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Pseudo-Anosov mapping classes
not arising from Penner’s construction

HYUNSHIK SHIN

BALÁZS STRENNER

We show that Galois conjugates of stretch factors of pseudo-Anosov mapping classes
arising from Penner’s construction lie off the unit circle. As a consequence, we show
that, for all but a few exceptional surfaces, there are examples of pseudo-Anosov
mapping classes so that no power of them arises from Penner’s construction. This
resolves a conjecture of Penner.

37E30; 57M99, 15A18, 11R32

1 Introduction

Let Sg;n be the orientable surface of genus g with n punctures. The mapping class
group Mod.Sg;n/ is the group of isotopy classes of orientation-preserving homeomor-
phisms of Sg;n . Thurston’s classification theorem [18] states that each element of
Mod.Sg;n/ is either periodic, reducible, or pseudo-Anosov. An element f 2Mod.Sg;n/

is pseudo-Anosov if there is a representative homeomorphism  , a number � > 1, and
a pair of transverse invariant singular measured foliations Fu and Fs such that

 .Fu/D �Fu and  .Fs/D ��1Fs:

The number � is called the stretch factor (or dilatation) of f .

Isotopy classes of orientation-preserving Anosov maps of the torus can easily be
classified as actions of matrices M 2 SL.2;Z/ with jtr.M /j> 2 on R2=Z2 . However,
it is much harder to give explicit examples of pseudo-Anosov maps on more complicated
surfaces.

Thurston [18] gave the first general construction of pseudo-Anosov mapping classes
in terms of Dehn twists. After Thurston’s work, various other constructions have
been developed; see Arnoux and Yoccoz [1], Kra [8], Long [12], Penner [13], Cas-
son and Bleiler [4], and Bestvina and Handel [3]. In this paper, we study Penner’s
construction [13].
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Penner’s construction Let A D fa1; : : : ; ang and B D fb1; : : : ; bmg be a pair of
multicurves on a surface S . Suppose that A and B are filling, that is, A and B are in
minimal position and the complement of A[B is a union of disks and once-punctured
disks. Then any product of positive Dehn twists about aj and negative Dehn twists
about bk is pseudo-Anosov provided that all nCm Dehn twists appear in the product
at least once.

Penner [14] used this construction to give examples of pseudo-Anosov mapping classes
with small stretch factors. (See also Bauer [2] and Leininger [11] for more work on
small stretch factors arising from Penner’s construction.)

Pseudo-Anosov maps arising from Penner’s construction fix the singularities and
separatrices of their invariant foliations, and therefore not all pseudo-Anosov mapping
classes arise from Penner’s construction. However, since the construction is fairly
general, Penner conjectured the following.

Conjecture (Penner, 1988) Every pseudo-Anosov mapping class has a power that
arises from Penner’s construction.

The conjecture is listed as Problem 4 in Penner [15] and also discussed briefly in
Section 14.1.2 of Farb and Margalit [5].

It is a folklore theorem that Penner’s construction is true for S1;0 and S1;1 and that it is
false for S0;4 , but a modified version of the conjecture, allowing half-twists in addition
to Dehn twists in Penner’s construction, is true. To the best of our knowledge, no proof
of this has appeared in the literature. In the appendix, we give a proof by considering
the action of the mapping class group on the curve complex. The main result of this
paper is the answer to Penner’s conjecture in the remaining nontrivial cases.

We call a pseudo-Anosov mapping class and its stretch factor � coronal if � has a
Galois conjugate on the unit circle.

Main theorem A coronal pseudo-Anosov mapping class has no power coming from
Penner’s construction. Moreover, there exists a coronal pseudo-Anosov mapping class
on Sg;n when 3gC n � 5. In particular, Penner’s conjecture is false for Sg;n when
3gC n� 5.

We remark that even the modified version of the conjecture, allowing half-twists in
addition to Dehn twists in Penner’s construction, is false for S0;n when n� 5.

The proof of the first part of the main theorem is based on the fact that stretch factors of
pseudo-Anosov mapping classes arising from Penner’s construction appear as Perron–
Frobenius eigenvalues of products of certain integral matrices, which depend only on

Geometry & Topology, Volume 19 (2015)



Pseudo-Anosov mapping classes not arising from Penner’s construction 3647

the intersection numbers of curves. We show that such matrix products may not have
eigenvalues on the unit circle other than 1, which implies that pseudo-Anosov stretch
factors arising from Penner’s construction are not coronal.

