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Commuting symplectomorphisms
and Dehn twists in divisors

DMITRY TONKONOG

Two commuting symplectomorphisms of a symplectic manifold give rise to actions
on Floer cohomologies of each other. We prove the elliptic relation saying that the
supertraces of these two actions are equal. In the case when a symplectomorphism f

commutes with a symplectic involution, the elliptic relation provides a lower bound
on the dimension of HF�.f / in terms of the Lefschetz number of f restricted to
the fixed locus of the involution. We apply this bound to prove that Dehn twists
around vanishing Lagrangian spheres inside most hypersurfaces in Grassmannians
have infinite order in the symplectic mapping class group.

53D40; 14F35, 14D05

1 Introduction and main results

1.1 Overview

Let X be a symplectic manifold and Symp.X/=Ham.X/ be the group of all symplec-
tomorphisms of X modulo Hamiltonian isotopy. When X is simply connected, this
group is the same as �0 Symp.X/. If one denotes by �0 Diff.X/ the smooth mapping
class group, there is an obvious forgetful map

Symp.X/=Ham.X/
forgetful
������! �0 Diff.X/:

Paul Seidel in his thesis [33] found examples where this map is not injective: if X
is any complete intersection of complex dimension 2 other than P2 or P1 �P1 , and
� W X !X is a certain symplectomorphism called the Dehn twist, then �2 is smoothly
isotopic to the identity, but not Hamiltonian isotopic to the identity. Later Seidel proved
[35] that the kernel of the forgetful map is infinite for some K3 surfaces, again by
considering the group generated by a Dehn twist. Using a new technique, we study
Dehn twists in certain divisors (the main examples are divisors in Grassmannians) and
extend the range of examples where the forgetful map has infinite kernel.

Suppose X satisfies the so-called W C condition, which is slightly stronger than weak
monotonicity. We define, for two commuting symplectomorphisms f; gW X!X , their
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3346 Dmitry Tonkonog

actions on Floer cohomology ffloerW HF�.g/! HF�.g/, gfloerW HF�.f /! HF�.f /.
We then prove a theorem which was proposed by Paul Seidel (cf [39, Remark 4.1]),
who suggested it be called the elliptic relation.

Theorem 1.1 (Elliptic relation) If X is a symplectic manifold satisfying the W C

condition and f; gW X !X are two commuting symplectomorphisms, then

STr.ffloer/D STr.gfloer/ 2ƒ:

Here ƒ is the Novikov field. In the rest of the introduction, we explain the elliptic
relation, state its Lagrangian version, and consider applications to Dehn twists in
divisors. We begin by discussing our results regarding Dehn twists.

1.2 Order of Dehn twists in divisors

Let Gr.k; n/ be the Grassmannian of k–planes in Cn . Let O.d/ be the line bun-
dle on Gr.k; n/ which is the pullback of OPN .d/ under the Plücker embedding
Gr.k; n/�PN . Consider a smooth divisor X �Gr.k; n/ in the linear system jO.d/jD
PH 0.Gr.k; n/;O.d//. The results below are interesting even for Gr.1; n/ D Pn�1 ,
so for simplicity one can take X � Pn�1 to be a smooth projective hypersurface of
degree d throughout this subsection.

For d � 2, X contains a class of Lagrangian spheres which we call jO.d/j–vanishing
Lagrangian spheres, which, briefly, are vanishing cycles for algebraic degenerations
of X inside the linear system jO.d/j. To every parametrised Lagrangian sphere L�X
one associates a symplectomorphism �LW X ! X called the Dehn twist around L.
(The definitions are given in Section 3.) We prove the following.

Theorem 1.2 Let X � Gr.k; n/ be a smooth divisor in the linear system jO.d/j, and
L�X be an jO.d/j–vanishing Lagrangian sphere. Suppose

3� d � n or d � k.n� k/Cn� 2:

Then the Hamiltonian isotopy class of �L is an element of infinite order in the group
Symp.X/=Ham.X/.

When d D 2 and k D 1 (X is a projective quadric), �L has order 1 or 2 depending
on the parity of n; see Smith [42, Lemma 4.2]. While our proof crucially uses d � 3,
further restrictions on d are only needed to make X satisfy the W C condition, so
that the “classical” definition of Floer cohomology of symplectomorphisms X !X

applies. There are techniques defining Floer cohomology of symplectomorphisms on
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arbitrary symplectic manifolds; see Fukaya and Ono [15]. With their help, it should be
possible to drop the W C condition from Theorem 1.1, and the proof of Theorem 1.2
should work for all d � 3.

Recall the forgetful map Symp.X/=Ham.X/! �0 Diff.X/. If dimC X is odd and
d � 3, the image of �L has infinite order in �0 Diff.X/ by the Picard–Lefschetz
formula, so Theorem 1.2 becomes trivial. However, when dimC X is even, the image
of �L has finite order in �0 Diff.X/ (see Section 3.4 for details), so Theorem 1.2 is
really of symplectic nature in this case. When X is Calabi–Yau (d D n), Theorem 1.2
follows from a grading argument of Paul Seidel [35]. Theorem 1.2 is new in all cases
when dimC X is even and d ¤ n. For instance, it appears to be new even for the cubic
surface X � P3 .

Let

�� PH 0.Gr.k; n/;O.d//

be the discriminant variety parametrising all singular divisors in jO.d/j. Theorem 1.2
implies a corollary about the fundamental group of the complement to the discriminant.
Fix a divisor X 2 jO.d/j. For any family Xt �Gr.k; n/ of smooth divisors in jO.d/j,
t 2 Œ0; 1�, there is a symplectic parallel transport map, a symplectomorphism X0!X1
which depends up to Hamiltonian isotopy only on the homotopy class of the path Xt
relative to its endpoints. Applied to loops, parallel transport gives the symplectic
monodromy map

�1
�
PH 0.Gr.k; n/;O.d// n�

� monodromy
��������! Symp.X/=Ham.X/:

The discriminant complement contains a distinguished conjugacy class of loops 

called meridian loops. A meridian loop


 � PH 0.Gr.k; n/;O.d// n�

is the boundary of a 2–disk in PH 0.Gr.n; k/;O.d// that intersects � transversely
once. The image of such a loop under the monodromy map is the Dehn twist �L , where
L�X is an jO.d/j–vanishing Lagrangian sphere. Theorem 1.2 implies the following.

Corollary 1.3 If 3�d �n or d �k.n�k/Cn�2, and 
 �PH 0.Gr.k; n/;O.d//n�
is a meridian loop, then

Œ
� 2 �1
�
PH 0.Gr.k; n/;O.d// n�

�
is an element of infinite order.
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Note that Œ
� 2 H1.PH 0.Gr.k; n/;O.d// n �IZ/ has finite order. For the projec-
tive space Gr.1; n/ D Pn�1 , the fundamental group �1.PH 0.Pn�1;O.d// n�/ is
computed by Lönne in [22] and implies Corollary 1.3 for k D 1. For k ¤ 1, the
corresponding fundamental group seems not to be studied, but Corollary 1.3 should
allow a more straightforward proof, suggested to us by Dmitri Panov. Namely, assume
dimC X is even (otherwise the corollary follows from the fact that the Dehn twist
has infinite order topologically) and consider the d W 1 cover of Gr.k; n/ branched
along X , which now has odd complex dimension. A nodal degeneration of X provides
an Ad–degeneration of the cover, and the monodromy around such a degeneration,
which is a composition of Dehn twists around a chain of Lagrangian spheres, has
infinite order in the smooth mapping class group (which uses the Picard–Lefschetz
formula and the fact that the spheres are now odd-dimensional). This observation is
enough to imply Corollary 1.3, bypassing the need to consider the Dehn twist in X
itself. However, we decided to keep Corollary 1.3 to add an additional context to the
main theorems.

We prove analogues of Theorem 1.2 and Corollary 1.3 for divisors in some very ample
line bundles L ! Y , where Y is a Kähler manifold which carries a holomorphic
involution with certain properties. The precise statement is postponed to Section 1.7.

1.3 Elliptic relation for commuting symplectomorphisms

To prove Theorem 1.2, we use the elliptic relation (Theorem 1.1), which we now discuss.

Let X be a symplectic manifold satisfying the W C condition explained in Section 2; for
example, X can be a Kähler manifold which is either Fano or whose canonical class KX
is sufficiently positive. Given a symplectomorphism f W X !X , one defines its Floer
cohomology HF�.f /. It is a Z2–graded vector space HF�.f /D HF0.f /˚HF1.f /
over the Novikov field

ƒD

� 1X
iD0

aiq
!i W ai 2C; !i 2R; lim

i!1
!i DC1

�
:

For any two commuting symplectomorphisms f; gW X ! X we define invertible
automorphisms

gfloerW HF�.f /! HF�.f / and ffloerW HF�.g/! HF�.g/:

The construction of HF�.f / uses a time-dependent almost complex structure J and a
Hamiltonian H to define a vector space HF�.f IJ;H/. This vector space is canonically
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isomorphic (on the chain level) to HF�.gfg�1Ig�J;H ıg/ by composing all pseudo-
holomorphic curves with g . If f; g commute, gfloer is the composition of isomorphisms

HF�.f IJ;H/!HF�.gfg�1Ig�J;H ıg/DHF�.f Ig�J;H ıg/!HF�.f IJ;H/;

where the last arrow is the continuation map associated to a homotopy of data from
.g�J;H ıg/ to .J;H/.

The automorphisms ffloer; gfloer have degree zero, and one can define their supertrace

STr.gfloer/ WD Tr.gfloerjHF0.f //�Tr.gfloerjHF1.f // 2ƒ:

Recall that Theorem 1.1 asserts that STr.ffloer/D STr.gfloer/.

Now suppose a symplectomorphism f commutes with a finite-order symplectomor-
phism � , �k D Id, with fixed locus X� . Then X� is a disjoint union of symplectic
submanifolds. Using an argument reminiscent of the PSS isomorphism, we show that

STr.ffloerW HF�.�/! HF�.�//D L.f jX� / � q
0:

The right-hand side is the topological Lefschetz number

L.f jX� /D Tr.f �jH even.X�//�Tr.f �jH odd.X�//;

where f �W H�.X�/! H�.X�/ is the classical action on the cohomology of X� .
On the other hand, using that � has finite order, we show that

STr
�
�floerW HF�.f /! HF�.f /

�
D a � q0;

where jaj � dimƒ HF�.f /. Combining this with the elliptic relation, we obtain the
following corollary.

Proposition 1.4 Let X be a symplectic manifold satisfying the W C condition and
f; �W X !X two commuting symplectomorphisms with �k D Id. Then

dimƒ HF�.f /� jL.f jX� /j:

Remark 1.5 The fixed locus X� is allowed to be disconnected, with components of
different dimensions.

Remark 1.6 If f W X!X is a diffeomorphism with smooth fixed locus Xf , such that
Id�df .x/jNx† is non-degenerate on the normal space Nx†� TxX to any connected
component †�Xf for every x 2†, then

L.f /D
X
†�Xf

sign.det.Id�df jNx†// ��.†/:
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Consequently, if �; W X !X are finite-order symplectomorphisms, we get

L.�jX /D L. jX� /D �.X
�
\X /;

provided the latter intersection is clean. This agrees with the elliptic relation and the
topological interpretation of the Floer-homological actions for finite-order maps.

Remark 1.7 It is possible to give a more straightforward proof of Proposition 1.4
which does not appeal to Theorem 1.1, but still requires some analysis in the spirit of
Seidel [37, Lemma 14.11]. See Remark 2.23 for more details.

Remark 1.8 Theorem 1.1 holds when f; g commute only up to Hamiltonian isotopy,
and more generally when fg�1 is isomorphic to Id in the Donaldson category, whose
objects are symplectomorphisms of X and Hom.f; g/ D HF�.fg�1/; the proofs
require only minor modifications. In Proposition 1.4, f; g can also be allowed to
commute up to Hamiltonian isotopy.

1.4 Outline of proof of Theorem 1.1

The complete proof of Theorem 1.1 with all necessary definitions is found in Section 2;
here we provide a sketch, illustrated by Figure 1, and indicate the main technical issue
we have to solve.

.a/

.b/

.c/ .d/

f

fg

f

g g

Figure 1: Changing the base of a symplectic fibration in the proof of Theorem 1.1

Let f; g be two commuting symplectomorphisms. By our definition, the supertrace
STr.gfloer/ is computed by counting certain solutions to Floer’s continuation equation,
or equivalently by counting holomorphic sections of a certain symplectic fibration
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Ef ! S1 �R; see Figure 1(a). This fibration has monodromy f along S1 , and the
almost complex structure on Ef differs by the action of g over the two ends of the
cylinder. We count only those sections whose asymptotics differ by the action of g over
the ends of the cylinder. One can therefore glue the fibration, together with the almost
complex structure, into a fibration Ef;g ! S1 �S1 . A gluing theorem in symplectic
field theory (SFT) gives a bijection between holomorphic sections S1�R!Ef (with
asymptotics as above) and all holomorphic sections S1 �S1!Ef;g , where S1 �S1

is endowed with the complex structure which is very “long” in the direction of the
second S1–factor; see Figure 1(b). We will refer to this bijection by .�/ in the next
few paragraphs.

On the other hand, the count of holomorphic sections S1�S1!Ef;g does not depend
on the chosen complex structure on S1�S1 . Take another complex structure on S1�S1

which is “long” in the first S1–factor instead of the second one; see Figure 1(c). The
same gluing argument as .�/ above implies that the count of holomorphic sections

S1 �S1!Ef;g

is equal to the count of holomorphic sections

R�S1!Eg

(with asymptotics differing by the action of f over the ends of the cylinder), where
Eg !R�S1 is the fibration obtained by cutting Ef;g along the first S1–factor; see
Figure 1(d). Similarly to what we began with, the latter count of holomorphic sections
over R�S1 gives STr.ffloer/.

The key difficulty in upgrading this sketch to a proof is to determine how the bijection
.�/ behaves with respect to the signs attached to sections over the cylinder (which
in general depend on the choice of a “coherent orientation”, but are canonical for
sections contributing to the supertrace), and signs canonically attached to sections over
the torus. The outcome is that .�/ multiplies signs by .�1/degx , where x is a ˙1
asymptotic periodic orbit of the section over the cylinder. (The ˙1 asymptotics differ
by g and thus have the same degree.) This is (2-27) in Section 2. It explains why
Theorem 1.1 is an equality between supertraces and not usual traces. (We have not
found (2-27) elsewhere in the literature. Coherent orientations in SFT are discussed in
Eliashberg, Givental and Hofer [12] and Bourgeois and Mohnke [8] (see especially [8,
Corollary 7]), but these works don’t seem to give the result we need).

Remark 1.9 As the proof uses the torus with different complex structures (ie elliptic
curves), this justifies the name “elliptic relation”. There is some categorical perspective
to the elliptic relation, as well: Ben-Zvi and Nadler [4, Theorem 1.2] obtained an
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equality between the so-called “secondary traces” in a 2-category, which also comes
from cutting the torus into pieces in two different ways (however, not into two different
cylinders as we do). To give another informal analogy, the Lagrangian elliptic relation
(which is the next thing we discuss) can be compared to an algebro-geometric result of
similar flavor proved by Polishchuk [28]; it is tempting to suggest that there is a mirror
symmetry connection between these two results.

1.5 Elliptic relation for invariant Lagrangians

Before explaining how the elliptic relation helps to prove Theorem 1.2, let us discuss
its Lagrangian version. The coefficient field is still ƒ. Definitions and sketch proofs
are briefly presented in Section 2.13.

Let X be a connected monotone symplectic manifold (eg a complex Fano variety),
and L1; L2 � X monotone Lagrangians (eg simply connected). Suppose there is
a symplectomorphism �W X ! X such that �.L1/ D L1 , �.L2/ D L2 . Under a
condition involving spin structures, formulated later as Hypothesis 2.24, a version of
the open-closed string map provides twisted cohomology classes ŒL1�� 2 HF�.�/,
ŒL2�

��1 2HF�.��1/. Now consider the quantum product ŒL1�� � ŒL2��
�1

2QH�.X/
and the map �W QH�.X/!ƒ which is the integration over ŒX� (sending the volume
form to 1 and all elements of H<2n.X/, seen as elements of QH�.X/, to 0). Under
the assumptions of the next theorem, there is again an action �floerW HF�.L1; L2/!
HF�.L1; L2/, with Floer cohomology taken over ƒ.

