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The Hausdorff dimension of non-uniquely
ergodic directions in H.2/ is almost everywhere 1

2

JAYADEV S ATHREYA

JON CHAIKA

We show that for almost every (with respect to Masur–Veech measure) translation
surface ! 2 H.2/ , the set of angles � 2 Œ0; 2�/ such that ei�! has non-uniquely
ergodic vertical foliation has Hausdorff dimension (and codimension) 1

2
. We show

this by proving that the Hausdorff codimension of the set of non-uniquely ergodic
interval exchange transformations (IETs) in the Rauzy class of .4321/ is also 1

2
.

37E05, 37E35

1 Introduction

A genus-g translation surface .X; !/ is a compact, genus-g Riemann surface together
with a holomorphic one-form ! . This gives a structure of a flat metric away from
a finite number of singular points, as integrating the one-form ! gives charts (away
from zeros of ! ) to C where the transition functions between charts are translations.
The zeros of ! are singular points of the metric, and have cone angles 2�.k C 1/

at a zero of order k . Translation surfaces inherit a straight line unit-speed flow in
each direction � 2 Œ0; 2�/ (corresponding to the foliation Re.ei�!/D 0). These flows
preserve Lebesgue measure on the surface. A key result on the ergodic properties of
these flows was proved by Kerckhoff, Masur and Smillie [4]:

Theorem [4, Theorem 2] For every translation surface, the flow in almost every
direction is uniquely ergodic with respect to Lebesgue measure.

Moduli spaces of translation surfaces are stratified by their genus g and the combina-
torics of their singularities. We say a singularity has order k if the angle is 2�.kC 1/.
The Gauss–Bonnet theorem implies that the sum of orders of singularities on a genus-g
surface is 2g�2. Given a partition ˛D .˛1; : : : ; ˛m/2Nm ,

P
˛i D 2g�2, we define

the stratum HDH.˛/ to be the moduli space of (unit-area) translation surfaces with
singularity pattern ˛ . On each stratum H , there are coordinate charts to an appropriate
Euclidean space, and pulling back Lebesgue measure yields a natural measure �MV ,
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known as Masur–Veech measure. Similarly, pulling back Euclidean distance yields a
(local) metric on flat surfaces in a given stratum. For each translation surface, there is
a countable set of directions where the flow is not minimal (that is, there are non-dense
infinite trajectories). Moreover, by a theorem of Masur and Smillie [9], for almost
every translation surface there is an uncountable set of non-uniquely ergodic directions.
Given a translation surface ! , let

NUE.!/ WD f� W vertical flow on ei�! is non-uniquely ergodicg:

Theorem [9, Main theorem] In every stratum of translation surfaces H.˛/ of sur-
faces of genus at least 2 there is a constant c D c.˛/ > 0 such that for �MV –almost
every flat surface ! 2H ,

Hdim.NUE.!//D c:

We call the constant c D c.˛/ the Masur–Smillie constant of the stratum of H.˛/.
Masur [8] showed that c.˛/ � 1

2
for all ˛ . The main result of this paper is that for

H.2/, the Masur–Smillie constant is 1
2

.

Theorem 1.1 For �MV –almost every ! 2H.2/,

Hdim.NUE.!//D 1
2
D 1� 1

2
:

By our methods we also obtain the Hausdorff dimension of the set of translation surfaces
in H.2/ where the vertical flow is non-uniquely ergodic. The real dimension of H.2/
is 7, and we have:

Theorem 1.2

Hdim.f! 2H.2/ W vertical flow on ! is non-uniquely ergodicg/D 13
2
D 7� 1

2
:

Remark 1.3 This is the first time the Masur–Smillie constant for a stratum has been
identified. Earlier, Cheung, Hubert, and Masur [2] identified the Hausdorff dimension of
non-uniquely ergodic directions for the historically important example of two symmetric
tori glued along a slit. The Hausdorff dimension is either 1

2
or 0 and they gave an

explicit description of these two cases based on the diophantine properties of the length
of the slit. Earlier, Cheung [1] had found an example of two symmetric tori glued along
a slit where the set of non-uniquely ergodic directions has Hausdorff dimension 1

2
. In

the paper’s appendix, Boshernitzan showed a residual set of these examples have that
the set of non-uniquely ergodic directions has Hausdorff dimension 0. All of these
results deal with a measure zero subset of the stratum H.1; 1/:
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Prior to the paper [4], Masur [7] and Veech [15] independently showed that for almost
every flat surface the flow in almost every direction was uniquely ergodic with respect to
Lebesgue measure. Constructions of non-uniquely ergodic IETs are due to Sataev [12],
Keane [3] and Keynes and Newton [5], and, anachronistically, Veech [13].

To prove Theorems 1.1 and 1.2, we establish a related theorem for interval exchange
transformations (IETs) (see Section 2 for the definition of IETs). Given a permutation
� 2 Sm on m letters, we parametrize the set of IETs which have � as a permutation
by the unit simplex

�m WD

�
� 2Rm

C W

mX
iD1

�i D 1

�
:

We denote the IET with length vector � and permutation � by T�;� . Note that the
real dimension of �m is m� 1.

Theorem 1.4 The Hausdorff dimension of the set NUE.4321/ of non-uniquely er-
godic 4–IETs of Œ0; 1/ with permutation �0 D .4321/ is 5

2
. That is,

Hdim.NUE.4321//DHdim.f� 2�4 W T�;�0
is non-uniquely ergodic g/D 5

2
D 3� 1

2
:

Remark 1.5 Theorems 1.1, 1.2 and 1.4 all state that the Hausdorff codimension of
non-uniquely ergodic objects is 1

2
.

By combining work of Masur [8], Minsky and Weiss [11] and a result in metric geometry
[10] we obtain the following general result.

Theorem 1.6 The set of non-uniquely ergodic n–IETs has Hausdorff codimension at
least 1

2
. The set of flat surfaces in any (connected component of any) stratum whose

vertical flow is not uniquely ergodic has Hausdorff codimension at least 1
2

.

