
msp
Geometry & Topology 20 (2016) 1427–1444

The metric geometry of the Hamming cube and applications
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The Lipschitz geometry of segments of the infinite Hamming cube is studied. Tight
estimates on the distortion necessary to embed the segments into spaces of continuous
functions on countable compact metric spaces are given. As an application, the first
nontrivial lower bounds on the C.K/–distortion of important classes of separable
Banach spaces, where K is a countable compact space in the family fŒ0; !�; Œ0; ! �2� ,
: : : ; Œ0; !2�; : : : ; Œ0; !k �n�; : : : ; Œ0; !! �g are obtained.

46B20, 46B80; 46B85

In memory of Luis Sánchez-González

1 Introduction

1.1 Motivation and background

Assume that one is given a Banach space Y and a class C of metric spaces. Given an
arbitrary metric space M in the class C , it is natural to study the smallest distortion
achievable when trying to embed M into Y through a bi-Lipschitz embedding. This
quite general quantitative embedding problem is an important topic in the nonlinear
geometry of Banach spaces. When Y is a Hilbert space this problem is known as
estimating the Euclidean distortion of the given class. It is well recognized that being
able to accurately estimate the Euclidean distortion of some specific classes of metric
spaces has tremendous and far reaching applications in both mathematics and computer
science. In this paper we consider the general embedding problem when Y is the Banach
space C.K/, the space of continuous functions on a compact topological space K . We
will mainly stay in the separable world and therefore consider only compact metric
spaces K as well as classes C contained in the class M of separable metric spaces. The
theory is clearly isometric and, although c0 is not isometric to a C.K/–space for any
compact space K , embeddings into c0 are related to those into C.K/–spaces. Indeed,
c0 is a hyperplane of the space c of convergent sequences of real numbers, which can
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be seen as the space C.K/, where K D N is the Alexandrov compactification (or
one-point compactification) of N . Moreover, it is easy to show that, whenever K is
an infinite (not necessarily metrizable) compact Hausdorff space, C.K/ contains a
subspace isometric to c0 (see Albiac and Kalton [2, Proposition 4.3.11]). We browse
briefly and chronologically through a few classical and historical embedding results into
C.K/–spaces and c0 . Back in 1906, Fréchet observed [6] that every separable metric
space admits an isometric embedding into the space `1.N/. An easy application
of the Hahn–Banach theorem gives a linear isometric embedding of every separable
Banach space into `1.N/. These results can actually be cast as embedding results
into a C.K/–space. Indeed, `1.N/ can be identified with the space C.ˇN/, where
ˇN denotes the Stone–Čech compactification of N . Note that ˇN is an uncountable
compact space, and since `1.N/ is nonseparable, ˇN is not metrizable. The Banach–
Mazur theorem [4] asserts that every separable Banach space admits a (linear) isometric
embedding into the space C Œ0; 1�. Note that Œ0; 1� equipped with its canonical distance
is compact and hence C Œ0; 1� is separable. With the help of Fréchet’s embedding, it
is easily seen that every separable metric space can be isometrically embedded into
C Œ0; 1�. In 1974 Aharoni proved in [1] that the cC0 –distortion of every separable metric
space is less than 6. In that same article he also proved that the c0–distortion of `1
is at least 2. A few years later Assouad [3] showed that the cC0 –distortion of every
separable metric space is at most 3. The fact that there is a bi-Lipschitz embedding
with distortion exactly 3 and that this value is optimal for embeddings into cC0 is due to
Pelant [10]. Finally, the end of the story regarding embeddings into c0 was completed
by Kalton and Lancien [8] when they constructed an embedding with distortion 2
(respectively, 1) for every separable (respectively, proper) metric space. Recall that a
metric space is proper if all its closed balls are compact.

1.2 Notation and definitions

Let M and N be two metric spaces. Define the distortion of a map f W M !N to be

dist.f / WDkf kLipkf
�1
kLipD

�
sup

x¤y2M

dN .f .x/;f .y//

dM .x;y/

��
sup

x¤y2M

dM .x;y/

dN .f .x/;f .y//

�
:

If the distortion of f is finite, f is said to be a bi-Lipschitz embedding. The convenient
notation

M ,�!
Lip

N

means that there exists a bi-Lipschitz embedding f from M into N . We are concerned
with the quantitative theory, and if dist.f /� C , we use the notation

M ,�!
C�Lip

N:
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The parameter
cN .M/D inf

˚
C � 1 WM ,�!

C�Lip
N
	

will be referred to as the N –distortion of M .

Let F be a collection of metric spaces. We can define the N –distortion of the class F
as follows:

cN .F/D supfcN .M/ WM 2 Fg:

Finally, for two families F and G of metric spaces we define

cG.F/D sup
M2F

inf
N2G

cN .M/:

As an application of our work on the metric geometry of the Hamming cube we will
give nontrivial estimates on the parameter cN .F/ for the following spaces and classes:

� N D C.K/ for some countable compact metric space K .