Theorem 1.10 (Elliptic relation) Suppose .X;L1; L2/ are monotone, �W X !X is
a symplectomorphism, �.Li /D Li . If the base field has char¤ 2, suppose the Li are
orientable and Hypothesis 2.24 is satisfied (eg the Li are simply connected). Then

STr.�floer/D �
�
ŒL1�

�
� ŒL2�

��1
�
:

If �k D Id and the fixed loci L�i �X
� are smooth and orientable, the q0–term of the

right-hand side equals the classical homological intersection ŒL�1 � � ŒL
�
2 �2Z inside X� ,

where ŒL�i � 2HdimRX=2.X IZ/. On the other hand, eigenvalue decomposition of �floer

implies that the left-hand side equals a �q0 with a 2C , jaj � dimƒ HF�.L1; L2/. The
elliptic relation yields the following analogue of Proposition 1.4.

Proposition 1.11 Under the assumptions of Theorem 1.10, if �k D Id and the fixed
loci L�i ; X

� are smooth and orientable then

dimƒ HF�.L1; L2/�
ˇ̌
ŒL
�
1 � � ŒL

�
2 �
ˇ̌
:
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As our Lagrangians are monotone, we can pass from ƒ–coefficients to the base field
(eg C or Z=2Z) without changing the dimensions of Floer cohomology; see eg
Wehrheim and Woodward [46, Remark 4.4]. So Proposition 1.11 gives the same
bound on dim HF�.L1; L2IC/ or dim HF�.L1; L2IZ=2Z/. However, the proof of
Proposition 1.11 crucially uses Theorem 1.10 over ƒ, as can be seen from the sketch
we presented.

As a simple application of Proposition 1.11 we can recover the following known fact:
RPn �CPn is not self-displaceable by a Hamiltonian isotopy, as

dim HF�.RPn;RPnIZ=2Z/� 1:

When n is even, this is true because the Euler characteristic of RPn equals 1 over a
characteristic–2 field. When n is odd, consider the hyperplane reflection � on CPn so
that .RPn/� DRPn�1 and apply Proposition 1.11.

In the appendix we provide a more interesting application of Proposition 1.11. Namely,
we prove that for L � X as in Theorem 1.2, and if X is in addition Fano and
even-dimensional, there is an isomorphism of rings HF�.L;LIC/ Š CŒx�=x2 . For
Lagrangian spheres in the cubic surface, this was proved by Sheridan [41], and after the
present paper had appeared, it was observed by Biran and Membrez [6, Section 1.3.2]
that for a Lagrangian sphere in a projective hypersurface, which is Fano and of degree at
least 3, the isomorphism HF�.L;LIC/ŠCŒx�=x2 follows from the known structure
of QH�.X/, regardless of the complex dimension of X . Our method is completely
different: it does not use any knowledge of QH�.X/, and works for hypersurfaces in
Grassmannians as well as in some more abstract cases discussed in the appendix.

Remark 1.12 The action �floer on HF�.L1; L2/ (as well as the actions in the case
of two commuting symplectomorphisms) can be defined using functors coming from
Lagrangian correspondences; see Wehrheim and Woodward [44; 45]. It is possible
that the two versions of the elliptic relation admit a generalisation for Lagrangian
correspondences.

1.6 Outline of proof of Theorem 1.2

We have already mentioned that Theorem 1.2 holds for topological reasons when dimX

is odd. Suppose therefore that dimC Gr.k; n/ is odd, so that dimC X is even. The
Grassmannian has an involution � whose fixed locus contains an even-dimensional
connected component z† � Gr.k; n/. For example, when k D 1 we can take the
involution .x1 W x2 W x3 W x4 W : : : W xn/ 7! .�x1 W �x2 W �x3 W x4 W : : : W xn/ and
z†D P2.x1 W x2 W x3/.
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The key idea of reducing Theorem 1.2 to Proposition 1.4 is the following construction
performed in Section 4. We construct a smooth divisor X � Gr.k; n/ invariant under �
such that the fixed locus X � of the involution �jX contains an odd-dimensional con-
nected component †D z†\X . Next, we construct two �–invariant jO.d/j–vanishing
Lagrangian spheres L1; L2�X which intersect each other transversely once. Moreover,
the fixed loci L�i WD Li \†, i D 1; 2, are Lagrangian spheres in † which intersect
each other transversely once; see Figure 2. This is where we need d � 3.

X

†

L�1
L�2

L1
L2

Figure 2: Invariant Lagrangian spheres L1 and L2 used in the proof of Theorem 1.2

Theorem 1.2 is proved in Section 5. Consider the product �2kL1 �
2k
L2

of iterated Dehn
twists. Because L1; L2 are �–invariant, this product can be made �–equivariant. The
Lefschetz number of

.�2kL1 �
2k
L2
/j† D �

2k
L�1
�2kL�2

is equal to c � 4k2 , where c is a constant. This follows from the Picard–Lefschetz
formula and crucially uses the fact that dim† is odd. If dim† were even, the trace
would be independent of k . Consequently, by Proposition 1.4, dim HF�.�2kL1 �

2k
L2
/

grows with k .

Finally, we note that L1; L2 from our construction can be taken one to another by
a symplectomorphism of X . This means �L1 and �L2 are conjugate. If �2kL1 was
Hamiltonian isotopic to Id, then �2kL2 and the product �2kL1 �

2k
L2

would be as well. This
contradicts the growth of Floer cohomology from above, and proves Theorem 1.2 for the
specially constructed jO.d/j–vanishing Lagrangian sphere L1 �X . If X 0 is another
smooth divisor linearly equivalent to X and L0 � X 0 is another jO.d/j–vanishing
Lagrangian sphere, Lemma 3.8 says there is a symplectomorphism X !X 0 taking L
to L0 . This implies Theorem 1.2 in general.

1.7 An extension of Theorem 1.2

Theorem 1.2 is a particular case of the more general, but also more technical theorem
which we now state. Let L be a very ample line bundle over a Kähler manifold Y . It
gives an embedding Y � PN WD PH 0.Y;L/� .
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Suppose �W Y ! Y is a holomorphic involution which lifts to an automorphism of L.
The map � induces a linear involution on H 0.Y;L/� , splitting it into the direct sum
of the ˙1–eigenspaces H 0.Y;L/�

˙
. Let …˙ � PN be the projectivisations of these

eigenspaces. The fixed locus Y � � Y of the involution � is

Y � D .…C t…�/\Y;

where the intersection is taken inside PN . It is automatically smooth, but can have
many connected components because the intersections …C \ Y , …� \ Y may be
disconnected.

Theorem 1.13 With notation and assumptions as above, fix d�3 and letH 0.Y;L˝d/˙
denote the ˙1–eigenspace of the involution on H 0.Y;L˝d / induced by �. Further,
suppose one of the following holds:

(a) d is even, and Y � contains a connected component z† such that dimC z† is even.

(b) d is odd, there is a smooth divisor in the linear system PH 0.Y;L˝d /C , and
…C\Y contains a connected component z† such that dimC z† is even.

Let X � Y be a smooth divisor in the linear system jL˝d j and L � X an jL˝d j–
vanishing Lagrangian sphere. Denote by �L the Dehn twist around L, and assume X
satisfies the W C condition. Then the Hamiltonian isotopy class of �L is an element of
infinite order in the group Symp.X/=Ham.X/. The same is true if we replace symbols
C with symbols � in case (b).

Like Theorem 1.2, Theorem 1.13 is new when dimC X is even and X is not Calabi–Yau.

In case (a), the existence of a smooth �–invariant divisor X follows from Bertini’s
theorem, so it is not included as a condition of the theorem. In case (b), an invariant
divisor can sometimes be found using a strong Bertini theorem [10, Corollary 2.4],
which gives the following.

Lemma 1.14 Under the conditions of Theorem 1.13, let d be odd. There is a smooth
divisor in the linear system PH 0.Y;L˝d /˙ if every connected component of …�\Y
has dimension less than 1

2
dimY .

As in the beginning of the introduction, we have the following corollary.

Corollary 1.15 Under the conditions of Theorem 1.13, let 
 � PH 0.Y;L˝d / n� be
a meridian loop, defined analogously to one in the paragraph before Corollary 1.3. Then

Œ
� 2 �1
�
PH 0.Y;L˝d / n�

�
is an element of infinite order.
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We prove these statements in Section 5. We have earlier explained the plan of proof of
Theorem 1.2; actually we follow this plan to prove the general Theorem 1.13 first, and
then derive Theorem 1.2 from it.

1.8 Equivariant transversality approaches

This subsection is not used in the rest of the paper. Computations of Floer cohomology
in the presence of a symplectic involution were discussed by Khovanov and Seidel [20]
and Seidel and Smith [40]. Both papers imposed restrictive conditions on the involution
which allow one to choose a regular equivariant almost complex structure for computing
Floer cohomology.

In [40], it is proved that

dim HF�.L1; L2IZ=2/� dim HF�.L�1; L
�
2IZ=2/

when there exists a stable trivialisation of the normal bundle to X � respecting the Li .
In particular, the Chern classes of this normal bundle should vanish. The right-hand side
is Floer cohomology inside X � , where L�i are the fixed loci of Li and X � is the fixed
locus of X . Sometimes the right-hand side is easier to compute than the left-hand side
(eg when all intersection points L�1\L

�
2 have the same sign). However, the condition

on the normal bundle makes this estimate inapplicable to divisors in Gr.k; n/.

In a very special case, [20] proves that

dim HF�.L1; L2IZ=2/D jL�1\L
�
2j;

where the right-hand side is the unsigned count of intersection points. The assumption
is, roughly, that the fixed locus X � has real dimension 2 and L�1; L

�
2 �X

� are curves
having minimal intersection in their homotopy class. One could prove a C–version
of this equality if the Li admit �–equivariant Pin strictures, and apply it to divisors
in Pn�1 D Gr.1; n/, ie projective hypersurfaces (thus giving an alternative proof
of Theorem 1.2 in this case). However, it cannot be applied to divisors in general
Grassmannians. When k >2, Gr.k; n/ has no holomorphic involution with a connected
component of complex dimension 2; this is easy to check because all holomorphic
automorphisms Gr.k; n/ come from linear ones on Cn , with a single exception when
nD 2k ; see Cowen [9, Theorem 1.1 (Chow)].
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2 The elliptic relation

This section proves the elliptic relation for symplectomorphisms (together with its
corollary, Proposition 1.4) and sketches a proof of the Lagrangian elliptic relation.

2.1 Floer cohomology and continuation maps

Definition 2.1 (The W C condition) A symplectic manifold .X; !/ of dimension 2n
satisfies the W C condition [34] if, for every A 2 �2.X/,

2�n� c1.A/� �1 H) !.A/� 0:

Let .X; !/ be a compact symplectic manifold satisfying the W C condition. Fix a
symplectomorphism f W X !X . In this subsection we recall the definition of Floer
cohomology HF�.f /; basic references are [24; 11; 34].

Take a family of !–tame almost complex structures Js on X , and a family of Hamil-
tonian functions HsW X !R, s 2R. They must be f –periodic:

(2-1) Hs DHsC1 ıf; Js D f
�JsC1:

By XHs we denote the Hamiltonian vector field of Hs , and by  sW X ! X the
Hamiltonian flow:

(2-2) d s=ds DXHs ı s;  0 D Id :

The following equation on u.s; t/W R2!X is called Floer’s equation:

(2-3) @u=@t CJs.u/.@u=@s�XHs .u//D 0:

This equation comes with the periodicity conditions

(2-4) u.sC 1; t/D f .u.s; t//:

Denote

(2-5) fH WD  
�1
1 ıf 2 Symp.X/:
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(The correct notation would be fHs , but we stick to fH for brevity). Suppose the fixed
points of fH are isolated and non-degenerate (that is to say, for every x 2 FixfH ,
ker.Id�dfH .x// D 0). Then finite-energy solutions to Floer’s equation have the
following convergence property. There exist points x; y such that

(2-6) lim
t!�1

u.s; t/D  s.x/; lim
t!C1

u.s; t/D  s.y/; x; y 2 FixfH :

For x; y 2 FixfH , let M.x; yIJs;Hs/ be the moduli space of all solutions to Floer’s
equation (2-3) with limits (2-6). For regular Js;Hs , the moduli space is a manifold
which is a disjoint union of the k–dimensional pieces Mk.x; yIJs;Hs/. They can be
oriented in a way consistent with gluings; such orientations are called coherent [13].
There is an R–action on M.x; yIJs;Hs/, and once a coherent orientation is fixed,
M1.x; yIJs;Hs/=R is a set of signed points.

The Floer complex associated to .f IJs;Hs/ is the ƒ–vector space generated by points
in FixfH :

CF�.f IJs;Hs/ WD
M

x2FixfH

ƒhxi:

The differential on CF�.f IJs;Hs/ is defined on a generator x 2 FixfH by

(2-7) @.x/D
X

y2FixfH
u2M1.x;yIJs ;Hs/=R

˙q!.u/ �y:

Here the signs are those of the points in M1.x; yIJs;Hs/=R, and

(2-8) !.u/D

Z
s2Œ0;1�

Z
t2R

u�! ds dt:

Suppose Js;Hs and J 0s;H
0
s are two regular choices of almost complex structures

and Hamiltonians that satisfy the f –periodicity condition (2-1). Choose a family of
!–tame complex structures Js;t and Hamiltonians Hs;t , s; t 2R, such that for each t
the condition (2-1) is satisfied and

(2-9)
Js;t � J

0
s; Hs;t �H

0
s for t near �1;

Js;t � Js; Hs;t �Hs for t near C1:

We call Js;t ;Hs;t a homotopy from J 0s;H
0
s to Js;Hs . Define M.x; yIJs;t ;Hs;t / to

be the set of solutions to Floer’s continuation equation

(2-10) @u=@t CJs;t .u/.@u=@s�XHs;t .u//D 0
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with periodicity condition (2-4) and asymptotic conditions

(2-11) lim
t!�1

u.s; t/D s.x/; lim
t!C1

u.s; t/D s.y/; x 2FixfH 0 ; y 2FixfH :

If Js;t ;Hs;t are regular, M.x; yIJs;t ;Hs;t / is a manifold. Let M0.x; yIJs;t ;Hs;t /

be its 0–dimensional component, which is a collection of signed points once coher-
ent orientations (consistent with those for Js;Hs and J 0s;H

0
s ) are fixed. Define the

continuation map CJs;t ;Hs;t W CF�.f IJ 0s;H
0
s/! CF�.f IJs;Hs/ by

(2-12) CJs;t ;Hs;t .x/D
X

y2FixfH
u2M0.x;yIJs;t ;Hs;t /

˙q!.u/ �y:

Here x 2 FixfH 0 . For regular Js;t ;Hs;t , it is a chain map inducing an isomorphism
on cohomology. So one can actually identify the homologies HF�.f IJs;Hs/ for all
generic Js;Hs to get a single space HF�.f /. It is called Floer cohomology of f . It
is a Z=2–graded vector space over ƒ; we will recall the grading later.

2.2 Commuting symplectomorphisms induce actions on Floer cohomology

As before, let X be a compact symplectic manifold satisfying the W C condition. Let
f; gW X ! X be two commuting symplectomorphisms; we will now define an auto-
morphism gfloerW HF�.f /! HF�.f /.