The key idea is that an eigenvalue on the unit circle corresponds to a rotation on an
invariant plane, which we consider as a dynamical system. Our topological setting
provides a natural quadratic form h which, considered as a height function, plays a role
similar to that of Lyapunov functions in stability theory. We show that the products
of matrices arising from Penner’s construction act by increasing the height, which
prohibits rotations on subspaces.

To prove the second part of the main theorem, we use known coronal pseudo-Anosov
mapping classes on S2;0 and S0;5 to construct coronal pseudo-Anosov mapping classes
on the rest of the surfaces via introducing punctures and taking branched covers.

The main theorem provides a number-theoretic obstruction for pseudo-Anosov maps to
arise from Penner’s construction: if the stretch factor of f has a Galois conjugate on
the unit circle, then no power of f can arise from Penner’s construction. We do not
know whether there are other obstructions.

Question 1.1 Let f be a pseudo-Anosov mapping class whose stretch factor does not
have Galois conjugates on the unit circle. Does f n arise from Penner’s construction
for some n 2N?

Acknowledgements The authors are grateful to Richard Kent and Dan Margalit for
numerous helpful conversations and invaluable comments. We also thank Richard Kent
for suggesting the term coronal and the referee for many helpful comments.

2 Proof of the main theorem

2.1 Stretch factors arising from Penner’s construction

Let A D fa1; : : : ; ang and B D fb1; : : : ; bmg be a pair of multicurves on a surface.
Introduce the notation

.e1; : : : ; enCm/D .a1; : : : ; an; b1; : : : ; bm/:

The intersection matrix of A and B is the symmetric .nCm/� .nCm/ nonnegative
integral matrix �D�.A;B/ whose .j ; k/–entry is the geometric intersection number
i.ej ; ek/.
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The monoid �.�/ Penner showed that actions of the Dehn twists Taj
and T �1

bk
on

A[B can be described by the matrices

Qi D I CDi� .1� i � nCm/;

where I is the .nCm/�.nCm/ identity matrix, and Di denotes the .nCm/�.nCm/

matrix whose i th entry on the diagonal is 1 and whose other entries are zero. Any
product of Taj

and T �1
bk

, where each aj and each bk appear at least once, is pseudo-
Anosov, and its stretch factor is given by the Perron–Frobenius eigenvalue of the
corresponding product of the matrices Qi . Therefore one can study pseudo-Anosov
stretch factors arising from Penner’s construction by studying the monoid

�.�/D hQi W 1� i � nCmi

generated by the matrices Qi depending on �. For more details, see [13].

The height function h Define the quadratic form hW RnCm!R by the equation

h.v/D 1
2
vT�v:

Geometrically, the vector v corresponds to assigning a real number to each curve in A

and B . The function h is the sum of the products of the values of intersecting curves
over all intersection points.

The multicurves A and B define two transverse cylinder decompositions of the surface.
When v > 0, the values assigned to the curves can be thought of as the widths of
the cylinders. This way we get a singular flat metric on the surface with a rectangle
corresponding to each intersection, and the area of this flat surface is h.v/. When v is
not positive, one can still think of h.v/ as a signed area. However, it is not clear how this
geometric interpretation explains the following interaction between the function h.v/

and the matrices Qi .

Proposition 2.1 h.Qiv/� h.v/D kQiv� vk2

Proof Since all entries on the diagonal of � are zero, we have Di�Di D 0 for all i ,
and hence we have

1
2
QT

i �Qi �
1
2
�D 1

2
.I C�Di/�.I CDi�/�

1
2
�D�Di�:

It follows that h.Qiv/� h.v/D kDi�vk2 D kQiv� vk2 .

Corollary 2.2 If M 2�.�/, then h.M v/�h.v/ with equality if and only if M vDv .

Proposition 2.3 If M 2 �.�/, then M cannot have eigenvalues on the unit circle
except 1.
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Proof Assume for contradiction that M has an eigenvalue �¤ 1 on the unit circle.
Then there exists v 2RnCm and a sequence pi !1 of positive integer powers such
that M v ¤ v and M pi v ! v . (If � ¤ �1, choose v to be any nonzero vector in
the two-dimensional invariant subspace on which M acts by a rotation. If �D �1,
choose v to be a corresponding eigenvector.) Therefore we have h.M v/ > h.v/,
and hence h.M pi v/ � h.M.v// for all pi by Corollary 2.2. However, we have
h.M pi v/! h.v/ by continuity, which is a contradiction.

