

Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire

JULIETTE BAVARD

Le groupe modulaire Γ du plan privé d'un ensemble de Cantor apparaît naturellement en dynamique. On montre ici que le graphe des rayons, analogue du complexe des courbes pour cette surface de type infini, est de diamètre infini et hyperbolique. On utilise l'action de Γ sur ce graphe hyperbolique pour exhiber un quasi-morphisme non trivial explicite sur Γ et pour montrer que le deuxième groupe de cohomologie bornée de Γ est de dimension infinie. On donne enfin un exemple d'un élément hyperbolique de Γ dont la longueur stable des commutateurs est nulle. Ceci réalise un programme proposé par Danny Calegari.

The mapping class group Γ of the complement of a Cantor set in the plane arises naturally in dynamics. We show that the ray graph, which is the analog of the complex of curves for this surface of infinite type, has infinite diameter and is hyperbolic. We use the action of Γ on this graph to find an explicit non trivial quasimorphism on Γ and to show that this group has infinite dimensional second bounded cohomology. Finally we give an example of a hyperbolic element of Γ with vanishing stable commutator length. This carries out a program proposed by Danny Calegari.

37E30; 57M60, 20F65

1 Introduction

1.1 Gros groupes modulaires et dynamique

Lorsque S est une surface connexe orientable de type fini ou infini, c'est-à-dire une variété connexe compacte orientable de dimension 2 éventuellement privée d'un nombre fini ou infini de points, le *groupe modulaire* de S, noté MCG(S) pour "mapping class group", est le groupe des classes d'isotopie d'homéomorphismes de S préservant l'orientation. Si l'on connaît aujourd'hui de nombreuses caractéristiques des groupes modulaires des surfaces compactes privées d'un nombre fini de points, les groupes modulaires des surfaces de type infini sont beaucoup moins étudiés. Pourtant, comme le souligne Danny Calegari sur son blog "Big mapping class groups and dynamics" [10],

Published: 29 February 2016 DOI: 10.2140/gt.2016.20.491

ces "gros" groupes modulaires apparaissent naturellement en dynamique, en particulier à travers la construction suivante.

On note $\operatorname{Homeo}^+(\mathbb{R}^2)$ le groupe des homéomorphismes du plan préservant l'orientation. Soit G un sous-groupe de $\operatorname{Homeo}^+(\mathbb{R}^2)$. Si l'orbite $G \cdot p$ d'un point $p \in \mathbb{R}^2$ est bornée, alors il existe un morphisme de G vers $\operatorname{MCG}(\mathbb{R}^2 - K)$, où K est soit un ensemble fini, soit un ensemble de Cantor.

En effet, la réunion \widetilde{K} de l'adhérence de l'orbite $G \cdot p$ avec l'ensemble des composantes connexes bornées de son complémentaire est un ensemble compact, invariant par G et de complémentaire connexe. Le groupe G agit sur le quotient du plan obtenu en "écrasant" chacune des composantes connexes de \widetilde{K} sur un point (un point par composante), qui est encore homéomorphe au plan. L'image de \widetilde{K} au quotient est un sous-ensemble K du plan, totalement discontinu. Quitte à remplacer K par l'un de ses sous-ensembles bien choisi, on peut supposer que K est un ensemble minimal, c'est-à-dire tel que toute orbite $G \cdot q$ avec $q \in K$ est dense dans K. Comme K est compact, on sait alors que c'est soit un ensemble fini, soit un ensemble de Cantor. On obtient par cette construction un morphisme de G vers $\mathrm{MCG}(\mathbb{R}^2 - K)$.

Le groupe modulaire de \mathbb{R}^2 privé d'un nombre fini de points, qui a pour sous-groupe d'indice fini le quotient d'un groupe de tresses par son centre, a été très étudié. C'est le cas où K est un ensemble de Cantor qui va nous intéresser ici. On notera :

$$\Gamma := MCG(\mathbb{R}^2 - Cantor).$$

Dans [9], Calegari montre qu'il existe un morphisme injectif de Γ dans Homeo⁺(\mathbb{S}^1). C'est en particulier la première étape pour montrer qu'un sous-groupe de difféomorphismes du plan préservant l'orientation et ayant une orbite bornée est circulairement ordonnable. Dans le but d'établir de nouvelles propriétés sur le groupe Γ , on réalise ici un programme proposé par Calegari dans [10].

1.2 Graphe des rayons

Un objet central dans l'étude des groupes modulaires des surfaces de type fini est $le\ complexe\ des\ courbes$, un complexe simplicial associé à chaque surface, dont les simplexes sont les ensembles de classes d'isotopie de courbes simples essentielles sur la surface qui peuvent être réalisées par des représentants disjoints. L'hyperbolicité de ce complexe, établie par Howard Masur et Yair Minsky (voir [22]), a permis de grandes avancées dans l'étude de ces groupes. Dans le cas du groupe Γ que l'on considère, le complexe des courbes de \mathbb{R}^2 privé d'un ensemble de Cantor n'est pas intéressant du point de vue de la géométrie à grande échelle introduite par Mikhaïl Gromov, car il est de diamètre 2. Danny Calegari propose de remplacer ce complexe par le graphe

des rayons, qu'il définit de la manière suivante (voir figure 1 pour des exemples de rayons) :

Définition (Calegari [10]) Le *graphe des rayons* est le graphe dont les sommets sont les classes d'isotopie des arcs simples joignant l'infini à un point de l'ensemble de Cantor K et d'intérieur inclus dans le complémentaire de K, appelés rayons, et dont les arêtes sont les paires de tels rayons qui ont des représentants disjoints.

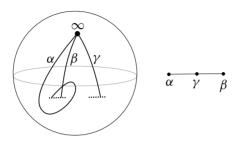


Figure 1: Exemple de trois rayons représentés sur la sphère et du sous-graphe du graphe des rayons associé : $d(\alpha, \beta) = 2$ et $d(\alpha, \gamma) = d(\beta, \gamma) = 1$.

On montre ici les résultats suivants :

Théorème 2.6 Le diamètre du graphe des rayons est infini.

Théorème 3.13 Le graphe des rayons est hyperbolique au sens de Gromov.

Théorème 4.1 Il existe un élément $h \in \Gamma$ agissant par translation sur un axe géodésique du graphe des rayons.

Ces résultats nous permettent de voir Γ comme agissant non trivialement sur un espace hyperbolique. On cherche ensuite à utiliser cette action pour construire des quasi-morphismes non triviaux sur Γ .

1.3 Quasi-morphismes et cohomologie bornée

Un *quasi-morphisme* sur un groupe G est une application $q\colon G\to\mathbb{R}$ telle qu'il existe une constante D_q , appelée *défaut* du quasi-morphisme q, vérifiant pour tous $a,b\in G$ l'inégalité :

$$|q(ab) - q(a) - q(b)| \le D_q.$$

Les premiers exemples de quasi-morphismes sont les morphismes et les fonctions bornées. Ce sont des quasi-morphismes triviaux : on dit qu'un quasi-morphisme q

est non trivial si le quasi-morphisme \tilde{q} défini par $\tilde{q}(a) = \lim_{n \to \infty} q(a^n)/n$ pour tout $a \in G$ n'est pas un morphisme. L'espace des classes de quasi-morphismes non triviaux sur un groupe G, que l'on notera $\tilde{Q}(G)$, est défini comme le quotient de l'espace des quasi-morphismes sur G par la somme directe du sous-espace des fonctions bornées et du sous-espace des morphismes réels sur G. L'existence de quasi-morphismes non triviaux sur G est équivalente à l'existence d'éléments non nuls dans $\tilde{Q}(G)$.

L'espace $\widetilde{Q}(G)$ coïncide avec le noyau du morphisme naturel envoyant le deuxième groupe de cohomologie bornée $H_b^2(G;\mathbb{R})$ de G dans le deuxième groupe de cohomologie $H^2(G;\mathbb{R})$ de G (voir par exemple Barge et Ghys [1] et Ghys [17] pour des précisions sur la cohomologie bornée des groupes). L'étude de cet espace $\widetilde{Q}(G)$ donne des informations sur le groupe G: par exemple, on sait qu'il est trivial lorsque G est moyennable (voir Gromov [18]), ou lorsque G est un réseau cocompact irréductible d'un groupe de Lie semi-simple de rang supérieur (voir Burger et Monod [8]). Dans [5], Mladen Bestvina et Koji Fujiwara ont montré que l'espace des classes de quasi-morphismes non triviaux sur un groupe modulaire d'une surface de type fini est de dimension infinie, ce qui a de nombreuses conséquences et implique notamment que pour de nombreuses classes de groupes G, tout morphisme de G vers un groupe modulaire de surface de type fini se factorise par un groupe fini. Ces résultats, ainsi que les applications potentielles en dynamique, motivent la recherche de quasi-morphismes non triviaux sur le groupe $\mathrm{MCG}(\mathbb{R}^2-\mathrm{Cantor})$ proposée par Calegari [10]. On montre ici le résultat suivant :

Théorème 4.8 L'espace $\widetilde{Q}(\Gamma)$ des classes de quasi-morphismes non triviaux sur Γ est de dimension infinie.

Ce résultat implique en particulier que la longueur stable des commutateurs est une quantité non bornée sur Γ .

1.4 Longueur stable des commutateurs

Si G est un groupe, on note [G,G] son groupe dérivé, c'est-à-dire le sous-groupe de G engendré par les commutateurs (éléments s'écrivant sous la forme $[x,y]=xyx^{-1}y^{-1}$ avec $x,y\in G$). Pour tout $a\in [G,G]$, on note $\operatorname{cl}(a)$ la longueur des commutateurs de a, c'est-à-dire le plus petit nombre de commutateurs dont le produit est égal à a. On définit alors la longueur stable des commutateurs de a par :

$$\operatorname{scl}(a) := \lim_{n \to +\infty} \frac{\operatorname{cl}(a^n)}{n}.$$

C'est en particulier une quantité invariante par conjugaison (voir Calegari [11] pour des précisions sur la longueur stable des commutateurs). L'étude de cette quantité est reliée

à celle des quasi-morphismes non triviaux par un théorème de dualité : Christophe Bavard a montré que l'espace des classes de quasi-morphismes non triviaux sur un groupe G est trivial si et seulement si tous les éléments de [G, G] sont de scl nulle (voir [2]).

Dans le cas du groupe Γ , Danny Calegari a montré dans [10] que si $g \in \Gamma$ a une orbite bornée sur le graphe des rayons, alors $\mathrm{scl}(g)=0$. Cette propriété rend encore plus surprenante l'existence d'un espace de classes de quasi-morphismes non triviaux de dimension infinie sur Γ . De plus, elle distingue Γ des groupes modulaires des surfaces de type fini, dont certains éléments ont une orbite bornée sur le complexe des courbes et une scl non nulle : en effet, Endo et Kotschick [13] et Korkmaz [21] ont montré que les twists de Dehn sont de scl strictement positive. Dans le cas des surfaces de type fini, on sait maintenant caractériser précisément en termes de la décomposition de Nielsen-Thurston les éléments de scl nulle (voir Bestvina, Bromberg et Fujiwara [4]). Dans le cas de Γ , on peut s'interroger sur une éventuelle réciproque à la proposition de Calegari : est-ce que tous les éléments de scl nulle ont une orbite bornée sur le graphe des rayons ? On exhibe ici un élément hyperbolique de Γ de scl nulle (proposition 5.1), montrant ainsi qu'une éventuelle caractérisation des éléments de scl nulle serait plus fine que la classification entre éléments ayant ou non une orbite bornée.

1.5 Stratégies de preuves

Dans la partie 2, on construit une suite de rayons $(\alpha_k)_k$ qui est non bornée dans le graphe des rayons, montrant ainsi que le graphe des rayons est de diamètre infini.

Cette suite est construite par récurrence à partir de l'idée suivante : si l'on considère un arc a_1 représentant un rayon et un arc a_2 formant un "tube" dans un petit voisinage autour de a_1 (comme sur la figure 2), tout arc disjoint de a_2 et représentant un rayon doit commencer en l'infini et finir en un point de l'ensemble de Cantor sans traverser a_2 . Un tel arc doit alors "suivre le parcours de l'arc a_1 " avant de pouvoir éventuellement s'échapper du tube formé par a_2 et rejoindre un point de l'ensemble de Cantor. Si maintenant a_3 est un arc représentant un rayon et qui forme un tube dans un voisinage autour de a_2 (voir la figure 2), le même phénomène se produit : tout arc disjoint de a_3 doit "suivre le parcours de l'arc a_2 " avant de pouvoir s'échapper du tube formé par a_3 pour rejoindre un point de l'ensemble de Cantor. Ainsi, dans le graphe des rayons, tout rayon à distance 1 du rayon représenté par a_3 commence par suivre le parcours de a_2 , ce qui force tout rayon à distance 2 de a_2 à suivre le parcours de a_1 : si β est par exemple le rayon représenté par un arc qui joint l'infini au point d'attachement de a_1 en restant dans l'hémisphère nord, alors β est à distance supérieure à 3 de a_3 . En effet, tout arc qui commence par parcourir a_2 ou a_1 n'est pas homotopiquement disjoint

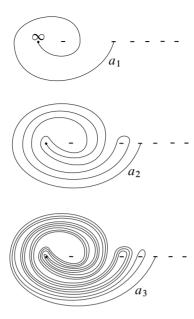


Figure 2: Construction de a_2 à partir de a_1 et de a_3 à partir de a_2 .

de β , donc tous les représentants des rayons à distance 1 ou 2 du rayon représenté par a_3 intersectent tout arc homotope à β .

On choisit ensuite a_4 qui dessine un tube autour de a_3 : tout rayon à distance 1 du rayon représenté par a_4 commence par suivre le parcours de a_3 ; ce qui implique que tout rayon à distance 2 de a_4 commence par suivre le parcours de a_2 ; ce qui implique que tout rayon à distance 3 de a_4 commence par suivre le parcours de a_1 ; ce qui implique que le rayon représenté par a_4 est à distance supérieure à 4 du rayon β .

On peut continuer ainsi en choisissant a_5 qui forme un tube autour de a_4 , etc. Pour tout k, on obtient un rayon α_k représenté par a_k et tel que tout arc représentant un rayon à distance strictement inférieure à k de α_k commence par suivre le parcours de a_1 , coupant ainsi β . Pour rendre cette idée rigoureuse, on définit dans la partie 2 un codage pour certains rayons, puis la suite $(\alpha_k)_{k\in\mathbb{N}}$ de rayons représentant les "tubes" voulus. On montre grâce au codage que cette suite est non bornée dans le graphe des rayons (théorème 2.6), et qu'elle forme un demi-axe géodésique dans ce graphe (proposition 2.7).