1.1 Outline of proof

Masur’s theorem [8], together with standard results in metric geometry, provides the
upper bound. For the lower bound, we generate specific paths in Rauzy induction
(Section 2.2) that by a criterion of Veech [14] (Lemma 4.1 in this paper) give minimal
and non-uniquely ergodic IETs. The cylinder sets of these paths have nice geometric
properties (Section 4.2). This allows us to construct a measure supported on this subset
of non-uniquely ergodic IETs with appropriate decay properties. Using Frostman’s
lemma, we obtain that this set has Hausdorff dimension at least 5

2
; in Section 3 we prove

an abstract result on measures supported on intersections of simplices and in Section 5
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we use this construction to build our measure on the set of non-uniquely ergodic IETs.
To prove Theorem 1.2, we appeal to a standard decomposition of the stratum into stable
and unstable foliations. The property that the vertical flow is non-uniquely ergodic
depends only on the unstable coordinate and reduces the problem to IETs. To prove
Theorem 1.1 we use a result of Minsky and Weiss [11] that varying along a horocycle
in the space of flat surfaces gives lines in IET space. By a standard correspondence
between the horocycle and changing directions on a fixed flat surface this implies the
theorem. Having enough lines implies by standard results in metric geometry that
many of the lines intersect non-uniquely ergodic IETs in Hausdorff dimension 1

2
. This

establishes Theorem 1.1 for a positive measure set of flat surfaces. There is an SL2.R/
action on each stratum which is ergodic (on connected components of strata). The
Hausdorff dimension of non-uniquely ergodic directions is invariant under this action.
The ergodicity of the SL2.R/ action lets us go from positive to full measure and proves
Theorem 1.1.
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2 Background material

2.1 Our spaces

This section recalls standard material which is treated in, for example, Zorich’s sur-
vey [17]. A translation surface can be given by a union of polygons P1[� � �[Pn , where
each Pi �C , so that each side of each Pi is glued to exactly one other (parallel) side
by a translation, and the total resulting angle at each vertex is an integer multiple of 2� .
Translation surfaces can be organized by the number and order of these singularities,
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that is by integer partitions ˛ of 2g� 2, where g is the genus of the surface, yielding
strata H.˛/. Since translations are holomorphic, and preserve the one-form dz , we
obtain a complex structure and a holomorphic differential ! on the identified surface,
which away from zeros is locally dz . The zeroes of the differential will be at the
identified vertices with total angle greater than 2� , and the order of the zero is equal
to the excess angle, that is ! D zkdz in a neighborhood of a point with total angle
2�.kC1/. This paper concerns translation surfaces in the stratum H.2/, that is, genus 2

surfaces with one singularity with angle 6� . Kontsevich and Zorich [6] classified the
connected components of strata. There are at most three and in our case there is only
one; that is, H.2/ is connected.

By varying the sides of the polygons Pi one changes the flat surface. This gives local
coordinates on strata (modeled on relative cohomology of the surface with respect
to the singularities). Pulling back Lebesgue measure in these coordinates gives the
Masur–Veech measure �MV on each stratum. SL2.R/ acts on strata via the natural
linear action on the polygons Pi . Masur [7] and Veech [15] showed that this action
is ergodic with respect to �MV on connected components of the stratum. On any
translation surface, we have the straight line flow given by flow in the vertical direction
in C , and the flow in direction � , which is the vertical flow on the surface ei�! .
For any translation surface, the first return map of the flow in a fixed direction to a
transverse interval gives a special map of the interval, known as an interval exchange
transformation.

Definition 2.1 Given �D .�1; �2; : : : ; �d / where �i > 0, we obtain d sub-intervals
of the interval Œ0;

Pd
iD1 �i/,

I1 D Œ0; �1/; I2 D Œ�1; �1C�2/; : : : ; Id D

� d�1X
iD1

�i ;

dX
iD1

�i

�
:

Given a permutation � on the set f1; 2; : : : ; dg, we obtain a d –Interval Exchange
Transformation (IET), T W Œ0;

Pd
iD1 �i/! Œ0;

Pd
iD1 �i/, which exchanges the intervals

Ii according to � . That is, if x 2 Ij then

T .x/D x�
X
k<j

�k C

X
�.k0/<�.j/

�k0 :

For a small enough neighborhood in the space of translation surfaces U , one can locally
fix a horizontal transversal where the IET has 2gC k � 1 intervals, where g is the
genus and k is the number of singularities of the translation surface. This provides
a map T W U !R2gCk�1

C . This is a (locally) Lipschitz map from U with the metric
given by coordinates to R2gCk�1

C with the Euclidean metric. In fact, it is still locally
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Lipschitz if we compose it with the natural map � 7! �=j�j, where j�j D
P
�i , to

obtain a map from U to the simplex �2gCk�1 WD f� 2R2gCk�1
C W

P
�i D 1g.

2.2 Rauzy induction

The proof of our main result (and indeed many results on ergodic properties of IETs)
uses in a crucial fashion the Rauzy induction renormalization procedures for IETs,
involving induced maps on certain subintervals, and closely related to Teichmüller
geodesic flow. Our treatment of Rauzy induction will be the same as in [15, Section 7].
For further details of the procedure (and much more on IETs) we refer the interested
reader to [16] for an excellent survey.

.2431/

.3241/

.2413/

.4321/ .4213/

.4132/ .3142/

Figure 1: The Rauzy class of (4321). Dashed arrows represent A–moves,
and solid B –moves.

The Rauzy induction map R is defined for all but a codimension 1 set of IETs and
associates to an interval exchange map T D T�;� (now we restrict to � 2 �m , the
unit simplex in Rm

C , � 2 Sm ) a new interval exchange map R.T / D T�0;� 0 , by
considering the induced map of T on the subinterval Œ0; 1�min.�m; ���1m//, and
renormalizing the lengths so R.T / is again a map of Œ0; 1/. �0 is related to � via
a projective linear transformation defined below. Rauzy induction is only defined if
�m¤ ���1m . The Rauzy class R of a permutation � is the subset of Sm that contains
all the forward images of � under Rauzy induction. The permutations in the Rauzy
class form the vertices of the Rauzy graph, a directed graph with two edges emanating
from each permutation � 2R, corresponding to the permutations obtained by inducing
on Œ0; 1��m/ and Œ0; 1����1m/ respectively.