� F is one of the following classes:
(1) M WD fM WM separable metric spaceg.
(2) SB WD fX WX separable Banach spaceg.
(3) COT WD fX WX separable Banach space with nontrivial cotypeg.
(4) T YP WD fX WX separable Banach space with nontrivial typeg.
(5) SR WD fX WX separable, reflexive Banach spaceg.

Observe that cN .SB/D cN .M/. Indeed, it is clear that cN .SB/ � cN .M/, and the
reverse inequality follows from the fact that every separable metric space embeds
isometrically into the separable Banach space C Œ0; 1�.

1.3 Stratification of the Hamming cube

We define a stratification of a metric space M to be a sequence M1 �M2 � � � � of
subsets of M such that M D

S1
kD1Mk . (More generally, it is a way of expressing M

as a direct limit of metric spaces, but this generality will not be needed here.) The
sets Mk are the segments of M , and the sets Mk nMk�1 are the layers of M (where
we put M0 D∅). In this paper we are concerned with stratifications of the Hamming
cube. The infinite Hamming cube H1 is the set of all infinite sequences in f0; 1g
containing only finitely many 1s, equipped with the Hamming metric dH , where
dH .�; �/ D jfi 2 N W �i ¤ �igj. It is isometric to the metric space �1 consisting
of the set ŒN�<! of all finite subsets of N equipped with the symmetric difference
metric d� , where d�.A;B/D jA4Bj. The isometry between �1 and H1 is the
natural one identifying a set with its indicator function.
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We describe two natural stratifications of the infinite Hamming cube. For k 2 N
let Hk D f0; 1gk thought of as a subset of H1 by extending elements of Hk to
infinite binary sequences with the addition of an infinite tail of 0s. The layers of the
stratification .Hk/1kD0 are f∅g and families of sets of the form fA�N WmaxAD ng,
n 2 N . The members of the second stratification are the families �k D ŒN�

�k of
subsets of N of size at most k . The set �k can be identified with the rooted countably
infinitely branching tree of height k . Note, however, that the metric d4 is not the
classical graph metric of a tree.

The two stratifications share some essential metric properties despite being quite
different from the combinatorial and structural standpoints. For example, �k (respec-
tively, Hk ) is a 2k–bounded (respectively, k–bounded), 1–separated metric space.
However, �k is a countable non-proper metric space while Hk is a finite metric
space. The two stratifications are different in the Lipschitz category in the following
sense. Two families of metric spaces F and G shall be called Lipschitz equivalent
if cF .G/cG.F/ <1. The stratifications O D .Hk/k�0 and U D .�k/k�0 are not
Lipschitz equivalent. Indeed, the embedding .�1; : : : ; �k/ 7! fi 2 f1; : : : ; kg W �i D 1g
sends Hk isometrically into �k (ie cU .O/ D 1), however, cO.U/ D 1 since it is
impossible to embed a single �k bi-Lipschitzly into any Hi because of a cardinality
obstruction (assuming k � 1 of course).

Sometimes metric information about a stratification can be used to derive metric
information on the stratified space and vice versa. However, this need not be the case.
As we will see H1 does not embed isometrically into c0 and this will be witnessed
by �2 . This is in stark contrast with the fact that every Hk , as any finite metric
space, embeds isometrically into c0 . So in some sense .�k/k�0 captures more of the
structure of �1 .

1.4 Organization of the article

From now on we will consider countable compact metric spaces and we will focus on
the following nested family:

Œ0; !�� Œ0; ! � 2�� � � � � Œ0; !2�� � � � � Œ0; !˛ �n�� � � � � Œ0; !! �;

where, as usual, ! is the first infinite ordinal. It is a simple fact that if compact spaces
K and L are homeomorphic then the Banach spaces C.K/ and C.L/ are isometrically
isomorphic. Note that the converse is also true by the Banach–Stone theorem. Therefore
the C.K/–spaces arising from the nested family above are mutually non-isometric
Banach spaces. However, this family has the property that C.K/ embeds linearly
isometrically into C.L/ whenever K �L, since then K is in fact a clopen subset of L.

Geometry & Topology, Volume 20 (2016)



The metric geometry of the Hamming cube and applications 1431

In Section 2 we estimate from above the C.K/–distortion of the infinite Hamming
cube and its stratification �k . We will show that cC.Œ0;!r �/.�k/�minfk=r; 2g when
1� r � k <1. In particular, �k embeds isometrically into C.Œ0; !k�/. In Section 3
we will give lower bounds. To estimate cC.Œ0;!r �/.�k/ from below, we exhibit a
connection between a topological property of the compact space K and the C.K/–
distortion of the metric spaces �k . Roughly speaking, if the compact metric space K is
small in the sense of the Cantor–Bendixson derivation, then the C.K/–distortion of �k
cannot be too small. More precisely, we show that if the Cantor–Bendixson index
of K is k � 2, then cC.K/.�k/� k=.k� 1/. In Section 4 we give some applications
concerning the parameters cC.K/.M/, cC.K/.SB/, cC.K/.COT / and cC.K/.SR/. We
conclude with a few open questions that arise naturally from our work.

