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Optimal simplices and codes in projective spaces

HENRY COHN
ABHINAV KUMAR
GREGORY MINTON

We find many tight codes in compact spaces, in other words, optimal codes whose opti-
mality follows from linear programming bounds. In particular, we show the existence
(and abundance) of several hitherto unknown families of simplices in quaternionic
projective spaces and the octonionic projective plane. The most noteworthy cases are
15—point simplices in HIP? and 27—point simplices in QP2 both of which are the
largest simplices and the smallest 2—designs possible in their respective spaces. These
codes are all universally optimal, by a theorem of Cohn and Kumar. We also show the
existence of several positive-dimensional families of simplices in the Grassmannians
of subspaces of R” with n < 8; close numerical approximations to these families
had been found by Conway, Hardin and Sloane, but no proof of existence was known.
Our existence proofs are computer-assisted, and the main tool is a variant of the
Newton—Kantorovich theorem. This effective implicit function theorem shows, in
favorable conditions, that every approximate solution to a set of polynomial equations
has a nearby exact solution. Finally, we also exhibit a few explicit codes, including a
configuration of 39 points in QP2 that form a maximal system of mutually unbiased
bases. This is the last tight code in QP2 whose existence had been previously
conjectured but not resolved.

51M16, 52C17; 65G20, 49M15

1 Introduction

The study of codes in spaces such as spheres, projective spaces and Grassmannians has
been the focus of much interest recently, involving an interplay of methods from many
aspects of mathematics, physics and computer science; see the papers by Bachoc, Nebe,
de Oliveira Filho and Vallentin [9; 8]; Bondarenko, Radchenko and Viazovska [16];
Bowick and Giomi [17]; Renes [65]; Mixon, Quinn, Kiyavash and Fickus [59] and
Fouvry, Kowalski and Michel [38]. Given a compact metric space X , the basic question
is how to arrange N points in X so as to maximize the minimal distance between
them. A finite point configuration is called a code, and an optimal code C maximizes
the minimal distance between its points given its size |C|. Finding optimal codes is a
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central problem in coding theory. Even when X is finite (for example, the cube {0, 1}"
under Hamming distance), this optimization problem is generally intractable, and it is
even more difficult when X is infinite.

Most of the known optimality theorems have been proved using linear programming
bounds, and we are especially interested in codes for which these bounds are sharp. We
call them right codes.! The class of tight codes includes many of the most remarkable
codes known, such as the icosahedron and the Eg root system.

In this paper, we explore the landscape of tight codes in projective spaces. We devote
most of our attention to regular simplices (that is, collections of equidistant points).
Tight simplices correspond to tight equiangular frames (see Sustik, Tropp, Dhillon and
Heath [70]), which have applications in signal processing and sparse approximation,
and they also capture interesting invariants of their ambient spaces. Furthermore, they
seem to be by far the most widespread sort of tight codes.

In real and complex projective spaces, tight simplices occur only sporadically. All
known constructions are based on geometric, group-theoretic or combinatorial proper-
ties that depend delicately on the number of points and the dimension of the projective
space. By contrast, we find a surprising new phenomenon in quaternionic and octonionic
spaces: in each dimension, there are substantial intervals of sizes for which tight
simplices always seem to exist. For instance, in HP2? we show that tight simplices
exist for N points with 1 < N <13 or N = 15, while in HP3 we show existence for
1 <N <21l.

This behavior cannot plausibly be explained using the sorts of constructions that work
in real and complex spaces. In fact, the new tight simplices exhibit little structure and
seem to exist not for any special reason, but rather because of parameter counting:
they can be characterized by systems of equations with more variables than constraints.
Making this heuristic precise, and indeed extracting any proof from this approach,
requires a delicate choice of constraints. Much of our paper is devoted to identifying
and analyzing such a choice. We do not know how to prove that these new simplices
exist in all dimensions, but we prove existence in many hitherto unknown cases. We
also extend our methods to handle some exceptional cases that are particularly subtle.

Our results settle several open problems dating back to the early 1980s, while raising
new questions.

IThe word “tight™ is used for a related but more restrictive concept in the theory of designs. We use the
same word here for lack of a good substitute. This makes “tight” a noncompositional adjective, much like
“optimal”: codes and designs are both just sets of points, so every code is a design and vice versa, but a
tight code is not necessarily a tight design. (However, one can show that every tight design is a tight code.)
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(a) We show the existence of a 15—point simplex in HP? (Theorem 4.12) and a 27—
point simplex in QP2 (Theorem 5.9). These simplices are not only optimal codes,
but also the largest possible simplices in their ambient spaces. For comparison,
the six diagonals of an icosahedron form the largest simplex in RPP?, and the
largest simplex in CIP? has size nine. The real and complex simplices have long
been known, but the quaternionic and octonionic simplices had been conjectured
not to exist by Hoggar [43, page 251].

(b) These two codes are also tight 2—designs, which makes them analogues of
“symmetric, informationally complete, positive operator-valued measures” (SIC-
POVMs). SIC-POVM s are d2—point simplices in CP4~! which play an im-
portant role in quantum information theory (see Renes, Blume-Kohout, Scott
and Caves [67]). Zauner has conjectured that SIC-POVMs exist for each d
(a problem analogous in some ways to the existence of Hadamard matrices),
but his conjecture remains tantalizingly out of reach; see Appleby, Fuchs and
Zhu [4]. Examples of SIC-POVMs have been algebraically constructed in low
dimensions (up to d = 16 and a few larger cases) and numerically approximated
for d < 67, but no infinite families are known; see Scott and Grassl [69] and
Appleby, Bengtsson, Brierley, Ericsson, Grassl and Larsson [3]. Our results
do not apply directly to Zauner’s conjecture, but rather they suggest that the
analogous question in quaternionic projective spaces has an entirely different
character: tight 2—designs in HP?~! do not seem to exist for d > 3.

(¢) An intriguing phenomenon we have observed is the apparent nonexistence of
14—point tight simplices in HIP? (Conjecture 4.13) and 26—point tight simplices
in QP2 (Conjecture 5.10), when all other sizes up to the maximum (15 or 27,
respectively) occur. We have no explanation for why the second largest possible
size should not occur. We observe the same phenomenon for the Grassmannian
G(2,4), which bolsters our confidence that it is a genuine pattern.

(d) More generally, we prove the existence of many tight simplices in real Grass-
mannians (Theorems 6.4 and 6.6-6.8). Such simplices were conjectured to exist
by Conway, Hardin and Sloane [31] based on numerical evidence, and we show
how parameter counting explains this phenomenon. As in projective spaces,
the difficulty lies in finding the right constraints, so that the problem becomes
amenable to rigorous proof.

(e) Finally, we give a few explicit constructions of other codes, including a construc-
tion for a set of 13 mutually unbiased bases in QP? (Theorem 8.3). They had
been conjectured to exist (see Hoggar [44, page 35]), but no construction was
previously known.
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In contrast to the usual algebraic methods for constructing tight codes, we take a rather
different approach to show the existence of families of simplices. We use a general
effective implicit function theorem (that is, one with explicit bounds), which allows us
to show the existence of a real solution to a system of polynomial equations near an
approximate solution. Furthermore, it proves that the space of solutions is a smooth
manifold near the approximate solution and tells us its dimension. Using this approach,
we prove the existence of tight simplices by computing numerical approximations and
then applying the existence theorem.?

The idea of making the implicit function theorem effective goes back to the Newton—
Kantorovich theorem (see Kantorovich [49]), but applying it in this geometric setting
allows us to establish many new results, for which algebraic constructions seem out of
reach. The closest predecessor to our applications that we are aware of is a sequence of
papers by Chen and Womersley [25]; Chen [23]; An, Chen, Sloan and Womersley [1]
and Chen, Frommer and Lang [24], on the existence of spherical /—designs on S? with
at least (¢ + 1)? points. These papers also use a Newton—Kantorovich variant, applied
in a case in which there are approximately twice as many variables as constraints: the
space of N—point configurations on S? has dimension 2N — 3 for N > 3, and the
t—design condition imposes (¢ + 1)> — 1 constraints (since that is the dimension of the
space spanned by the spherical harmonics of degree 1 through 7).

In Section 2 we describe linear programming bounds and recall what is known about
tight codes in projective spaces over R, C, H and O. An effective existence theorem,
our main tool in this paper, is the subject of Section 3. Our results concerning exis-
tence of new families of projective simplices, proved using the existence theorem, are
described in Sections 4 and 5. In Section 6 we use our methods to produce positive-
dimensional families of simplices in real Grassmannians. We then give a discussion
of the algorithms and computer programs used for these computer-assisted proofs
in Section 7. Finally, we conclude in Section 8 with three explicit constructions of
universally optimal codes, the most notable of which is a maximal system of mutually
unbiased bases in OP2.
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2 Codes in projective spaces and linear programming bounds

2.1 Projective spaces over R, C, H and O

If K=R, C or H, we denote by KP4~! := (K9 \ {0})/K* the set of lines in K¢.
That is, we identify x and xo for x € K\ {0} and & € K*. Note the convention that
K> acts on the right; this is important for the noncommutative algebra H.

We equip K 4 ith the Hermitian inner product (xq,x3) = x;rx2, where T denotes the
conjugate transpose. We may represent an element of the projective space K pa-! by
a unit-length vector x € K 4 "and we often abuse notation by treating the element itself
as such a vector. Under this identification, the chordal distance between two points of

KPa=1 s

p(x1,x2) = /1= [{x1, x2)[2.
It is not difficult to check that this formula defines a metric equivalent to the Fubini—
Study metric. Specifically, if ¥ (x1, x,) is the geodesic distance on KP¢~! under the

Fubini-Study metric, normalized so that the greatest distance between two points is 7,
then

cos ¥ (x1, X2) = 2|{x1, x2)|*> — 1

- (ﬁ(xl,xz))
p(x1,xp) =sin — )

Alternatively, elements x € K pa-1 correspond to projection matrices I1 = xxT, which
are Hermitian matrices with T12 = IT and Tr IT = 1. The space H(K?) of Hermitian
matrices is a real vector space endowed with a positive-definite inner product

and

(A.B) =Tr3(AB + BA) =ReTr AB.

Since Reab = Re ba for a,b € K, it follows that Re Tr(ABC) = Re Tr(CA B) for
A, B, C € K9%4 ; in other words, the functional Re Tr is cyclic invariant. Hence, for
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any xi, X, € KP4~ with associated projection matrices I, 1, € H(K?), we have
@-1) (T, My) = Re Troyx | xx]
= ReTr x;rxlexz

=Re (Xz,xl)(xl,)Q)
= |(X1,X2)|2-

Thus the metric on KP4~! can also be defined by p(x1,x2) = /1— (I, I15).
Equivalently, it equals ||[IT; — IT, || f/~/2, where || - | f denotes the Frobenius norm:
lAllF= (Zi,j |A,~j|2)1 for a matrix whose 7, j entry is A;;.

Modulo isometries, distance is the only invariant of a pair of points, but triples have
another invariant, known as the Bargmann invariant [13] or shape invariant [18].
In terms of projection matrices, it equals Re Tr (H1 H2H3) , and the information it
conveys is essentially the symplectic area of the corresponding geodesic triangle [60;
40]. One can define similar invariants for more than three points, but they can be
computed in terms of three-point invariants as long as no two points are orthogonal.
When no two points are orthogonal, the two- and three-point invariants characterize
the entire configuration [19; 20].

The one remaining projective space we have not yet constructed is the octonionic
projective plane QP2. (See [10] for an account of why OP4 cannot exist for d > 2;
one can construct OP !, but we will ignore it as it is simply S%.) Due to the failure
of associativity, the construction of QP2 is more complicated than that of the other
projective spaces; in particular, we cannot simply view it as the space of lines in Q3.
However, there is a construction analogous to the one using Hermitian matrices above.
The result is an exceptionally beautiful space that has been called the panda of geometry
[14, page 155]. The points of OP? are 3 x 3 projection matrices over O, in other
words, 3 x 3 Hermitian matrices IT satisfying I1?> = IT and Tr IT = 1. The (chordal)
metric in OP? is given by

1
II1,,I1,) = —||I1{ — IT =/ 1—(I1¢, IT5).
p(Iy, I15) ﬁ” 1 2llF= v 1= (I, I7)

Each projection matrix IT is of the form

n:@)@ga,

where a,b,c € O satisfy |a|> + |b|?> + |¢|*> = 1 and (ab)c = a(bc). We can cover
OP? by three affine charts as follows. Any point may be represented by a triple
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(a,b,c) € O3 with |a|? 4 |b|?> + |c|?> = 1, and for the three charts we assume a, b
or ¢ are in R4, respectively. In practice, for computations with generic configurations
we can simply work in the first chart and refer to a projection matrix by its associated
point (a,b,c) e Ry x Q2.

2.2 Tight simplices

Projective spaces can be embedded into Euclidean space by mapping each point to the
corresponding projection matrix; using this embedding, the standard bounds on the size
and distance of regular Euclidean simplices imply bounds on projective simplices. The
resulting bounds, which we review in this subsection, were first proven by Lemmens
and Seidel [54]. They are also known in information theory as Welch bounds [73].

As above, let K be R, C, H or O. We consider regular simplices in K pd-1 , with
the understanding that d = 3 when K = O.

Definition 2.1 A regular simplex in a metric space (X, p) is a collection of distinct
points x1,...,xy of X with the distances p(x;, x;) all equal for i # ;.

We often drop the adjective “regular” and refer to a regular simplex as a simplex.

Proposition 2.2 Consider a regular simplex in KP4~ consisting of N > 1 points
X1,...,Xy with associated projection matrices I1;, ..., Iy, and let « = (I1;, I1;)
be the common inner product for i # j. Then

(d?> —d)dimg K

N <d
=a+ 2
and, for any such value of N,
o> N—d
~—d(N-1)"
Proof The Gram matrix G associated to Iy, ..., [Ix has unit diagonal and « in
each off-diagonal entry. Since G is nonsingular,? the elements IT;,..., [Ty € H(K dy
are linearly independent, implying N < dimg H(K9) = d + (d* — d)(dimg K)/2.
Now note that (IT;, I;) = |x;|*> =1 foreach i = 1,..., N. Using this we compute
N N
N N N?
<(Zn,-) - —la. (Zni) —31d> =N——+ NN =D
i=1 i=1
Nonnegativity of this expression gives the desired bound on «. a

3Specifically, G = (1 —a)I + avv’, where v is the all-ones vector, and therefore the eigenvalues
of G are 1 — o (with multiplicity N —1) and 1 4+ (N — 1)«. These are all nonzero because « € [0, 1).
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Definition 2.3 We refer to a regular simplex with

N—d

YTAND

as a tight simplex. That is, it is a simplex with the maximum possible distance allowed
by Proposition 2.2.

We noted above the difference between tight codes and tight designs, and on the surface
Definition 2.3 seems to introduce a third notion of tightness. However, we will see
that a tight simplex is a tight code (Lemma 2.9), so this new definition is really just a
specialization.

Note that Definition 2.3 is independent of the coordinate algebra K. In other words,
the canonical embeddings RP4~! < CP4~! < HP4~! and HP? < QP? preserve
tight simplices.

It is not known for which N, d and K a tight simplex exists; later in this section
we will survey the known examples. When K = R, this problem is fundamentally
combinatorial. Specifically, consider the Gram matrix of some corresponding unit
vectors in R9. All the off-diagonal entries must be

N—d
EVawv=n"

and the simplex is determined by the sign pattern. Thus, up to isometry, there can be only
finitely many tight simplices of a given size in RP4~! . Furthermore, any sufficiently
close numerical approximation will determine the signs and let one reconstruct the
exact simplex.