If �m Dmin.�m; ���1m/ we say the first step in Rauzy induction is A. In this case
the permutation of R.T / is given by

� 0.j /D

8<:
�.j / j � ��1.d/;

�.d/ j D ��1.d/C 1;

�.j � 1/ otherwise.
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Right side Left side

Edge Matrix Edge Matrix

.4321/! .4132/

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

1CCA .4321/! .2431/

0BB@
1 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1CCA
.4132/! .4213/

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

1CCA .2431/! .3241/

0BB@
1 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1CCA
.4213/! .4321/

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1

1CCA .3241/! .4321/

0BB@
1 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1CCA
.4132/! .3142/

0BB@
1 0 0 0

0 1 1 0

0 0 0 1

0 0 1 0

1CCA .2431/! .2413/

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

1CCA
.3142/! .3142/

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

1CCA .2413/! .2413/

0BB@
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1CCA
.3142/! .4132/

0BB@
1 0 0 0

0 1 1 0

0 0 0 1

0 0 1 0

1CCA .2413/! .2431/

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1

1CCA

.4213/! .4213/

0BB@
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1CCA .3241/! .3241/

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

1CCA
Figure 2: Rauzy matrices for the edges in the Rauzy graph of .4321/ . We
divide into left and right sides and note the symmetries.

We record the action of Rauzy induction by the elementary matrix M.T; 1/, where

M.T; 1/Œij �D

8<:
ıi;j j � ��1.d/;

ıi;j�1 j > ��1.d/ and i ¤ d;

ı��1.d/C1;j i D d:
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If ���1m D min.�m; ���1m/ we say the first step in Rauzy induction is B . In this
case the permutation of R.T / is given by

� 0.j /D

8<:
�.j / �.j /� �.d/;

�.j /C 1 �.d/ < �.j / < d;

�.d/C 1 �.j /D d;

and the associated matrix is

M.T; 1/Œij �D

�
1 i D d and j D ��1.d/;

ıi;j otherwise.

We have

�D
M.T; 1/�0

jM.T; 1/�0j
:

Here, j � j denotes the L1 norm on Rd . M.T; 1/ depends on whether the step is A or
B and the permutation � . We define the nth matrix of Rauzy induction by

M.T; n/DM.T; n� 1/M.Rn�1.T /; 1/:

If Rn.T /D �.n/ , we have

�D
M.T; n/�.n/

jM.T; n/�.n/j
:

Given a matrix M , we write

M�DM RC
d
\�d D

�
M v

jM vj
W v 2�d

�
:

Observe that if T D T�;� , S D S�;� are IETs with � 2M.T; k/�, then

M.S; k/DM.T; k/:

That is, the IETs T and S have the same first k steps of Rauzy induction.

We will be working with the Rauzy class of the permutation .4321/ on 4 letters. We
record the graph (Figure 1) and the associated matrices (Figure 2).

3 Measures on subsimplices

Our main abstract result on Hausdorff dimension is the following axiomatic result,
essentially a consequence of Frostman’s lemma:
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Proposition 3.1 Let fSig be a sequence of finite collections of disjoint affine 3–
simplices in �3 . We assume the collection is nested: for each simplex J 2 SiC1 , there
is a J 0 2 Si so that J � J 0 . We denote

Si WD

[
J2Si

J:

Suppose fSig satisfies:

(1) There exists a constant c > 0 such that each J 2 Sk has one side of length at
least c .

(2) There exists a constant � > 0 and a quadratic polynomial p.x/ with leading
coefficient a> 0 such that each simplex J 2 Sk contains �10p.k/ simplices in
SkC1 .

(3) There exist q 2 N and h.x/, a cubic polynomial with leading coefficient �b ,
b > 0, such that if

r < 10h.k/ and p 2�3;

then there is at most one simplex J 2 SkCq that intersects B.p; r/. In particular,
for all q0 � q ,

B.p; r/\SkCq0 D B.p; r/\J \SkCq0 :

Then
Hdim

� 1\
iD1

Si

�
� 1C

a

3b
:

In particular if aD 24 and b D 16
3

then

Hdim

� 1\
iD1

Si

�
�

5

2
:

To prove Proposition 3.1 we use Frostman’s lemma:

Theorem 3.2 (Frostman’s lemma) Let A be a Borel set, s > 0, � be a measure on
A with �.A/ > 0, and C 2R so that for all x; r we have

�.B.x; r//� C r s:

Then
Hdim.A/� s:

Proof of Proposition 3.1 We build a sequence of measures supported on the Sk whose
weak-* limits are supported on

T1
kD1 Sk . Let �1 be defined to be the probability

measure such that:
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(1) It gives equal mass to each element J 2 S1 .

(2) It is (a scalar multiple of) Lebesgue measure when restricted to any element
J 2 S1 .

Given �k�1 which is a probability measure which restricted to each J 2 Sk�1 is a
scalar multiple of Lebesgue measure, we inductively define �k to be the probability
measure such that on each element J 2Sk it is a scalar multiple of Lebesgue satisfying
the following:

if J;J 0 � I 2 Sk�1; then �k.J /D �k.J
0/:

That is, we evenly divide the mass in I among its descendants in Sk (we say J 0 2 Sk

is a descendant of J 2 Sk�1 if J 0 � J ). Note that each element of Sk�1 has the same
number of descendants. Let �1 be a weak-* limit of these measures (it is unique but
this is not important for our purposes).

Since our inductive process divides measure evenly among descendants and the elements
of Sk are disjoint, we have the following stability condition: For all J;J 0 2 Sk and
L� k ,

(3-1) �k.J /D �L.J /D �L.J
0/D �k.J

0/:

In the statement of the next lemma j � j denotes cardinality.

Lemma 3.3 For any x; r we have

�L.B.x; r//�
jfJ 2 SL W B.x; r/\J ¤∅gj

jSLj
g

r

c
;

where g depends only on dimension.

