Volume 20, issue 1 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
The Weyl tensor of gradient Ricci solitons

Xiaodong Cao and Hung Tran

Geometry & Topology 20 (2016) 389–436
Bibliography
1 M F Atiyah, N J Hitchin, I M Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425 MR506229
2 T Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976) 269 MR0431287
3 S Bando, Real analyticity of solutions of Hamilton’s equation, Math. Z. 195 (1987) 93 MR888130
4 M Berger, Sur quelques variétés d’Einstein compactes, Ann. Mat. Pura Appl. 53 (1961) 89 MR0130659
5 A L Besse, Einstein manifolds, 10, Springer (1987) MR867684
6 C Böhm, B Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. 167 (2008) 1079 MR2415394
7 S Brendle, Rotational symmetry of self-similar solutions to the Ricci flow, Invent. Math. 194 (2013) 731 MR3127066
8 S Brendle, R M Schoen, Classification of manifolds with weakly 1 4–pinched curvatures, Acta Math. 200 (2008) 1 MR2386107
9 S Brendle, R Schoen, Manifolds with 1 4–pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009) 287 MR2449060
10 S Brendle, R Schoen, Curvature, sphere theorems, and the Ricci flow, Bull. Amer. Math. Soc. 48 (2011) 1 MR2738904
11 E Calabi, An extension of E Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958) 45 MR0092069
12 H D Cao, Existence of gradient Kähler–Ricci solitons, from: "Elliptic and parabolic methods in geometry" (editors B Chow, R Gulliver, S Levy, J Sullivan), Peters (1996) 1 MR1417944
13 H D Cao, Recent progress on Ricci solitons, from: "Recent advances in geometric analysis" (editors Y I Lee, C S Lin, M P Tsui), Adv. Lect. Math. 11, International Press (2010) 1 MR2648937
14 H D Cao, Q Chen, On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc. 364 (2012) 2377 MR2888210
15 H D Cao, Q Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013) 1149 MR3053567
16 X Cao, Compact gradient shrinking Ricci solitons with positive curvature operator, J. Geom. Anal. 17 (2007) 425 MR2358764
17 X Cao, Curvature pinching estimate and singularities of the Ricci flow, Comm. Anal. Geom. 19 (2011) 975 MR2886714
18 X Cao, B Wang, Z Zhang, On locally conformally flat gradient shrinking Ricci solitons, Commun. Contemp. Math. 13 (2011) 269 MR2794486
19 X Cao, P Wu, Einstein four-manifolds of three-nonnegative curvature operator, (2013)
20 G Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012) 751 MR2945582
21 G Catino, C Mantegazza, The evolution of the Weyl tensor under the Ricci flow, Ann. Inst. Fourier (Grenoble) 61 (2011) 1407 MR2951497
22 X Chen, Y Wang, On four-dimensional anti-self-dual gradient Ricci solitons, J. Geom. Anal. 25 (2015) 1335 MR3319974
23 B Chow, P Lu, L Ni, Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006) MR2274812
24 A Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983) 405 MR707181
25 A Derdzinski, A Myers-type theorem and compact Ricci solitons, Proc. Amer. Math. Soc. 134 (2006) 3645 MR2240678
26 M Feldman, T Ilmanen, D Knopf, Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differential Geom. 65 (2003) 169 MR2058261
27 M Fernández-López, E García-Río, Rigidity of shrinking Ricci solitons, Math. Z. 269 (2011) 461 MR2836079
28 M J Gursky, The Weyl functional, de Rham cohomology, and Kähler–Einstein metrics, Ann. of Math. 148 (1998) 315 MR1652920
29 M J Gursky, Four-manifolds with δW+ = 0 and Einstein constants of the sphere, Math. Ann. 318 (2000) 417 MR1800764
30 M J Gursky, C LeBrun, On Einstein manifolds of positive sectional curvature, Ann. Global Anal. Geom. 17 (1999) 315 MR1705915
31 R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255 MR664497
32 R S Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986) 153 MR862046
33 R S Hamilton, The Ricci flow on surfaces, from: "Mathematics and general relativity" (editor J A Isenberg), Contemp. Math. 71, Amer. Math. Soc. (1988) 237 MR954419
34 B Kotschwar, On rotationally invariant shrinking Ricci solitons, Pacific J. Math. 236 (2008) 73 MR2398988
35 J M Lee, T H Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987) 37 MR888880
36 M J Micallef, M Y Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993) 649 MR1253619
37 O Munteanu, N Sesum, On gradient Ricci solitons, J. Geom. Anal. 23 (2013) 539 MR3023848
38 A Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010) 125 MR2673425
39 L Ni, N Wallach, On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008) 941 MR2443993
40 G Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159
41 G Perelman, Ricci flow with surgery on three-manifolds, arXiv:math/0303109
42 P Petersen, Riemannian geometry, 171, Springer (2006) MR2243772
43 P Petersen, W Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009) 329 MR2507581
44 P Petersen, W Wylie, On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010) 2277 MR2740647
45 S Pigola, M Rimoldi, A G Setti, Remarks on non-compact gradient Ricci solitons, Math. Z. 268 (2011) 777 MR2818729
46 R Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984) 479 MR788292
47 I M Singer, J A Thorpe, The curvature of 4–dimensional Einstein spaces, from: "Global Analysis : Papers in honor of K Kodaira" (editors D C Spencer, I Iyanaga), Univ. Tokyo Press (1969) 355 MR0256303
48 H H Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988) 289 MR1079031
49 G Xu, Four-dimensional shrinking gradient solitons with small curvature, preprint (2012)
50 D Yang, Rigidity of Einstein 4–manifolds with positive curvature, Invent. Math. 142 (2000) 435 MR1794068
51 Z H Zhang, Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math. 242 (2009) 189 MR2525510