Volume 19, issue 6 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
The stable homology of congruence subgroups

Frank Calegari

Geometry & Topology 19 (2015) 3149–3191
Bibliography
1 A Ash, Galois representations attached to mod $p$ cohomology of $\mathrm{GL}(n,\mathbf{Z})$, Duke Math. J. 65 (1992) 235 MR1150586
2 H Bass, J Milnor, J P Serre, Solution of the congruence subgroup problem for $\mathrm{SL}_{n} (n\geq 3)$ and $\mathrm{Sp}_{2n} (n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. (1967) 59 MR0244257
3 A Besser, P Buckingham, R de Jeu, X F Roblot, On the $p$–adic Beilinson conjecture for number fields, Pure Appl. Math. Q. 5 (2009) 375 MR2520465
4 A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235 MR0387496
5 N Boston, J S Ellenberg, Pro-$p$ groups and towers of rational homology spheres, Geom. Topol. 10 (2006) 331 MR2224459
6 W Browder, J Pakianathan, Cohomology of uniformly powerful $p$–groups, Trans. Amer. Math. Soc. 352 (2000) 2659 MR1661313
7 F Calegari, Irrationality of certain $p$–adic periods for small $p$, Int. Math. Res. Not. 2005 (2005) 1235 MR2144087
8 F Calegari, N M Dunfield, Automorphic forms and rational homology $3$–spheres, Geom. Topol. 10 (2006) 295 MR2224458
9 F Calegari, M Emerton, Hecke operators on stable cohomology, arXiv:1311.5183
10 F Calegari, M Emerton, Mod–$p$ cohomology growth in $p$–adic analytic towers of 3-manifolds, Groups Geom. Dyn. 5 (2011) 355 MR2782177
11 F Calegari, M Emerton, Completed cohomology — a survey, from: "Non-abelian fundamental groups and Iwasawa theory" (editors J Coates, M Kim, F Pop, M Saidi, P Schneider), London Math. Soc. Lecture Note Ser. 393, Cambridge Univ. Press (2012) 239 MR2905536
12 F Calegari, D Geraghty, Modularity lifting beyond the Taylor–Wiles method, arXiv:1207.4224
13 F Calegari, A Venkatesh, A torsion Jacquet–Langlands correspondence, arXiv:1212.3847
14 R M Charney, Homology stability for $\mathrm{GL}_{n}$ of a Dedekind domain, Invent. Math. 56 (1980) 1 MR557579
15 R Charney, On the problem of homology stability for congruence subgroups, Comm. Algebra 12 (1984) 2081 MR747219
16 T Church, J S Ellenberg, B Farb, FI–modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015) 1833
17 T Church, J S Ellenberg, B Farb, R Nagpal, FI–modules over Noetherian rings, Geom. Topol. 18 (2014) 2951 MR3285226
18 T Church, B Farb, Representation theory and homological stability, Adv. Math. 245 (2013) 250 MR3084430
19 H Cohen, H W Lenstra Jr., Heuristics on class groups of number fields, from: "Number theory, Noordwijkerhout 1983" (editor H Jager), Lecture Notes in Math. 1068, Springer (1984) 33 MR756082
20 H Darmon, F Diamond, R Taylor, Fermat's last theorem, from: "Elliptic curves, modular forms & Fermat's last theorem" (editors J Coates, S T Yau), Int. Press (1997) 2 MR1605752
21 P Deligne, Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci. Paris Sér. A-B 287 (1978) MR507760
22 L Evens, E M Friedlander, On $K_\ast(\mathbf{Z}/p^{2}\mathbf{Z})$ and related homology groups, Trans. Amer. Math. Soc. 270 (1982) 1 MR642328
23 O Gabber, $K$–theory of Henselian local rings and Henselian pairs, from: "Algebraic $K$–theory, commutative algebra, and algebraic geometry" (editors R K Dennis, C Pedrini, M R Stein), Contemp. Math. 126, Amer. Math. Soc. (1992) 59 MR1156502
24 R Greenberg, Iwasawa theory for $p$–adic representations, from: "Algebraic number theory" (editors J Coates, R Greenberg, B Mazur, I Satake), Adv. Stud. Pure Math. 17, Academic Press (1989) 97 MR1097613
25 L Hesselholt, I Madsen, On the $K$–theory of local fields, Ann. of Math. 158 (2003) 1 MR1998478
26 M Lazard, Groupes analytiques $p$–adiques, Inst. Hautes Études Sci. Publ. Math. (1965) 389 MR0209286
27 R Lee, R H Szczarba, The group $K_{3}(Z)$ is cyclic of order forty-eight, Ann. of Math. 104 (1976) 31 MR0442934
28 J McCleary, A user's guide to spectral sequences, Cambridge Studies in Advanced Mathematics 58, Cambridge Univ. Press (2001) MR1793722
29 J S Milne, Arithmetic duality theorems, BookSurge (2006) MR2261462
30 J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211 MR0174052
31 J A Neisendorfer, Homotopy groups with coefficients, J. Fixed Point Theory Appl. 8 (2010) 247 MR2739026
32 I A Panin, The Hurewicz theorem and $K$–theory of complete discrete valuation rings, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 763, 878 MR864175
33 A Putman, Stability in the homology of congruence subgroups, arXiv:1201.4876
34 D Quillen, On the cohomology and $K$–theory of the general linear groups over a finite field, Ann. of Math. 96 (1972) 552 MR0315016
35 D Quillen, Finite generation of the groups $K_{i}$ of rings of algebraic integers, from: "Algebraic $K$–theory, I: Higher $K$–theories", Lecture Notes in Math. 341, Springer (1973) 179 MR0349812
36 P Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979) 181 MR544704
37 P Schneider, Über die Werte der Riemannschen Zetafunktion an den ganzzahligen Stellen, J. Reine Angew. Math. 313 (1980) 189 MR552472
38 P Scholze, On torsion in the cohomology of locally symmetric varieties, arXiv:1306.2070
39 C Soulé, $K$–théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979) 251 MR553999
40 C Soulé, On higher $p$–adic regulators, from: "Algebraic $K$–theory" (editors E M Friedlander, M R Stein), Lecture Notes in Math. 854, Springer (1981) 372 MR618313
41 J Tate, Duality theorems in Galois cohomology over number fields, from: "Proc. Internat. Congr. Mat. (Stockholm, 1962)", Inst. Mittag-Leffler (1963) 288 MR0175892
42 V Voevodsky, On motivic cohomology with $\mathbf{Z}/l$–coefficients, Ann. of Math. 174 (2011) 401 MR2811603
43 J B Wagoner, Continuous cohomology and $p$–adic $K$–theory, from: "Algebraic $K$–theory" (editor M R Stein), Lecture Notes in Math. 551, Springer (1976) 241 MR0498502
44 J B Wagoner, A $p$–adic regulator problem in algebraic $K$–theory and group cohomology, Bull. Amer. Math. Soc. 10 (1984) 101 MR722861
45 C Weibel, Algebraic $K$–theory of rings of integers in local and global fields, from: "Handbook of $K$–theory, Vol. 1, 2" (editors E M Friedlander, D R Grayson), Springer (2005) 139 MR2181823
46 C A Weibel, The $K$–book: An introduction to algebraic $K$–theory, Graduate Studies in Mathematics 145, Amer. Math. Soc. (2013) MR3076731
47 A Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990) 493 MR1053488
48 A Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995) 443 MR1333035
49 E C Zeeman, A note on a theorem of Armand Borel, Proc. Cambridge Philos. Soc. 54 (1958) 396 MR0105099