Proof We use condition (1) of Proposition 3.1 to bound �L.B.x; r/\J / from above.
If J 2 Sk , consider slices of J by parallel hyperplanes perpendicular to the long side
of J . Because J is a simplex and simplices are bounded by hyperplanes (with constant
slope) there exists a constant e > 0 such that for a segment of the long side of length
c=e we have that the hyperplanes intersect J in area at least 1

2
of the maximal area of

such a hyperplane. By Fubini’s theorem we have

�.B.x; r/\J /

�.J /
� 2

2r

c=e
:

Let g D 4e .

Corollary 3.4 Let B.x; r/\SkCL � J 2 Sk . Then

�1.B.x; r//� g
r

c
jSk j

�1
D g

r

c

� kY
iD1

�
�10p.i/

���1

:
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If P is a cubic polynomial with leading term �a=3, then since h is a cubic polynomial
with leading coefficient �b , we have that for every � > 0 there exists a C such that

(3-2) 10P.k/ < C
�
10h.k/

�.a=3b/��
:

We now complete the proof of Proposition 3.1. For each r let kr D maxfL W r <
10h.L/g. By condition (3) of Proposition 3.1 there exists a unique J 2 Skr

such
that �1.B.x; r//D �1.B.x; r/\J /. So by the previous corollary and the stability
condition (3-1),

�1.B.x; r//� g
r

c
jSkr
j
�1:

By condition (2) of the proposition, this is at most
r

c
�kr�110�

Pkr�1

iD1
p.i/
D

r

c
�kr�110P.kr�1/;

where P .x/ is a cubic polynomial with leading coefficient �a=3. It follows by our
observation (3-2) above that for every � there exists yC such that

�1.B.x; r// <
r

c
yC
�
10h.kr�1/

�.a=3b/��
�

1

c
yC r1C.a=3b/��:

We also record a technical lemma that will allow us to verify the conditions of the
proposition more easily:

Lemma 3.5 To verify condition (3) of Proposition 3.1 it suffices to show that there
exists a cubic polynomial g with leading coefficient �b such that the elements of SkC2

avoid a 10g.k/ neighborhood of the boundary of Sk .

Proof Let u 2 N be such that 10g.kCu/ < 1
2
10g.k/ . We claim that we can choose

h.k/ in condition 3 to be g.kCu/. If

r < 10g.kCu/ < 1
2
10g.k/

and B.p; r/ intersects two elements of Sk then it must lie in a 10g.k/ neighborhood
of the boundary of any of the elements of Sk that it intersects. Thus by our assumption
on g it does not intersect any element of SkC2 . This establishes that condition (3)
holds with q D 2 and h.k/D g.kCu/. Notice h.k/ has leading coefficient �b .

4 The paths we take

Rauzy induction provides a criterion (due to Veech) for non-unique ergodicity that is
crucial for our construction.
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Lemma 4.1 [14, Section 1 and Proposition 3.22] Let T D T�;� be an IET such that
Rk.T / is defined for all T . If T has exactly r ergodic probability measures then

�1.T / WD

1\
kD1

M.T; k/�

is a subsimplex of dimension r�1. The simplex �1.T / is in bijective correspondence
with the set of invariant measures for T , as an invariant measure for T is specified by
the weights it gives to the basic subintervals Œ

Pi�1
jD1 �j ;

Pi
jD1 �j / of T .

We will use this criterion to build a large set of IETs T with at least 2 invariant
measures. For this, we need to consider some very specific paths. First, define the
matrix L1.n/ by going from (4321) to (4132) to (4213) and back to (4321) n times.
We have

L1.n/D

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

n n n 1

1CCA :
Similarly, define the matrix U1.n/ by going from (4321) to (4132) to (4213) then
looping at (4213) n times and then going back to (4321). We have

U1.n/D

0BB@
1 0 0 0

0 1 0 0

0 0 nC 1 n

1 1 1 1

1CCA :
Given A 2 SL2.ZC/, we can write

(4-1) ADH
p1

1
H

p2

2
H

p3

1
� � �H

pk

1

for nonnegative integers p1; : : : ;pr , and where

H1 D

�
1 0

1 1

�
and H2 D

�
1 1

0 1

�
:

Notice the interactions of the 3rd and 4th columns under L1.n/ and U1.n/ are H n
1

and H n
2

H1 respectively. This motivates the definition

N1.A;m/DL
p1

1
U

p2

1
L

p3�1
1

U
p4

1
� � �L

pk�1
1

U m
1 :

Similarly we define L2.n/;U2.n/ and N2.A;m/ on the left hand side of the Rauzy
graph. We will be especially concerned with A and m satisfying

jAj 2 Ik WD
�
10k2�k ; 2 � 10k2�k

�
and m 2 Jk WD

�
10.kC1/2Ck ; 2 � 10.kC1/2Ck

�
:
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4.0.1 Notation Given a matrix M , let Cj .M / denote the j th column, jCj .M /j

denote the sum of the entries in the i th column. Recall that given a metric d on a space
X , we can define a pseudo-metric on subsets of X via

d.A;B/D inffd.a; b/ W a 2A; b 2 Bg:

We will use this where d is the metric on the simplex � induced by angles between
vectors. If v;w are vectors let

span�.v; w/D favC bw W a; b � 0g\�:

In general this can be empty but if v;w 2R4
C it will not be. In the section below we

will alternately view columns of matrices as elements of the simplex or as vectors with
non-negative integer entries when we calculate their size.

4.0.2 A technical lemma

Lemma 4.2 For any M 2 SL2.Z/ and m 2N we have

Ci.MN1.A;m//D Ci.MN1.A; 1// for i 2 f1; 2g;

Ci.N2.A;m//D Ci.N2.A; 1// for i 2 f3; 4g:

4.1 Matrices and subsimplices

We consider matrices Mk of the form

(4-2) Mk DMk

�
fAig

2k
iD1; fmig

2kC1
iD1

�
DN1.A1;m2/N2.A2;m3/ � � �N1.A2k�1;m2k/N2.A2k ;m2kC1/;

where jAi j 2 Ii and mi 2 Ji .

