachments as Stein/Weinstein handles resp. handle attachments.
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In the following we would like to emphasize the topological nature of the above
definitions. To do this in the proper setting, we need to recall the definitions of almost
contact and stably complex structures and manifolds.

Suppose that M is a smooth closed oriented .2qC1/–manifold and ' is an almost
contact structure on M . The tangent bundle of M is classified by the map � W M !
BSO.2qC1/, and an almost contact structure provides a lift of this map to BU.q/:

BU.q/

Fq

��
M

� //

'
99

BSO.2qC1/

Here Fq is induced by the canonical embedding U.q/! SO.2qC1/. All these maps
can be stabilized to yield maps to BSO resp. BU . For some purposes, it is helpful to
formulate results using the stable normal Gauss map �W M ! BSO rather than the
tangential map � , and we will follow this strategy. In this setting, a map �W M !BU

in a commutative diagram
BU

F
��

M
� //

�
<<

BSO

describes a complex structure on the normal bundle of M . Since the sum of the
stable tangent and normal bundles is canonically trivialized, a normal complex struc-
ture determines a unique stable complex (or stable contact) structure, and vice versa.
Theorem 2.6 motivates the following definition:

Definition 2.8 A stably almost contact .2qC1/–manifold .M0; �0/ is topologically
Stein cobordant to .M1; �1/ if there is a stably complex cobordism .W; �/ such that

@.W; �/D�.M0; �0/t .M1; �1/

as stably complex manifolds and W is built from M0 � Œ0; 1� by attaching handles of
index � qC1. In this case we write

.M0; �0/� .M1; �1/;

and call .W; �/ a topological Stein cobordism.

Note that according to [7, Lemma 3.6] the Stein cobordism relation is the same if we
consider almost complex cobordisms or stably complex ones. This follows from the
fact that every almost complex structure in a given stable class can be realized by taking
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the connected sum with various Stein fillable almost contact structures on the standard
sphere. Hence we can also consider the Stein cobordism relation given by a true almost
complex bordism .W;J / between almost contact manifolds .M0; '0/ and .M1; '1/.
In short, if 'i generates the stable complex structure �i , then

(1) .M0; '0/� .M1; '1/ ” .M0; �0/� .M1; �1/:

If, in addition, an almost contact structure '0 on M0 is represented by a contact
structure, then repeated application of Theorem 2.6 shows that J can be homotoped to
a Stein structure on the cobordism W .

A Stein cobordism from .M0; �0/ to .M1; �1/ can be glued to a Stein filling of .M0; �0/,
providing a Stein filling of .M1; �1/. Attaching Stein/Weinstein handles preserves
strong fillability, hence gluing a Stein cobordism to a strong filling again yields a strong
filling. When gluing a Stein cobordism to a weak symplectic filling, however, some
care is needed: as shown by the next lemma, we need to assume that the symplectic
form vanishes on the attaching spheres of 3–handles.

Lemma 2.9 Let .W; !/ be a weak filling of a contact manifold .M; �0/ and suppose
that .W1;J / is a Stein cobordism from .M; �0/ to .M1; �1/ consisting of a single
k–handle attachment so that ! vanishes on the homology class of the attaching sphere
if kD 3. Then W 0DW [W1 (equipped with a suitable symplectic structure !0 , based
on ! and the Stein structure on W1 ) provides a weak filling of .M1; �1/.

Furthermore, if the attaching sphere of a 2–handle bounds a surface † in M then we
can assume that the !0.Œ†[D2�/D 0, where D2 denotes the core of the 2–handle.

Proof Let .��; �/�M be a small regular neighbourhood of M in W , where W

has been extended slightly. Let � be a defining 1–form for � . Suppose that !jM is
exact on the attaching sphere Sk�1 of the k–handle of W1 . Then there is a form !

cohomologous to !jM which vanishes near Sk�1 . By [24, Lemma 1.10] one can alter
the symplectic structure after attaching a sufficiently long end Œ0; 2C �� @W so that
the symplectic form is given by !C d.t�/ for all t � C � � and we still have a weak
filling of M DM �fC g. In particular, near Sk�1 �M �fC g the symplectic form is
just d.t�/. We attach a Stein/Weinstein k–handle along Sk�1 and denote the resulting
filling by .W 0; !0/. The almost complex structure J on W used in the definition of
weak filling then extends to an almost complex structure J 0 on W 0 that is tamed by !0 .

Since ! is always exact near an attaching sphere Sk�1 with k ¤ 3 and this is the case
by assumption if k D 3, the lemma follows immediately.
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In the case of a 2–handle whose attaching sphere S1 bounds a surface †, we can
assume that the form ! above vanishes on †�M � fC g. Then since the core of a
Weinstein handle is isotropic with isotropic boundary, it follows that

!0.Œ†[D2�/D

Z
†

C d�C

Z
D2

!0 D

Z
@†

C �D 0;

giving the final claim.

In [6], a contact structure was constructed on M �S2 by constructing a topological
Stein cobordism between M � T 2 and M � S2 for appropriate choices of almost
contact structures. With the above lemma at hand, this point of view then provides the
following fillability result, which corresponds to Theorem 1.3 in Section 1.

Proposition 2.10 Let .M; �/ be a contact manifold of dimension 2qC1 that admits
a weak symplectic filling .W; !/. Then M � S2 admits a weakly fillable contact
structure.

Proof Let .W; !/ be a weak filling of .M; �/. By [24, Example 5] the manifold
M �T 2 admits a contact structure that is weakly filled by the symplectic manifold
.W �T 2; !˚!T 2/. According to [6, Proposition 3.1] there is a Stein cobordism Y

from M �T 2 to M �S2 which fits into the following diagram:

(2) M �T 2

f0 %%

i0 // Y

gY

��

M �S2i1oo

idyy
M �S2;

where gY is a .qC2/–equivalence and f0 is the product of the identity with a map of
degree 1.

The idea of the proof is to inductively apply Lemma 2.9 to Stein handle attachments
which make up the bordism Y , starting from from M �T 2 . We first find a topological
Stein structure on Y where we can apply Lemma 2.9 to each handle attachement. For
this, we need to keep track of the cohmology class of the symplectic form of the filling,
when restricted to the outgoing boundary. Hence we note the equality of cohomology
classes Œ!jM ˚!T 2 �D f �0 .Œ!jM ˚!S2 �/ for a symplectic form !S2 on S2 .

Let ˛; ˇ � T 2 be the standard generators of �1.T
2/ which we consider in different

T 2 –fibers of M �T 2 . These are then null-homotopic in Y and hence extend to maps
of discs, which can be taken to be proper embeddings in Y since the dimension of Y is
at least 6. Let Y2 be the bordism obtained by attaching a pair of 2–handles along ˛ and
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ˇ . We then obtain decomposition of Y D Y2[X2
Y3 , where X2 is the upper boundary

component of Y2 . Attaching these 2–handles yields �1.Y2/D �1.X2/D �1.M / by
construction and also that the map Y2!M �S2 is a surjection on �2 . This latter
claim in obvious for classes in the �2.M /–factor and for the class coming form the
S2 –factor observe that the result of the surgery on the class Œpt�T 2� is a spherical
class that is mapped to Œpt�S2� under .gY /� .

Since Y2 is formed by 2–handle attachments, it has the homotopy type of a space
obtained by attaching .2qC2/–cells to X2 . Hence the inclusion X2! Y2 is .2qC1/–
connected and so gX2

W X2!M �S2 is 2–connected: Here, and for the rest of the
proof, we set gZ WD gY jZ for any subspace Z � Y . Since Y3 is obtained from
the .2qC2/–dimensional manifold Y by deleting neighbourhoods of 2–handles, the
inclusion Y3 ! Y is .2qC1/–connected and so gY3

W Y3 !M � S2 is at least 3–
connected. It follows that the pair .Y3;X2/ is algebraically 2–connected, and we will
use this later in the proof.