Dans la partie 3, on montre que le graphe des rayons est hyperbolique au sens de Gromov (théorème 3.13). On définit pour cela un graphe annexe X_{∞} dont les sommets sont les classes d'homotopie de lacets simples de $\mathbb{S}^2 - K$ basés en l'infini, et dont les arêtes sont les paires de tels lacets ayant des représentants disjoints. On montre

que ce graphe est hyperbolique en adaptant la preuve de l'uniforme hyperbolicité des complexes des arcs par les chemins "unicornes" de Sebastian Hensel, Piotr Przytycki et Richard Webb [20]. On montre ensuite que ce graphe X_{∞} est quasi-isométrique au graphe des rayons, ce qui permet d'établir l'hyperbolicité de ce dernier. On définit pour cela une application entre le graphe des rayons X_r et le graphe hyperbolique X_{∞} , qui à tout rayon x de X_r associe un élément \hat{x} de X_{∞} tel que x et \hat{x} ont des représentants disjoints, puis on montre que cette application est une quasi-isométrie.

Dans la partie 4, on utilise à nouveau la suite de rayons $(\alpha_k)_k$ construite dans la partie 2, qui définit un axe géodésique du graphe des rayons. On exhibe un élément $h \in \Gamma$ qui agit par translation sur cet axe (théorème 4.1). L'élément h est un élément pouvant être représenté par la tresse de la figure 3. Les points noirs représentent l'ensemble de Cantor K, et chaque brin transporte tous les points du sous-ensemble de Cantor correspondant. On montre que pour tout $k \in \mathbb{N}$, $h(\alpha_k) = \alpha_{k+1}$.

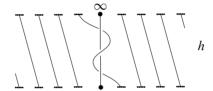


Figure 3: Représentation de l'élément $h \in \Gamma$.

On cherche ensuite à construire des quasi-morphismes non triviaux sur Γ . Dans [16], Koji Fujiwara définit les quasi-morphismes de comptage sur les groupes agissant sur des espaces hyperboliques, généralisant la construction de Brooks [7] sur les groupes libres. Dans le cas des groupes modulaires des surfaces compactes de type fini, Mladen Bestvina et Koji Fujiwara utilisent cette construction pour montrer que l'espace des classes de quasi-morphismes non triviaux est de dimension infinie (voir [5]). L'espace hyperbolique considéré est alors le complexe des courbes de la surface, sur lequel le groupe modulaire de la surface considérée agit *faiblement proprement discontinûment*, propriété qui garantit en particulier la non-trivialité de certains quasi-morphismes obtenus par la construction de Fujiwara.

Comme on sait que Γ agit sur un espace hyperbolique (le graphe des rayons), la construction [16] de Fujiwara nous donne des quasi-morphismes sur Γ . On cherche alors à montrer que certains de ces quasi-morphismes sont non triviaux. Malheureusement, l'action de Γ sur le graphe des rayons n'est pas *faiblement proprement discontinue* (voir l'énoncé au début de la Fait). On peut néanmoins définir un *nombre d'intersections positives*, qui nous permet de montrer que l'axe $(\alpha_k)_k$ est *non retournable* (proposition 4.4). Cette propriété généralise le fait pour h de ne pas être conjugué à son

inverse. Plus précisément, on montre que pour tout segment orienté suffisamment long de l'axe $(\alpha_k)_k$, si un élément de Γ envoie ce segment dans un voisinage "proche" de l'axe $(\alpha_k)_k$, alors l'image du segment est orientée dans le même sens que le segment d'origine. Cette propriété de l'axe $(\alpha_k)_k$ ainsi que l'action de h sur cet axe permettent de construire un quasi-morphisme non trivial explicite (proposition 4.7).

On utilise ensuite encore une fois l'élement $h \in \Gamma$, ainsi qu'un conjugué de son inverse, pour montrer grâce à un autre théorème de Bestvina et Fujiwara [5] et à la propriété 4.4 de non retournement que l'espace $\tilde{Q}(\Gamma)$ des classes de quasi-morphismes non triviaux sur Γ est de dimension infinie (théorème 4.8).

1.6 Remerciements.

Je remercie mon directeur de thèse, Frédéric Le Roux, pour sa grande disponibilité, ses nombreux conseils et ses relectures minutieuses des différentes versions de ce texte. Merci à Danny Calegari de l'intérêt qu'il a porté à ce travail, et de m'avoir suggéré d'ajouter un exemple d'élément hyperbolique de scl nulle, en plus des questions posées sur son blog. Merci également à Nicolas Bergeron pour ses explications autour des surfaces hyperboliques.

Projet soutenu par l'attribution d'une allocation doctorale Région Île-de-France.

2 Première étude du graphe des rayons : diamètre infini et demi-axe géodésique

On cherche ici à montrer que le graphe des rayons est de diamètre infini. Dans ce but, on va construire une suite de rayons $(\alpha_n)_{n\geq 0}$ et montrer qu'elle n'est pas bornée dans le graphe des rayons. On code certains rayons par des suites de segments, pour pouvoir les manipuler plus facilement dans les preuves. On définit à partir de ce codage la suite de rayons $(\alpha_n)_n$ qui nous intéresse. On montre enfin que cette suite n'est pas bornée dans le graphe des rayons, et qu'elle définit un demi-axe géodésique. Les résultats montrés autour de cette suite nous seront à nouveau utiles dans la partie 4.

2.1 Préliminaires

On utilisera dans toute la suite les notations, propositions, et le vocabulaire suivants.

Ensemble de Cantor K On note K un ensemble de Cantor plongé dans \mathbb{S}^2 , et on choisit un point de $\mathbb{S}^2 - K$, que l'on note ∞ . On identifie $\mathbb{R}^2 - K$ et $\mathbb{S}^2 - (K \cup \{\infty\})$. Si K' est un autre ensemble de Cantor plongé dans \mathbb{S}^2 et ∞' un point de $\mathbb{S}^2 - K'$, alors il existe un homéomorphisme de \mathbb{S}^2 qui envoie K' sur K et ∞' sur ∞ (voir par exemple Béguin, Crovisier et Le Roux [3, appendice A]).

Arcs, homotopies et isotopies Soit $a: [0,1] \to \mathbb{S}^2$ une application continue telle que $\{a(0)\}$ et $\{a(1)\}$ sont inclus dans $K \cup \{\infty\}$ et telle que a(]0,1[) est inclus dans $\mathbb{S}^2 - (K \cup \{\infty\})$. On appellera arc cette application a, que l'on confondra parfois avec l'image de]0,1[par a. Si de plus l'application a est injective, on dira que a est un arc simple de $\mathbb{S}^2 - (K \cup \{\infty\})$.

On dira que deux arcs a et b de $\mathbb{S}^2 - (K \cup \{\infty\})$ sont *homotopes* s'il existe une application continue $H: [0,1] \times [0,1] \to \mathbb{S}^2$ telle que :

- $H(0, \cdot) = a(\cdot) \text{ et } H(1, \cdot) = b(\cdot).$
- $H(\cdot,0)$ et $H(\cdot,1)$ sont constantes (les extrémités sont fixes).
- $H(t,s) \in \mathbb{S}^2 (K \cup {\infty})$ pour tous $(t,s) \in [0,1] \times [0,1]$.

Si a et b sont simples, homotopes, et si de plus il existe une homotopie H telle que pour tout $t \in [0,1]$, $H(t,\cdot)$ est un arc simple, alors on dira que a et b sont *isotopes*. David Epstein a montré que sur une surface, deux arcs homotopes sont isotopes (voir [14]). Dans ce texte, on confondra isotopie et homotopie sur les surfaces.

On dira que deux classes d'isotopie d'arcs α et β sont homotopiquement disjointes s'il existe des représentants a de α et b de β tels que a(]0,1[) et b(]0,1[) sont disjoints. On dira que deux arcs a et b sont homotopiquement disjoints s'ils représentent deux classes d'isotopie homotopiquement disjointes. Un bigone entre deux arcs a et b est une composante connexe du complémentaire de $a \cup b$ dans $\mathbb{S}^2 - (K \cup \{\infty\})$ homéomorphe à un disque et dont le bord est la réunion d'un sous-arc de a et d'un sous-arc de b. On dira que deux arcs propres a et b sont en position d'intersection minimale si toutes leurs intersections sont transverses et s'il n'y a aucun bigone entre a et b.

Graphe des rayons

Définition Un *rayon* est une classe d'isotopie d'arcs simples α ayant pour extrémités $\alpha(0) = \infty$ et $\alpha(1) \in K$. On appellera *point d'attachement du rayon* le point $\{\alpha(1)\}$.

Définition (Calegari [10]) Le *graphe des rayons*, noté X_r , est le graphe défini comme suit :

- Les sommets sont les rayons définis précédemment.
- Deux sommets sont reliés par une arête si et seulement si ils sont homotopiquement disjoints.

Remarque Le graphe des rayons est connexe : on peut adapter la preuve classique de la connexité du complexe des courbes, donnée par exemple dans Farb et Margalit [15, théorème 4.3, page 97].

Préliminaires sur les classes d'isotopie de courbes On utilisera à plusieurs reprises les résultats suivants, adaptés de Casson et Bleiler [12], Handel [19] et Matsumoto [23]. On munit $\mathbb{S}^2 - (K \cup \{\infty\})$ d'une métrique hyperbolique complète de première espèce. Son revêtement universel est le plan hyperbolique \mathbb{H}^2 .

Proposition 2.1 Soient \mathcal{A} et \mathcal{B} deux familles localement finies d'arcs simples de $\mathbb{S}^2 - (K \cup \{\infty\})$ telles que tous les éléments de \mathcal{A} (respectivement \mathcal{B}) sont deux à deux homotopiquement disjoints. On suppose que pour tous $a \in \mathcal{A}$ et $b \in \mathcal{B}$, a et b sont en position d'intersection minimale. Alors il existe un homéomorphisme b isotope à l'identité par une isotopie qui fixe b0 en tout temps et telle que pour tous b0 et b1 et b2 et b3 et b4 sont géodésiques.

Proposition 2.2 Soit a et b deux arcs de $\mathbb{S}^2 - (K \cup \{\infty\})$. Si \widetilde{a} est un relevé de a au revêtement universel, alors il existe deux points p^- et p^+ du bord $\partial \mathbb{H}^2$ du revêtement universel \mathbb{H}^2 tels que $\widetilde{a}(t)$ tend vers p^- , respectivement p^+ lorsque t tend vers 0, respectivement 1. On appelle extrémités de \widetilde{a} ces deux points. Si \widetilde{a} et \widetilde{b} sont deux relevés respectifs de a et b au revêtement universel qui ont les mêmes extrémités au bord, alors a et b sont isotopes dans $\mathbb{S}^2 - (K \cup \{\infty\})$.

2.2 Codage de certains rayons

Équateur On choisit à l'aide de la proposition 2.1 un cercle topologique \mathcal{E} de \mathbb{S}^2 contenant $K \cup \{\infty\}$ et tel que tous les segments de $\mathcal{E} - (K \cup \{\infty\})$ sont géodésiques. On appellera *équateur* ce cercle. On choisit une orientation sur l'équateur, et on appelle *hémisphère nord* le cercle topologique situé à sa gauche, et *hémisphère sud* celui situé à sa droite.

Choix de segments de \mathcal{E} Comme sur la figure figure 4, on choisit un point p de $\mathcal{E}-\{\infty\}$ tel que les deux composantes connexes de $\mathcal{E}-\{\infty,p\}$ contiennent chacune des points de K. On choisit ensuite une suite $(p_n)_{n\in\mathbb{N}}$ de points de K sur la composante connexe de $\mathcal{E}-\{\infty,p\}$ située à droite de ∞ , telle que p_0 est le premier point de K à droite de ∞ sur \mathcal{E} et p_{n+1} est à droite de p_n pour tout p_n . On choisit de même une suite $(p_n)_{n<0}$ sur la composante connexe de $\mathcal{E}-\{\infty,p\}$ située à gauche de p_n telle que p_n est le premier point à gauche de p_n et telle que p_n est à gauche de p_n pour tout p_n est le premier point à gauche de p_n et p_n et p_n et p_n . On choisit pour tout p_n of une composante connexe p_n de p_n et p_n et p_n et p_n et pour tout p_n et p_n et

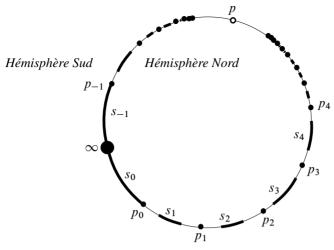


Figure 4: Choix d'un équateur, d'un point p, d'une suite de points de K et d'un ensemble de segments.

Suite associée Si α est une classe d'isotopie d'arcs de $\mathbb{S}^2-(K\cup\{\infty\})$, on notera $\alpha_\#$ l'unique arc géodésique représentant α dans $\mathbb{S}^2-(K\cup\{\infty\})$. On note X_S' l'ensemble des classes d'isotopie d'arcs α de $\mathbb{S}^2-(K\cup\{\infty\})$ joignant l'infini et un point de l'ensemble de Cantor K (éventuellement avec auto-intersection) tels que :

- (1) $\mathcal{E} \cap \alpha_{\#} \subset \mathbf{S}$.
- (2) La composante connexe de $\alpha_{\#} \mathcal{E}$ qui part de ∞ est incluse dans l'hémisphère sud.
- (3) $\mathcal{E} \cap \alpha_{\#}$ est un ensemble fini.

On note X_S le sous-ensemble de X_S' composé des classes d'isotopie d'arcs simples (c'est-à-dire l'ensemble des rayons vérifiant les trois propriétés précédentes).

Soit $\alpha \in X_S'$. On peut associer à α une suite de segments de la manière suivante : on parcourt $\alpha_\#$ depuis ∞ et jusqu'à son point d'attachement, et on note u_1 le premier segment de S intersecté par $\alpha_\#$, u_2 le second, ..., et u_k le $k^{\text{ième}}$ pour tout k, jusqu'à avoir atteint le point d'attachement. On note $\mathring{u}(\alpha)$ cette suite (finie) de segments, et $u(\alpha)$ la suite $\mathring{u}(\alpha)$ à laquelle on ajoute le point d'attachement, et que l'on appelle suite complète associée à α (voir la figure 5 pour un exemple). Comme la géodésique $\alpha_\#$ est unique dans la classe d'isotopie α , la suite de segment associée à α est bien définie. De façon générale, on appellera suite complète la donnée d'une suite finie de segments et d'un point de K, telle que la suite de segments ne commence ni par s_{-1} , ni par s_0 , et ne contient pas plusieurs fois de suite le même segment (pour éviter les bigones).

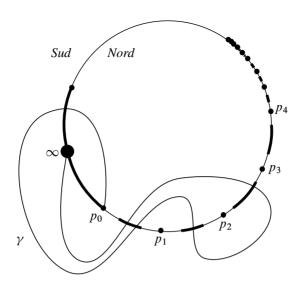


Figure 5: Exemple d'un rayon $\gamma \in X_S$: ici, le point d'attachement est p_0 , la suite complète de segments associée est $u(\gamma) = s_1 s_3 s_2 s_1 s_{-1}(p_0)$, et on a $\mathring{u}(\gamma) = s_1 s_3 s_2 s_1 s_{-1}$.