4.2 Verifying the axioms

Recall a matrix is called D–balanced if maxi;j jCi j=jCj j<D . In this section we will
prove that if Mk has the form given above, where the Ai are all D–balanced .D > 9/

for all i � 2kC 2 then there exist:

� A cubic polynomial f with leading coefficient �16
3

.

� Quadratic polynomials p; q .

� A quadratic polynomial H with leading coefficient 24, satisfying:

(1) (Proposition 4.9) d
�
Ci.Mk/;Cj .Mk/

�
> 1

900
for i 2 f1; 2g and j 2 f3; 4g.
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(2) (Proposition 4.3) d
�
C1.Mk/;C2.Mk/

�
; d
�
C3.Mk/;C4.Mk/

�
2 Œ10p.k/10f .k/; 10q.k/10f .k/�:

(3) (Section 4.5) There is a � > 0 such that for each such Mk�1 there are at least
�kH.k/ such Mk with the form

Mk�1N1.A2k�1;m2k/N2.A2k ;m2kC1/:

Note the connection between conclusions (1) and (3) and conditions (1) and (2) of
Proposition 3.1 respectively.

4.3 Angle bounds

This section is devoted to proving:

Proposition 4.3 Let Mk be as given in Equation (4-2), where all of the Ai are D–
balanced. There exist a cubic polynomial f with leading coefficient �16

3
and two

quadratic polynomials p; q such that

d.C1.Mk/;C2.Mk//; d.C3.Mk/;C4.Mk// 2
�
10p.k/10f .k/; 10q.k/10f .k/

�
:

We first estimate the sizes of the columns in Mk .

Lemma 4.4 If Mk is a matrix described above, then

jCj .Mk/j 2

� 2kC1Y
iD2

10i2

; 22k
� 2

2kC3Y
iD4

10i2

�
for j D 1; 2;

jCj .Mk/j 2

� 2kY
iD1

10i2

; 22k
� 2

2kC2Y
iD3

10i2

�
for j D 3; 4:

Proof By Lemma 4.2, we have

jCj .MN1.A;m//j � jCj .M /j � .jAjC 1/maxfjC3.M /j; jC4.M /jg

for j D 1; 2. Similarly,

jCi.MN1.A;m//j � jAjr minfjC3.M /j; jC4.M /jg

for j D 3; 4. Similar inequalities hold for N2 . The lemma follows by induction with
the extra factor of 2 absorbing N1 ’s contribution to C1;C2 or N2 ’s contribution to
C3;C4 .
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Our next lemma describes how the angle between vectors changes under addition.

Lemma 4.5 Let v;w 2 Rn , and let �0 denote the angle between v and w . If �1

denotes the angle between vCw and w , we have

j sin �1j D
kvk

kvCwk
j sin �0j:

In particular, we have

j sin �1j �
kvk

kvCwk
:

Proof If v and w are linearly dependent then both sides are zero. If not, let w0 denote
the vector w rotated by �=2 in the plane spanned by v;w . Then

j sin �0j D
jhv;w0ij

kvkkwk
;

and

j sin �1j D
jhvCw;w0ij

kvCwkkwk
D

jhv;w0ij

kvCwkkwk
;

proving the result.

Lemma 4.6 Let D > 1, and suppose AD
�

a
c

b
d

�
2 SL2.ZC/ is D–balanced. Then if

� is the angle between
�

a
c

�
and

�
b
d

�
, we have

1

D0jAj2
< j� j<

D0

jAj2
;

where D0 depends quadratically on D .

Proof We have

sin � D
ad � bc



�a

c

�



 



�b

d

�



 D
1



�a

c

�



 



�b

d

�



 :
By the balancedness condition the norms



�a

c

�



 ; 



�cb

d

�



 ; jAj
are all comparable up to a factor of D and a universal factor .

p
2 / from comparison of

the L1 and L2 norms on R2 . The other factor going into D0 is the Lipschitz constant
of the arcsin function on Œ�1

2
; 1

2
�.
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Lemma 4.7 Let A 2 SL2.ZC/ be a D–balanced matrix. Then there exists a constant
D0 depending only on D such that

d.C3.M /;C4.M //

D0jAj2m2
� d.C3.MN1.A;m//;C4.MN1.A;m///

�D0
d.C3.M /;C4.M //

jAj2m2
:

Proof Observe that AH m
2

H1 is .DC1/–balanced and AH m
2

H1 has norm satisfying

mjAj

D
� jAH m

2 H1j � .mC 1/D:

By the previous lemma there exists D00 depending only on D such that

d.C3.M /;C4.M //

D00jAj2m2
� d.C3.MN1.A; 0//;C4.MN1.A; 0///

�D00
d.C3.M /;C4.M //

jAj2m2
:

Lemma 4.8 Let A� SL2.ZC/ be D–balanced. Then there exists D0 depending only
on D such that

d.C1.M /;C2.M //

D0jAj2r2
� d.C1.MN2.A; r//;C2.MN2.A; r///

�D0
d.C1.M /;C2.M //

jAj2r2
:

This is similar to the proof of Lemma 4.7.

Proof of Proposition 4.3 This follows from the previous two lemmas and induction.
Indeed, let Mk and MkC1 DMkN1.A2kC1;m2kC2/N2.A2kC2;m2kC3/ satisfy our
assumptions. By Lemma 4.7,

1

4D0
�
10�..2kC1/2C.2kC2/2/

�2
<

d.C3.MkC1/;C4.MkC1//

d.C3.Mk/;C4.Mk//

< 4D0
�
10�..2kC1/2C.2kC2/2/

�2
:

The leading term in the exponent is �16k2 . It follows that there exist quadratic
polynomials p; q such that

10p.kC1/10�
PkC1

jD1
16j2

< d.C3.MkC1/;C4.MkC1// < 10q.kC1/10�
PkC1

iD1
16j2

:

Since f .k/D�
PkC1

iD1 16j 2 is a cubic polynomial with leading coefficient �16
3

, the
proposition is proved for C3;C4 . The argument for C1;C2 is similar.
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4.4 Non-unique ergodicity

Proposition 4.9 Under the assumptions in Proposition 4.3 on Ai and mi ,
1\

kD1

Mk�

is a non-degenerate line segment with length at least 1
900

.