The fact that Y3 is obtained from Y by deleting neighbourhoods of 2–handles has
another important consequence. Combined with the fact that .Y;M � S2/ is alge-
braically .qC1/–connected, it implies that the pair .Y3;M � S2/ is algebraically
.qC1/–connected. Thus there is a handle decomposition of Y3 relative to M �S2

containing only handles of index at least qC2 by a result of Wall [7, Theorem 2.18] or
dually there is a handle decomposition of Y3 relative to X2 containing only handles
of index at most qC2. More precisely Wall shows inductively that given any handle
decomposition one can cancel handles of index k < qC2 with .kC1/–handles at the
expense of introducing a .kC2/–handles.

We now apply Lemma 2.9 to Y2 to obtain a weak filling .Y2; !
0/ of X2 . Since the

2–handles are attached along curves that are non-trivial in rational homology it follows
from the long exact sequence of the pair .Y2;M �T 2/ that the map M �T 2! Y2

induces an injection on cohomology. In particular, we have the following equality for
cohomology classes Œ!0�D .gY2

/�.Œ!jM ˚!S2 �/.

We now consider any topological Stein handle decomposition of Y3 relative to X2 .
As this pair is 2–connected we can then apply Wall’s argument to cancel all handles
of index k � 1 at the expense of introducing 3–handles. In particular, the resulting
handle decomposition will still be topologically Stein as dim.Y3/D 2qC4� 6.

We now attach the 2–handles h2
i of Y3 to X2 . Let Y2C D Y2[

Sn
iD1 h2

i � Y3 be the
union of Y2 and these new 2–handles. Let D2

i be the core of h2
i . Since the pair .Y3;X2/

is 2–connected, the disc D2
i can be homotoped inside Y3 to a disc �i �X2 relative

to its boundary, which by general position is embedded. Applying Lemma 2.9 for each
2–handle we obtain a weak filling .Y2C; !

0/ such that !0.ŒD2
i [�i �/D 0. We claim
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that at the level of cohomology classes we again have Œ!0�D .gY2C
/�.Œ!jM ˚!S2 �/.

To see this, consider the cohomology exact sequence of the pair .Y2C;Y2/:

� � � �!H 2.Y2C;Y2/
j
�!H 2.Y2C/ �!H 2.Y2/ �! � � � :

By construction, Œ!0� and .gY2C
/�.Œ!jM ˚!S2 �/ agree when restricted to Y2 , so their

difference lies in j .H 2.Y2C;Y2//, where H 2.Y2C;Y2/ is a free abelian group with
dual basis consisting of the 2–handles h2

i . Since D2
i and �i are homotopic relative

to their boundary in Y3 , the spherical class ŒD2
i [�i � is null-homotopic in Y3 . This,

combined with the fact that !0.ŒD2
i [�i �/D 0, ensures that

Œ!0�� .gY2C
/�.Œ!jM ˚!S2 �/D 0:

We next attach 3–handles to Y2C . In order to apply Lemma 2.9 we must ensure that the
resulting symplectic form vanishes on the attaching 2–sphere S2

a . Let �2CW Y2C! Y

be the inclusion. Since S2
a bounds a 3–disc in Y , it follows that

.gY2C
/�.ŒS

2
a �/D .gY /�.�2C/�.ŒS

2
a �/D 0 2H2.M �S2/:

We then have

h.gY2C
/�
�
Œ!jM ˚!S2 �

�
; ŒS2

a �i D hŒ!jM ˚!S2 �; .gY2C
/�.ŒS

2
a �/i D 0;

where the angular brackets denote the natural Kronecker pairing. Thus we can again
apply Lemma 2.9. As above the cohomology class of the symplectic structure !0 is
just the restriction of .gY /

�.Œ!jM ˚!S2 �/. Inductively applying Lemma 2.9 to the
remaining handles completes the argument.

2.2 The surgery obstruction and topological Stein cobordisms

In this subsection we briefly recall the main construction of [7]. We then extend
this point of view and identify the “topological Stein envelope” of an almost contact
manifold, ie those almost contact manifolds which can be obtained from a given one
via a topological Stein cobordism.

Recall that an almost contact structure ' on a .2qC1/–manifold M can be regarded as a
map 'W M 2qC1!BU.q/, which lifts the classifying map � W M 2qC1!BSO.2qC1/

of the tangent bundle of M . We then stabilize ' and pass to the corresponding complex
normal structure, which is an equivalence class of maps �W M ! BU , which lift the
stable normal Gauss map �W M ! BSO.
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For a fixed integer k , the map �W M!BU admits a Postnikov factorization .Bk
�
; �k
�
; x�/

with the following properties: these maps and spaces fit into the commutative diagram

Bk
�

�k
�

��
M

� //

x�
>>

BU;

and satisfy the following conditions:

(1) �k
�

is a Serre fibration.

(2) x� is a .kC1/–equivalence, that is, it induces an isomorphism on �i for all
i < kC1 and a surjection for i D kC1.

(3) �k
�

is a .kC1/–coequivalence, that is, it induces an isomorphism on �i for
i > kC1 and an injection for i D kC1.

The existence of these spaces and maps are proved in [1, Chapters 2 and 5]. The
pair .Bk

�
; �k
�
/ is unique (up to fiber homotopy equivalence), and we call them the

complex normal k–type of the stable complex manifold .M; �/. The map x�W M !Bk
�

is called a �–compatible normal smoothing and is not, in general, uniquely determined
by � . The only explicit complex normal k–types we will use in this paper are covered
by the following example.

Example 2.11 (cf [7, Example 2.5]) We take the stable complex bundle

.Bk
� ; �

k
� /D .BUhkC1i; �kC1/;

where the map �kC1W BUhkC1i ! BU is the k–fold connective covering of BU .
Recall that BUhkC1i is the space whose homotopy groups are trivial in degree i �k�1

and such that �kC1 induces a surjection on the k th homotopy group and isomorphisms
for all higher homotopy groups. We denote the bordism groups ��.BU hkC1iI�kC1/

by �U hki
� . When k D 3, we have that ��.BU h4iI�4/D�

SU
� is just special unitary

bordism as considered in [30, Chapter X].

For an almost contact .2qC1/–manifold .M; '/ with its induced stable complex
structure � we consider the associated complex normal .q�1/–type .Bq�1

�
; �

q�1

�
/.

The map x� then provides a bordism class ŒM; x�� in the bordism group

�2qC1.B
q�1

�
I �

q�1

�
/:

For a detailed discussion of this group, see [7].
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A priori the bordism class ŒM; x�� depends on the choice of .q�1/–smoothing x� ; we call
any such class an obstruction class, since — according to the next theorem — ŒM; x��

vanishes if and only if the almost contact structure ' can be represented by a Stein
fillable contact structure.

Theorem 2.12 [7, Theorem 1.2] A closed almost contact manifold .M; '/ of dimen-
sion 2qC1� 5 admits a Stein fillable contact structure homotopic to the almost contact
structure ' if and only if

ŒM; x��D 0 2�2qC1.B
q�1

�
I �

q�1

�
/

for any, equivalently for all, choices of x� , where � is the stabilization of ' .

Remark 2.13 The applicability of the obstruction class described above hinges on
computations of the bordism group

�2qC1.B
q�1

�1
I �

q�1

�1
/;

which is a highly nontrivial matter in general. For simply connected 7–manifolds with
torsion free second homotopy group [7, Theorem 1.3] shows that

�7.B
2
� ; �

2
� /D 0I

implying that all such almost contact 7–manifolds are Stein fillable. For .q�1/–
connected .2qC1/–manifolds further calculations of these bordism groups will be
presented in [5].

In terms of the topological Stein cobordism relation from Definition 2.8, Theorem 2.12
states that .S2kC1; �std/� .M; �/ if and only if an obstruction class ŒM; x�� vanishes. We
now extend Theorem 2.12 to give a bordism-theoretic determination of the topological
Stein cobordism relation for any pair of closed .2qC1/–dimensional stably complex
manifolds .M0; �/ and .M1; �1/.

