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Quotient singularities, eta invariants, and self-dual metrics

MICHAEL T LOCK

JEFF A VIACLOVSKY

There are three main components to this article:

(i) A formula for the �–invariant of the signature complex for any finite subgroup
of SO.4/ acting freely on S3 is given. An application of this is a nonexistence
result for Ricci-flat ALE metrics on certain spaces.

(ii) A formula for the orbifold correction term that arises in the index of the self-dual
deformation complex is proved for all finite subgroups of SO.4/ which act freely
on S3. Some applications of this formula to the realm of self-dual and scalar-flat
Kähler metrics are also discussed.

(iii) Two infinite families of scalar-flat anti-self-dual ALE spaces with groups at
infinity not contained in U.2/ are constructed. Using these spaces, examples of
self-dual metrics on n # CP 2 are obtained for n� 3 . These examples admit an
S1–action, but are not of LeBrun type.

53C25, 58J20

1 Introduction

The focus of this work is on questions arising from the study of four-dimensional spaces
that have isolated singularities or noncompact ends which are modeled, respectively,
on neighborhoods of the origin and of infinity of R4=� , where � � SO.4/ is a finite
subgroup which acts freely on S3.

In particular, we say that .M 4;g/ is a Riemannian orbifold with isolated singularities
if g is a smooth Riemannian metric away from a finite set of singular points, and at
each singular point the metric is locally the quotient of a smooth �–invariant metric
on B4 by some finite subgroup � � SO.4/ which acts freely on S3. The group � is
known as the orbifold group at that point.

Now, given such a compact orbifold with positive scalar curvature, the Green’s function
for the conformal Laplacian associated to any point p 2M is guaranteed to exist,
which we denote by Gp . Then the noncompact space .M 4 n fpg;G2

pg/ is a complete
scalar-flat orbifold with a coordinate system at infinity arising from inverted normal
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1774 Michael T Lock and Jeff A Viaclovsky

coordinates in the metric g around p . This, which we call a conformal blow-up,
motivates the following definition.

We say that a noncompact Riemannian orbifold .X 4;g/ is asymptotically locally
Euclidean (ALE) of order � if there exists a diffeomorphism

(1-1)  W X 4
nU ! .R4

nBR.0//=�;

where U �X 4 is compact and � � SO.4/ is a finite subgroup of SO.4/ which acts
freely on S3, satisfying . �g/ij D ıij CO.r�� / and @jkj. �g/ij D O.r���k/, for
any partial derivative of order k , as r !1, where r is the distance to some fixed
basepoint. The group � is known as the group at infinity.

For such a space, let uW X 4! RC be a function satisfying uDO.r�2/ as r !1.
Then there is a compactification of the space .X 4;u2g/ to an orbifold, which we
denote by .cX 4; yg/. In general, this will only be a C 1;˛–orbifold. However, if the
metric satisfies a condition known as anti-self-duality, which we discuss next, there
exists a compactification to a C1–orbifold with positive Yamabe invariant (see Tian
and Viaclovsky [41] and Chen, LeBrun and Weber [9]).

On an oriented four-dimensional Riemannian manifold .M;g/, the Hodge star operator
associated to the metric g acting on 2–forms satisfies �2 D Id and, in turn, induces
the decomposition ƒ2 Dƒ2

C˚ƒ
2
� , where ƒ2

˙
are, respectively, the ˙1 eigenspaces

of �jƒ2 . Viewing the Weyl tensor as an operator WgW ƒ
2 ! ƒ2, this leads to the

decomposition

(1-2) Wg DWCg CW�g ;

where W˙g D…˙ ıWg ı…
˙ , with …˙ D .Id˙�/=2 being the respective projection

maps onto ƒ2
˙

. This decomposition is conformally invariant. The metric g is called
self-dual if W�g D 0 and anti-self-dual if WCg D 0. It is important to note that by
reversing orientation a self-dual metric becomes anti-self-dual and vice versa.

Remark 1.1 The conformal compactification of an anti-self-dual ALE space, with
group at infinity � , has the same orbifold group at the point of compactification as long
as the orientation is reversed, in which case the metric is self-dual. Therefore, while
our focus is on anti-self-dual ALE metrics, we will consider the self-dual orientation
for compact orbifolds.

It is necessary to briefly introduce the classification of finite subgroups of SO.4/
which act freely on S3 before stating our main results. A more thorough discussion
is provided in Section 2A. These groups are given by the finite subgroups of U.2/
which act freely on S3 and their orientation-reversed conjugates, by which we mean
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that there is an orientation-reversing intertwining map between said groups. Given a
group � � SO.4/, its orientation-reversed conjugate in SO.4/ will be denoted by � .
In Table 1 below, we list all finite subgroups of U.2/ which act freely on S3. From this
all desired subgroups of SO.4/ can be understood. First, some remarks on notation:

� For m and n nonzero integers, L.m; n/ denotes the cyclic group generated by�
exp.2� i=n/ 0

0 exp.2� im=n/

�
:

� The map �W S3 �S3! SO.4/ is the standard double cover (2-2).

� The binary polyhedral groups (dihedral, tetrahedral, octahedral, and icosahedral)
are denoted, respectively, by D�

4n
, T �, O�, and I�.

� The index-2 diagonal subgroup of �.L.1; 4m/�D�
4n
/ and the index-3 diagonal

subgroup of �.L.1; 6m/�T �/ will be denoted by I2
m;n and I3

m , respectively.

� � U.2/ conditions order

L.m; n/ .m; n/D 1 n

�.L.1; 2m/�D�
4n
/ .m; 2n/D 1 4mn

�.L.1; 2m/�T �/ .m; 6/D 1 24m

�.L.1; 2m/�O�/ .m; 6/D 1 48m

�.L.1; 2m/� I�/ .m; 30/D 1 120m

I2
m;n .m; 2/D 2; .m; n/D 1 4mn

I3
m .m; 6/D 3 24m

Table 1: Finite subgroups of U.2/ which act freely on S3

Remark 1.2 Often only noncyclic subgroups of U.2/ will be considered. This ex-
cludes the cyclic groups �.L.1; 2m/�D�

4
/ and I2

m;1
(these are the nD 1 cases).

We are now able to state the main results of this work. Although there is a relationship
between the underlying ideas of their proofs, the results fall into three distinct categories
and are separated accordingly.

1A Eta invariants and Einstein metrics

Let .M;g/ be a compact orbifold with finitely many isolated singularities p1; : : : ;pk

having corresponding orbifold groups �1; : : : ; �k � SO.4/. The orbifold signature
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theorem gives the formula

(1-3) �top.M /D �orb.M /�

nX
iD1

�.S3=�i/;

where the quantity �orb.M / is the orbifold signature defined by

(1-4) �orb.M /D
1

12�2

Z
M

.kW Ck2�kW �k2/ dVg;

and �.S3=�i/ is the �–invariant of the signature complex. Since �i � SO.4/ is a
finite subgroup, this can be shown to be given by

(1-5) �.S3=�i/D
1

j�i j

X

¤Id2�i

cot
�

1
2
r.
 /

�
cot
�

1
2
s.
 /

�
;

where r.
 / and s.
 / denote the rotation numbers of 
 2 �i . The �–invariants of
certain groups are known. For finite subgroups of SU.2/, they were computed directly
in Nakajima [37] and Hitchin [21]. A formula for the �–invariant of cyclic groups
L.q;p/, where q and p are relative prime integers satisfying 1� q < p , was proved
in Ashikaga and Ishizaka [3]. This formula, which is stated in (3-1), is in terms of the k

and ei that arise in the modified Euclidean algorithm (2-6). It is also recovered easily
from our work in Lock and Viaclovsky [34]. Lastly, a formula for the �–invariant
of �.L.1; 2m/�D�

4n
/ was found in Wright [43]. However, there are still many finite

subgroups of SO.4/ for which the �–invariant was unknown, and our first result here
is a formula for all possible cases. The proof is found in Section 3A.

Theorem 1.3 Let � � SO.4/ be a noncyclic finite subgroup which acts freely on S3.
Then the �–invariant of the signature complex is given as follows:

� For � � U.2/,

(1-6) �.S3=�/D
2

3

�
2m2C 1

j�j

�
� 1CA� ;

where A� is a constant given in Table 2.

� For � 6� U.2/,

(1-7) �.S3=�/D��.S3=�/;

where �.S3=�/ is given by (1-6) since here � � U.2/.
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� � U.2/ A� congruences/conditions

�.L.1; 2m/�D�
4n
/ �.S3=L.m; n// .m; 2n/D 1

�.L.1; 2m/�T �/ ˙4=9 m�˙1 mod 6

�.L.1; 2m/�O�/ ˙13=18 m�˙1 mod 12

˙5=18 m�˙5 mod 12

�.L.1; 2m/� I�/ ˙46=45 m�˙1 mod 30

˙2=9 m�˙7;˙13 mod 30

˙26=45 m�˙11 mod 30

I2
m;n �.S3=L.m; n// .m; 2/D 2, .m; n/D 1

I3
m 0 m� 3 mod 6

Table 2

Remark 1.4 Notice that although the A� terms for the �–invariants of the subgroups
�.L.1; 2m/ � D�

4n
/ and I2

m;n contain an �.S3=L.m; n//, they can be computed
algorithmically by using formula (3-1) for the �–invariant of a cyclic group.

We next give an application of Theorem 1.3. There is a well-known conjecture, due to
Bando, Kasue and Nakajima [4], that the only simply connected Ricci-flat ALE metrics
in dimension four are the hyperkähler ones . The following shows that the conjecture
is true, provided one restricts to the diffeomorphism types of minimal resolutions
of C2=� or any iterated blow-up thereof.

Theorem 1.5 Let � � U.2/ be a finite subgroup which acts freely on S3, and let X

be diffeomorphic to the minimal resolution of C2=� or any iterated blow-up thereof.
If g is a Ricci-flat ALE metric on X , then � � SU.2/ and g is hyperkähler.

This is proved in Section 3B by applying the Hitchin–Thorpe inequality for ALE
metrics obtained by Nakajima, together with the result in Theorem 1.3. If one assumes
that g is Kähler, the result is trivial, so we emphasize that we only make an assumption
about the diffeomorphism type and do not assume g is Kähler.

