Volume 20, issue 3 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
The Farrell–Jones conjecture for arbitrary lattices in virtually connected Lie groups

Holger Kammeyer, Wolfgang Lück and Henrik Rüping

Geometry & Topology 20 (2016) 1275–1287
Bibliography
1 R W Bagley, M R Peyrovian, A note on compact subgroups of topological groups, Bull. Austral. Math. Soc. 33 (1986) 273 MR832529
2 A Bartels, T Farrell, W Lück, The Farrell–Jones Conjecture for cocompact lattices in virtually connected Lie groups, (2013) arXiv:1101.0469v2
3 A Bartels, W Lück, On crossed product rings with twisted involutions, their module categories and L–theory, from: "Cohomology of groups and algebraic K–theory" (editors L Ji, K Liu, S T Yau), Adv. Lect. Math. 12, International Press (2010) 1
4 A Bartels, W Lück, The Borel conjecture for hyperbolic and CAT(0)–groups, Ann. of Math. 175 (2012) 631 MR2993750
5 A Bartels, W Lück, H Reich, The K–theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math. 172 (2008) 29 MR2385666
6 A Bartels, W Lück, H Reich, On the Farrell–Jones conjecture and its applications, J. Topol. 1 (2008) 57 MR2365652
7 A Bartels, W Lück, H Reich, H Rüping, K– and L–theory of group rings over GLn(), Publ. Math. Inst. Hautes Études Sci. 119 (2014) 97
8 A Bartels, H Reich, Coefficients for the Farrell–Jones conjecture, Adv. Math. 209 (2007) 337 MR2294225
9 A Borel, Compact Clifford–Klein forms of symmetric spaces, Topology 2 (1963) 111 MR0146301
10 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) MR1744486
11 Y Choi, Are maximal connected semisimple subgroups automatically closed?, MathOverflow (2013)
12 P Deligne, G D Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. (1986) 5 MR849651
13 F T Farrell, L E Jones, Isomorphism conjectures in algebraic K–theory, J. Amer. Math. Soc. 6 (1993) 249 MR1179537
14 F T Farrell, L E Jones, Rigidity for aspherical manifolds with π1 GLm(), Asian J. Math. 2 (1998) 215 MR1639544
15 E Formanek, C Procesi, The automorphism group of a free group is not linear, J. Algebra 149 (1992) 494 MR1172442
16 H Garland, M S Raghunathan, Fundamental domains for lattices in ()rank 1 semisimple Lie groups, Ann. of Math. 92 (1970) 279 MR0267041
17 F P Greenleaf, M Moskowitz, Finiteness results for lattices in certain Lie groups, Ark. Mat. 48 (2010) 311 MR2672612
18 F P Greenleaf, M Moskowitz, L P Rothschild, Unbounded conjugacy classes in Lie groups and location of central measures, Acta Math. 132 (1974) 225 MR0425035
19 S Helgason, Differential geometry, Lie groups, and symmetric spaces, 34, Amer. Math. Soc. (2001) MR1834454
20 W Lück, K– and L–theory of group rings, from: "Proceedings of the International Congress of Mathematicians, II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 1071 MR2827832
21 W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in K– and L–theory, from: "Handbook of K–theory, I, II" (editors E M Friedlander, D R Grayson), Springer (2005) 703 MR2181833
22 G A Margulis, Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1, Invent. Math. 76 (1984) 93 MR739627
23 G A Margulis, Discrete subgroups of semisimple Lie groups, 17, Springer (1991) MR1090825
24 A L Onishchik, Lie groups and Lie algebras, I, 20, Springer (1993)
25 V Platonov, A Rapinchuk, Algebraic groups and number theory, 139, Academic Press (1994) MR1278263
26 M S Raghunathan, Discrete subgroups of Lie groups, 68, Springer (1972) MR0507234
27 D L Ragozin, A normal subgroup of a semisimple Lie group is closed, Proc. Amer. Math. Soc. 32 (1972) 632 MR0294563
28 H Rüping, The Farrell–Jones conjecture for S–arithmetic groups, J. Topol. 9 (2016) 51 MR3465840
29 A N Starkov, A counterexample to a theorem on lattices in Lie groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1984) 68 MR764036
30 V S Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall (1974) MR0376938
31 E B Vinberg, V V Gorbatsevich, O V Shvartsman, Discrete subgroups of Lie groups, from: "Lie groups and Lie algebras, II" (editor E B Vinberg), Encyclopaedia Math. Sci. 21, Springer (2000) 1, 217 MR1756407
32 C Wegner, The K–theoretic Farrell–Jones conjecture for CAT(0)–groups, Proc. Amer. Math. Soc. 140 (2012) 779 MR2869063
33 C Wegner, The Farrell–Jones conjecture for virtually solvable groups, (2013) arXiv:1308.2432v2
34 H Whitney, Elementary structure of real algebraic varieties, Ann. of Math. 66 (1957) 545 MR0095844
35 T S Wu, A note on a theorem on lattices in Lie groups, Canad. Math. Bull. 31 (1988) 190