Pick generic Js;Hs that satisfy (2-1) to get the complex CF�.f IJs;Hs/. Denote

(2-13) J 0s WD g
�Js; H 0s WDHs ıg:

This gives us another complex CF�.f IJ 0s;H
0
s/. Note that g ı 1 D  01 . Let us check

that fH D fH 0 ıg :

fH 0 ıg.x/D . 
0
1/
�1fg.x/D . 01/

�1gf .x/D  �11 f .x/D fH .x/:

Consequently, g induces a bijection FixfH ! FixfH 0 . Extend it by ƒ–linearity to

gpushW CF�.f IJs;Hs/! CF�.f IJ 0s;H
0
s/:

Similarly, the composition map u 7! g ıu is an isomorphism

M.x; yIJs;Hs/
Š
�!M.g.x/; g.y/IJ 0s;H

0
s/:

So gpush is tautologically a chain map inducing an isomorphism on cohomology. Now
fix a homotopy Js;t ;Hs;t from J 0s;H

0
s to Js;Hs as in (2-9). Consider the composition

CF�.f IJs;Hs/
gpush
���! CF�.f IJ 0s;H

0
s/

CJs;t ;Hs;t
�������! CF�.f IJs;Hs/:
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Definition 2.2 (Action on Floer cohomology) We define

gfloerW HF�.f IJs;t ;Hs;t /! HF�.f IJs;t ;Hs;t /

to be the map induced by the composition of chain maps CJs;t ;Hs;t ı gpush . We will
frequently suppress the choice of Js;Hs and simply write gfloerW HF�.f /! HF�.f /.
Also, we will sometimes denote the chain-level map by the same symbol, gfloer D

CJs;t ;Hs;t ıgpush .

As a part of this definition, the signs in formula (2-12) for CJs;t ;Hs;t must come
from a coherent orientation, as explained in Section 2.8 below. In particular, for any
x 2 FixfH , the sign of an element u 2M0.g.x/; xIJs;t ;Hs;t / is canonical — see
Definition 2.16 — and denoted by sign.u/.

Remark 2.3 On the level of cohomology, gfloer does not depend on the chosen
homotopy Js;t ;Hs;t ; this follows from the fact that the continuation map CJs;t ;Hs;t
does not depend on the choice of homotopy; see eg [24, Section 12.1].

Remark 2.4 (An analogue in Morse cohomology) A similar construction is known in
Morse cohomology [31, Section 4.2.2]. Suppose H W X!R is a Morse–Smale function
on a Riemannian manifold .X; g/, and f W X !X is a diffeomorphism. Let C �.H/
be the Morse complex of X generated by points in Crit.H/. Pick homotopies Ht
from H ı f to H , and gt from f �g to g , and define f �W C �.H/! C �.H/ as
follows. Take x; y 2 Crit.H/ and let the coefficient of f �.x/ on y be the signed
count of flowlines of the gradient rgtHt going from f .x/ to y . The chain map f �

induces an automorphism of H�.X/ known from elementary topology.

In particular, let us note for future use that the Lefschetz number L.f / can be computed
as the sum over x 2 Crit.H/ of rgtHt–flowlines going from f .x/ to x , counted
with signs.

Remark 2.5 (Relation to Seidel elements) If g is Hamiltonian isotopic to f through
symplectomorphisms commuting with f , then one can show gfloerW HF�.f /!HF�.f /
is the identity. If g is just Hamiltonian isotopic to f , gfloer need not be the identity,
but can be understood as follows. Take a homotopy gt , g0 D g; g1 D f . The path

t WD g

�1
t fgt is actually a loop in Symp.X/: 
.0/D 
.1/D f because g�1fgD f .

To this path one associates its Seidel element S.
/ 2 QH�.M Iƒ/ [34]. Let � be
the quantum multiplication QH�.M Iƒ/˝HF�.f /! HF�.f /. One can check that
gfloer.x/D S.
/�x for any x 2HF�.f /. We will not use this observation, so we omit
its proof.
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2.3 Iterations

If f; g commute then f; gk also commute for any iteration gk .

Lemma 2.6 The following two automorphisms of HF�.f / are equal:

.gfloer/
k
D .gk/floer:

Proof We prove the case kD 2; the general case is analogous. Take Js;Hs as in (2-1),
J 0s;H

0
s pulled by g as in (2-13) and the homotopy Js;t ;Hs;t as in (2-9). Denote

J
00

s D g
�J 0s D .g

2/�Js; H
00

s DH
0
s ıg DHs ıg

2:

Compare the two compositions given below. The first one induces .gfloer/
2 on the

homological level:

CF�.f IJs;Hs/
gpush

// CF�.f IJ 0s;H
0
s/

CJs;t ;Hs;t
// CF�.f IJs;Hs/

gpush
// CF�.f IJ 0s;H

0
s/

CJs;t ;Hs;t
// CF�.f IJs;Hs/:

The second composition gives .g2/floer , by a gluing theorem for continuation maps:

CF�.f IJs;Hs/
gpush

// CF�.f IJ 0s;H
0
s/

gpush
// CF�.f IJ 00s ;H

00
s /

C
J 0s;t ;H

0
s;t
// CF�.f IJ 0s;H

0
s/

CJs;t ;Hs;t
// CF�.f IJs;Hs/:

By definition of J 0s;t ;H
0
s;t (2-13), g maps Floer solutions (2-10) in M.x; yIJs;t ;Hs;t /

to those in M.g.x/; g.y/IJ 0s;t ;H
0
s;t /. This means

CJ 0s;t ;H
0
s;t
ıgpush D gpush ıCJs;t ;Hs;t :

This proves Lemma 2.6.

2.4 Supertrace

We continue to use notation from Section 2.1.

Definition 2.7 (Grading on Floer’s complex) Let x 2 FixfH . We say deg x D 0 if
sign det.Id�dfH .x// > 0 and deg x D 1 otherwise.
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This makes CF�.f IJs;Hs/ a Z2–graded vector space over ƒ. Floer’s differential has
degree 1, so the cohomology is also Z2–graded: HF�.f /D HF0.f /˚HF1.f /.

Definition 2.8 (Supertrace) Let V D V 0˚ V 1 be a Z2–graded vector space and
�W V ! V an automorphism of degree zero, ie �.V 0/ � V 0 , �.V 1/ � V 1 . Then
STr.�/ WD Tr.�jV 0/�Tr.�jV 1/.

The automorphism gfloer from Definition 2.2 has degree zero, so it has a well-defined
supertrace which is an element of ƒ. Supertraces can be computed on the chain level,
since all our chain complexes are finite-dimensional. Therefore the following is just a
restatement of definitions.

Lemma 2.9 Let X be a symplectic manifold satisfying the W C condition and
f; gW X ! X be two commuting symplectomorphisms. Take J 0s;H

0
s as in (2-13)

and a homotopy Js;t ;Hs;t from J 0s;H
0
s to Js;Hs as in (2-9). Then

STr
�
gfloerW HF�.f /! HF�.f /

�
D

X
x2FixfH

u2M0.g.x/;xIJs;t ;Hs;t /

.�1/degx
� sign.u/ � q!.u/;

where sign.u/D˙1 is as in Definition 2.16.

Proof Pick a generator x 2 FixfH of CF�.f IJs;Hs/. Rewriting the definition of
gfloer , we get

gfloer.x/D
X

u2M0.g.x/;yIJs;t ;Hs;t /

˙q!.u/ �y:

When we put x D y , the sign ˙ becomes sign.u/ according to Definition 2.2.

2.5 Holomorphic sections

It is useful to reformulate the definition of Floer cohomology using holomorphic sections
as in eg [38]. If f W X !X is a symplectomorphism, consider the mapping cylinder

(2-14) Ef WD
X �R2s;t

.x; s; t/� .f .x/; sC 1; t/
:

There is a closed 2–form !Ef on Ef which comes from ! ˚ 0 on X �R2 , and a
natural fibration pW Ef ! S1 �R whose fibres are symplectomorphic to X .

The f –periodicity condition (2-4) on uW R2!X means that it can be seen as a section
uW S1 �R!Ef . Floer’s equation itself (2-3) is equivalent to u being a holomorphic
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section with respect to the standard complex structure jS1�R on S1�R and an almost
complex structure zJ on Ef . In other words, Floer’s equation (2-3) becomes

(2-15) duC zJ ı du ı jS1�R D 0:

The almost complex structure zJ WD zJ .Js;Hs/ is determined by Js and Hs ; see eg [24,
Section 8.1]. Analogously, if Jt;s;Ht;s is a continuation homotopy (2-9), the moduli
space M.x; yIJs;t ;Hs;t / consists of sections uW S1 �R!Ef that are holomorphic
with respect to jS1�R and an almost complex structure zJ .Js;t ;Hs;t / on Ef .

2.6 Asymptotic linearised Floer’s equation

Let Ef be as in (2-14). We denote by

T vEf D ker dp

the vertical tangent bundle of Ef . The almost complex structures Js turn T vEf into a
complex vector bundle. Take a solution u.s; t/ to Floer’s equation, u2M.x; yIJs;Hs/.
We regard it as a section u.s; t/W S1 �R! Ef as explained above. The pullback
u�T vEf is a complex vector bundle over S1 �R. By linearising Floer’s equation
(2-15), one gets a map

(2-16) DuW H
1;p.u�T vEf /! Lp.�0;1.u�T vEf //:

Here �0;1.u�T vEf / consists of bundle maps T .S1 � R/ ! u�T vEf which are
complex-antilinear with respect to zJ and the standard complex structure on S1 �R.

We know from (2-6) that u extends to S1 � f˙1g: u.s;�1/D  s.x/, where  s is
the flow (2-2) of XHs . (The same is true of t !C1 and the point y . We will now
speak of t !�1 only.) Choose a complex trivialisation

(2-17) ˆx W u
�T vEf jS1�f�1g! S1 �R2n:

We choose a single trivialisation for each point x ; this is possible because u.s;�1/D
 s.x/. The operator Du is asymptotic, as t !�1, to the operator

(2-18) LA.s/ D @=@t CJ0@=@sCA.s/W H
1;p.S1 �R;R2n/! Lp.S1 �R;R2n/:

Here J0 is the standard complex structure on R2n , and A.s/W S1! Hom.R2n;R2n/
is a map taking values in symmetric matrices. It is known that A.s/ is determined by
Js;Hs , the point x and the chosen trivialisation ˆ.x/. It does not depend on u as
long as the t!�1 asymptotic of u stays fixed. A reference for these facts is (among
others) the thesis of Schwarz [32, Definition 3.1.6, Theorem 3.1.31]. Although that
thesis only considers the case f D Id, the proofs of the results we use are valid for
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any f , as these are general results about certain Fredholm operators on bundles over
S1 and S1 �R.

Lemma 2.10 [32, proof of Lemma 3.1.33] Consider the operator

J0@=@sCA.s/W C
1.S1;R2n/! C1.S1;R2n/:

There is a family of linear maps ‰.s/W Œ0; 1�! Sp.R2n/ such that

(2-19) .J0@=@sCA.s//‰.s/D 0; ‰.0/D Id

and ‰.1/W R2n!R2n coincides, under the trivialisation ˆx (2-17), with the differen-
tial dfH .x/.

Remark 2.11 We identify S1 D R=Z, so the points s D 0 and s D 1 of the circle
are the same. The statement about ‰.1/ in the lemma above makes sense because
u.0;�1/D x for some x 2 FixfH ; see (2-6) and (2-2). So dfH .x/ acts on TxX D
u�T vEf j.0;�1/ . The trivialisation (2-17) identifies this space with R2n .

Remark 2.12 Given ‰.s/W Œ0; 1�! Sp.R2n/, by solving (2-19) we get

(2-20) A.s/D�J0.@=@s‰.s//‰.s/
�1;

with symmetric A.s/W Œ0; 1�! Hom.R2n;R2n/. Conversely, we can go from A.s/

to ‰.s/ by solving (2-19) as an ODE.

Remark 2.13 For the reader’s convenience, we include a correspondence between our
notation and that of Schwarz [32], our notation being on the left in each pair: s$ t ,
t $ s , A.s/$ S1.t/, ‰.s/$‰.t/, and Du in our notation corresponds to either
Du or DFh , the latter being the linearisation of Floer’s equation at an h which is not
necessarily a solution. Equation (2-19) is [32, (3.23)].

2.7 An index problem on the torus

The operator LA.s/ (2-18) is Fredholm if and only if det.Id�‰.1//Ddet.Id�dfH .x//
is non-zero. Now, for later use, consider variables .s; t/ belonging to the torus S1�S1

instead of the cylinder S1 �R. The same formula (2-18) gives the operator

LA.s/ D @=@t CJ0@=@sCA.s/W C
1.S1 �S1;R2n/! C1.S1 �S1;R2n/;

which is now Fredholm of index zero for any family of symmetric matrices A.s/W S1!
Hom.R2n;R2n/. For the remainder of this subsection, LA.s/ denotes the operator on
S1 �S1 and not on the cylinder.
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Lemma 2.14 Let A.s/W S1 ! Hom.R2n;R2n/ be a family of symmetric matrices.
Suppose A.s/ and ‰.s/ satisfy (2-19). Then dim kerLA.s/ D dim ker.Id�‰.1//.

Proof Any �.s; t/ 2 kerLA.s/ must be independent of t (for details see [32, proof of
Lemma 3.1.33]) so we write �.s; t/� �.s/. The equation on �.s/ becomes

.J0@=@sCA.s//�.s/D 0:

This is an ODE whose solutions are of the form �.s/ D ‰.s/v for some v 2 R2n

by (2-19). There are no other solutions by the uniqueness theorem for ODEs, as the
v 2R2n sweep out all initial conditions. In addition, our solutions must close up on
the circle, meaning �.1/D �.0/, which forces ‰.1/v D v .

Let A0.s/; A1.s/W S1! Hom.R2n;R2n/ be two families of symmetric matrices with
LA0.s/ , LA1.s/ injective. Choose a generic smooth homotopy A� .s/ between them,
� 2 Œ0; 1�. Define sign.LA0.s/; LA1.s//D .�1/

� where

(2-21) � D
X
�2Œ0;1�

dimR kerLA� .s/:

This sum contains a finite number of non-zero terms as LA� .s/ are generically injective,
and does not depend modulo 2 on the chosen homotopy.

Lemma 2.15 For A0.s/, A1.s/ as above and ‰0.s/; ‰1.s/ satisfying (2-19), we have

sign.LA0.s/; LA1.s//D sign det.Id�‰0.1// � sign det.Id�‰1.1//:

Proof For i D 0; 1 denote z‰i .s/D es log‰i .1/ , s 2 Œ0; 1�, so that z‰i .0/D‰i .0/D Id
and z‰i .1/D‰i .1/. Let us compute zAi .s/ from z‰i .s/ using (2-20):

zAi .s/D�J0.@=@s z‰i .s//z‰i .s/
�1
D�J0 log‰i .1/:

We see that it is a constant s–independent symmetric matrix zAi .s/ � zAi . Our first
claim is that

(2-22) sign.LAi .s/; L zAi /DC1:

Indeed, choose the homotopy

.‰i /� .s/D e
�s log‰i .1/e.1��/ log‰i .s/

from ‰i .s/ to z‰i .s/, where � 2 Œ0; 1�, and observe that this homotopy has fixed
endpoints: we have .‰i /� .0/D‰i .0/ for each � , and also .‰i /� .1/D‰i .1/. Passing
from .‰i /� .s/ to .Ai /� .s/ by formula (2-19) we get the linear homotopy

.Ai /� .s/D �Ai .s/C .1� �/ zAi
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from Ai .s/ to zAi . The corresponding operator L.Ai /� .s/ is injective for all � by
Lemma 2.14 because we are given ker.Id�‰i .1//D 0. This implies that

sign.LAi .s/; L zAi /DC1;

as desired.

Let us compute sign.L zA0 ; L zA1/ for two constant matrices zAi .s/� zAi , i D 0; 1. By
linear algebra, one can find a smooth path of matrices zA� from zA0 to zA1 such that

.�1/
P
� dim ker zA� D sign det zA0 � sign det zA1:

We will now show that dim ker zA� D dim kerL zA� for each � , and this will immediately
imply that

(2-23) sign.L zA0 ; L zA1/D sign det zA0 � sign det zA1:

For the rest of the paragraph, redenote zA� (for some fixed � ) by A: this is an arbitrary
symmetric matrix, and if we consider it as an s–independent family and solve (2-20)
with respect to ‰ , we get ‰.1/D e�J0A . By Lemma 2.14, we have

kerLA D ker.Id�‰.1//D ker.Id�e�J0A/:

The latter equals kerA, as seen by bringing A to the Jordan normal form. So (2-23) is
now justified. Combining all the equations above, we get

sign.LA0.s/; LA1.s//D sign.LA0.s/; L zA0/ � sign.L zA0 ; L zA1/ � sign.L zA1 ; LA1.s//

D sign.det zA0/ � sign.det zA1/:

The first equality is true because we can regard the concatenation of three homo-
topies between the operators appearing in the middle expression as a single homo-
topy between the eventual endpoints LA0.s/ and LA1.s/ ; the second equality fol-
lows from (2-22) and (2-23). Finally, recall zAi D �J0 log‰i .1/ and observe that
sign det log‰i .1/D sign det.Id�‰i .1//. This completes the proof.