Let
Uk D span�fC1.Mk/;C2.Mk//g and Vk D span�fC3.Mk/;C4.Mk//g:

In the following lemma we repeatedly use Lemma 4.2.

Lemma 4.10 d.U1;V1/ >
1

10
.

Proof Let A;A0 2SL2.ZC/ have jAj 2 I1; jA
0j 2 I2 and m2J2;m

0 2J3 . Recall that

maxfjCi.N1.A;m/jgiD1;2 � 2:

Then if
u 2 span�fC1.N1.A;m/;C2.N1.A;m//g;

by Lemma 4.2 the sum of the first and second coordinates of u satisfies

u1Cu2 �
1
3
;

and if
v 2 span�fC3.N1.A;m/;C4.N1.A;m//g

then the first and second coordinates of v vanish:

v1 D v2 D 0:

Thus

d
�
span�fC1.N1.A;m/;C2.N1.A;m//g; span�fC3.N1.A;m/;C4.N1.A;m//g

�
�

1

3
p

2
:

We have

span�fC1.N1.A;m/N2.A
0;m0//;C2.N1.A;m/N2.A

0;m0//g

� span�fC1.N1.A;m//;C2.N1.A;m///g:

Moreover, if

v D aC3.N1.A;m/N2.A
0;m0//C bC4.N1.A;m/N2.A

0;m0//g;
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where a; b � 0 and aC b D 1, then v D v0Cu, where

v0 2 span�fC3.N1.A;m/;C4.N1.A;m//g; jv
0
j � min

iD3;4
jCi.N1.A;m//j � 104;

and by Lemma 4.2,

juj � max
iD1;2

Ci.N1.A;m/N2.A
0; 1//j � 2kA0k � 2 � 2 � 104�2:

By Lemma 4.5,

(4-3) max
˚
d.y; span�fC3.N1.A;m/;C4.N1.A;m//g/ W

y 2 span�fC3.N1.A;m/N2.A
0;m0//;C4.N1.A;m/N2.A

0;m0//g
	
�

1
10
:

This completes the proof.

Lemma 4.11 d.UkC1;VkC1/ > d.Uk ;Vk/� 2 � 22k

102k .

Proof By a similar argument to the second paragraph of the previous lemma,

(4-4) maxfd.y;Uk/ W y 2 UkC1g �
maxiD3;4 jCi.MkN1.A2iC1; 1//j

miniD1;2 jCi.Mk/j
�

22k

102k
:

The last inequality uses Lemma 4.4. Similarly,

maxfd.y;Vk/ W y 2 VkC1g �
22k

102k
:

Because

d.UkC1;VkC1/

� d.Uk ;Vk/�
�
maxfd.y;Uk/ W y 2 UkC1gCmaxfd.y;Vk/ W y 2 VkC1g

�
;

the lemma follows.

Proof of Proposition 4.9 It is straightforward to see that

length
� 1\

kD1

Mk�

�
� lim

k!1
d.Uk ;Vk/:

By the previous two lemmas,

lim
k!1

d.Uk ;Vk/�
1

10
� 2

1X
kD2

22k

102k
>

1

900
:
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4.5 Number of described matrices

Proposition 4.12 There exists a quadratic polynomial H with leading coefficient 24

and a constant � > 0 such that for each matrix Mk�1 satisfying the assumptions of
Proposition 4.3 there are at least �kH.k/ matrices of the form

Mk�1N1.A2k�1;m2k/N2.A2k ;m2kC1/

satisfying the assumptions of Proposition 4.3.

Lemma 4.13 There exist a D > 0 and a polynomial � of degree 2 and leading
coefficient 12 such that set of D–balanced matrices Ni.A;m/ satisfying

� jAj 2 I2jCi , and A is D–balanced,

� m 2 J2jCiC1 ,

has cardinality 10�.j/ .

Proof There exists a c > 0 such that the number of choices for A is at least
c.10.2j/2�2j /2 , since the number of positive matrices in SL2.ZC/ with norm between
R and 2R is proportional to R2 , and if M 2 SL2.Z

C/ then

M

�
2 1

1 1

�
is 2–balanced. The lemma follows as there are at least 10.2j/2Cj choices for m.

Proof of Proposition 4.12 By applying the previous lemma to N1 and N2 we observe
that there is a quadratic polynomial y� with leading coefficient 24 such that for each
matrix

Mk DMk

�
fAig

2k
iD1; fmig

2kC1
iD1

�
DN1.A1;m2/N2.A2;m3/ � � �N1.A2k�1;m2k/N2.A2k ;m2kC1/;

where

� jAi j 2 Ii , Ai is D–balanced,

� mi 2 Ji ,

there are at least 10
y�.kC1/ choices of MkC1 such that

� jA2kC1j 2 I2kC1; jA2kC2j 2 I2kC2 are both D–balanced,

� m2kC2 2 J2kC2 and m2kC3 2 J2kC3 .
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5 Measures on subsimplices

In this section we verify that (a slight modification of) the simplices Mk� given in the
previous section satisfy the assumptions of Proposition 3.1, thereby proving our result.

Our subsimplices are parallelepipeds contained in the 3–dimensional simplex �3 .
They have 4 long sides connecting Ci and Cj for i 2 f1; 2g and j 2 f3; 4g. There are
two short sides: one connecting C1 to C2 and another connecting C3 to C4 .

They satisfy the conditions of Proposition 3.1 except condition (3). When k D 5 we
insert some additional conditions, in order to achieve the separation we require, which
geometrically can be thought of as “chopping off the ends” of the long sides of the
parallelepiped:

(1) We delete a 10�5 neighborhood of

span�.C1.M5/;C2.M5// and span�.C3.M5/;C4.M5//:

(2) For each k � 5, inductively consider

MkN1.A2kC1; r2kC2/N2.A2kC2; r2kC3/�

given as in the previous section. Remove all of these simplices that contain the
two A2kC2 closest to the end points of span�.C1.Mk/;C2.Mk// and the two
A2kC1 closest to the end points of span�.C3.Mk/;C4.Mk//.