Acknowledgements Baudier’s research was supported by ANR grant 13-PDOC-0031,
project NoLiGeA. Freeman’s research was supported by NSF grant DMS-1332255.
Schlumprecht’s research was supported by NSF grant DMS-1160633. Freeman and
Zsák were supported by the Workshop in Analysis and Probability at Texas A&M
University in 2013. Zsák was supported by Texas A&M University while he was a
Visiting Scholar there in 2014.

2 Low distortion embeddings of the Hamming cube

2.1 Embeddings of the sets �k

We will show, by constructing suitable bi-Lipschitz embeddings, that cC.Œ0;!r �/.�k/�
minfk=r; 2g when 1 � r � k < 1. In particular, �k embeds isometrically into
C.Œ0; !k�/, and hence also into C.Œ0; !r �/ for r � k .

We will need a description of C.K/–spaces as tree spaces, due to Bourgain [5] (see
also [9]), which we now proceed to describe. Recall that a tree is a set T with a partial
order 4 such that bt D fs 2 T W s 4 tg is finite and linearly ordered by 4 for all t 2 T .
The space c00.T / consists of all functions xW T ! R for which ft 2 T W x.t/¤ 0g
is finite. The unit vector basis .et /t2T of c00.T / consists of functions et taking the
value 1 at t and 0 everywhere else. For t 2 T the functional ˇt is defined by summing
along the branch bt :

ˇt .x/D
X
s2bt

x.s/ .x 2 c00.T //:

We define a norm k � k on c00.T / by letting

kxk D sup
t2T

jˇt .x/j .x 2 c00.T //:
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The tree space corresponding to T is the completion S.T / of .c00.T /; k � k/. It is
easy to verify that .et / is a normalized, monotone basis of S.T /. Note that the
branch functionals can be expressed in terms of the biorthogonal functional as follows:
ˇt D

P
s2bt

e�s . We now let K be the w�–closure in S.T /� of the set fˇt W t 2 T g.
This is a compact Hausdorff space and 02K if and only if T has infinitely many initial
nodes (ie elements t 2 T for which s 4 t implies s D t ). The restriction to K of the
image of each element of S.T / under the canonical embedding of S.T / into S.T /��

is an isometric isomorphism S.T /! C.K/. By the Stone–Weierstrass theorem it is
onto C.K/ if 0 … K and onto C0.K/ (functions vanishing at 0) if 0 2 K . It turns
out that every C.K/–space with separable dual can be represented as a tree space but
we will not need this result in its full generality. We will now mention the examples
relevant to us.

For each k 2N let Tk be the tree .ŒN��k;4/, where s 4 t if and only if s is an initial
segment of t . Thus Tk is the rooted, countably infinitely branching tree of height k .
As usual, we identify a set t �N with the sequence i1; i2; : : : , where i1 < i2 < � � �
are the elements of t . So, for example, we shall write em for the basis element efmg of
S.Tk/, etc. The set fˇt W t 2 Tkg is homeomorphic to .0; !k� (and hence to Œ0; !k�)
via the map ˇ∅ 7! !k and

.i1; : : : ; ir/ 7!

r�1X
jD1

!k�j .ij � ij�1� 1/C!
k�r.ir � ir�1/;

for 1� r � k; i1 < � � �< ir (and with i0 D 0). Thus S.Tk/Š C.Œ0; !k�/. Let us now
denote by T the disjoint union of the trees Tk . For s; t 2 T we have s 4 t if and only
if for some k both s and t belong to Tk and s 4 t in Tk . The tree space S.T / is then
isometrically isomorphic to C0.Œ0; !!// which of course isometrically embeds into
C.Œ0; !! �/. Note also that S.T /Š

�L1
kD1 S.Tk/

�
c0

. For the rest of the paper we fix
Tk and T to be the trees just described.

Theorem 1 For every 1� r � k there exist a map 'k;r W �k! C.Œ0; !r �/ such that
dist.'k;r/� k=r . It follows that cC.Œ0;!r �/.�k/�minfk=r; 2g.