By contrast, tight simplices are much more subtle when K # R. The Gram matrix
entries have phases, not just signs, and tight simplices can even occur in positive-
dimensional families. In terms of the Bargmann invariants, the three-point invariants
are not determined by the pairwise distances. No simple way to reconstruct an exact
simplex from an approximation is known, and we see no reason to believe one exists.

Proposition 2.4 Every tight simplex is an optimal code.

More generally, the bound on « in Proposition 2.2 applies to the minimal distance of
any code, not just a simplex.
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Proof Let I1q,..., 1y be the projection matrices corresponding to any N—point
code in KP9~!. As in the proof of Proposition 2.2,

N
N? N
N——+ E (I;, IT;) <(E H) Id’(.g Hi)—7ld>20.
i,j=1 i=1 i=1
i#]j

Thus, the average of (I1;, IT;) over all i # j satisfies

N
1 N?2/d—N N—d
_ : 2y > =
N(N-1) ,Zlm” M) = N(N-1) — d(N-1)"
i,j=
i#j
In particular, the greatest value of (IT;, IT;) for i # j must be at least this large. O

A regular simplex of N <d points in K Pa-1 s optimal if and only if the points are
orthogonal (in other words, o = 0). Such simplices always exist. We only consider
them to be tight when N = d, as the N < d cases do not satisfy Definition 2.3; these
degenerate cases are tight simplices in a lower-dimensional projective space. There
also always exists a tight simplex with N = d + 1 points, obtained by projecting the
regular simplex on the sphere .S d=1 into RP9~!. Therefore in what follows we will
generally assume that N > d + 2.

It follows immediately from the proof of Proposition 2.2 that a regular simplex
{x1,...,xn} is tight if and only if

E X,X —_ T

This condition can be reformulated in the language of projective designs [34; 62];
see also [43] for a detailed account of the relevant computations in projective space.
Specifically, it says that the configuration is a 1-design. We will make no serious use
of the theory of designs in this paper, and for our purposes we could simply regard
Zi]\;l x,-x;r = (N/d)1; as the definition of a 1-design. However, to put our discussion
in context, we will briefly recall the general concept of designs in the next subsection.

2.3 Linear programming bounds

Linear programming bounds [47; 34] use harmonic analysis on a space X to prove
bounds on codes in X'. These bounds and their extensions [9] are among the only
known ways to prove systematic bounds on codes, and they are sharp in a number of
important cases. Later in this section we summarize the sharp cases that are known in

Geometry € Topology, Volume 20 (2016)



1298 Henry Cohn, Abhinav Kumar and Gregory Minton

projective spaces (see also [29, Table 1] for a corresponding list for spheres), but first
we give a brief review of how linear programming bounds work.

The simplest setting for linear programming bounds is a compact two-point homoge-
neous space. We will focus on the connected examples, namely spheres and projective
spaces, but discrete two-point homogeneous spaces such as the Hamming cube are also
important in coding theory.

Let X be a sphere or projective space, and let G be its isometry group under the
geodesic metric ¢ (normalized so that the greatest distance is 7). Then L?(X) is a
unitary representation of G, and we can decompose it as a completed direct sum

LX) = P Vi
k>0
of irreducible representations Vj . There is a corresponding sequence of zonal spherical
functions Cy, C1, ..., one attached to each representation V} . The zonal spherical
functions are most easily obtained as reproducing kernels; for a brief review of the
theory, see [29, Sections 2.2 and 8]. We can represent them as orthogonal polynomials
with respect to a measure on [—1, 1], which depends on the space X, and we index the
polynomials so that Cj has degree k.

For our purposes, the most important property of zonal spherical functions is that
they are positive-definite kernels: for all N € N and xq,...,xy € X, the N x N
matrix (Cj(cos #(x;,X;)))1<i,j<n is positive semidefinite. In fact, the zonal spherical
functions span the cone of all such functions.

For projective spaces K P9-1 the Cj may be taken to be the Jacobi polynomials

PP where a = 1(d — 1) dimg K — 1 (equivalently, @ = 1 dimpg KP4~ —1)and
k 2 2

B = %dimR K — 1. We will normalize Cy to be 1.

Linear programming bounds for codes amount to the following proposition.

Proposition 2.5 Let 0 € [0, 7], and suppose the polynomial

(@)=Y fiCr(2)

k=0

satisfies fo >0, fr >0 for 1 <k <n,and f(z) <0 for —1 <z <cos@. Then every
code in X with minimal geodesic distance at least 6 has size at most f(1)/ f.

Proof Let C be such a code. Then
D fleosB(x, p)) = folc]?,

x,y€eC
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because each zonal spherical function Cj, is positive definite and hence satisfies
Z Cr(cos¥(x,y)) = 0.
x,y€C
On the other hand, f(cos¥(x, y)) <0 whenever ¥ (x, y) > 6, and hence
> fleosd(x.y) =lelf (1)

x,y€C

because only the diagonal terms contribute positively. It follows that f5|C|*> < f(1)|C],
as desired. m

We say this bound is sharp if there is a code C with minimal distance at least 6 and
IC| = f(1)/ fo. Note that we require exact equality, rather than just |C| = | f(1)/fo].

Definition 2.6 A tight code is one for which linear programming bounds are sharp.

Examining the proof of Proposition 2.5 yields the following characterization of tight
codes.

Lemma 2.7 A code C with minimal geodesic distance 6 is tight if and only if there
is a polynomial f(z) = Y j—_o /xCr(2) satisfying fo >0, f =0 for 1 <k <n,
f(z) <0 for—1 <z <cosb,

Z Cr(cost(x,y)) =0

x,y€eC

whenever f; >0 and k # 0, and f(cos ¥ (x, y)) =0 for x, y € C with x # y. In fact,
these conditions must hold for every polynomial f satisfying both f(1)/fo = |C| and
the hypotheses of Proposition 2.5.

By Proposition 2.5, every tight code is as large as possible given its minimal distance,
but it is less obvious that such a code maximizes minimal distance given its size.

Proposition 2.8 Every tight code is optimal.

Proof Suppose f satisfies the hypotheses of Proposition 2.5, and C is a code of size
f(1)/fo with minimal geodesic distance at least 6. We wish to show that its minimal
distance is exactly 6.

By Lemma 2.7,
D (fleos B (x. ) — fo) =0,

x,y€C
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and f(cos?(x,y)) =0 for x, y € C with x # y.

Now suppose C had minimal geodesic distance strictly greater than 6, and consider a
small perturbation C’ of C. It must satisfy

> (f(cosB(x, ) — fo) =0,
x,yec’’
by positive definiteness. On the other hand,
Y (fleosd(x, 1)) — fo) =IC'1S M —=IC'P fo+ Y f(cosP(x, ).

x,y€ec’ x,yec’
x#y

We have |C’| f(1) — |C'|? fo = 0 since |C'| = |C| = f(1)/fo. Thus,
> fleosD(x.y)) = 0.

x,yec’
x#y
If the perturbation is small enough, then the minimal distance of C’ remains greater
than 6 and hence f(cos®¥(x, y)) <0 for distinct x, y € C’. In that case, we must have
f(cos ¥ (x, y)) = 0 for distinct x, y € C'. However, this fails for some perturbations,
for example if we move two points slightly closer together. It follows that every code of
size f(1)/fo and minimal geodesic distance at least & has minimal distance exactly 6,
so these codes are all optimal. |

Lemma 2.9 Tight simplices in projective space are tight codes.

Proof Up to scaling, the first-degree zonal spherical function C; on KP4~! is
z+(d—2)/d. Now let

_ (N—-1)d d—2
f(Z)—1+m(Z+T).

It satisfies f(z) <0 for z € [-1,2a — 1], where

_ N-d
T dN=1)’

and f(1)/fo = N, as desired. a

(04

Note that in this proof C; depends only on d, and not on K. By contrast, higher-degree
zonal spherical functions for KP4~! depend on both d and K.

We have no proof that every tight N—point code in K P4=1 with

(d?> —d)dimg K

d<N=<d
<N <=d+ 2
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is a tight simplex, although we know of no counterexample. This assertion would
follow if the linear function f(z) from the proof of Lemma 2.9 always gave the
optimal bound for this range of N, but it does not. For example, consider 5—point
codes in RP2, with d =3, K =R, N = 5. If there were a tight simplex with these
parameters, then it would have common squared inner product o = %, and positive
definiteness of Cj would require that Cy (1) + 4Cy, (2- % — 1) > 0 for all k. However,
C4(1) +4C4(—3%) < 0. This means that no tight simplex exists, and, in terms of linear
programming bounds,* it means that we can improve on the linear function f(z) by
replacing it with f(z) + 8(C4 (z2)—Cy4 (—%)), for small positive &.

A t—designin X is acode C C X such that for every f € Vj with 0 <k <t¢,
Y fx)=o.
xX€C

In other words, every element of Vo @ --- @ V; has the same average over C as over
the entire space X . (Note that all functions in Vj for k > 0 have average zero, since
they are orthogonal to the constant functions in V,.) Using the reproducing kernel
property, this can be shown to be equivalent to

Z Cr(cost(x,y)) =0

x,y€eC

for0 <k <t.
In KP4-1 , one can check that

al N

Z x,-xj = 71,1

i=1
holds if and only if {x1,...,xnx} is a 1-design.
A code is diametrical in X if it contains two points at maximal distance in X, and it

is an m—distance set if exactly m distances occur between distinct points.

Definition 2.10 A tight design is an m—distance set that is a (2m — ¢)—design, where
¢ is 1 if the set is diametrical and 0 otherwise.

For example, an N—point tight simplex in KP4~! with N = d 4 (d?>—d)(dimg K)/2
(the largest possible value of ) is a tight 2—design. See [12] for further examples.
“#In fact, linear programming bounds prove a bound of 0.16866. .. (a cubic irrational) for the maximal

squared inner product of any 5—point code in RIP2. This bound is not achieved by any real code, so in
particular there is no tight 5—point code, simplex or otherwise.
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Every tight #—design is the smallest possible #—design in its ambient space. This was
first proved for spheres in [34]; see [11, Propositions 1.1 and 1.2] for the general case.
The converse is false: the smallest 7—design is generally not tight.

A theorem of Levenshtein [56] says that every m—distance set thatisa (2m —1—¢)—
design is a tight code, where as above ¢ is 1 if the set is diametrical and 0 otherwise.
For example, all tight designs are tight codes. In [29], it was also shown that under
these conditions, C is universally optimal for potential energy: it minimizes energy for
every completely monotonic function of squared chordal distance. (See also [28] for
context.) This applies in particular to simplices, so all tight simplices are universally
optimal.

In fact every known tight code is universally optimal. Moreover, except for the regular
600—cell in S3 and its image in RIP3, they all satisfy the design condition just mentioned.
For lack of a counterexample, we conjecture that tight codes are always universally
optimal. (But see [30] for perspective on why the simplest reason why this might hold
fails.)

2.4 Tight codes in RP4~1

We now describe what is known about tight codes in real projective spaces. Table 1
provides a summary of the current state of knowledge. Note that in several lines in the
table, existence of a code is conditional on existence of a combinatorial object such as
a conference matrix; we provide further details in the text below. See also [72, Table 1],
which provides a list of all known tight simplices in RP4~1 with d < 50 and all cases
in this range that have not been resolved.

Euclidean simplices and orthogonal points give the simplest infinite families of tight
codes.

Another infinite family of tight simplices comes from conference matrices [57] (see
[31, page 156]): if a symmetric conference matrix of order 2d exists, then there is a
tight simplex of size 2d in R4 In particular, we get a tight simplex in R? whenever
2d — 1 is a prime power congruent to 1 modulo 4. One can also construct such codes
through the Weil representation of the group G = PSL,(IF;). Note that the icosahedron
arises as the special case ¢ = 5, which is why it is not listed separately in Table 1.

Levenshtein [55] described a family of tight codes in RP4~! for d a power of 4,
based on a construction using Kerdock codes; the regular 24—cell is the special case
with d = 4. These codes meet the orthoplex bound [31, Corollary 5.3] and give rise
to d/2 + 1 mutually unbiased bases in their dimensions. Recall that two orthonormal
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d N max|{x, y)|? Name/origin
d N <d 0 orthogonal points (tight when N = d)
d d+1 * Euclidean simplex
d 2d * symm. conf. matrix of order 2d (x)
d d(d+2)/2 1/d d/2 4+ 1 mutually unbiased bases ()
2 N cos’(mr/N) regular polygon
4 60 (v/5—1)/4 regular 600—cell
6 16 * Clebsch
6 36 1/4 E¢ root system
7 28 * equiangular lines
7 63 1/4 E; root system
8 120 1/4 Eg root system
23 276 * equiangular lines
23 2300 1/9 kissing configuration of next line
24 98280 1/4 Leech lattice minimal vectors
% v(l + H) * Steiner construction (x)
d N * strongly regular graph with parameters

(N —1,k, 3k — N)/2,k/2), where

k=3 -1+0-3)VRZ @

Table 1: Known universal optima of N points in real projective spaces
RP?~!. The tight simplices are indicated by an asterisk in the third column
and have maximal squared inner product (N —d)/(d(N — 1)); for brevity
we omit the Gale duals of the tight simplices. A star in the last column means
the code may exist only for certain parameter settings.

bases vy,...,vg and wy,...,w, are mutually unbiased if |(v,~,wj)|2 =1/d forall i
and j.

A trivial systematic family of tight codes is formed by the diameters of the regular
polygons in the plane. The next nine lines in Table 1 correspond to exceptional
geometric structures.

The Steiner construction from [36] builds a tight simplex from a (2, k,v) Steiner
system and a Hadamard matrix of order 14 (v—1)/(k —1). See [36] for a discussion
of the parameters that can be achieved using different sorts of Steiner systems. (Note
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that Bondarenko’s tight simplex [15] is a Steiner simplex with (k, v) = (3, 15).) Steiner
simplices can be constructed as follows. Recall that a (2, k, v) Steiner system is a set
of v points with a collection of subsets of size k called blocks, such that every two
distinct points belong to a unique block. Then there must be d blocks, and every point
is in r blocks, where

v(v—1) v—1

d= k(k——l) and r = 1

Consider the d x v incidence matrix A for blocks and points, with entries 0 and 1,
and let H be a Hadamard matrix of order r + 1. For each j from 1 to v, consider the
j® column of A4, and form a d x (r 4+ 1) matrix M, i whose i t row is a different row
of H for each i satisfying A; j # 0 and vanishes otherwise. Then it is not difficult
to check that the v(1 4 r) columns of all these matrices M; form a tight simplex
in RP9-1.

The last entry in the table is a reformulation of tight simplices in RP4~! in terms of
strongly regular graphs; see [72, Theorem 5.2]. This sort of combinatorial description
works only over the real numbers. When d < 50, only three cases are known that are not
encompassed by other lines in the table: (d, N) = (22, 176), (36, 64) and (43, 344).
See [72, Table 1] for more information.

We also observe the phenomenon of Gale duality: tight simplices of size N in K pa-1
correspond to tight simplices of size N in KPN —d—=1 For instance, the Gale dual of
the Clebsch configuration gives a tight simplex of 16 points in RP°. See Section 2.7
for more details.

2.5 Tight codes in CP4~!

Table 2 lists the tight codes we are aware of in complex projective spaces. For a detailed
survey of tight simplices, we refer the reader to [50, Chapter 4].