2.2 Coronal pseudo-Anosov mapping classes

Recall that a pseudo-Anosov mapping class and its stretch factor � are coronal if �
has a Galois conjugate on the unit circle.

Lemma 2.4 If a pseudo-Anosov mapping class f is coronal, then each power of f is
also coronal.

Proof Let � be the stretch factor of f . Let � be an automorphism of the Galois
extension L=Q with j�.�/j D 1, where L is the splitting field of the minimal polyno-
mial of �. For all k � 1, we have j�.�k/j D j�.�/k j D 1. Therefore �k , the stretch
factor of f k , has a Galois conjugate �.�k/ on the unit circle.

As a consequence of Proposition 2.3 and Lemma 2.4, we have the following.

Corollary 2.5 (First part of the main theorem) A coronal pseudo-Anosov mapping
class has no power coming from Penner’s construction.

To complete the proof of the main theorem, we need to show that coronal pseudo-Anosov
mapping classes exist on all but a few exceptional surfaces.

Lemma 2.6 If there exists a coronal pseudo-Anosov mapping class on a surface S ,
and there is a branched covering zS ! S , then there exists a coronal pseudo-Anosov
mapping class on zS as well.

Proof If f 2Mod.S/ is a coronal pseudo-Anosov mapping class, then some power
of f can be lifted to a pseudo-Anosov mapping class zf on zS with the same stretch
factor as the power of f (see [6, Exposé 13, II.1]). By Lemma 2.4, zf is also coronal.

Lemma 2.7 If there exists a coronal pseudo-Anosov mapping class on a surface S ,
then there exists a coronal pseudo-Anosov mapping class on the surface S 0 D S n fpg

with one more puncture as well.
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Proof Let f 2 Mod.S/ be a coronal pseudo-Anosov mapping class with stretch
factor � and let  be its representative homeomorphism. Some power  k has a fixed
point p (see [6, Proposition 9.20] or [5, Theorem 14.19]), and hence  k induces a
pseudo-Anosov homeomorphism of S n fpg with coronal stretch factor �k .

Proposition 2.8 (Second part of the main theorem) There exists a coronal pseudo-
Anosov mapping class on Sg;n when 3gC n� 5.

Proof On S2;0 there is a coronal pseudo-Anosov mapping class with stretch factor
the Perron root of the polynomial x4�x3�x2�xC 1 [19]. For each g � 3 there is
an unbranched covering of S2;0 by Sg;0 . It follows from Lemma 2.6 and Lemma 2.7
that there exists a coronal pseudo-Anosov mapping class on all Sg;n with g � 2 and
n� 0.

For the genus 0 cases, start from a coronal pseudo-Anosov mapping class on S0;5 with
stretch factor the Perron root of x4� 2x3� 2xC 1 [9]. By Lemma 2.7, there exists a
coronal pseudo-Anosov mapping class on S0;n for each n� 5.

Finally, there is a branched covering S1;2! S0;5 , induced by the hyperelliptic invo-
lution of S1;2 exchanging the two punctures, which yields a coronal pseudo-Anosov
mapping class on S1;2 by Lemma 2.6. (Technically, here S1;2 and S0;5 should be
considered surfaces with marked points, not punctures. Because the theory of pseudo-
Anosov maps and stretch factors is the same on surfaces with punctures and on surfaces
with marked points, we can go back and forth between marked points and punctures as
is convenient.) By Lemma 2.7, there exists a coronal pseudo-Anosov mapping class on
S1;n for n� 2.

The main theorem immediately follows from Corollary 2.5 and Proposition 2.8.

3 Remarks on the Galois conjugates of stretch factors

Examples of coronal pseudo-Anosov mapping classes The set of coronal pseudo-
Anosov mapping classes is presumably much larger than the set of examples constructed
above. For example, the minimal pseudo-Anosov stretch factors tend to be coronal. In
fact, when gD 2; 3; 4; 5; 7; 8, the minimal stretch factors on Sg among pseudo-Anosov
mapping classes with orientable foliations are known, and they are all coronal [10].
The minimal pseudo-Anosov stretch factors on the surfaces S0;n for 5 � n � 9 are
also all coronal with the exception of nD 8 [9].