Proof For each r 2N we define the map

fr W N! S.Tr/; m 7! �

m�1X
iD1

ei C emC 2

rX
jD2

X
i1<���<ij
ijDm

ei1;:::;ij :

Then for 1� r � k define

'k;r W �k! S.Tr/; � 7!
X
m2�

fr.m/:
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Let �; � 2�k . We will show that
r

k
d4.�; �/� k'k;r.�/�'k;r.�/k � d4.�; �/:

Let i1 < � � � < is and j1 < � � � < jt be the elements of � n � and � n � , respectively.
We need to show that

r

k
.sC t /� kfr.i1/C � � �Cfr.is/�fr.j1/� � � � �fr.jt /k � .sC t /:

The upper bound follows from the triangle inequality. Indeed, for each m 2N and for
each t 2 Tr , summing fr.m/ along the branch bt yields the values �1; 0; 1, and hence
fr.m/ is of norm 1. To see the lower bound, first note that we can assume without
loss of generality that 1� s and that either t D 0 or i1 < j1 . We will then prove the
following statement by induction on maxfs; tg. Given sC t distinct positive integers
i1 < � � � < is and j1 < � � � < jt , where 1 � s � k and either t D 0 or 1 � t � k and
i1 < j1 , setting

g D fr.i1/C � � �Cfr.is/�fr.j1/� � � � �fr.jt /;

there is a branch functional ˇ`1;:::;`u with 1� u� r and i1 � `1 such that

jˇ`1;:::;`u.g/j D

ˇ̌̌̌ uX
vD1

e�`1;:::;`v .g/

ˇ̌̌̌
�

r

maxfr; s; tg
.sC t /:

This clearly implies the lower bound of .r=k/.sC t / on the norm of g .

If s � r or r � s � t , then for uDminfr; sg we have

ˇi1;:::;iu.g/D e
�
i1

�
fr.i1/C

sX
mD2

fr.im/�

tX
nD1

fr.jn/

�
C

uX
vD2

e�i1;:::;iv .fr.iv//

D 1� .s� 1/C t C 2.u� 1/D�sC t C 2u:

When s � r , then �sC t C 2uD sC t , and we are done. If r � s � t , then

�sC t C 2u� 2r D
r

.1=2/.sC t /
.sC t /�

r

maxfr; s; tg
.sC t /;

as required. We finally deal with the case when r < s and t < s . Set

hD fr.i2/C � � �Cfr.is/�fr.j1/� � � � �fr.jt /:

If t D 0 or i2 < j1 , then we apply the induction hypothesis to h, and if j1 < i2 , then
we apply the induction hypothesis to �h. In either case we obtain a branch functional
ˇ`1;:::;`u such that i1 < `1 and

jˇ`1;:::;`u.h/j �
r

s�1
.sC t � 1/:
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Since i1 < `1 , we have ˇ`1;:::;`u.fr.i1//D 0, and it follows that

jˇ`1;:::;`u.g/j D jˇ`1;:::;`u.h/j �
r

s�1
.sC t � 1/�

r

s
.sC t /:

This completes the proof that dist.'k;r/ � k=r . Recall that Kalton and Lancien [8]
proved that every separable metric space embeds into c0 with distortion at most 2. It
follows that cC.Œ0;!r �/.�k/�minfk=r; 2g.

2.2 C.Œ0; !!�/–distortion of the Hamming cube

It follows from Theorem 1 that each �k embeds isometrically into C.Œ0; !! �/. We
now prove a stronger result. Recall that a set A�N is a Schreier set if jAj �minA
(or if AD∅). This inequality is usually referred to as the admissibility condition. The
Schreier family, the set of all Schreier sets, is denoted by S1 . We endow S1 with the
symmetric difference metric, ie we consider S1 as a subset of �1 .

Theorem 2 .S1; d4/ embeds isometrically into C.Œ0; !! �/.

Proof Define

f! W N! S.T /; m 7!

mX
kD1

fk.m/;

where fk , k 2N , are the functions defined in Theorem 1. Here we identify x 2 S.Tk/
with the sequence in S.T /Š

�L1
kD1 S.Tk/

�
c0

that has x in the kth co-ordinate and
zero everywhere else. Thus, more precisely,

f!.m/D .f1.m/; : : : ; fm.m/; 0; 0; : : : /:

We next define
'! W S1! S.T /; � 7!

X
m2�

f!.m/;

and claim that this is an isometric embedding. As before, this amounts to showing that
if �; � 2 S1 and i1 < � � � < is and j1 < � � � < jt are the elements of � n � and � n � ,
respectively, then

kf!.i1/C � � �Cf!.is/�f!.j1/� � � � �f!.jt /k D sC t:

Setting g D f!.i1/C � � � C f!.is/� f!.j1/� � � � � f!.jt /, we have kgk � sC t by
the triangle inequality. Indeed, for each m 2N we have

kf!.m/k D max
1�k�m

kfk.m/k D 1:
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To get the lower bound, we may assume without loss of generality that i1 < j1 (or
t D 0) and consider the kth component of g in S.Tk/, where kD i1 . We will show that

kfk.i1/C � � �Cfk.is/�fk.j1/� � � � �fk.jt /k D sC t:

Note that s � j� j �min � � i1 D k . It follows that we can get the lower bound sC t
by applying the branch functional ˇi1;:::;is in Tk as in the proof of Theorem 1.