Here, we observe a few more infinite families. In particular, if a conference matrix
of order 2d exists, then there is a tight code of 2d lines in CP4-! [76, page 66].
For prime powers ¢ = 3 (mod 4), this gives a construction of a tight (¢ 4+ 1)—point
code in CP@~1D/2 As mentioned before, such codes may also be constructed using
the Weil representation of PSL,(IF;). Another family of codes of d(d + 1) points
in CP9~! for d an odd prime power, was constructed by Levenshtein [55] using dual
BCH codes. These codes meet the orthoplex bound and give rise to d + 1 mutually
unbiased bases in their dimensions. They were rediscovered by Wootters and Fields
[74], with an extension to characteristic 2 and applications to physics. A third infinite
family is obtained from skew-Hadamard matrices (see [66] for a construction using
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d N max|(x, y)|? Name/origin
d 2d * skew-symm. conf. matrix of order 2d (%)
d d? * SIC-POVMs (%)
d dd+1) 1/d d + 1 mutually unbiased bases (x)
2k —1 4k —1 * skew-Hadamard matrix of order 4k (%)
2k 4k —1 * skew-Hadamard matrix of order 4k (x)
4 40 1/3 Eisenstein structure on Eg
45 1/4 kissing configuration of next line
6 126 1/4 Eisenstein structure on K,
28 4060 1/16 Rudvalis group
ZEZ:II)) v(1+ H) * Steiner construction (%)
|S| |G| * difference set S in abelian group G (%)

Table 2: Known universal optima of N points in complex projective spaces
CP4~!. The tight simplices are indicated by an asterisk in the third column
and have maximal squared inner product (N —d)/(d(N — 1)); for brevity
we omit the Gale duals of the tight simplices as well as the tight simplices
from RP9~!. A star in the last column means the code may exist only for
certain parameter settings.

explicit families of skew-Hadamard matrices and [50, Theorem 4.14] for the general
case).

The most mysterious tight simplices are the awkwardly named SIC-POVMs (sym-
metric, informationally complete, positive operator-valued measures). SIC-POVMs
are simplices of size d? in CP4~!, that is, simplices of the greatest size allowed by
Proposition 2.2. These configurations play an important role in quantum information
theory, which leads to their name. Numerical experiments suggest they exist in all
dimensions, and that they can even be taken to be orbits of the Weyl-Heisenberg group
[76; 67]. Exact SIC-POVMs are known for d < 16, as well as d = 19, 24, 28, 35
and 48, while numerical approximations are known for all d < 67 (see [69] and [3]).

The Steiner construction can be carried out in CP%~! using a complex Hadamard
matrix instead of a real Hadamard matrix (see [36]). Complex Hadamard matrices
of every order exist, so the construction applies whenever there is a (2, k, v) Steiner
system.

The last line of the table refers to a construction based on difference sets [75] (see
also [51]). Let G be an abelian group of order N, let S be a subset of G of order d,
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and let A be a natural number such that every nonzero element of G is a difference
of exactly A pairs of elements of S. It follows that d(d — 1) = A(N — 1), and that
the vectors

Uy = (x(s))ses

give rise to a tight simplex of N points in P41 as x ranges over all characters of G.
As particular cases of this construction, one can obtain a tight simplex of n? 4+n + 1
points in CIP” when there is a projective plane of order n. A generalization of this
example was given in [75], using Singer difference sets, to produce (41 —1)/(g—1)
points in CP4-!, withd = (qd —1)/(g—1). Similarly, if ¢ is a prime power congruent
to 3 modulo 4, then the quadratic residues give a difference set, yielding a tight simplex
of ¢ points in CP¥ —3)/2 As another example, there is a difference set of 6 points in
Z /317 (namely, {0, 1,4,6,13,21}), which gives rise to a tight simplex of 31 points
in CPP>.

2.6 Tight codes in HP?~! and OP?

Space N max |(x, y)|? Name/origin

HPI~! dQ2d +1) 1/d 2d + 1 mutually unbiased bases (*)
HP* 165 1/4 quaternionic reflection group

OP? 819 1/2 generalized hexagon of order (2, 8)

Table 3: Previously known universal optima of N points in quaternionic and
octonionic projective spaces. For brevity we omit the tight simplices from
RP4~! and CP9~!. A star in the last column means the code may exist only
for certain parameter settings.

Relatively little is known about tight codes in quaternionic or octonionic projective
spaces, aside from the real and complex tight simplices they automatically contain.
When d is a power of 4, there is a construction of 2d + 1 mutually unbiased bases in
HP?~! due to Kantor [48], and two exceptional codes are known.

The 165 points in HP# from Table 3 are constructed using a quaternionic reflection
group [43, Example 9]. The 819—point universal optimum is a remarkable code in
the octonionic projective plane [27]; see also [35] for another construction. It can be
thought of informally as the 196560 Leech lattice minimal vectors modulo the action
of the 240 roots of Eg (viewed as units in the integral octonions), although this does
not yield an actual construction: there is no such action because the multiplication is
not associative.
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2.7 Gale duality

Gale duality is a fundamental symmetry of tight simplices. It goes by several names
in the literature, such as coherent duality, Naimark complements and the theory of
eutactic stars. We call it Gale duality because it is a metric version of Gale duality
from the theory of polytopes (see [71, Chapter 5] for the non-metric Gale transform).

Let K be R, C or H. (Gale duality does not apply to OP2)

Proposition 2.11 (Hadwiger [39]) Let vy,...,vnN span a d—dimensional vector
space V over K, and suppose they have the same norm |v;|> = d/N . Then their
images in K P2=! form a 1—design if and only if there is an N—dimensional vector
space U containing V and an orthonormal basis uy,...,uy of U such that v; is the
orthogonal projection of u; to V.

Proof Let M be the d x N matrix whose i column is v;. The existence of U and
uy,...,upn is equivalent to that of an extension of M to a unitary matrix by adding
N —d rows, in which case uq,...,uy are the columns of the extended matrix. This
extension is possible if and only if the rows of M are orthonormal vectors; in other
words, it is equivalent to MM T = I,;.

To analyze M , we can write it as M = Zf\;lviej, where ey, ..., en is the standard
orthonormal basis of K. Then

N N
MMT = Z v,-ejejv;.r = Zviv;r.
i,j=1 i=1

Thus, the extension is possible if and only if

N

Z v; vj =1,.

i=1
This equation is the condition for a projective 1-design once we rescale to account for
the normalization |v;|> = d/N . |

Under the 1-design condition from Proposition 2.11, consider the projections w; of
the vectors u; to the orthogonal complement V- of V in U. This code {w;, ..., wn}
in KPN—4=1 5 called the Gale dual of the code {v;,...,vy} in KP9~!. The
construction from the proof shows that the Gale dual is well defined up to unitary
transformations of V. However, there is one technicality: the N points in KPP —d-1
need not be distinct in general, so the Gale dual must be considered a multiset of points.
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Aside from the need to allow multisets, Gale duality is an involution on projective
1 —designs, defined up to isometry.

Gale duality preserves tight simplices when N > d + 1, and the multiplicity issue does
not arise:

Corollary 2.12 Let K be R, C or H. For N > d + 1, the Gale dual of an N—point
tight simplex in KP9=1 jsan N-point tight simplex in KPN—d-1,

Proof Because the 1—design property is preserved, we need only check that the Gale
dual is a simplex. In the notation used above, for i # j we have

0= (uj, uj) = (vi, vj) + (wi, wy).

Thus, (w;, w;j) is constant for i # j because (v;,vj) is. The inequality N > d + 1
merely rules out the degenerate case KPP, |

The inequality
(d?> —d)dimg K

2
from Proposition 2.2 shows that tight simplices cannot be too large. Combining Gale
duality with the same inequality shows that they cannot be too small either (see [76,
Theorem 2.30] and [50, Corollary 2.19]):

N =d+

Corollary 2.13 Let K be R, C or H. If there exists an N—point tight simplex in
KP4~ with N > d + 1, then

1+ /1+8d/(dimg K)

N=>d
=d+ 3

3 Effective existence theorems

Our main tool is an effective implicit function theorem, which gives conditions un-
der which an approximate solution to a system of equations necessarily leads to a
nearby exact solution. Theorems of this sort date back to the Newton—Kantorovich
theorem [49] on the convergence of Newton’s method (see also [63] for a short proof).
Our formulation is closer to Krawczyk’s version of Newton—Kantorovich [53], but it
differs in that we focus on existence of solutions rather than convergence of numerical
algorithms.

The following theorem is a variant of [61, Theorem 2], and we adapt the proof given
there. In the statement, | - || denotes the operator norm, Df(x) is the Jacobian of f
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at x, B(xg,¢) is the open ball around xo with radius ¢, and idy  is the identity
operator on W.

Theorem 3.1 Let V and W be finite-dimensional normed vector spaces over R, and
suppose that f: B(xg,e) — W isa C! function, where xo € V and & > 0. Suppose
also that T: W — V is a linear operator such that

(-1 ||Df(x)0T—idW||<1—w

for all x € B(xg, €). Then there exists an x4 € B(x, €) such that f(xx)=0. Moreover,
in B(x, €), the zero locus f~1(0) isa C! submanifold of dimension dim V —dim W.

Of course, the submanifold is smooth if f is C°.

Proof Consider the initial value problem

(3-2) X)) ==T(Df(x@)oT)™" f(x0),  x(0) = xo,

which is a rescaling of the differential equation for the continuous analogue of Newton’s
method [61, Section 3]. The motivation is that

LN = DI ) (@)
= ~(Df (x() o TY(Df (x(®) o T) ™ £ (x0)
=—J(x0),

and so f(x(t)) = (1 —1) f(xg). Thus, x(1) should be a root of /', but of course we
must verify that the initial value problem has a solution defined on [0, 1].

First note that the bound (3-1) implies that Df (x)o T is invertible for all x € B(xg, ¢).
Moreover, supposing for the moment that f(xg) # 0, we have

] 0Ty < — &

These claims follow from the series expansion

(Df(x)oT)~" = (idw — Df(x)o T)".

i=0

Because f is C!, (Df(x)oT)™! is continuous. Thus, by the Peano existence theorem
[26, Chapter 1, Sections 1-5], the initial value problem (3-2) has a C 1 solution x ()
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defined on a nontrivial interval starting at 0. The solution can be extended as long as
x(¢) does not approach the boundary of B(xg, ¢). Using (3-3), we have

O = ITI-1(Df (x @) o T) M- f (x0)| <e.

It follows that the solution x(¢) can be continued to # = 1 and satisfies |x(¢) —xq| < e&t.
Setting xx = x (1) finishes the first part of the theorem.

Of course, if f(xg) = 0, then we can just take xx = Xg.

It remains only to show that f~!(0) is a manifold of dimension dim V — dim W.
We noted above that the operator Df(x) o T is invertible for all x € B(xg, &), so in
particular this is true for all x € £~1(0). But that implies that Df(x) is surjective,
so we are done by an application of the standard implicit function theorem (see [52,
Section 4.3]). O

Given a function f and an approximate root Xxg, it is straightforward to apply this
theorem. We must compute an approximate right inverse 7" of Df(xg) and bound
|Df(x)oT —idy/| for all x € B(x¢, ¢). The simplest and most elegant way to do this
is using interval arithmetic (see Section 7 for details), but we can also use Corollary 3.4
below when f is a polynomial.

In order for Theorem 3.1 to prove the existence of a solution of f(x) =0, Df(x) must
have a right inverse at that solution. (In particular, we must have dim V' > dim W) If
we view f as defining a system of simultaneous equations, then choosing the right
equations to use can be tricky. For example, some of the most straightforward systems
defining a tight simplex will not work to prove existence of such a simplex, because
Df is singular at every solution. Much of this paper is devoted to formulating suitable
systems defining different sorts of tight simplices. The generic cases are reasonably
straightforward, but even they must be handled carefully, and a few extreme cases are
particularly subtle (Propositions 4.11 and 5.8).

In our applications, f will always be a polynomial map. In this case, the following

lemma can be useful in conjunction with Theorem 3.1.

Definition 3.2 For a polynomial p: R™ — R given by p(x) =) ; crx!, define
|pl = slcr]. Given a polynomial map p = (py,..., pn): R™ — R”, define |p| =
max| p;|.

Lemma 3.3 Let m > n, ¢ > 0, and xo € R™. Suppose f: R"™ — R” is a poly-
nomial function of total degree d, and let R™ and R”" carry the {o norm. Set
n =max(1, |xo| + &). Then for all x € B(xy,¢),

IDf (x) — Df (xo)lI< | f1d(d — 1)en?=2.
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Proof The o, — £~ oOperator norm of a matrix is the maximum of the £; norms of
its rows, so we need to bound the £; norm of each row of Df(x) — Df(xq). Without
loss of generality suppose n = 1; in other words, work with a fixed row of the matrix.
The quantity we want to bound is

A= 10 f(x) = 8; [ (x0)].

i=1

where 9; / denotes the partial derivative of f with respect to the i coordinate.
Splitting this as a sum over the monomials of f, it suffices, by the triangle inequality,
to prove that 4 < e(e —1)en®~2 when f is a (monic) monomial of total degree e <d.
Using the mean value theorem applied to the function g(¢) = 9; f'(xo + #(x — xp)),
we have

0 f (x) = 0 f (x0) = Y _ 0F; (i) (x — X0);

j=1

for some v; on the line segment between x( and x (where (x —x¢); denotes the j th
coordinate of the vector x — xq). Therefore,

m
AEZ

i=1

<& Y |07 Sl

i,j=1

> 07 f (i) (x —x0);

j=1

since the {5, norm |x — x| is bounded by . Write [ = ]_[ZLIXZ"'. Then a,?j f(vi)
equals a monomial of degree e —2 times either e;ej if i # j, or e;(e; — 1) if i = j.
Because 7 > max(|v;|, 1), the monomial is bounded by 7°~2. Summing, we obtain

m

m
A< ene_z( Z ejej — Z e,—) =en®2e(e—1),
ij=1 i=1
as desired. O

Corollary 3.4 Using the notation of Lemma 3.3, if there exists a linear operator
T: R"™ — R™ such that

1D (x0)o T —idga e | £1d(d — 2|7 < 1 - LIS EON

then there exists an x4 € B(xq, €) such that f(xx) = 0, and the zero locus f~1(0) is
locally a manifold of dimension m —n.
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Proof Using
IDf (x) o T —idrn||= || Df (x) = Df (xo) |- | T | +[| Df (x0) o T —idgn |,

we see that the hypotheses of Theorem 3.1 are met. O

4 Simplices in quaternionic projective spaces

4.1 Generic case

The definition gives one characterization of tight N—point simplices; we simply im-
pose |x;|? =1 for each i and |(x;,x;)|*> = (N —d)/(d(N — 1)) for i < j. In
fact, tight simplices can be characterized even more succinctly: it can be shown that
Zi,j|(x,-, xj)|? = N?/d, with equality if and only if {xq,...,xy} is a tight simplex.
Both of these descriptions, though, suffer from the problem that the imposed conditions
are singular; loosely put, if a set of points satisfies the conditions, then it does so “just
barely”. For instance, if we define f: HY — RN+ by

o) = (P =1 e P = 1)l ) 2= N2/d),
i,j

then the fact that the last coordinate is always nonnegative implies that the last row
of Df is zero at a tight simplex. Therefore it is hopeless to try to prove existence by
applying Theorem 3.1. Setting all the inner products equal to (N —d)/(d(N —1))
suffers from the same problem, because

1 ul N —d
- )2 > Y T4
N(N—1) Z 1|(x,,x,)| =d(N=1)
i,j=
i#]
for all xy,...,xn (see the proof of Proposition 2.4).

Fortunately, it is generally possible to recast the conditions describing tight simplices
so that the Jacobian of the associated polynomial map becomes surjective.

Proposition 4.1 Suppose x1,...,xXy € HY (ford > 1)and wy,...,wy €R satisfy
the following conditions:

@ |xi|>=1fori=1,...,N,

) |(xi,x;)|? = [{xir,xjs)|? for 1 <i < j<Nand1<i'"<j' <N, and

(©) Zl]\;l u),-x,-x;r =1;.