2.8 Signs for the action on Floer cohomology

Let f; g be two commuting symplectomorphisms. We will now complete Definition 2.2
of the action gfloerW HF�.f /! HF�.f / by specifying the signs appearing there.

Pick regular Js;Hs to define Floer’s complex CF�.f IJs;Hs/. For each x 2 FixfH ,
pick a trivialisation ˆx (2-17). Then for each x we get a unique asymptotic linearised
operator LAx.s/ (2-18).
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Let J 0s;H
0
s be pulled by g (2-13) and Js;t ;Hs;t be a homotopy (2-9). Let u 2

M0.g.x/; yIJs;t ;Hs;t / be a solution to Floer’s continuation equation, where x; y 2
FixfH so that g.x/ 2 FixfH 0 . Consider the linearisation Du of Floer’s continuation
equation at u; its properties are similar to those discussed in Section 2.6. As t!C1,
Du is asymptotic to LAy.s/ because, for t close to C1, Js;t ;Hs;t are equal to Js;Hs .
On the other hand, as t!�1, we can write down Du in the g–induced trivialisation
ˆx ıdg of u�TEf ju.�1;s/ . We claim that Du is asymptotic, as t!�1, to LAx.s/ .
Indeed, the asymptotic operator is determined by the following data: the fixed point
g.x/, the chosen trivialisation ˆx ıdg , and Js;t ;Hs;t which equal g�Js;Hs ıg for t
close to �1. We see that all of this data is pulled by g from the data x , ˆx , Js , Hs
which defines the asymptotic linearised operator Ax.s/. Clearly, pullback by g does
not change the linearised operator at all, so Du is asymptotic to LAx.s/ as t !�1.

The outcome is that the set fLAx.s/gx2FixfH of asymptotic operators to Du for
u 2M.x; yIJs;Hs/ (these are solutions to Floer’s equations for the differential on
CF�.f /, without the second symplectomorphism g involved) is identical to the set
of asymptotic operators to Du for u 2M.g.x/; yIJs;t ;Hs;t / (these are solutions to
Floer’s continuation equation), provided we use the described trivialisations.

Consequently, the usual definition of coherent orientations [13] on M.x; yIJs;Hs/

can be applied without any change to orient M.g.x/; yIJs;t ;Hs;t /, x; y 2 FixfH . In
Definition 2.2, we pick such a coherent orientation on M.g.x/; yIJs;t ;Hs;t /. Instead
of repeating the complete definition of coherent orientations, we only recall a piece
relevant to the signs appearing in Lemma 2.9 regarding the supertrace of gfloer .

Coherent orientations are not unique, but the sign any coherent orientation associates to
a point u2M0.g.x/; xIJs;t ;Hs;t /, x 2FixfH , is canonical. We explain its definition
following [13] and [24, Appendix A]. As we have seen, Du is asymptotic as t!˙1
to the same operator

LA.s/ D @=@t CJ0@=@sCA.s/;

where A.s/ D Ax.s/ in the notation of the previous paragraphs. Choose a generic
homotopy L� from Du to LA.s/ , � 2 Œ0; 1�, such that the L� are Fredholm operators
which stay asymptotic to LA.s/ as t !˙1.

Definition 2.16 For u2M0.g.x/; xIJs;t ;Hs;t /, x2FixfH , define sign.u/D .�1/� ,
where

� D
X
�2Œ0;1�

dimR kerL� :
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Because the operators L� have index zero, the sum is well-defined and does not depend
modulo 2 on the chosen path. Let us repeat that, as part of Definition 2.2, these signs
appear in Lemma 2.9.

2.9 Holomorphic sections over the torus

Section 2.5 explained that solutions to Floer’s equation are holomorphic sections of a
fibration Ef ! S1 �R, whose monodromy around S1 equals f . Now, let f; g be
two commuting symplectomorphisms of X . In this subsection we define a fibration
pW E

1;R
f;g
! T 1;R over a 2-torus T 1;R . The monodromies of this fibration equal f

and g around the two basis loops of the torus. After that we recall how to count its
holomorphic sections; see [24] for details. We start by defining the torus

T 1;R WD
Œ0; 1�� Œ�R;R�

.s; f�Rg/� .s; fRg/; .f0g; t /� .f1g; t /

and equipping T 1;R with the complex structure j 1;R which comes from the standard
one on Œ0; 1��

p
�1Œ�R;R��C . Define

E
1;R
f;g
WD

X � Œ0; 1�� Œ�R;R�

.x; s; f�Rg/� .g.x/; s; fRg/; .x; f0g; t /� .f .x/; f1g; t /
:

Here x 2X , s 2 Œ0; 1�, t 2 Œ�R;R�. Because fg D gf , there is a fibration

pW E
1;R
f;g
! T 1;R

and a fibrewise symplectic closed 2–form !E1;R
f;g

coming from the one on X . Fix a
generic almost complex structure zJ on E1;R

f;g
such that zJ is !1;R

f;g
–tame on the fibres

and the projection p is . zJ ; j 1;R/–holomorphic. Let

M.j 1;R; zJ /

be the space of all .j 1;R; zJ /–holomorphic sections uW T 1;R!E
1;R
f;g

satisfying

(2-24) duC zJ .u/ ı du ı j 1;R D 0:

For generic zJ , this moduli space is a smooth manifold that breaks into components of
different dimensions. This manifold has a canonical orientation, and in particular its
0–dimensional part M0.j 1;R; zJ / consists of signed points. We will now describe how
these signs are defined. Let u 2M0.j 1;R; zJ /. Consider the linearised equation (2-24)
at u,

DuW C
1.u�T vE

1;R
f;g

/!�0;1.u�T vE
1;R
f;g

/:

Here T vE1;R
f;g
D ker dp and u�T vE1;R

f;g
is a complex bundle over the torus T 1;R .

Because u has index zero, this bundle has Chern number zero and hence is trivial; fix
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its trivialisation. Together with the holomorphic coordinates .s; t/ on T 1;R , it induces
a trivialisation of �0;1.u�TE1;R

f;g
/ D R2n . In this trivialisation, Du is a 0–order

perturbation of the Cauchy–Riemann operator:

(2-25) Du D @=@t CJ0@=@sCA.s; t/W C
1.T 1;R;R2n/! C1.T 1;R;R2n/;

where A.s; t/W T 1;R! Hom.R2n;R2n/. This is the same operator as considered in
Section 2.7, except that now A.s; t/ can depend on t as well as on s . The operator Du
is always Fredholm of index zero.

Fix, once and for all, an injective operator of the above form, for example

LId D @=@t CJ0@=@sC Id :

(This one is injective by Lemma 2.14, because ker.Id�e�J0/ D 0.) Find a smooth
homotopy of operators L� , � 2 Œ0; 1�, from Du to LId , by deforming the 0–order part
A.s; t/ to Id.

Definition 2.17 (Compare [24, page 51 and Appendix A]) For u 2M0.j 1;R; zJ /,
define sign.u/ WD .�1/� , where

� D
X
�2Œ0;1�

dimR kerL� :

For u 2M0.j 1;R; zJ /, denote !.u/ WD
R
T 1;R u

�!
1;R
Ef;g

. The following is well known.

Proposition 2.18 The signed count

]M0.j 1;R; zJ / WD
X

u2M0.j 1;R; zJ/

sign.u/ � q!.u/

is independent of the complex structure j 1;R on the torus and of generic zJ .

2.10 Gluing the fibration over the cylinder to the fibration over the torus

Given a symplectomorphism f W X !X , we have constructed a fibration pW Ef !
S1 �R (2-14); also, given two commuting symplectomorphisms f; gW X !X and a
parameter R 2R, we have constructed a fibration E1;R

f;g
! T 1;R . The fibres of both

fibrations are symplectomorphic to X . Now, there is a map

(2-26) Ef � p
�1.S1 � Œ�R;R�/!E

1;R
f;g

:

It glues the boundary component p�1.S1 � fRg/ to the other boundary component
p�1.S1 � f�Rg/ via the symplectomorphism gW X !X applied fibrewise along S1 .
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Fix regular Js;Hs (2-1). As in (2-13), set

J 0s D g
�Js; H 0s DHs ıg:

Choose a homotopy Js;t , Hs;t (2-9) between J 0s;H
0
s and Js;Hs . This homotopy must

be t–independent for large and small t ; we assume for convenience that

Js;t � J
0
s; Hs;t �H

0
s for t � �R; and Js;t � Js; Hs;t �Hs for t �R:

Finally, let zJ WD zJ .Js;t ;Hs;t / be the almost complex structure on Ef from Section 2.5,
which has the property that solutions to Floer’s continuation equation are exactly
.jS1�R; zJ /–holomorphic sections S1 �R!Ef .

By definition, zJ jp�1.S1�fRg/ is the g–pullback of zJ jp�1.S1�f�Rg/ , which agrees with
the gluing (2-26). So zJ defines a glued almost complex structure gl zJ on E1;R

f;g
. Let

us recall our notation one more time. M.x; yIJs;t ;Hs;t / consists of holomorphic
sections over S1 �R which are solutions to Floer’s continuation equation (2-10), and
M.j 1;R; gl zJ .Js;t ;Hs;t // consists of holomorphic sections over the torus T 1;R . We
come to an important proposition, of which everything but formula (2-27) is well known.

Proposition 2.19 For each A > 0 there is R > 0 such that there is a bijection called
the gluing map and denoted by gl:

glW
G

x2FixfH

M0.g.x/; xIJs;t ;Hs;t /
<A 1�1
���!M0.j 1;R; gl zJ .Js;t ;Hs;t //<A:

Here the superscripts �<A mean we are taking only those solutions whose !–area is
less than A. The gluing map preserves !–areas,Z

S1�R
u�!Ef D

Z
T 1;R

gl.u/�!
E
1;R
f;g

;

and changes the signs from Definitions 2.16 and 2.17 by .�1/degx :

(2-27) sign.u/D sign.gl.u// � .�1/degx :

Here u 2M0.g.x/; xIJs;t ;Hs;t /
<A , and deg x is as in Definition 2.7.

Proof The existence of the bijection gl is well-known. The map gl is constructed for
the case f D g D Id in [32] (see also [5]) and that proof carries over to arbitrary f; g .
Alternatively, one can adopt general SFT gluing and compactness theorems [7].

Let u.s; t/ 2M.g.x/; xIJs;t ;Hs;t /. By a smooth homotopy this section can be made
t–independent for t close to �1 and C1. We can glue it into a smooth section over
T 1;R by applying (2-26). The smooth section over T 1;R we obtained is smoothly
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homotopic to gl.u/ and hence has the same !–area as gl.u/; so gluing preserves
!–areas.

Let us explain why gl changes the sign by .�1/degx . We have illustrated our argument
by an informal diagram below; its arrows correspond to homotopies between Fredholm
operators, and its labels are the signs determined by the mod 2 count of the dimensions
of kernels appearing during the homotopies.

over
S1�R Du

sign.u/
//

gluing
��

@=@t CJ0@=@sCA.s/

over
T 1;R

Dgl.u/
sign.u/

//

sign.gl.u//

OO
@=@t CJ0@=@sCA.s/

.�1/degx
// @=@t CJ0@=@sC Id

Take u.s; t/ 2M0.g.x/; xIJs;t ;Hs;t / and consider linearised Floer’s operators (2-16)
and (2-25):

DuW H
1;p.S1 �R;R2n/! Lp.S1 �R;R2n/;

Dgl.u/W C
1.T 1;R;R2n/! C1.T 1;R;R2n/:

Take a homotopy L� from Du to the operator (2-18) LA.s/ D @=@t CJ0@=@sCA.s/.
By Definition 2.16,

(2-28) sign.u/D .�1/
P
� dim kerL� :

Let Lgl
� be a homotopy from Dgl.u/ to the analogous operator LA.s/ D @=@t C

J0@=@sCA.s/ over the torus, considered in Section 2.7. It is well known that

(2-29)
X
�2Œ0;1�

dim kerL� �
X
�2Œ0;1�

kerLgl
� mod 2:

(This is a special case of the fact that orientations of moduli spaces of pseudo-
holomorphic sections before gluing canonically define orientations on moduli spaces
after gluing.)

Take a homotopy LA� .s/ from LA.s/ to LId D @=@t C J0@=@sC Id. To compute the
kernels swept by this homotopy, we will use Lemma 2.15. First, let ‰.s/ be the
matrix which solves (2-19) with respect to our given A.s/; then ‰.1/ D dfH .X/

by Lemma 2.10. By Definition 2.7, sign det.Id�‰.1// D deg x . Second, let ‰.s/
instead be the matrix which solves (2-19) with respect to the s–independent matrix
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A.s/� Id; the solution is e�sJ0 , and for it we obtain sign det.Id�‰.1//DC1. Now
by Lemma 2.15,

(2-30)
X
�2Œ0;1�

dim kerLA� .s/ � deg x mod 2:

The concatenation of homotopies LA� .s/ and L
gl
� is a homotopy from Dgl.u/ to

@=@t CJ0@=@sC Id. So by Definition 2.17,

(2-31) sign.gl.u//D .�1/
P
� dim kerLA�.s/ � .�1/

P
� dim kerLgl

� :

Combining (2-28)–(2-31) we get sign.u/D sign.gl.u// � .�1/degx , which completes
the proof.

2.11 Proof of the elliptic relation

Proof of Theorem 1.1 We only need to compile the previous statements. It suffices
to prove that for each A > 0, the supertraces are equal up to order qA :

STr.ffloer/=q
A
D STr.gfloer/=q

A:

By Lemma 2.9 and Proposition 2.19, for sufficiently large R we have

STr.gfloer/=q
A
D

X
x2FixfH

u2M0.g.x/;xIJs;t ;Hs;t /
<A

.�1/degx
� sign.u/ � q!.u/

D ]M0.j 1;R; zJ .Js;t ;Hs;t //
<A:

One can repeat all constructions after swapping f and g to get

STr
�
ffloerW HF�.g/! HF�.g/

�
D ]M0.jR;1; zJ1/

<A:

Here jR;1D j 1;1=R is another complex structure on the torus (which is “long” in the s–
direction, while j 1;R is “long” in the t–direction), and zJ1 is some other almost complex
structure on the total space. Now Theorem 1.1 follows from Proposition 2.18.

2.12 Finite-order symplectomorphisms

We will now prove two lemmas about the action on Floer cohomology when one of the
two commuting symplectomorphisms has finite order, and derive Proposition 1.4. The
proof of the next lemma is an extension of [16, Lemma 7.1].
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Lemma 2.20 Let X be a symplectic manifold satisfying the W C condition. Let
g; �W X!X be two commuting symplectomorphisms. Suppose �k D Id and the fixed
point set X� is a smooth manifold (maybe disconnected, with components of different
dimensions). Then

STr
�
gfloerW HF�.�/! HF�.�/

�
D L.gjX� / � q

0
C

X
i

ai � q
!i ; !i > 0:

In other words, STr.gfloer/ 2 ƒ contains only summands with non-negative powers
of q , and the q0–coefficient is the topological Lefschetz number of gjX� . Using the
elliptic relation we will later show that the higher-order terms aiq!i actually vanish;
this is however a separate argument and we first prove the lemma as stated.

Proof First we construct a Hamiltonian function on X of special form. Let U.X�/
be a �–equivariant tubular neighbourhood of X� , pW U.X�/! X� the projection
and dist a �–invariant function on U.X�/ measuring the distance to X� in some
�–invariant metric. Let H0 be an arbitrary function on X� . Define

H WDH0 ıpC dist2 :

This is a function on U.X�/. Extend this function to X in any way and then average it
with respect to � (this will not change the function on U.X�/). We denote the result
by H again. Note that H jX� DH0 and Crit.H0/D Crit.H/\X� . For the rest of
the proof, H will be a generic function constructed this way; in particular, H jX� is
also generic.