Not only is the set of coronal pseudo-Anosov mapping classes infinite, but so is the
set of coronal stretch factors (even modulo taking powers). This follows from the
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first author’s examples of pseudo-Anosov mapping classes on Sg with stretch factor a
degree-2g Salem number [16]. Hironaka’s infinite family of pseudo-Anosov mapping
classes coming from the fibration of a single 3–manifold [7] also seem to consist mostly
of coronal pseudo-Anosov mapping classes whose stretch factors can have arbitrarily
high algebraic degree.

The abundance of coronal pseudo-Anosov mapping classes are also suggested by
computer experiments of Nathan Dunfield and Giulio Tiozzo on random walks in the
group of braids with 10 and 14 strands.1 Using the standard Artin generators, mean
length 25, variance 9, and a sample of 100,000 pseudo-Anosov mapping classes, 94%
of the stretch factors had Galois conjugates on the unit circle. Computer experiments
also show that a random reciprocal polynomial is very likely to have a root on the unit
circle. This may suggest that pseudo-Anosov mapping classes arising from Penner’s
construction are actually rare.

The location of Galois conjugates The main theorem of this paper raises the question
whether Galois conjugates of Penner stretch factors can at least approach the unit circle.
The second author [17] has recently showed that the answer is yes. In fact, it is
proved that Galois conjugates of Penner stretch factors are dense in the complex plane.
However, the proof uses infinite sequences of pairs of multicurves, and the following
question remains open.

Question 3.1 Can the Galois conjugates of Penner stretch factors arising from a fixed
pair of multicurves A and B approach the unit circle?

We conjecture that the answer is no, in which case it would be interesting to relate the
size of the largest annulus around the unit circle missed by the Galois conjugates to
the intersection matrix of A and B . Given a pseudo-Anosov mapping class f , such
a result could yield constraints on the pairs .A;B/ that may be used to construct f
using Penner’s construction.

Appendix: Penner’s conjecture for the exceptional surfaces

In this appendix, we show that Penner’s construction is true for S1;0 and S1;1 and that
it is false for S0;4 , but a modified version of the conjecture, allowing half-twists in
addition to Dehn twists in Penner’s construction, is true.

1Personal communication.
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The curve complex Let S be one of these three surfaces. The modified curve complex
C.S/ is a graph with vertices the isotopy classes of simple closed curves on S , where
two vertices are connected by an edge if they have minimal intersection number (one
for S1;0 and S1;1 , and two for S0;4 ). In all three cases, C.S/ is isomorphic to the
1–skeleton of the Farey tessellation F of the hyperbolic plane (Figure 1). For more
details, see [5, Section 4.1.1].

The action of Mod.S / Let us consider the action of Mod.S/ on C.S/, which gives
rise to a homomorphism

AW Mod.S/! IsomC.F/Š PSL.2;Z/

of Mod.S/ to the orientation-preserving isometries of F , once an identification of
C.S/ with F is chosen. We denote the image of an element f 2Mod.S/ by Af .

Actions of Dehn twists We call an ideal triangle in the complement of F a tile. A
rotation of F about a vertex v of F to the left by k tiles is defined as the parabolic
element of IsomC.F/ that fixes v and shifts the tiles adjacent to v in counterclockwise
direction by k . Rotations to the right are defined analogously.

For a Dehn twist Tc about a curve c in S , the isometry ATc
is parabolic, and it fixes

the vertex of F corresponding to c . Depending on the choice of identification of C.S/
with F , positive Dehn twists can act by rotating F to the left or to the right. We choose
the identification so that positive Dehn twists correspond to rotations to the right and
negative Dehn twists correspond to rotations to the left. Note that Dehn twists on S1;0

and S1;1 act by rotations by one tile, but Dehn twists on S0;4 act by rotations by two
tiles. It is the half-twists on S0;4 that correspond to rotations by one tile.

Actions of pseudo-Anosov elements For a pseudo-Anosov element f 2 Mod.S/,
the isometry Af is hyperbolic in PSL.2;Z/ and hence Af has an invariant geodesic
on the hyperbolic plane, called the axis 
 of Af . Since f does not fix any curve on S ,
Af does not fix any vertex of F . In particular, the endpoints of the axis 
 of Af are
not vertices of F . Therefore 
 traverses a bi-infinite sequence of triangles in the Farey
tessellation, and it cuts two sides of each triangle.