Then wy =---=wyn =d/N and {xy,...,xn} is a tight simplex in HP9~!.
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Proof Define I1; = x,-x; , and let & denote the common inner product |{x;, x;)|* for
i # j. By the first condition we have (I1;, I;) = 1 for each i. Thus,

N N
d=(Ig.1g) =) wi(Tli,Ig) =) wi.

i=1 i=1
Moreover, by (2-1) we have (IT;, IT;) =1 and (I1;, I1j) = « for all i # j. Thus, for
any j,
N N
L= (. Ig) =Y wi(Tl;, T;) = (1 —e)wj +a- > w; = (1 —a)w; +ad.
i=1 i=1
It follows that w; = (1 —ad)/(1 — ) for each j. Substituting back into the equation
YN w; =d yields @ = (N —d)/(d(N —1)), from which the result follows. O

Using Proposition 4.1, we can view tight simplices of N points in HP?~! as the
solutions of a system of

N(N-1)

N+( >

—1)+(2d2—d)

real constraints in
N@d+1)

real variables. In situations where Theorem 3.1 applies to this system, we get a solution
space of dimension (number of variables) — (number of constraints). This separately
counts each unit-norm lift of the N elements of HIP9~! so the space of simplices has
codimension 3/N. Moreover, the space of simplices is invariant under the action of the
symmetry group of HP4~!, and we are most interested in the quotient, which is the
moduli space of simplices. This symmetry group, the compact symplectic group Sp(d)
(strictly speaking, modulo its center {4-1}), has real dimension d(2d + 1). Thus the
actual dimension of the moduli space of simplices, local to this particular solution, is
at least

—4d* +1

(4-1) r(N, HPd—l);:(4d_3)N__N(N2—1)

when Theorem 3.1 and Proposition 4.1 apply. Equality holds if the simplices in this
neighborhood have finite stabilizers (in which case the moduli space of simplices is
locally an orbifold of the desired dimension); in any case, the moduli space always has
dimension at least r(N, HP4~1).

The discussion above is informal in the case of a positive-dimensional stabilizer, but it
is not difficult to make the lower bound rigorous for topological dimension. Specifically,
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the solution space X of the system of equations from Proposition 4.1 is a compact
metric space, and locally a manifold of dimension (N, HP4~1) 4+ 3N + dim Sp(d)
near the solution we find. Thus its topological dimension is at least that large. The
moduli space is X/ G, where G = Sp(1)"Y xSp(d). Because G is compact, the quotient
map X — X/G is closed and X/G is Hausdorff. Thus, we can apply topological
dimension theory for separable metric spaces to conclude that

dim(X/G) > dimX —dim G > r(N, HP9™ 1),
as desired (see [46, Theorem VI 7, page 91]).

Note that Gale duality, which replaces d with N — d, preserves r(N, ]HHP’d_l),
as one would expect. Furthermore, because r(N, HP?~!) is quadratic in N, it is
also symmetric about the midpoint of the range in which it is positive. Specifically,
r(N,HP?~1) = r(8d — 5— N, HP4~1).

While a priori it is possible to have tight simplices of up to N = 2d? —d points, we
only have r(N, HP4~') > 0 for N between roughly (4 —2+/2)d and (4 +2+/2)d.
That does not rule out larger tight simplices, but it does mean that this approach using
Proposition 4.1 and Theorem 3.1 could not prove their existence. We believe that
outside of this range, only sporadic examples will exist in general, but we conjecture
that tight simplices always exist within the range where (N, HP4 1) >0, at least if
one stays away from the boundary:

Conjecture 4.2 As d — oo, there exist tight N—point simplices in HP4~! for all N
satisfying
(4—2v2+0(1))d <N < (4+2v2—0(1))d.

Remark 4.3 We emphasize that r (N, HPY~1Y is defined by (4-1). The assertion that
the moduli space of simplices locally has dimension r (N, HPY1) is justified only
when (i) we find a numerical solution of the conditions of Proposition 4.1 to which
Theorem 3.1 applies, and (ii) the action of the symmetry group on our simplex has
finite (zero-dimensional) stabilizer. Regarding (ii), we have checked this rigorously
in all the cases in part (a) of Tables 4-7 (see Section 7.3). In Table 8, which deals
with OP?2, only 5—point simplices fail to satisfy condition (ii). In that case there is a
3—dimensional stabilizer. We accounted for this in Table 8.

Remark 4.4 By similar calculations based on the real and complex analogues of

Proposition 4.1,

N(N —1)
2

F(N,CP4™ ) = (2d —1)N —

—d*+1 and
N(N -1)
2

r(N,RP4™1) = dN —

—2d* +2.
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Optimal simplices and codes in projective spaces 1315

Neither quantity is ever positive when d > 2, which explains why our methods do
not apply to real and complex projective spaces: the system of equations cannot be
nonsingular for any tight simplex whose stabilizer is zero-dimensional.

When we attempt to apply Proposition 4.1, there are three possible outcomes:

(a) we find an approximate numerical solution with surjective Jacobian, in which
case we can prove existence using Theorem 3.1,

(b) we find an approximate numerical solution, but the Jacobian at that point is not
surjective, or

(c) we cannot even find an approximate numerical solution to the system, in which
case we conjecture that there exists no tight simplex.

In a few cases we encountered a fourth possibility:

(d) we find what appears to be an approximate solution but we are unable to converge
to greater precision.

When this situation arose we tried both Newton’s method and gradient descent for
energy minimization (see Section 7.2), but we were unable to improve the error in the
constraints beyond 107> (as compared to a numerical error of about 10! for cases
(a) and (b)). In these cases we make no conjecture as to existence or nonexistence of
solutions.

Tables 4, 5, 6 and 7 list our results for d =3, d =4, d = 5 and d = 6, respec-
tively. Each table lists all values of N from d + 2 to the upper bound 2d? — d from
Proposition 2.2. There is no intrinsic problem with extending to larger dimensions,
although the calculations become increasingly time-consuming.

Theorem 4.5 For the values of (N, d) listed in part (a) of Tables 4 through 7, there
exist tight N—point simplices in HP4~!.

In fact, near the points found by our computer program and exhibited in the auxiliary
files, the moduli space of simplices has dimension exactly r (N, HP9~1). In the
case of a singular Jacobian (part (b) of the tables) we report the rank deficiency
(dim W —rank Df (x4) in the terminology of Theorem 3.1).

In HP#, as shown in Table 6, we first observe a gap between the tight simplices of
sizes d and d + 1 that always exist in HP~! and the range of simplices for which our
method proves existence. The gap is real: there exists no 7—point tight simplex in HIP*,
because of Corollary 2.13. Similarly, there exists no 8—point tight simplex in HIP>,
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(a) (b) (©)
N r(N,HP?) | N rank deficiency | N
5 0 12 2 14
6 4 13 2
7 7 15 14
8 9
9 10
10 10
11 9

Table 4: Cases in HIP2: (a) proven existence of tight simplices; (b) singular
Jacobian; (c) conjectured nonexistence.

(a) (c)
N r(N,HP?) N r(N,HP3)| N
6 0 14 28 22-28
7 7 15 27
8 13 16 25
9 18 17 22
10 22 18 18
11 25 19 13
12 27 20 7
13 28 21 0

Table 5: Cases in HIP3: (a) proven existence of tight simplices; (c) conjec-
tured nonexistence.

4.2 12- and 13-point simplices

The cases of 12— and 13—point simplices are somewhat special: the system of con-
straints specified by Proposition 4.1 has a rank deficiency. To prove existence of
solutions using Theorem 3.1, a different approach is needed.

We take as our starting point the following observation: not only do tight 12—point
simplices exist (numerically), but actually 12—point cyclic-symmetric simplices exist
(again, numerically). By this we mean a simplex such that, if (x, y,z) € H? is a point
in it, then so are (y,z, x) and (z, x, ), and these are three distinct points in HP?2.

We would like to adapt Proposition 4.1 to find simplices with cyclic symmetry. Imposing
this symmetry reduces the number of degrees of freedom we have, but it also reduces
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(a) © | @
N r(N,HP* N r(N,HP* N r(N.-HP*)| N |N
8 9 15 51 22 44 7 |28
9 18 16 53 23 39 29-45
10 26 17 54 24 33
11 33 18 54 25 26
12 39 19 53 26 18
13 44 20 51 27 9
14 48 21 48

Table 6: Cases in HIP#: (a) proven existence of tight simplices; (c) conjec-
tured nonexistence (proven for N = 7); (d) ambiguous numerical results.

(a) © | @
N r(N,HP°) N r(N,HP’) N r(N,HP’)| N |N
9 10 18 82 27 73 8 |35
10 22 19 85 28 67 36-66
11 33 20 87 29 60
12 43 21 88 30 52
13 52 22 88 31 43
14 60 23 87 32 33
15 67 24 85 33 22
16 73 25 82 34 10
17 78 26 78

Table 7: Cases in HIP?: (a) proven existence of tight simplices; (c) conjec-
tured nonexistence (proven for N = 8); (d) ambiguous numerical results.

the number of conditions we need to check. Fortunately, we end up with a set of
constraints that has a surjective Jacobian at a tight simplex.
For convenience we will state the result only for d = 3, but it naturally generalizes to

any dimension (along the lines of Proposition 6.5).

Proposition 4.6 Let o be the cyclic-shift automorphism o (a, b, c) = (b, c,a). Sup-

pose X1, ...,X3m € H? and wy, ..., w3, € R satisfy the following conditions:
(@) xmyi=o0(x;) fori=1,...,2m,
®) wpyti=w; fori =1,...,2m,
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) |xil>=1fori=1,...,m,

(d) the squared inner products |({x;,x;)|?, fori =1,...,m and the following values
of j,areallequal: (i) j =i+m, ()i < j <m,(ii)i+m<j=<2m,
iv)i +2m < j <3m, and

(e) the matrix 213;”1 wixixj has (1, 1) entry equal to 1 and vanishing (1, 2) entry.
Then wy =+ = W3,, = 1/m and {x1,..., X3} is a tight simplex in HP?2.

Proof By repeated applications of (x;,x;) = (o(x;),0(xj)), it easily follows that
{X1,...,X3m} is a simplex.

Having shown that, now consider the matrix M = 213;"1 wix,-x;r . Rewriting M as
Yo wi (x,-x;r +o(x)o(xi)T+02(xi)o2(x;i)T), we see that M is cyclic-symmetric;
in other words, it is invariant under conjugation by the permutation o . Of course M is
also Hermitian. Combining these two properties, it must be of the form

rs s
M=\|srs
s s

for some » € R and s € H. The last condition in the proposition statement forces
r=1and s =0, soin fact M = I3.

Therefore, {x1,..., X3} is a simplex with Zf'znl w,-x,-x;r = I3, and we complete the
proof by applying Proposition 4.1. a

Applying the constraints in the above proposition with m = 4, we get a surjective
Jacobian in Theorem 3.1, which proves the following result.

Theorem 4.7 There is a tight simplex of 12 points in HIP2. In fact, there is such a
tight simplex with cyclic symmetry.

Experimentally it appears that tight simplices with cyclic symmetry exist in other cases,
such as 6— and 9—point simplices in HIP2. In those cases we do not need to use the
symmetry to establish the existence of tight simplices, though.

For 13—point simplices, we wish to follow a similar approach to bypass the rank-
deficiency issue, but we must allow fixed points of the cyclic shift. In fact, there are
cyclic-symmetric 13—point tight simplices consisting of 12 points with cyclic symmetry
as above (in other words, four equivalence classes under the cyclic-shift operator) plus
one extra point which is invariant under the cyclic-shift operator.
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Proposition 4.8 Let o be the cyclic-shift automorphism o (a, b, c) = (b, c,a). Sup-
pose X1, ...,X3n € H? satisfy the following conditions:
(@ xmyi=o0(x;) fori=1,...,2m,
®) |xi>=1fori=1,...,m,
(c) the squared inner products |(x;, x;}|*, fori =1,...,m and the following values
of j,areallequal: () j =i+m, Q)i<j=<m, (i)i+m<j=<2m,
(iv) i +2m < j <3m, and

(d) the (1,2) entry of the matrix 213211 x,-xJr has real part % and magnitude %

i

Then there is a unique point X3;,4+1 € HP? such that {xi,...,X3m. X3m+1} IS a tight
simplex, and that point satisfies 0 (X3m,+1) = X3m+1-

Proof A tight (3m + 1)—point simplex {x, ..., X341} must satisfy
3m+1
Z XiX,T _ 3m3+1 I

Thus the matrix X3z,+1 x;r m+1 1s determined by the other data; since a point in projective
space is determined by its projection matrix, this proves uniqueness. It also proves
that if such a point x3,,41 exists, then it must satisfy o (X3,,4+1) = X3,+1 Up to scalar
multiplication (by a cube root of unity in H); this is because otherwise

o({X1, s X3 X3m413) = X100, X300 0 (X3m41)}
would be a distinct tight simplex.

Define M = 21321 x,-xj . This matrix is Hermitian and cyclic-symmetric, so as in the
proof of Proposition 4.6 it is of the form
for some r € R and s € H. Each projection x;x

thus r = m. Let

Il
PR
v ot N
vl N«
S v oYy

T

; has trace 1, so Tr M = 3m and

M= 3m3+113—M
3 —s -5
=|-s % —s
-5 =5 %
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Being Hermitian and of trace 1, IT is a projection matrix of rank 1 if and only if
352 = —7, as one can see by solving I1?> = I1. The last hypothesis in the proposition
statement implies that —3s is a cube root of unity in H, from which we see that this
condition is satisfied.

Let X3,,41 € HIP? be the point satisfying IT = X3m+1x§m+1 . Weknow {x1,..., X3}
is a regular simplex, as in Proposition 4.6. For i =1, ..., 3m define I1; = x;x; , and
let o be the common inner product (IT;, I1;) for 7, j < 3m with i # j. By the
definition of IT,

3m+1
4-2 IT E I1; = I5.
( ) + i 3 3

Since (I1;,I1;) =« for i # j and (I1;, I1;) = 1, the symmetry of (4-2) implies that
the inner products (IT, I1;) are all equal; call their common value . Taking the inner
product of (4-2) with IT and IT; yields

14+3mp=0CBm+1)/3 and B+ OBm—Da+1=0CBm+1)/3,

respectively. Subtracting shows that @ = 8, s0 {x1,..., X341} is a simplex, and it is
tight by (4-2). |

We get a surjective Jacobian when we apply the conditions of the above proposition in
Theorem 3.1 with m = 4, proving the following result.

Theorem 4.9 There is a tight simplex of 13 points in HP2. In fact, there is such a
tight simplex with cyclic symmetry.

Theorems 4.7 and 4.9 establish the existence of tight simplices, and their proof could
also provide the dimension of the space of tight simplices with cyclic symmetry. They
cannot, though, tell us the dimension of the full space of tight simplices.

If Proposition 4.1 had applied then we would have concluded that in some neighborhood,
the space of tight simplices of 12 (resp. 13) points in HP? has dimension 7 (resp. 4).
The observed rank deficiency of two has several possible explanations, including the
following: it might mean that two of the constraints are redundant, so that the space
of tight simplices is two dimensions larger than predicted; it might mean that the
constraints become degenerate at the solutions, but the space of tight simplices is still
a manifold; or it might mean that the space of tight simplices is not even locally a
manifold. Based on numerical evidence (see Section 7.5), we conjecture that the first
possibility holds.
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Conjecture 4.10 There exists a 12—point (resp. 13—point) tight simplex in HP? such
that, in a neighborhood thereof, the space of tight simplices has dimension 9 (resp. 6).

