On the complexity of immersed normal surfaces

Benjamin A Burton
Éric Colin de Verdière
Arnaud de Mesmay

Normal surface theory, a tool to represent surfaces in a triangulated 3–manifold combinatorially, is ubiquitous in computational 3–manifold theory. In this paper, we investigate a relaxed notion of normal surfaces where we remove the quadrilateral conditions. This yields normal surfaces that are no longer embedded. We prove that it is NP-hard to decide whether such a surface is immersed. Our proof uses a reduction from Boolean constraint satisfaction problems where every variable appears in at most two clauses, using a classification theorem of Feder. We also investigate variants, and provide a polynomial-time algorithm to test for a local version of this problem.

57N10, 68Q17; 57Q35, 68U05

1 Introduction

The field of computational topology aims at providing computational and efficient tools to deal with topological problems. In this theory, the dimension of the problems considered has a very direct impact on the complexity of the algorithms designed to solve them. Fundamental problems tend to have polynomial-time solutions for surfaces (see Colin de Verdière [6]), while in dimensions four and larger, things easily become undecidable (see Stillwell [23, Chapter 9]). In the intermediate case, most of the problems encountered in 3–dimensional topology are decidable but typically solved with (at least) exponential-time algorithms. Probably the most famous of these is unknot recognition, whose complexity is in NP (see Hass, Lagarias and Pippenger [13]), and in co-NP assuming the generalized Riemann hypothesis (see Kuperberg [15]), but for which no polynomial-time algorithm nor hardness proof is known.

Normal surfaces A standard way to study 3–manifolds is to investigate which surfaces can be embedded in them. Normal surfaces, used in a wealth of algorithms, are perhaps the most ubiquitous tool for this purpose. First brought to the algorithmic light by Haken [12], normal surfaces provide a compact and structured way to analyze and enumerate the most interesting surfaces embedded in a 3–manifold. Starting with a
triangulation T of a 3–manifold M with t tetrahedra, a normal surface is a (possibly disconnected) surface in M whose intersection with each tetrahedron is a disjoint union of disks of seven simple possible types (see Figure 1 and Section 2.2 below). This allows a normal surface to be entirely described by a vector in $\mathbb{Z}_{\geq 0}^t$, its normal coordinates. Many interesting surfaces, such as for example a Seifert disk of an unknotted closed curve, are witnessed by a normal surface having coordinates at most exponential in t; see Hass, Lagarias, and Pippenger [13]. This is the starting point of many algorithms based on the enumeration of normal surfaces, which naturally have an exponential complexity.

In addition to providing a succinct representation of embedded surfaces, normal surfaces also possess an additional algebraic structure. Indeed, the natural addition and scalar multiplication of vectors translate to operations on normal surfaces, and the space of normal surfaces in $\mathbb{Z}_{\geq 0}^t$ is characterized by a set of equations: the matching equations and the quadrilateral conditions. The former are linear equations specifying the way to glue normal surfaces locally, while the latter are non-linear and ensure that the resulting surface is embedded. Spaces defined by linear constraints can be studied by the means of linear programming (see Matoušek and Gärtner [17]), which provides a very powerful framework to deal with decision and optimization problems. This motivates the study of a notion of relaxed normal surfaces, where we remove the quadrilateral conditions to obtain a simpler, polyhedral structure on the space of normal surfaces.

Our results As we shall see later, removing the quadrilateral conditions amounts to removing the embeddedness of normal surfaces. Therefore, it amounts to dealing with singular normal surfaces. Among these, the immersed normal surfaces are well behaved in the sense that, while they can self-intersect, they are still 2–manifolds locally. Moreover, their Euler characteristics depend linearly on their normal coordinates; this fact is crucial in algorithms that work with embedded normal surfaces [13], but does not hold for all singular normal surfaces. Coupling singular normal surface theory with an algorithm that efficiently separates immersed normal surfaces from the others would put powerful tools at our disposal: this could lead to efficient algorithms to find immersed low-genus surfaces in 3–manifolds. Furthermore, through classical topological results like Dehn’s lemma or the loop theorem (see Hatcher [14]) we would obtain embedded surfaces, which are the key to the unknot problem and many others.

In this article, we show some inherent limitations of this method by proving in Theorem 6 that it is NP-hard to detect whether a given set of normal coordinates can represent an immersed normal surface. In other words, if $P \neq NP$, then there cannot be a polynomial-time algorithm for this problem.

Immersed normal surfaces have been introduced from a mathematical point of view by Letscher [16] and, in the particular case of the figure-eight knot complement, from a
computational perspective by Aitchison, Matsumoto and Rubinstein [2], Rannard [20], and Matsumoto and Rannard [18]. In the latter papers, the authors devise and implement an algorithm to decide whether a given set of normal coordinates can represent an immersed normal surface, and find such an immersed surface if there is one. While the complexity of this algorithm is not explicitly computed, it is at least doubly exponential in the input size. Our main result shows that the problem is inherently hard and that no polynomial-time solution is to be expected.