We now turn our attention to the infinite Hamming cube. With the help of Theorem 2
we are now able to embed the infinite Hamming cube into C.Œ0; !! �/ with arbitrarily
small distortion. We say that M embeds almost isometrically into N , denoted by

M ,�!
a:i:

N;

if for every " > 0 there exists a bi-Lipschitz embedding f from M into N with
dist.f /� 1C ".

Theorem 3 The infinite Hamming cube �1 embeds almost isometrically into
C.Œ0; !! �/.

Proof As before, we will in fact embed �1 into C0.Œ0; !!//, which is identified with
S.T /Š

�L1
kD1 S.Tk/

�
c0

. Fix " > 0. Choose a sequence 0D N0 < N1 < N2 < � � �
of integers satisfying

(1) 2m� "Nm for all m� 0:

We next define maps f; ' similar to f! ; �! but with a different admissibility condition.
It will be clear from the definition and the proof of Theorem 2 that this new map '
will be an isometric embedding when restricted to the class of sets � satisfying the
admissibility condition j� j �Nmin.�/ . We define

f W N! S.T /; m 7!

NmX
kD1

fk.m/

and
'W �1! S.T /; � 7!

X
m2�

f .m/:

Fix �; � 2�1 . We will show that

(2) .1� "/d4.�; �/� k'.�/�'.�/k � d4.�; �/:

By the triangle inequality, we have

k'.�/�'.�/k D

 X
m2�

f .m/�
X
m2�

f .m/

� X
m2�4�

kf .m/k D d4.�; �/:
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To show the lower bound, we first observe that � and � can be assumed to be disjoint.
Indeed, we have

'.�/�'.�/D '.� n �/�'.� n �/ and d4.�; �/D d4.� n �; � n �/;

and so we can replace � and � with � n � and � n � if necessary.

We next choose m; n 2N such that

(3) Nm�1 < j� j �Nm and Nn�1 < j� j �Nn:

Set � 0D � nf1; : : : ; m�1g and � 0D � nf1; : : : ; n�1g. Since � 0 and � 0 are admissible,
we have

(4) k'.� 0/�'.� 0/k D d4.�
0; � 0/:

Next, since � 0 and � 0 are small perturbations of � and � , respectively, we have

(5)
ˇ̌
k'.�/�'.�/k�k'.� 0/�'.� 0/k

ˇ̌
� k'.�/�'.� 0/kCk'.�/�'.� 0/k

� d4.�; �
0/Cd4.�; �

0/� .m�1/C.n�1/

and

(6) jd4.�; �/� d4.�
0; � 0/j � d4.�; �

0/C d4.�; �
0/� .m� 1/C .n� 1/:

It follows that

k'.�/�'.�/k � k'.� 0/�'.� 0/k� .mCn� 2/ .by (5)/

D d4.�
0; � 0/� .mCn� 2/ .by (4)/

� d4.�; �/� 2.mCn� 2/ .by (6)/

D j� jC j� j � 2.mCn� 2/

D j� j

�
1�

2.m� 1/

j� j

�
Cj� j

�
1�

2.n� 1/

j� j

�
� .1� "/.j� jC j� j/D .1� "/ d4.�; �/ .by (1) and (3)/

as required.

Remark An interesting question presents itself in light of the two theorems above.
Does �1 almost isometrically embed into S1? A positive answer together with
Theorem 2 would provide another proof of Theorem 3.
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3 Estimating the C.K/–distortion from below

3.1 Aharoni’s lower bound observed with “metric lenses”

Aharoni proved that cc0.SB/� 2, and hence cc0.M/� 2. Indeed, he showed that the
separable Banach space `1 does not embed into c0 with distortion strictly less than 2.
A careful inspection of his proof shows that the proof and the statement of the result
can be carried out and stated without using or even mentioning the linear structure of
the Banach space `1 . This simple but crucial observation allows us to extend Aharoni’s
proof to the much more general setting of embeddings into C.K/–spaces.

Denote by z�2 the subset f∅; fng; f1; ig; f2; j g W n � 1; i � 2; j � 3g of the metric
space �2 . The following theorem is nothing else but Aharoni’s lower bound theorem
reformulated in purely metric terms. For the sake of completeness we include the
original proof using our notation in the hope that it will make the notation used in the
proof of Theorem 6 more accessible.

Theorem 4 (Aharoni) The metric space z�2 does not embed into c0 with distortion
strictly less than 2.