4.3 15-point simplices

The case of 15 points in HIP? is special for a few reasons. First, it may be the only case
in quaternionic projective spaces where the cardinality upper bound in Proposition 2.2
is achieved (beyond HP!, which is S* and clearly contains a 6—point simplex). Also,
in comparison with the other cases in Table 4, this case has especially large rank
deficiency. This suggests that the moduli space of simplices is of a larger dimension
than r (15, HIP?). That turns out to be correct, as we now show.

Proposition 4.11 Suppose x1, ..., x5 € H? satisty
(T, Tj) =—5  fori # j,
where
Fi = x,-x;r — %|x,~|213.

Suppose additionally that |x;|* € [1 —107%,1 4 107°] for each i. Then |x;| = 1 and
{X1,...,X1s} is a tight simplex in HP?.

We do not think the assumption |x;|* € [1 — 107, 1 4+ 1079] is necessary for the
proposition to hold, but it is easy to verify in our applications and lets us prove the
result with local calculations. This proof and that of Proposition 5.8 will be based on
two technical lemmas (Lemmas 4.14 and 4.15), which we defer until the end of the
section. It would be straightforward to replace them in our applications with bounds
computed using interval arithmetic (see Section 7.2), but they are simple enough to
prove by hand, so we do so below.

Proof Foreach i write |x;|* = 14;, and let § = max;|§;|. It suffices to show § =0,
because {x1,...,X;s} is then a tight simplex. Specifically, define n; = (1 + §;)~'/2

and let IT; = xix;r /1xi|? = n,-xix;r denote the projection matrix associated to x;. Then

1 ifi =j,

—nin;j/21 -f—% ifi # 7.

If n; =1 for all i, then these inner products agree with the desired value 2/7 in a tight
simplex of 15 points.

(M;, ) = minj (0. Tj) + 1 = {

Our strategy is to show that nonnegativity of the second zonal harmonic sum forces
4 = 0, given a rank condition coming from the fact that 15 equals the dimension of
the space of Hermitian matrices.
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Recall that the zonal harmonics on HP9~! are given by Jacobi polynomials
PRIV -1,
Specifically, the functions
Ki(x.p) = B30 x )P - 1)

are positive-definite kernels on HPY~!. Let 3 be the sum of the kernel Ky (x, y)
over the projective code determined by {x1,...,x15}. Then positive definiteness
implies Xz > 0.

We will require only ,. As P5(3,1)(2t — 1) = 282 —21¢ + 3, we can write X, in
terms of the moments Zg:l (I;, Hj)k with £k <2.1If § =0, then X, =0, and we
wish to compute it to second order in 8y, ..., ;5 in terms of the moments m; :=) ; §;
and my =) ; 51.2. Applying Lemma 4.14 with P; ; = (I1;, I1;), we find that

4-3) 125 — (—2my + Zmt + Im,)| <8295-83.

If we could approximate ¥, sufficiently well by a negative-definite quadratic form in
81,...,015, then X, > 0 would imply § = 0. However, the approximation in (4-3) is
not negative-definite. To make it so, we must add correction terms based on additional
constraints satisfied by the perturbations §; .

These additional constraints come from a singular Gram matrix. We have (I';, ;) =
%(1 + 8;), and the Gram matrix of the elements /2/3 T is

1+81 —L

14
G = .
1
—17 140N
Eachof I'y, ..., I';5 is a traceless Hermitian matrix, so they must be linearly dependent,

because the space of such matrices has dimension 14. Thus, the Gram matrix G must be
singular. Let D := 141% det(G)/15'? be its determinant, normalized as in Lemma 4.15.
Of course D = 0, but we know from Lemma 4.15 that

|D—15my — 14(m3 —my)| < 50625-8° and |D? —225m?%| < 4556250-68°.
Because D (and so D?) must vanish and ¥, must be nonnegative,
¥, :=4200D — 269D + 189005,
must be nonnegative as well. However, from the above inequalities, we have

|, +4875m,| < 16-10°-§°.
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We have —4875m, < —4875-82, and the assumption § < 1075 implies that
16-10% 6% < 4875.5%.

It follows that X, < 0, with equality if and only if § = 0. Because X/, is nonnegative,
we conclude that indeed equality must hold, as desired. |

Using this system of constraints, we do get a nonsingular Jacobian matrix and hence we
can apply Theorem 3.1. This yields a 75—dimensional solution space; after subtracting
overcounting and symmetries, we arrive at the following.

Theorem 4.12 There is a tight simplex of 15 points in HIP2. In fact, locally there is a
9 —dimensional space of such simplices.’

Theorem 4.12 establishes the existence of a tight 2—design in HP2. The common
inner product in this simplex is %, contrary to a theorem of Bannai and Hoggar
asserting that the inner products in tight designs are always reciprocals of integers [12,
Corollary 1.7(b)]. The case of 2—designs is not addressed in their proof, and Bannai
has informed us that this was an oversight in the theorem statement. See also [58] for
another correction (the icosahedron is a tight 5S—design in CIP! with irrational inner
products).

It would be interesting to determine whether using the points of a 15—point simplex as
vertices could lead to a minimal triangulation of HIP? (see [21]), as well as whether
the same is true for a 27—point simplex in QP2

Tight 2—designs in HP?~! are quaternionic analogues of SIC-POVMs [67]. Because
SIC-POVMs seem to exist in CP4~! for every d , it is natural to speculate that tight
quaternionic 2—designs should be even more abundant, but we have not found any
examples with d > 3.

So far, we have shown that there are tight simplices in HP? of every size up to 15
except for 14.

Conjecture 4.13 There does not exist a tight simplex of 14 points in HP?2.

Similarly, we will see in Section 5 that there are tight simplices in QP2 of every size
up to 27 except for 26. In RPP? every size up to 6 except for 5 occurs, while in CIP2
we see every size up to 9 except for 5 and 8. It seems unlikely to be a coincidence
that the second largest possible size is always missing in projective planes, but we do
not have a proof beyond RP2. (As explained after Lemma 2.9, linear programming

> As opposed to the absurd —5 predicted by r (15, HP?).
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bounds suffice to disprove the existence of tight 5—point simplices in RIP2. However,
they do not rule out the analogous cases in CP2, HP? or QP?2.)

In the remainder of this section, we state and prove the deferred lemmas from the proof
of Proposition 4.11.

Lemma 4.14 Given d > 2, N > 1, and §1,...,8N with § := max;|6;| < %, set
ni=0+8)"Y2, A=—=d—-1)/(dN —1)), m =Zi5i,mzzzi5i2,and

P {1 ifi =,
T A4+ 1/d ifi # .

Let
= N2,
N2 d-l 3N A o
Ti= T+ S (S = ma gt
5 NN +d>-2d) _2N-d)h
2T aA(N— d 1 -
+A(k+ 2d) ((2+k)d——)m2.

Then the moments Sy, := Zl P ; satisty the bounds

,j=1

So=Ty., |S1—Ti|<5N8> and |S,—T,| <16N8§>.

Proof It is clear that Sy = N2. For S; and S5, we begin by explicitly computing

oS (S)

i=1 i=1

NNV il il Voo
so=n2( L) (L) + 2 ) -2 ()

i=1 i=1 i=1 i=1
N24Nd*—N

+ 72

Now, using 7; = (1 +6;)"/2and § < Z’ Taylor’s theorem with the Lagrange form of
the remainder yields the estimates

In? —(1—3ad; + ta(a+2)-187)| < 81(%)“/261(“4_2)(6,4_4).53
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for all @ > 0. Taking a = 1,2, 4 we get, respectively, the bounds

N
Zm—(N—%ml +%Wl2) < N§°,

i=1

N
Zniz—(N—ml + my) <4N§3,

i=1

N
> 0t — (N —2my +3my)| < 17N’

i=1

We also have the simple bounds ;| < N§?. Using these, we find

N 2
'(Zni) —(N* = Nmj + 2Nmj + im?)

i=1

N 2
2
S‘(Zni) SN = oy + o) '+\gmlm2_6_94mg\
i=1
N
SN Y i+ N—3my+ 3ma| + N?(38° + 56%)

i=1
< N&(2[N = 3my + 3my| + N§) + N?(38° + ;6%
<NS(2N(1+ 38+ 28%) + N&°) + N*(38° + 28%)
<3N2§%.

We similarly compute

N 2
‘(Z n?) — (N2 —=2Nmj +2Nm, +m?)| < 13N253.

i=1
Combining all of these estimates with d > 2, N > 2 and |A| < 1/N leads to bounds
of BN +4)83 and 3N 4+ 174 17/N)83 for |S; — T;| and |S, — T»| respectively.
We have rounded them up to pleasant multiples of N in the lemma statement. a

Lemma 4.15 Suppose N > 3, and let
1+ 64 —ﬁ

N —DN-!
:—( ) det .', ’

D
NN-3 1
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where every off-diagonal entry in the above matrix equals —1/(N — 1). Set § =
max; |§;|, my =Y ;8 andmy, =) ;62 If § < 1/(2N), then

|D—Nmy— (N —1)(m}—my)| < N** and |D>—N?*m3|<6N°§°.

Proof Let G, be the r x r matrix with diagonal entries 1 and off-diagonal entries S.
It is easy to show® that

Dy = det(Gy) = (1+ (r = A1 - ).

Setting 8 = —1/(N — 1), we have

_ r—1
Dr:(N r)N
(N-D"
Using this, for
1+6 -¥
—ﬁ 146N
we find that
det(G)—DN—i-(Z(S)DN 1+(Z§5)DN 2+ +1_[5
i<j
NN -2 2NN 3
=0 3; 8i6; di.
+(Z Vo= (; et ]

In terms of the moments m; = ) ;6; and mp = ) ; 51‘2’ the rescaled determinant
D = (N —1)N"1det(G)/NN3 satisfies

|D—NW11 —(N— 1)(1’}’1% —m2)| =< Z (ZZ)(SkNZ—k(N_ l)k_lk.
k>3

The k =3 term on the right is (N —1)3(N —2)83/2 < N*§3/2. Because § <1/(2N),
each subsequent term diminishes by a factor of at least % Thus, summing the geometric
series, we have

|D— Nmy— (N —1)(m?—my)| < N*§>.
6See the footnote in the proof of Proposition 2.2.
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Note that the trivial bounds |m{| < N§ and m, < N§? imply
|INmy + (N — 1)(m§ —my)| < N2§ + (N — 1)(N?6% + N§?)
= N2+ N(N?—-1)8?
<N2%§+ N3§2 <2N2,
and therefore | D| < 2N2§ 4+ N*53 <3N2§. Now, to control D2, we write
|D? — (Nmy + (N = 1)(m} —m3))*| < N*6*|D + Nmy + (N = 1)(m} —m;)|
< N*8(ID|+ |[Nmy + (N — 1)(m] —my)])
< N*83(5N?28) = 5N 65
Furthermore,
IN?m} — (Nmy + (N = 1)(m] —m3))?|
<2N(N = Dlmy|(m] +ma) + (N = 1)*(m] +m,)?
<2N(N —1)N8§(N?6% + N§?) 4+ (N —1)3(N?8% + N§2)?
=2N3(N?2=1)8>+ N3 (N?—1)%8* <3N383.

Combining these two bounds with the triangle inequality and using N§ < %, we obtain

the asserted bound for |D? — sz% |. m|

5 Simplices in OP*?

The study of simplices in QP2 unfolds much like that in HIP2; we get essentially the
same results as long as we take care to work in an affine chart. In particular, we can
handle the generic case, 24— and 25—point simplices, and 27—point simplices using
adaptations of Propositions 4.1, 4.6 and 4.8, and 4.11, respectively.

5.1 Generic case
Proposition 5.1 Fori =1,..., N, suppose x; = (a;, b;,c;) € Ry x 0% and w; € R
satisfy

@ |ai|®>+|bil>+|ci|>=1fori=1,...,N,

() p(xi,xj)? = p(xir,xj)> for 1 <i < j<N and1<i'<j <N,and

(c) the matrix equation

N a; B 100
Zwi b; (5,' b; E,): 010
i=1 Ci 001
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Then wy =---=wy =3/N and {x1,...,xn} is a tight simplex.

We omit the proof of Proposition 5.1 as it is nearly identical to that of Proposition 4.1.

We can attempt to apply Proposition 5.1 with Theorem 3.1 just as we did for simplices
in quaternionic projective spaces. There are

N(N —1)
N+(T—1)+27

real constraints in 18 N real variables, so when the Jacobian is nonsingular we get a
solution space of dimension (N —1)(34—N)/2—9. As before, we should deduct the
dimension of the symmetry group. The symmetry group of OP? is the exceptional
Lie group F4, which has dimension 52. Thus, our final expression for the expected
local dimension of the moduli space of simplices is

_(N-DB4-N)

r(N,OP?) := > 61.

Again, as with (N, HP?~1), this formula only applies when, at our numerical solution,
Theorem 3.1 applies to the conditions of Proposition 5.1 and the simplex has zero-
dimensional stabilizer.

Theorem 5.2 For the values of N listed in part (a) of Table 8, there exist tight N—point

simplices in OP?2.

5.2 24- and 25-point simplices

The following proposition is proven similarly to Proposition 4.6.

Proposition 5.3 Let o be the cyclic-shift automorphism o (a, b, c) = (b, c,a). Sup-

pose X1,...,X3m € O3 and wy, ..., ws, €R satisfy the following conditions:
(@) xm4i=o0(x;) fori=1,...,2m,
®) wpmyi=w; fori =1,...,2m,
() xieRyx0?and|x;|>=1fori=1,...,m,
(d) the squared distances p(x;, xJ~)2, fori = 1,...,m and the following values

of j,areallequal: (i) j =i+m, ()i < j <m, (ii)i +m < j <2m,
iv) i +2m < j <3m, and

(e) the matrix 213;”1 wix,-x;r has (1, 1) entry equal to 1 and vanishing (1, 2) entry.

Then wy =-+- = w3, = 1/m and {xy, ..., X3} is a tight simplex.
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() (b) (©)
N r(N,OP?) N r(N,OP?) N r(N,OP?)| N rank deficiency | N
5 of 12 60 19 74 24 2 26
6 9 13 65 20 72 25 2
7 20 14 69 21 69 27 26
8 30 15 72 22 65
9 39 16 74 23 60
10 47 17 75
11 54 18 75

Table 8: Cases in OP?2: (a) proven existence of tight simplices; (b) singular
Jacobian; (c) conjectured nonexistence.

TActually (5, OP?) is not 0; rather, it equals —3. This is the only case
in which the simplex we found has a positive-dimensional stabilizer. The
stabilizer is 3—dimensional, so the actual dimension of the moduli space,
which is what (5, OP?) is really intended to capture, is 0.

Using the conditions of Proposition 5.3 with m = 8 in Theorem 3.1 yields a surjective
Jacobian, allowing us to prove the following theorem.

Theorem 5.4 There is a tight simplex of 24 points in QP2 In fact, there is such a
tight simplex with cyclic symmetry.

Similarly, to prove the existence of tight simplices with 25 points, we use the following
adaptation of Proposition 4.8.

Proposition 5.5 Let o be the cyclic-shift automorphism o (a, b, c) = (b, c,a). Sup-

pose X1,...,X3; € 03 satisty the following conditions:
(@) xmyi=o0(x;) fori=1,...,2m,
(b) x;eRyx0?and|x;|>?=1fori=1,...,m,
(c) the squared distances ,o(x,-,x]')z, fori = 1,...,m and the following values

(d)

of j,areallequal: (i) j =i+m, ()i <j<m,@{i)i+m<j=<2m,
(iv) i +2m < j <3m, and

the (1, 2) entry of the matrix Zle xix;r has real part % and magnitude %

Then there is a unique point X3,;,4+1 € OP? such that {Xts..., X3m, X3m—+1} I a tight
simplex, and that point satisfies 0 (X3+1) = X3m+1-
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Using the conditions above with m = § in Theorem 3.1 yields a surjective Jacobian.