The complexity reduction used in the proof of this theorem works by reducing the problem to a satisfiability problem, which at first sight appears to follow a standard technique. However, the flavor of this reduction is that in this problem, it turns out to be very hard to obtain more than two copies of every variable. Our proof thus relies on relatively intricate classification theorems on the complexity of Boolean constraint satisfaction problems where every variable occurs at most twice; see Dalmau and Ford [8] and Feder [9]. This approach is thus, to some extent, original, and might prove useful to obtain other hardness proofs that could be hard to achieve by other traditional means.

Hardness results are scarce in 3–dimensional computational topology, and to our knowledge all the other difficulty results are deduced from the Agol–Hass–Thurston construction [1], except for the recent hardness results on computing taut angle structures (see Burton and Spreer [5]) and optimal Morse matchings (see Burton, Lewiner, Paixão and Spreer [4]). Our result displays a different intractability aspect of this theory. In contrast to the aforementioned result by Agol, Hass and Thurston, we also prove that this problem is NP-hard even when restricting the inputs to be sub-manifolds of \mathbb{R}^3, or even handlebodies.

On the upper bound side, it is a natural question to wonder whether this problem can be solved in polynomial time when the size of the triangulation is fixed. As partial evidence for this, the aforementioned work of Matsumoto and Rannard [18] suggests that the problem may be solved in polynomial time in the specific case of the figure-eight knot complement. Although we make no progress on this question in full generality, we show that, if the triangulation just consists of tetrahedra all sharing a single edge, the problem has a polynomial-time solution, as it can solved by computing a maximum flow. Another view on this algorithm is that it can certify local immersibility, where the locality means that it can only check whether there is an obstruction to being immersed around every edge, but it is not global since ensuring immersibility at some point might force a branch point at some other point for the triangulation.

This paper is organized as follows. We start by introducing the main concepts of 3–manifold topology, normal surface theory, and Boolean constraint satisfaction in Section 2. In Section 3, we describe our reduction and prove the main theorem.
Section 4 explores some variants of the immersibility problem that remain NP-hard. Finally, in Section 5, we provide an algorithm to test immersibility in the restricted case of tetrahedra glued around a single edge.

Acknowledgements Benjamin A Burton received support by the Australian Research Council (projects DP1094516 and DP110101104). Arnaud de Mesmay received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number 291734. Portions of this work were done while Benjamin A Burton was invited professor at École normale supérieure, while Éric Colin de Verdière was invited professor at University of Queensland and while Arnaud de Mesmay was a graduate student at École normale supérieure and a post-doc at IST Austria.

2 Preliminaries

2.1 Complexity classes

We first very briefly introduce some standard notions of complexity theory; see for example Arora and Barak [3] for more details. P denotes the class of yes/no problems solvable in polynomial time. NP (respectively NEXP) denotes the class of yes/no problems whose “yes” instances admit a polynomial-sized (respectively exponential-sized) certificate: some additional data such that, when given the instance and the certificate, it can indeed be verified in polynomial (respectively exponential) time that the instance is a “yes” instance. Obviously, P is included in NP, and probably the most outstanding open question in computer science is to determine whether P is equal to or different from NP; it is widely believed that they are different.

A problem A reduces to a problem B (roughly) if, when given an oracle to solve problem B, one can solve problem A in polynomial time. A problem A is NP-hard if it is “at least as hard” as any problem in NP, or more precisely if every problem in NP reduces to it. If P and NP are different, then no NP-hard problem can be solved in polynomial time. Finally, a problem is NP-complete if it is both NP-hard and in NP.

2.2 Background on normal surface theory

For completeness, we give a (rather standard) background on normal surface theory; see for example Hass, Lagarias and Pippenger [13] or Gordon [11] for more details. A 3–manifold with boundary is a compact topological space such that every point is locally homeomorphic to \(\mathbb{R}^3 \) or to the closed half-space \(\{ x, y, z \mid x, y, z \in \mathbb{R}, z \geq 0 \} \).
We will describe 3–manifolds using *triangulations*: A triangulation T is a topological space obtained from a disjoint set of t tetrahedra $T = (T_1, \ldots, T_t)$ by (combinatorially) gluing some pairs of two-dimensional faces of these tetrahedra; a gluing between two faces is specified by a bijection from the vertex set of the first face to the vertex set of the second face. As a result of these gluings, edges and vertices of tetrahedra are also identified; it is also allowed to glue two zero-, one- or two-dimensional faces of the same tetrahedron. A *face* of a triangulation T is a two-dimensional simplex, incident to one or two tetrahedra in T.

The following lemma is standard [19]; we include it for further reference:

Lemma 1 A triangulation is a 3–manifold (possibly with boundary) if and only if

1. each vertex has a neighborhood homeomorphic to \mathbb{R}^3 or to the closed half-space, and
2. after the gluings, no edge is identified to itself in the reverse orientation.

(These two conditions are obviously necessary, and turn out to be sufficient to ensure that every point of the triangulation has a manifold neighborhood.)

Henceforth, T denotes a triangulation of a 3–manifold M. A *normal isotopy* is an ambient isotopy of M that is fixed on the 2–skeleton of T. A *normal surface* in T is a properly embedded surface in T that meets each tetrahedron in a (possibly empty) disjoint collection of *normal disks*, each of which is either a *triangle* (separating one vertex of the tetrahedron from the other three) or a *quadrilateral* (separating two vertices from the other two). In each tetrahedron, there are four possible types of triangles and three possible types of quadrilaterals, pictured in Figure 1. The intersection of an embedded normal surface with a face of the triangulation gives rise to a *normal arc*. There are three possible types of normal arcs within each face: the type of a normal arc is defined according to which vertex of the face it separates from the other two.