Proof Assume that f W z�2! c0 and C < 2 satisfy

d4.�; �/� kf .�/�f .�/k � Cd4.�; �/ for all �; � 2 z�2:

Without loss of generality one can assume that f .∅/D 0. Let fn D e�n ı f , so that
f .�/D .fn.�//

1
nD1 for � 2 z�2 . For every i ¤ j in N define

Xi;j D fn 2N W jfn.fig/�fn.fj g/j � 4� 2C g:

Note that these are finite sets. Moreover, X1;2\Xi;j ¤∅ for every i; j � 3, i ¤ j .
Indeed, we have

kf .f1; ig/�f .f2; j g/k � d4.f1; ig; f2; j g/D 4:

Hence there exists ni;j 2N such that

jfni;j .f1; ig/�fni;j .f2; j g/j � 4:

It follows that

jfni;j .fig/�fni;j .fj g/j � jfni;j .f1; ig/�fni;j .f2; j g/j

�jfni;j .f1; ig/�fni;j .fig/j�jfni;j .f2; j g/�fni;j .fj g/j

� 4�kf .f1; ig/�f .fig/k�kf .f2; j g/�f .fj g/k

� 4�Cd4.f1; ig; fig/�Cd4.f2; j g; fj g/D 4�2C:
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This proves that ni;j 2 Xi;j . Arguing along the same lines, one gets that ni;j 2 X1;2
as well. Therefore X1;2\Xi;j ¤∅ whenever i ¤ j and i; j � 3. Denote by P the
canonical projection from c0 onto the closed linear span Y of the vectors .en/n2X1;2 .
We now obtain a contradiction by observing that the sequence .Pf .fng//1nD3 is a C–
bounded and .4� 2C /–separated sequence in the finite-dimensional Banach space Y .
Indeed, for every n� 3,

kPf .fng/k � kf .fng/k D kf .fng/�f .∅/k � Cd4.fng;∅/D C;

and for every i ¤ j with i; j � 3, we have

kPf .fig/�Pf .fj g/k D sup
n2X1;2

jfn.fig/�fn.fj g/j

� jfni;j .fig/�fni;j .fj g/j

� 4� 2C > 0:

3.2 Estimating the C.K/–distortion of �k from below

A key ingredient in estimating from below the C.K/–distortion of the metric space �k
is the Cantor–Bendixson derivation for compact spaces. We next recall the definition
and a few basic properties of this derivation.

Let K be a compact topological space. The Cantor–Bendixson derivative K 0 of K is
the set of all accumulation points of K , ie

K 0 DK n fx 2K W x is an isolated pointg:

By transfinite induction one can define derivatives K.˛/ of higher order ˛ as follows.
We set K.0/ D K . For an ordinal ˛ we let K.˛C1/ D .K.˛//0 and, finally, for a
non-zero limit ordinal � we define K.�/ D

T
˛<�K

.˛/ .

We gather in the next proposition some basic properties of the Cantor–Bendixson
derivation.

Proposition 5 Let K be a compact metric space. Then:

(1) K is finite” K 0 D∅ ” K is discrete.

(2) K is countable” there exists ˛ < !1 such that K.˛/ D∅.

(3) K is uncountable” there exists ˛ < !1 such that K.˛C1/ DK.˛/ ¤∅.

For a general compact topological space K the smallest ordinal ˛ such that K.˛/ D
K.˛C1/ is called the Cantor–Bendixson index (or rank) of K , and we denote it by
iCB.K/. For example, consider the compact space K D Œ0; !˛ �n�, where 1� ˛ < !1
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and 1 � n < ! . Then iCB.K/ D ˛C 1 and jK.˛/j D n. More generally, if K is a
countably infinite compact metric space, then for some 1 � ˛ < !1 and 1 � n < !
we have iCB.K/D ˛C 1, jK.˛/j D n and K is homeomorphic to Œ0; !˛ � n�. Thus,
the Cantor–Bendixson derivation gives rise to a topological classification of countable
compact metric spaces, and hence an isometric classification of C.K/–spaces with
separable dual.

Inspired by the reformulation of Aharoni’s proof in terms of a metric subset of �2 ,
we establish a link between the C.K/–distortion of the sequence .�k/k�1 and the
Cantor–Bendixson index of the compact space K . In Section 2 we showed that
cC.Œ0;!k�1�/.�k/� k=.k�1/ for k � 2. In the remainder of this section we will show
that this upper bound is tight.

Theorem 6 Let K be a compact topological space and k be an integer with k � 2.
If �k admits a bi-Lipschitz embedding into C.K/ with distortion strictly less than
k=.k� 1/, then iCB.K/� kC 1. It follows that cC.Œ0;!k�1�/.�k/D k=.k� 1/.