Theorem 5.6 There is a tight simplex of 25 points in Q2. In fact, there is such a
tight simplex with cyclic symmetry.

Continuing the correspondence with 12— and 13—point simplices in HIP2, based on
numerical evidence we conjecture the following.

Conjecture 5.7 There exists a 24—point (resp. 25—point) tight simplex in QP2 such
that in a neighborhood thereof, the space of tight simplices has dimension 56 (resp. 49 ).

5.3 27-point simplices

Proposition 5.8 Suppose x; = (a;, b;, c;) € Ry x O satisty
(Ty.Tj) =—55 fori # j,

where
aj _
U= | bi | (@ bi @)—5(ai +1bil> +eil*) Is.

ci
Suppose additionally that |x;|* € [I — 1077, 1+ 1077] for each i . Then |x;| = 1 and
{X1,...,X27} determines a tight simplex in QP2
Proof We use the same proof technique as Proposition 4.11, with the only difference

being the constants appearing in the proof.

As before, we write |x;|* = 1 +§;, and let § = max;|§;|. Let G be the Gram matrix
of \/2/3T,...y/2/3T%7. Then det(G) = 0, and by Lemma 4.15 the normalized
determinant D := 262 det(G)/27%* satisfies

|D —27my —26(m* —my)| < 531441-§° and |D*—729m?| < 86093442 -5°.
The second zonal harmonic on QP2 is given by the Jacobi polynomial
P21 —1) = 9112 — 651 + 10.

Let X, be the sum of the kernel K, (x, y):= P2(7’3)(2|(x, ¥)|? —1) over the projective
code determined by {x{,...,x27},s0 X5 > 0. By Lemma 4.14,

B2 (<o -+ 2y + 222m)| = 48087 .57,

Geometry & Topology, Volume 20 (2016)



Optimal simplices and codes in projective spaces 1331

Because D =0,
¥} :=75816D —2745D* + 3411725,

must be nonnegative, but | X, + 200475m5| < 293024167110 - §3. Since my > §2,
when § < 107 we have ¥/, <0 with equality only when § = 0. Thus, § = 0 and
{X1,...,X27} determines a tight simplex in QP2 |

Applying Theorem 3.1 with the conditions of the above proposition, we find a suitable
point for which the Jacobian is surjective.

Theorem 5.9 There is a tight simplex of 27 points in QIP2. In fact, locally there is a
56—dimensional space of such simplices.

Theorem 5.9 establishes the existence of a tight 2—design in QP2 Such designs were
previously conjectured not to exist [43, page 251]. It is known [45] that tight 7 —designs
in OP? can only exist for =2 and ¢ = 5, and there is an explicit construction of a
819—point tight 5—design [27], so Theorem 5.9 completes the list of # for which tight
t—designs exist in QP2

Conjecture 5.10 There does not exist a tight simplex of 26 points in QP2

See also the discussion after Conjecture 4.13.

6 Simplices in real Grassmannians

Our techniques also apply to show the existence of many simplices in Grassmannian
spaces. The real Grassmannian G(m,n) is the space of all m—dimensional subspaces
of R”. It is a homogeneous space for the orthogonal group O(n), isomorphic to
O(n)/(0O(m) x O(n—m)), and it has dimension m(n — m). These spaces generalize
(real) projective space RP”~!, which is the space of lines in R”. The spaces G(m,n)
and G(n — m,n) can be identified by associating to each subspace its orthogonal
complement, so in what follows we always assume m < n/2.

Though Grassmannians are generally not 2—point homogeneous spaces, there are still
linear programming bounds [5; 6]. Here we will just consider the special case of the
simplex bound.

When m < n/2, a pair of points in G(m, n) is described by m parameters, namely the
principal angles between the m—dimensional subspaces. Given two m—dimensional
subspaces U and U’, inductively define sequences of unit vectors uy, ..., u, € U

Geometry € Topology, Volume 20 (2016)



1332 Henry Cohn, Abhinav Kumar and Gregory Minton

and ', ... up, € U’ sothat (u;,u}) is maximized subject to (u;,u;) = (u;,u}) =0

for j <i. Then the principal angles are 6; := arccos(u;, u}).

The chordal distance on G(m, n) is given by

d.(U,U) = \/sin2 61 + - + sin? Gp,.

Unlike in projective space, the chordal metric on Grassmannians is generally not
equivalent to the geodesic metric +/ 012 4+ -+ 9,31. See [31] for discussion of why the
chordal metric is preferable.

A generator matrix for an element of G(m,n) is an m X n matrix whose rows form
an orthonormal basis of the subspace. Given a generator matrix X, the orthogonal
projection onto the subspace is X’ X . Suppose X; and X, are generator matrices
for the subspaces U; and U, and let II; = Xi’Xi (for i = 1,2) be the orthogonal
projection matrices. Then the singular values of the matrix XX 2’ are cos 6; for
1 <i <m. It follows that

(6-1) de(Uy, Up)* = |11 — || %= m — (I, IT,).

Let I1° = IT — (m/n)I, be the traceless part of the projection matrix. It can be
thought of as a point in R?, where D = m(m +1)/2—1, if we view R? as the space
of trace-zero symmetric matrices. It is easily checked that || H°||%,= mmn—m)/n.
Therefore we obtain an isometric embedding U + T1° of G(m,n) into the sphere
of radius /m(n —m)/n in R? under the chordal metric. The simplex bound for
spherical codes gives us the following result.

Proposition 6.1 (Conway, Hardin and Sloane [31]) Every N-point simplex in
G(m,n) satisfies

N < (m—i—l)’

2
and every code of N points has squared chordal distance at most

mm—m) N
n N-1

This squared chordal distance is equivalent to having inner product

m(Nm —n)

©-2) n(N —1)

between orthogonal projection matrices.
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Remark 6.2 The m = 1 case of Proposition 6.1 is the same as the K = R case of
Proposition 2.2 (together with Proposition 2.4). Indeed, the proofs of these two results
are essentially the same; they are just phrased in different language.

We say that a simplex in G(m, n) is tight if its minimal chordal distance meets the upper
bound above. Analogously to simplices in projective space, a Grassmannian simplex is
tight if and only if it is a 1—design (a 2—design in the terminology of [7]), which holds
if and only if the linear programming bound is sharp [5]. If the projection matrices
of the simplex are Ilq,..., 1y, then another equivalent condition for tightness is
YN ;= (Nm/n)ly.

Conway, Hardin and Sloane [31] reported a number of putative tight simplices based
on numerical evidence, but except for a few explicit constructions they did not present
any techniques for rigorous existence proofs. (As in non-real projective spaces, it is not
easy to reconstruct an exact Grassmannian simplex from a numerical approximation.)
The cases with explicit constructions are listed in Table 9. By applying our methods,
we can certify the existence of simplices for many of the cases previously identified
but not settled.

(m,n) N  Reference

(2,4) 2-6 [31, pages 145-146]
(2,4) 10 [31, page 147]
(2,6) 9 [31, page 154]
(3,797 28 [31, page 152]
(2,8) 8 [31, page 154]
(2,8) 20 [22, page 135]
(2,8) 28 [31, page 154]

Table 9: Previously known tight simplices with explicit constructions in
G(m,n) for n <8.

Proposition 6.3 Suppose that {x; j € R"};—1  N;j=1,..m and wy, ..., wy satisfy
the following conditions:

(@ |x;j|=1foralli,j,

(b) foralli andall j < j', (x;j,x; ) =0,

(c) the inner products (Z;’;l x,',jxl?j, Z;-';l xi/,jxf, j) are equal for all distinct
pairs i,i’, and

(d Zf\; wi(Z}”:l xi,jxf,j) =1In.
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Then wy = --- = wy = n/(Nm) and the subspaces span{x; 1, ..., X;m} form a tight
simplex in G(m,n).

Proof For each i, define I1; = Z;-';l x,-,jxl?,j. Since {X; 1,...,Xim) is an orthonor-
mal system, this is the projection matrix associated to the plane span{x; i,..., Xim}.
Using (6-1), the third condition guarantees that we have a simplex. Arguing as in the
proof of Proposition 4.1, we deduce from the last condition that w; = n/(Nm) for
each i. Thus Zl]\;l I1; = (Nm/n)I,; as noted above, this is equivalent to tightness. O

In many cases the system specified by Proposition 6.3 is nonsingular, allowing us to
apply Theorem 3.1. This yields the following.

Theorem 6.4 For the values of (N, m, n) listed in the “proven” column of Table 10,
there exist tight N—point simplices in G(m,n,R).

In the context of Proposition 6.3, we have Nmn 4+ N real variables and

w7
real constraints. Thus, when Theorem 3.1 applies, we locally get a solution space
whose dimension is the difference of these counts. Because O(m) acts on the different
representations of each plane, we are overcounting the dimension by N - (’;’ ) . Moreover,
when the symmetry group O(n) of G(m,n) acts with finite stabilizer on the simplex,
we should deduct (g) from our final dimension count. Putting this all together, when
these conditions are satisfied (as in Remark 4.3), we get a neighborhood in which the
moduli space of simplices has dimension

(6-3) r(N,G(m,n)):= Nmn
As in projective spaces, we expect to find tight simplices in most cases for which
r(N,G(m,n)) > 0. This parameter counting argument heuristically explains the large
number of tight simplices found in [31].

We tested all cases up to dimension n = 8, using our own software to search for
numerical solutions and also comparing with the numerical results of Conway, Hardin
and Sloane [31]. As with simplices in projective spaces, sometimes the system specified
by Proposition 6.3 was singular, and sometimes the numerical evidence was unclear
(as we saw in Tables 4 and 6, respectively). These cases are in the third and fourth
columns, respectively, of Table 10.
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(m,n) Proven Singular Jacobian Ambiguous

(2,4) 46 2,3,7,8,10

2,5) 5-10 4,11

(2,6) 5-14 3,4

(3,6) 5-16 2-4 17
2,7 617 18
(3,7) 522 4,28 23
2,8) 621 4,5,28

(3.8) 5-28 4

4,8) 5-30 24

Table 10: Tight Grassmannian simplices in G (m,n).

In addition to our existence proofs and the previously known explicit constructions,
several Grassmannian tight simplices can be proven to exist using the following ob-
servation: if there is a tight N—point simplex in G(m, n) for some m, n, then there is
a tight N—point simplex in G(km, kn) for all k£ > 1. This is immediate from block
repetition [33, Proposition 12]. It proves existence for 11 of the singular cases in
Table 10. This leaves us with only 7 hitherto unresolved cases in which there is strong
numerical evidence for a tight simplex: 4—point simplices in G(2,5), G(3,6), G(3,7)
and G(3, 8); 7— and 8—point simplices in G(2,4); and 11—point simplices in G(2, 5).
For completeness, we will settle all of these in the following subsection.

We anticipate no difficulty in applying our techniques to complex or quaternionic
Grassmannians, but we have not done so.

6.1 Miscellaneous special cases in Grassmannians

We begin with the case of 11—point tight simplices in G(2, 5). This can be handled
in the same way as 13—point tight simplices in HIP? and 25—point tight simplices
in OP2; specifically, we can prove existence of simplices with cyclic symmetry. We
will state the analogous result in greater generality than we attempted in Proposition 4.8
(which was written in the special case of HIP? rather than a general projective space
HP4—1), at the cost of some additional complexity.

Proposition 6.5 Fix dimensions n > m >0 and let o be the cyclic-shift automorphism
0(x1,X2,...,Xn) = (X2,...,Xn,X1) on R". Set N = nk + 1 and suppose we have
vectors {x; j € R"};—y  nk;j=1,.,m. Define Il; = Z;-';l x,-,jxf’j for each i, and
Ny =({m/n)l, —) ;. ;. Suppose that for some n € (m/(m + 1), m/(m — 1)),
the following conditions are satisfied:

Geometry € Topology, Volume 20 (2016)



1336 Henry Cohn, Abhinav Kumar and Gregory Minton

(@) Xgq44,j =0(x;;) foralli <(n—1)k and all j,
(b) |xij|l=1foralli <k andall j,
(c) foralli <k andall j < j', (x;j,xij)=0,

(d) the inner products (I1;, I1;/) are all equal for: (i) i <k, i’ =i + gk, and
g=1,....|5]; ()i<k-1, i’=i6+qk, i <i6§k,andq=0,...,n—l,and

(e) the first L%J + 1 entries in the first row of H?V —nlly are all zero.

Then n=1, Il is a projection matrix of rank m , and the projection matrices {I1;};<n
determine a tight N—point simplex in G(m,n).

Proof The automorphism o of R” determines an automorphism of G(m, n) by acting
simultaneously on basis vectors, and this latter automorphism is an isometry. The first
condition states that the planes spanned by {x; 1, ..., Xim} and {Xg1 1., Xk+im}
are related by this isometry; thus, taking all i < N, we have k orbits under the cyclic-
shift action, each of size n. The next two conditions ensure that the matrices I1; for
i < N are orthogonal projections of rank 7. Thus the inner products amongst them
determine distances in G(m, n). Now, by applying the cyclic-shift isometry we see
that the fourth condition is sufficient to force {I1;};<n to determine a regular simplex.
Let o = (I1;, IT;s) be its common inner product.

Consider now the matrix I . It is symmetric, being a linear combination of symmetric
matrices. Moreover, it is cyclic-symmetric, since ) ; _ I1; is a sum over orbits of
the cyclic shift. It follows that H%V — Il also shares these properties. Now a matrix
with cyclic symmetry is determined by its first row, as the other rows are just shifts
thereof. A matrix which is also symmetric is determined by the first [ 5 | + 1 entries in
the first row. Therefore, by the last condition, H%\, —nlly =0.

It follows that the eigenvalues of I are all either 0 or n. Let r be the rank of ITy,
so that Tr I = rn. But, since TrIl; = m for all i < N, we have Tr [1xy = m.
Hence n = m/r is m times the reciprocal of an integer. The assumption that 7 €
(m/(m+1),m/(m—1)) then forces n = 1, from which we conclude that ITy is an
orthogonal projection matrix of rank m.

Now we check that (IT;, I1x) =« forall i < N. Since (I1;, I1;}) =m forall 7,

N
(6-4) My = nml,,—ZHi,

and (I1;, I1;s) = « for distinct 7,/ < N — 1, we see that (IT, I1;) is independent
of i. Let B be this common value. Taking the inner product of (6-4) with TTx and IT;,
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we obtain, respectively,

_ Nm? Nm?

m . —(N-1)B and ﬁ:T—(N—Z)a—m.

Subtracting and canceling the (nonzero) factor of N —2 yields &« = . Thus, we have
a regular simplex, which is tight by (6-4). a

Note that the plane with projection matrix ITp is the unique plane completing {I1;}; <n
into a tight simplex. This plane is a fixed point for the cyclic-shift action.

In our case of interest we found a point in which the conditions given in Proposition 6.5
are nonsingular. This yields the following.

Theorem 6.6 There exists a tight 11 —point simplex in G(2, 5). In fact, there is such a
tight simplex with cyclic symmetry.

We remark in passing that every approximate 11—point tight simplex in G(2, 5) we
found numerically exhibited a symmetry group conjugate to the cyclic symmetry
discussed here. With this evidence as well as the fact that (11, G(2,5)) = -2 <0,
we conjecture that every tight 11—point simplex in G(2, 5) has a nontrivial symmetry

group.