Lemme 2.3 À chaque suite complète correspond une unique classe d'isotopie d'arcs de X_S' (éventuellement avec auto-intersections) entre l'infini et un point de K. En particulier, si deux rayons de X_S ont la même suite complète associée, alors ils sont égaux.

Preuve Soient α et β deux arcs ayant la même suite complète associée, disons $u_0\cdots u_n(p_j)$. Au revêtement universel, on choisit un "relevé" $\widetilde{\infty}$ de ∞ sur le bord du disque hyperbolique : on peut voir ce point $\widetilde{\infty}$ comme la limite au bord d'un relevé quelconque de α . On relève ensuite β à partir de ce point. Le revêtement universel est pavé par des demi-domaines fondamentaux correspondant aux relevés d'un hémisphère : chaque demi-domaine fondamental a pour bord un relevé de l'équateur. On commence à relever α et β à partir de $\widetilde{\infty}$ dans un même demi-domaine fondamental F_0 (correspondant à un relevé de l'hémisphère sud). On définit $(F_i)_{0 \le i \le n}$ comme la suite des relevés alternativement de l'hémisphère nord et sud, traversés par $\widetilde{\alpha}_{\#}$. On remarque que $(F_i)_i$ est entièrement déterminée par le codage : on sort de F_0 pour arriver dans un relevé F_1 de l'hémisphère nord en traversant le seul relevé de u_0 qui borde F_0 . On continue ainsi jusqu'au demi-domaine F_n , qui a un seul relevé \widetilde{p}_j de p_j dans son bord. Ainsi les deux relevés $\widetilde{\alpha}$ et $\widetilde{\beta}$ de α et β ont mêmes extrémités, donc α et β sont isotopes dans $\mathbb{S}^2 - (K \cup \{\infty\})$ (d'après la proposition 2.2).

À partir de maintenant on ne fera plus de différence explicite entre une classe d'isotopie d'arcs de X'_{S} et sa suite complète associée.

2.3 Une suite de rayons particulière

On construit ici une suite particulière de rayons, $(\alpha_k)_{k\in\mathbb{N}}$, dont les propriétés nous seront utiles pour toute la suite.

Si $u = u_0 u_1 \cdots u_n(p_j)$ est une suite complète de segments, on rappelle que l'on note $\mathring{u} = u_0 u_1 \cdots u_n$ la suite de segments sans le point d'attachement. La suite de segments inverse sera alors notée $\mathring{u}^{-1} := u_n \cdots u_1 u_0$.

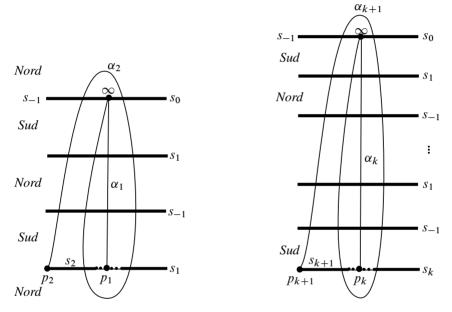


Figure 6: Définition de α_2 à partir de α_1 , puis de α_{k+1} à partir de α_k : représentation des intersections locales de ces rayons avec \mathcal{E} .

Définition On définit la suite $(\alpha_k)_{k\geq 0}$ de rayons de la façon suivante :

- α_0 est la classe d'isotopie du segment s_0 , avec pour extrémités ∞ et p_0 .
- α_1 est le rayon codé par $s_1s_{-1}(p_1)$ (voir figure 7).
- Pour tout $k \ge 1$, α_{k+1} est le rayon défini à partir de α_k comme sur la figure 6 : on part de ∞ , on longe $\alpha_{k\#}$ jusqu'à son point d'attachement p_k dans un voisinage tubulaire de $\alpha_{k\#}$, on contourne ce point par la droite en traversant les segments voisins, c'est-à-dire en traversant d'abord s_{k+1} puis s_k , on longe à nouveau $\alpha_{k\#}$ dans un voisinage tubulaire, on contourne ∞ en traversant s_0 puis

 s_{-1} , on longe une dernière fois $\alpha_{k\#}$ dans un voisinage tubulaire jusqu'à son point d'attachement et on va s'attacher au point p_{k+1} sans traverser l'équateur.

En termes de codage, on obtient les suites complètes suivantes :

$$- \alpha_0 = s_0(p_0).
- \alpha_1 = s_1 s_{-1}(p_1).
- \alpha_{k+1} = \mathring{\alpha}_k s_{k+1} s_k \mathring{\alpha}_k^{-1} s_0 s_{-1} \mathring{\alpha}_k(p_{k+1}) \text{ pour tout } k \ge 1.$$

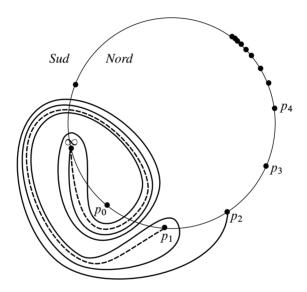


Figure 7: Sur la sphère, représentation en pointillés de $\alpha_1 = s_1 s_{-1}(p_1)$ représentation en trait plein de $\alpha_2 = s_1 s_{-1} s_2 s_1 s_{-1} s_1 s_0 s_{-1} s_1 s_{-1}(p_2)$.

Remarque Si l'on note $long(\alpha_k)$ le nombre de fois que $\alpha_{k\#}$ traverse un hémisphère, c'est-à-dire le nombre de composantes connexes de $\alpha_{k\#}-\mathcal{E}$, ou encore le nombre de copies de demi-domaines fondamentaux traversés par un relevé géodésique $\widetilde{\alpha}_k$ au revêtement universel, alors $long(\alpha_k)$ est impair pour tout $k \geq 1$. En effet on a $long(\alpha_1) = 3$ (voir figure 6) et par construction $long(\alpha_{k+1}) = 3long(\alpha_k) + 2$ donc $long(\alpha_{k+1})$ a la même parité que $long(\alpha_k)$. Ainsi on est sûr d'être dans la situation de la figure 6, à savoir que le dernier hémisphère traversé par α_k est l'hémisphère sud, donc p_{k+1} est toujours à gauche de p_k dans la représentation choisie (figure 6), et lorsque α_{k+1} contourne ∞ , ce rayon traverse d'abord s_0 puis s_{-1} pour éviter toute auto-intersection.

2.4 Diamètre infini et demi-axe géodésique

Soit β un rayon et $\mathring{u} = u_0 u_1 \cdots u_n$ une suite de segments. On dira que β commence par \mathring{u} si la première composante connexe de $\beta_\# - \mathcal{E}$ est dans l'hémisphère sud et si les premières intersections de $\beta_\#$ avec \mathcal{E} sont, dans cet ordre, les segments u_0, u_1, \ldots, u_n . En particulier, si $\beta \in X_S$, ceci revient à dire que $u(\beta)$ commence par \mathring{u} .

Définition Soit $A: X_r \to \mathbb{N}$ l'application qui à toute classe d'isotopie de rayon γ associe :

$$A(\gamma) := \max\{i \in \mathbb{N} \text{ tel que } \gamma \text{ commence par } \mathring{\alpha}_i\}.$$

Comme $\mathring{\alpha}_0$ est la suite vide, A est bien définie pour tout $\gamma \in X_r$. On montre à présent que l'application A est 1-lipschitzienne.

Lemme 2.4 Soient β et γ deux rayons tels que $d(\gamma, \beta) = 1$. Alors :

$$|A(\gamma) - A(\beta)| \le 1.$$

Preuve On pose $n:=A(\beta)$. On choisit des représentants géodésiques $\beta_{\#}$ de β et $\gamma_{\#}$ de γ (voir figure 8). L'arc $\beta_{\#}$ commence par parcourir la courbe représentant α_n : en effet, il doit traverser les mêmes segments, dans le même ordre. Il existe un homéomorphisme fixant chaque point de K et ∞ , fixant globalement \mathcal{E} et envoyant le début de $\beta_{\#}$, c'est-à-dire la composante de $\beta_{\#}$ entre ∞ et s_{-1} , sur le début de α_n , c'est-à-dire la composante de α_n entre ∞ et s_{-1} . Comme γ est à distance 1 de β , $\gamma_{\#}$ est disjoint de $\beta_{\#}$ et doit sortir de la zone grise, qui ne contient aucun point de K, pour s'accrocher à un point de K sans couper $\beta_{\#}$, donc sans couper la courbe pleine sur la figure 8. Ainsi $\gamma_{\#}$ doit commencer par parcourir une des deux flèches pointillées, ce qui revient exactement à dire que γ commence par α_{n-1} . On a donc α_n donc α_n en α_n en α_n en α_n est de deux flèches pointillées, ce qui revient exactement à dire que α_n commence par α_n . On a donc α_n en α_n en

Corollaire 2.5 Soient β et γ deux rayons quelconques de X_r . On a :

$$|A(\beta) - A(\gamma)| \le d(\beta, \gamma).$$

Preuve On choisit une géodésique dans le graphe des rayons entre β et γ et par sous-additivité de la valeur absolue on en déduit le résultat grâce au lemme 2.4.

Cette inégalité permet de minorer certaines distances, et en particulier on en déduit le théorème suivant :

Théorème 2.6 Le diamètre du graphe des rayons est infini.

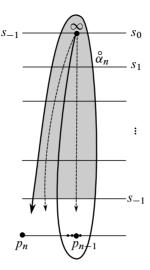


Figure 8: Représentation des intersections locales de $\overset{\circ}{\alpha}_n$ avec \mathcal{E} . Par définition de $(\alpha_k)_k$, il n'y a aucun point de K dans la zone grisée.

Preuve Par définition de A, on a $A(\alpha_0) = 0$ et $A(\alpha_n) = n$ pour tout $n \in \mathbb{N}$. D'après le corollaire 2.5, on a donc $d(\alpha_0, \alpha_n) \ge n$.

Proposition 2.7 Le demi-axe $(\alpha_k)_{k\in\mathbb{N}}$ est géodésique.

Preuve Par construction de la suite $(\alpha_k)_{k \in \mathbb{N}}$, on a $d(\alpha_k, \alpha_{k+1}) = 1$ pour tout $k \ge 0$. Par ailleurs $d(\alpha_k, \alpha_0) \ge k$ pour tout $k \ge 0$ (c'est une conséquence du corollaire 2.5). Ainsi pour tout $k \ge 0$, on a $d(\alpha_k, \alpha_0) = k$.

3 Hyperbolicité du graphe des rayons

On dira qu'un espace métrique X est $g\acute{e}od\acute{e}sique$ si entre deux points quelconques de X il existe toujours au moins une géodésique, c'est-à-dire un chemin qui minimise la distance entre ces deux points. On rappelle la définition d'espace métrique hyperbolique au sens de Gromov. Pour plus de précisions sur les espaces hyperboliques, on pourra consulter par exemple Bridson et Haefliger [6].

Définition (Espace hyperbolique) On dira qu'un espace métrique géodésique X est hyperbolique au sens de Gromov, ou tout simplement hyperbolique, s'il existe une constante $\delta \geq 0$ telle que pour tout triangle géodésique de X, chaque côté du triangle est inclus dans le δ -voisinage des deux autres.

On définit un graphe X_{∞} et on montre qu'il est hyperbolique par les mêmes arguments que ceux développés dans Hensel, Przytycki et Webb [20] pour montrer l'hyperbolicité du graphe des arcs dans le cas des surfaces compactes à bord. On utilise ensuite cette hyperbolicité pour établir l'hyperbolicité du graphe des rayons.

3.1 Hyperbolicité du graphe des lacets simples basés en l'infini

Graphe X_{∞} et chemins "unicornes" On fixe K un ensemble de Cantor de \mathbb{R}^2 et on compactifie \mathbb{R}^2 en ajoutant ∞ , obtenant ainsi la sphère \mathbb{S}^2 . Un arc simple de $\mathbb{S}^2 - K$ joignant l'infini à l'infini est dit *essentiel* s'il ne borde pas un disque topologique, c'est-à-dire qu'il sépare la sphère en deux composantes dont chacune contient des points de K.

Définition On construit le graphe X_{∞} comme suit :

- Les sommets sont les classes d'isotopie des arcs simples essentiels sur $\mathbb{S}^2 K$ et joignant ∞ à ∞ , où l'on identifie les arcs ayant même image et des orientations opposées.
- Deux sommets sont reliés par une arête si et seulement si ils sont homotopiquement disjoints.

Remarque On rappelle que l'on note X_r le graphe des rayons. Les graphes X_∞ et X_r sont naturellement munis d'une métrique où toutes les arêtes sont de longueur 1. Le groupe $\Gamma = \mathrm{MCG}(\mathbb{R}^2 - K)$ agit sur X_∞ (et sur X_r) par isométries.

On adapte ici la preuve de [20] de l'hyperbolicité du graphe des arcs dans le cas des surfaces à bord pour montrer l'hyperbolicité de X_{∞} .

Soient a et b deux arcs simples essentiels sur \mathbb{S}^2-K joignant ∞ à ∞ et en position d'intersection minimale. On choisit une orientation sur chacun d'entre eux et on note a^+ , b^+ les arcs orientés correspondant. Soit $\pi \in a \cap b$. Soit a' et b' les sous-arc orientés de a, respectivement b, commençant comme a, respectivement comme b, et ayant π pour deuxième extrémité. On note $a' \star b'$ la concaténation de ces deux sous-arcs; en particulier, c'est un arc joignant ∞ à ∞ . On suppose que cet arc est simple. Comme a et b sont en position d'intersection minimale, l'arc $a' \star b'$ est essentiel. Il définit donc un élément de X_{∞} . On dira que $a' \star b'$ est un arc unicorne obtenu à partir de a^+ et b^+ .

On note que cet arc est déterminé de manière unique par le choix de $\pi \in a \cap b$, et que tous les points de $a \cap b$ ne définissent pas un arc sans auto-intersection. Par ailleurs, $a \cap b$ est un ensemble fini, car a et b ont des intersections transverses. Il y a donc un nombre fini d'arcs unicornes obtenus à partir de a^+ et b^+ .

Fait Si π et π' sont deux points de $a \cap b$ définissant des arcs unicornes $a' \star b'$ et $a'' \star b''$, alors $a'' \subset a'$ si et seulement si $b' \subset b''$.

Définition (Ordre total sur les arcs unicornes) Soient a^+ et b^+ deux arcs essentiels orientés entre ∞ et ∞ sur $\mathbb{S}^2 - K$, en position minimale d'intersection. On ordonne les arcs unicornes entre a^+ et b^+ de la manière suivante :

$$a' \star b' \leq a'' \star b''$$
 si et seulement si $a'' \subset a'$ et $b' \subset b''$.