It is interesting to note that there are non-simply connected Ricci-flat anti-self-dual ALE
metrics. These spaces have been classified as cyclic quotients of Gibbons–Hawking
multi-Eguchi–Hanson spaces. This was proved, with the assumption that the manifold
is Kähler, in Şuvaina [40] and in general in Wright [43].

Geometry & Topology, Volume 20 (2016)



1778 Michael T Lock and Jeff A Viaclovsky

1B Self-dual deformations

If .M;g/ is a self-dual four-manifold, then the local structure moduli space of self-dual
conformal classes near g is controlled by the following elliptic complex known as the
self-dual deformation complex:

(1-8) �.T �M /
Kg
�!�.S2

0 .T
�M //

Dg
�!�.S2

0 .ƒ
2
�//:

Here Kg denotes the conformal Killing operator, S2
0
.T �M / denotes traceless sym-

metric 2–tensors, and Dg D .W�/0g is the linearized anti-self-dual Weyl curvature
operator.

If M is compact, then the index of this complex is given in terms of topological
quantities via the Atiyah–Singer index theorem as

(1-9) Ind.M;g/D

2X
iD0

.�1/i dim H i
SD D

1
2
.15�top.M /� 29�top.M //;

where �top.M / is the Euler characteristic, �top.M / is the signature, and H i
SD is the i th

cohomology group of (1-8), for i D 0; 1; 2.

In Lock and Viaclovsky [35], we discussed the deformation theory of certain scalar-flat
Kähler ALE metrics. Unlike the scalar-flat Kähler condition, the anti-self-dual condition
is conformally invariant, so we can transfer the deformation problem of anti-self-dual
ALE spaces to their self-dual conformal compactifications. However, these conformal
compactifications are orbifolds, upon which formula (1-9) does not necessarily hold
as there are correction terms required arising from the singularities. Kawasaki [26]
proved a version of the Atiyah–Singer index theorem for orbifolds, with the orbifold
correction terms expressed as certain representation-theoretic quantities. In Lock and
Viaclovsky [34], we explicitly determined this correction term in the case of cyclic
quotient singularities. Our next result is a determination of the correction term for all
finite subgroups � � SO.4/ which act freely on S3.

Theorem 1.6 Let .M;g/ be a compact self-dual orbifold with a single orbifold point
having orbifold group � , a noncyclic finite subgroup of SO.4/. Then the index of the
self-dual deformation complex on .M;g/ is given by

Ind.M;g/D 1
2
.15�top.M /� 29�top.M //CN.�/;

where N.�/ is given as follows:

� For � � U.2/,

(1-10) N.�/D�4b� CB� ;
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where �b� , given by (2-7), is the self-intersection number of the central rational
curve in the minimal resolution of C2=� and B� is a constant given in Table 4.

� For � 6� U.2/,

(1-11) N.�/D�N.�/�

�
6 if � � SU.2/;
7 if � 6� SU.2/;

where N.�/ is given by (1-10) since here � � U.2/.

This is proved in Section 4A. Note that Theorem 1.6 generalizes easily to the case of
orbifolds with any finite number of singularities. We also note that the second author
[42] previously proved such an index formula for the binary polyhedral groups and
their orientation-reversed conjugates, which is recovered here as well.

In [35], we proved the existence of scalar-flat Kähler ALE metrics on the minimal
resolution of C2=� for all finite subgroups � �U.2/. When � � SU.2/, such metrics
are necessarily hyperkähler and, from [35, Section 8], the anti-self-dual deformations
are the same as the scalar-flat Kähler deformations. However, as an application of
Theorem 1.6, we have the following, which shows the nonhyperkähler examples
of these metrics have many more anti-self-dual deformations than scalar-flat Kähler
deformations.

Theorem 1.7 Let g be a scalar-flat Kähler ALE metric on the minimal resolution X

of C2=�, where � � U.2/ is a finite subgroup which acts freely on S3. Then the
dimension of the moduli space of scalar-flat anti-self-dual ALE metrics near g is strictly
larger than the dimension of the moduli space of scalar-flat Kähler ALE metrics near g ,
unless � � SU.2/, in which case there is equality.

This is proved in Section 4B, where we also give a formula for the formal dimension
of the moduli space of scalar-flat anti-self-dual metrics near g .

1C Self-dual constructions

In [42], Viaclovsky posed the question of existence of anti-self-dual ALE spaces with
groups at infinity orientation-reversed conjugate to the binary polyhedral groups. The
LeBrun negative mass metrics (see LeBrun [30]) are examples of scalar-flat Kähler,
hence anti-self-dual, ALE spaces with groups at infinity orientation-reversed conjugate
to cyclic subgroups of SU.2/. However, since the orientation-reversed conjugate groups
to the binary polyhedral groups are not contained in U.2/, there cannot be scalar-flat
Kähler ALE spaces with these groups at infinity. Therefore the natural question is that
of the existence of anti-self-dual metrics. This question clearly extends to include the
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orientation-reversed conjugate groups of all noncyclic finite subgroups of U.2/ which
act freely on S3. We now give a partial answer to this question and use this to construct
some new examples of self-dual metrics in Corollary 1.10.

Theorem 1.8 Let �1 D �.L.1; 2m/ �D�
4n
/ and �2 D I2

m;n with integers m; n as
specified in Table 1 so the action on S3 is free. Then, for i D 1; 2, there exists a
scalar-flat anti-self-dual ALE space .Xi ;gXi

/ with group at infinity �i , the orientation-
reversed conjugate group to �i , satisfying �1.Xi/DZ=2Z. Furthermore, the gXi

may
be chosen to admit an isometric S1–action.

Remark 1.9 It is still unknown whether there are such examples for the other noncyclic
orientation-reversed conjugate subgroups which act freely on S3, which is a very
interesting question.

Let �1 and �2 be as in Theorem 1.8. For i D 1; 2, let .Yi ;gYi
/ denote the scalar-flat

Kähler, hence anti-self-dual, ALE space with group at infinity �i , obtained for the
noncyclic (n> 1) and cyclic (nD 1) cases in, respectively, Lock and Viaclovsky [35]
and Calderbank and Singer [8], and let .Xi ;gXi

/ denote the anti-self-dual ALE space
with group at infinity �i obtained in Theorem 1.8 above. These can be compactified to
self-dual orbifolds, . yYi ; ygYi

/ and . yXi ; ygXi
/, and then attached via a self-dual orbifold

gluing theorem. Although �1.Xi/D Z=2Z, we will show that �1. yXi # yYi/D f1g and
thus have the following corollary.

Corollary 1.10 Let �1 D �.L.1; 2m/�D�
4n
/ and �2 D I2

m;n with integers m; n as
specified in Table 1 so the action on S3 is free. For i D 1; 2, define the integer

(1-12) `i.m; n/D 3C

8̂̂̂<̂
ˆ̂:

k.n�m;n/C k.m�n;m/ if n> 1 and m> 1;

m� 1 if nD 1 and m> 1;

n� 1 if n> 1 and mD 1;

0 if nD 1 and mD 1;

where k.q;p/ denotes the length of the Hirzebruch–Jung modified Euclidean algorithm
for .q;p/ (see (2-6) for a description). Then, for i D 1; 2, there exist two distinct
sequences of self-dual metrics on `i.m; n/ # CP2, one limiting to an orbifold with a
single orbifold point of type �i and the other limiting to an orbifold with a single
orbifold point of type �i . Furthermore, these examples may be chosen to admit a
conformally isometric S1–action, but they are not of LeBrun type.

Here, by LeBrun-type metrics, we mean the self-dual metrics on n#CP2 discovered by
LeBrun [31]. The proofs of Theorem 1.8 and Corollary 1.10 are given in Section 5B.
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Remark 1.11 The mD nD 1 case, which can only occur for �1 , is minimal here
in the sense that `1.1; 1/D 3 is the smallest number of CP2s on which we obtain a
self-dual metric by this technique. The self-dual conformal classes we find in this case
are contained in those classified by Honda [22, Theorem 1.1] and give examples of
orbifold degeneration in Honda’s conformal classes. To the best of our knowledge, for
all `i.m; n/ > 3, the sequences of metrics obtained in Corollary 1.10 are new examples
of degeneration of self-dual metrics to orbifolds with these orbifold groups. Also,
notice that for all `> 3 there are multiple possibilities for m and n to obtain a self-dual
metric on ` # CP2. Since each such possibility limits to distinct orbifold metrics, the
corresponding metrics on ` # CP2 are themselves distinct. For example,

`1.1; 2/ # CP2
D `2.2; 1/ # CP2

D 4 # CP2;

but the orbifold limits have singularities of types conjugate, respectively, to the groups
�.L.1; 2/�D�

8
/ and I2

2;1
. It is an interesting question whether these self-dual metrics

lie in the same component or distinct components of the moduli space of self-dual
metrics on ` # CP2.

Acknowledgements The authors would like to express gratitude to Olivier Biquard,
Nobuhiro Honda, and Claude LeBrun for many helpful discussions regarding self-dual
geometry. Lock was partially supported by NSF Grant DMS-1148490. Viaclovsky was
partially supported by NSF Grant DMS-1405725.

2 Background

2A Group actions and the Hopf fibration

It will be convenient to understand SO.4/ in terms of quaternionic multiplication. We
identify C2 with the space of quaternions H by

(2-1) .z1; z2/ 2C2
 ! z1C z2

yj 2H;

and consider S3, in the natural way, as the space of unit quaternions. It is well known
that the map �W S3 �S3! SO.4/ defined by

(2-2) �.a; b/.h/D a� h� xb;

for a; b 2 S3 and h 2H , is a double cover. Right multiplication by unit quaternions
gives SU.2/. Notice that this is just the restriction �j1�S3 . The finite subgroups
of SU.2/ were found in [10] and are given by the cyclic groups L.�1; n/, for all
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integers n greater than or equal to 1, and the binary polyhedral groups. Similarly, the
restriction

(2-3) �W S1
�S3

! U.2/;

where the S1 is given by ei� for 0 � � < 2� , is a double cover of U.2/. The finite
subgroups of U.2/ were classified in [15; 11]. Those which act freely on S3 were
later classified in [38]. These are the groups given above in Table 1; we refer the reader
to [35] for an explicit list of generators and a more thorough exposition.