![Figure 1](image-url)

Figure 1: The seven types of normal disks within a given tetrahedron: four triangles and three quadrilaterals.
Each embedded normal surface has associated normal coordinates: a vector in $\mathbb{Z}^t_{\geq 0}$, where t is the number of tetrahedra in T, listing the number of triangles and quadrilaterals of each type in each tetrahedron. The normal coordinates provide a very compact and elegant description of that surface, and satisfy two sets of conditions:

- The first set of conditions is the matching equations. Consider a normal arc type in a given non-boundary face f of T. This normal arc type corresponds to exactly one triangle normal coordinate, $v_{t,1}$, and one quadrilateral normal coordinate, $v_{q,1}$, in a tetrahedron incident with f. Similarly, let $v_{t,2}$ and $v_{q,2}$ be the triangle and quadrilateral normal coordinates corresponding to that arc type in the opposite tetrahedron. The matching equation for that arc type is, by definition, $v_{t,1} C v_{q,1} D = v_{t,2} C v_{q,2}$.

- The second set of conditions, the quadrilateral conditions, stipulates that, within any tetrahedron, at most one of the three quadrilateral coordinates can be non-zero. Indeed, two quadrilaterals of different types within the same tetrahedron must cross, and therefore this condition is needed to ensure that the surface does not self-intersect.

Conversely, if T is a triangulation of size t and $v \in \mathbb{Z}^t_{\geq 0}$, then v corresponds to an embedded normal surface if and only if the matching equations and the quadrilateral conditions are fulfilled. The reconstruction process can be described as follows:

- In each tetrahedron, by the quadrilateral conditions, there is at most one non-zero quadrilateral coordinate. One places as many parallel copies of this quadrilateral as needed in the tetrahedron, and then places each triangle close to the vertex of the tetrahedron that it separates from the other three. It is straightforward to do so without having any intersection between triangles and quadrilaterals.

- One glues the faces on the triangulation together, and in the process, one needs to glue normal arcs, that is, triangles or quadrilaterals on the one side to triangles and quadrilaterals on the other side. By the matching equations, the numbers fit, and the gluing is imposed by the order in which the normal disks are placed in the tetrahedra.

Therefore, an embedded normal surface is represented up to a normal isotopy by a vector in $\mathbb{Z}^t_{\geq 0}$ satisfying the matching equations and the quadrilateral conditions. Moreover, given a triangulation and normal coordinates, checking that the matching equations or the quadrilateral conditions hold can trivially be done in linear time.

From this construction, one sees moreover that every set of normal coordinates corresponds to a unique normal surface, up to a normal isotopy.
2.3 Singular and immersed normal surfaces

Consider a vector \(v \in \mathbb{Z}_{\geq 0}^{7t} \) of normal coordinates satisfying the matching equations, but not necessarily the quadrilateral conditions. For each \(i \in \{1, \ldots, 7t\} \), build \(v_i \) normal disks of the corresponding type in the corresponding tetrahedron, in general position, in a way that, on each non-boundary face \(f \) of \(T \), the images of the normal arcs arising from both sides of \(f \) agree. The matching equations imply that such a construction is always possible. Note that, with this gluing, we do not forbid intersections between normal disks in a single tetrahedron, and that such intersections are actually necessary if two different quadrilateral coordinates within the same tetrahedron are non-zero.

More precisely, consider a given normal arc type in a given non-boundary face \(f \) of \(T \), corresponding (as above) to two normal coordinates \(v_{t,1} \) and \(v_{q,1} \) in a tetrahedron incident to \(f \), and also to two normal coordinates \(v_{t,2} \) and \(v_{q,2} \) in the adjacent tetrahedron. Recall that the matching equations imply that \(v_{t,1} + v_{q,1} \) and \(v_{t,2} + v_{q,2} \) are equal. The data of a bijection between these \(v_{t,1} + v_{q,1} \) normal disks in the first tetrahedron with these \(v_{t,2} + v_{q,2} \) normal disks in the second tetrahedron is called the \textit{local gluing} of that arc type. The aggregated information of all the local gluings is called the \textit{global gluing}.

The union of these normal disks glued according to such rules is the image of a surface under a continuous map, since abstractly gluing triangles and quadrilaterals by pairwise identifications of edges always results in a surface (whose actual geometric realization in \(T \) may self-cross). This is called a \textit{singular normal surface}. The continuous map may either be locally one-to-one, in which case it is called an \textit{immersed normal surface}, or have \textit{branch points}, as pictured in Figure 2. Since normal disks are embedded within each tetrahedron, any branch point of a singular surface is necessarily on an edge of the triangulation; it corresponds to a small closed curve on the surface “winding more than once” around the edge of the triangulation.
2.4 The immersibility problem

The main problem studied in this paper is the following. Consider now some normal coordinates satisfying the matching equations, but not necessarily the quadrilateral conditions. As described above, there are many ways to glue the corresponding normal disks to obtain a singular normal surface. Then, depending on the choice of the gluings, some of the resulting surfaces may be immersed while some other may have branch points. If there exists a global gluing whose corresponding singular surface is immersed, we say that the normal coordinates are immersible. In this paper, we study the computational complexity of the following problem:

Problem 2 (Immersibility)

Input A triangulation T and normal coordinates N.

