Volume 20, issue 3 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29, 1 issue

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
The metric geometry of the Hamming cube and applications

Florent Baudier, Daniel Freeman, Thomas Schlumprecht and András Zsák

Geometry & Topology 20 (2016) 1427–1444
Bibliography
1 I Aharoni, Every separable metric space is Lipschitz equivalent to a subset of c0+, Israel J. Math. 19 (1974) 284 MR0511661
2 F Albiac, N J Kalton, Topics in Banach space theory, 233, Springer (2006) MR2192298
3 P Assouad, Remarques sur un article de Israel Aharoni sur les prolongements lipschitziens dans c0 (Israel J. Math. 19 (1974) 284–291), Israel J. Math. 31 (1978) 97 MR0511662
4 S Banach, S Mazur, Zur Theorie der linearen Dimension, Stud. Math. 4 (1933) 100
5 J Bourgain, The Szlenk index and operators on C(K)–spaces, Bull. Soc. Math. Belg. Sér. B 31 (1979) 87 MR592664
6 M M Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat Palermo Math. 22 (1906) 1
7 G Godefroy, N J Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (2003) 121 MR2030906
8 N J Kalton, G Lancien, Best constants for Lipschitz embeddings of metric spaces into c0, Fund. Math. 199 (2008) 249 MR2395263
9 E Odell, Ordinal indices in Banach spaces, Extracta Math. 19 (2004) 93 MR2072539
10 J Pelant, Embeddings into c0, Topology Appl. 57 (1994) 259 MR1278027
11 A Procházka, L Sánchez-González, Low distortion embeddings into Asplund Banach spaces, preprint (2014) arXiv:1311.4584