Here, we are interested in all finite subgroups of SO.4/ which act freely on S3, not
just those in U.2/. However, any such group is conjugate, in SO.4/, to a subgroup
of �.S1 �S3/ or �.S3 �S1/, and moreover, these groups themselves are conjugate
subgroups of O.4/ (see [38]). Since �.S1 �S3/ D U.2/, we call the subgroups of
�.S3 �S1/ the orientation-reversed conjugate groups. If � � U.2/, we denote by �
its orientation-reversed counterpart, where � � �.S3 �S1/ � SO.4/. If � � U.2/
is finite, then it has a finite set of generators which can be written (not uniquely)
as f�.ai ; bi/giD1;:::;n for some .ai ; bi/ 2 S1 � S3. Observe that, up to conjugation
in SO.4/, the orientation-reversed conjugate group � would be generated by switching
the left and right multiplication in the generators, ie, by the set f�.bi ; ai/giD1;:::;n .

A crucial step that underlies the results of this paper will be to consider quotients of
certain orbifolds. The resulting spaces will have new singular points and it will be
essential to understand their orbifold groups. To do this, it will be necessary to make
use of the Hopf fibration. Given the standard embedding of S3 in C2, and writing
S2 DC[f1g, the Hopf map HW S3! S2 is given by

(2-4) H.z1; z2/ 7! z1=z2:

Observe that the Hopf fiber, over a general z 2 S2, is the S1 given by

(2-5) ei� .jzj2C 1/�
1
2 .z; 1/D ei� .jzj2C 1/�

1
2 .zC yj / 2 S3:

Using (2-5) to examine this fibration under quaternionic multiplication, one finds the
following. The Hopf fibration is preserved by all right multiplication, however it is only
preserved under left multiplication by quaternions of the form ei� and ei� � yj . Thus,
from (2-3), it is clear that all of U.2/ preserves the Hopf fiber structure. To find all other
finite subgroups of SO.4/ which act freely on S3 and preserve the Hopf fibration, it is
only necessary to examine those which are orientation-reversed conjugate to the finite
subgroups of U.2/ listed in Table 1. Since the orientation-reversed conjugate groups
are generated by switching left and right quaternionic multiplication of the generators
of subgroups of U.2/, it will be precisely those orientation-reversed conjugate to
subgroups of U.2/ that have only elements of the form ei� or ei� � yj acting on the
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right which preserve the Hopf fibration. In [35], we provided a list of these groups
along with their generators, and referring to this, it is clear that the only noncyclic
orientation-reversed conjugate groups that preserve the Hopf fiber structure are those
given in Table 3.

noncyclic � � SO.4/ conditions generators

�.L.1; 2m/�D�
4n
/ .m; 2n/D 1 �.1; e

�i
m /, �.e

�i
n ; 1/, �.yj ; 1/

I2
m;n .m; 2/D 2; .m; n/D 1 �.1; e

�i
m /, �.e

�i
n ; 1/, �.yj ; e

�i
2m /

Table 3: Groups preserving the Hopf fibration but not contained in U.2/

2B Minimal resolutions and ALE metrics

For all finite subgroups � � U.2/ which act freely on S3, Brieskorn described the
minimal resolution of C2=� complex analytically [6]. Here, we will first describe the
minimal resolution of cyclic quotients and then use this to provide a description for all
possible cases.

Let zX be the minimal resolution of C2=L.q;p/, where q and p are relative prime
integers satisfying 1� q < p . The exceptional divisor of zX , known as a Hirzebruch–
Jung string, has intersection matrix

t
�e1

t
�e2

t
�ek�1

t
�ek

where k and the ei are determined by the following Hirzebruch–Jung modified Eu-
clidean algorithm:

(2-6)

p D e1q� a1;

q D e2a1� a2;

:::

ak�3 D ek�1ak�2� 1;

ak�2 D ekak�1 D ek ;

where the self-intersection numbers satisfy ei � 2 and where 0� ai < ai�1 (see [20]).
The integer k is called the length of the modified Euclidean algorithm. (These values
can also be understood in terms of a continued fraction expansion of q=p .)

Remark 2.1 We will often need to distinguish the length of the modified Euclidean
algorithm for a particular pair of relatively prime integers satisfying 1� q < p , and
therefore we denote this by k.q;p/ when necessary.
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For a noncyclic finite subgroup � � U.2/ which acts freely on S3, the exceptional
divisor of the minimal resolution of C2=� is a tree of rational curves with normal
crossing singularities. There is a distinguished rational curve which intersects exactly
three other rational curves. We refer to this as the central rational curve, and it has
self-intersection number

(2-7) �b� D�2�
4m

j�j

�
m�

�
m mod

j�j

4m

��
;

where m corresponds to that of the group as in Table 1. Emanating from the central
rational curve are three Hirzebruch–Jung strings corresponding to the singularities
satisfying L.pi � qi ;pi/ D L.qi ;pi/, for i D 1; 2; 3, where the L.qi ;pi/ are the
cyclic singularities of the orbifold quotients of Theorem 2.2 specified for each group
below.

In [35], we constructed scalar-flat Kähler ALE metrics on the minimal resolution
of C2=� for all noncyclic finite subgroups � � U.2/ which act freely on S3. The
previously known examples of such spaces are for noncyclic finite subgroups ��SU.2/
(these are the binary polyhedral groups), for which Kronheimer obtained and classified
hyperkähler metrics on these minimal resolutions [28; 29].

LeBrun [30] constructed a U.2/–invariant scalar-flat Kähler ALE metric on the minimal
resolution of C2=L.1; `/ for all positive integers `. The `D 2 case is the well-known
Eguchi–Hanson metric [16]. The minimal resolution here is the total space of the
bundle O.�`/ over CP1. These are known as the LeBrun negative mass metrics and
are denoted by .O.�`/;gLB/.

In [8], Calderbank and Singer used the Joyce ansatz [25] to explicitly construct toric
scalar-flat Kähler metrics on the minimal resolution of C2=L.q;p/ for all relatively
prime integers satisfying 1� q < p . When q D 1 these are the LeBrun negative mass
metrics, and when q D p � 1 these are the toric multi-Eguchi–Hanson metrics (all
monopole points lie on a common line) (see [19]).

2C Orbifold quotients

It will be essential to the work here to examine quotients of certain weighted projective
spaces. These are defined in general as follows. For relatively prime integers which
satisfy 1� r � q � p , the weighted projective space CP2

.r;q;p/ is S5=S1, where S1

acts by
.z0; z1; z2/ 7! .eir�z0; e

iq�z1; e
ip�z2/;

for 0� � < 2� . Each weighted projective space is a complex orbifold which admits
a unique Bochner–Kähler metric that we refer to as the canonical Bochner–Kähler
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metric (see [7] for existence and [13] for uniqueness). In four real dimensions, the
Bochner tensor is precisely the anti-self-dual part of the Weyl tensor, so these metrics
are self-dual Kähler.

Topologically, the conformal compactification of O.�n/ is the weighted projective
space CP2

.1;1;n/
, which has a singularity of type L.�1; n/ at Œ0; 0; 1�, the point of

compactification. In [12], Dabkowski and Lock proved an explicit Kähler conformal
compactification of U.n/–invariant Kähler ALE spaces, ie, the conformal compacti-
fication of such spaces to Kähler orbifolds. (It is important to note that the resulting
spaces are Kähler with respect to reverse-oriented complex structures.) Therefore, the
LeBrun negative mass metric on O.�n/ has a conformal compactification to a Kähler
metric on yO.�n/DCP2

.1;1;n/
. Moreover, since the ALE metric is anti-self-dual, the

compactified metric is self-dual, so this is necessarily the canonical Bochner–Kähler
metric on CP2

.1;1;n/
. Previously Joyce [24] proved that there is a quaternionic metric

on CP2
.1;1;n/

which must be conformal to .O.�n/;gLB/. However, from [12], we see
that the canonical Bochner–Kähler metric on CP2

.1;1;n/
is given explicitly by

(2-8) gBK D
dr2

.1C r2/.1C nr2/
C

r2

r2C 1

�
�2

1 C �
2
2 C

�
1C nr2

r2.1C r2/

�
�2

3

�
;

where �1; �2; �3 is the usual left-invariant coframe on SU.2/ and r D 0 corresponds
to Œ0; 0; 1�, the point of compactification. Also, the rational curve defined by

(2-9) † WD fŒz0; z1; 0� W z0; z1 2Cg �CP2
.1;1;n/

will frequently be considered, so we make a point of distinguishing it here. The
corresponding rational curve in quotients of CP2

.1;1;n/
will be denoted by † as well.

In [35], for each noncyclic finite subgroup � � U.2/ which acts freely on S3, we
took a specific quotient of a certain .O.�2m/;gLB/ to obtain a scalar-flat Kähler ALE
orbifold with group at infinity � and with all singularities isolated and of cyclic type.
The conformal compactification factor from [12] descends to compactify these quotients
to self-dual Kähler orbifold quotients of .CP2

.1;1;2m/
;gBK/. The following theorem is

an immediate consequence of [35, Theorem 4.1].

Theorem 2.2 For each noncyclic finite subgroup � � U.2/ which acts freely on S3,
the quotient .CP2

.1;1;2m/
;gBK/=� is a self-dual Kähler orbifold with four isolated

singularities — one at the point of compactification with orbifold group �, and three on
the rational curve † with orbifold groups specified precisely as follows:
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� � U.2/ conditions orbifold groups

�.L.1; 2m/�D�
4n
/ .m; 2n/D 1 L.1; 2/;L.1; 2/;L.m; n/

�.L.1; 2m/�T �/ .m; 6/D 1 L.1; 2/;L.m; 3/;L.m; 3/

�.L.1; 2m/�O�/ .m; 6/D 1 L.1; 2/;L.m; 3/;L.m; 4/

�.L.1; 2m/� I�/ .m; 30/D 1 L.1; 2/;L.m; 3/;L.m; 5/

I2
m;n .m; 2/D 2; .m; n/D 1 L.1; 2/;L.1; 2/;L.m; n/

I3
m .m; 6/D 3 L.1; 2/;L.1; 3/;L.2; 3/

Remark 2.3 We write the orbifold groups of the three singularities on the rational
curve † of the quotients .CP2

.1;1;2m/
;gBK/=� in Theorem 2.2 above as L.qi ;pi/, for

i D 1; 2; 3, where qi is chosen modulo pi to satisfy 1� qi < pi .