Output Are the normal coordinates N immersible?

Two difficulties lie at the heart of this problem: not only do we need to guess a “good” gluing, but this gluing may have an exponential complexity in the input, since the normal coordinates are naturally compressed by the bit representation. Therefore, the naive algorithm (implemented by Matsumoto and Rannard [18]) is doubly exponential, which can be seen just at the level of local gluings: if there are k arcs of a given arc type, there are $k!$ possible local gluings, while the normal coordinates involved are $O(k)$ and can thus be encoded in $O(\log k)$ bits.

2.5 Representation of singular normal surfaces

To describe the singular normal surfaces more accurately, we now introduce a schematic representation of singular normal surfaces.

A *block* is a family of tetrahedra that all have one edge e in common (see Figure 3(a)) and we always assume that e is not on the boundary of T. In what follows, we consider the normal disks that intersect e. Since we want to picture cleanly what happens on the back of this block, we will unfold it as in Figure 3(b), with the implicit convention that the rightmost face is glued to the leftmost face. Although normal disks can be drawn inside this block, the pictures easily become congested when there are several of them. Instead, we will forget the edge e in the representation and represent the normal disks intersecting e by their normal arcs, that is, by their intersection with the front faces (Figure 3(c)). These normal arcs are glued together and form possibly self-intersecting closed curves, called *block curves*. Abstracting a bit more, horizontal lines will represent triangles, while diagonal ones will stand for quadrilaterals (Figure 3(d)). Finally, to make these pictures even more readable, we will draw the edges between
the tetrahedra vertically, only linking them at the extreme top and bottom parts of the figures (Figure 3(e)).

We will use the following convention in the figures (see Figure 4): Whenever we want to represent normal coordinates, without a specific gluing, the normal arcs are drawn so that they connect the midpoints of the corresponding edges of the triangulation.
Whenever we want to represent normal coordinates with a particular gluing, we perturb these normal arcs to emphasize the crossings.

The singular normal surface has a branch point at e if and only if some block curve “winds more than once” around e or, equivalently, self-intersects, as in Figure 5. With this in mind, it is easy to see that a branch point can only occur on a non-boundary edge of T.

![Figure 5: A branch point (also depicted in Figure 2) and its representation by a block curve winding twice around an edge.](image)

Therefore, given the data of normal coordinates satisfying the matching equations, together with a global gluing, we can easily determine whether the corresponding singular normal surface is immersed or not, in time linear in the size of the input (namely, sum of all the normal coordinates, of the complexity of the triangulation T and the complexity of the global gluing). Since a global gluing can be encoded in space exponential in the input, this shows that, given only the normal coordinates, the problem of deciding whether some global gluing leads to an immersed surface is in NEXP. Our goal in this article is to show that this problem is NP-hard. Note that it is unknown whether it is in NP.

2.6 Boolean constraint satisfaction problems

In this section, we recall a few basic results about Boolean constraint satisfaction problems; our presentation is inspired by Dalmau and Ford [8]. For a more detailed account of this tremendous body of research, we refer to the book of Creignou, Khanna and Sudan [7].

We start by introducing the generalized satisfiability problem $\text{SAT}(R)$, which is a variant of the usual SAT problem. An r–ary relation R is any nonempty subset of $\{0, 1\}^r$. A CNF(R)–formula is a finite conjunction of clauses $C_1 \land \cdots \land C_n$ such that each clause, C_i, is an atomic formula of the form $R(v_1, \ldots, v_r)$ where v_1, \ldots, v_r
are Boolean variables. The set of variables is denoted by V. An atomic formula $R(v_1, \ldots, v_r)$ is satisfied by a variable assignment $f : V \rightarrow \{0, 1\}$ if and only if $(f(v_1), \ldots, f(v_r)) \in R$, and a CNF$(R)$ formula is satisfiable if and only if there exists an assignment satisfying all its clauses simultaneously. Each relation R gives rise to the generalized satisfiability problem SAT(R): given a CNF(R)–formula, is it satisfiable?

It is sometimes convenient to assume that constants can appear in CNF(R)–formulas: each clause is an atomic formula of the form $R(v_1; \ldots; v_r)$, where each v_i is a Boolean variable or a constant (0 or 1). We call any formula obtained this way a CNF$C(R)$–formula. Similarly, the problem generalized satisfiability problem with constants, SAT$C(R)$, is defined with CNF$C(R)$–formulas.

The computational complexity of the generalized satisfiability problem with constants has been completely classified by Schaefer in a celebrated paper [21]. We introduce the following definitions in order to state this classification. Here, the symbols $\land, \lor, \oplus : \{0, 1\}^r \times \{0, 1\}^r \rightarrow \{0, 1\}^r$ denote the usual logical operations AND, OR and XOR, applied bit-wise.