We will settle the remaining cases with algebraic constructions. The four cases of
4—point simplices afford constructions using only rationals and quadratic irrationals, so
we give them explicitly here. Given the provided matrices, the proof of the following
theorem consists only of a straightforward calculation.

Theorem 6.7 The four 2 x 5 matrices in Figure 1 are generator matrices whose
corresponding planes form a tight simplex in G(2,5); in other words, they have
orthonormal rows and the spans of those rows constitute a tight simplex. Similarly,
the matrices in Figures 2, 3 and 4 determine tight simplices in G(3,6), G(3,7) and
G (3, 8) respectively.

O SRV RCR V)

01 a0 5(V %% w)

Figure 1: Generator matrices for a tight 4—point simplex in G(2,5).
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100000 | 000 0 02
010000 2 fo100 1 0
001000 2\001-10 0
100 0 0 1 (1000 0 -1
1 1
70100—10 70000\/50
2\000+v2 0 0 2\oo0o11 0 o

Figure 2: Generator matrices for a tight 4—point simplex in G (3, 6).

1000000
0100000

0010000

1500 0 0 2460
o3 0 0 2410 0 0
;

00—14v3 0 0 0
| 0 —242 3 24325 0 0
7—50—2«/5«/60\/300
\ 0 —V5 0 0 —v2 0 Ja&
| 0 22 3 243 =245 0 0
7«/50—2\/5\/6 0 —+30 0
0 V5 0 0 V2 0 /42

Figure 3: Generator matrices for a tight 4—point simplex in G(3, 7).

10000000 100010 0 0 —+/3
01000000 501000—J§0 0
00100000 00100 0 3 0 )
100043 0 00 1000 —-v30 0 0
1 1
501000ﬁ00 50001000*/5
0002 0 0 00 0010 0 0—-+/3 0

Figure 4: Generator matrices for a tight 4—point simplex in G(3, 8).

We are now left with the cases of 7— and 8—point tight simplices in G(2,4). These
cases are more interesting; the simplest explicit coordinates we have been able to

find for them require algebraic numbers of degree 4 and 6, respectively. Because of
this, instead of presenting the algebraic numbers here we rely on a computer algebra
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system to (rigorously) verify the calculation. The computational method is discussed
in Section 7.4. Here we simply record the result.

Theorem 6.8 There exist 7— and 8 —point tight simplices in G(2,4).

We remark in passing that G(2,4) contains tight simplices of N points for all N < 10
(the theoretical maximum) except for N = 9. Compared with the other spaces studied
in this paper, only the quaternionic and octonionic projective planes have such a wealth
of simplices. Note also that there does not seem to exist a tight simplex of size one
less than the upper bound in any of these spaces (see Conjectures 4.13 and 5.10).

7 Algorithms and computational methods

We used computer assistance in several different aspects of this work. Our main
results involve two different computational steps: finding approximate solutions and
then rigorously proving existence of a nearby solution. We also require a method for
computing with real algebraic numbers for Theorem 6.8, and we must discuss how to
compute stabilizers of simplices and estimate the dimensions of solution spaces. This
section describes the algorithms and programs used for each of these tasks.

7.1 Proof certificates

Only the rigorous proof component is needed to verify our main theorems. Therefore,
for ease of verification, we provide PARI/GP code that gives a self-contained proof of
existence for each case. We chose PARI because it is freely available and has support
for multivariate polynomials and arbitrary-precision rational numbers [64]. Our code
is relatively simple and straightforward to adapt to other computer algebra systems.
It covers cases with a range of matrix sizes, and the running times of the individual
existence proofs vary widely. We have been able to complete the full verification in
less than a day on a 2015 personal computer.

The existence proofs rely on Theorem 3.1 via Corollary 3.4. In particular, we use the
£ o0 norm on the domain and codomain and we apply Lemma 3.3 to bound the variation
of the Jacobian over the cube of radius ¢. To check the hypotheses of Corollary 3.4,
we need to choose ¢ > 0, the starting point x¢ and a matrix 7" and then compute
the operator norms of 7" and Df(xg) o T —idr~ . We provide input files that specify
our choices of xq, presented using rational numbers with denominator 23°, as well
as the constraint function f. We then compute T as described later in this section.
Computing operator norms is easy, because the £oo — £oo Operator norm of a matrix
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is just the maximum of the £; norms of its rows. (This is one of our primary reasons
for choosing the £+, norm; for many choices of norms, approximating operator norms
of matrices is NP-hard [42].) We always use ¢ = 1072, so that the conclusion of
Corollary 3.4 is that there is an exact solution, each of whose coordinates differs from
our starting point by less than 10~ In other words, the error is less than one nanounit.

These calculations are organized into fourteen files, enumerated in Table 11. All of
these files are available from the web page for this article.” They can also be obtained by
downloading the source files for this paper from the arXiv.org e-print archive, where
it is paper number arXiv:1308.3188. The file rigorous_proof.gp implements
Corollary 3.4, and run_all_proofs.gp then proves our existence results using the
remaining files for input. The next ten files in Table 11 describe the constraints in
each of our applications (Propositions 4.1, 4.6, 4.8, 4.11, 5.1, 5.3, 5.5, 5.8, 6.3 and 6.5,
respectively). Finally, the last two files specify the starting points, in other words,
explicit numerical approximations for the simplices.

rigorous_proof.gp run_all_proofs.gp
hp_general.gp hp2_12.gp hp2_13.gp hp2_15.gp
op2_general.gp op2_24.gp op2_25.gp op2_27.gp

grass_general.gp grass2_5_11.gp

projective_data.txt grass_data.txt

Table 11: Files for proof certificates.

The translation from mathematics to computer algebra code is straightforward, with just
a few issues to address. One is that in the cases with cyclic symmetry, some variables
are constrained to be equal to others (for example, the coordinates of x,,4; are a cyclic
shift of those of x; in Proposition 4.6).8 Our data files contain all the points, but in the
proofs we eliminate these redundant variables for the sake of efficiency. For example,
projective_data.txt specifies 12 points in HIP2, and hp2_12.gp ignores all but
the first four of them.

Another issue is that in three cases (Propositions 4.11, 5.8 and 6.5) we require certain
quantities to be close to 1. For example, in Proposition 4.11 we need ||x;|* — 1] to be
at most 10~ for each i . This could easily be checked by direct computation using the
10~ bound for distance from the starting point, but it is simpler to use the following
trick. For each i, we add a new variable v;, add a new constraint v; = |x,'|4, and

7dx.doi.org/10.2140/gt.2016.20.1289
8Here and in the next paragraph, x; is not to be confused with the starting point xg.
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initialize v; to be 1 at the starting point. Then we can conclude that | |x;|* — 1] < 107°
in the exact solution with no additional computation.

All that remains is to describe how we compute the approximate right inverse 7" for
use in Theorem 3.1. Let J be the Jacobian Df(x(), which by assumption has full row
rank. A natural choice for 7 would be the least-squares right inverse J?(JJ?)~! of J,
but inverting matrices using exact rational arithmetic is slow and the denominators
become large. To save time, we approximate J*(JJ?)~! using floating-point arithmetic
and obtain 7' by rounding it to a rational matrix with denominator 23°. Once we
have 7', the proof is then carried out using only exact rational arithmetic and is therefore
completely rigorous.

The use of floating-point arithmetic to obtain 7" raises one concern about reproducibility.
Floating-point error depends delicately on how a computation is carried out, so using a
different computer algebra system (or even a different version of PARI/GP) might give
a slightly different matrix 7", which could in principle prevent the proof from being
verified. To guarantee reproducibility, we have analyzed how close an approximation
to J'(JJ')~! is needed to make the proof work: in each of our existence proofs,
every T satisfying |7 — J/(JJ')~!||< 1072 works. Any floating-point computation
to produce 7' will meet this undemanding bound if the working precision is high
enough, and we have found the default PARI precision to be more than sufficient.

To check this bound of 1072, first suppose we have some matrix 7" that works in

Corollary 3.4. Examining the slack in the corollary’s hypotheses gives an explicit

bound

_ =TI f o)/ = I T — Inll—¢ | f1d(d — Dn? 2| T|
I7l+elfld(d —1n?=2 +| f(x0)|/e

such that we can replace 7' with an arbitrary 7" satisfying |7’ — T'||< 8. Now every

T’ satisfying

o

| T —J (I <6

works as long as § < 8o — || T — J*(JJ')™!|. We concluded that § = 102 works by
examining all of our cases and applying the following lemma to bound the quantity
| T —J5(JJ")™| from above.

Lemma 7.1 Suppose J € R and T € R™*", and let | - || denote the operator
norm with respect to some choice of norms on R" and R™. If |1, — T'TJJ"|< 1,
then J has full row rank and

|7JJ" =TI T T

1—|[I,—T'TJJ||

|7 —7"IH™ | <
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Note that this bound is reasonably natural: if 7 = J*(JJ*)™!, then TJJ' = J and
T!'TJJ! = I,, so the bound vanishes.

Proof For all A, B € R™" with || I, — AB||< 1, B is invertible and
_ | Al
1B~ < —————.
1— |1, — AB|
because we can take

B™'=> (I,—AB)'A.
i=0
Setting A =T'T and B = JJ' shows that JJ? is invertible (so J has full row rank),
and

T'T|
JJ[ -1 < ” )
1T = =, =)

Now combining this estimate with
T =7 (I = NTII =T - 1(TH 7

completes the proof. m|

Finally, we note in passing that the implementation in rigorous_proof.gp of our
proof techniques is general enough to apply to a range of problems. For example, we
have used it to reproduce the results of [25] and to prove some of the conjectures in [41],
such as the existence of a 26—point 6—design in S2. (Handling all of the conjectures
in [41] would require additional ideas, perhaps along the lines of the special-case
arguments in Section 4.2 and Section 4.3.)

7.2 Finding approximate solutions

To find approximate solutions we used a new computer package called QNEWTON,
which was written by the last-named author and can be obtained from him upon request.
QNEWTON consists of a C++ library with a PYTHON front end and is designed to find
solutions to polynomial equations over real algebras. Furthermore, QNEWTON can
rigorously prove existence of solutions using Theorem 3.1.

We have chosen to use both QNEWTON and PARI/GP because they have different
advantages: the PARI/GP code is shorter and easier to check or adapt to other computer
algebra systems, while QNEWTON provides a flexible, integrated environment for both
computing approximate solutions and proving existence.

After we specify the polynomials and constraints for the problem and an initial point,
QNEWTON attempts to find a solution using a damped Newton’s method algorithm.
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Newton’s method converges rapidly in a neighborhood of a solution, but it is ill-behaved
away from solutions; thus we damp the steps so that no coordinate changes in a single
step by more than a specified upper bound.

Because the codes we seek are energy minimizers, another approach to finding them
would have been gradient descent. In practice, we have found that gradient descent is
much slower than Newton’s method.

In our computations, we used random Gaussian variables for the initial points and a
maximum step size of 0.1. Because our variables represent unit vectors, the step size is
approximately one order of magnitude less than the natural scale. By using this approach
we were able to find a solution in all cases in which we think there should exist one,
using just a few different random starting positions. In most cases we found a solution
on the first try. These approximate calculations use double-precision floating-point
arithmetic, so we can only expect convergence up to an error of approximately 10713 .
In all cases this was more than sufficient for our goals of rigorous proof.

Suppose that, as in Theorem 3.1, we are solving for a zero of a function f: R™ — R”,
Newton’s method calls for repeatedly taking steps Ax satisfying Df (x)-Ax =— f(x).
In particular, we must repeatedly solve linear systems. When m > n the system is
underdetermined. Also, Df(x) may fail to be surjective. Hence we need a linear
solver tolerant of such problems. QNEWTON uses a least-squares solver that treats
small singular values of Df(x) as zero; specifically, it uses the DGELSD function in
LAPACK [2]. By using such a solver we can handle cases with redundant constraints.
This was particularly useful when we were first determining a minimal set of constraints
for our problems.

QNEWTON has native support for multiplication in R, C, H and O. Also, it uses
automatic (reverse) differentiation to compute the Jacobian of the constraint function.
These two features substantially increase its performance.

The QNEWTON package also has a mechanism for computer-assisted proof using
Theorem 3.1. Like the proofs discussed in the previous section, it uses the £, norm
on both domain and codomain. However, unlike those proofs, QNEWTON does not use
rational arithmetic, nor does it use Lemma 3.3 to control the variation of the Jacobian.
Instead it uses interval arithmetic.

Interval arithmetic is a standard tool in numerical analysis to control the errors inherent
in floating-point computations. The principle is simple: instead of rounding numbers
so that they are exactly representable in the computer, we work with intervals that are
guaranteed to contain the correct value. For instance, consider a hypothetical computer
capable of storing 4 decimal digits of precision. Using floating-point arithmetic,
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 would best be represented as 3.142. Using this, if we computed 27 then we would
get 6.284, which is obviously not correct. By contrast, interval arithmetic on the
same computer would represent 7 as the interval [3.141, 3.142]. Then 27 would be
represented by the interval [6.282, 6.284], which does contain the exact value.

It is clear that balls with respect to the £o, norm can be naturally represented using
interval arithmetic. Thus, in the notation of Theorem 3.1, for each entry of the Jacobian
matrix we can easily compute an interval that contains this entry of Df(x) for every
X € B(xg, ). We then compute an interval guaranteed to contain || Df (x)o T —idgn ||
for all such x, and an interval guaranteed to contain 1 — || T'||-| f(x¢)|/e. If the upper
bound of the first interval is less than the lower bound of the second interval, then we
are assured that Theorem 3.1 applies.

QNEWTON uses the MPFI library to provide support for interval arithmetic [68]. That
in turn relies on MPFR, a library for multiple-precision floating-point arithmetic [37].
One of the main problems with interval arithmetic is that the size of the intervals can
grow exponentially with the number of arithmetic operations; this problem can be
ameliorated by increasing the precision of the underlying floating-point numbers. It
was not an issue in our applications, though.

Finally, we remark upon the computation of the matrix 7. It is supposed to be
approximately a right inverse of Df(xq), but otherwise we are free in choosing it. In
QNEWTON, we compute 7" much as in the PARI code. First we compute the matrix
Df (xo) approximately, using floating-point arithmetic. Then we find its pseudoinverse
(the least-squares right inverse), again using inexact floating-point arithmetic. Finally,
we take the result and replace it with intervals of width 0. This approach is fast and,
since 7" need not be the exact pseudoinverse, still gives rigorous results. It is possible
to compute Df(xo) in interval arithmetic and then compute the pseudoinverse in the
same way; this is a bad idea, though, because inverting a matrix in interval arithmetic
can result in very large intervals.

7.3 Finding stabilizers

In all but one case, namely 5—point simplices in QP2, our reported local dimension
for the moduli space of tight simplices has the dimension of the full symmetry group
deducted. That is valid when each simplex in a neighborhood of the point under
consideration has finite (zero-dimensional) stabilizer. This is an open condition and thus
only needs to be checked at that single point. We checked this condition by (i) finding
a basis for the Lie algebra of the symmetry group, (ii) applying each element of that
basis to the points of the simplex to produce tangent vectors, and (iii) verifying that
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the resulting vectors are linearly independent. In the remainder of this subsection, we
explain the calculations in more detail.

The relevant symmetry groups are Sp(d)/{x1} for HP9~! and F, for OP2 which
have dimensions 2d? + d and 52, respectively. Let K be H or O, as appropriate,
and let g be the Lie algebra of the isometry group of K P4~ (in other words, g = sp d
if K=H and g=14 if K=0).