Cet ordre est total. On note (c_1, \ldots, c_{n-1}) l'ensemble ordonné des arcs unicornes entre a^+ et b^+ . Il correspond en particulier à l'ordre des points π lorsque l'on parcourt b^+ . On définit des chemins unicornes dans le graphe X_{∞} de la manière suivante :

Définition (Chemins unicornes entre arcs orientés) Soient a^+ et b^+ deux arcs essentiels orientés entre ∞ et ∞ sur $\mathbb{S}^2 - K$, en position minimale d'intersection. La suite d'arcs unicornes $P(a^+, b^+) = (a = c_0, c_1, \dots, c_{n-1}, c_n = b)$ est appelée *chemin unicorne entre* a^+ et b^+ .

Fait Soient a et b deux arcs orientés en position minimale d'intersection et soit (c_0, \ldots, c_n) le chemin unicorne entre ces deux arcs orientés. Soient a' et b' deux arcs en position minimale d'intersection tels que a', respectivement b', est isotope à a, respectivement à b, et orienté dans le même sens. On note $(d_0, d_1, \ldots, d_{m-1}, d_m)$ le chemin unicorne entre a' et b' orientés. Alors n = m et c_k est isotope à d_k pour tout k.

C'est une conséquence de la proposition 2.1.

Définition (Chemins unicornes entre éléments de X_{∞} orientés) Soient α^+ et β^+ deux éléments de X_{∞} munis d'une orientation. Soient a et b, deux représentants respectifs de α et β qui sont en position minimale d'intersection, munis de l'orientation naturellement induite par α^+ et β^+ . Soit $P(a^+, b^+) = (c_0, \ldots, c_n)$ le chemin unicorne associé. Pour tout $1 \le k \le n$, on note γ_k la classe d'isotopie de c_k . On pose alors : $P(\alpha^+, \beta^+) = (\gamma_0, \gamma_1, \ldots, \gamma_n)$, qui définit le *chemin unicorne* entre α^+ et β^+ .

Fait Tout chemin unicorne est un chemin dans X_{∞} .

En effet, pour tout $0 \le i \le n-1$, c_i et c_{i+1} sont homotopiquement disjoints. C'est la remarque 3.2 de [20].

Remarques (1) Si $a \cap b = \emptyset$, on a alors $P(a^+, b^+) = (a, b)$.

(2) Par abus de notation, on notera encore $P(a^+, b^+)$ l'ensemble des éléments de la suite $P(a^+, b^+)$.

Les arcs unicornes ne dépendent que du voisinage de $a \star b$: si l'on considère un voisinage fermé de $a \star b$ suffisamment petit (pour qu'il soit homotopiquement équivalent à $a \star b$), on peut alors voir les arcs unicornes comme arcs unicornes de la surface compacte à bord définie par ce voisinage. On est alors exactement dans le cas de l'article [20]. Cette correspondance nous permet de voir tout chemin unicorne de X_{∞} comme un chemin unicorne d'un graphe des arcs d'une surface. En particulier, les lemmes 3.3, 3.4, 3.5 et 4.3 de [20] restent vrais dans X_{∞} . Comme la proposition 4.2, puis le théorème 1.2 en découlent, on obtient de la même façon l'hyperbolicité du graphe X_{∞} . Il semble difficile de déduire l'hyperbolicité de X_{∞} de celle du graphe des arcs d'une seule surface : dans chaque preuve des lemmes, on doit passer par des surfaces différentes, qui dépendent des éléments de X_{∞} que l'on considère. Pour plus de commodités, on adapte la preuve de [20] dans notre contexte. Le lemme 3.1, le corollaire 3.2, le lemme 3.3 et les propositions 3.5 et 3.8 correspondent, dans cet ordre, aux lemmes 3.3, 4.3, 3.5, à la proposition 4.2 et au théorème 1.2 de [20].

On note que la preuve de [20] ne s'adapte pas directement au graphe des rayons X_r : en effet, l'arc obtenu à partir de deux représentants d'éléments du graphe des rayons orientés de l'infini jusqu'au point d'attachement va de l'infini à l'infini et n'appartient donc pas au graphe des rayons. Si l'on modifie la définition en choisissant l'arc unicorne comme parcourant le début de a puis la fin de b, on obtient bien un arc dont la classe d'isotopie est un rayon, mais le lemme 3.1 devient faux, d'où la nécessité de passer par le graphe X_{∞} .

Lemmes sur les chemins unicornes de X_{∞}

Lemme 3.1 (Les triangles unicornes sont 1-fins) Soient α^+, β^+ et δ^+ trois éléments de X_{∞} munis d'une orientation. Alors pour tout $\gamma \in P(\alpha^+, \beta^+)$, l'un des termes γ^* de $P(\alpha^+, \delta^+) \cup P(\delta^+, \beta^+)$ est tel que $d(\gamma, \gamma^*) = 1$ dans X_{∞} .

Preuve Soient a,b,d des représentants géodésiques de α,β,δ . Soit $c \in P(a^+,b^+)$: il existe a' et b' sous-arcs respectifs de a et b tels que $c=a'\star b'$. Si c est disjoint de d, $\gamma^*=\delta$ convient. Sinon, soit $d'\subset d$ le sous arc maximal commençant comme d^+ et disjoint de c. Soit $\sigma\in c$ l'autre extrémité de d'. Le point σ divise c en deux sous-arcs, dont l'un est contenu dans a' ou b', disons a' (le cas b' est analogue). On note a'' ce sous-arc. Alors $c^*:=a''\star d'$ est un terme de $P(a^+,d^+)$. De plus, c et c^* sont homotopiquement disjoints.

Corollaire 3.2 Soient $k \in \mathbb{N}$, $m \le 2^k$ et soit (ξ_0, \dots, ξ_m) un chemin dans X_{∞} . On munit les ξ_i d'une orientation arbitraire. Alors $P(\xi_0^+, \xi_m^+)$ est inclus dans un k-voisinage de (ξ_0, \dots, ξ_m) .

Preuve Soit $\gamma \in P(\xi_0^+, \xi_m^+)$. Montrons qu'il existe i tel que $d(\gamma, \xi_i) \leq k$. En appliquant le lemme 3.1 aux sommets ξ_0^+, ξ_m^+ et $\xi_{E(m/2)}^+$ (où $E(\cdot)$ désigne la partie entière), on obtient $\gamma_1^* \in P(\xi_0^+, \xi_{E(m/2)}^+) \cup P(\xi_{E(m/2)}^+, \xi_m^+)$ tel que $d(\gamma, \gamma_1^*) = 1$. On note (α_1^+, β_1^+) le couple $(\xi_0^+, \xi_{E(m/2)}^+)$ ou $(\xi_{E(m/2)}^+, \xi_m^+)$ tel que $\gamma_1^* \in P(\alpha_1^+, \beta_1^+)$.

On applique alors le lemme 3.1 aux éléments α_1^+ , β_1^+ et ξ_l^+ , où l est choisi de telle sorte que ξ_l est au milieu de α_1 et β_1 sur le chemin (ξ_0,\ldots,ξ_m) . On a alors $\gamma_2^* \in P(\alpha_1^+,\xi_l^+) \cup P(\xi_l^+,\beta_1^+)$ tel que $d(\gamma_1^*,\gamma_2^*)=1$, et donc $d(\gamma,\gamma_2^*)\leq 2$. On continue ainsi par récurrence en choisissant à chaque fois un élément ξ_j au milieu des deux éléments concernés par le chemin unicorne précédent, et on finit par trouver $\gamma^*=\xi_l$ tel que $d(\gamma,\gamma_*)\leq k$.

Lemme 3.3 Soient $\alpha^+, \beta^+ \in X_\infty$ orientés et soit $P(\alpha^+, \beta^+) = (\gamma_0, \dots, \gamma_n)$ le chemin unicorne associé dans X_∞ . Pour tous $0 \le i \le j \le n$, on considère $P(\gamma_i^+, \gamma_j^+)$, où γ_i^+ , respectivement γ_j^+ , a la même orientation que a^+ , respectivement b^+ . Alors ou bien $P(\gamma_i^+, \gamma_j^+)$ est un sous-chemin de $P(\alpha^+, \beta^+)$, ou bien j = i + 2 et $d(\gamma_i, \gamma_j) = 1$ dans X_∞ .

On choisit des représentants a^+ et b^+ , et on note (c_0, \ldots, c_n) le chemin unicorne associé. Pour garder la terminologie de [20], on appelera *demi-bigone* tout bigone ayant l'infini dans son bord. On montre d'abord le sous-lemme suivant :

Sous-lemme 3.4 Soit $c = c_{n-1}$, c'est-à-dire que $c = a' \star b'$, avec l'intérieur de a' disjoint de b. Soit \tilde{c} un arc homotope à c obtenu en poussant a' en dehors de a de telle sorte que $a' \cap \tilde{c} = \varnothing$. Alors ou bien \tilde{c} et a sont en position minimale d'intersection, ou bien ces deux arcs bordent exactement un demi-bigone : dans ce cas, après avoir poussé \tilde{c} à travers ce demi-bigone, obtenant ainsi un arc \bar{c} , on a que \bar{c} et a sont en position minimale d'intersection.

Preuve du sous-lemme 3.4 Les arcs \widetilde{c} et a ne peuvent pas border un bigone, sinon a et b bordent un bigone, ce qui contredit la position minimale d'intersection. Ainsi si \widetilde{c} et a ne sont pas en position minimale d'intersection, alors ils bordent un demi-bigone $\widetilde{c}'a''$, où $\widetilde{c}' \subset \widetilde{c}$, et $a'' \subset a$ (voir la figure 9 pour un exemple). Soit $\pi' = \widetilde{c}' \cap a''$. Comme \widetilde{c} découpe la sphère en deux composantes connexes, l'une contient a'' et l'autre contient b-b', donc l'intérieur de a'' est disjoint de b. En particulier, a'' est situé à la fin de a. De plus, π' et $\pi = a' \cap b'$ sont deux points d'intersection de $a \cap b$ successifs sur b (sinon il y a un bigone).

On note b'' la première composante connexe de $b-\pi'$ dans le sens de parcours de b. Soit $\overline{c} := a'' \star b''$. En appliquant à \overline{c} le même raisonnement que celui appliqué à \widetilde{c} ,

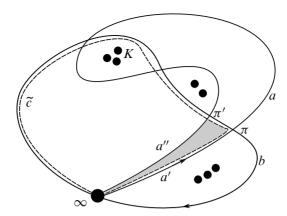


Figure 9: Un exemple de deux arcs a et b dans la situation où a et \tilde{c} (en pointillés) bordent un demi-bigone (grisé). Les points noirs représentent des morceaux de K.

mais en orientant a dans l'autre sens, on obtient que ou bien \overline{c} et a sont en position minimale d'intersection, ou bien il existe un demi-bigone $\overline{c}'a'''$, avec $\overline{c}'\subset \overline{c}$ et $a'''\subset a$. Mais dans ce dernier cas, on a que a''' est situé sur le début de a (car sur la fin de a orienté à l'envers), d'où $a'\subset a'''$. Comme π' est situé avant π dans le sens de parcours b, on a même $a'\subsetneq a'''$, ce qui contredit le fait que l'intérieur de a''' est disjoint de b.

Preuve du lemme 3.3 Si le lemme est vrai pour i=0 et j=n-1 alors par symétrie il est vrai pour i=1 et j=n, et donc par récurrence il est vrai pour tous $0 \le i \le j \le n$. Soit donc i=0 et j=n-1. On a alors $c_0=a$ et $c_{n-1}=a'\star b'$, où a' intersecte b seulement en son extrémité π distincte de l'infini. Soit \widetilde{c} obtenu à partir de $c=c_{n-1}$ comme dans le sous-lemme 3.4. On reprend toutes les notations du sous-lemme 3.4. Si \widetilde{c} est en position minimale d'intersection avec a, alors les points de $a\cap b-\{\pi\}$ qui déterminent des arcs unicornes à partir de a^+ et b^+ déterminent les mêmes arcs unicornes que ceux réalisés à partir de a^+ et \widetilde{c}^+ , donc le lemme est prouvé dans ce cas.

Sinon, soit \overline{c} l'arc du sous-lemme 3.4, homotope à \widetilde{c} et en position minimale d'intersection avec a: les points de $(a \cap b) - \{\pi, \pi'\}$ qui déterminent des arcs unicornes à partir de a^+ et b^+ déterminent les mêmes arcs que ceux obtenus à partir de a^+ et \overline{c}^+ . Soit $a^* = a - a''$. Si π' ne détermine pas un arc unicorne à partir de a^+ et b^+ , c'est-à-dire si a^* et b'' s'intersectent en dehors de π' , alors le lemme est montré comme dans le cas précédent. Sinon, $a^* \star b'' = c_1$, puisque c'est le deuxième arc dans la suite des arcs unicornes obtenus à partir de a^+ et b^+ . De plus, comme le sous-arc $\pi\pi'$ de a est dans a^* , son intérieur est disjoint de b'', donc aussi de b'. Ainsi $a^* \star b''$

est juste avant c dans l'ordre des arcs unicornes obtenus à partir de a^+ et b^+ , ce qui signifie que j=2, comme voulu.

Hyperbolicité de X_{∞} On peut maintenant déduire des lemmes précédents l'hyperbolicité du graphe considéré.

Proposition 3.5 Soit \mathcal{G} un chemin géodésique de X_{∞} entre deux sommets α et β . Alors quelles que soient les orientations choisies sur α et β , $P(\alpha^+, \beta^+)$ est inclus dans le 6-voisinage de \mathcal{G} .

Preuve Soit $\gamma \in P(\alpha^+, \beta^+)$ dont la distance à \mathcal{G} est maximale parmi les éléments de $P(\alpha^+, \beta^+)$. On note k la distance entre γ et \mathcal{G} . En particulier, $P(\alpha^+, \beta^+)$ est inclus dans un k-voisinage de \mathcal{G} . On suppose $k \geq 1$. Si $d(\alpha, \gamma) < 2k$, on pose $\alpha' := \alpha$. Sinon, on note α' l'élement le plus proche de α le long de $P(\alpha^+, \beta^+)$ parmi les éléments de $P(\alpha^+, \beta^+)$ à distance 2k de γ . De même, si $d(\beta, \gamma) < 2k$, on pose $\beta' := \beta$, et sinon on note β' l'élément le proche de β le long de $P(\alpha^+, \beta^+)$ parmi les éléments de $P(\alpha^+, \beta^+)$ à distance 2k de γ .

On considère le sous-chemin $\alpha'\beta'\subset P(\alpha^+,\beta^+)$. D'après le lemme 3.3, $P(\alpha'^+,\beta'^+)$ est un sous-chemin de $P(\alpha^+,\beta^+)$ (on choisit les bonnes orientations sur α' et β'). Ainsi $\gamma\in P(\alpha'^+,\beta'^+)$: sinon on est dans le cas $d(\alpha',\beta')=1$, ce qui implique que γ est à distance ≤ 1 de α ou β , et donc de \mathcal{G} .