Theorem 2.14 There is a topological Stein cobordism .W; �/ from .M0; �0/ to
.M1; �1/, ie .M0; �0/� .M1; �1/, if and only if there is a map ˛ of fibrations over BU

B
q�1

�0

�
q�1

�0
""

˛ // B
q�1

�1

�
q�1

�1
||

BU

and �i –compatible normal .q�1/–smoothings x�i W Mi! B
q�1

�i
such that

˛�.ŒM0; x�0�/D ŒM1; x�1� 2�2qC1.B
q�1

�1
I �

q�1

�1
/:
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Proof Suppose that
˛�.ŒM0; x�0�/D ŒM1; x�1�

and let .W; x�/ be a .Bq�1

�1
; �

q�1

�1
/–nullcobordism of .�M0;�˛ ı x�0/t .M1; x�1/. Ap-

plying surgery below the middle dimension [7, Proposition 2.6], we can assume that
x�W W ! B

q�1

�1
is a .qC1/–equivalence. It follows from a result of Wall [7, Theorem

2.18] that W is built from M1 by attaching handles of index � qC1 and dually that
W is obtained from M0 by attaching handles of index at most qC1, verifying one
direction of the equivalence.

Conversely, if .W; �/ is a topological Stein cobordism with boundary .�M0;��0/t

.M1; �1/, then the universal properties of Postnikov factorizations [1, Chapters 2 and 5]
mean that there is a homotopy commutative diagram,

�M0

�x�0 ��

i0 // W

x�
��

M1

x�1��

i1oo

B
q�1

�0

""

Bi0 // B
q�1

�

��

B
q�1

�1

||

Bi1oo

BU;

where x�0; x�1 and x� are all .q�1/–smoothings and for j D 0; 1, ij W Mj !W are the
inclusions and Bij are the corresponding induced maps of complex normal .q�1/–
types. Since W is obtained from M1 by the addition of handles on index .qC1/ or
larger, the proof of [7, Lemma 2.9(3)] shows that Bi1 is an equivalence of complex
normal .q�1/–types. We then set ˛ to be the following map of fibrations over BU :

˛ WD .Bi1/
�1
ıBi0W B

q�1

�0
! B

q�1

�1
;

where .Bi1/
�1 denotes a homotopy inverse of Bi1 . By definition, .W; x�/ is a

.B
q�1

�1
; �

q�1

�1
/–bordism which gives

˛�.ŒM0; x�0�/D ŒM1; x�1�:

Remark 2.15 Notice that [7, Theorem 3.8] is a direct consequence of the above
result (by taking ˛ D id). While [7, Theorem 3.8] is symmetric for .M0; �0/ and
.M1; �1/, in Theorem 2.14 the direction of the map ˛ breaks this symmetry. The above
extension of our earlier result was suggested by a question from Andy Wand in Nantes
in September 2013.
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3 Maximal almost contact manifolds

In dimension three the Stein cobordism relation has several interesting properties, one
of which is that there are initial elements: There exists a contact manifold .Mmin; �min/

such that for any other contact 3–manifold .M; �/ we have

.Mmin; �min/� .M; �/:

In fact, by [12] any overtwisted contact structure on any manifold will do (see also [16]).
On the other hand, in high dimensions, ie for dim.M /D 2qC1� 5 there exist final
almost contact elements. It is not clear whether such objects exist in dimension three.

The next proposition provides a proof of Theorem 1.2 from Section 1.

Proposition 3.1 In every dimension 2qC1� 5 there exists an almost contact manifold
.Mmax; 'max/ so that for any almost contact manifold .M; '/ we have

.M; '/� .Mmax; 'max/:

Moreover, in dimensions 5 and 7 we can take certain almost contact structures on the
nontrivial sphere bundles over S2 as final elements:

.Mmax; 'max/D .S
3
z�S2; 'max/; .Mmax; 'max/D .S

5
z�S2; 'max/;

where 'max is any almost contact structure whose first Chern class is primitive.

Proof For .Mmax; 'max/ we can take any almost contact .2qC1/–manifold where the
corresponding stable complex manifold .Mmax; �max/ has complex normal .q�1/–type
B

q�1

�max
D BU and the map to BU is just the identity. To construct such a manifold,

we begin with any stably complex .2qC1/–manifold �W M ! BU and apply surgery
below the middle dimension [7, Proposition 2.6] to obtain a stably complex manifold
.Mmax; �max/ where �maxW Mmax!BU is a q–equivalence, which then has the desired
complex normal .q�1/–type. We then take 'max , to be any almost contact structure
which stabilizes to �max , which exists by [7, Lemma 2.17].

Now let .M; '/ be any almost contact .2qC1/–manifold with stable complex structure
� , complex normal .q�1/–type .Bq�1

�
; �

q�1

�
/ and with �–compatible normal .q�1/–

smoothing x�W M !B
q�1

�
. By definition, �q�1

�
W B

q�1

�
!BU is a fibration and we set

˛ D �
q�1

�
. Bordism of BU –manifolds is just ordinary complex bordism, and by [30,

page 117] the odd bordism groups �U
2qC1

are trivial, which implies that ˛�.ŒM; x��/D

0D ŒMmax; �max�. By Theorem 2.14 it follows that .M; �/� .Mmax; �max/ and due to
the equivalence given in (1) above we finally conclude that .M; '/� .Mmax; 'max/.
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In dimensions 5; 7 one checks that the explicit manifolds stated in the proposition
have the correct complex normal 1– resp. 2–types. For this, note that �1.BU / D

�3.BU /D 0; �2.BU /D Z and the assumption that c1 is primitive ensures that the
second homotopy group of the associated type is Z.

Remark 3.2 The almost contact manifold .Mmax; 'max/ is far from being unique.
Indeed, if .Mmax; 'max/� .M

0; '0/ then .M 0; '0/ is also maximal for the topological
Stein cobordism relation. For example, for any Stein fillable almost contact manifold
.M0; '0/, .Mmax # M0; 'max # '0/ is also maximal. Note also that .Mmax; 'max/ is
necessarily Stein fillable (that is, contains a Stein fillable contact structure), shown by
the Stein cobordism from, say, the standard contact sphere to .Mmax; 'max/.

Remark 3.3 At the level of contact structures, it seems very unlikely that the analogue
of Proposition 3.1 holds. Specifically, it seems unlikely that there is a single contact
.2nC1/–manifold .Mmax; �max/ such that for every contact .2nC1/–manifold .M; �/

the manifold .Mmax; �max/ is the out-going end of some Stein cobordism starting
from .M; �/. However by Theorem 2.6 we have the following: For any maximal
almost contact manifold .Mmax; 'max/ of dimension .2qC1/� 5, and for any contact
.2qC1/–manifold .M; �/, .Mmax; 'max/ admits a contact structure �.M;�/ and a Stein
cobordism from .M; �/ to .Mmax; �.M;�//.

A further interesting special case of the Stein cobordism relation occurs for “Calabi–Yau”
almost contact structures on 5–manifolds and 7–manifolds.

Proposition 3.4 Let nD 5 or 7 and let .M; '/ be an almost contact n–manifold such
that c1.'/D 0. Then

.M; '/� .Sn; 'std/;

where 'std denotes the almost contact structure underlying the standard contact structure
on Sn and the Stein cobordism .W;J / can be assumed to have c1.J /D 0.