3 Eta invariants and Einstein metrics

In this section, we derive the general formula for the �–invariant given in Theorem 1.3
and then prove the nonexistence result for Einstein metrics stated in Theorem 1.5.

3A Proof of Theorem 1.3

Recall that, up to conjugation in SO.4/, the finite subgroups of SO.4/ which act freely
on S3 are the finite subgroups of U.2/ which act freely on S3 and their orientation-
reversed conjugates [38].

We first discuss the �–invariant of cyclic groups. For relatively prime integers which
satisfy 1� q < p , the following formula is proved in [3; 34]:

(3-1) �.S3=L.q;p//D
1

3

� kX
iD1

ei C
q�1IpC q

p

�
� k;

where k and the ei are as defined in (2-6), and q�1Ip denotes the inverse of q mod p .

Remark 3.1 Let � � U.2/ be a finite subgroup which acts freely on S3, and
let � � SO.4/ be its orientation-reversed conjugate. We have �.S3=�/D��.S3=�/.
Therefore, since all possible cyclic groups are orientation-preserving conjugate to
some L.q;p/, and the �–invariants of these are given by (3-1), the theorem will follow
from finding the �–invariants of all noncyclic finite subgroups of U.2/ which act freely
on S3.
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Since �top.CP2
.1;1;2m/

;gBK/D 1, from (1-3) and (3-1), observe that the orbifold signa-
ture is

(3-2) �orb.CP2
.1;1;2m//D �.1; 2m/C 1D

2m2C 1

3m
:

Let � � U.2/ be a finite subgroup which acts freely on S3 and consider z�, where

(3-3) z� D �=L.1; 2m/� U.2/=L.1; 2m/:

Clearly, z� acts effectively on CP2
.1;1;2m/

and CP2
.1;1;2m/

=z� D CP2
.1;1;2m/

=� is an
orbifold with orbifold groups � at the point of compactification and L.qi ;pi/, for i D

1; 2; 3, on the rational curve † as specified in Theorem 2.2. From the orbifold signature
theorem (1-3), since

�top.CP2
.1;1;2m/=

z�/D 1 and �orb.CP2
.1;1;2m/=

z�/D
1

jz�j

�
2m2C 1

3m

�
;

we find that

(3-4) �.S3=�/D
1

jz�j

�
2m2C 1

3m

�
� 1�

3X
iD1

�.L.qi ;pi//:

The proof is completed for each case by using the appropriate singularities as specified
in Theorem 2.2 and then computing the corresponding cyclic �–invariants for the
particular congruences of m.

For instance, when � D �.L.1; 2m/ � T �/, observe from Theorem 2.2 that the
singularities are of types L.1; 2/, L.m; 3/, and L.m; 3/. Therefore

�.S3=�.L.1; 2m/�T �//D
1

12

�
2m2C 1

3m

�
� 1� �.S3=L.1; 2//� 2�.S3=L.m; 3//

D
1

12

�
2m2C 1

3m

�
� 1˙ 4

9
for m�˙1 mod 6:

The idea for the other cases is identical and the computations, which follow similarly,
are omitted.

Remark 3.2 The �–invariants of the binary polyhedral groups were known [37].
However, their direct computation is arduous and here they are recovered simply.

3B Proof of Theorem 1.5

We will use Theorem 1.3 along with the following ALE analogue of the Hitchin–Thorpe
inequality due to Nakajima. Let .M;g/ be a Ricci-flat ALE manifold with group at
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infinity �, then

(3-5) 2.�top.M /� 1=j�j/� 3j�top.M /� �.S3=�/j;

with equality if and only if W C or W � vanishes identically [37] (see also [21]).

First, let X be diffeomorphic to the minimal resolution of C2=� for some finite
subgroup � � U.2/ which acts freely on S3. For relatively prime integers satisfying
the inequality 1� q < p , let k.q;p/ denote the length, and e

.q;p/
j the coefficients, of

the modified Euclidean algorithm (2-6) for .q;p/. Then

(3-6)
�top.X /D 1� �top.X /; and

�top.X /D

�
�1�

P3
iD1 k.pi�qi ;pi / if � is noncyclic,

�k.q;p/ if � DL.q;p/;

where the L.pi � qi ;pi/, for i D 1; 2; 3, are orientation-reversed orbifold groups of
those given for � in Theorem 2.2. These orbifold groups are orientation-reversed
conjugate to those on the quotient of weighted projective space appearing in the proof
of Theorem 1.3, so rewriting (3-4) with respect to these groups here just reverses the
sign of the �–invariants of the cyclic groups appearing in the sum.

For noncyclic � there is the term
P3

iD1 k.pi�qi ;pi / in both �top.X / and �.S3=�/.
This follows from (3-1), (3-4), and (3-6). Therefore, we compute that

�top.X /� �.S
3=�/

D�
1

jz�j

�
2m2C 1

3m

�
�

1

3

3X
iD1

�k.pi�qi ;pi /X
jD1

e
.pi�qi ;pi /
j

�
�

1

3

3X
iD1

.pi � qi/
�1Ipi C .pi � qi/

pi
:

Since each summand here is positive, rewrite (3-5) as

(3-7) 2

3X
iD1

k.pi�qi ;pi /C 4�
2

j�j

�
1

jz�j

�
2m2C1

m

�
C

3X
iD1

�k.pi�qi ;pi /X
jD1

e
.pi�qi ;pi /
j

�
C

3X
iD1

.pi � qi/
�1IpiC.pi � qi/

pi
:

Observe that for any noncyclic � � SU.2/ equality holds in (3-7), so any Ricci-flat
metric in this case must also be anti-self-dual. Therefore, these are the hyperkähler
ALE metrics classified by Kronheimer [28; 29]. Now we will show that (3-7) is violated
for all noncyclic � 6� SU.2/. Recall, from (2-6), that all the e

.pi�qi ;pi /
j are at least 2.

Since � 6� SU.2/ is noncyclic, for each L.pi � qi ;pi/ at least one of the e
.pi�qi ;pi /
j
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is strictly greater than 2, so the problem reduces to proving that the inequality

(3-8) 1�
2

j�j
�

1

jz�j

�
2m2C 1

m

�
C

3X
iD1

.pi � qi/
�1Ipi C .pi � qi/

pi

is violated. Finally, observe that this is so since for all such groups at least one of
the L.pi � qi ;pi/ is L.1; 2/, for which

.pi � qi/
�1Ipi C .pi � qi/

pi
D 1:

If � DL.q;p/ is cyclic, (3-5) reduces to

(3-9) 2

�
k.q;p/C 1�

1

p

�
�

k.q;p/X
jD1

ej C
q�1IpC q

p
:

Clearly, this inequality holds if and only if � DL.�1;p/, in which case it holds with
equality, so any Ricci-flat metric in this case must also be anti-self-dual. Therefore,
these are the hyperkähler Gibbons–Hawking multi-Eguchi–Hanson metrics.

Finally, let X be diffeomorphic to the iterated blow-up of the minimal resolution
of C2=�. In this case, (3-5) reduces to inequalities (3-7) and (3-8) with 2` and 3`

added to the left- and right-hand sides of each, respectively, where `� 1 is the number
of blow-ups. Given the previous arguments, it is easy to see that (3-5) is always violated,
and therefore no Ricci-flat metrics can exist.

4 Self-dual deformations

In Section 4A the proof of Theorem 1.6 is given. Then, using this along with our
previous work in [34], we prove Theorem 1.7 in Section 4B.

4A Proof of Theorem 1.6

In [34], we proved an index formula for the anti-self-dual deformation complex on
an orbifold with isolated cyclic singularities, which is easily adjusted to find an index
formula for the self-dual deformation complex. As an intermediate step to this, we
showed that if .M;g/ is a compact self-dual orbifold with a finite number of isolated
singularities p1; : : : ;pn having corresponding orbifold groups �1; : : : ; �n , where each
�i � SO.4/ is any finite subgroup which acts freely on S3, then the index of the self-
dual deformation complex can be expressed by a topological quantity and a correction
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term depending only on the �i as follows:

(4-1) Ind.M;g/D 1
2
.15�.M /� 29�.M //C

nX
iD1

N.�i/:

For � DL.q;p/, we proved that

(4-2) N.L.q;p//D

�
�
Pk

iD1 4ei C 12k � 10 if q > 1;

�4pC 4 if q D 1;

where k and the ei are as in the modified Euclidean algorithm (2-6).

Recall that, up to conjugation in SO.4/, the set of finite subgroups of SO.4/ which act
freely on S3 are given by the finite subgroups of U.2/ which act freely on S3 and
their orientation-reversed conjugates [38]. From the following lemma, we see that it
will be enough to find the correction terms for those subgroups of U.2/.

Lemma 4.1 Let � �U.2/ be a noncyclic finite subgroup which acts freely on S3, and
let � � SO.4/ be its orientation-reversed conjugate group. Then the self-dual index
correction term for � is given in terms of that for � by

N.�/D�N.�/�

�
7 if � 6� SU.2/;
5 if � � SU.2/:

Proof Consider the quotient .S4;g/=�, where g is the standard round metric and
� acts around the x5 –axis. This is a self-dual orbifold with two singularities, one of
type � and the other of type � . It is well known that both H 1

SD and H 2
SD of the self-dual

deformation complex vanish in this case, thus the index is given by dim H 0
SD . From [36],

we have that dim H 0
SD D 1 if � 6� SU.2/ and � is not cyclic, and dim H 0

SD D 3 if
� � SU.2/ and � is not cyclic. Equating this with the index obtained from (4-1), since
�top.S

4=�/D 2 and �top.S
4=�/D 0, we find that

(4-3) 8CN.�/CN.�/D

�
1 if � 6� SU.2/;
2 if � � SU.2/;

from which we can solve for N.�/ to complete the proof.