Soient α'' , $\beta'' \in \mathcal{G}$ à distance minimale de α' et β' : $d(\alpha'', \alpha') \leq k$ et $d(\beta'', \beta') \leq k$. Si $\alpha' = \alpha$ ou $\beta' = \beta$, alors $\alpha'' = \alpha$ ou $\beta'' = \beta$. On a :

$$d(\alpha'', \beta'') \le d(\alpha'', \alpha') + d(\alpha', \gamma) + d(\gamma, \beta') + d(\beta', \beta'') \le k + 2k + 2k + k \le 6k.$$

Soit \mathcal{J} le chemin de α' à β' obtenu en concaténant le sous-chemin $\alpha''\beta''$ de \mathcal{G} avec des chemins géodésiques quelconques entre α' et α'' , et entre β' et β'' . On note $\xi_0\xi_1\cdots\xi_m$ les sommets de \mathcal{J} , et on a $m\leq 8k$. D'après le corollaire 3.2, il existe i tel que $d(\gamma,\xi_i)\leq E(\log_2 8k)$, où E est la fonction partie entière supérieure.

Si $\xi_i \notin \mathcal{G}$, disons $\xi_i \in \alpha \alpha'$, alors on est dans le cas où $d(\gamma, \alpha') = 2k$, et donc $d(\gamma, \xi_i) \ge d(\gamma, \alpha') - d(\alpha', \xi_i) \ge k$, d'où $E(\log_2 8k) \ge k$. Sinon, si $\xi_i \in \mathcal{G}$, on a directement $E(\log_2 8k) \ge k$, cette fois par définition de k. Finalement, on a toujours $E(\log_2 8k) \ge k$, et donc $k \le 6$.

Corollaire 3.6 Soit \mathcal{G} une géodésique de X_{∞} entre deux sommets α et β . Quelles que soient les orientations choisies sur α et β , \mathcal{G} est incluse dans le 13-voisinage de $P(\alpha^+, \beta^+)$.

C'est une conséquence de la proposition 4.4 et du lemme suivant :

Lemme 3.7 Soit X un espace géodésique. Soit \mathcal{G} une géodésique de X entre deux points α et β . Soit k un entier positif. Si \mathcal{J} est un chemin de X entre α et β qui reste dans un k-voisinage de \mathcal{G} , alors \mathcal{G} reste dans un (2k+1)-voisinage de \mathcal{J} .

Preuve du lemme Soit \mathcal{G}' un sous-segment de \mathcal{G} tel que pour tout $\gamma' \in \mathcal{G}'$, pour tout $\xi \in \mathcal{J}$, on a $d(\gamma', \xi) > k$. On montre que tous les points de \mathcal{G}' sont à distance au plus 2k+1 de \mathcal{J} . On oriente \mathcal{G} et \mathcal{J} de α vers β . L'ensemble $\mathcal{G}-\mathcal{G}'$ a deux composantes connexes : on note \mathcal{G}_1 celle située avant \mathcal{G}' (lorsque l'on parcourt \mathcal{G} de α vers β), et \mathcal{G}_2 la deuxième. On a $d(\alpha, \mathcal{G}_2) > k$, sinon \mathcal{G}' est dans le k-voisinage de $\beta \in \mathcal{J}$. Soit ζ le premier point de \mathcal{J} (dans le sens de parcours de \mathcal{J}) tel que $d(\zeta, \mathcal{G}_2) \leq k$. Soit $\gamma_2 \in \mathcal{G}_2$ tel que $d(\zeta, \gamma_2) \leq k$. Soit $\zeta' \in \mathcal{J}$ à distance 1 de ζ et situé avant ζ sur \mathcal{J} . Alors par définition de ζ et par hypothèse sur \mathcal{G}' , il existe $\gamma_1 \in \mathcal{G}_1$ tel que $d(\zeta', \gamma_1) \leq k$. Ainsi, comme \mathcal{G} est une géodésique, le segment de \mathcal{G} entre γ_1 et γ_2 est de longueur inférieure ou égal à 2k+1 et contient \mathcal{G}' . On en déduit que tous les points de \mathcal{G}' sont à distance au plus 2k+1 de \mathcal{J} .

Proposition 3.8 Le graphe X_{∞} est 20-hyperbolique, au sens de Gromov.

Preuve Soit $\alpha\beta\gamma$ un triangle géodésique de X_{∞} . Soit ζ sur la géodésique entre α et β . On oriente α , β et γ . D'après le corollaire 3.6, il existe ξ sur $P(\alpha^+, \beta^+)$ tel que $d(\zeta, \xi) \le 13$. D'après le lemme 3.1, il existe $\xi^* \in P(\alpha^+, \gamma^+) \cup P(\gamma^+, \beta^+)$ tel que $d(\xi, \xi^*) \le 1$. D'après la proposition 3.5, il existe ζ^* sur un des côtés géodésiques du triangle joignant α à γ ou γ à β , tel que $d(\xi^*, \zeta^*) \le 6$. On a donc $d(\zeta, \zeta^*) \le 20$, d'où le résultat.

3.2 Quasi-isométrie entre X_r et X_{∞}

On cherche à déduire l'hyperbolicité du graphe des rayons X_r à partir de celle du graphe X_{∞} . Pour arriver à cette conclusion, on montre que ces deux graphes sont quasi-isométriques.

Rappels de géométrie à grande échelle On utilise les résultats suivants (voir par exemple Bridson et Haefliger [6]).

Définition (Quasi-isométrie) Soient X et X' deux espaces métriques. Une application $f\colon X'\to X$ est un plongement (κ,ε) -quasi-isométrique s'il existe $\kappa\geq 1$ et $\varepsilon\geq 0$ tels que pour tous $x,y\in X'$:

$$\frac{1}{\kappa}d(x,y) - \varepsilon \le d(f(x), f(y)) \le \kappa d(x,y) + \varepsilon.$$

Si de plus il existe $C \ge 0$ tel que tout point de X est dans le C-voisinage de f(X'), on dit que f est une (κ, ε) -quasi-isométrie. Lorsqu'une telle application existe, on dit que X et X' sont quasi-isométriques.

Définition (Quasi-géodésique) Une (κ, ε) -quasi-géodésique d'un espace métrique X est un plongement (κ, ε) -quasi-isométrique d'un intervalle de $\mathbb R$ dans X. Par abus de langage, on appelle quasi-géodésique toute image dans X d'un tel plongement.

Lemme de Morse [6, théorème 1.7, page 401] Soit X un espace métrique δ -hyperbolique. Pour tous κ , ε réels positifs, il existe une constante universelle B dépendant uniquement de δ , κ et ε , telle que tout segment (κ, ε) -quasi-géodésique est dans le B-voisinage de toute géodésique joignant ses extrémités.

On dira que B est la (κ, ε) -constante de Morse de l'espace X.

Théorème [6, théorème 1.9, page 402] Soient X et X' deux espaces métriques géodésiques et soit $f: X' \to X$ un plongement quasi-isométrique. Si X est hyperbolique, alors X' est hyperbolique.

Quasi-isométrie entre X_r et X_∞ D'après la proposition 3.8, on sait que X_∞ est un espace hyperbolique. Pour montrer l'hyperbolicité du graphe des rayons X_r , on cherche maintenant à montrer qu'il existe un plongement quasi-isométrique de X_r dans X_∞ , ce qui nous permettra de conclure grâce au théorème énoncé ci-dessus. On montre un peu plus, à savoir que le plongement choisi est une quasi-isométrie.

On définit une application $f: X_r \to X_\infty$ qui à $x \in X_r$ associe n'importe quel $\hat{x} \in X_\infty$ tel que x et \hat{x} sont homotopiquement disjoints sur $\mathbb{S}^2 - (K \cup \{\infty\})$.

Proposition 3.9 L'application f définie ci-dessus est une quasi-isométrie.

Lemme 3.10 Soient $\hat{x}, \hat{y} \in X_{\infty}$ et $x, y \in X_r$ tels que x (respectivement y) est homotopiquement disjoint de \hat{x} (respectivement de \hat{y}). Alors:

$$d(x, y) \le d(\hat{x}, \hat{y}) + 2.$$

Remarque En particulier, on note que ce lemme implique que pour tous $x, y \in X_r$, $d(x, y) - 2 \le d(f(x), f(y))$.

Preuve On note n la distance dans X_{∞} entre \hat{x} et \hat{y} . Soit $(\hat{\mu}_j)_{0 \le j \le n}$ une géodésique dans X_{∞} entre \hat{x} et \hat{y} (en particulier, $\hat{\mu}_0 = \hat{x}$ et $\hat{\mu}_n = \hat{y}$). On va construire un chemin $(\mu_1, \dots, \mu_{n-1})$ de longueur (n-1) dans X_r , puis montrer que $d(x, \mu_1) \le 2$ et

 $d(\mu_{n-1},y) \leq 2$. Pour tout élément α de X_r ou X_∞ , on note toujours $\alpha_\#$ le représentant géodésique de α .

Comme $(\hat{\mu}_i)_i$ est une géodésique de X_{∞} , pour tout $1 \leq i \leq n-1$, $(\hat{\mu}_i)_{\#}$ est disjointe de $(\hat{\mu}_{i-1})_{\#}$ et $(\hat{\mu}_{i+1})_{\#}$ (sauf en $\{\infty\}$), et $(\hat{\mu}_{i-1})_{\#}$ et $(\hat{\mu}_{i+1})_{\#}$ s'intersectent ailleurs qu'en l'infini. Ainsi $(\hat{\mu}_i)_{\#}$ sépare la sphère \mathbb{S}^2 en deux composantes connexes, dont l'une contient $(\hat{\mu}_{i-1})_{\#}$ et $(\hat{\mu}_{i+1})_{\#}$. On note A_i l'autre composante connexe. On remarque que pour tout $1 \leq i \leq n-2$, A_i est disjointe de A_{i+1} . Pour tout $1 \leq i \leq n-1$, on choisit un rayon μ_i tel que $(\mu_i)_{\#}$ est inclus dans A_i (un tel μ_i existe car les $\hat{\mu}_i$ sont des courbes essentielles). On a donc construit un chemin $(\mu_i)_{1 \leq i \leq n-1}$ de longueur (n-1) dans X_r .

Montrons maintenant que $d(x, \mu_1) \le 2$: si $(\mu_1)_\#$ intersecte $x_\#$, alors $x_\#$ est dans la composante connexe de $\mathbb{S}^2 - \hat{x}_\#$ qui contient $(\hat{\mu}_1)_\#$ et $(\mu_1)_\#$. Tout représentant de rayon inclus dans l'autre composante connexe de $\mathbb{S}^2 - \hat{x}_\#$ n'intersecte ni $(\mu_1)_\#$, ni $x_\#$: ainsi $d(x, \mu_1) \le 2$. On montre de même que $d(\mu_{n-1}, y) \le 2$.

Lemme 3.11 Soit $\hat{x} \in X_{\infty}$. Soit $x \in X_r$ homotopiquement disjoint de \hat{x} . Alors :

$$d(f(x), \hat{x}) \leq 2.$$

Preuve On note toujours $x_\#$ et $\hat{x}_\#$ les représentants géodésiques de x et \hat{x} , qui sont disjoints (sauf en l'infini). Comme $x_\#$ est disjoint de $\hat{x}_\#$, il existe un disque topologique ouvert \mathcal{U} de \mathbb{S}^2 contenant $x_\#-\{\infty\}$ et disjoint de $\hat{x}_\#-\{\infty\}$. De même, comme $f(x)_\#$ est disjoint de $x_\#$, on a un disque topologique ouvert \mathcal{V} contenant $x_\#-\{\infty\}$ et disjoint de $f(x)_\#-\{\infty\}$. Ainsi $\mathcal{U}\cap\mathcal{V}$ contient un disque topologique ouvert contenant $x_\#-\{\infty\}$ et disjoint de $(\hat{x}_\#\cup f(x)_\#)-\{\infty\}$. En particulier, $\mathcal{U}\cap\mathcal{V}$ contient des points de K, puisqu'il contient le point d'attachement de $x_\#$. Il existe donc $\hat{y}_0\subset (\mathcal{U}\cap\mathcal{V})-K$ une courbe simple de \mathbb{S}_2 passant par ∞ , ayant pour classe d'isotopie l'élément $\hat{y}\in X_\infty$. Finalement, $d(\hat{y},\hat{x})=d(\hat{y},f(x))=1$, d'où le résultat.

Lemme 3.12 Pour tous $x, y \in X_r$, on a:

$$d(f(x), f(y)) \le d(x, y) + 4.$$

Preuve Soient $x, y \in X_r$ et n = d(x, y). Si x et y n'ont pas le même point d'attachement, on choisit une géodésique $(\gamma_i)_{0 \le i \le n}$ de X_r entre x et y, telle que pour tous i, j, les éléments γ_i et γ_j n'ont pas le même point d'attachement. Des tels γ_i existent quitte à changer certains points d'attachement pour un point voisin de K sans ajouter de point d'intersection avec les autres γ_k . Si x et y ont le même point d'attachement, on choisit pour γ_n un rayon homotopiquement disjoint de y et de f(y) et qui n'a pas

le même point d'attachement que x, puis on choisit une géodésique $(\gamma_i)_{0 \le i \le n}$ de X_r entre $x = \gamma_0$ et γ_n .

Autour des points d'attachement des rayons γ_i , on choisit maintenant des petits voisinages deux à deux disjoints et tels que chaque voisinage intersecte un unique rayon, qui vient s'attacher à un point contenu dans le voisinage. Si $y \neq \gamma_n$, on choisit de plus $\hat{\gamma}_n$ disjoint de y. On définit alors pour chacun des rayons γ_i une courbe $\hat{\gamma}_i$ de la manière suivante : on parcourt γ_i jusqu'au voisinage choisi, on parcourt le bord du voisinage choisi puis on reparcourt γ_i dans l'autre sens. On obtient ainsi un élément de X_{∞} .

Par construction, pour tout i entre 2 et n-1, on a $d(\widehat{\gamma}_{i-1}, \widehat{\gamma}_i) = d(\gamma_i, \gamma_{i+1}) = 1$. D'après le lemme 3.11 appliqué à $\widehat{\gamma}_0$ disjoint de $x = \gamma_0$ et à $\widehat{\gamma}_n$ disjoint de y, on obtient $d(\widehat{\gamma}_0, f(x)) \le 2$ et $d(\widehat{\gamma}_n, f(y)) \le 2$. Finalement on a $d(f(x), f(y)) \le n + 4$. \square

Fin de la preuve de la proposition 3.9 Les lemmes 3.10 (pour la première inégalité) et 3.12 (pour la deuxième inégalité) nous donnent :

$$d(x, y) - 2 \le d(f(x), f(y)) \le d(x, y) + 4$$
.

Le lemme 3.11 nous donne la constante C=2 telle que tout \hat{x} de X_{∞} soit dans un C-voisinage de $f(X_r)$, ce qui termine la preuve de la proposition 3.9.

Hyperbolicité du graphe des rayons Finalement on a montré le théorème suivant :

Théorème 3.13 Le graphe des rayons est hyperbolique au sens de Gromov.