A relation R is

- **Horn** if $x, y \in R \rightarrow x \land y \in R$,
- **dual-Horn** if $x, y \in R \rightarrow x \lor y \in R$,
- **bijunctive** if $x, y, z \in R \rightarrow (x \land y) \lor (x \land z) \lor (y \land z) \in R$,
- **affine** if $x, y, z \in R \rightarrow x \oplus y \oplus z \in R$.

A relation R is Schaefer if it is Horn, dual-Horn, bijunctive, or affine.

Theorem 3 (Schaefer [21]) Let R be a relation. If R is Schaefer, then SAT$C(R)$ is in P, otherwise it is NP-hard.

For our reduction, we will restrict ourselves to constraint satisfaction problems where the number of occurrences of every variable is at most 2. We denote by SAT$(2, R)$ the instances of SAT(R) in which every variable occurs at most twice. Similarly, we denote by SAT$C(2, R)$ the instances of SAT$C(R)$ in which every variable occurs at most twice. The following definition is key to the classification of these problems.

Let $R \subseteq \{0, 1\}^r$ be a relation. If $x, y, x' \in \{0, 1\}^r$, then x' is a step from x to y if $d(x, x') = 1$ and $d(x, x') + d(x', y) = d(x, y)$, where d is the Hamming distance. R is a Δ–matroid (relation) if it satisfies the following two-step axiom:

For all $x, y \in R$ and for all x' a step from x to y, either $x' \in R$ or there exists $x'' \in R$ which is a step from x' to y.

Geometry & Topology, Volume 20 (2016)
We now come to the classification theorem for SAT$_C$(2, R):

Theorem 4 (Feder [9]) Let R be a relation that is not a Δ–matroid relation. Then SAT$_C$(2, R) is polynomially equivalent to SAT$_C$(R).

Theorem 3 and Theorem 4 immediately imply the complexity result that we will use:

Corollary 5 Let R be a relation that is not Schaefer (that is, not Horn, dual Horn, bijunctive, or affine) and not a Δ–matroid. Then SAT$_C$(2, R) is NP-hard.

3 NP–hardness of detecting immersibility

In this section, we prove the following theorem.

Theorem 6 The problem IMMERSIBILITY is NP-hard.

The proof of Theorem 6 will proceed by a reduction of SAT$_C$(2, R) to the problem IMMERSIBILITY for a specific relation R. Then, observing that R is neither Schaefer nor a Δ–matroid will prove by Corollary 5 that SAT$_C$(2, R) and hence IMMERSIBILITY are NP-hard.

3.1 Gadgets

We now show how to reduce SAT$_C$(2, R) to the problem IMMERSIBILITY. To this end, we use a 6–ary relation R which we will describe later. We start with a formula Φ that is, by definition, a conjunction of clauses of the form $R(x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6})$, where x_{i} is either a variable or a constant, and every variable appears at most twice in Φ.

The gadgets that we use for our reduction are of three types. Each clause is represented by a clause gadget, a block of six tetrahedra glued together around an edge. For each variable occurring exactly twice in Φ, we connect these two occurrences in the clauses using tubes, which are also blocks of six tetrahedra. Finally, the constant gadgets are used to represent the constants 0 or 1 appearing in the clauses. The idea for the proof is that a clause is satisfiable if and only if the normal coordinates in the clause gadget are immersible; the tubes then enforce consistency between the clauses. Therefore, the whole formula will be satisfiable if and only if the associated normal coordinates are immersible.
The clause gadget Consider the gadget G pictured in Figure 6. It consists of six tetrahedra that all have an edge in common, each containing three normal disks: two triangles and one quadrilateral. For every clause in Φ, we create a copy of the clause gadget G; these copies will be connected using tubes, described below.

The rationale behind this gadget is the following. At the interface of two adjacent tetrahedra, exactly two gluings can be done (see Figure 7). This choice of gluing can be described by a variable $x_i \in \{0, 1\}$, where 0 corresponds to the gluing (a) and 1 to the gluing (b). Equivalently, a value of 1 corresponds to the fact that the two block curves at the specified position cross. Therefore, each variable in a clause has a pair of associated faces on the boundary of the clause gadget; for example, the two shaded triangles in Figure 6 are the pair of faces associated to variable x_1.

This way, a global gluing of the singular normal surface in G is described by an element $x \in \{0, 1\}^6$. The order on the six variables is pictured in Figure 6.

Figure 6: The clause gadget. The pair of faces corresponding to the variable x_1 is shaded.

Figure 7: (a) Local gluing corresponding to $x_i = 0$. (b) Local gluing corresponding to $x_i = 1$.
We define the following relation R on 6 variables:

$$R = \left\{ \begin{array}{c}
(0, 0, 0, 1, 0, 1); (0, 1, 1, 0, 1, 1); (0, 0, 0, 0, 0, 0); (1, 1, 1, 1, 1, 1);
(0, 0, 1, 0, 1, 0); (1, 0, 1, 1, 0, 1);
(0, 1, 0, 1, 0, 0); (1, 1, 0, 1, 1, 0);
(1, 0, 1, 0, 0, 0); \\
(0, 1, 0, 0, 0, 1);
(1, 0, 0, 0, 1, 0)\end{array} \right\}$$

This allows us to get to the following lemma.