Proof Let n D 2qC1, so that q D 2 or 3 and let � be the stabilization of the
almost contact structure ' . Since c1.'/ D 0, the complex normal .q�1/–type of
.M; �/ factors through BSU! BU by [7, Lemma 2.22(ii), Lemma 2.23]. Since the
complex normal .q�1/–type of .Sn; 'std/ is BSU! BU , the lemma follows from
Theorem 2.14 and the fact that �SU

5
D�SU

7
D 0; see [30, page 248].

Remark 3.5 In contrast to the 3–dimensional case, there can be no minimal elements
with respect to the Stein cobordism relation in dimension at least 5. For example
if .M0; '0/ � .M1; '1/ and c1.'1/ D 0, then the fact that c1.'1/ D 0 implies that
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c1.'0/D 0. To see this note that a topological Stein cobordism .W;J / from M0 to
M1 is obtained from M1 by attaching high index handles, which means that c1.J /D 0.
But this would imply that an initial element .Mmin; 'min/ must have c1.'min/D 0. A
similar argument shows that for certain choices of M1 the fact that c

q
1
.'1/¤ 0 implies

c
q
1
.'min/¤ 0 (cf [7, Proposition 6.2]). For this note that the inclusion of M1 into W

gives an isomorphism on fundamental groups. Suppose that ˇ 2H 1.B�1.W // is a
class such that when restricted to M1

p�1 .ˇ/[ c
q
1
.J /¤ 0;

where p1W W ! B�1.W / is the classifying map of the universal cover of W . It
follows that the restriction of p�

1
.ˇ/[ c

q
1
.J /¤ 0 to M0 DMmin is also nonzero and

hence that c1.'min/D c1.J /jMmin ¤ 0.

In fact, these sorts of arguments show that there can be no initial elements even if
one forgets about the almost contact structures, and one simply considers Pontryagin
classes rather than Chern classes.

4 Stein fillability and connected sums

The connected sum of Stein fillable manifolds is again Stein fillable, since adding a
one-handle to the Stein fillings can be done in a way that is compatible with Stein
structures. Eliashberg [10, Section 8] has shown that the converse of this statement
holds for 3–manifolds: a connected sum of 3–manifolds is Stein fillable if and only if
both summands are. In addition, the Stein fillable structures on the components can be
chosen so that their connected sum is isotopic to the given Stein fillable structure on the
connected sum. (For a detailed description of the contact connected sum construction,
see [15, pages 301–302].) Extensions of some aspects of the above result of Eliashberg
to higher dimensions are given in [17].

In this section we prove Theorem 1.5, which shows that in higher dimensions the
summands of a Stein fillable almost contact manifold in a connected sum decomposition
are not necessarily Stein fillable. To make this statement precise, we note that the
summands are well-defined only up to almost diffeomorphism, that is, up to connected
sum with homotopy spheres. Indeed, for M1 # M2 the manifolds M1 � int Dn and
M2�int Dn can be turned into closed manifolds (by gluing back Dn ) in many different
ways, differing by connected sums with homotopy spheres. Below we find examples of
almost contact connected sums where the summands are not Stein fillable, even after
the addition of homotopy spheres.

For the proof of Theorem 1.5 we examine the Stein fillability of certain almost contact
structures on the unit cotangent bundle ST �S2kC1 of the .2kC1/–sphere S2kC1 . We
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first need to establish some preliminary results. Lemma 4.1 is a small elaboration of a
theorem of Milnor and Spanier about the topology of ST �S2kC1 . Proposition 4.2 gives
a description of the topology of possible Stein fillings of manifolds almost diffeomorphic
to ST �S2kC1 , which may be of independent interest. Finally, Lemmas 4.4 and 4.5
show that ST �S2kC1 admits an almost contact structure ' which is not Stein fillable,
provided k � 5 is odd.

Lemma 4.1 (cf [26, Theorem 2]) There is a map f W ST �S2kC1! S2k such that
the induced homomorphism f�W H2k.ST �S2kC1/!H2k.S

2k/ is an isomorphism
if and only if k D 0; 1 or 3.

Proof Let � W ST �S2kC1! S2kC1 be the bundle projection of the unit cotangent
bundle of S2kC1 . If we consider � merely as a spherical fibration, then a map f as
in the statement of the lemma exists if and only if � is trivial as a spherical fibration.
This is because the product map

f �� W ST �S2kC1
! S2k

�S2kC1

is a homology isomorphism, and so by Whitehead’s theorem a homotopy equivalence,
and this gives a fiber homotopy trivialization of � . By [26, Theorem 2], the bundle
projection � is trivial as a spherical fibration if and only if k D 0; 1 or 3.

The proof of the following proposition uses handle canceling and the Whitney trick,
which are familiar from the proof of the h–cobordism theorem in higher dimensions.
For details concerning these constructions we refer to [25; 33].

Proposition 4.2 Let k � 1 and let M D .ST �S2kC1/ #†0 be the connected sum of
ST �S2kC1 with some homotopy sphere †0 . Choose some almost contact structure
' on M and let W 4kC2 be the smooth manifold underlying a Stein filling of .M; '/.
Then W decomposes as a boundary connected sum

W DWl \W†;

where H2k.Wl/D Z= lZ and W† is a 2k–connected filling of some homotopy sphere
†. Moreover we have the following possibilities for the topology of Wl :

(1) If l > 1, then Wl has a handle decomposition with precisely one handle of index
2k and two handles of index 2kC1.

(2) If l D 1, then W1 ŠDT �S2kC1 .

(3) If l D 0, then we must have k D 1; 3 and W0 ŠD2kC2 �S2k .

In particular, ST �S2kC1 admits a subcritical filling if and only if k D 1; 3.
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Proof First note that M D @W is .2k�1/–connected and that

H�.@W /ŠH�.S
2k
�S2kC1/:

It follows that any Stein filling of M is .2k�1/–connected and hence by the Hurewicz
theorem the map �2kC1.W /!H2kC1.W / is surjective. The long exact sequence of
the pair

H2kC1.@W /
�
�!H2kC1.W /�!H2kC1.W; @W /�!H2k.@W /�!H2k.W /�! 0

yields that H2k.W /DZ= lZ is cyclic and we also know that H2kC1.W / is torsion free
since W admits a handle decomposition without handles of index greater than 2kC2

by assumption. Moreover, the intersection pairing is unimodular on a complement H

to im.�/�H2kC1.W /. We let fx1; : : : ;x2r g be a symplectic basis for H consisting
of primitive elements, which can in turn be represented by spheres. Since the target is
simply connected, we can use the Whitney trick to find embedded representatives in
the interior of W . We can furthermore assume that the geometric intersection numbers
of these spheres agree with their algebraic intersection numbers.

Thus we have a configuration of embedded .2kC1/–dimensional spheres fS1; : : : ;S2r g

having a regular neighborhood N whose boundary is a homotopy sphere †. It follows
that W decomposes as a boundary connected sum

W DWl \ W†;

where W† Š N is 2k–connected. This boundary connected sum is obtained by
choosing an embedded path  from @N to @W and removing N along with a tubular
neighborhood of  . Note that in this decomposition @Wl DM # .�†/. Applying
Mayer–Vietoris, we conclude that H2k.Wl/Š Z= lZ. This proves the first part of the
proposition.

We now consider the topology of Wl and prove the remainder of the proposition. Wl

is .2k�1/–connected, hence it follows by handle canceling that Wl is obtained by
attaching handles of index at least 2k to ST �S2kC1 #†0 # .�†/. Turning this handle
decomposition upside down gives a handle decomposition with handles of index at most
2kC2. Then by further cancellation of handles we can find a handle decomposition
with at most one handle of index 2k and at most two handles of index 2kC1, where
we use the fact that Wl is simply connected. This proves case .1/.

If l D 1, then the handle decomposition of Wl reduces further to contain a single
.2kC1/–handle, and W1 is diffeomorphic to a linear D2kC1 –bundle over S2kC1 .
This bundle must be stably trivial, otherwise M will have a nontrivial stable tangent
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bundle. Moreover, by analyzing the homotopy long exact sequence of the fibration

SO.2kC1/! SO.2kC2/! S2kC1;

one sees that any stably trivial bundle over S2kC1 is either trivial or isomorphic to the
unit tangent bundle of the sphere. If k ¤ 1; 3 then W1 cannot be the total space of the
trivial bundle, because this would give rise to the existence of a map f W M ! S2k as
in Lemma 4.1 which is impossible. On the other hand, if k D 1; 3, then the tangent
bundle of S2kC1 is trivial. In both cases we conclude that there is a diffeomorphism
W1 ŠDT �S2kC1 , which proves case .2/.