Because � has finite order, we can choose a �–invariant compatible almost complex
structure J on X which preserves TX� , and such that J jX� is arbitrary. Since J;H
are �–invariant, they satisfy (2-1), with f D � . Thus Floer’s equation (2-3) makes
sense for such s–independent data J;H . Denote J 0 � g�J , H 0 �H ıg as in (2-13).

Choose an s–independent homotopy (2-9) Ht ; Jt from H 0 to H (resp. from J 0 to J ).
For every t , Ht ; Jt must be �–invariant, and, as earlier,

(2-32) Ht D .H0/t ıpC dist2

on U.X�/, where .H0/t D .Ht /jX� can be arbitrary. Note that in general it might
not be possible to find s–independent Jt ;Ht that would make all solutions of Floer’s
continuation equation (2-10) regular. However, using [16] we will now argue that some
solutions of (2-10) (namely the gradient flowlines of Ht ) are still generically regular.

Recall that Jt induces the time-dependent metric !. � ; Jt � / on X by definition of
a compatible almost complex structure. If H is a function on X , its gradient and
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Hamiltonian vector fields are related by the equation rH D JXH . So s–independent
solutions u.s; t/� x.t/ of Floer’s continuation equation (2-10) are exactly !. � ; Jt � /–
gradient flowlines of Ht :

dx.t/=dt �rHt D 0:

The �–periodicity condition (2-4) now reads �.x.t//D x.t/, so we are looking only
at gradient flowlines inside X� . Note that every s–independent solution u.s; t/� x.t/
of (2-10) has zero area: !.u/ D 0. Recall that solutions of (2-10) are elements
of M.x; yIJt ;Ht / where x 2 Fix�H 0 and y 2 Fix�H . Also note that Fix�H D
Crit.H jX� /, and similarly Fix�H 0 D Crit.H 0jX� /.

The following two facts are proved in [16] when Ht , Jt are t–independent and � D Id
(that paper is interested in the equations for Floer’s differential rather than continuation
maps). The proofs are valid in the general case. For example, one can track that the
periodicity condition (2-1), which is the only place where � explicitly appears, is not
used in the proof of the facts below.

(1) For any Jt ;Ht as above, an s–independent solution u.s; t/� x.t/ of (2-10) is
regular, ie Du (2-16) is onto, if and only if the !. � ; Jt � /–gradient flow of Ht
is Morse–Smale near X� [30, Corollary 4.3, Theorem 7.3]; compare [16, proof
of Theorem 6.1].

(2) There is � > 0 such that every solution u.s; t/ of (2-10) with !.u/ < � is
s–independent [16, Lemma 7.1].

We claim that the gradient flow of a generic Ht constructed above is Morse–Smale
near X� . Indeed, we can choose Ht jX� freely, so we can make the flow of Ht jX�
Morse–Smale. Because Ht is quadratic in the normal direction to X� (2-32), the stable
manifolds of Ht are, near X� , normal disk bundles over those of Ht jX� , and the
unstable manifolds of Ht lie in X� and coincide with those of Ht jX� . Consequently,
Ht is Morse–Smale near X� if and only if Ht jX� is Morse–Smale.

By Remark 2.4 or [31, Section 4.2.2],

(2-33)
X

x2Fix�H
u2M0.g.x/;xIJs ;Hs/W!.u/�0

.�1/degx
� sign.u/ � q!.u/ D L.gjX� / � q

0:

Although the left-hand side looks exactly like the expression for STr.gfloer/ from
Lemma 2.9, Jt ;Ht need not be regular for all continuation equation solutions, while
gfloer must be computed using a regular Hamiltonian and almost complex structure.
To cure this, we slightly perturb J;H and Jt ;Ht by allowing them to depend
on s , to get Js;Hs and Js;t ;Hs;t . For a generic such perturbation, all solutions
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to (2-10) with respect to Js;t ;Hs;t become regular. Because s–independent solutions
in M.x; yIJt ;Ht / were already regular, they are in 1–1 correspondence (via the
continuation map) with some solutions in M.x; yIJs;t ;Hs;t / of zero !–area. By
item (2) above, every u 2M.x; yIJs;t ;Hs;t / with !.u/ < � actually has zero area
and corresponds to an s–independent solution in M.x; yIJt ;Ht /. (See [16, proof of
Proposition 7.4] for this argument.) In view of (2-33) this meansX

x2Fix�H
u2M0.g.x/;xIJs;t ;Hs;t /W!.u/�0

.�1/degx
� sign.u/ � q!.u/ D L.gjX� / � q

0:

Lemma 2.20 follows from this equality and Lemma 2.9.

Lemma 2.21 Let X be a symplectic manifold satisfying the W C condition. Let
g; �W X !X be two commuting symplectomorphisms. Suppose �k D Id. Then

STr.�floerW HF�.g/! HF�.g//D a � q0; where a 2C and jaj � dimƒ HF�.�/:

Proof By Lemma 2.6 .�floer/
k D Id, so all eigenvalues of �floer are among the roots

of unity k
p
1 � q0 2 ƒ. The signed sum of these eigenvalues gives STr.�floer/, and

Lemma 2.21 follows.

The elliptic relation (Theorem 1.1) and Lemma 2.21 imply the following corollary.

Corollary 2.22 The terms ai � q!i , !i > 0 from Lemma 2.20 actually vanish.

Proof of Proposition 1.4 The proposition follows from Lemma 2.20, Lemma 2.21
and Theorem 1.1.

Remark 2.23 As promised in Remark 1.7, we now sketch an alternative proof of
Proposition 1.4 which does not appeal to Theorem 1.1. Suppose for simplicity that
a symplectomorphism f W X ! X commutes with a symplectic involution � and f
has non-degenerate isolated fixed points. Note that, for general reasons, d� acts by
� Id on the normal bundle to its fixed locus X � . To compute HF�.f /, choose the zero
Hamiltonian perturbation and an almost complex structure which is �–invariant at points
x 2 Fixf \X � . Then �floer only counts constant solutions u.s; t/� x 2 Fixf \X � .
(Because f has isolated fixed points, the only zero-area solutions are constant, and
because �2floer D Id, all positive-area solutions cancel.) However, the sign associated
to a constant solution u is not always positive. The reason is that we must write
the linearised Floer’s operator Du in a trivialisation of u�TxX D S1 � R � TxX
which differs by d�.x/ over the two ends of the cylinder, according to the definition
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in Section 2.8. Consider the splitting TxX D TxX
� ˚NxX

� into the C1 and �1
eigenspaces of d�.x/. We can choose the constant trivialisation of u�TxX � and
get the R–independent operator on this subspace, which by definition carries the
positive sign. However, we are not allowed to choose the constant trivialisation of
u�NxX

� (instead, an allowed choice would be, for example, a rotation from Id to
� Id with parameter t ), so Du will not be the canonical R–invariant operator on NxX
and can carry a nontrivial sign from Definition 2.16. We claim that this sign equals
sign det.Id�df .x/jNxX �/. The computation can essentially be reduced to the index
problem considered in Section 2.7, since Du can still be chosen independent of one
variable; a related Lagrangian version of this statement is [37, Lemma 14.11]. Once
the signs are known, it is easy to see that STr.�floer/D L.f jFix �/ � q

0 :

STr.�floer/D
X

x2Fixf \X �
.�1/degx

� sign det.Id�df .x/jNxX �/ � q
0

D

X
x2Fixf \X �

sign det.Id�df .x/jTxX �/ � q
0
D L.f jFix �/ � q

0:

The bound dim HF�.f /� L.f jFix �/ follows as in Lemma 2.21.

2.13 Lagrangian elliptic relation

In this subsection, we briefly explain Theorem 1.10 and Proposition 1.11. Let X be a
monotone symplectic manifold, ie Œ!.X/�D �c1.X/ as elements of H 2.X IR/, �> 0.
Let �W X ! X be a symplectomorphism, and Li � X be two connected monotone
Lagrangian submanifolds such that �.Li /D Li .

In order to define the action �floerW HF�.L1; L2/ ! HF�.L1; L2/ over a field of
characteristic not equal to two, we must fix the following additional data. First, Li must
be oriented, although � need not preserve the orientations. (In the appendix we use
the orientation-reversing case.) Second, the hypothesis below must be satisfied.

Hypothesis 2.24 Li must be equipped with spin structures Si together with isomor-
phisms ��Si ! Si if �jLi preserves orientation, and ��Si ! xSi if �jLi reverses
orientation. Here xSi is the following spin structure on xLi (that is, on Li with the
opposite orientation). The original spin structure Si is a trivialisation of TLi over the
1–skeleton of Li which extends over the 2–skeleton and agrees with the orientation
on Li . By definition, xSi is the composition of the trivialisation Si with a fixed
orientation-reversing isomorphism Rn!Rn , for example the one which multiplies the
first coordinate by �1. We note the desired isomorphisms ��Si ! Si or ��Si ! xSi
always exist if the Li are simply connected.
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In [37, Section 14], similar data (defined only for an involution � , with an extra
condition on the “squares” of the above isomorphisms, but also allowing non-orientable
Lagrangians) was called an equivariant Pin structure.

Pick some Js;Hs defining Floer cohomology HF�.L1; L2IJs;Hs; Si /; see [26; 14]
for a definition in the monotone setting. We have included the choice of spin structures
in our notation. The action �floer is the composition

HF�.L1; L2IJs;Hs; Si / �! HF�.L1; L2I��Js;Hs ı�; ��Si /

�! HF�.L1; L2IJs;Hs; Si /:

Here the first map is the tautological chain-level map that takes all chain generators
and Floer’s solutions to their �–images; we are using that �Li D Li . The second one
is the continuation map. We skip the proof of the next lemma.

Lemma 2.25 (Cf [37, Sections (14a) and (14e)]) If �kD Id then .�floer/
kD˙ Id.

Note that, unlike Lemma 2.6 and [37, top of page 310], we do not necessarily get
.�floer/

k D Id, but having .�floer/
k D˙ Id is enough for future applications.

Choose Js;Hs (2-1) to define Floer’s complex CF�.�IJs;Hs/. Take the fibration
pW E�!S1�Œ0;C1/ with monodromy � around the circle as in (2-14), but now over
the semi-infinite cylinder S1 � Œ0;C1/ instead of S1 �R. It contains the “boundary
condition” manifold S1 �L� p�1.S1 � f0g/. The symplectic form on X defines a
fibrewise symplectic form !E� on E� . Choose a tame almost complex structure zJ
on E� which, over S1�Œ1;C1/, equals zJ .Js;Hs/ for some Js;Hs (see Section 2.5),
and in particular is independent of t 2 Œ1;C1/.

Take x 2 Fix�H (2-5), that is, a generator of CF�.�IJs;Hs/. We define M0.L; x/

to be the set of all zero-index zJ–holomorphic sections u.s; t/W S1 � Œ0;C1/! E�
which are asymptotic, as t !C1, to the Hamiltonian trajectory  s.x/ (2-2), and
satisfy the Lagrangian boundary condition u.s; 0/ 2 S1 �L. Then we define

ŒL�� D
X

x2Fix�H

X
u2M0.L;x/

˙q!.u/ � Œx� 2 HF�.�/:

Here Œx� 2 HF�.�/ is the cohomology class of the chain generator x , and

!.u/D

Z
S1�Œ0;C1/

u�!E� :

The signs are defined using the chosen spin structures on the Li and coherent orienta-
tions for � . This is a version of the open-closed string map; cf [29].
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Next we review the quantum product HF�.�/˝HF�.��1/!HF�.Id/ŠQH�.X/. It
counts holomorphic sections of a symplectic fibration over S2 with three punctures
and monodromies �; ��1; Id around them. The first two punctures serve as inputs
for HF�.�/, HF�.��1/, and the third puncture is the output; see [24] for details.
If one caps the output puncture by a disk, the count of sections over the resulting
twice-punctured sphere (see the lower part of Figure 3(a)), gives the composition
HF�.�/˝HF�.��1/!HF�.Id/

�
�!ƒ of the product and the integration map � (once

we identify HF�.Id/ with QH�.X/).

.a/ .b/

.c/ .d/

L1 L1

L1

L1

L2 L2

L2 L2

�

� �

�

��1
��1

Figure 3: Proving the Lagrangian elliptic relation

Combining the definitions, �.ŒL1�� � ŒL2��
�1

/ counts holomorphic sections over two
cylinders and a twice-punctured sphere which have the same asymptotics over the
punctures in two pairs; see Figure 3(a). Here the cylinder S1 � Œ0;C1/ is seen as a
once-punctured disk. This count equals the number of sections of a glued fibration
over an annulus, with monodromy � around the core circle, and Lagrangian conditions
S1�L1 , S1�L2 over the boundary of the annulus. The annulus carries a fixed “long”
complex structure; see Figure 3(b).

On the other hand, STr.�floer/ counts sections of a trivial fibration over the strip
Œ0; 1��R with Lagrangian boundary conditions R�Li and asymptotics differing by �
over t !˙1; see Figure 3(c). We can glue the fibration over the strip, twisting it
by � to get a fibration over the annulus which we have already encountered: it carries
Lagrangian conditions S1 �Li over the boundary and has monodromy � around the
core circle; see Figure 3(d). By gluing, STr.�floer/ is equal to the count of holomorphic
sections of this fibration, with a fixed (“long”, but in the other direction than before)
complex structure on the annulus. As the count of sections does not depend on the
complex structure on the annulus, we get Theorem 1.10. We omit the discussion of
signs, which was carried out in detail for the case of commuting symplectomorphisms.
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The signs in the present case can be studied by similar arguments if we superficially
deform the Lagrangians so that TpL1 D TpL2 for all intersection points p 2L1\L2 ,
keeping these points isolated, and then pick non-degenerate Hamiltonians H1;H2 to
compute HF�.L1; L2/.

Let us now explain Proposition 1.11. The most important step is to prove a Lagrangian
analogue of Lemma 2.20: if � is a map of finite order with fixed locus X� and smooth
orientable Lagrangian fixed loci L�i �X

� then

(2-34) �.ŒL1�
�
� ŒL2�

�/D .ŒL
�
1 � � ŒL

�
2 �/ � q

0
C

X
i

ai � q
!i ; !i > 0:

Recall that ŒL�1 � � ŒL
�
2 � 2 Z is the homological intersection of the fixed loci L�1 ; L

�
2

inside X� . (Note that L�i are automatically isotropic but not necessarily Lagrangian,
although we will only use the case when they are Lagrangian. One can get examples
of .�floer/

k D� Id in Lemma 2.25 when the dimensions of L�1 , L�2 are different.)

In order to count sections of the configuration on Figure 3(a), we must specify the data
Js;t ;Hs;t over our configuration consisting of two half-cylinders S1 � Œ0;C1/ and
a twice-punctured sphere which we will now see as the cylinder S1 �R. Similarly
to Lemma 2.20, we choose the data to be of special form, namely independent of the
basepoint: Js;t � J , Hs;t �H (this forces J;H to be �–equivariant). With this data,
s–independent (s 2 S1 ) sections become gradient flowlines of the Morse function H
inside the fixed locus X� . Rigid sections over S1�R are constant, while rigid sections
over S1� Œ0;C1/ are flowlines from Li to a critical point of H . This way, the count
of s–independent rigid configurations on Figure 3(a) isX

x2Critn.H j
X�
/

.ŒL
�
1 � � ŒStab.x/�/.ŒL�2 � � ŒStab.x/�/;

where nD 1
2

dimRX
� , Critn are index-n critical points, and Stab are stable manifolds

in X� . This sum equals the intersection ŒL�1 � � ŒL
�
2 �.

Finally, one must argue that these configurations of flowlines are regular, and are the
only zero-area solutions. (There could be other positive-area solutions which are not
necessarily regular.) This is a variation on the lemmas cited in the proof of Lemma 2.20.
Then one makes the data J;H regular by allowing them to depend on s; t and argues
that the count of zero-area solutions (which were already regular) is preserved.

On the other hand, if � is of finite order then �floerW HF�.L1; L2/! HF�.L1; L2/
is of finite order by Lemma 2.25, and the eigenvalues of �floer are among 2k

p
1 � q0 .