Lemma 7 The singular normal surface in the gadget G specified by the gluing $x \in \{0, 1\}^6$ is immersed if and only if $x \in R$.

Proof The proof is done by exhaustive checking, that is, checking for every possible 6–tuple whether there is a branch point around the central edge or not. As an example, Figure 8 pictures the singular normal surfaces obtained with the global gluings $(1, 0, 1, 1, 0, 1)$ and $(1, 0, 1, 1, 1, 1)$, yielding in one case an immersed normal surface and in the other a singular normal surface with a branch point.

![Figure 8](image_url)

Figure 8: (a) Immersed normal surface corresponding to coordinates $(1,0,1,1,0,1)$, yielding three block curves. (b) Singular normal surface corresponding to coordinates $(1,0,1,1,1,1)$, yielding two block curves. The one winding twice around the central edge witnesses a branch point.

Moreover:

Proposition 8 $\text{SAT}_C(2, R)$ is NP-hard.

Proof By Corollary 5, it suffices to prove that the relation R is not Schaefer, that is, neither (i) Horn, (ii) dual Horn, (iii) bijunctive, nor (iv) affine; and that, furthermore, it is (v) not a Δ–matroid. The proofs are somewhat tedious but straightforward.
we denote by \(A \) a tetrahedron containing two crossing quadrilaterals. In both cases, the pair of faces containing two triangles, while the gadget \(CG \) in this drawing. The gadget \(A \) and we glue the pair of faces in \(G \) occurrence of the variable to \(C \). Consider a variable \(v \), respectively; let \(B_1 \) be the pair of faces in \(G_1 \) corresponding to the occurrence of the variable \(v \) in \(G_1 \), and similarly let \(B_2 \) be the other pair of faces in \(G_2 \) corresponding to the occurrence of the variable \(v \) in \(G_2 \). We create a tube \(T_v \), and we glue the pair of faces \(A_1 \) to \(B_1 \) and \(A_2 \) to \(B_2 \).

\textbf{The tubes} A tube is the block pictured in Figure 9; it consists of six tetrahedra that all have one edge in common, each containing two normal disks: either a pair of one triangle and one quadrilateral, or a pair of triangles of different types. As in Figure 9, we denote by \(A_1 \) and \(A_2 \) the two pairs of faces that are crossed by two adjacent quadrilaterals.

Similarly as for the clause gadget, the gluings in a tube gadget at \(A_1 \) and \(A_2 \) can be specified by two variables, again with the convention of Figure 7: 0 and 1 for non-crossing and crossing block curves, respectively.

\textbf{Lemma 9} The singular normal surface in a tube specified by the gluing is immersed if and only if both variables of the tube are equal.

\textbf{Proof} This is immediate by checking the four possible assignments of the variables. \(\square \)

Consider a variable \(v \) appearing exactly twice in \(\Phi \), in clauses \(C_1 \) and \(C_2 \) (it may be that \(C_1 = C_2 \)). Let \(G_1 \) and \(G_2 \) be the copies of the clause gadget corresponding to \(C_1 \) and \(C_2 \), respectively; let \(B_1 \) be the pair of faces in \(G_1 \) corresponding to the occurrence of the variable \(v \) in \(G_1 \), and similarly let \(B_2 \) be the other pair of faces in \(G_2 \) corresponding to the occurrence of the variable \(v \) in \(G_2 \). We create a tube \(T_v \), and we glue the pair of faces \(A_1 \) to \(B_1 \) and \(A_2 \) to \(B_2 \).

\textbf{The constants} A constant gadget is one of the blocks pictured in Figure 10 (since each gadget only consists of one tetrahedron, we did not adopt the schematic representation in this drawing). The gadget \(CG_0 \) for the constant 0 consists of one tetrahedron containing two triangles, while the gadget \(CG_1 \) for the constant 1 consists of one tetrahedron containing two crossing quadrilaterals. In both cases, the pair of faces \(A \),

(i) If we take \(x = (1, 0, 1, 0, 0, 0) \) and \(y = (1, 1, 0, 1, 0) \), then we have \(x \land y = (1, 0, 0, 0, 0, 0) \), which is not in \(R \).

(ii) If we take \(x = (1, 0, 1, 0, 0, 0) \) and \(y = (1, 1, 0, 1, 0) \), then we have \(x \lor y = (1, 1, 1, 1, 1, 0) \), which is not in \(R \).

(iii) If we take \(x = (1, 0, 1, 0, 0, 0) \), \(y = (1, 1, 0, 1, 0) \), and \(z = (0, 0, 0, 0, 0, 0) \), then we have \((x \land y) \lor (x \land z) \lor (y \land z) = (1, 0, 0, 0, 0, 0) \), which is not in \(R \).

(iv) If we take \(x = (1, 0, 1, 0, 0, 0) \), \(y = (1, 1, 0, 1, 0) \), and \(z = (0, 0, 0, 0, 0, 0) \), then we have \(x \lor y \lor z = (0, 1, 1, 1, 1, 0) \), which is not in \(R \).