Therefore, to complete the proof of Theorem 1.6, it is only necessary to find the
correction term for finite subgroups of U.2/ which act freely on S3, and the plan for
the remainder of the proof is as follows. For any finite subgroup � � U.2/ which acts
freely on S3, recall the orbifold quotients .CP2

.1;1;2m/
;gBK/=� from Theorem 2.2.

In [23], Honda discovered the explicit form of the U.2/–action on H 1
SD of the self-

dual deformation complex of .CP2
.1;1;2m/

;gBK/. Applying a representation-theoretic
argument to this, we find the dimension of the space of invariant elements of H 1

SD under
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the quotient by �. Since finding dim H 1
SD of the self-dual deformation complex on the

quotient .CP2
.1;1;2m/

;gBK/=� is equivalent to finding the dimension of the space of
invariant elements of H 1

SD on .CP2
.1;1;2m/

;gBK/ under the action of �, we then use
this to recover the index. Finally we solve for N.�/ in terms of the index, which at
this point is known, and the correction terms of the cyclic quotient singularities, which
are known from (4-2), that arise in the quotient.

In the following proposition we find the dimension of H 1
SD of .CP2

.1;1;2m/
;gBK/=�,

which we are able to give simply in terms of b� (the negative of the self-intersection
number of the central rational curve).

Proposition 4.2 Let � � U.2/ be a noncyclic finite subgroup which acts freely
on S3. Then the dimension of the space of the first cohomology group of the self-dual
deformation complex on .CP2

.1;1;2m/
;gBK/=� is given by

dim H 1
SD;� D 4b� � C� D

16m

j�j

�
m�

�
m mod

j�j

4m

��
C 8� C� ;

where C� is a constant given by the following table:

� � U.2/ C� congruences

�.L.1; 2m/�D�
4n
/; I2

m;n 6 m 6� 1 mod j�j=.4m/

8 m� 1 mod j�j=.4m/

�.L.1; 2m/�T �/, �.L.1; 2m/�O�/, I3
m 4 m��1 mod j�j=.4m/

6 m 6� ˙1 mod j�j=.4m/

8 m� 1 mod j�j=.4m/

�.L.1; 2m/� I�/ 4 m� 17; 23; 29 mod 30

6 m� 7; 11; 13; 19 mod 30

8 m� 1 mod 30

Proof The space .CP2
.1;1;2/

;gBK/ is the Kähler conformal compactification of the
Eguchi–Hanson metric on O.�2/ for which it is well known that dim H 1

SD D 0. This
is the mD 1 case. For m> 1, Honda showed that the complexification of H 1

SD of the
self-dual deformation complex on .CP2

.1;1;2m/
;gBK/ is equivalent to

(4-4) �˚ x�; where �D .S2m�2.C2/˝ det/˚ .S2m�4.C2/˝ det2/

as a representation space of U.2/ (see [23]). The dimension of the space of invariant
elements of H 1

SD under the action of � is equal to that under the action of any
subgroup � 0 � � that has the same effective action as � and is given by

(4-5) dim H 1
SD;� D dim H 1

SD;� 0 D
1

j� 0j

X

2� 0

.��.
 /C�x�.
 //D
2

j� 0j

X

2� 0

��.
 /;
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where ��.
 / and �x�.
 / denote the characters of 
 with respect to each representation.

Since the eigenvalues of any 
 2 U.2/ can be written as fz1 D ei�1 ; z2 D ei�2g for
some 0� �1; �2 < 2� , observe that

(4-6) ��.
 /D .z1z2/

2m�2X
pD0

z
2m�2�p
1

z
p
2
C .z1z2/

2
2m�4X
pD0

z
2m�4�p
1

z
p
2
:

Clearly, dim H 1
SD D 2��.˙Id/D 8m� 8.

In order to compute (4-5), we introduce a number-theoretic function and identity.

� For x 2R, the sawtooth function is defined as

(4-7) ..x//D

�
x�bxc� 1

2
if x 62 Z;

0 if x 2 Z;

where bxc denotes the greatest integer less than x .

� For n; k , with k � 1, the following identity is due to Eisenstein (see [2]):

(4-8)
n�1X
jD1

sin..2�k=n/j / cot..�=n/j /D�2n..k=n//:

We first consider those groups � that are the image under � of the product of L.1; 2m/

and a binary polyhedral group, and let � 0 � � be the subgroup that is the binary
polyhedral group itself. Since each � 0 is a subgroup of SU.2/, all elements 
 of � 0

have eigenvalues of the form fzD ei�
 ; z�1D e�i�
 g. Thus, for 
 ¤˙1, the character
(4-6) reduces to

(4-9) ��.
 /D

2m�2X
pD0

z2m�2�2p
C

2m�4X
pD0

z2m�4�2p
D 2 sin..2m� 2/�
 / cot.�
 /;

and therefore

(4-10) dim H 1
SD;� D dim H 1

SD;� 0

D
4

j� 0j

�
.4m� 4/C

X

¤˙Id2� 0

sin..2m� 2/�
 / cot.�
 /
�
:

Now dim H 1
SD;� 0 will be found for each binary polyhedral group separately. We provide

the eigenvalue decomposition of each group in the form of a list of sets of eigenvalues
along with multiplicities, where the multiplicity of a particular set is the number of times
the eigenvalues of that set appear in the set of all eigenvalues of the group. Grouping
the eigenvalues as such will allow us to use (4-8) to compute (4-10). The eigenvalue
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decompositions of the binary polyhedral groups are found easily by examining their
well-known decomposition into conjugacy classes (see [39]).

� 0 D D�
4n

The eigenvalue decomposition of the binary dihedral group is given by:

set multiplicity

S1 D ffe
�ik

n ; e�
�ik

n gg1�k�2n 1

S2 D ffi;�igg 2n

Summing the characters (4-9) of the elements of S1 that are not ˙Id gives two copies
of the sum (4-8) where k Dm� 1. The element of S2 does not contribute to the sum
in (4-10) since ..1=2//D 0. Therefore

dim H 1
SD;D�

4n

D
1
n

�
.4m� 4/� 4n

��
.m� 1/=n

���
D

�
4b.m� 1/=ncC 2D 4b�.L.1;2m/�D�

4n
/� 6 if m 6� 1 mod n;

4.m� 1/=nD 4b�.L.1;2m/�D�
4n
/� 8 if m� 1 mod n:

� 0 D T � The eigenvalue decomposition of the binary tetrahedral group is given by:

set multiplicity

S1 D ff1; 1g; f�1;�1gg 1

S2 D ffe
�i
3 ; e�

�i
3 g; fe

2�i
3 ; e�

2�i
3 gg 8

S3 D ffi;�igg 6

Use (4-8) to sum the characters of the elements of S2 as given by (4-9). The element
of S3 does not contribute to the sum in (4-10) since ..1=2//D 0. Therefore, adjusting
these sums according to the appropriate multiplicities, we find that

dim H 1
SD;T � D

1
6

�
.4m� 4/� 48

��
.m� 1/=3

���
D

(
4
6
.mC 1/D 4b�.L.1;2m/�T �/� 4 if m� 5 mod 6;

4
6
.m� 1/D 4b�.L.1;2m/�T �/� 8 if m� 1 mod 6:

� 0 D O� The eigenvalue decomposition of the binary octahedral group is given by:

set multiplicity

S1 D ff1; 1g; f�1;�1gg 1

S2 D ffe
�i
3 ; e�

�i
3 g; fe

2�i
3 ; e�

2�i
3 gg 8

S3 D ffe
�i
4 ; e�

�i
4 g; fi;�ig; fe

3�i
4 ; e�

3�i
4 gg 6

S4 D ffi;�igg 12

Use (4-8) to sum the characters of the elements of S2 and S3 as given by (4-9). The
element of S4 does not contribute to the sum in (4-10) since ..1=2//D 0. Therefore,
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adjusting these sums according to the appropriate multiplicities, we find that

dim H 1
SD;O� D

1
12

�
.4m� 4/� 48

��
1
3
.m� 1/

��
� 48

��
1
4
.m� 1/

���

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1
3
.mC 1/D b�.L.1;2m/�O�/� 4 if m� 11 mod 12;

1
3
.m� 1/D b�.L.1;2m/�O�/� 6 if m� 7 mod 12;

1
3
.mC 1/D b�.L.1;2m/�O�/� 6 if m� 5 mod 12;

1
3
.m� 1/D b�.L.1;2m/�O�/� 8 if m� 1 mod 12:

� 0 D I� The eigenvalue decomposition of the binary octahedral group is given by:

set multiplicity

S1 D ff1; 1g; f�1;�1gg 1

S2 D ffe
�i
3 ; e�

�i
3 g; fe

2�i
3 ; e�

2�i
3 gg 20

S3 D ffe
�i
5 ; e�

�i
5 g; fe

2�i
5 ; e�

2�i
5 g; fe

3�i
5 ; e�

3�i
5 g; fe

4�i
5 ; e�

4�i
5 gg 12

S4 D ffi;�igg 30

Use (4-8) to sum the characters of the elements of S2 and S3 as given by (4-9). The
element of S4 does not contribute to the sum in (4-10) since ..1=2//D 0. Therefore,
adjusting these sums according to the appropriate multiplicities, we find that

dim H 1
SD;I� D

1
30

�
.4m� 4/� 120

��
1
3
.m� 1/

��
� 120

��
1
5
.m� 1/

���

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

2
15
.mC 1/D 4b�.L.1;2m/�I�/� 4 if m� 29 mod 30;

2
15
.mC 7/D 4b�.L.1;2m/�I�/� 4 if m� 23 mod 30;

2
15
.mC 13/D 4b�.L.1;2m/�I�/� 4 if m� 17 mod 30;

2
15
.m� 4/D 4b�.L.1;2m/�I�/� 6 if m� 19 mod 30;

2
15
.mC 2/D 4b�.L.1;2m/�I�/� 6 if m� 13 mod 30;