If l D 0, then H2k.W /DH2k.W0/D Z. It follows that the handle decomposition of
W0 has just one 2k–handle and hence W0 is diffeomorphic to a linear D2kC2 –bundle
over S2k . This bundle is stable and must be stably trivial, otherwise the tangent
bundle of M would not be stably trivial. We conclude that W0 is diffeomorphic to
D2kC2 �S2k .

Remark 4.3 Although not the focus of this work, the topology of Stein fillings, as
opposed to their boundaries, is of independent interest and may be relevant to certain
computations in contact homology. In the case that k D 1, Proposition 4.2 determines
the smooth manifolds underlying Stein fillings of almost contact structures on S2�S3 .
In this dimension there are no exotic 5–spheres [22] and by [29, Theorem 6.2] the
manifold W† is diffeomorphic to #r .S

3 �S3/� Int.D6/. Concerning the manifolds
Wl , we conjecture that they are classified up to diffeomorphism by l . If this is correct,
then topological Stein fillings .W;J / of S2 �S3 are classified up to stably complex
diffeomorphism by their integral homology groups H�.W / along with their first Chern
class c1.J / 2H 2.W /.

Lemma 4.4 If k is odd, there exist almost contact structures ' on ST �S2kC1 with
nonzero k th Chern class, 0¤ ck.'/ 2H 2k.ST �S2kC1/Š Z.

Proof Let 'can be the standard almost contact structure underlying the canonical
contact structure on M D ST �S2kC1 , and let �can be the stable complex structure
determined by 'can . Since �can extends over DT �S2kC1 , we have that ck.'can/ D

ck.�can/D 0. To find a stable complex structure � with ck.�/¤ 0, we recall that the
group ŒM;SO =U � acts freely and transitively on the set of homotopy classes of stable
complex structures on M . Now if we let M � WDM nB4kC1 be the manifold obtained
by removing a ball, then there is a homotopy equivalence M � ' S2k _S2kC1 and
hence

(3) ŒM �;SO =U �Š �2k.SO =U /˚�2kC1.SO =U /:
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Since k is odd, �4k.SO =U / D 0 [3], and so there is no obstruction to extending a
map M �! SO =U to a map M ! SO =U . Hence the restriction map ŒM;SO =U �!

ŒM �;SO =U � is onto. Again using that k is odd, the boundary map, �2k.SO =U /!

�2k�1.U /, in the homotopy long exact sequence of the fibration U ! SO! SO =U

is nonzero [3]. Since �2k�1.U / classifies stable unitary bundles over S2k which are
in turn classified by their k th Chern class [19, Proposition 9.1], it follows from (3)
and the discussion above that we can choose  2 ŒM;SO =U � such that � WD �canC 

has ck.�/¤ 0. By [7, Lemma 2.17], we know that � destabilizes to an almost contact
structure ' , which then also has ck.'/¤ 0.

Lemma 4.5 Let ' be an almost contact structure on M DST �S2kC1 with ck.'/¤0

and let .†; '†/ be any almost contact homotopy sphere. If k ¤ 1; 3, then neither
.M #†; ' #'†/ nor .�.M #†/;�.' #'†// is Stein fillable.

Proof Suppose that .W;J / is a Stein filling of .M #†; ' #'†/. Since ck.' #'†/D
ck.'/ is nonzero and pulls back from ck.J / 2H 2k.W /, we conclude that H 2k.W /

is infinite. Now by Proposition 4.2, this can only happen if kD 1; 3. Since we assumed
k ¤ 1; 3, no such Stein filling .W;J / can exist. For the reversed orientation, we use
[7, Propostion 6.7] which states that .M #†; ' # '†/ is Stein fillable if and only if
.�.M #†/;�.' #'†// is Stein fillable.

Proof of Theorem 1.5 We let k � 5 be odd and set .M; '/ D .ST �S2kC1; '/,
where we have ck.'/ ¤ 0. By Lemma 4.4 such almost contact structures always
exist. Now, by Lemma 4.5, for any almost contact homotopy sphere .†; '†/ neither
.M #†; ' #'†/ nor .�.M #†/;�.' #'†// is Stein fillable.

On the other hand, we let M � DM nB4kC1 and we let '� be the induced almost
contact structure on M � . We set W 4kC2 WDM � � Œ0; 1�, which has a natural almost
complex structure '� � Œ0; 1� induced by '� . Moreover, the smoothened boundary of
W with the induced almost contact structure is precisely .M; '/ # .�M;�'/. Since
M is .2k�1/–connected, it follows from a theorem of Smale [28, Theorem C], that
M � admits a handle decomposition with handles of index less than or equal to 2kC1.
Since any handle decomposition on M � gives rise to one on M � � I with handles
of the same index, we have that W D M � � Œ0; 1� admits a handle decomposition
with handles of index less than or equal to 2kC1. Consequently .W; '� � Œ0; 1�/ is
a topological Stein filling of .M; '/ # .�M;�'/, which then admits a Stein fillable
contact representative �M #.�M / by Theorem 2.4.

Remark 4.6 Notice that the nonfillability of .ST �S2kC1; '/ in Theorem 1.5 arises
from the choice of the almost contact structure ' , since ST �S2kC1 does admit Stein
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fillable contact structures. In [5] we shall prove a stronger version of Theorem 1.5
which asserts the existence of .4k�1/–connected closed smooth .8kC1/–manifolds
M , such that M (and M #† for any homotopy sphere †) admits no Stein fillable
almost contact structure at all, but M # .�M / is Stein fillable. We would like to
point out that our result is on the almost contact level: we do not claim that the Stein
fillable contact structure �M #.�M / on M # .�M / found in the proof of Theorem 1.5
(representing the almost contact structure ' # .�'/) can be given as a connected sum
�C # �� where �˙ is a contact structure on ˙M .

We now turn to dimension 5 and prove Theorem 1.6, restated below as Theorem 4.8.
Notice that in dimension five the connected sum M0 # M1 determines the diffeomor-
phism type of its components M0 and M1 , since there are no exotic 5–spheres. The
following lemma extends this statement to almost contact 5–manifolds.

Lemma 4.7 Let ' be an almost contact structure on the connected sum of 5–manifolds
M0 and M1 . Then there are, up to homotopy unique, almost contact structures '0 on
M0 and '1 on M1 , such that .M0 # M1; '/D .M0 # M1; '0 #'1/.

Proof For i D 0; 1, let M �
i WDMi � int.D5/�M0 # M1 be the punctured copy of

Mi contained in the connected sum. We define 'i jM�
i
WD 'jM�

i
. It remains to show

that there is a unique extension of 'i jM�
i

to an almost contact structure on Mi . Now
the obstruction to extension lies in �4.SO.5/=U.2// and the obstruction to uniqueness
lies in �5.SO.5/=U.2//. By [23], we have �4.SO.5/=U.2//D�5.SO.5/=U.2//D 0,
which concludes the proof.

With the aid of this lemma we have the following theorem.

Theorem 4.8 Let .M; '/ D .M0 # M1; '0 # '1/ be a Stein fillable almost contact
5–manifold. Assume that either c1.'/D 0 or that

c1.'/.�2.M0//D c1.'/.�2.M1//D ZD �2.BU /:

Then both .M0; '0/ and .M1; '1/ are Stein fillable.

Proof Let �; �0 and �1 be the stable complex structures determined by '; '0 and
'1 respectively. After stabilizing we have .M; �/ D .M0; �0/ # .M1; �1/. Also, let
Ki DK.�1.Mi/; 1/ so that K.�1.M /; 1/DK0 _K1 . Under the assumptions of the
proposition, [7, Lemma 2.13] implies that the complex normal 1–type of .M; �/ is
given by

.B1
� ; �

1
� /Š .BSU� .K0 _K1/ ; prBSU/
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if c1.'/D 0 and
.B1
� ; �

1
� /Š .BU � .K0 _K1/ ; prBU /

if c1.'/.�2.M0//D c1.'/.�2.M1//D �2.BU /D Z. Since �1
�

is the projection to
BSU resp. BU , there is a canonical isomorphism �5.B

1
�
I �1
�
/Š�G

5
.K0 _K1/ for

G D U or SU, which we use in the remainder of the proof.