Consequently, STr.�floer/D a � q
0 , jaj � dimƒ HF�.L1; L2/. Now Theorem 1.10 and

formula (2-34) imply Proposition 1.11.
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3 Vanishing spheres and Dehn twists

Let Y be a Kähler manifold with a Kähler form ! , and L! Y a very ample holo-
morphic line bundle. Let X � Y be a smooth divisor in the linear system jLj. In
this section we define jLj–vanishing Lagrangian spheres in the symplectic manifold
.X; !jX /. They exist if the line bundle L! Y has zero defect (see below) and are
then unique up to symplectomorphism. Throughout this section, we denote by D �C
the unit complex disk.

3.1 Lefschetz fibrations and vanishing cycles

This subsection reviews well known material; see eg [37].

Definition 3.1 (Lefschetz fibration with a unique singularity) Suppose E is a smooth
manifold, � a closed 2–form on E , and � W E!D is a smooth proper map. The triple
.E;�; �/ is called a Lefschetz fibration with a unique singularity if there is a point
p 2E (without loss of generality, we assume �.p/D 0 2D ), and a neighbourhood
U.p/ such that:

� � is regular outside U.p/, and the restriction of � on the regular fibres of � is
symplectic.

� There exists a complex structure on U.p/ with a holomorphic chart x1; : : : ; xn
such that

�.x1; : : : ; xn/D x
2
1 C � � �C x

2
n:

� �jU.p/ is Kähler with respect to this complex structure.

All smooth fibres Et WD ��1.t/ contain a Lagrangian sphere, uniquely defined up to
Hamiltonian isotopy. Let us sketch its construction, as we will refer to it later in the
proof of Lemma 4.8. Because the smooth fibres Et are symplectomorphic to each
other by parallel transport with respect to the �–induced connection on E , it suffices
to construct a Lagrangian sphere in Et for a small t 2RC . Define L� U.p/�E by
the equation

x21 C � � �C x
2
n D t; xi 2R:

Clearly L is contained in Et and is a Lagrangian sphere for t 2RC with respect to
the standard symplectic structure �std on U.p/ � Cn . However, it is generally not
possible to make our form �jU.p/ standard by a holomorphic change of coordinates
preserving � . Instead, we can follow the argument of [36, Lemma 1.6]: there is a
function f on U.p/ such that �jU.p/ D�stdC dd

cf . We can deform f to 0 in a
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smaller neighbourhood U 0.p/� U.p/ while leaving f unchanged outside of U.p/.
Let fr be such a homotopy and define �r WD � outside of U.p/, and �r jU.p/ WD
�stdC dd

cfr . Observe that �0 D � and �1jU 0.p/ D �std . For all r , the smooth
fibres .Et ; �r jEt / are symplectic and the cohomology class of �r jEt is constant, so
by Moser’s lemma the smooth fibres are actually symplectomorphic to each other for
any r . In particular, the Lagrangian sphere L� .Et ; �stdjEt / constructed above can
be mapped by this symplectomorphism to a Lagrangian sphere in .Et ; �jEt /.

Definition 3.2 (Vanishing Lagrangian sphere) A Lagrangian sphere in a smooth
fibre Et is called vanishing for the Lefschetz fibration E !D if it is Hamiltonian
isotopic to the one constructed above.

3.2 Defect of a line bundle

Definition 3.3 (Defect of a line bundle) Let Y be a complex manifold and L! Y a
very ample holomorphic line bundle, giving an embedding Y � .PN /� where PN D
PH 0.Y;L/. The discriminant variety �� PN is the dual variety to Y , parametrising
all hyperplanes in .PN /� which are tangent to Y � PN . Equivalently, it parametrises
all singular divisors in the linear system PH 0.Y;L/. The defect of L is the number

defLDN � 1� dim�� 0:

Line bundles usually have zero defect; for us, it is useful to note the following.

Lemma 3.4 [3, page 532] Suppose L! Y is a very ample line bundle. If defL� 1,
there exists a smooth rational curve l � Y such that L � l D 1.

For completeness, let us sketch a proof. Recall that points in �reg correspond to
generic hyperplanes H � .PN /� which are not transverse to Y . If defL � 1, for
such a hyperplane H 2 �reg the contact locus .H \ Y /sing is a linear P defL [43,
Theorem 1.18]. Take any line l Š P1 in H . Obviously it intersects a generic smooth
hyperplane section zH \Y transversely at a single point, which means L � l D 1.

Corollary 3.5 Suppose L! Y is a very ample line bundle. Then defL˝d D 0 for
any d � 2.

3.3 jLj–vanishing spheres in divisors

Recall that D �C denotes the unit disk.
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Definition 3.6 (Total space of a family of divisors) Let Y be a Kähler manifold
and L ! Y a very ample line bundle. Take a holomorphic embedding uW D !

PH 0.Y;L/ D jLj; then each point t 2 D defines a divisor Xu.t/ � Y . We call
fXu.t/gt2D a family of divisors. The total space of the family fXu.t/gt2D is

E WD f.x; u.t// W x 2Xt ; t 2Dg � Y �PH 0.Y;L/:

The restriction of the product Kähler form from Y � PH 0.Y;L/ to E makes E a
Kähler manifold. There is a canonical projection � W E!D whose fibres are Xu.t/ .
In the future we shall write fXtgt2D instead of fXu.t/gt2D .

Definition 3.7 (jLj–vanishing Lagrangian sphere in a divisor) Let Y be a Kähler man-
ifold and L!Y a very ample line bundle with zero defect, and with dim PH 0.Y;L/�2.
Let � � PH 0.Y;L/ be the discriminant variety from Definition 3.3. Let uW D !
PH 0.Y;L/ be a holomorphic embedding such that u.0/2�reg , u.t/…� for t¤0, and
the intersection of u.D/ with �reg is transverse. Let � W E!D be as in Definition 3.6.

By [23, 1.8], � W E ! D is a Lefschetz fibration with a unique singular point over
t D 0 (in particular, X0 has a single node). The vanishing sphere L � X1 of this
fibration is called an jLj–vanishing sphere.

Obviously, every smooth divisor in the linear system jLj contains an jLj–vanishing
sphere, if L has zero defect. Two different maps u; u0W D!H 0.Y;L/ with u.1/D
u0.1/ can give two jLj–vanishing spheres in X1 which are not Hamiltonian isotopic
and even not homologous to each other, such as in the case of Lemma 4.1. However,
jLj–vanishing spheres are unique up to symplectomorphism.

Lemma 3.8 Let L ! Y be a very ample line bundle over a Kähler manifold Y ,
defLD 0. Suppose X;X 0 are two smooth divisors in the linear system jLj and L�X ,
L0�X 0 are two jLj–vanishing Lagrangian spheres. Then there is a symplectomorphism
 W X !X 0 such that  .L/D L0 .

This lemma is probably well known, but we don’t have a clear reference for it, so we
prove it here. An auxiliary lemma is required.

Lemma 3.9 Let � W X !D � Œ0; 1� be a smooth proper map and � a closed 2–form
on X . Suppose that for every s 2 Œ0; 1�, XDIs WD ��1.D � fsg/, equipped with the
restriction of �, is a Lefschetz fibration over D with a unique singularity over 0 2D .
(In particular, the fibres of � are symplectic.) For t 2 D , s 2 Œ0; 1� denote by Xt Is
the fibre ��1.ftg � fsg/. Let L0 � X1I0 and L1 � X1I1 be vanishing spheres of the
Lefschetz fibrations XDI0 and XDI1 , respectively. Then there is a symplectomorphism
 W X1I0!X1I1 such that  .L0/D L1 .
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Proof One can choose a smooth family of Lagrangian spheres Ls �X1Is such that
Ls is vanishing for the fibration on XD;s , and L0; L1 are the given spheres. This is
easily seen from our definition or from [37, proof of Lemma 16.2].

Fix s 2 Œ0I 1� and let ��W X1Is ! X1IsC� be the parallel transport with respect to �
[37, Section (15a)] along the s–direction. Look at ��.Ls/ and LsC� : these are two
Lagrangian spheres in X1IsC� which coincide when � D 0, so they remain sufficiently
close to each other for � small enough, say j�j< �.s/. Being sufficiently close, the two
spheres are Hamiltonian isotopic inside X1IsC� . By composing �� with this Hamil-
tonian isotopy, we get a symplectomorphism  �W X1Is!X1IsC� taking Ls to LsC� .

The open cover of Œ0; 1� consisting of the intervals f.s� �.s/; sC �.s//gs2Œ0I1� admits
a finite subcover. We know that, for s; s0 within a single interval, Ls can be taken to
L0s by a symplectomorphism X1Is!X1Is0 ; using the finite subcover, we are able to
find a finite composition of such maps which is a symplectomorphism X1I0!X1I1
taking L0 to L1 .

Proof of Lemma 3.8 Let u; u0W D ! PH 0.Y;L/ be two holomorphic maps as in
Definition 3.7, and denote X DXu.1/ , X 0 DXu0.1/ . By Definition 3.7, u.0/; u0.0/ 2
�reg . Since �reg is connected, one can find a path ˛.s/ 2 �reg from u.0/ to u0.0/,
s 2 Œ0; 1�. Next one can find an s–parametric family of holomorphic disks usW D!
PH 0.Y;L/ such that u0 D u, u1 D u0 , us.0/ 2 �reg and us.D/ intersects �reg

transversely. Consider the space

E WD f.x; us.t// W t 2D; s 2 Œ0; 1�; x 2Xu.t/g � Y �PH 0.Y;L/:

It carries a closed 2–form which is the restriction of the product Kähler form to Y
and PH 0.Y;L/. There is also a canonical projection E ! D � Œ0; 1�. With these
data, E satisfies the conditions of Lemma 3.9. This lemma provides the desired
symplectomorphism  W X !X 0 taking a given jLj–vanishing sphere in X to a given
one in X 0 .

3.4 Dehn twists

We recall the definition of Dehn twists from [37, Section (16c)]. First, one defines the
Dehn twist as a compactly supported symplectomorphism of T �Sn . Fix the standard
round metric on Sn , and let j�j be the norm function on T �Sn . It is non-smooth at the 0–
section; away from the 0–section, its Hamiltonian flow is the normalised geodesic flow.
Take a function b.r/W R!R with compact support and such that b.r/�b.�r/D�r .
The Dehn twist � W T �Sn! T �Sn is the 2�–flow of the Hamiltonian function b.j�j/.
It extends smoothly to the 0–section by the antipodal map, thanks to the special form

Geometry & Topology, Volume 19 (2015)



3384 Dmitry Tonkonog

of b.r/. As result, � is a compactly supported symplectomorphism of T �Sn . Its
behaviour in T �Sn is well understood.

Theorem 3.10 (1) The map � has infinite order in Sympc.T �Sn/=Hamc.T �Sn/,
the group of compactly supported symplectomorphisms of T �Sn modulo com-
pactly supported symplectic isotopy.

(2) If n is even, � has finite order in �0 Diffc.T �Sn/, the group of compactly sup-
ported diffeomorphisms of T �Snmodulo compactly supported isotopy [21].

When nD 2 it is further known that � generates �0 Sympc.T �S2/Š Z, and �2 is
smoothly isotopic to Id in Diffc.T �S2/ [38]; see also [2, Theorem 1.21].

Next, if L�X is a Lagrangian sphere in any symplectic manifold, a neighbourhood
of L in X is symplectomorphic to a neighbourhood of the 0–section in T �Sn . So one
can pull back � using this symplectomorphism and then extend it by the identity to get
a map �LW X ! X . It is a symplectomorphism uniquely defined up to Hamiltonian
isotopy (once a parametrisation of L is fixed), supported in a neighbourhood of L.

Definition 3.11 (Dehn twist) The symplectomorphism �LW X ! X is called the
Dehn twist around L.

Lemma 3.12 (Picard–Lefschetz formula [23]) If dimRX D 2n and L � X is a
Lagrangian sphere, then .�L/� acts by Id on Hi .X/, i ¤ n. For any ŒA� 2Hn.X/,

.�L/�ŒA�D ŒA�� � � .ŒL� � ŒA�/ŒL�:

Here � D .�1/
1
2
n.n�1/ . Consequently:

(1) If n is even, then .�L/2� acts by Id on H�.X/.

(2) If n is odd and ŒL� 2Hn.X IR/ is non-zero, then .�L/� is an automorphism of
infinite order of H�.X/.

Summarising Theorem 3.10(2) and Lemma 3.12(2), we arrive at the following well
known statement.

Corollary 3.13 Let X be a compact symplectic manifold, dimXR D 2n, and L�X
a Lagrangian sphere non-zero in Hn.X IR/.

(1) If n is even, �L has finite order in �0 Diff.X/.

(2) If n is odd, �L has infinite order in �0 Diff.X/.
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The next lemma relates Dehn twists and Lefschetz fibrations; see [37, Section (15b)]
for details.

Lemma 3.14 [36; 37] Let .E;�; �/ be a Lefschetz fibration with a unique singular-
ity. Let E1 be its regular fibre and L�E1 a vanishing Lagrangian sphere. Then the
Dehn twist �LW E1!E1 is Hamiltonian isotopic to the symplectic monodromy map
E1!E1 obtained by applying symplectic parallel transport to the fibres Et along the
circle t 2 @D .

Remark 3.15 Let X be a symplectic manifold and L � X a Lagrangian sphere;
assume L is non-zero in Hn.X/. There are three main previously known cases
when �L has infinite order in Symp.X/=Ham.X/ (if X is non-compact, consider
Sympc.X/=Hamc.X/ instead):

(1) 1
2

dimRX is odd, as explained above.

(2) X is exact with contact-type boundary, and L is exact (Seidel, unpublished).

(3) X is Calabi–Yau, and there is another Lagrangian sphere L0 intersecting L once
transversely [35].

Let X D Blk P2 be the blowup of P2 in k generic points, 2 � k � 8, with the
monotone symplectic form, and L�X be any Lagrangian sphere. Seidel [38] showed
that �L has order 2 in Symp.X/=Ham.X/ when k D 2; 3; 4 and has order greater
than 2 when k D 5; 6; 7; 8, but did not prove it was infinite. Note that X D Bl6 P2 is
the cubic surface X � P3 , to which Theorem 1.2 applies.

4 Constructing invariant Lagrangian spheres

The aim of this section is to state and prove Proposition 4.2, which will later be used
to prove Theorem 1.13. We start by stating an essentially known lemma which can be
used to prove the simple case of Theorem 1.2 when dimC X is odd.

Lemma 4.1 Let L be a very ample line bundle over a Kähler manifold Y . For
any d � 3, every smooth divisor X � Y in the linear system jL˝d j contains two
jL˝d j–vanishing Lagrangian spheres L1; L2 that intersect once, transversely.

The proposition below should be considered as an equivariant version of Lemma 4.1.
It will be used to prove the harder case of Theorem 1.13 when dimC X is even.
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Proposition 4.2 Let L be a very ample line bundle over a Kähler manifold Y , and let
�W Y ! Y be a holomorphic involution which lifts to an automorphism of L. Fix d � 3
and let H 0.Y;L˝d /˙ denote the ˙1–eigenspaces of the involution on H 0.Y;L˝d /
induced by �. Let …˙ be as in Theorem 1.13. Pick a connected component z† of
Y � � Y , dim z†� 2. Suppose one of the following holds:

(a) d is even.

(b) d is odd, z† �…C , and the linear system PH 0.Y;L˝d /C contains a smooth
divisor.

Then there is a smooth divisor X in the linear system jL˝d j and two jL˝d j–vanishing
Lagrangian spheres L1; L2 �X such that:

(1) �.X/DX , † WDX \ z† is smooth, dim†D dim z†� 1.

(2) �.L1/D L1 , �.L2/D L2 .

(3) L1; L2 intersect transversely at a single point which belongs to †.

(4) L�i D Li \† are Lagrangian spheres in †, i D 1; 2.

(5) for i D 1; 2 one can choose a symplectomorphism �Li of X representing the
Hamiltonian isotopy class of the Dehn twist around Li such that �Li commutes
with �, and �Li jX � is the Dehn twist around L�i .

The same is true if we replace symbols C with � in case (b).

4.1 A2 chains of Lagrangian spheres from A2 fibrations

Definition 4.3 (A2 chain of Lagrangian spheres) Let X be a symplectic manifold.
A pair .L1; L2/ of two Lagrangian spheres in X is called an A2 chain if L1 and L2
intersect at a single point, and the intersection is transverse.