2
15
.mC 8/D 4b�.L.1;2m/�I�/� 6 if m� 7 mod 30;

2
15
.mC 4/D 4b�.L.1;2m/�I�/� 6 if m� 11 mod 30;

2
15
.m� 1/D 4b�.L.1;2m/�I�/� 8 if m� 1 mod 30:

For the I2
m;n and I3

m cases, we will compute (4-5) over the entire group � since there is
not a clear subgroup to play the role of � 0 as above. Since these groups are not contained
in SU.2/, not all 
 2� have eigenvalues of the form fei�
 ; e�i�
 g, and therefore (4-10)
does not hold. In [35, Proposition 6.1], we performed an eigenvalue decomposition of
these groups, which will be used to find dim H 1

SD;� , and from which we know that all
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elements of both groups have eigenvalues of the form fei.�1C�2/; ei.�1��2/g. Therefore,
we compute

(4-11) ��.
 /D ei.2m�1/

�2m�2X
pD0

.ei�2/2m�2�2p
C

2m�4X
pD0

.ei�2/2m�4�2p

�

D

�
ei.2m�1/.4m� 4/ if �2 D `� for ` 2 Z;

ei.2m�1/Œ2 sin..2m� 2/�2/ cot.�2/� if �2 ¤ `� for ` 2 Z:

� D I2
m;n The eigenvalue decomposition of I2

m;n is given by:

set multiplicity

S1 D f.�1/`fe�i. `
m
Ck

n
/; e�i. `

m
�k

n
/
gg0�`�m�1 and 0�k�2n�1 1

S2 D f.�1/`fe�i. 2`C1
2m
C 1

2
/; e�i. 2`C1

2m
� 1

2
/
gg0�`�m�1 and 0�k�2n�1 1

Using (4-11), the characters are found to be:

��.
 2 S1/D

�
2 sin

�
2�
n

k.m� 1/
�

cot
�
�
n

k
�

if k ¤ 0; k ¤ n;

4m� 4 if k D 0; k D n;

��.
 2 S2/D 0 since �2 D
�
2
:

Then, using (4-8) to sum the characters, we find that

dim H 1

SD;I2
m;n
D

1

2mn

�
2m � .4m� 4/� 8mn

��
.m� 1/=n

���
D

(
4b.m� 1/=ncC 2D 4bI2

m;n
� 6 if m 6� 1 mod n;

4
n
.m� 1/D 4bI2

m;n
� 8 if m� 1 mod n:

� D I3
m The eigenvalue decomposition of I3

m is given by:

set multiplicity

S1 D f˙e
�i r
m f1; 1gg0�r<m 1

S2 D f˙e
�i r
m fi;�igg0�r<m 3

S3 D f˙e
�i.3rC1/

3m fe
�i
3 ; e

��i
3 gg0�r<m 2

S4 D f˙e
�i.3rC1/

3m fe
2�i

3 ; e
�2�i

3 gg0�r<m 2

S5 D f˙e
�i.3rC2/

3m fe
2�i

3 ; e
�2�i

3 gg0�r<m 4
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Using (4-11), the characters are found to be

��.
 2 S1/D4m� 4;

��.
 2 S2/D0;

��.
 2 S3/D2e
2�i

3 sin.2.m� 1/�=3/ cot.�=3/D�e
2�i

3 ;

��.
 2 S4/D2e
2�i

3 sin.2.m� 1/2�=3/ cot.2�=3/D�e
2�i

3 ;

��.
 2 S5/D2e
4�i

3 sin.2.m� 1/2�=3/ cot.2�=3/D�e
4�i

3 :

(4-12)

The evaluation of the last three characters follows from the equivalence m� 0 mod 3.
Since all eigenvalues contained in the same set have equal characters, by multiplying
each character found in (4-12) by 2m, which is the size of each set, and the multiplicity
of the respective set, and summing, we find that

dim H 1

SD;I3
m
D

1

12m
Œ2m � .4m� 4/� 8m.e

2�i
3 C e

4�i
3 /�D 2

3
m

D 4bI3
m
� 6:

Now we complete the proof of Theorem 1.6, by finding N.�/, the nontopological
correction term for the index, for all finite noncyclic subgroups � of U.2/. The cohomol-
ogy groups of the self-dual deformation complex on the quotient .CP2

.1;1;2m/
;gBK/=�

correspond to the invariant elements of the respective cohomology groups on the cover,
which we denote by H i

SD;� for i D 1; 2; 3. Given dim H 1
SD;� , found in Proposition 4.2,

it is only necessary to find dim H 0
SD;� and dim H 2

SD;� to recover the index.

The second cohomology group H 2
SD of the self-dual deformation complex for the

Bochner–Kähler metric on the weighted projective space .CP2
.1;1;2m/

;gBK/ vanishes
by [32, Theorem 4.2], and therefore in the quotient it vanishes as well. The cohomology
group H 0

SD;� is given by the elements of H 0
SD on the cover that commute with the

respective �. The S1 given by �.ei� ; 1/ is contained in the centralizer of all the �,
and it is easy to check that, for all noncyclic �, these are the only elements of H 0

SD
which commute with the respective �, so dim H 0

SD;� D 1. Therefore, the index is

Ind..CP2
.1;1;2m/;gBK/=�/D 1� dim H 1

SD;� :(4-13)

The quotient .CP2
.1;1;2m/

;gBK/=� has four singularities with orbifold groups � and
L.qi ;pi/, for i D 1; 2; 3, as specified above in Theorem 2.2. Thus, from (4-1), the
index is also given by

(4-14) Ind..CP2
.1;1;2m/;gBK/=�/D

1
2
.15�top�29�top/C

3X
iD1

N.L.qi ;pi//CN.�/:
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Equating (4-13) and (4-14), since �top D 3 and �top D 1, we find that

(4-15) N.�/D�7� dim H 1
SD;� �

3X
iD1

N.L.qi ;pi//:

For each �, insert the corresponding dim H 1
SD;� and cyclic orbifold groups, as were

found in Proposition 4.2 and Theorem 2.2, respectively. Finally, the proof is completed,
for � � U.2/, by examining the conditions on the � and the respective possible
congruences of m, and using these appropriately along with the known cyclic correction
terms (4-2) to see that

(4-16) N.�/D�4b� CB� ;

where the B� are constants given in Table 4.

� � U.2/ B� congruences

�.L.1; 2m/�D�
4n
/ 7�N.L.m; n// m 6� 1 mod n

5C 4n m� 1 mod n

�.L.1; 2m/�T �/ 5 m� 5 mod 6

21 m� 1 mod 6

�.L.1; 2m/�O�/ 1 m� 11 mod 12

9 m� 7 mod 12

17 m� 5 mod 12

25 m� 1 mod 12

�.L.1; 2m/� I�/ �3 m� 29 mod 30

5 m� 19 mod 30

9 m� 17; 23 mod 30

17 m� 7; 13 mod 30

21 m� 11 mod 30

29 m� 1 mod 30

I2
m;n 7�N.L.m; n// m 6� 1 mod n

5C 4n m� 1 mod n

I3
m 13 m� 3 mod 6

Table 4: Self-dual index correction terms for � � U.2/

We compute N.�.L.1; 2m/ � T �// as an example. From Theorem 2.2 we know
that the singularities are of types L.1; 2/, L.m; 3/, and L.m; 3/, so using (4-2) to
find the correction terms for these singularities along with H 1

SD;� as determined in

Geometry & Topology, Volume 20 (2016)



1798 Michael T Lock and Jeff A Viaclovsky

Proposition 4.2, observe that

N.�.L.1; 2m/�T �//

D�7�N.L.1; 2//� 2N.L.m; 3//� 4b�.L.1;2m/�T �/C

�
8 if m� 1 mod 6;

6 if m� 5 mod 6

D�4b�.L.1;2m/�T �/C

�
21 if m� 1 mod 6;

5 if m� 5 mod 6:

The idea for the other cases is identical and the computations, which follow similarly,
are omitted.

Remark 4.3 Although the correction terms for �.L.1; 2m/�D�
4n
/ and I2

m;n contain
an N.L.m; n//, they are computed algorithmically via (4-2).

Remark 4.4 The second author found the correction terms for the binary polyhedral
groups [42]. These are recovered here as well in the mD 1 case.

4B Proof of Theorem 1.7

Let .X;g/ be a scalar-flat Kähler ALE metric on the minimal resolution of C2=� for
some finite subgroup � � U.2/ which acts freely on S3. In [35], we showed that the
dimension of infinitesimal scalar-flat Kähler deformations is at most

(4-17) d�;max D 2

� k�X
iD1

.ei � 1/

�
C k� � 3;

where �ei is the self-intersection number of the k th rational curve; hence, to prove
Theorem 1.7, we will consider the self-dual conformal compactification . yX ; yg/, and
show that the dimension of the moduli space of self-dual conformal structures near yg
is greater than or equal to d�;max , with equality if and only if � � SU.2/. We separate
the proof into two parts, one for � noncyclic and one for � cyclic. The underlying
idea is the same for each case, but it is necessary to consider them separately because
of the differences between the respective N.�/.

Let � be noncyclic. To find a convenient presentation of d�;max , consider the descrip-
tion of the minimal resolution of C2=� from Section 2B. Recall there is the central
rational curve with self-intersection �b� from which three Hirzebruch–Jung strings
corresponding to the singularities L.p1� qi ;pi/, for i D 1; 2; 3, emanate.