Preuve C'est une conséquence de la proposition 3.9 (il existe un plongement quasiisométrique de X_r dans X_∞), de la proposition 3.8 (X_∞ est hyperbolique) et du Théorème (si $f: X \to X'$ est un plongement quasi-isométrique et X' est hyperbolique, alors X est hyperbolique).

4 Quasi-morphismes non triviaux

Dans [5], Mladen Bestvina et Koji Fujiwara montrent que l'espace des classes de quasi-morphismes non triviaux sur le groupe modulaire d'une surface compacte est de dimension infinie. Ils montrent d'abord [5, théorème 1] que si un groupe G agit par isométries sur un espace hyperbolique X, alors sous la condition d'existence d'éléments hyperboliques qui vérifient certaines propriétés dans G, l'espace des classes de quasi-morphismes non triviaux sur ce groupe est de dimension infinie. Dans un deuxième temps, ils montrent que si l'action de G sur X est faiblement proprement discontinue, alors il existe des éléments qui vérifient les conditions du théorème 1, puis

ils montrent que les groupes modulaires de surfaces compactes agissent proprement faiblement discontinûment sur les complexes de courbes associés.

Dans le cas du groupe Γ qui nous intéresse, l'action considérée sur l'espace X_r n'est pas faiblement proprement discontinue. On dit qu'un élément g d'un groupe G agit proprement faiblement discontinûment sur un espace hyperbolique X si pour tout $x \in X$, pour tout C > 0, il existe N > 0 tel que le nombre de $\sigma \in G$ vérifiant $d(x, \sigma x) \leq C$ et $d(g^N x, \sigma g^N x) \leq C$ est fini (voir par exemple Calegari [11, page 74]).

Fait Pour tout $g \in \Gamma$, l'action de g sur le graphe des rayons X_r n'est pas proprement faiblement discontinue.

En effet, pour tout $x \in X_r$, pour tout $N \in \mathbb{N}$, il existe une infinité de $\sigma \in \Gamma$ tels que $d(x,\sigma x) \leq 1$ et $d(g^N x,\sigma g^N x) \leq 1$: on considère un voisinage \mathcal{U} d'un point du Cantor tel que \mathcal{U} est disjoint de x et de $g^N x$, alors tout σ à support dans \mathcal{U} fixe x et $g^N x$ donc vérifie $d(x,\sigma x) \leq 1$ et $d(g^N x,\sigma g^N x) \leq 1$. De plus il y a une infinité de tels σ car il y a une infinité de points de l'ensemble de Cantor dans \mathcal{U} .

La stratégie de [5] ne s'applique donc pas entièrement, mais on peut trouver explicitement des éléments de Γ qui vérifient les hypothèses du théorème 1 de [5], ce qui nous permet de montrer que l'espace des classes de quasi-morphismes non triviaux sur Γ est de dimension infinie.

On commence par trouver un élément $h \in \Gamma$ qui agit par translation sur l'axe des $(\alpha_k)_k$ défini précédemment. On montre ensuite, en utilisant le "nombre d'intersections positives", que si w est un sous-segment suffisamment long de cet axe, alors pour tout $g \in \Gamma$, g ne peut pas retourner ce segment dans un voisinage proche de l'axe (proposition 4.4). On utilisera enfin cette proposition d'une part pour construire un quasi-morphisme non trivial explicite sur Γ et d'autre part pour construire des éléments de Γ qui vérifient les conditions du théorème 1 de [5].

4.1 Un élément de Γ qui agit par translation sur un axe géodésique infini du graphe des rayons

On cherche à définir un élément hyperbolique $h \in \Gamma$ comme sur la figure 10, où chaque brin envoie un sous-ensemble de Cantor sur un autre, de telle sorte que cet élément envoie α_k sur α_{k+1} pour tout $k \in \mathbb{N}$ (voir figure 11).

Comme $(\alpha_k)_{k\in\mathbb{N}}$ est un demi-axe géodésique (d'après la proposition 2.7), on a alors que $(h^n(\alpha_0))_{n\in\mathbb{Z}}$ est un axe géodésique du graphe des rayons, sur lequel l'élément h agit par translation.

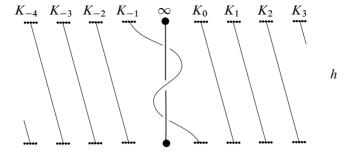


Figure 10: Représentation de l'élément $h \in \Gamma$.

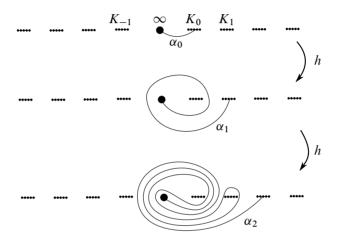


Figure 11: Action de h sur les rayons α_0 et α_1 .

Définition de h On fixe un équateur \mathcal{E} et un alphabet de segments $(s_k)_{k\in\mathbb{Z}}$ comme dans la partie 2.2. Pour tout $k\in\mathbb{Z}-\{0\}$, on note K_k les points de K entre s_{k-1} et s_k sur \mathcal{E} . En particulier, les K_k sont des ouverts-fermés de l'ensemble de Cantor initial K pour tout k, ce sont donc des ensembles de Cantor (tout ouvert-fermé non vide d'un ensemble de Cantor en est un, d'après la caractérisation comme compact métrique totalement discontinu sans point isolé). On note I une composante connexe de $\mathcal{E}-K$ telle que $I\cup\{\infty\}$ partagent l'équateur en deux composantes dont l'une contient tous les segments s_k avec k>0 et l'autre contient tous les segments s_k avec k<0.

Soit \mathcal{C}_N un cercle topologique qui coïncide avec l'équateur \mathcal{E} en dehors d'un voisinage de l'infini et qui passe dans l'hémisphère nord au-dessus de l'infini. Soit \mathcal{C}_S un cercle topologique qui coïncide avec l'équateur \mathcal{E} en dehors d'un voisinage de l'infini et qui passe dans l'hémisphère sud en dessous de l'infini.

Soit \tilde{t}_1 un homéomorphisme de C_N qui envoie chaque morceau d'ensemble de Cantor K_k sur le morceau d'ensemble de Cantor K_{k+1} pour tout $k \in \mathbb{Z}$ et qui vaut l'identité sur

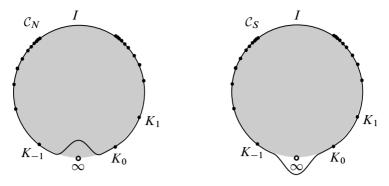


Figure 12: C_N et C_S (sur chaque figure, la partie grisée représente l'hémisphère nord).

I (tout ensemble de Cantor de l'intervalle peut être envoyé sur tout autre ensemble de Cantor par un homéomorphisme de l'intervalle). On prolonge \tilde{t}_1 à un homéomorphisme de la sphère \mathbb{S}^2 , et on considère sa classe d'isotopie $t_1 \in \Gamma$.

De même, soit \tilde{t}_2 un homéomorphisme de \mathcal{C}_S qui envoie chaque morceau d'ensemble de Cantor K_{k+1} sur le morceau d'ensemble de Cantor K_k pour tout $k \in \mathbb{Z}$ et qui fixe I. On prolonge \tilde{t}_2 à un homéomorphisme de la sphère \mathbb{S}^2 , et on considère sa classe d'isotopie $t_2 \in \Gamma$. En particulier, si on note ϕ la classe d'isotopie de la rotation d'angle π autour de ∞ qui envoie pour tout $k \in \mathbb{Z}$ le morceau d'ensemble de Cantor K_k sur le morceau K_{-k-1} , alors on peut choisir $t_2 = \phi t_1 \phi^{-1}$.

On pose enfin $h := t_1t_2t_1$ (voir figure 13).

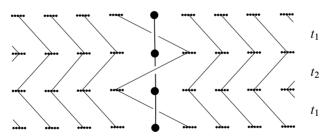


Figure 13: Définition de $h := t_1 t_2 t_1$.

Action de h sur le graphe des rayons S'il existe une géodésique de X_r qui est globalement invariante par une isométrie g, et si g n'a pas de point fixe sur cette géodésique, alors on dit que l'action de g sur X_r est hyperbolique et que cette géodésique est un axe de g.

Théorème 4.1 L'action de h sur le graphe des rayons est hyperbolique, d'axe $(\alpha_k)_k$. Plus précisément, $h(\alpha_k) = \alpha_{k+1}$ pour tout $k \in \mathbb{N}$.

Pour voir que $h(\alpha_k) = \alpha_{k+1}$ pour tout $k \ge 0$, on représente α_k par un graphe, comme sur la figure 14.

Figure 14: A gauche, le rayon α_2 ; à droite, un graphe le représentant.

Preuve Pour chaque rayon, on peut choisir une courbe le représentant et identifier certains morceaux de courbes qui restent dans un voisinage tubulaire les uns des autres. On obtient ainsi un graphe fini plongé de façon lisse dans \mathbb{S}^2 et disjoint de tous les points de K sauf du point d'attachement du rayon initial. En chaque noeud, les arêtes se répartissent en deux directions. Chaque arête porte un poids qui correspond au nombre de morceaux de courbes qu'elle représente : en chaque noeud, dans une des deux directions il y a une seule arête, qui porte un poids égal à la somme des poids des arêtes de l'autre direction. On peut retrouver le rayon initial à partir d'un graphe le représentant : en effet, il suffit de dupliquer chaque arête le nombre de fois correspondant à son poids, et de recoller les morceaux ainsi obtenus en chaque noeud de l'unique façon possible. On ne recolle que des morceaux arrivant sur le noeud avec des directions différentes, et on cherche à obtenir une courbe simple donc il y a un ordre bien défini sur les morceaux de courbes pour faire ce recollement.

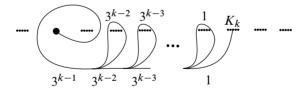


Figure 15: Exemple d'un graphe représentant le rayon α_k .

Sur la figure 15, on a dessiné un graphe particulier représentant α_k , pour tout $k \geq 0$. Comme il existe une courbe a_k représentant α_k qui reste dans un voisinage tubulaire de ce graphe, si h_0 est un représentant de h, on a que $h_0(a_k)$ reste dans un voisinage tubulaire de l'image par h_0 du graphe : le rayon correspondant à l'image du graphe est $h(\alpha_k)$.

Sur la figure 16, on a dessiné un graphe représentant α_k et les images successives de ce graphe par des représentants de t_1 , t_2 et t_1 . Le graphe final est donc l'image du graphe de α_k par h: il représente $h(\alpha_k)$. Par ailleurs, on voit que le rayon représenté par ce graphe final est α_{k+1} : ainsi $h(\alpha_k) = \alpha_{k+1}$ pour tout $k \in \mathbb{N}$.

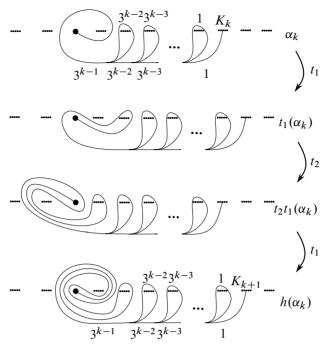


Figure 16: Image de α_k par h.

4.2 Nombre d'intersections positives

On note toujours X_r le graphe des rayons, et on oriente chaque rayon de l'infini jusqu'à son point d'attachement.

Définition (Nombre d'intersections positives) Soit $I: X_r^2 \to \mathbb{N} \cup \{\infty\}$ l'application qui à deux rayons orientés α et β de X_r associe le nombre d'intersections positives entre deux représentants de α et β en position minimale d'intersection (voir figure 17).

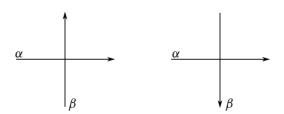


Figure 17: Intersection positive à gauche, négative à droite

Remarques (1) Ce nombre est bien défini : il ne dépend pas du choix de représentants en position minimale d'intersection (d'après la proposition 2.1).

- (2) En général, on a $I(\alpha, \beta) \neq I(\beta, \alpha)$.
- (3) Pour tout $g \in \Gamma$, $I(g \cdot \alpha, g \cdot \beta) = I(\alpha, \beta)$ (car Γ est obtenu comme quotient du groupe des homéomorphismes préservant l'orientation).

Cas de la suite $(\alpha_k)_k$

Lemme 4.2 Soient β et γ deux éléments de X_r tels que $A(\gamma) \le A(\beta) - 2$, où A est l'application définie dans la partie 2.4. Alors $I(\gamma, \beta) \ge 1$.

Preuve On pose $n:=A(\beta)$. Alors γ ne commence pas par $\mathring{\alpha}_{n-1}$. Sur la figure 18, on a représenté le début de β , c'est-à-dire $\mathring{\alpha}_n$. Tout représentant de γ part de l'infini et doit s'attacher à un point de l'ensemble de Cantor : ainsi, tout représentant de γ doit sortir de la zone grisée. Comme γ ne commence pas par $\mathring{\alpha}_{n-1}$, γ ne peut pas sortir de la zone grisée en coupant s_{-1} . Ainsi γ sort de cette zone en intersectant β . La première intersection est positive, et on a donc $I(\gamma, \beta) \geq 1$.

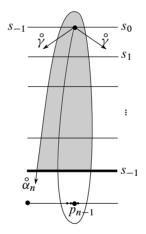


Figure 18: Illustration du lemme 4.2 (par définition de $(\alpha_k)_k$, il n'y a aucun point de K dans la zone grisée).

Remarques (1) Comme α_0 et α_1 sont homotopiquement disjoints, on a :

$$I(\alpha_0, \alpha_1) = I(\alpha_1, \alpha_0) = 0.$$

(2) On n'utilisera pas ce résultat dans la suite, mais on peut calculer précisément les nombres d'intersections positives entre α_0 et α_k pour tout $k \ge 2$. On a :

$$I(\alpha_0, \alpha_k) = \frac{3^{k-1} + 2k - 3}{4}$$
 et $I(\alpha_k, \alpha_0) = \frac{3^{k-1} - 2k + 1}{4}$.

En effet, notons $(p_k, n_k) = (I(\alpha_0, \alpha_k), I(\alpha_k, \alpha_0))$. On a alors :

$$(p_{k+1}, n_{k+1}) = (2p_k + n_k + 1, p_k + 2n_k).$$

Ceci vient de la construction de $(\alpha_k)_k$: on trace un tube autour de α_{k-1} , et on peut donc regarder l'orientation des intersections entre ce tube et α_0 . On sait alors exprimer p_k et n_k en fonction de k.

4.3 Non-retournement de l'axe $(\alpha_k)_k$

On note B la (2,4)—constante de Morse du graphe des rayons (voir la partie 3.2). Quitte à prendre sa partie entière supérieure, on suppose que B est un entier. On cherche à montrer une proposition de non-retournement de l'axe $(\alpha_k)_k$ (proposition 4.4), qui nous servira de manière fondamentale dans les constructions de quasi-morphismes non triviaux (proposition 4.7 et théorème 4.8). Pour montrer cette proposition, on a besoin de pouvoir comparer les orientations de certains segments.