In Section 3 we have seen that one can construct Lagrangian spheres as vanishing
cycles of Lefschetz fibrations. Similarly, one can get A2 chains of Lagrangian spheres
from fibrations with slightly more complicated singularities.

Definition 4.4 (A2 fibration) Denote by D �C the open unit disk, and by B� �C
the open disk of radius � . Both disks are centred at 0.

Suppose E is a smooth manifold, � a closed 2–form on E and � W E!D is a smooth
map. The triple .E;�; �/ is called an A2 fibration if there is a point p 2E (without
loss of generality, we assume �.p/D 0 2D ), and a neighbourhood U.p/ such that:

Geometry & Topology, Volume 19 (2015)



Commuting symplectomorphisms and Dehn twists in divisors 3387

� All but a finite number of fibres of � are regular, and the restriction of � is
symplectic on them.

� There exists a complex structure on U.p/ with a holomorphic chart x1; : : : ; xn ,
xi 2 B� such that

�.x1; : : : ; xn/D x
2
1 C � � �C x

2
n�1C h.xn/;

where h.xn/ is holomorphic.

� h.xn/ has at least three roots within B�=2 , counted with multiplicities.

� For any xn 2 B�=2 ,
p
h.xn/ 2 B�=2 .

� �jU.P/ is Kähler with respect to the above complex structure.

Remark 4.5 The definition allows � to have singularities outside of U.p/. Also, the
definition does not require pW E !D to be a proper map, so the smooth fibres Et
need not be symplectomorphic, as we may not be able to integrate the parallel transport
vector fields. The generality of this definition is slightly unusual, but it makes no
difference to the local construction of A2 chains of Lagrangian spheres, which is the
next thing we discuss.

In order to prove Proposition 4.2, we need to introduce A2 fibrations with involutions.

Definition 4.6 (Involutive A2 fibration) Let .E;�; �/ be an A2 fibration. It is
called an involutive A2 fibration with involution �W E!E if in the holomorphic chart
from Definition 4.4 we have in addition

�.x1; : : : ; xl ; xlC1; : : : ; xn/D .�x1; : : : ;�xl ; xlC1; : : : ; xn/

for some l < n. We denote by E� the fixed locus of �.

Remark 4.7 It follows from this definition that �jE � W E�!D is also an A2 fibration.
Note that x 2E� is regular for � if and only if it is regular for �jE � . Indeed, we can
decompose TxE D TxE�˚Nx where Nx is the .�1/–eigenspace of d�.x/. Since
��D � , Nx � ker d�.x/. So rk d�.x/D rk d�.x/jTxE � . Consequently, for a regular
fibre Et , the fixed locus E�t is smooth.

The following is a slight refinement of [20, Lemma 6.12].

Lemma 4.8 Let � W E!D be an A2 fibration. Then for every sufficiently small t 2D
such that the fibre Et WD ��1.t/ is smooth, Et contains an A2 chain of Lagrangian
spheres.
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We will use the following equivariant analogue of this lemma.

Lemma 4.9 Let � W E!D be an involutive A2 fibration with an involution �. Then
for every sufficiently small t 2 D such that the fibre Et WD ��1.t/ is smooth, Et
contains an A2 chain of Lagrangian spheres .L1; L2/ which satisfy properties (2)–(5)
from Proposition 4.2 with X WD Et , and † being the connected component of E�t
which is a subset of the connected component of the point p in E� .

Remark 4.10 Note that dim† D l � 1, where l is the number coming from the
coordinate chart in Definition 4.6.

Proof of Lemma 4.8 Let U 0.p/� U.p/ be the ball around p given by jxi j < �=2,
i D 1; : : : ; n. As in Section 3.1, it suffices to assume that �jU 0.p/ is the standard
symplectic form in the holomorphic chart .x1; : : : ; xn/ from Definition 4.4.

The condition that Et is smooth means the equation h.xn/D t has no multiple roots
with xn 2B�=2 . Therefore by Definition 4.4, the equation h.xn/D 0 has at least three
roots with xn 2 B�=2 . So for sufficiently small t the equation h.xn/D t also has at
least three distinct roots with xn 2 B�=2 . Pick three such roots, say z1; z2; z3 2 B�=2 :
h.zi /D t . Let 
12 � B�=2 be a path from z1 to z2 whose interior avoids the roots of
h� t . Define

L1 WD
G
z2
12

˚
.x1; : : : ; xn/ 2 B�=2\�

�1.t/ W jxi j 2R �
p
�h.z/

	
:

This is a smooth Lagrangian sphere in ��1.t/ with respect to the restriction of the
standard symplectic form on Cn to ��1.t/. Similarly, let 
23 � B�=2 � C be a
path from z2 to z3 and define L2 by the same formula replacing 
12 by 
23 . If 
12
and 
23 are transverse at their common endpoint z2 , then .L1; L2/ is an A2 chain of
Lagrangian spheres by [20, Lemma 6.12]. Note that L1; L2 lie in U 0.p/ by the fourth
condition in Definition 4.4.

Proof of Lemma 4.9 We use notation from the proof of Lemma 4.8. Arguing �–
invariantly as in that proof, we can again assume � is standard on U 0.p/. The
formulas for L1; L2 are invariant under the change xi 7! �xi , i � l , so L1; L2
are �–invariant. This proves property (2) from Proposition 4.2. Next, we already
know L1 intersects L2 transversely at a single point. This point has coordinates
x1 D 0; : : : ; xn�1 D 0, xn D z2 . (Recall z2 is a root of h.xn/� t .) This intersection
point is �–invariant, and it obviously belongs to the connected component of the point p
in E� , so property (3) from Proposition 4.2 holds. Property (4) is true because E�

locally around � is given by x1 D � � � D xl D 0, and so Li \ † are transverse
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Lagrangians for the same reason that the Li are. By their local construction, the Li
do not intersect the connected components of E�t other than †.

It remains to explain property (5). Let Sn�1 �Rn be the standard unit sphere. Let �0
be the involution on Sn which changes the sign of the first k coordinates on Rn . It
naturally extends to an involution �0 on T �Sn . It is not hard to check that there is an
.�; �0/–equivariant diffeomorphism V.L1/! V.Sn/, where V.L1/ is an �–invariant
tubular neighbourhood of L1�X and V.Sn/ is an �0–invariant tubular neighbourhood
of the 0–section in T �Sn . Then there is also an .�; �0/–equivariant symplectomorphism
V.L1/! V.Sn/, by an equivariant analogue of the Weinstein tubular neighbourhood
theorem. The Dehn twist in T �Sn is �0–equivariant by definition. Its pullback via the
equivariant symplectomorphism V.L1/! V.Sn/ is the desired �–equivariant Dehn
twist inside Et .

4.2 A2 fibrations of divisors from projective embeddings

One way of constructing an A2 fibration is to embed all its fibres Et as divisors
Et DXt �Y in a single Kähler manifold Y . This idea can be used to prove Lemma 4.1,
and now we will run such an argument �–invariantly to prove Proposition 4.2.

Proof of Proposition 4.2 Let us recall the setting. We have a very ample line bundle
L! Y over a Kähler manifold Y , and a holomorphic involution �W Y ! Y which
lifts to an involution on L. This means � induces a linear involution on H 0.Y;L/�

splitting it into the direct sum of ˙1 eigenspaces, denoted by H 0.Y;L/�
˙

. The
projectivisations of these eigenspaces are denoted by …˙ � PH 0.Y;L/� . We also
denote PN WD PH 0.Y;L/� , and the �–induced involution on PN by �PN . The fixed
locus of �PN is …C t…� � PN .

Because L is very ample, we have an embedding Y � PN , LDOY .1/ WDOPN .1/jY ,
Y is invariant under �PN and �PN jY D �, and also

Y � D .Y \…C/t .Y \…�/:

Let z† be the given connected component of Y � (smooth by assumption), and dim z†D l .
Then z†�…� , where � is one of the two symbols C or �. We will also denote by �
the correspondingly signed number ˙1.

Choose homogeneous coordinates .x0 W : : : W xl W xlC1 W : : : W xN / on PN with the
following properties:

(1) �PN .x0 W : : : W xl W xlC1 W : : : W xN /D .�x0 W : : : W �xl W ˙xlC1 W : : : W ˙xNC1/.

(2) .1 W 0 W : : : W 0/ 2 z†.
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(3) The plane spanned by .x0; : : : ; xl/ (other coordinates are set to 0) is the tangent
plane to z† at .1 W 0 W : : : W 0/.

(4) For some n� l , the plane spanned by .x0; : : : ; xn/ (other coordinates are set to
0) is the tangent plane to Y at .1 W 0 W : : : W 0/.

The third property implies that x0; : : : ; xl , seen as sections in H 0.OPN .1//, belong
to the �–eigenspace of �. This is in agreement with the first property. So coordinates
with these properties exist.

…�

Y z†
.1 W0 W � � � W0/ X0\Y

.1 Wx1 W � � � Wxn/

X0

Figure 4: A divisor X0 from the family Xt constructed in the proof of Proposition 4.2

In the affine chart x0 D 1, the coordinates .x1; : : : ; xn/ are local coordinates for Y
near the origin. In the chart x0 D 1, write (see Figure 4)

Xt WD x
3
1 C x

2
2 C � � �C x

2
n � t:

We want Xt to be a section of OPN .d/, so in projective coordinates we set

Xt WD x
d�3
0 x31 C x

d�2
0 .x22 C � � �C x

2
n/� tx

d
0 :

From property (1) of the coordinates xi , we see that Xt ı �D �dXt as polynomials. In
other words:

(a) If d is even, Xt 2H 0.OPN .d//C .

(b) If d is odd, Xt 2H 0.OPN .d//� .

For all t , the divisors fXt D 0g and fXt D 0g \Y are reducible and hence singular.
We want to smooth the family fXt D 0g\Y so that a generic divisor in this t–family
becomes non-singular.

Suppose d is even. Then the linear system H 0.OPN .d//C has no base locus as it
contains all monomials xdi . Then H 0.OY .d//C DH 0.Y;L˝d /C also has no base
locus. By Bertini’s theorem in characteristic 0, there exists F 2H 0.OPn.d//C such
that the divisor fF D 0g\Y is smooth.
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Suppose d is odd. Then the linear systems H 0.OPN .d//˙ have non-empty base loci,
namely …� (see the proof of Lemma 1.14 below). Therefore it is not a priori clear
that these linear systems contain a smooth divisor. This condition is included in the
assumptions of Proposition 4.2, case (b). Let F 2H 0.OPn.d//� be a polynomial such
that fF D 0g\Y is smooth.

The rest of the proof is the same for even and odd d . For all generic ı 2 C , the
divisors fXt C ıF D 0g\Y are smooth except for a finite number of t ’s. Recall that
.x1; : : : ; xn/ is a holomorphic chart for Y around .1 W 0 W : : : W 0/. There is another
chart zx1; : : : ; zxn in which the divisors fXt C ıF D 0g\Y are given by

h.zx1/C zx
2
2 C � � �C zx

2
n � t C c D 0;

where h.zx1/ is close to zx31 (when ı is small) and c is a small constant. Moreover, the
change of coordinates from xi to zxi is �–equivariant. This follows from an equivariant
version of the holomorphic Morse splitting lemma [1].

Consider the family fXt C ıF D 0g\Y of divisors in Y , t 2D . They are �–invariant
and belong to the linear system jL˝d j. Let E!D be the total space of this family;
see Definition 3.6. It may be singular; if it is, remove its singular locus to get E0 . The
involution � turns E0!D into an involutive fibration in the sense of Definition 4.6.
So by Lemma 4.9 a smooth divisor in the family fXt C ıF D 0g \ Y has a pair of
Lagrangian spheres .L1; L2/ that satisfy properties (2)–(5) of Proposition 4.2. It is
easy to see that Lemma 4.9 constructs L1; L2 which are jL˝d j–vanishing.

It remains to check that � satisfies property (1). We have to show that smooth divisors
fXtCıF D0g\Y intersect †D z†\Y transversely. Suppose X WD fXtCıF D0g\Y
intersects † non-transversely at one point p , so Tp†� TpX (the tangent spaces are
taken inside Y ). This means TpX contains dim† positive (C1) eigenvalues of d�.
Then the same must hold for all intersection points X \†, and hence Tp† � TpX
for any p 2X \†. But in a neighbourhood of .1 W 0 W : : : W 0/ the intersection X \†
is transverse, which is easily verified in the local chart .x1; : : : ; xn/ from above. So
X intersects † transversely everywhere. Similarly, every other connected component
of Y � either intersects X transversely or is contained in X .

5 Proofs of theorems about Lagrangian spheres in divisors

Proof of Theorem 1.13 Apply Proposition 4.2 to Y;L; z† given in the hypothesis of
Theorem 1.13. Proposition 4.2 returns an jL˝d j–divisor X � Y and jL˝d j–vanishing
Lagrangian spheres L1; L2�X satisfying the conditions enumerated in the proposition.
Because jL˝d j–vanishing spheres are unique up to symplectomorphism (Lemma 3.8),
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it suffices to show that �L1 has infinite order in Symp.X/=Ham.X/. To show this, we
compute the Lefschetz number of

�2kL1 �
2k
L2
jX � D �

2k
L�1
�2kL�2

on H�.X �/, where X � is the fixed locus of the involution � on X . Recall that †D z†\X
is a connected component of X � . We are given that dim z† is even, so dim†Ddim z†�1
is odd. Let X � D†t†0 where †0 consists of all other connected components. We
identify H�.X �/ with H�.X �/ via Poincaré duality.

Consider the homology classes ŒL�1�; ŒL
�
2� 2H�.†/, ŒL

�
1� � ŒL

�
2�D 1. Using the Picard–

Lefschetz formula (see Section 3.4) and property (5) from Proposition 4.2, we write
down the actions of Dehn twists on the 2–dimensional vector space spanfŒL�1�; ŒL

�
2�g �

H�.X
�/. Let s D dimC † and � D .�1/

1
2
s.s�1/ . These actions are given by

.�L�1/
2k
� W

�
1 k.1C.�1/s�1/�

0 1

�
; .�L�2/

2k
� W

�
1 0

k.1C.�1/s�1/� 1

�
:

Now since s D dimC † is odd, we see that

STr
�
.�L�1/

2k
� .�L�2/

2k
� jspanfŒL�1�;ŒL

�
2�g

�
D�4k2� 2:

(The negative signs appear because we are computing the supertrace). If s were even,
we would get the constant 2 instead.

We can extend ŒL�1�; ŒL
�
2� to a basis of H�.X �/ in which all other elements have zero

intersection with ŒL�1�; ŒL
�
2�. By the Picard–Lefschetz formula, .�L�

i
/� acts by Id on

the rest of such a basis. Consequently, the Lefschetz number is

L
�
.�L�1/

2k.�L�2/
2k
�
D�4k2C c;

where c is a constant independent of k . By Proposition 1.4,

(5-1) dimƒ HF�.�2kL1 �
2k
L2
/� j� 4k2C cj:

Suppose �2kL1 is Hamiltonian isotopic to Id for some k > 0. Then �2kL2 is also Hamilton-
ian isotopic to Id, because by Lemma 3.8 there is a symplectomorphism of X taking
L1 to L2 . Then the product �2kL1 �

2k
L2

is also Hamiltonian isotopic to Id. Since k can
be taken arbitrarily large, this contradicts the growth of dimensions in Equation (5-1).
Consequently �L1 has infinite order in the group Symp.X/=Ham.X/.

Next we prove Lemma 1.14. It follows from a strong Bertini theorem which we now
quote.
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Theorem 5.1 [10, Corollary 2.4] Let Y be a compact smooth complex manifold and
S an effective linear system of divisors on Y . Let B be the base locus of S . If B is re-
duced and non-singular, and dimB < 1

2
dimY , then a generic divisor in S is smooth.

If B is disconnected, the dimensional inequality must hold for every connected com-
ponent of B .