Proof Assume that there is a function f W �k!C.K/ and a constant D<k=.k�1/

such that

d4.�; �/� kf .�/�f .�/k �Dd4.�; �/ for all �; � 2�k :

Set �D 2k� 2.k� 1/D and observe that � > 0. For distinct i; j 2N define

Xi;j D fˇ 2K W jf .fig/.ˇ/�f .fj g/.ˇ/j � �g:

Consider the following statement. For each 0 � s � k and for any 2.k � s/ distinct
integers i1; i2; : : : ; ik�s; j1; j2; : : : ; jk�s , we have

K.s/\Xi1;j1 \Xi2;j2 \ � � � \Xik�s ;jk�s
¤∅:

We will now verify this statement by induction on s . The theorem will then follow by
putting s D k .

We begin with sD 0. Let i1; : : : ; ik and j1; : : : ; jk be 2k distinct elements of N . Set
� D fi1; : : : ; ikg and � D fj1; : : : ; jkg. Since kf .�/�f .�/k � d4.�; �/D 2k , there
exists ˇ 2K such that jf .�/.ˇ/�f .�/.ˇ/j � 2k . It follows that

jf .firg/.ˇ/�f .fjrg/.ˇ/j � jf .�/.ˇ/�f .�/.ˇ/j � jf .�/.ˇ/�f .firg/.ˇ/j

� jf .fjrg/.ˇ/�f .�/.ˇ/j

� 2k�kf .�/�f .firg/k�kf .fjrg/�f .�/k

� 2k�Dd4.�; firg/�Dd4.fjrg; �/

� 2k� 2D.k� 1/D � > 0

for each 1� r � k . Thus, ˇ 2 Xi1;j1 \ � � � \Xik ;jk .
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Now assume that the statement holds for some 0 � s < k . Let i1; : : : ; ik�s�1 and
j1; : : : ; jk�s�1 be 2.k� s� 1/ distinct elements of N . Let

LDK.s/\Xi1;j1 \ � � � \Xik�s�1;jk�s�1

and n0 Dmaxfi1; : : : ; ik�s�1; j1; : : : ; jk�s�1g. Note that L is a closed subset of K .
Let us denote by R the restriction operator C.K/! C.L/. Note that for distinct
i; j > n0 we have L \ Xi;j ¤ ∅ by the induction hypothesis. It follows that the
functions Rf .fig/, i > n0 , are uniformly bounded and �–separated. Indeed, we have

kRf .fig/k � kf .fig/k � kf .fig/�f .∅/kCkf .∅/k

�Dd4.fig;∅/Ckf .∅/k

�DCkf .∅/k;

and for distinct i; j > n0 we can pick ˇ 2 L\Xi;j and obtain

kRf .fig/�Rf .fj g/k � jf .fig/.ˇ/�f .fj g/.ˇ/j � �:

We deduce that C.L/ must be infinite-dimensional, and hence L must be infinite.
Since every infinite compact space has an accumulation point, we have

K.sC1/\Xi1;j1 \Xi2;j2 \ � � � \Xik�s�1;jk�s�1
¤∅;

as required.

4 Applications and open problems

Let .M; dM / denote an arbitrary separable metric space. Let D˛ be an upper bound
on cC.Œ0;!˛�/.M/, and consider the following self-explanatory diagram:

c0 ,�!
D

C.Œ0; !�/ ,�!
D
� � � ,�!

D
C.Œ0; !k �/ ,�!

D
� � � ,�!

D
C.Œ0; !! �/ ,�!

D
C.Œ0; 1�/

,�
�
�
�
!

2
�

L
ip

,�
�
�
�
!

D
1
�

L
ip

,�
�
�
�
!

D
k
�

L
ip

,�
�
�
�
!

D
!
�

L
ip

,�
�
�
�
!

1
�

L
ip

.M; dM / .M; dM / � � � .M; dM / � � � .M; dM / .M; dM /

Whereas the best distortion achievable in the two extreme cases is completely under-
stood, essentially no estimates for the values of the parameters cC.Œ0;!˛�/.C/ have
been hitherto known for C being any class among M;SB; COT ; T YP;SR (besides
the upper bound 2 which follows from the Kalton–Lancien embedding result [8]).
It is worth noting that since any C.K/–space (for K countable) is c0–saturated, it
cannot be a linearly isometrically universal space for the class of separable Banach
spaces. Moreover, it cannot be an isometrically universal space either since Godefroy
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and Kalton [7] proved that if a separable Banach space X embeds isometrically into
a Banach space Y , then Y contains a linear isometric copy of X . Our study of
stratifications of the Hamming cube (Theorem 6) yields nontrivial lower bounds for
the first time.

Corollary 7 Let C 2 fM;SB; COT ; T YP;SRg, and let k 2N . Then

kC1

k
� cC.Œ0;!k�/.C/� 2:

Proof We first remark that the upper bound for all k is the result of Kalton and
Lancien [8], and the lower bound for k D 1 is due to Aharoni [1]. We now consider
the lower bound for k � 2.