Segments orientés dans le même sens Soit X un espace métrique géodésique. Soient $\gamma_1 = [p_1q_1]$ et $\gamma_2 = [p_2q_2]$ deux segments géodésiques de X de même longueur et orientés de p_i vers q_i . Soit γ_1' un segment géodésique (éventuellement infini) contenant γ_1 et soit C une constante telle que γ_2 est inclus dans un C-voisinage de γ_1' et telle que $d(p_1, p_2) \leq C$. On suppose de plus que $|\gamma_1| = |\gamma_2| \geq 3C$. Dans ces conditions, on dira que γ_1 et γ_2 sont orientés dans le même sens si pour tout $r \in \gamma_1'$ tel que $d(r, q_2) \leq C$, r est du même côté de p_1 que q_1 sur γ_1' . Comme γ_1 et γ_2 sont de longueur supérieure à 3C, on vérifie facilement que l'existence d'un seul r vérifiant ces conditions suffit.

Lemme 4.3 Si γ_1 et γ_2 sont les segments décrits précédemment et s'ils sont orientés dans le même sens, alors $d(q_1, q_2) \leq 3C$.

Preuve Soit r sur γ_1' tel que $d(q_2, r) \leq C$. On note α le segment de γ_1' entre p_1 et r, β celui entre r et q_1 .

• 1er cas : si $r \in \gamma_1$ On a alors :

$$|\gamma_2| = |\gamma_1| = |\alpha| + |\beta| \le d(p_1, p_2) + |\alpha| + C.$$

On en déduit :

$$|\beta| \le d(p_1, p_2) + C \le 2C.$$

Finalement on obtient:

$$d(q_1, q_2) \le d(q_1, r) + d(r, q_2) \le |\beta| + C \le 3C.$$

• 2ème cas : si $r \notin \gamma_1$ Alors le segment $[p_1, r] \subset \gamma_1'$ contient γ_1 (car γ_1 et γ_2 sont orientés dans le même sens, donc r ne peut pas être de l'autre côté de p_1 sur γ_1'). On a alors :

$$|\gamma_1| + |\beta| \le d(p_1, p_2) + |\gamma_2| + d(q_2, r) \le |\gamma_1| + 2C.$$

D'où:

$$|\beta| \leq 2C$$
.

Finalement:

$$d(q_1, q_2) \le d(q_1, r) + d(r, q_2) \le |\beta| + C \le 3C.$$

Non-retournement

Proposition 4.4 (Non-retournement) Soit B la (2,4)-constante de Morse du graphe des rayons et soit w un sous-segment de l'axe $l=(\alpha_k)_{k\in\mathbb{Z}}$ de longueur supérieure à 10B. Pour tout $g\in MCG(\mathbb{R}^2-K)$, si $g\cdot w$ est inclus dans le B-voisinage de l, alors il est orienté dans le même sens que w.

Autrement dit, les segments de l'axe l de longueur supérieure à 10B sont non retournables : il n'existe pas de copies de w^{-1} allant dans le sens de w dans le B-voisinage de l'axe l.

Remarque Si un élément $h' \in \Gamma$ est conjugué à h^{-1} par une application ψ , alors on note l' l'image de l par ψ , que l'on munit de l'orientation inverse de celle de l. C'est un axe pour h'. D'après la proposition précédente, pour tout w sous-segment de l'axe l' de h' de longueur supérieure à 10B et orienté dans le même sens que l', pour tout $g \in \Gamma$, si $g \cdot w$ est inclus dans un B-voisinage de l'axe l de h, alors $g \cdot w$ est orienté dans le sens opposé à celui de l.

Preuve de la proposition 4.4 On montre les deux lemmes suivants, qui nous permettent ensuite de conclure :

Lemme 4.5 Soient m < n deux entiers positifs et soit $w = (\alpha_m, \alpha_{m+1}, \dots, \alpha_n)$ un sous-segment de $(\alpha_k)_{k \in \mathbb{N}}$. Soit g un élément de $\mathrm{MCG}(\mathbb{R}^2 - K)$ tel que $d(\alpha_m, g \cdot \alpha_n) \leq B$ et tel que $g \cdot w$ est dans un B-voisinage de l, orienté dans le sens inverse de w. Alors si |w| > 8B + 1, il existe $m \leq i \leq n$ tel que $A(g \cdot \alpha_{i+2}) = A(g \cdot \alpha_i) - 2$.

Preuve Comme $d(\alpha_m, g \cdot \alpha_n) \leq B$, on a $A(g \cdot \alpha_n) \leq m + B$ (d'après le corollaire 2.5).

Comme $g \cdot w^{-1}$ et w vont dans le même sens et ont même longueur, d'après le lemme 4.3 on a :

$$d(\alpha_n, g \cdot \alpha_m) \leq 3B$$
.

D'où $A(g \cdot \alpha_m) \ge n - 3B$ (d'après le corollaire 2.5).

Comme A est 1-lipschitzienne (lemme 2.4), $A(g \cdot w)$ prend alors toutes les valeurs entières entre m + B et n - 3B. Par l'absurde, si on suppose que pour tout i entre m et n, $A(g \cdot \alpha_{i+2}) \neq A(g \cdot \alpha_i) - 2$, alors pour tout i on a :

$$A(g \cdot \alpha_{i+2}) \ge A(g \cdot \alpha_i) - 1.$$

Par récurrence, on en déduit :

$$A(g \cdot \alpha_n) \ge A(g \cdot \alpha_m) - \frac{n-m}{2}.$$

Comme $A(g \cdot \alpha_m) \ge n - 3B$ et $A(g \cdot \alpha_m) \ge n - 3B$, on a:

$$m+B\geq n-3B-\frac{n-m}{2}.$$

D'où finalement:

$$8B \ge n - m$$
.

Comme on a supposé |w| > 8B + 1, on obtient une contradiction.

Lemme 4.6 Pour tout $g \in MCG(\mathbb{R}^2 - Cantor)$ et pour tout $i \geq 0$, on a :

$$A(g \cdot \alpha_{i+2}) \neq A(g \cdot \alpha_i) - 2.$$

Preuve Comme pour tout $f \in MCG(\mathbb{R}^2 - Cantor)$ et pour tout $\beta, \gamma \in X_r$, on a $I(f,\beta,f,\gamma) = I(\beta,\gamma)$, on en déduit :

$$I(g \cdot \alpha_{i+2}, g \cdot \alpha_i) = I(\alpha_2, \alpha_0) = 0.$$

Par l'absurde, si $A(g \cdot \alpha_{i+2}) = A(g \cdot \alpha_i) - 2$, d'après le lemme 4.2 on a :

$$I(g \cdot \alpha_{i+2}, g \cdot \alpha_i) \ge 1.$$

On en déduit la proposition 4.4:

Preuve Par l'absurde : supposons qu'il existe une copie de w^{-1} qui convient, c'est-àdire un $g \in \Gamma$ tel que le segment $g \cdot w^{-1} = (g \cdot \alpha_n, \dots, g \cdot \alpha_{m+1}, g \cdot \alpha_m)$ est dans le B-voisinage de l'axe l et va dans le même sens que w. Quitte à composer g par h^k pour un certain $k \in \mathbb{Z}$, on peut supposer que $d(\alpha_m, g \cdot \alpha_n) \leq B$. Comme |w| > 8B + 1, les lemmes 4.5 et 4.6 nous permettent de conclure.

4.4 Un quasi-morphisme non trivial explicite sur Γ

On rappelle la construction de Fujiwara [16] de quasi-morphismes sur les groupes agissant sur des espaces hyperboliques. On fixe $p \in X_r$. Soient w et γ deux chemins de X_r . Une *copie de* w est chemin de la forme $g \cdot w$, avec $g \in \Gamma$. On note $|\gamma|_w$ le nombre maximal de copies disjointes de w sur γ , et

$$c_w(g) := d(p, g \cdot p) - \inf_{\gamma} (\log(\gamma) - |\gamma|_w),$$

l'infimum étant considéré sur tous les chemins γ entre p et $g\cdot p$. Comme X_r est hyperbolique, on a alors que l'application $q_w\colon \Gamma\to\mathbb{R}$ définie par $q_w:=c_w-c_{w^{-1}}$ est un quasi-morphisme sur Γ [16, proposition 3.10]. De plus, le quasi-morphisme homogène \widetilde{q}_w défini par $\widetilde{q}_w(g)=\lim_{n\to\infty}q(g^n)/n$ ne dépend pas du point $p\in X_r$ choisi pour construire c_w .

On peut maintenant montrer la proposition suivante (qui n'est pas utile pour montrer que l'espace des classes de quasi-morphismes non triviaux est de dimension infinie) :

Proposition 4.7 Soit $(\alpha_k)_{k \in \mathbb{Z}}$ la géodésique du graphe des rayons définie précédemment et soit w un sous-segment de cette géodésique de longueur supérieure à 10B, où B est la (2,4)-constante de Morse du graphe des rayons. Le quasi-morphisme \tilde{q}_w obtenu par la construction précédente est non trivial.

Remarque Comme on connaît la constante d'hyperbolicité du graphe X_{∞} , on peut en déduire celle du graphe des rayons, et on peut donc calculer la constante B: ainsi le segment w peut être choisi explicitement.

Preuve Comme \tilde{q}_w est homogène, il suffit de montrer que ce n'est pas un morphisme pour avoir la non-trivialité. On montre d'une part que $\tilde{q}_w(h)$ est non nul, où $h=t_1t_2t_1$ est l'élément hyperbolique de Γ défini précédemment, et d'autre part que $\tilde{q}_w(t_1)=\tilde{q}_w(t_2)=0$: ainsi $\tilde{q}_w(t_1t_2t_1)\neq \tilde{q}_w(t_1)+\tilde{q}_w(t_2)+\tilde{q}_w(t_1)$, donc \tilde{q}_w n'est pas un morphisme.

La première affirmation se déduit de la proposition 4.4. C'est la stratégie décrite dans Calegari [11, page 74] : si l'on note m la longueur de w et si l'on choisit $p=\alpha_0$, pour tout $k\in\mathbb{N}$ on a $c_w(h^{km})=k$ et $c_{w^{-1}}(h^{km})=0$. En effet, la première égalité est évidente, et pour la deuxième, on utilise le fait que les chemins qui réalisent l'infimum sont des (2,4)-géodésiques, d'après [16, lemme 3.3]. Ils restent donc dans un B-voisinage de l'axe $(\alpha_k)_k$, d'après le lemme de Morse . Par ailleurs ce voisinage ne contient pas de copie de w^{-1} , d'après la proposition 4.4 (voir [11, partie 3.5] pour plus de détails). Ainsi :

$$\widetilde{q}_w(h^m) := \lim_{k \to \infty} \frac{c_w(h^{km}) - c_{w^{-1}}(h^{km})}{k} = 1.$$

Donc \tilde{q}_w est non nul.

Montrons que $\tilde{q}_w(t_1) = \tilde{q}_w(t_2) = 0$. On choisit $p = \alpha_0$. Alors pour tout $k \in \mathbb{N}$, $t_1^k(\alpha_0)$ est une classe d'isotopie de courbe incluse dans l'hémisphère nord. Par suite $d(p,t_1^k\cdot p)=1$. Ainsi $c_w(t_1^k)=c_{w^{-1}}(t_1^k)=0$, et donc $\tilde{q}_w(t_1)=0$. De la même façon, $\tilde{q}_w(t_2)=0$. Finalement, on a montré que \tilde{q}_w est un quasi-morphisme non trivial. \square

Remarque Pour montrer que \tilde{q}_w n'est pas un morphisme, on peut aussi montrer que Γ est un groupe parfait, c'est-à-dire que tout élément de Γ s'écrit comme un produit de commutateurs. On en déduit que le seul morphisme de Γ dans $\mathbb R$ est le morphisme trivial. Comme \tilde{q}_w est non identiquement nul, ce n'est pas un morphisme.

L'écriture de tout élément de Γ comme produit de commutateurs se déduit d'un lemme de Calegari [10], que l'on peut énoncer ainsi : $Si \ g \in \Gamma$ est tel qu'il existe $x \in X_r$ tel que d(x, gx) = 1, alors g est le produit d'au plus deux commutateurs.

Soit $g \in \Gamma$ et soit $x \in X_r$ quelconque. On considère un chemin dans X_r entre x et gx, que l'on note $(x = x_0, x_1, \ldots, x_n = gx)$. Comme Γ agit transitivement sur X_r , pour tout $1 \le i \le n-1$ il existe $g_i \in \Gamma$ qui envoie x_{i+1} sur x_i , et qui s'écrit donc comme produit d'au plus deux commutateurs. On a alors que $g_1 \cdots g_{n-1}g$ envoie x sur x_1 , avec $d(x, x_1) = 1$. Ainsi cet élément s'écrit aussi comme produit d'au plus deux commutateurs. Finalement g s'écrit comme produit de commutateurs.

4.5 Dimension de l'espace des classes de quasi-morphismes non triviaux

Théorème 4.8 L'espace $\widetilde{Q}(\Gamma)$ des classes de quasi-morphismes non triviaux sur Γ est de dimension infinie.

Preuve On utilise le théorème 1 de Bestvina et Fujiwara [5]. Comme Γ agit par isométries sur le graphe des rayons qui est hyperbolique, si on trouve deux éléments hyperboliques $h_1, h_2 \in \Gamma$ agissant par translation sur des axes l_1 et l_2 respectivement, tels que l_1 et l_2 sont orientés dans le sens de cette action, et qui vérifient les deux propriétés suivantes, alors le théorème est démontré (voir [5]). Les deux propriétés à vérifier sont :

- (1) " h_1 et h_2 sont indépendants": la distance entre un demi-axe quelconque de l_1 et un demi-axe quelconque de l_2 est non bornée.
- (2) " $h_1 \sim h_2$ ": il existe une constante C telle que pour tout segment w de l_2 de longueur supérieure à C, pour tout $g \in \Gamma$, $g \cdot w$ sort du B-voisinage de l_1 ou bien est orienté dans le sens inverse de l_1 .

Trouvons donc deux éléments hyperboliques qui vérifient ces propriétés. On note $h_1 \in \Gamma$ l'élément h qui agit par translation sur l'axe $(\alpha_k)_k$ défini précédemment. Soit $\phi \in \Gamma$ la classe de la rotation d'angle π autour de l'infini. On suppose que K est symétriquement disposé autour de ∞ , de sorte que ϕ préserve K et envoie chaque sous-ensemble de Cantor K_i sur K_{-i-1} . Soit enfin $h_2 := \phi h_1^{-1} \phi^{-1}$. Alors $h_1 \sim h_2$ d'après la proposition 4.4 et la remarque qui la suit (la constante C := 10B convient, où B est la constante de Morse). D'autre part, on va montrer que h_1 et h_2 sont indépendants, ce qui conclura la preuve.