Let us now assume that c1.'/D0. The argument in the other cases is formally the same,
and is given by replacing the map BSU! BU by IdW BU ! BU . Let x�W M ! B1

�

be a �–compatible normal 1–smoothing. We first consider the product smoothing

x� ı prM W M � Œ0; 1�!M ! B1
�

and attach a 6–dimensional 5–handle to M � f1g along the connect sum locus

S4
� Œ0; 1��M DM0 # M1

to obtain a bordism W . Since �4.SO =SU/D 0, there is no obstruction to making this
a stably complex 5–handle (see [7, Section 2.3]), and indeed there is no obstruction to
extending x� ıprM to a normal smoothing x�0

W
W W !B1

�
. Consider the map x�W given

by taking the composition of x�0
W

with the collapsing map induced by the wedge sum:

W
x�0

W
�!BSU�.K0 _K1/

col
�! BSU�K1:

This is a normal map, and setting x�i to be the restriction of �W to Mi we see that the
bordism .W; x�W / gives the equality

ŒM; col ı x��D ŒM0; x�0�C ŒM1; x�1� 2�
SU
5 .K1/:

Now, by Theorem 2.12, ŒM; x��D 0 since .M; '/ is Stein fillable, and consequently
the bordism class ŒM; col ı x�� is trivial too. Moreover, since the composition

prK1
ı x�0W M0!K1

is null-homotopic and the bordism group �SU
5
D�U

5
D 0 according to [30, page 248],

it follows that ŒM0; x�0�D 0. Hence the bordism class ŒM1; x�1� is trivial. Since the map

x�1W M1! BSU�K1

is a �1 –compatible normal 1–smoothing, Theorem 2.12 implies that .M1; '1/ is Stein
fillable. The same argument mutatis mutandis shows that .M0; '0/ is Stein fillable as
well.

Remark 4.9 We point out that in dimension five the method in the proof of Theorem 4.8
does not ascend to give control over contact structures. That is, if the almost contact
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manifolds .M0; '0/ and .M1; '1/ are induced from contact manifolds .M0; �0/ and
.M1; �1/, and even if we know that .M0 #M1; �0 #�1/ is Stein fillable, then in contrast
to the situation in dimension 3, we cannot conclude that .M0; �0/ and .M1; �1/ are
Stein fillable.

Remark 4.10 Note that in the proof of Theorem 4.8 involved constructing a nullbor-
dism of each component of the connected sum M0 # M1 by first adding a 5–handle
and then capping off two of the resulting boundary components. This bordism is thus
far from having the correct homotopy type, but applying surgery below the middle
dimension as in the proof of Theorem 2.12 has the virtue of remedying this.

5 Nonfillable almost contact structures on highly connected
manifolds

In dimensions congruent to 7 mod 8, the isomorphism �8k�1.SO =U /Š Z2 means
that there are precisely two homotopy classes of stable almost contact structures on
S8k�1 . One of these homotopy classes, denoted �std , bounds over D8k and is thus
Stein fillable. Let us call the other stable almost contact structure on S8k�1 exotic and
denote it by �ex . By [7, Theorem 1.3] we know that .S7; �ex/ is Stein fillable. Indeed,
(according to Theorem 5.7 below) the quaternionic projective plane HP2 admits no
almost complex structure, but if we puncture it, then as the Hopf D4 –bundle over
S4 it does. Thus the punctured HP2 provides a filling of .S7; �ex/ which admits a
Stein structure, inducing a Stein fillable contact structure on S7 that stabilizes to �ex .
In higher dimensions, however, we have the following result (which corresponds to
Theorem 1.7 from Section 1):

Theorem 5.1 The exotic stable complex structure �ex on S8k�1 cannot be represented
by a Stein fillable contact structure once k � 2.

Before giving the proof of this result, we derive Corollary 1.9 as a simple consequence.

Proof of Corollary 1.9 Let ' be an almost contact structure on the .4k�2/–connected
oriented .8k�1/–manifold M . If .M; '/ is not Stein fillable, we are done. If .M; '/

is Stein fillable, let � be the stable complex structure determined by ' and observe that
the complex normal .4k�2/–type of .M; �/ is .BU h4ki; �4k/ from Example 2.11,
with associated bordism groups �U h4k�1i

� . Let

x�W M ! B4k�2
�
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be a .4k�2/–smoothing. By Theorem 2.12 we have ŒM; x�� D 0 2 �U h4k�1i
8k�1

. The
connected sum .M; x� # x�ex/ WD .M; x�/ # .S8k�1; x�ex/ does not change the complex
normal .4k�2/–type, and

ŒM; x� # x�ex�D ŒM; x��C ŒS8k�1; x�ex� 2�
U h4k�1i

8k�1
:

By Theorem 5.1 the stable complex manifold .S8k�1; �ex/ is not Stein fillable, and so by
Theorem 2.12, ŒS8k�1; x�ex�¤0, since .BU h4ki; �4k/ is the complex normal .4k�2/–
type of .S8k�1; x�ex/. It follows that ŒM; x� # x�ex� ¤ 0 and consequently .M; � # �ex/

is not Stein fillable by Theorem 2.12, since .BU h4ki; �4k/ is the complex normal
.4k�2/–type of .M; � # �ex/.

Remark 5.2 According to [14, Proposition 6(vi)], the hypothesis of Corollary 1.9
that the .4k�2/–connected .8k�1/–manifold M admit an almost contact structure is
equivalent to assuming that Im.�M�/� F�.�4k.BU //. In Theorem 5.7(3) below, we
prove that provided k � 2, the same condition is a necessary and sufficient condition
for a .4k�1/–connected 8k–manifold to admit a stable complex structure.

Remark 5.3 The stable almost contact structures � and � # �ex appearing in the proof
of Corollary 1.9 differ by precisely the “top-dimensional Z=2–obstruction to stable
homotopy of almost contact structures” identified by Geiges in [14, Theorem 4(2b)].

Remark 5.4 By [2] the stable almost contact structure found in Corollary 1.9 (as any
stable complex, or even almost contact structure) can be represented by an overtwisted
contact structure; according to Theorem 5.1 the stable almost contact structure �ex

on S8k�1 as well as the stable contact structure found by Corollary 1.9 cannot be
represented by Stein fillable contact structures. It would be interesting to see if these
particular stable complex structures admit fillable or tight (that is, not overtwisted)
contact representatives.

5.1 Almost complex 8k–manifolds

In order to prove Theorem 5.1, we first improve a theorem of Yang [34] determining
which smooth closed oriented .4k�1/–connected 8k–manifolds admit stable complex
structures.

Let Y be a smooth closed oriented .4k�1/–connected 8k–manifold, let �Y W Y !BSO
classify the stable tangent bundle of Y and let

�Y �W �4k.Y /! �4k.BSO/
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be the induced homomorphism. If Y admits a stably complex structure, then �Y factors
through F W BU ! BSO and in this case Im.�Y �/ � F�.�4k.BU // � �4k.BSO/.
Now let Bi denote the i th Bernoulli number (where we use the topological indexing
and sign conventions, in particular, B1 D

1
6

and B2 D
1

30
). The following theorem is

a straightforward reformulation of (2) and (3) of [34, Theorem 1].

Theorem 5.5 (cf [34, Theorem 1(2),(3)]) A smooth closed oriented .4k�1/–con-
nected 8k–manifold Y with signature �Y admits a stable complex structure if and
only if:

(1) k is odd and
�

B2kCBk

B2kBk
�

1
24k�2

�
�Y � 0 mod 2.

(2) k is even, Im.�Y �/� F�.�4k.BU // and
�

B2k�Bk

B2kBk
�

4k
24k

�
�Y � 0 mod 2.