Set K D Œ0; !k�, and note that iCB.K/ D k C 1. It follows from Theorem 6 that
cC.K/.�kC1/ � .kC 1/=k . Given " > 0, choose p with 1 < p <1 such that the
function f W �kC1! p̀ defined by f .�/D

P
i2� ei is a .1C"/–isometric embedding.

It follows that
cC.K/.�kC1/� .1C "/cC.K/. p̀/:

Since p̀ belongs to the class C , we have

cC.K/.�kC1/� .1C "/cC.K/.C/;

and the result is proved.

The following corollary is an easy consequence of Theorem 6 and the fact that .�k/k�1
is a stratification of H1 .

Corollary 8 Let K be a countable compact metric space. If

H1 ,�!
a:i:

C.K/;

then iCB.K/� !C 1. In particular, if C.K/ is an almost isometrically universal space
for the class C 2 fM;SB; COT ; T YP;SRg, then iCB.K/� !C 1.

Proof It follows from Theorem 6 that iCB.K/ � kC 1 for every k < ! , and hence
K.!/ D

T
k<! K

.k/ ¤∅. The result follows from Proposition 5(2).

Remark Procházka and Sánchez-González [11] using the technique of Section 3
exhibited a countable nonproper metric space which does not admit an embedding
with distortion less than 2 into any C.K/–space with K countable. Therefore for such
compact spaces K we have cC.K/.M/D cC.K/.SB/D 2, and hence C.K/ cannot be
an almost isometrically universal space for the classes M or SB .
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The following theorem, of independent interest, can also be used to prove the second part
of Corollary 8 in combination with either Aharoni’s original lower bound involving `1
or Corollary 7.

Theorem 9 If `1 ,�!
a:i:

C.K/ then `1 ,�!
a:i:

C.K.˛// for all ordinals ˛ < ! .

Proof It is sufficient to show that

`1 ,�!
a:i:

C.K/ implies `1 ,�!
a:i:

C.K 0/:

Fix " 2
�
0; 1
2

�
and let f W `1! C.K/ be a function satisfying

kx�yk1

1C "
� kf .x/�f .y/k1 � kx�yk1:

Define gW `1! C.K 0/ by letting g.x/ be the restriction of f .x/ to K 0 (x 2 `1 ). We
are going to show that dist.g/� .1C "/=.1� 2"/, which then completes the proof.

Fix distinct vectors x; y 2 `1 of finite support. Let

ı D kx�yk1 and n0 Dmax supp.x/[ supp.y/:

For distinct integers i; j > n0 we have

kf .xC ıei /�f .yC ıej /k1 �
3ı

1C "
:

Hence there exists ˇ 2K such that

(7) jf .xC ıei /.ˇ/�f .yC ıej /.ˇ/j �
3ı

1C "
:

We next observe that if (7) holds, then we also have

(8) jf .xC ıei /.ˇ/�f .xC ıej /.ˇ/j �
.2� "/ı

1C "

and

(9) jf .x/.ˇ/�f .y/.ˇ/j �
.1� 2"/ı

1C "
D
.1� 2"/kx�yk1

1C "
:

Now let

LD fˇ 2K W 9 distinct i; j > n0 satisfying inequality (7)g:

For z 2 `1 let fL.z/ denote the restriction of f .z/ to L. By (8), the sequence
.fL.xCıei //i>n0 in C.L/ is bounded and .2�"/ı=.1C"/–separated. It follows that
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L is infinite, and so L\K 0 ¤∅. By (9), for any ˇ 2 L\K 0 we have

jf .x/.ˇ/�f .y/.ˇ/j �
.1� 2"/kx�yk1

1C "
:

Thus

kg.x/�g.y/k �
.1� 2"/kx�yk1

1C "
;

proving that gW `1!C.K 0/ is a bi-Lipschitz embedding with constant .1C"/=.1�2"/,
as claimed.

We conclude by stating some open problems. In light of the above result, it is natural
to ask the following.

Question 1 Does `1 almost isometrically embed into C.Œ0; !! �/?

Recall that one cannot hope for an isometric embedding because of the aforementioned
result of Godefroy and Kalton [7].

Recall also that using the techniques of Theorem 6, Procházka and Sánchez-González
[11] constructed a separable metric space M for which cC.K/.M/D 2 for any (infinite)
countable compact space K . However, it is not clear whether their example embeds
into `1 isometrically (or with distortion less than 2). Indeed, it is not known if their
example isometrically embeds into any Banach space which is not already universal
for SB . So the following open problems seem to be of interest.

Question 2 Is there some non-trivial class C of Banach spaces and a countable compact
space K such that C.K/ is almost isometrically universal for the class C?

The above question is deliberately vague. Examples we have in mind for non-trivial
classes include T YP; COT and SR. We conclude with a more specific quantitative
question.

Question 3 Let ˛ 2 Œ2; !1/. What is the exact value of cC.Œ0;!˛�/.C/ for C 2
fT YP; COT ;SRg?
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