Call the sets remaining after these deletions Sk . We claim that this sequence of sets
satisfies condition (3) of Proposition 3.1 for all k � 5.

Lemma 5.1 Sk satisfies the assumptions of Lemma 3.5.

Let Mk be as in Proposition 4.3 and such that

Mk�\Sk ¤∅;
and let

M 0
DMkN1.A2kC1;m2kC2/N2.A2kC2;m2kC3/

be also as in Proposition 4.3.

Proof Every x 2M 0��Mk� has the form

x D

P4
iD1 aiCi.Mk/ˇ̌P4
iD1 aiCi.Mk/

ˇ̌ :
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If x is also in SkC1 then by (1) in the construction of Sk and Lemma 4.11,

(5-1) min

(ˇ̌
a1C1.Mk/C a2C2.Mk/

ˇ̌ˇ̌P4
iD1 aiCi.Mk/

ˇ̌ ;

ˇ̌
a3C3.Mk/C a4C4.Mk/

ˇ̌ˇ̌P4
iD1 aiCi.Mk/

ˇ̌ )
>

1

106
:

Additionally x D ˛uCˇv , where

u 2 span�fC1.M
0/;C2.M

0/g and v 2 span�fC3.M
0/;C4.M

0/g:

Let

uD

P4
iD1 biCi.Mk/ˇ̌P4
iD1 biCi.Mk/

ˇ̌ and v D

P4
iD1 ciCi.Mk/ˇ̌P4
iD1 ciCi.Mk/

ˇ̌ :
By (2) in the construction of Sk we have

minfb1; b2g> d.C1.M /;C2.M //
1

D0jA2kC2j
2
;

minfc3; c4g> d.C3.M /;C4.M //
1

D0jA2kC1j
2
:

Combining these equations and Proposition 4.3, if x 2M 0�\SkC1 then for all i

ai �
1

106
10yg.k/;

where yg is a cubic polynomial with leading coefficient �16
3

. Thus there is a cubic
polynomial g with leading coefficient �16

3
such that M 0�\SkC1 avoids a 10g.k/

neighborhood of the boundary of Sk .

Thus, we may invoke Proposition 3.1 to show the lower bound:

Corollary 5.2 The set of non-uniquely ergodic 4–IETs NUE.4321/�� satisfies

Hdim.NUE.4321//� 5
2
:

Proof By Proposition 4.9 and Veech’s Lemma 4.1,

S1 WD
1\

kD1

Sk � NUE.4321/:

By Proposition 4.9 the sequence Sk satisfies condition (1) of Proposition 3.1. By
Proposition 4.12 and the fact that condition (2) of the construction of Sk removes at
most 4jJ2kC1j � jJ2kC2j of the descendants of each element of Sk , this description
satisfies condition (2) of Proposition 3.1. By Lemmas 3.5 and 5.1 this description of
Sk satisfies condition (3) of Proposition 3.1.
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6 Bounds for Hausdorff dimension

6.1 Technical lemmas

Before we prove the upper bound for Hausdorff dimension, we require some technical
lemmas.

6.1.1 Lines and measures In this subsection, we collect some technical lemmas on
lines and measures in � and H.2/. First, we state a proposition relating Masur–Veech
measure on the stratum H.2/ to the measure class on the set of line segments in the
simplex �4 , which we view as �4 �R4 , and endow it with the Lebesgue measure
class m` Dm� �m, where m� is the Lebesgue measure class on �4 , and m is the
Lebesgue measure on R4 .

Recall from Section 2 we have the map T WH.2/!�4 , associating the normalized
return map to the horizontal transversal to the vertical flow on ! . Let

hs D

�
1 s

0 1

�
:

Let U �H.2/, and consider the set of lines

L.U /D
˚
fT .hs!/gs2Œ0;�� W ! 2 U; � > 0

	
in �4 associated to horocycle trajectories based in U . Recall the description of the
space of flat surfaces in Section 2.1. Fixing a horizontal transversal, locally T .hs!/

gives a line segment of IETs with slope given by the heights of the sides of the
polygons. Let �MV denote Masur–Veech measure on the stratum H.2/. It has been a
long-standing problem to understand the image of L, that is, to understand the set of
line segments in �4 which arise as projections of horocycle trajectories. This problem
was solved in full generality by Minsky and Weiss [11, Section 5], who showed [11,
Theorem 5.3], that given .a;b/ 2�4 �R4 , the line segment defined by

faC sb W s 2 Œ0; 1�g

is in the image of L if and only if a certain quadratic form Q evaluated at a;b is
positive, and thus there is an open set of such pairs. Moreover they show that for each
pair

.a0;b0/ with Q.a0;b0/ > 0;

there is an open neighborhood U 0 of .a0;b0/ and a local affine inverse map to the
map L. Thus, we have:

Proposition 6.1 Let U � H.2/ be such that L.U / is open. Suppose A � L.U /

with m`.A/ > 0. Then �MV.L
�1.A// > 0. In particular, if �MV.U / > 0, then

m`.L.U // > 0.
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Second, we require the following:

Lemma 6.2 If U � �4 �R4 is an open set in the space of lines then there exist an
open subset V of �4 and an open set of directions ‚�R4 such that for every � 2‚
and v 2 V , the line

L.v; �/ WD fvC t� W t 2 .0; 1/g

in the direction � through v is in U .

Proof Let ‚ be a set of directions such that x‚ is compact and for every � 2 x‚ we
have L.v; �/ 2 U . For each � 2 x‚ there exists an �� > 0 such that if d.w; v/ < ��
we have L.w; �/ 2 U . By compactness there exists an � > 0 such that for all � 2 x‚
and w with d.w; v/ < � we have L.w; �/ 2 U . Let V D B.v; �/.