Remark 5.6 Using the Hurewicz isomorphism �4k.Y /ŠH4k.Y / and the universal
coefficient theorem, we regard the homomorphism �Y �W �4k.Y /! �4k.BSO/D Z
as a cohomology class �Y � 2H 4k.Y /, which Yang denotes by � . When k is even,
F�.�4k.BU // � �4k.BSO/ is the subgroup of index two [3], and so the condition
Im.�Y �/ � F�.�4k.BU // is equivalent to the condition that �Y � vanishes mod 2,
which is the condition Yang uses.

The following result, Theorem 1.8 from Section 1, simplifies Yang’s theorem by
removing the assumptions involving Bernoulli numbers from its statement.

Theorem 5.7 A smooth closed oriented .4k�1/–connected 8k–manifold Y admits a
stable almost complex structure if and only if:

(1) k � 3 is odd.

(2) k D 1 and the signature �Y of Y is even.

(3) k is even and Im.�Y �/� F�.�4k.BU //.

Remark 5.8 The simplification achieved in moving from Theorem 5.5 to Theorem 5.7
is perhaps surprising and rests on Theorem A.1, which is a nontrivial fact about the
differences of reciprocals of Bernoulli numbers. Theorem 5.7 can be interpreted as
a statement about the characteristic numbers (signature and p2

k
) of closed .4k�1/–

connected almost complex smooth manifolds and the bordism groups �U h4k�1i
8k

. It
would be interesting to see if there are further connections between number theory and
the characteristic numbers of closed j –connected almost complex n–manifolds for
other values of j and n.
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Proof of Theorem 5.7 For kD 1; 2, B1D
1
6

and B2DB4D
1

30
, see eg [18, page 12].

Hence
B2CB1

B2B1

�
�Y

22
D 9�Y and

B4�B2

B4B2

D 0

and Theorem 5.5 implies Theorem 5.7 in these two cases.

The case k > 2 will follow from a result of Wall, a fact about Bernoulli numbers (see
Theorem A.1 in the appendix) and from the evenness of �Y . As in Remark 5.6, we
regard �Y � as a cohomology class �Y � 2H 4k.Y / and define the integer

�2
Y WD h.�Y �/

2; ŒY �i:

Setting ak WD
1
2
.3� .�1/k/, Wall [31, .15/m ] proved that the bA –genus of a .4k�1/–

connected 8k–manifold Y is given by

(4) bA2k.Y /D
a2

k
� 24k�4 �B2

k
� .22k � 1/2 � �2

Y
� k2�Y

24kC1 � k2 � .24k�1� 1/
;

where �2
Y
D �2 in Wall’s notation. Now let Bk DNk=Dk , where Nk and Dk denote

respectively the numerator and denominator of Bk expressed in lowest terms. We
recall from [27, page 284] that Nk is odd and that Dk D 2D0

k
where D0

k
is odd: in fact

D0
k

is the product of odd primes p such that .p� 1/ divides 2k . Writing k D 2j � c

for c an odd integer, j � 0, we rewrite (4) as

(5) bA2k.Y /D
a2

k
� 24k�6�2j �N 2

k
� .22k � 1/2 � �2

Y
� .D0

k
/2 � c2 � �Y

24kC1 � c2 � .D0
k
/2 � .24k�1� 1/

:

Since k > 2 and Y is .4k�1/–connected, the intersection form of Y is even by [31],
and hence �2

Y
is an even integer. In addition, if k is even, then for Y to admit a stably

complex structure, �Y must lie in 2H 4k.Y /, and so 8 divides �2
Y

. Since bA2k.Y / is
an integer, (5) entails that 24k�3�2j divides �Y .

To apply Theorem 5.5 when k is odd, we must show that

Num
�

B2k CBk

B2kBk

�
�Y

24k�2

�
is even, where Num.a=b/ denotes the numerator of a=b , expressed in lowest terms.
Since k is odd, j D 0, and hence 24k�3 divides �Y . Furthermore, the largest power
of 2 which divides Denom.�Y =2

4k�2/ is 2. But

Num
�

B2k CBk

B2kBk

�
DDkN2k CD2kNk D 2.D0kN2k CD02kNk/

is divisible by 22 , and Theorem 5.5(1) holds.
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To apply Theorem 5.5 when k is even, we must show that

Num
�

B2k �Bk

B2kBk

�
4k � �Y

24k

�
is even. Since k D 2j c and 24k�3�2j divides �Y , the largest power of 2 which can
divide Denom.4k � �Y =2

4k/ is 2jC1 . By Theorem A.1, 2jC3 divides Num.B2k �

Bk=.B2kBk//, which ensures that Theorem 5.5(2) holds.

To prove Theorem 5.1, we shall need the following result.

Lemma 5.9 Let q � 3 mod 4 and let .W;J / be an almost complex .2qC2/–
manifold with @W D S2qC1 . The stable complex structure induced on the boundary,
.S2qC1;S@J /, is independent on the choice of the almost complex structure J up to
homotopy and depends only on the oriented diffeomorphism type of W .

Proof Let .W;J0/ and .W;J1/ be two almost complex structures on the same
topological Stein filling of S2qC1 , which is then a q–connected manifold. By the
Hurewicz Theorem and repeated application of the Whitney trick we can find a basis of
HqC1.W / consisting of primitive elements fx1; : : : ;xng represented by embeddings
fi W S

qC1 ,!W . The embedded spheres fi.S
qC1/ will intersect in the pattern deter-

mined by the intersection form of W , which is unimodular, since the boundary of M

is a sphere, and is denoted by

�W W HqC1.W /�HqC1.W /! Z:

We now consider the boundary connected sum .W \.�W /;J0\.�J1//, given by revers-
ing the orientation on .W;J1/ and then attaching an almost complex 1–handle. This
manifold is again q–connected. By tubing together the two copies of the embeddings
fi , and taking care to reverse the orientation along the tube, we obtain embeddings
fi # .�fi/W S

qC1 ,!W \ .�W /, which represent a basis of the antidiagonal summand

L WD h.x1;�x1/ : : : ; .xn;�xn/i �HqC1.W \ .�W //DHqC1.W /˚HqC1.W /:

We claim that this basis for L is represented by disjoint embedded .qC1/–spheres with
trivial normal bundle. The normal bundle of each embedding fi # .�fi/, i D 1; : : : ; n,
is isomorphic to the Whitney sum of the normal bundle of fi and its inverse, and
so is trivial. Moreover, the intersection form of W \ .�W / is the orthogonal sum
�W ˚��W , and so for all pairs .i; j /, the algebraic intersection of .xi ;�xi/ with
.xj ;�xj / is given by

�W \.�W /..xi ;�xi/; .xj ;�xj //D �W .xi ;xj /��W .�xi ;�xj /D 0:
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By further applications of the Whitney trick, we arrive at the required disjoint embed-
dings �i W D

qC1 �SqC1 ,!W \ .�W / representing the given basis of L.

The stable complex structure induced on �i.D
qC1�SqC1/ by �DS.J0 \.�J1// may

be regarded as an element �i 2 �qC1.SO =U / and since q � 3 mod 4, each �i lies in
the image of the map �qC1.SO/! �qC1.SO =U /. Moreover, the condition that q �

3 mod 4 implies that the stabilization homomorphism �qC1.SO.qC1//! �qC1.SO/
is onto by [21], and hence we may reframe our embeddings to obtain new embeddings
x�i so that each �i is trivial. It follows that there is no obstruction to extending the stable
complex structure induced by J0 \.�J1/ on W \.�W / over a handle attachment along
x�i . That is, we may perform stably complex surgeries on the embeddings x�i : see [6,
Section 2.3]. The trace of these surgeries is a stably complex bordism, relative to the
boundary, to a simply connected homology ball, which is in turn a topological ball:
see [22, Lemma 7.1]. Moreover, the stable almost complex structure on the boundary
is equal to the stabilization of @J0 # .�@J1/. It follows that S.@J0 # .�@J1// is the
standard stable complex structure and thus that S@J0 D S@J1 .