On a montré dans le corollaire 2.5 que pour tout $n \ge 2$, tout rayon à distance inférieure ou égale à (n-2) de $h_1^n(\alpha_0)$ commence par $\mathring{\alpha}_2$. De même tout rayon à distance inférieure ou égale à (n-1) de $h_1^{n-1}(\alpha_0)$ commence par $\mathring{\alpha}_1$.

On a un phénomène similaire pour h_2 , h_2^{-1} et h_1^{-1} . On note σ la classe d'isotopie de la symétrie axiale par rapport à l'équateur. En particulier, σ est égale à son inverse, fixe l'ensemble de Cantor K et n'est pas un élément de Γ car ne préserve pas l'orientation. De plus, comme ϕ est aussi égale à son inverse, on a :

$$h_2 = \phi h_1^{-1} \phi^{-1} = \sigma h_1 \sigma^{-1}.$$

$$h_2^{-1} = \phi h_1 \phi^{-1}.$$

$$h_1^{-1} = \sigma \phi h_1 (\sigma \phi)^{-1}.$$

D'autre part, on a $\phi \alpha_{-1} = \sigma \alpha_0$ (voir figure 19). Comme $\alpha_n = h_1^n(\alpha_0)$, on en déduit, d'après la troisième égalité qui précède, que pour tout $k \in \mathbb{Z}$:

$$\phi\alpha_{-k-1} = \sigma\alpha_k.$$

Si l'on étend l'écriture en suites complètes aux rayons qui commencent dans l'hémisphère nord, en ajoutant par exemple nord ou sud dans l'écriture en segments du rayon, on peut coder les $\phi \alpha_k$. On en déduit alors, en utilisant le corollaire 2.5 et les égalités qui précèdent, que (voir figure 19) :

- Pour tout $n \ge 2$, tout rayon à distance inférieure ou égale à n-2 de $h_2^n(\phi\alpha_0) = h_2^n(\sigma\alpha_{-1}) = \sigma h_1^{n-1}(\alpha_0)$ commence par $\phi \mathring{\alpha}_{-2} = \sigma \mathring{\alpha}_1$.
- Pour tout $n \ge 2$, tout rayon à distance inférieure ou égale à n-2 de $h_2^{-n}(\phi \alpha_0) = \phi(h_1^n \alpha_0)$ commence par $\phi \hat{\alpha}_2$.
- Pour tout $n \ge 2$, tout rayon à distance inférieure ou égale à n-2 de $h_1^{-n}(\alpha_0) = \sigma \phi h_1^n \phi \sigma \alpha_0 = \sigma \phi h_1^n \alpha_{-1}$ commence par $\mathring{\alpha}_{-2} = \sigma \phi \mathring{\alpha}_1$.

Ainsi, pour tout $n \ge 2$, tous les éléments des boules de rayon (n-2) et de centres respectifs $h_1^n(\alpha_0)$, $h_2^n(\phi\alpha_0)$, $h_2^{-n}(\phi\alpha_0)$ et $h_1^{-n}(\alpha_0)$ commencent respectivement par $\mathring{\alpha}_2$,

 $\phi \mathring{\alpha}_{-2}$, $\phi \mathring{\alpha}_2$ et $\mathring{\alpha}_{-2}$. Or $\mathring{\alpha}_2$, $\phi \mathring{\alpha}_{-2}$, $\phi \mathring{\alpha}_2$ et $\mathring{\alpha}_{-2}$ n'ont deux à deux pas de représentants disjoints : ces quatre boules sont donc disjointes (et même à distance supérieure à 1). Ainsi les axes l_1 et l_2 de h_1 et h_2 sont tels que la distance entre deux demi-axes est non bornée.

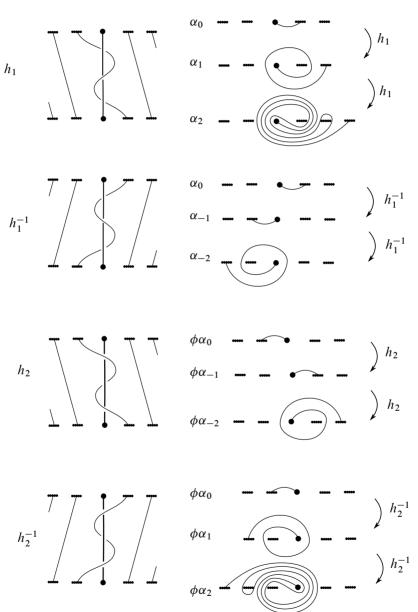


Figure 19: h_1 , h_2 , leurs inverses et leur action sur quelques rayons

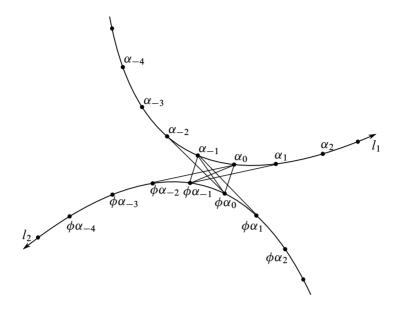


Figure 20: Axes de h_1 et h_2 : ce graphe est isométriquement plongé dans X_r

Remarque Plus précisément, on a que pour tous $|n|, |m| \ge 2$ (voir figure 20):

$$d(h_2^n(\phi\alpha_0), h_1^m(\alpha_0)) \ge |n| + |m| - 1.$$

5 Exemple d'un élément hyperbolique de scl nulle

Danny Calegari a montré que les éléments de Γ ayant une orbite bornée sur le graphe des rayons sont de scl nulle (voir [10]). Montrons que la réciproque n'est pas vraie.

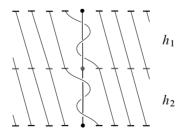


Figure 21: L'élément $g := h_2 h_1$.

Proposition 5.1 Il existe un élément $g \in \Gamma$ hyperbolique de scl nulle.

Preuve Soient h_1 et h_2 les deux éléments de Γ définis dans la preuve du théorème 4.8 : h_1 est l'élément h défini plus tôt, et $h_2 = \phi h_1^{-1} \phi^{-1}$, où ϕ est la classe de la rotation d'angle π autour l'infini. Soit $g := h_2 h_1$ (voir figure 21). Alors g est conjugué à son inverse (car $\phi = \phi^{-1}$), donc $\mathrm{scl}(g) = 0$. Montrons que de plus, g est hyperbolique. On construit pour cela un demi-axe géodésique $(\gamma_k)_k$ du graphe des rayons, sur lequel g agit par translation (comme on l'avait fait avec $(\alpha_k)_k$ pour montrer que h est hyperbolique).

Définition de $(\gamma_k)_k$ La suite $(\gamma_k)_k$ se défini de manière similaire à $(\alpha_k)_k$, à ceci près que pour définir α_{k+1} à partir de α_k on longeait la courbe et on contournait le point d'attachement de α_k toujours par la droite, mais pour $(\gamma_k)_k$ on contourne le point d'attachement de la courbe précédente alternativement une fois par la droite, une fois par la gauche (voir figures 22 et 23).

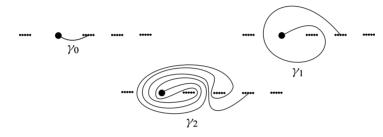


Figure 22: Rayons γ_0 , γ_1 et γ_2 .

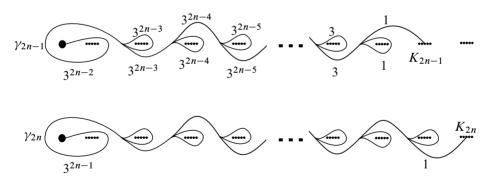


Figure 23: Graphes représentant γ_k dans le cas impair (en haut) et dans le cas k pair (en bas).

Plus précisément, on définit la suite de rayons $(\gamma_k)_{k\geq 0}$ par récurrence de la manière suivante :

- $\gamma_0 := \alpha_0$ est la classe d'isotopie du segment s_0 ayant pour extrémités ∞ et p_0 .
- Pour tout $k \ge 1$, k impair (contournement du point d'attachement par la droite): pour obtenir γ_{k+1} , on part de ∞ , on longe γ_k jusqu'à son point d'attachement p_k

(dans un voisinage tubulaire de γ_k), on contourne ce point *par la droite* en traversant les segments voisins, *d'abord* s_{k+1} *puis* s_k , on longe à nouveau γ_k dans un voisinage tubulaire, on contourne ∞ en traversant s_0 puis s_{-1} , on longe une dernière fois γ_k dans un voisinage tubulaire jusqu'à son point d'attachement et on va s'attacher au point p_{k+1} sans traverser l'équateur.

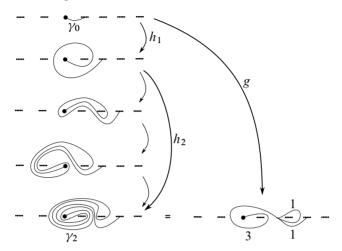


Figure 24: Graphe représentant l'image de γ_0 par g, où l'on a décomposé l'action de h_2 en trois parties, comme on l'avait fait plus tôt pour h. Les deux graphes du bas représentent le même rayon, à savoir $g(\gamma_0) = \gamma_2$.

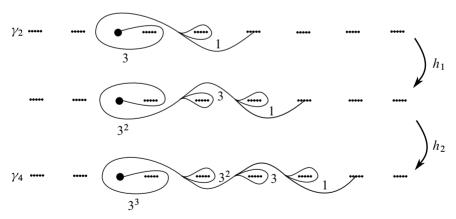


Figure 25: Action de g sur γ_2 .

• Pour tout $k \ge 1$, k pair (contournement du point d'attachement par la gauche): pour obtenir γ_{k+1} , on part de ∞ , on longe γ_k jusqu'à son point d'attachement p_k (dans un voisinage tubulaire de γ_k), on contourne ce point par la gauche en traversant les segments voisins, d'abord s_k puis s_{k+1} , on longe à nouveau γ_k dans un voisinage

tubulaire, on contourne ∞ en traversant s_{-1} puis s_0 , on longe une dernière fois γ_k dans un voisinage tubulaire jusqu'à son point d'attachement et on va s'attacher au point p_{k+1} sans traverser l'équateur.

Vu les similarités de construction entre $(\alpha_k)_k$ et $(\gamma_k)_k$, on peut adapter les mêmes arguments que ceux utilisées dans la partie 2 : en particulier le lemme 2.4, puis son corollaire 2.5 et la proposition 2.7. On en déduit que le demi-axe $(\gamma_k)_{k\in\mathbb{N}}$ est géodésique.

L'élément g agit par translation sur $(\gamma_k)_k$ On voit par récurrence en utilisant les graphes représentant les rayons (comme on l'avait fait pour montrer que h est hyperbolique) que $g^n(\gamma_0) = \gamma_{2n}$ pour tout $n \in \mathbb{N}$, voir la figure 24 pour le cas n = 0, la figure 25 pour le cas n = 1 et la figure 26 pour le cas général.

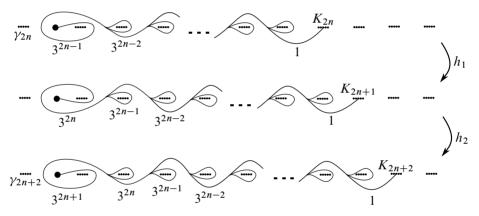


Figure 26: Action de g sur γ_{2n} : $g(\gamma_{2n}) = \gamma_{2n+2}$.

Références

- [1] **J Barge**, É Ghys, Surfaces et cohomologie bornée, Invent. Math. 92 (1988) 509–526 MR939473
- [2] C Bavard, Longueur stable des commutateurs, Enseign. Math. 37 (1991) 109–150 MR1115747
- [3] F Béguin, S Crovisier, F Le Roux, Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: the Denjoy–Rees technique, Ann. Sci. École Norm. Sup. 40 (2007) 251–308 MR2339286
- [4] M Bestvina, K Bromberg, K Fujiwara, Stable commutator length on mapping class groups, preprint (2013) arXiv:1306.2394

[5] **M Bestvina**, **K Fujiwara**, *Bounded cohomology of subgroups of mapping class groups*, Geom. Topol. 6 (2002) 69–89 MR1914565

- [6] MR Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer, Berlin (1999) MR1744486
- [7] R Brooks, Some remarks on bounded cohomology, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference", (I Kra, B Maskit, editors), Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, NJ (1981) 53–63 MR624804
- [8] M Burger, N Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. 1 (1999) 199–235 MR1694584
- [9] **D Calegari**, *Circular groups*, *planar groups*, *and the Euler class*, from: "Proceedings of the Casson Fest", (R Kirby, V Krushkal, Z Wang, editors), Geom. Topol. Monogr. 7 (2004) 431–491 MR2172491
- [10] **D Calegari**, *Big mapping class groups and dynamics* (2009) blog post Available at http://tinyurl.com/calegari-blog
- [11] D Calegari, scl, MSJ Memoirs 20, Math. Soc. Japan, Tokyo (2009) MR2527432
- [12] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge Univ. Press, Cambridge (1988) MR964685
- [13] **H Endo, D Kotschick**, *Bounded cohomology and non-uniform perfection of mapping class groups*, Invent. Math. 144 (2001) 169–175 MR1821147
- [14] DBA Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966) 83–107 MR0214087
- [15] **B Farb**, **D Margalit**, *A primer on mapping class groups*, Princeton Math. Series 49, Princeton Univ. Press, Princeton, NJ (2012) MR2850125
- [16] **K Fujiwara**, *The second bounded cohomology of a group acting on a Gromov-hyperbolic space*, Proc. London Math. Soc. 76 (1998) 70–94 MR1476898
- [17] **É Ghys**, *Groups acting on the circle*, Enseign. Math. 47 (2001) 329–407 MR1876932
- [18] **M Gromov**, *Volume and bounded cohomology*, Inst. Hautes Études Sci. Publ. Math. (1982) 5–99 MR686042
- [19] **M Handel**, A fixed-point theorem for planar homeomorphisms, Topology 38 (1999) 235–264 MR1660349
- [20] S Hensel, P Przytycki, R C H Webb, Slim unicorns and uniform hyperbolicity for arc graphs and curve graphs, preprint (2013) arXiv:1301.5577
- [21] **M Korkmaz**, *Stable commutator length of a Dehn twist*, Michigan Math. J. 52 (2004) 23–31 MR2043394
- [22] **HA Masur**, **YN Minsky**, *Geometry of the complex of curves, I: Hyperbolicity*, Invent. Math. 138 (1999) 103–149 MR1714338

[23] **S Matsumoto**, *Arnold conjecture for surface homeomorphisms*, from: "Proceedings of the French–Japanese Conference "Hyperspace Topologies and Applications", Topol. Appl. 104 (2000) 191–214

IMJ-PRG, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cedex 05, France

 ${\tt juliette.bavard@imj-prg.fr}$

http://webusers.imj-prg.fr/~juliette.bavard/

Proposed: Danny Calegari Received: 23 September 2014 Seconded: Leonid Polterovich, Bruce Kleiner Accepted: 21 May 2015