6.1.2 Metric geometry We also require some more general technical lemmas on
Hausdorff dimension. Let Ht be the t�dimensional Hausdorff measure. Let Ct be
the Riesz t –capacity (see [10, Definition 8.4] for the definition). Let Grass.n; n�m/

denote the Grassmannian on n�m planes in n space. Let 
n;n�m denote the natural
measure class on Grass.n; n�m/. If W 2 Grass.n; n�m/ and a 2W ? let Wa be
the translate of W by a.

Theorem 6.3 [10, Theorem 10.8] Let m� t � n and A�Rn with Ct .A/ > 0 then
for 
n;n�m almost every W 2 Grass.n; n�m/,

Hm.fa 2W ? W Ct�m.A\Wa/ > 0g/ > 0:

By [10, Theorem 8.9(3)], for Borel sets, capacity dimension and Hausdorff dimension
are the same so we obtain the following corollary:

Corollary 6.4 If A � Rn is a Borel set and Hdim.A/ � t > n� 1 then a positive
measure set of lines in Rn intersect A in a set with Hausdorff dimension at least
t � .n� 1/.

Lemma 6.5 Let V be a non-empty open subset of �4 and assume that the Hausdorff
dimension of the set NUE.4321/ of not uniquely ergodic 4–IETs is at least 3� c as a
subset of �4 . Then

Hdim.NUE.4321/\V /� 3� c:
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Proof There exists a matrix of Rauzy induction M such that M��V (pick a matrix
so that the subsimplex M� is contained in a ball inside V ). Being non-uniquely
ergodic is Rauzy induction invariant, so

M.NUE.4321//� NUE.4321/:

M is a bilipshitz map. (Note that the various M are not uniformly bilipshitz but each
individual one is bilipshitz.) Since

M.NUE.4321//� .NUE.4321/\V / ;

we have

Hdim.NUE.4321/\V /�Hdim.M.NUE.4321///DHdim.NUE.4321//� 3�c:

6.2 Upper bound

In this section we prove:

Theorem 6.6 The set of minimal and not uniquely ergodic 4–IETs NUE.4321/��4

has Hausdorff dimension at most 5
2

,

Hdim.NUE.4321//� 5
2
:

This result and Corollary 5.2 establishes Theorem 1.4.

Proposition 6.7 Let c < 1 and suppose h D Hdim.NUE.4321// > 3� c . Then for
�MV –almost every abelian differential ! ,

Hdim.NUE.!//� 1� c:

Before we prove this result, we need to understand how to move between horocycles
and rotations. Write

r� D

�
cos.�/ sin.�/
� sin.�/ cos.�/

�
; yhs D

�
1 0

s 1

�
and gt D

�
et 0

0 e�t

�
:

Lemma 6.8 Let r� D yhugahs . Then:

� For every � > 0, the map � W .��
2
C �; �

2
� �/!R defined by

�.�/D s; where r� D yhugahs;

is a bilipshitz map onto its image.
� The vertical flow on hs! is not uniquely ergodic if and only if the vertical on

r�! is not uniquely ergodic.
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Proof The first assertion is a direct computation. For the second assertion, note
that because yhu acts isometrically on vertical lines the vertical flow on yhugahs! is
isomorphic to the vertical flow on gahs! . Now if F t

! denotes the vertical flow on !
then F eat

! is isomorphic to F t
ga!

. Since the non-unique ergodicity of F t
! is equivalent

to the non-unique ergodicity of the time-scaled flow F ct
! (for any, and thus for all

c > 0), the lemma follows.

Proof of Proposition 6.7 Let U be an open set in the space of lines given by Minsky
and Weiss [11, Theorem 5.3]. Let ‚ and V be given by Lemma 6.2. By Theorem 6.3
and Lemma 6.5 almost every element of

f.v W �/ W v 2 V; � 2‚g

has a translate that intersects V \NUE in Hausdorff dimension at least 1� c . By our
assumption (Lemma 6.2) these lines are in U . The set of flat surfaces they come from
has positive �MV measure. By Lemma 6.8 the Hausdorff dimension of non-uniquely
ergodic directions on each of these lines (which corresponds to a horocycle orbit) equals
the Hausdorff dimension of the non-uniquely ergodic directions on the corresponding
flat surface. Because for any A 2 SL2.R/ we have

Hdim.NUE.!//D Hdim.NUE.A!//;

the fact that �MV is an ergodic measure for SL2.R/ implies

Hdim.NUE.!//� 1� c

for �MV –almost every ! .

Recall Masur’s upper bound:

Theorem 6.9 [8, Main theorem] For every abelian differential ! , the Hausdorff
dimension of the set of not uniquely ergodic directions is at most 1

2
.

Proof of Theorem 6.6 By Masur’s upper bound,

Hdim.NUE.!//� 1
2
;

and thus, by Proposition 6.7, h� 5
2

.

Geometry & Topology, Volume 19 (2015)



3562 Jayadev S Athreya and Jon Chaika

6.3 Corollaries

Finally, we prove Theorems 1.2 and 1.1 using Theorem 1.4. The key result is the
fundamental property of Hausdorff dimension:

Hdim.X �Y /� Hdim.X /CHdim.Y /:

Proof of Theorem 1.2 H.2/ is a fiber bundle over �4 via the map T , and the vertical
foliation of ! is non-uniquely ergodic if and only if T .!/ is a non-uniquely ergodic
IET. The fibers of T are 4–dimensional and in fact T defines a local product structure
on H . Thus we have that the Hausdorff dimension of the set of ! with a non-uniquely
ergodic vertical foliation is given by

4C 5
2
D 7� 1

2

as claimed.

Proof of Theorem 1.1 Combining Theorem 6.9 for the upper bound and Corollary 5.2
with Proposition 6.7 for the lower bound, we have that the set of flat surfaces ! satisfying

Hdim.NUE.!//D 1
2

has positive �MV –measure. By �MV –ergodicity of SL2.R/, it must have full �MV –
measure. A similar argument using only the upper bound yields Theorem 1.6.
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