Letting E.pi�qi ;pi / denote the sum
Pk.pi�qi ;pi /

jD1
e
.pi�qi ;pi /
j , where the e

.pi�qi ;pi /
j are

the coefficients appearing in the modified Euclidean algorithm for the pair .pi�qi ;pi/,
we see that

(4-18) d�;max D

3X
iD1

.2E.pi�qi ;pi /� k.pi�qi ;pi //C 2b� � 4:
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Now we examine the index of the self-dual deformation complex on . yX ; yg/. Recall
that �top. yX /D 1C

P3
iD1 k.pi�qi ;pi / and �top. yX /D �top. yX /C2. Thus, since H 2

SD.
yX /

of the self-dual deformation complex vanishes [32, Theorem 4.2], the index is given by

(4-19) Ind. yX ; yg/D dim H 0
SD� dim H 1

SD D�7

3X
iD1

k.pi�qi ;pi /C 8CN.�/:

Using (4-15) for N.�/ and Proposition 4.2 for H 1
SD;� , and since dim H 0

SDD1, observe
that

(4-20) dim H 1
SD D 7

3X
iD1

k.pi�qi ;pi /C 4b� � C� C
3X

iD1

N.L.qi ;pi//;

where the C� are constants specified in Proposition 4.2. Although N.�/ is given
explicitly in Table 4, it is more useful to consider (4-15) here. We would like to
understand each N.L.qi ;pi// in terms of N.L.pi �qi ;pi// as to be able to compare
(4-20) with d�;max . In [34], we showed that, for 1< qi < pi � 1,

(4-21) N.L.qi ;pi//D�N.L.pi�qi ;pi//�12D 4E.pi�qi ;pi /�12k.pi�qi ;pi /�2;

and from (4-1) it is clear that N.L.1;pi// D �N.L.�1;pi// � 10 for pi > 2.
Therefore, we find that

(4-22) dim H 1
SD D

3X
iD1

.4E.pi�qi ;pi /� 5k.pi�qi ;pi //C 4b� � C� � 2�;

where � is the number of singularities not of types L.˙1;pi/; note that � � 1 with
equality only in the case that � D �.L.1; 2m/�I�/ and m�˙2 mod 5. Using (2-7),
observe that

(4-23) dim H 1
SD� d�;max

D

3X
iD1

.2E.pi�qi ;pi /�4k.pi�qi ;pi //C
8m

j�j

�
m�

�
m mod

j�j

4m

��
�C��2�C8:

For � � SU.2/, it is clear from (4-23) that dim H 1
SD D d�;max . These are the hy-

perkähler metrics (see [35, Section 8]). For � 6� SU.2/, each E.pi�qi ;pi / is greater
than 2k.pi�qi ;pi / since at least one of the e

.pi�qi ;pi /
j is greater than 2. Also, C� � 8,

and in particular, C� � 6 for the � where � D 1. Therefore, we see that

(4-24) dim H 1
SD� d�;max �

3X
iD1

.2E.pi�qi ;pi /� 4k.pi�qi ;pi // > 0:
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Now let � DL.q;p/, for some relatively prime integers satisfying 1� q < p , so

(4-25) d�;max D

k.q;p/X
jD1

2ej � k.q;p/� 3;

where the ej are as in the modified Euclidean algorithm for the pair .q;p/. Now
we examine the index of the self-dual deformation complex on . yX ; yg/. Recall that
�top. yX /D k.q;p/ and �top. yX /D k.q;p/C 2. Once again, from [32, Theorem 4.2], we
see that H 2

SD vanishes. Therefore

(4-26) Ind. yX ; yg/D dim H 0
SD� dim H 1

SD D�7k.q;p/C 15CN.L.q;p//;

and using (4-2) we find that

(4-27) dim H 1
SD D dim H 0

SDC

k.q;p/X
jD1

4ej � 5k.q;p/� 5� 2�;

where � D 1 if q D 1 and � D 0 otherwise. Observe that

(4-28) dim H 1
SD� d�;max D dim H 0

SDC

k.q;p/X
jD1

2ej � 4k.q;p/� 2� 2�:

For � DL.�1;p/� SU.2/, these are the hyperkähler multi-Eguchi–Hanson metrics,
and it is well known that the dimension of the moduli space is 3.p � 2/ D d�;max .
For � 6� SU.2/, at least one ej is greater than 2 and thus dim H 1

SD�d�;max> 0, which
completes the proof.

5 Self-dual constructions

It is well known that self-dual orbifolds with complementary singularities, and both
with vanishing H 2

SD of the self-dual deformation complex, can be glued together to
obtain self-dual metrics on the connected sum (see [14; 17; 33; 27; 1]). The following
theorem summarizes the results of these works.

Theorem 5.1 Let .M1; Œg1�/ and .M2; Œg2�/ be compact self-dual orbifolds which
have complementary singularities, ie, the respective orbifold groups are orientation-
reversed conjugate to each other. If the second cohomology group of the self-dual
deformation complex on each orbifold vanishes, then the connect sum M1 # M2 , taken
at the complementary singularities, admits self-dual metrics.
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Recall the list, given in Table 3, of the finite subgroups of SO.4/ which act freely on S3,
preserve the Hopf fibration and are not contained in U.2/. Since these groups do not
lie in U.2/, a scalar-flat Kähler ALE space with such a group at infinity cannot exist.
Thus, as posed by the second author in [42], the natural question is that of the existence
of scalar-flat anti-self-dual ALE metrics with these groups at infinity. Theorem 1.8
answers this question in the affirmative for these groups, which is proved below in
Section 5A. Subsequently, Corollary 1.10 is proved in Section 5B.

5A Proof of Theorem 1.8

Let �1 D �.L.1; 2m/�D�
4n
/ and �2 D I2

m;n . Since both preserve the Hopf fiber
structure, they act isometrically on the LeBrun negative mass metrics. First, for each
of these groups, we will take the quotient of some appropriate negative mass metric to
obtain an orbifold ALE space with the action of the entire group at infinity. The idea
here is analogous to that of [35, Theorem 4.1]. Notice that both �1 and �2 contain
the generator �.e

�i
n ; 1/, and as such, respectively for each we take the quotient of

.O.�2n/;gLB/ by the subgroup

(5-1) �i
0
D

(
h�.1; e

�i
m /; �.yj ; 1/i if i D 1;

h�.yj ; e
�i
2m /i if i D 2:

Here, the action is induced by the usual action on C2 and, in particular, on the CP1 at
the origin it descends via the Hopf map. Since �i

0
6� U.2/, the Kählerian property is

not preserved in the quotient, however, the anti-self-dual property is preserved.

Since yj � .z1C z2
yj /D xz1

yj �xz2 , observe that under the Hopf map, �.yj ; 1/ acts as

(5-2) H.�.yj ; 1/.z1; z2//D�
xz2

xz1

2 S2
DC[f1g;

which is the antipodal map. Also, notice �.yj ; e
�i
2m /2 D �.�1; e

�i
m / fixes points on the

CP1 at the origin that are identified by the antipodal map (the points f0g and f1g
in S2 D C [ f1g). Therefore, similar to the work in [35, Theorem 4.1], we find
that the quotients .O.�2n/;gLB/=�i

0
, for i D 1; 2, are anti-self dual ALE orbifolds

with groups at infinity the respective �i , each having one singularity with orbifold
group L.�n;m/ on the RP2 resulting from the quotient of the CP1 at the origin
by the antipodal map. Clearly, this space satisfies �1.O.�2n/=�i

0
/ D Z=2Z and

�top.O.�2n/=�i
0
/D 0. Notice that when mD 1, which can only occur for �2 , these

are in fact smooth quotients and the proof is complete. Therefore, from here on we can
assume m> 1.
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We note that O.�2n/=�i
0

is diffeomorphic to a nonorientable bundle over RP2. These
are classified by H 2.RP2;Zw/, where Zw is the system of local coefficients deter-
mined by the first Stiefel–Whitney class w of the bundle. It turns out that H 2.RP2;Zw/
is isomorphic to Z, and under a suitable choice of isomorphism, this bundle is mapped
to the integer �n (see [5]).

The remainder of the proof will follow from the self-dual orbifold gluing of Theorem 5.1.
Consider the self-dual conformal compactification .yO.�2n/; ygLB/=�i

0
which has two

singularities — one with orbifold group L.n;m/ on the RP2 and the other with orbifold
group �i at the point of compactification, for i D 1; 2. Let . yCL.�n;m/; yh/ denote the
compactification of a Calderbank–Singer metric with group L.�n;m/ at infinity. The
second cohomology group H 2

SD of the self-dual deformation complex of both orbifolds
vanishes here by [32, Theorem 4.2]. Therefore, we can apply Theorem 5.1 to obtain a
self-dual orbifold conformal structure Œygi � with positive Yamabe invariant on

(5-3) yXi D yO.�2n/=�i
0
# yCL.�n;m/;

where the connected sum is taken at the L.n;m/ orbifold point and the point of
compactification, respectively, for i D 1; 2. The orbifold . yXi ; Œygi �/ has one singularity
with orbifold group �i . Thus, for i D 1; 2, taking the conformal blow-up at this point
(since the Yamabe invariant is positive), we obtain a scalar-flat anti-self-dual ALE
space .Xi ;gXi

/ with group at infinity �i , satisfying �1.Xi/D Z=2Z and �top.Xi/D

�k.m�n;m/ . We note that it follows from the gluing theorem that the second cohomology
group of the self-dual deformation complex H 2

SD.
yXi/ also vanishes for these spaces.

Finally, an equivariant version of the gluing theorem can in fact be used to ensure that
the spaces .Xi ;gXi

/ admit an isometric S1–action.

5B Proof of Corollary 1.10

Let �1 D �.L.1; 2m/�D�
4n
/ and �2 D I2

m;n with m; n as specified in Table 1 so the
action on S3 is free. For i D 1; 2, let .Yi ;gYi

/ denote the scalar-flat Kähler, hence
anti-self-dual, ALE space with group at infinity �i , obtained for the noncyclic (n> 1)
and cyclic (nD 1) cases, respectively, in [35; 8], and let .Xi ;gXi

/ be the scalar-flat
anti-self-dual ALE spaces with the orientation-reversed groups at infinity �1 and �2

of Theorem 1.8. Taking the conformal compactifications . yYi ; ygYi
/ and . yXi ; ygXi

/ with
the self-dual orientation, as in Remark 1.1, we obtain self-dual orbifolds with orbifold
groups �i and �i , respectively. Since these are orientation-reversed conjugate, and
because H 2

SD vanishes for each orbifold as pointed out above, we are once again able
to use the self-dual orbifold gluing of Theorem 5.1 to obtain a self-dual conformal
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structure on the orbifold connect sum yXi # yYi , where the connect sum is taken at the
points of compactification.