(v) If we take \(x = (1, 1, 1, 1, 1, 1) \), \(y = (1, 0, 0, 0, 1, 0) \), and \(x' = (1, 0, 1, 1, 1, 1) \), then \(x \) and \(y \) are in \(R \) and \(x' \) is a step from \(x \) to \(y \), but \(x' \) is not in \(R \) and there does not exist any \(x'' \in R \) which is a step from \(x' \) to \(y \). \(\square \)
Figure 9: A tube, where the shaded regions denote the locations where the tube will be connected to clauses.

Figure 10: (a) The gadget CG_0. (b) The gadget CG_1. In both cases, the two front faces constitute the pair A. The trace of the singular normal surface on A is the same in both cases.

at which the constant will be connected to a clause gadget, is made of the two front faces in Figure 10.

Whenever a constant 0 appears in $\hat{\Phi}$, we create a copy of the constant gadget CG_0, and attach the corresponding pair of faces in the clause gadget to the pair A in the constant gadget. The same holds for the constant 1, with CG_1 instead of CG_0.

3.2 Proof of the reduction

We now have all the tools to prove Theorem 6. Starting with a formula Φ, we build a triangulation T and normal coordinates N with the clause gadgets, the tubes,
and the constant gadgets. We first prove that this triangulation forms a 3–manifold with boundary.

Proposition 10 The triangulation T corresponding to a formula Φ is a 3–manifold with boundary.

Proof First, we show that every vertex v of T has a neighborhood homeomorphic to the closed half-space. The vertex v is adjacent to a clause gadget C as well as between zero and three tubes or constant gadgets. We focus on the case with three tubes T_1, T_2 and T_3, the other ones being handled similarly. Since gadgets are glued along discs with disjoint interiors, and the tubes are locally disjoint except at their intersection with C, the neighborhood around v is the one pictured in Figure 11. One readily sees that this neighborhood is homeomorphic to a half-space.

![Figure 11: The local picture around a vertex v of the triangulation T.](image)

Moreover, by construction, no edge is identified to itself in reverse. Lemma 1 concludes the proof. □

Proposition 11 The normal coordinates N correspond to an immersible surface if and only if the formula Φ is satisfiable.

Proof We will use the following observation. Consider an edge e between the two faces associated to a variable in a gadget. The block around e is made of three or four tetrahedra, depending on whether a constant gadget or a tube is glued to the pair on the clause gadget. Then the singular surface has no branch point on e if and only if the values of the variables on the two pair of faces are identical, and, in case one of the gadgets is a constant gadget, the variable takes the value specified by that gadget.
Assume first that the normal coordinates \(N \) correspond to an immersible surface. The gluings corresponding to variables appearing exactly once in \(\Phi \) define a partial assignment of the variables. For the ones appearing twice, Lemma 9 implies that the two variables in the same tube are equal. Since they are glued to the pairs of faces representing their two occurrences in the clause gadgets, and by the observation, this defines a consistent assignment of the variables; moreover, again by the observation, the variables on the pair of faces on the clause gadgets corresponding to the constants take the appropriate values. Finally, since no branch point arises in a clause gadget, Lemma 7 implies that each clause is satisfied by the assignment of variables.

Conversely, assume that \(\Phi \) is satisfiable. The satisfying assignment naturally defines the values of the variables on each pair of faces. We prove that these gluing rules do not create branch points. Branch points only occur on non-boundary edges of the triangulation; each such edge is either an edge in a clause gadget, an edge in a tube gadget, or an edge at the interface between two pairs of faces. No such edge contains a branch point, by Lemma 7, Lemma 9 and the observation, respectively. This concludes the proof. \(\square \)

4 Variants

We now establish a few corollaries, settling the complexity of a few variants of the IMMERSIBILITY problem.

The first one settles the complexity of the problem \(k-\text{Bounded-Immersibility} \), which is the one of testing immersibility when all the normal coordinates are bounded by \(k \geq 1 \).

Corollary 12 The problem \(k-\text{Bounded-Immersibility} \) is NP-complete.

(Recall that a problem is \(\text{NP-complete} \) if it is both in NP and NP-hard.)

Proof The NP-hardness reduction for Theorem 6 only involves normal coordinates bounded by 1, so \(k-\text{Bounded-Immersibility} \) is NP-hard as well. The certificate we use to prove the membership in NP is the global gluing for an immersed surface. At an interface, the local gluing can be described by a permutation in \(S_k \), which is of finite size since \(k \) is fixed. Since the number of interfaces is bounded by the size of the triangulation, the certificate has polynomial size. As mentioned in Section 2, when one is provided with normal coordinates and a global gluing, one can test in linear time whether the corresponding singular normal surface is immersed. \(\square \)
On the complexity of immersed normal surfaces

The gadget we use to show the NP-hardness of IMMERSIBILITY only outputs a 3–manifold with boundary, but can be easily tweaked to handle the problem with boundaryless manifolds, which we name BOUNDARYLESS–IMMERSIBILITY.

Corollary 13 The problem BOUNDARYLESS–IMMERSIBILITY is NP-hard.

Proof The triangulation T_Φ with normal coordinates N obtained by the reduction in Theorem 6 can become boundaryless by doubling it, that is, by taking $T_\Phi \sqcup T_\Phi$ and gluing one onto the other with the identity homeomorphism on their boundaries. It is straightforward to check that the resulting space is a 3–manifold, and that N is immersible in T_Φ if and only if $N \sqcup N$ is immersible in $T_\Phi \sqcup T_\Phi$.

