Volume 20, issue 1 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22, 1 issue

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
An arithmetic Zariski $4$–tuple of twelve lines

Benoît Guerville-Ballé

Geometry & Topology 20 (2016) 537–553
Bibliography
1 E Artal-Bartolo, Sur les couples de Zariski, J. Algebraic Geom. 3 (1994) 223 MR1257321
2 E Artal Bartolo, Topology of arrangements and position of singularities, Ann. Fac. Sci. Toulouse Math. 23 (2014) 223 MR3205593
3 E Artal Bartolo, J Carmona Ruber, J I Cogolludo-Agustín, M Marco Buzunáriz, Topology and combinatorics of real line arrangements, Compos. Math. 141 (2005) 1578 MR2188450
4 E Artal Bartolo, J Carmona Ruber, J I Cogolludo Agustín, M Á Marco Buzunáriz, Invariants of combinatorial line arrangements and Rybnikov’s example, from: "Singularity theory and its applications" (editors S Izumiya, G Ishikawa, H Tokunaga, I Shimada, T Sano), Adv. Stud. Pure Math. 43, Math. Soc. Japan (2006) 1 MR2313406
5 E Artal Bartolo, J I Cogolludo, H o Tokunaga, A survey on Zariski pairs, from: "Algebraic geometry in East Asia" (editors K Konno, V Nguyen-Khac), Adv. Stud. Pure Math. 50, Math. Soc. Japan (2008) 1 MR2409555
6 E Artal Bartolo, V Florens, B Guerville-Ballé, A topological invariant of line arrangements, preprint (2014) arXiv:1407.3387
7 W A Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31 (1992) 757 MR1191377
8 P Cassou-Noguès, C Eyral, M Oka, Topology of septics with the set of singularities B4,4 2A3 5A1 and π1–equivalent weak Zariski pairs, Topology Appl. 159 (2012) 2592 MR2923428
9 D C Cohen, A I Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv. 72 (1997) 285 MR1470093
10 A Degtyarev, On deformations of singular plane sextics, J. Algebraic Geom. 17 (2008) 101 MR2357681
11 A Dimca, D Ibadula, D A Măcinic, Pencil type line arrangements of low degree: classification and monodromy, preprint (2014) arXiv:1305.5092
12 V Florens, B Guerville-Ballé, M A Marco-Buzunariz, On complex line arrangements and their boundary manifolds, Math. Proc. Cambridge Philos. Soc. 159 (2015) 189
13 B Guerville-Ballé, Topological invariants of line arrangements, PhD thesis, Université de Pau et des Pays de l’Adour and Universidad de Zaragoza (2013)
14 B Guerville-Ballé, Wiring diagram computations, Sage notebook (2014)
15 S MacLane, Some interpretations of abstract linear dependence in terms of projective geometry, Amer. J. Math. 58 (1936) 236 MR1507146
16 M Oka, Two transforms of plane curves and their fundamental groups, J. Math. Sci. Univ. Tokyo 3 (1996) 399 MR1424436
17 P Orlik, H Terao, Arrangements of hyperplanes, 300, Springer (1992) MR1217488
18 G L Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement, Funktsional. Anal. i Prilozhen. 45 (2011) 71 MR2848779
19 I Shimada, Fundamental groups of complements to singular plane curves, Amer. J. Math. 119 (1997) 127 MR1428061
20 T S developers, Sage mathematics software (version 6.1) (2014)
21 O Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929) 305 MR1506719
22 O Zariski, On the irregularity of cyclic multiple planes, Ann. of Math. 32 (1931) 485 MR1503012
23 O Zariski, On the Poincaré group of rational plane curves, Amer. J. Math. 58 (1936) 607 MR1507185