Proof of Lemma 1.14 We repeat the beginning of the proof of Proposition 4.2. We
have Y � PN and L˝d D OPN .d/jY . The involution � acts on sections of L and
so acts on PN by a linear involution �PN , and Y � PN is invariant under it. Find
homogeneous coordinates .x0 W : : : W xN / such that

�PN .x0 W : : : xl W xlC1 W : : : W xN /D .x0 W : : : W xl W �xlC1 W �xN /:

Recall that d is odd by assumption. Then H 0.OPN .d//C consists of degree-d
polynomials which are sums of monomials of the form

xodd
0 � � � x

odd
l xeven

lC1 � � � x
even
N :

Here even or odd denote the parity of a power. The base locus of the linear system
PH 0.OPN .d//C is given by

x0 D 0; : : : ; xl D 0;

and so coincides with …� . The base locus B of PH 0.Y;L˝d /C is therefore …�\Y . It
is smooth because Y � is smooth. We are also given that dimB< 1

2
dimY by hypothesis.

Finally, we know that �PN j…� D Id, so Y intersects …� cleanly (ie transversely in
the normal direction to …�\Y ), and hence B D…�\Y is reduced. Consequently,
Lemma 1.14 follows from Theorem 5.1. (The case when the sign symbols C and �
are interchanged is analogous.)

We now return to divisors in Grassmannians and prove Theorem 1.2. Let Gr.k; n/�
PN be the Plücker embedding. Then the anti-canonical class of Gr.k; n/ equals
OPN .n/jGr.k;n/ [25, Proposition 1.9]. Consequently, a smooth divisor X � Gr.k; n/
in the linear system OPN .d/jGr.k;n/ satisfies the W C condition (see Definition 2.1) if
and only if d � n or d � k.n� k/Cn� 2, and X is monotone (Fano) if and only if
d < n.

Proof of Theorem 1.2 We have already mentioned that this theorem is easy and
essentially known when k.n�k/ is even. (The sphere L�X is non-trivial in Hn.X/
by Lemmas 4.1 and 3.8. Then apply Corollary 3.13(2).) We will now prove the hard
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case when k.n � k/ is odd using the general Theorem 1.13. Denote k D 2p C 1,
nD 2q .

Consider a linear involution on C2q with qC l positive eigenvalues and q� l negative
eigenvalues for some l . It induces a non-degenerate involution � on Gr.2pC 1; 2q/
whose fixed locus is

Gr.2pC 1; 2q/� D
2pC1G
tD0

Gr.t; qC l/�Gr.2pC 1� t; q� l/:

This fixed locus consists of .2pC 1/–planes that admit a frame in which t vectors
lie in the positive eigenspace of the involution on C2q , and the remaining 2pC 1� t
vectors lie in the negative eigenspace. We compute

(5-2) dim Gr.t; qC l/C dim Gr.2pC 1� t; q� l/� 1
2

dim Gr.2pC 1; 2q/

D�
1
2
.1C 2p� 2t/.1C 2pC 2l � 2t/:

For this paragraph, set lD0. Then the expression (5-2) is less than 0 for any t 2Z. This
means dim Gr.2pC1; 2q/�< 1

2
dim Gr.2pC1; 2q/. (The left-hand side is disconnected,

and we mean that the inequality holds for each of its connected components.) Therefore
we can apply Lemma 1.14 to either of the two linear systems PH 0.Y;L˝d /˙ . In order
to apply Theorem 1.13, it remains to check that Gr.2pC 1; 2q/� contains a connected
component of even dimension. A computation shows that a connected component of
Gr.2pC 1; 2q/� has dimension of parity

dim Gr.t; q/C dim Gr.2pC 1� t; q/� q� 1 mod 2

independently of t . We will now consider the case when q is odd, and will discuss
the case when q is even in the next paragraph. If d is odd, apply Theorem 1.13(b)
taking either of the two sign symbols C or �. If d is even, apply Theorem 1.13(a)
(this case is easier and does not require the computation of dimensions we have made).
This proves Theorem 1.2 for Gr.2pC 1; 2q/ in the case when q is odd.

Now suppose q is even. Set l D 1 until the end of the proof. Recall that

Gr.2pC 1; 2q/� D .…C t…�/\Gr.2pC 1; 2q/:

The only case when (5-2) fails to be less than zero is when

1C 2p� 2t D�1:

This happens for a unique t 2 Z. So either

dim Gr.2pC 1; 2q/\…C < 1
2

dim Gr.2pC 1; 2q/;
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or the same holds with …� taken instead. (As above, we mean that the inequality
holds for each connected component of the left-hand side.) A computation shows that
a connected component of Gr.2pC 1; 2q/� has dimension of parity

dim Gr.t; qC 1/C dim Gr.2pC 1� t; q� 1/� q mod 2� 0 mod 2:

Therefore we can apply Lemma 1.14 and Theorem 1.13 taking that symbol C or �
for which the inequality

dim Gr.2pC 1; 2q/\…� < 1
2

dim Gr.2pC 1; 2q/

holds. Theorem 1.2 is proved in all cases.

Proof of Corollaries 1.3 and 1.15. These corollaries follow from Theorems 1.2
and 1.13 and Lemma 3.14.

Appendix: Growth of Lagrangian Floer cohomology and ring
structures

A.1 Dehn twists around spheres with deformed cohomology

Keating [19] has recently obtained an exact sequence involving iterated Dehn twists
in the Fukaya category of a symplectic manifold, extending Seidel’s original exact
sequence [36]. In this subsection we use it to prove Proposition A.1, which is stated
below. Then we apply it to compute Floer cohomology rings of vanishing spheres in
some divisors.

Let X be a compact monotone symplectic manifold. Denote by F.X/ its monotone
Fukaya category over C , which is a collection of A1–categories F.X/� , � 2 C ,
corresponding to the eigenvalues of multiplication with c1.X/ in QH�.X/. The basic
language of A1 and Fukaya categories is explained in [37], and the monotone version
of the Fukaya category is discussed in [41]. Our aim is to prove the following.

Proposition A.1 Let X be a monotone symplectic manifold, dimRX D 4k , L1 �X
be a Lagrangian sphere and L2 � X another monotone Lagrangian which intersects
L1 once, transversely. Assume L1; L2 are included into the same summand F.X/� .
Suppose that dim HF�.�kL1L2; L2/ > 2 for some k 2N . Then there is an isomorphism
of rings HF�.L1; L1/ŠCŒx�=x2 .

All A1–algebras and modules in this section are assumed to be minimal. We need to
introduce some notation.
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Definition A.2 Let A be a strictly unital Z=2–graded A1–algebra with unit 1 2 A,
M a right A1–module over A and N a left A1–module over A. Fix an augmentation,
ie a vector space splitting AD .1/˚A. The k–truncated bar complex is the vector
space

.M ˝AN/k WD

k�1M
jD0

M ˝A˝j ˝N

with the differential that on the j th summand equals

(A-1)
X

jC2DpCqCr
p; r�0; q�2

.�1/z.�1/r.Id˝p˝�q˝ Id˝r/:

Here z 2 f0; 1g depends on the gradings of the arguments: if the input is m˝ x1˝
� � �˝ xk�1˝n, where m 2M , xi 2 A, n 2N , then z is the sum of gradings of the
last r elements of the input. If we put pD 0 in (A-1), we get the summand �q˝ Id˝r

which involves the module structure map �qW M ˝A˝.q�1/!M . Similarly, when
we put r D 0 in (A-1), �q will be the module structure map �qW A˝.q�1/˝N !N .
When p; r > 0, �q denotes the algebra structure map A˝q! A composed with the
augmentation A! A.

Theorem A.3 (Keating [19, Lemma 7.2 and Remark 6.6]) Suppose L1; L;L2 �X
are three Lagrangian submanifolds which are objects of F.X/� , and L is a sphere.
Then there is an exact sequence of vector spaces:

HF�.L1; L2/ // HF�.�kLL1; L2/

xx

H
�
Hom.L;L1/˝Hom.L;L/ Hom.L2; L/

�
k

ee

Note that [19] states this theorem for exact X and over Z=2; in particular, it does not
mention the signs in (A-1). The proof uses a theorem of Seidel [37, Corollary 17.17]
which says that �LL1 is quasi-isomorphic to the cone of a certain evaluation map, as an
object of the (category of twisted complexes over the) Fukaya category. This allows one
to write �kLL1 as an iterated cone, which automatically provides some exact sequence
of the type above. Keating proves Theorem A.3 by simplifying the iterated cone in a
purely algebraic way: by identifying and killing some acyclic sub-complexes in it. We
know that the initial Seidel’s theorem holds for the monotone Fukaya category and
over C (see eg Oh [27] for the homological version), and the proof of Theorem A.3
works in the monotone case and over C by virtue of being purely algebraic. The signs
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in (A-1) will be enforced for algebraic reasons, and it is a matter of book-keeping to
check that they are the ones that we expect to see in a bar complex. In addition to
Theorem A.3, we will need some auxiliary lemmas.

Lemma A.4 (Formality) Every A1–algebra with cohomology ring CŒx�=.x2� 1/
is quasi-isomorphic to the A1–algebra CŒx�=.x2� 1/ with vanishing higher multipli-
cations �j D 0, j > 2.

Proof This follows from [18, Corollary 4] and [17, Proposition 2.2].

Lemma A.5 Take the A1–algebra CŒx�=.x2� 1/ with vanishing �j ; j > 2. Every
strictly unital A1–module M over this algebra with vanishing �1 necessarily has
vanishing �j ; j > 2.

Proof Take the minimal j such that �j .m; x˝.j�1// ¤ 0 for some m 2 M . If
j > 1, the A1–relation for the tuple .m; x˝.j�1/; 1/ gives �j .m; x˝.j�1// D 0, a
contradiction.

Lemma A.6 [19, Lemma 3.1] Let .M;A;N / be a c-unital A1–category consisting
of an A1–algebra A, a left A1–module M and a right A1–module N . Let A0 be
a strictly unital A1–algebra quasi-isomorphic to A. Then there are strictly unital
A1–modules M 0; N 0 over A0 such that the category .M;A;N / is quasi-isomorphic
to .M 0; A0; N 0/. The underlying Hom–spaces of .M;A;N / and .M 0; A0; N 0/ are
the same.

Lemma A.7 (Cf [19, Lemma 7.3]) Let .M;A;N / and .M 0; A0; N 0/ be two strictly
unital A1–categories consisting of an algebra, a left module and a right module. If they
are quasi-isomorphic, the associated bar complexes .M ˝AN/k and .M 0˝A0 N 0/k
are quasi-isomorphic.

Remark A.8 Let dimRX D 2n. Suppose L�X is a Lagrangian sphere. The Z=2–
graded Floer chain complex CF�.L;L/ can be realised as a 2–dimensional vector
space C˚C with two generators: the unit 1, deg 1D 0 and the second generator x ,
deg x � n mod 2. The differential has degree 1.

If n is even, Floer’s differential must vanish and HF�.L;L/ is a unital 2–dimensional
commutative algebra. Up to isomorphism, this leaves only two possibilities: CŒx�=x2

or CŒx�=.x2� 1/.

If n is odd, HF�.L;L/ is zero or 2–dimensional. In the latter case, we necessarily
have x2 D 0 because HF�.L;L/ is graded commutative, so HF�.L;L/ŠCŒx�=x2 .
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The minimal Chern number of X is the maximal integer N such that c1.X/ is divisible
by N in integral cohomology H 2.X IZ/. Floer cohomology of a Lagrangian sphere
can be made Z=2N graded, and our generators have gradings deg 1D 0 and deg x �
n mod 2N . If n is even and n¤ 0 mod N , for grading reasons we get x2 D 0 and
HF�.L;L/ŠCŒx�=x2 .

Proof of Proposition A.1 We want to prove that HF�.L1; L1/ŠCŒx�=x2 . Suppose
this is not the case. Then by Remark A.8, HF�.L1; L1IC/ŠCŒx�=.x2� 1/. Recall
that n is even.

Inside F.X/� , take the subcategory consisting of the A1–algebra Hom.L1; L1/, its
left module Hom.L1; L2/ and its right module Hom.L2; L1/. Because jL1\L2jD 1,
Hom.L1; L2/ and Hom.L2; L1/ are 1–dimensional as vector spaces. Denote their
generators by

Hom.L1; L2/D hmi; Hom.L2; L1/D hni:

By Lemma A.4, we see that Hom.L1; L1/ is quasi-isomorphic to the associative algebra
CŒx�=.x2 � 1/ with trivial higher multiplications. By Lemma A.6 and Lemma A.5,
modules Hom.L1; L2/ and Hom.L2; L1/ are quasi-isomorphic to those with trivial
higher multiplications over CŒx�=.x2�1/. The module �2–operations, however, must
be non-trivial because x2 D 1:

�2.m; x/D �mm; �2.x; n/D �nn; where �m; �n D˙1:

Lemma A.7 allows to compute the homology of the bar complex

Bk WD
�
Hom.L1; L2/˝Hom.L1;L1/ Hom.L2; L1/

�
k

using the simple associative model we obtained. In this model, the bar complex Bk is
based on the k–dimensional vector space

k�1M
jD1

m˝ x˝j ˝n:

The differential comes only from �2.m; x/ and �2.x; n/:

@.m˝ x˝j ˝n/D
�
.�1/j �nC �m

�
m˝ x˝.j�1/˝n:

Note that the sign .�1/z from Equation (A-1) equals C1 because we are given deg xD
0 and may assume degnD0. We see that dimH.Bk/D0 or 1, depending on the parity
of k . By the exact sequence of Theorem A.3, we get dim HF�.�kL1L2; L2IC/ � 2,
which contradicts the hypothesis.
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Remark A.9 If HF�.L1; L1IC/ŠCŒx�=x2 , it might still happen that Hom.L1; L1/
is formal, for example when X is exact. Running the above proof, from x2 D 0 we
conclude that �2.m; x/ D �2.x; n/ D 0. So the differential on the k–dimensional
model for Bk written above vanishes, and dimH.Bk/ D k . This agrees with the
growth of dim HF�.�kL1L2; L2/.

A.2 Floer cohomology rings of Lagrangian spheres in divisors

We now combine Proposition A.1 with previous results (Propositions 1.11 and 4.2) to
compute the ring HF�.L;LIC/ for vanishing Lagrangian spheres L in certain divisors.
The statement uses notation from Section 1.7. We also provide a corollary which
specialises to divisors in Grassmannians.

Proposition A.10 In addition to the conditions of Theorem 1.13 (a) or (b), suppose
that X is Fano and dimC X is even. Then there is a ring isomorphism HF�.L;LIC/Š
CŒx�=x2 .

Corollary A.11 Let X �Gr.k; n/ be a smooth divisor of degree 3� d < n, dimC X

even. Let L � X be an jO.d/j–vanishing Lagrangian sphere. Then there is a ring
isomorphism HF�.L;LIC/ŠCŒx�=x2 .

The possibility ruled out by these two statements is that the deformed ring HF�.L;L/ is
isomorphic to CŒx�=.x2�1/. An example of a sphere with HF�.L;L/ŠCŒx�=.x2�1/
is the antidiagonal L � P1 � P1 . Note that for this sphere �L has order 2 in
�0 Symp.P1 � P1/ [38]. It seems natural to ask whether there is a general relation
between the isomorphism HF�.L;L/Š CŒx�=.x2 � 1/ and �L being of finite order
(both cases are rare). Observe that for many, but not all, pairs .k; n/, Corollary A.11
follows from the grading consideration in Remark A.8.

Proof of Proposition A.10 As in the beginning of the proof of Theorem 1.13, take
X;L1; L2 as constructed in Proposition 4.2. By Lemma 3.8, it suffices to prove that
HF�.L1; L1/ŠCŒx�=x2 .

From the Picard–Lefschetz formula (Lemma 3.12), given that jL1 \ L2j D 1 and
dimL�i is odd, we get the equality

Œ�kL�1
L�2�D ŒL

�
2�� �kŒL

�
1�

in the homology of the fixed locus H�.X �/. Consequently,

Œ�kL�1
L�2� � ŒL

�
2�D��k:
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By Proposition 1.11, dim HF�.�kL1L2; L2/� k . By Proposition A.1, HF�.L1; L1/Š
CŒx�=x2 .

Proof of Corollary A.11 Repeat the proof of Theorem 1.2 but refer to Proposition A.10
instead of Theorem 1.13. Recall the condition d < n means that X is Fano.
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