As we mentioned in the preliminaries, the triangulations we consider in this paper may not be simplicial complexes, and indeed the gadgets we use in our reduction may display some slightly pathological behavior. For example, if a tube links the variables 1 and 5 of a clause gadget, the central edge of the tube has its endpoints identified. This can be avoided by replacing each tube gadget by two copies of itself, glued to each other along the pairs A_1 and A_2. These “double tubes” are glued to the clause gadgets as usual ones. Then it can be checked that the resulting triangulation is a simplicial complex, and this shows that IMMERSIBILITY is also NP-hard when the triangulation is a simplicial complex.

As a last remark, we note that since the triangulation obtained by the reduction in Theorem 6 consists of balls linked by tubes, it forms a handlebody and therefore can be embedded in \mathbb{R}^3. This shows that IMMERSIBILITY is NP-hard even when restricted to submanifolds of \mathbb{R}^3 (or even handlebodies).

5 Testing local immersibility

In this section, we provide a polynomial-time algorithm to test whether normal coordinates are immersible when the triangulation is just a block, that is, a collection of tetrahedra glued around a single edge. When applied to every edge of a more complicated triangulation, this provides a local test for immersibility, in that it detects local obstructions but not more involved ones, as pictured in Figure 12.

For the rest of this section, we denote by T a triangulation consisting of a single block and by N some normal coordinates for this triangulation. The algorithm works by reducing the problem to a maximum flow computation in a directed graph with integer capacities. In this context, given a directed graph G where each edge e bears a nonnegative integer capacity $c(e)$, and two vertices s and t, a flow can be seen as a
Figure 12: When these two blocks are made into a single triangulation by gluing them along the shaded regions, the normal coordinates are locally immersible around every edge, but not globally immersible.

Figure 13: The directed weighted graph G is obtained by choosing an orientation around the block, adding a single directed edge for every normal disk type, and setting the capacity of an edge to be equal to the corresponding normal coordinate.

set of paths in G from s to t such that each edge e is used at most $c(e)$ times by the paths; a maximum flow is a flow with a maximum number of paths. It is well-known that maximum flows in directed graphs can be computed in small polynomial time [22, Chapter 10].

In our problem, the construction of the directed graph G corresponding to a block and to given normal coordinates is pictured in Figure 13: every triangle type or quadrilateral type is associated to a directed edge, and the corresponding normal coordinate is carried over as the capacity of that edge. We denote by s_1 and s_2 the extremal vertices of this graph on one side of the block, and t_1 and t_2 the vertices on the other side. Note that in the triangulation, both sides of the block are identified, and therefore for $i = 1, 2$, s_i corresponds to the same vertex as t_i, which we denote by x_1 and x_2. The algorithm then simply computes the maximum flow between s_1 and t_1, and checks whether it is equal to the sum of the capacities of the edges going out of s_1.

The correctness of this algorithm is warranted by the following lemma.
Lemma 14 The normal coordinates \(N \) are immersible if and only if the maximum flow between \(s_1 \) and \(t_1 \) equals the sum of the capacities of the edges leaving \(s_1 \).

Proof For the first implication, if the normal coordinates are immersible, there exists a gluing inducing no branch point. The associated normal surface is therefore a union of disks winding exactly once around the central edge. Every such disk corresponds in \(G \) to a path going from \(s_1 \) to \(t_1 \) or from \(s_2 \) to \(t_2 \). Therefore, the maximum flow going from \(s_1 \) to \(t_1 \) is the sum of the capacities going out of \(s_1 \).

In the other direction, such a maximum flow naturally defines a gluing corresponding to an immersed surface. Indeed, the flow can be seen as a set of paths in \(G \) from \(s_1 \) to \(t_1 \), which in turn correspond to cycles when identifying back \(s_1 \) and \(t_1 \). This gives a partial gluing of the normal disks, which yields a (not necessarily disjoint) union of embedded disks passing through \(x_1 \). It is also easy to see that, if we decrease the capacities of each edge of \(G \) by the number of times it is used by the flow, then, in this resulting residual graph, there exists a maximum flow from \(s_2 \) to \(t_2 \) that uses all residual capacities. (This could also be checked using the same algorithm.) This flow similarly corresponds to normal disks. All in all, we obtain an immersed surface whose normal coordinates are precisely the capacities of the original graph, which completes the proof.

It is an intriguing problem to extend this algorithm to deal with more complicated triangulations. With some work, we can for example obtain a polynomial-time algorithm to test immersibility for the triangulation pictured in Figure 12. If \(P \neq \text{NP} \), then finding a general polynomial-time algorithm is ruled out by our main Theorem 6 though. To conclude, it would be interesting to determine whether the immersibility problem is fixed-parameter tractable [10] in the size of the triangulation \(T \); or, in other words, whether there exists an algorithm with running time \(f(|T|) \cdot \text{poly}(n) \) for this purpose, where \(f(|T|) \) is an arbitrary function depending on the number of simplices of \(T \), \(n \) is the bitsize of \(N \) and \(\text{poly}(n) \) is an arbitrary polynomial.

References