Associated to f , there is a bi-infinite sequence of letters L and R obtained as follows:
travel along 
 in the direction of the translation, and for each triangle record if the
common vertex of the cut sides is on the left or the right side of 
 . This sequence
is periodic, because Af is a translation along 
 . As the following lemma shows,
this bi-infinite sequence encodes how the hyperbolic isometry Af can be written as a
composition of parabolic isometries.
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a

b

e0

Af .e/D e5 


e1

e2

e3

e4

t1

t2

t3

t4

t5

Figure 1: The action Af of a pseudo-Anosov mapping class f on the Farey tessellation

Lemma A.1 Let e0 be an edge of F intersecting 
 . Let a and b be the endpoints
of e0 on the left- and right-hand sides of 
 , respectively. Let e1; e2; : : : ; en DAf .e0/

be edges of F intersected by 
 such that ek�1 and ek are different sides of an ideal
triangle tk of F for all 1� k � n. (See Figure 1 for an illustration when nD 5.) For
all 1 � k � n, define sk to be the letter L or the letter R depending on whether the
common vertex of ek�1 and ek is on the left or right side of 
 .

Let �a and �b be the rotations of F by one tile to the right about the points a and b ,
respectively, and introduce the notation

�.s/D

�
��1

a if s DL;

�b if s DR:

Then
Af D �.s1/ ı � � � ı �.sn/:

(By the usual convention for composition of functions, the rotations are applied in
right-to-left order.)

Proof For all 1 � k � n, there is a unique �k 2 IsomC.F/ that maps e0 to ek

and a to the endpoint of ek lying on the left-hand side of 
 . We have �n D Af ,
so we need to prove that �n D �.s1/ ı � � � ı �.sn/. We will prove by induction that
�k D �.s1/ ı � � � ı �.sk/ for all 1� k � n.
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For k D 1, we can easily see that the isometry mapping e0 to e1 is ��1
a or �b ,

depending on whether the common vertex of e0 and e1 is a or b .

Now assume that the claim is true for k where 1�k<n, that is, �kD �.s1/ı� � �ı�.sk/.
We want to show that �kC1 D �k ı �.skC1/. Note that the edges e0 and �.skC1/.e0/

of t1 meet on the same side of 
 as the edges ek and ekC1 of tkC1 . Since we have
�.sk/.e0/D ek by the induction hypothesis, this implies

�k.�.skC1/.e0//D ekC1:

The right-hand side can also be written as �kC1.e0/, therefore �k ı�.skC1/ and �kC1

map e0 to the same edge, and their actions on the endpoints also agree. Hence we have
�kC1 D �k ı �.skC1/, as claimed.

Proof of Penner’s conjecture for S1;0 , S1;1 and S0;4 Let S be one of these three
surfaces and let f be any pseudo-Anosov element of Mod.S/. We want to show
that f has a power arising from Penner’s construction.

Let Af , 
 , e0 , a and b be as above. Choose a and b for the role of the filling curves
in the construction. By Lemma A.1, some product of T �1

a and Tb defines an element
h 2 Mod.S/ such that Af D Ah . Since Ah is hyperbolic, both Dehn twists must
appear in this product. Therefore h is a pseudo-Anosov mapping class arising from
Penner’s construction.

When S is the torus or the once-punctured torus, we have Mod.S/Š SL.2;Z/. So
f D ˙h and hence f 2 D h2 . When S D S0;4 , then A is surjective with kernel
Z=2Z � Z=2Z [5, Proposition 2.7]. The kernel is generated by two hyperelliptic
involutions and only its identity element fixes all four punctures. Thus two elements of
Mod.S0;4/ that project to the same element of PSL.2;Z/ are equal if they permute
the four punctures in the same way. Therefore f 12 D h12 , because both maps act
trivially on the punctures. (The number 12 is the least common multiple of the orders
of elements of the symmetric group on 4 points.) Hence f has a power arising from
Penner’s construction.

Remark Note that, without allowing half-twists, the conjecture is false for S0;4 .
Indeed, an LR-sequence corresponding to a product of Dehn twists is a sequence of
LL and RR blocks. So any pseudo-Anosov mapping class that contains the block
LRL in its sequence does not have a power arising from the construction.
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