The Lie algebra g acts on the space H(Kd) of Hermitian matrices. In fact, in this
representation it is generated by commutation with traceless skew-Hermitian matrices
and application of derivations of the underlying algebra H or O (see [10]). The
Lie algebra of the stabilizer of the simplex annihilates the projection matrices for the
simplex. Thus, if the dimension of the g—orbit in H(K%)N of an N—point simplex is
at least D, then the dimension of the stabilizer is at most dimg g — D.

It remains to compute a lower bound for the dimension of the g—orbit of the simplex
determined by unit vectors x1,...,xXy € K 4 However, we do not have explicit vectors
for the points in the simplex. Instead, we have approximations X,...,Xy € K.
These vectors are e—approximations under the £, norm with respect to the standard
real basis of K d, where ¢ = 1072 (see Section 7.1), and we will give a lower bound
that holds over the entire e—neighborhood of (X1,...,Xy). When we refer below to
real entries of vectors and matrices, we will use the standard real basis of K; thus,
each entry over K comprises dimg K real entries.

Before applying g, we must convert the vectors x; to projection matrices. To bound
the approximation error, note that each real entry of x; is bounded by 1 in absolute
value (since x; is a unit vector), and thus each real entry of X; is bounded by 1+ ¢. It
follows that the real entries of I1 i =X )"c'j approximate those of the true projection
matrices IT; := xixj to within (2¢ 4 &%) dimg K, because each entry over K is just a
product in K (so each real entry is the sum of dimg K real products), and

(7-1) luv —uv| < |u—1ul|-|v]+ |- |v—7]
for u,v,u,v eR.

To understand the action of g on Ily,..., [I)5, we begin by choosing a basis of g.
For each basis element, applying it to each of I1y,..., 1y and then concatenating
the real entries of these N Hermitian matrices yields a single vector of dimension
k := Nd? dimg K. The resulting vectors form a (dimpg g) x k real matrix M, and
the rank of M is the dimension of the g—orbit. Of course, the difficulty is that all we
can compute is the approximation M to M obtained from T1 Lo-- I ~ - Each entry
of M is within § of the corresponding entry of M, where § is (2¢ + 82) dimpg K times
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the greatest £, — £ Operator norm (with respect to the standard real basis of H (K )
of any basis element of g.

Lemma 7.2 Let M and M be m x k real matrices whose entries differ by at most §.
Then the rank of M is at least the number of eigenvalues of M M that are greater
than mkS§(2 max; j|M; ;| +6).

Proof One can check usmg (7-1) that the entries of M M and M M?! differ by at
most y := kd§(2 max; ; |M, ,j|+38). Let V be the span of the eigenvectors of MM
with eigenvalues greater than ym. For all v € V' with £, norm |v|, = 1, we have

VMM > ym.

On the other hand, |v|; < 4/m by the Cauchy—Schwarz inequality. Using the observa-
tion that

(7-2) (@, b)| = lal1|bloo
for vectors a and b, it readily follows that
(MM'— M M"|s < y/m.
Applying (7-2) once more, we obtain
W'(MM! —Mﬂt)ld <ym

and hence
VMM > 0.

We have shown that the restriction of M M? to V is positive definite. Therefore
rank M =rank M M > dim V, as desired. ]

To apply this lemma, we simply compute the characteristic polynomial of MM’ Its
roots are the eigenvalues of MM with multiplicity, and we apply Sturm’s theorem to
count those that are greater than m/k4(2 max;,; |M,-, j| 4 38). All of these computations
use exact rational arithmetic and thus yield a rigorous lower bound for the rank of M,
which is the dimension of the g—orbit of the simplex I1;,..., 1. In other words,
they give a rigorous upper bound for the dimension of the stabilizer.

We have implemented these calculations in PARI/GP, and the code can be obtained as
described in Section 7.1. The file apply_lie_basis.gp sets up the machinery, and
stabilizers.gp applies it to show that all of the projective simplices we have found
have zero-dimensional stabilizers, except for 5 points in QP2 In that exceptional case,
the stabilizer has dimension at most 3. This is good enough because, translated into a
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dimension for the moduli space of simplices, that bound says that the dimension is at
most 0; hence the dimension must equal 0.

7.4 Real algebraic numbers

To verify equations involving algebraic numbers of moderately high degree, we require
a computational method for rigorously doing basic arithmetic with such numbers.
One possibility is to work in a single number field, but even when each number we
manipulate is of manageable degree, the smallest field containing them all may have
exponentially high degree. We will instead use the standard approach of “isolating
intervals”, which is implemented in many modern computer algebra systems. There is
no explicit support for the isolating interval method in PARI/GP, so in order to present
all of our computer files in one system we provide a short implementation in addition
to the pertinent data files for our applications.

The technique is as follows. A real algebraic number « is represented by a triple
(p(x),£,u), where p(x) is a polynomial with integer coefficients such that p(«) =0,
£ and u are rational numbers such that o € [{,u], and p(x) has a unique root in
the interval [£, u] (namely, a). We always take p(x) to be (a scalar multiple of) the
minimal polynomial of o, and we use Sturm sequences to rigorously count the number
of real roots in a given interval. Given representations (py. ¢, ) and (pg.Lg,ug) for
two real algebraic numbers «, 8, we compute a representation for o + 8 by first taking
the resultant, in the variable 7, of the polynomials py(f) and pg(x —1). This gives a
polynomial in x for which o + B is a root. We then factor the resulting polynomial and
count the number of roots for each irreducible factor in the interval [£q + £ BrUa +U ﬂ].
If there is more than one factor that has a root in that interval or some factor has
multiple roots, then we bisect the starting intervals [£q, uq] and [€g, ug], using Sturm
sequences for py and pg to choose the halves containing « and B, respectively. After
a finite number of steps we are left with a valid representation for « + . Computing
a representation for « - 8 proceeds similarly, beginning with the resultant of pg,(?)
and rdce Ps pp(x/t).

Using this system, we can now elucidate the proof of existence for 7— and 8—point
tight simplices in G(2,4).

Proof of Theorem 6.8 We provide isolating interval representations for the entries of
the 4 x 4 projection matrices Ily,..., I for the N =7 or 8 points in each simplex.
To verify the construction we need only perform a few calculations. First we need
to check that each provided matrix IT satisfies IT = I, TI12 =11 and Tr 11 = 2,
as together these conditions imply that IT is an orthogonal projection onto a plane.
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Then we just need to verify that TrIT; IT; = (N —2)/(N —1) fori < j < N. These
calculations are straightforward given our implementation of the isolating interval
method. |

The computer files can be obtained as described in Section 7.1. The file rtrip.gp
implements isolating intervals (“rtrip” refers to the representation of real algebraic
numbers using triples). Using this implementation, G2_4_verify.gp carries out the
computations with projection matrices taken from G2_4_data.txt.

7.5 Estimating dimensions

In Conjectures 4.10, 5.7 and 8.4, we conjecture the dimension of certain solution spaces;
here we describe the basis for those conjectures.

Suppose, as is the case in our examples, that we are studying the zero set Z of some
function /. Suppose moreover that we have a procedure for converging to zeros of f,
using, for example, Newton’s method with least-squares solving to handle degeneracy.
Thus we have the ability to generate points on Z, and we wish to use that ability to
calculate its dimension. This is a simple instance of manifold learning, the problem
of describing a manifold given sample points embedded in some higher-dimensional
space.

For our purposes we use following heuristic. Fix ¢ > 0. Starting with a solution xg, we
compute N nearby solutions x1, ..., xy as follows. We first set x| = xo 4 £g;, where
g; is a vector of standard normal random variables, and then use our iterative solver to
find a zero x; of f near x;. To first order in ¢, the vectors (x; — xg)/|x; — xo| are
random (normalized) samples from the tangent space of Z at xo. We then form the
matrix whose rows are those N vectors and compute its singular values. There should
be d singular values of order approximately 1, where d is the dimension of Z. The
remaining singular values should be smaller by a factor of ¢.

This procedure is certainly not rigorous, but in suitably nice cases, and with proper
choice of parameters, one can have a fair amount of confidence in the result. In particular,
N should be at least as large as the dimension d, and & should be chosen small enough
that in a ball of radius &, Z is well-approximated by its tangent space. One pitfall to
avoid is that, while ¢ needs to be small for the tangent space approximation, it should
also be large enough that the precision of the solver is better than (approximately) 2.
If this is violated then we may erroneously identify extra null vectors of Df(x¢) as
elements of the tangent space.

In our applications we used N = 1000 and & = 10~ and we required that Newton’s
method converge to within 10712, It was usually easy to identify the jump in singular
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values after the d corresponding to the tangent space. For instance, Conjecture 4.10
says that, before accounting for overcounting and symmetries, we conjecture a 66—
dimensional space of 12—point tight simplices in HIP2. This is based on the following
observation: when we ran the procedure just discussed, the first 66 singular values
were all in the interval [2, 6], but the 67" was 0.04139564.

Remark 7.3 Based on similar computations, we conjecture that the moduli space of
SIC-POVMs, simplices of d 2 points in (CIP’d_l, has dimension 1 when d =3, and 0
when d > 4. In particular, we conjecture that, except in CP2, SIC-POVMs are isolated.
This is in accordance with the numerical results in [69], although they searched only
for SIC-POVMs that are invariant under the Weyl-Heisenberg group.

8 Explicit constructions

With the exception of Theorems 6.7 and 6.8, all of the new results we have presented
so far involve computer-assisted proofs using Theorem 3.1. This allowed us to sidestep
explicit constructions, and it also gave local dimensions as a collateral benefit. When
an explicit construction is available, though, it can sometimes give insight not proffered
by a general existence theorem. We conclude the paper with a few examples of this.

8.1 Two universal optima in SO(4)

Most results in the literature concerning universal optima in continuous spaces are set in
two-point homogeneous spaces, that is, spheres and projective spaces. We have already
seen another family of spaces (namely, real Grassmannians) but there are many others.

Consider the special orthogonal group SO(n), endowed with the chordal distance
d.(Uy,Uy) = ||Uy — Us||F coming from the embedding SO(n) — R" as n xn
matrices equipped with the Frobenius norm. This is not the Killing metric, but it has
the advantage that its square is a smooth function on SO(n) x SO(n). Note that every
element2 of SO(n) has norm 7, so up to this scaling factor we have an embedding
into S 1.

By a universally optimal code in SO(n), we mean a code that minimizes energy for
every completely monotonic function of squared chordal distance (see [29]). In this
section we present two particularly attractive universal optima in SO(4).

Theorem 8.1 There is a 17—point code in SO(4) with the following properties: it
is a regular simplex, it is universally optimal, and it has a transitive Ssymmetry group.
Moreover, there is no larger regular simplex in SO(4).
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Proof Given a,b € Z /177, define the rotation matrix

cos(af) —sin(af) 0 0

R sin(af)  cos(ab) 0 0
ab=1 9 0  cos(hf) —sin(b8)
0 0 sin(hf)  cos(b6)

where 6 =27 /17. For any a, b, c,d, not all zero, the map 0,4 4: SO(4) — SO(4)
defined by X > R, , XR. 4 is an isometry of SO(4) of order 17. Set

0001
0100
Xo = 0010 € SO(4),

1000

and let {X; = R’i 3X0R£ s} € SO(4) be the orbit of Xy under 07,3,4,5. This is a
17—point code which, by construction, has a transitive symmetry group. Moreover,
direct calculation shows that it forms a regular simplex.

By virtue of the Euclidean embedding SO(4) < S1°, there can be no regular simplices
of more than 17 points, and a 17—point regular simplex must be universally optimal
(indeed, it is even universally optimal as a code on the sphere). That proves the
remaining claims of the theorem. |

Theorem 8.2 There is a 32—point code in SO(4) with the following properties: it is a
subgroup, it is universally optimal, and it forms the vertices of a cross polytope in S1'°.

Proof The code consists of all matrices of the form

@000 0ao00 00 a0 000a
0500 b 00O 000 b 00b0
00col|l” {oooc|l lcoool” ® Jocool
000d 00d0 0d 00 d 000

where a, b, c,d = £1, with an even number of —1 entries. In other words, we use
signed permutation matrices in which the underlying permutation is either trivial or a
product of disjoint 2—cycles and the number of minus signs is even. It is not difficult
to check that this defines a subgroup of SO(4).

The supports of these four types of matrices are disjoint, so the corresponding points
in R!® are orthogonal. The inner product between two matrices of the same type is
simply the inner product of the vectors (a, b, ¢, d), which is 0 or +4 because of the
even number of —1 entries. Thus, the code forms a cross polytope in S17.
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As in Theorem 8.1, universal optimality of C in SO(4) follows from universal optimality
as a subset of S1° (see [29]). O

8.2 39 points in OP?

Theorem 8.3 There exists a tight code C of 39 points in QP2 It consists of 13
orthogonal triples, such that p(x;, xj) = \/m for any two points x;, x; in distinct
triples. In other words, if TI, I’ are the projection matrices corresponding to two
distinct points in C, then (I1, T1') equals 0 if the two points are in the same triple and
otherwise equals %

Proof First we recall from [32, page 127] the standard construction of a 12—point
universal optimum in CP?: in terms of unit length representatives, it consists of the
standard basis

(1,0,0), (0,1,0), (0,0,1)

together with the 9 points

(8-1) 1107 0.

V3
where w = ¢27/3 and a,b =0, 1, 2.

To construct the desired code, we will use the standard basis together with four rotated
copies of (8-1). More precisely, let {1,7, j, k} be the standard basis of H and let £ be
any one of the remaining four standard basis elements of Q. We identify o € C as
an element of span{1,i} C Q. Set n = j{. Then we define C C OP? to be the code
obtained from the standard basis and the points

1 b 1 . b

—(1, 0%, 0”), —(1, 0%, 0"t),
5 ﬁ( ) ﬁ( J )

%(1,0)“&60[’}1), %(Lwan,wbj)

for a,b =0, 1, 2. Direct computation shows that this code has the desired distances.
In particular, the code splits into 13 distinguished triples of points: the standard basis
yields one such triple, and each of the four types of points in (8-2) yields three triples
according to the value of a + » modulo 3.

The sums over C of the first and second harmonics

PP0@i-1)=121—4 and PP (Q2r—1)=912 65+ 10
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of QP? both vanish; thus C is a 2—design. Since it has only two inner products
between distinct points, and one of those is 0, it is tight [56] and in fact universally
optimal [29]. O

The code C in Theorem 8.3 is a system of 13 mutually unbiased bases. It follows easily
from linear programming bounds that it is the largest such system possible in QP2,

This code is not unique: we can deform it to a four-dimensional family of tight codes by
replacing £, n, n and j in the second line of (8-2) with &£, &;n, &3n and &4/, where
£1,...,&4 are complex numbers of absolute value 1. The group of isometries of QP2
fixing the remaining 21 unchanged points is zero-dimensional (see Section 7.3, for
instance), so we have a four-dimensional family even modulo the action of the isometry
group F, of QP2 We think the actual space of tight codes is much larger, though. On
the basis of numerical evidence (see Section 7.5), we conjecture the following.

Conjecture 8.4 In a neighborhood of the code constructed in (8-2), the space of tight
39—point codes, modulo the action of Fy, is a manifold of dimension 24.

At present this remains just a conjecture, though, as we have been unable to identify a
nonsingular system of equations to which we can apply Theorem 3.1.

The existence of a code of this form was conjectured by Hoggar [44, Table 2] after
classifying the permissible parameters for strongly regular graphs. Excepting a hy-
pothetical 26—point tight simplex, which we conjecture does not exist, there are no
remaining cases in which the existence of a tight code in QP2 is conjectured but not
resolved. In fact, based on computations of optimal quasicodes (two-point correlation
functions subject to linear programming bounds [30]), we are confident there are no
other tight codes in OP? with at most 10* points. We believe there are no more of
any size.
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