Proof of Theorem 5.1 Suppose that k � 2. Let .W;J / be a Stein filling with
boundary S8k�1 , and consider the smooth closed oriented manifold X obtained by
adding the 8k–disc to W via the identity map:

X WDW [Id D8k :

Note that since W admits an almost complex structure J by hypothesis, we have
Im.�X �/ D Im.�W �/ � F�.�4k.BU //. It follows from Theorem 5.7 that X also
admits a stable complex structure �X .

Now take the resulting stably complex manifold .X; �X / and remove a small open
disc. The outcome is a smooth oriented manifold diffeomorphic to W with an induced
stable complex structure �W . Since �W extends to X , we conclude that the induced
stable complex structure @�W on S8k�1 is homotopic to �0 . Now by Lemma 5.9, the
stable complex structures S@J and @�W are homotopic and hence S@J is homotopic
to �0 . This shows that only the standard stable complex structure on S8k�1 admits a
Stein filling, which proves Theorem 5.1.

5.2 A description of .S 8k�1; 'ex/

In this subsection we give an explicit description of an almost contact structure 'ex

on S8k�1 which stabilizes to .S8k�1; �ex/ when k � 2. Recall that �8k�1.SO/!
�8k�1.SO =U / is onto, and that by [21], for k � 2, the stabilization homomorphism

�8k�1.SO.8k�2//! �8k�1.SO/
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is also onto. Let f W .D8k�1;S8k�2/! .SO.8k�2/; id/ be a smooth map representing
a class Œf � 2 �8k�1.SO.8k�2//, where Œf � stabilizes to a generator of �8k�1.SO/.
Let �std � TS8k�1 be the oriented hyperplane distribution given by the standard
contact structure on S8k�1 and let Jstd be the complex structure on �std induced by
the choice of a contact form. We observe that we can use f to define a vector bundle
automorphism

f̨ W �std Š �std;

where f̨ is the identity on all fibers outside a small .8k�1/–disc D � S8k�1 and on

TS8k�1
jD ŠD �R8k�1

we use f to twist �std in the obvious way. We can then use f̨ to pull-back the complex
structure Jstd on �std and obtain ˛�

f
.Jstd/. Clearly .�std;Jstd/ and .�std; ˛

�
f
.Jstd//

are isomorphic complex vector bundles but since f̨ is not homotopic to a unitary
automorphism of .�std;Jstd/, it follows that .�std;Jstd/ and .�std; ˛

�
f
.Jstd// are not

homotopic as complex structures on �std . Indeed, even after stabilization f̨ is not
homotopic to a unitary automorphism and so the almost contact structure

(6) 'ex WD .�std � TS8k�1; ˛�f .Jstd//

stabilizes to the stable complex structure on S8k�1 given by acting on �std with the
generator of �8k�1.SO =U /Š Z=2. Hence we have proven the following lemma.

Lemma 5.10 For k � 2, the almost contact structure .S8k�1; 'ex/ of (6) stabilizes to
the stable complex structure .S8k�1; �ex/.

The examples .S8k�1; 'ex/ above and also the examples .STS4k�1; '/ with ck.'/¤

0 from Lemma 4.1 are interesting examples of .q�1/–connected .2qC1/–dimensional
almost contact manifolds which are not Stein fillable. The Stein fillability of such
manifolds was studied in [13; 14]. In [5] we take up this question in the context of
Theorem 2.12 by systematically studying the bordism groups �2qC1.B

q�1

�
I �

q�1

�
/.

Appendix: 2–adic valuation of differences of the Bernoulli
numbers

Let Bk be the k th Bernoulli number with topologist’s indexing and sign conventions
as in [18, page 12] and [27, Appendix B]. In particular, we have

B1 D
1
6
; B2 D

1
30
; B3 D

1
42
; B4 D

1
30
;

B5 D
5

66
; B6 D

691
2730

; B7 D
7
6
; B8 D

3617
510

:
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Given a fraction a=b , let Num.a=b/ and Denom.a=b/ denote respectively the numer-
ator and the denominator of a=b , when expressed in lowest terms. In this appendix we
prove the following theorem about Bernoulli numbers, which is the essential number-
theoretic input to the proof of Theorem 5.7.

Theorem A.1 Suppose that k is even and write k D 2j c , where c is odd and j � 1.
Then

2jC3
j Num

�
B2k �Bk

B2kBk

�
:

Let p be any prime and let Zp denote the ring of p–adic integers. As usual, define the
p–adic valuation of s 2 Zp by ordp s , such that s D upordp s where u 2 Z�p is a unit.

We will prove Theorem A.1 later, since we first need to show some p–adic properties
of the Bernoulli numbers. From now on, it is more convenient to switch to the notation
of signed and even-indexed Bernoulli numbers Bn as commonly used in number theory.
They may be defined by the generating function

t

et � 1
D

X
n�0

Bn
tn

n!
; jt j< 2�:

These numbers are rational and Bn D 0 for odd n > 1. The even-indexed Bernoulli
numbers alternate in sign, such that .�1/n=2C1Bn > 0 for even n> 0. Accordingly

.�1/nC1Bn D B2n; n� 1:

The famous theorem of von Staudt and Clausen [20, Theorem 3, page 233] asserts, for
even n� 2, that

(7) BnC

X
p�1jn

1

p
2 Z; which implies that Denom.Bn/D

Y
p�1jn

p:

Let n� 2 be even. If p� 1 j n, then we obtain by (7) that

BnC
1

p
2 Zp;

whereas we already have Bn 2 Zp in the case p� 1 − n. Both cases imply that

Bn�Bm 2 Zp;

whenever n;m�2 are both even and satisfy n�m mod p� 1. As an easy consequence,
iterated finite differences of a sequence of Bernoulli numbers Bn are p–integers,
assuming that all indices are even and congruent mod p � 1. Now, we consider the
special case p D 2, where we use the following more general result of Carlitz.
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Theorem A.2 (Carlitz [8, Theorem 7]) If n � 2 is even, r � 1, and 2e�1 j w with
e � 2, then

rX
sD0

.�1/s
�

r

s

�
2BnCsw � 0 mod gcd.2n�1; 2reC�/;

where �Dmin.r � 1; r � r 0C 3/ and 2r 0 � 2r < 2r 0C1 .

Note that the sum above describes an iterated finite difference with increment w . As
mentioned above, this sum still lies in Z2 , if we cancel the factor 2 that occurs. We
can rewrite this result as follows.

Corollary A.3 If n; w � 2 are both even and r � 1, then

ord2

 
rX

sD0

.�1/s
�

r

s

�
BnCsw

!
�min.n�2; reC�� 1/;

where e D 1C ord2w � 2, l D blog2 rc � 0, and �Dmin.r � 1; r � l C 2/� 0.

Proposition A.4 If m> n� 2 are both even, then

ord2

�
1

Bn
�

1

Bm

�
D 2C ord2.Bn�Bm/�min.n; 2C ord2.m� n//:

Proof We first observe that

ord2

�
1

Bn
�

1

Bm

�
D ord2

�
Bn�Bm

BnBm

�
D 2C ord2.Bn�Bm/;

since by (7) we have ord2.Denom.BnBm//D 2. Using Corollary A.3 with parameters
r D 1 and w Dm� n, we then infer that

ord2.Bn�Bm/�min.n� 2; ord2.m� n//;

completing the proof.

Proof of Theorem A.1 Recall that k D 2j c , where c is odd and j � 1. Since k is
even, the Bernoulli numbers B2k and B4k have the same sign. Thus, we can apply
Proposition A.4 to obtain that

ord2

�
B2k �Bk

B2kBk

�
D 2C ord2.B2k �B4k/�min.2k; 3C ord2 k/D 3C ord2 k:

The last step follows by a simple counting argument. Since ord2 k D j , this gives the
result.
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In the summer of 2013, Theorem A.1 arose as a conjecture. At the same time, it was
independently proved by Karl Dilcher and the author of this appendix using results
of Carlitz.
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