It is clear that the signature of this space, �. yXi # yYi/D��.Xi/� �.Yi/, is dependent
upon m and n, and to highlight this, we denote it by `i.m; n/, for i D 1; 2. For any n,
�.Xi/ is easy to find from the work of Section 5A, and in the noncyclic case (n> 1),
�.Yi/ is given in [35]. In the cyclic case (nD 1), however, one finds that �1 and �2

are both orientation-preserving conjugate to L.2mC 1; 4m/ for their respective m,
and hence that �.Yi/D�k.2mC1;4m/ D�3. Therefore, we find that

(5-4) `i.m; n/ WD �. yXi # yYi/D 3C

8̂̂̂<̂
ˆ̂:

k.n�m;n/Ck.m�n;m/ if n> 1 and m> 1;

m� 1 if nD 1 and m> 1;

n� 1 if n> 1 and mD 1;

0 if nD 1 and mD 1:

Note that since m must be even for �2 , the last two cases in (5-4) cannot occur for this
group. Also, we distinguish the mD nD 1 case for �1 , as .`1.1; 1/D 3/# CP2 is the
minimal number of CP2s on which a self-dual metric is obtained by this technique.

Now, we will show that yXi # yYi is, in fact, simply connected. Cover yXi # yYi with
open sets U yXi

and U yYi
containing the yXi and yYi components of the connect sum,

respectively, and so that U yXi
\U yYi

deformation retracts to S3=�i . Recall that we
have the homomorphisms of fundamental groups i yXi

W �1.U yXi
\U yYi

/! �1.U yXi
/ and

i yYi
W �1.U yXi

\U yYi
/! �1.U yYi

/ induced from the respective inclusion maps. Observe
that i yXi

is surjective since �1.U yXi
/D Z=2Z, and because the antipodal map on S2

is induced by the action of a generator of �i under the Hopf map. Also, the map i yYi
is

clearly trivial since �1.U yYi
/D f1g. By the Seifert–van Kampen theorem,

(5-5) �1. yXi # yYi/D �1.U yXi
/��1.U yYi

/=N;

where � denotes the free product and N is the normal subgroup of �1.U yXi
/��1.U yYi

/

generated by iX .
 /iY .
 /
�1 for all 
 2 �1.U yXi

\ U yYi
/. Therefore, given that i yXi

is surjective, i yYi
is trivial, and �1.U yYi

/ D f1g, as discussed above, we find that
�1. yXi # yYi/D f1g. By the results of Donaldson and Freedman, yXi # yYi is homeomorphic
to `i.m; n/ # CP2 (see, for example, [18]). Finally, by taking sequences of conformal
factors which uniformly scale one of the factors to have zero volume in the limit, the
orbifold limiting statement follows immediately from this construction.

Again, an equivariant version of the gluing theorem can in fact be used to ensure that
these examples admit a conformally isometric S1–action. By examining this construc-
tion, it is clear to see that the S1–action is not semifree as there is always an RP2

with a Z=2Z stabilizer, and thus these metrics are distinct from those discovered by
LeBrun in [31].

Geometry & Topology, Volume 20 (2016)
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Remark 5.2 The Donaldson–Freedman result only provides a homeomorphism, but
we suspect that these manifolds are in fact diffeomorphic to ` # CP2.

References
[1] A G Ache, J A Viaclovsky, Asymptotics of the self-dual deformation complex, J. Geom.

Anal. 25 (2015) 951–1000 MR

[2] T M Apostol, Modular functions and Dirichlet series in number theory, 2nd edition,
Graduate Texts in Mathematics 41, Springer, New York (1990) MR

[3] T Ashikaga, M Ishizaka, Another form of the reciprocity law of Dedekind sum (2008)
Available at http://eprints3.math.sci.hokudai.ac.jp/1849/

[4] S Bando, A Kasue, H Nakajima, On a construction of coordinates at infinity on
manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97
(1989) 313–349 MR

[5] D Baraglia, Topological T-duality for general circle bundles, Pure Appl. Math. Q. 10
(2014) 367–438 MR

[6] E Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/1968)
336–358 MR

[7] R L Bryant, Bochner–Kähler metrics, J. Amer. Math. Soc. 14 (2001) 623–715 MR

[8] D M J Calderbank, M A Singer, Einstein metrics and complex singularities, Invent.
Math. 156 (2004) 405–443 MR

[9] X Chen, C LeBrun, B Weber, On conformally Kähler, Einstein manifolds, J. Amer.
Math. Soc. 21 (2008) 1137–1168 MR

[10] H S M Coxeter, The binary polyhedral groups, and other generalizations of the quater-
nion group, Duke Math. J. 7 (1940) 367–379 MR

[11] H S M Coxeter, Regular complex polytopes, 2nd edition, Cambridge Univ. Press (1991)
MR

[12] M G Dabkowski, M T Lock, On Kähler conformal compactifications of U.n/– invari-
ant ALE spaces, Ann. Global Anal. Geom. 49 (2016) 73–85 MR

[13] L David, P Gauduchon, The Bochner-flat geometry of weighted projective spaces,
from: “Perspectives in Riemannian geometry”, (V Apostolov, A Dancer, N Hitchin, M
Wang, editors), CRM Proc. Lecture Notes 40, Amer. Math. Soc., Providence, RI (2006)
109–156 MR

[14] S Donaldson, R Friedman, Connected sums of self-dual manifolds and deformations
of singular spaces, Nonlinearity 2 (1989) 197–239 MR

[15] P Du Val, Homographies, quaternions and rotations, Clarendon Press, Oxford (1964)
MR

Geometry & Topology, Volume 20 (2016)

http://dx.doi.org/10.1007/s12220-013-9452-3
http://msp.org/idx/mr/3319957
http://dx.doi.org/10.1007/978-1-4612-0999-7
http://msp.org/idx/mr/1027834
http://eprints3.math.sci.hokudai.ac.jp/1849/
http://dx.doi.org/10.1007/BF01389045
http://dx.doi.org/10.1007/BF01389045
http://msp.org/idx/mr/1001844
http://dx.doi.org/10.4310/PAMQ.2014.v10.n3.a1
http://msp.org/idx/mr/3282986
http://dx.doi.org/10.1007/BF01425318
http://msp.org/idx/mr/0222084
http://dx.doi.org/10.1090/S0894-0347-01-00366-6
http://msp.org/idx/mr/1824987
http://dx.doi.org/10.1007/s00222-003-0344-1
http://msp.org/idx/mr/2052611
http://dx.doi.org/10.1090/S0894-0347-08-00594-8
http://msp.org/idx/mr/2425183
http://dx.doi.org/10.1215/S0012-7094-40-00722-0
http://dx.doi.org/10.1215/S0012-7094-40-00722-0
http://msp.org/idx/mr/0003409
http://msp.org/idx/mr/1119304
http://dx.doi.org/10.1007/s10455-015-9481-1
http://dx.doi.org/10.1007/s10455-015-9481-1
http://msp.org/idx/mr/3454025
http://msp.org/idx/mr/2237108
http://dx.doi.org/10.1088/0951-7715/2/2/002
http://dx.doi.org/10.1088/0951-7715/2/2/002
http://msp.org/idx/mr/994091
http://msp.org/idx/mr/0169108


Quotient singularities, eta invariants, and self-dual metrics 1805

[16] T Eguchi, A J Hanson, Self-dual solutions to Euclidean gravity, Ann. Physics 120
(1979) 82–106 MR

[17] A Floer, Self-dual conformal structures on lCP2 , J. Differential Geom. 33 (1991)
551–573 MR

[18] D S Freed, K K Uhlenbeck, Instantons and four-manifolds, 2nd edition, Mathematical
Sciences Research Institute Publications 1, Springer, New York (1991) MR

[19] G W Gibbons, S W Hawking, Gravitational multi-instantons, Physics Letters B 78
(1978) 430–432

[20] F Hirzebruch, Über vierdimensionale Riemannsche Flächenmehrdeutiger analytischer
Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953) 1–22 MR

[21] N J Hitchin, Einstein metrics and the eta-invariant, Boll. Un. Mat. Ital. B 11 (1997)
95–105 MR

[22] N Honda, Self-dual metrics and twenty-eight bitangents, J. Differential Geom. 75
(2007) 175–258 MR

[23] N Honda, Deformation of LeBrun’s ALE metrics with negative mass, Comm. Math.
Phys. 322 (2013) 127–148 MR

[24] D Joyce, The hypercomplex quotient and the quaternionic quotient, Math. Ann. 290
(1991) 323–340 MR

[25] D D Joyce, Explicit construction of self-dual 4–manifolds, Duke Math. J. 77 (1995)
519–552 MR

[26] T Kawasaki, The index of elliptic operators over V –manifolds, Nagoya Math. J. 84
(1981) 135–157 MR

[27] A Kovalev, M Singer, Gluing theorems for complete anti-self-dual spaces, Geom.
Funct. Anal. 11 (2001) 1229–1281 MR

[28] P B Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differ-
ential Geom. 29 (1989) 665–683 MR

[29] P B Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential
Geom. 29 (1989) 685–697 MR

[30] C LeBrun, Counter-examples to the generalized positive action conjecture, Comm.
Math. Phys. 118 (1988) 591–596 MR

[31] C LeBrun, Explicit self-dual metrics on CP2# � � � #CP2 , J. Differential Geom. 34
(1991) 223–253 MR

[32] C LeBrun, B Maskit, On optimal 4–dimensional metrics, J. Geom. Anal. 18 (2008)
537–564 MR

[33] C LeBrun, M Singer, A Kummer-type construction of self-dual 4–manifolds, Math.
Ann. 300 (1994) 165–180 MR

Geometry & Topology, Volume 20 (2016)

http://dx.doi.org/10.1016/0003-4916(79)90282-3
http://msp.org/idx/mr/540896
http://projecteuclid.org/euclid.jdg/1214446330
http://msp.org/idx/mr/1094469
http://dx.doi.org/10.1007/978-1-4613-9703-8
http://msp.org/idx/mr/1081321
http://dx.doi.org/10.1016/0370-2693(78)90478-1
http://dx.doi.org/10.1007/BF01343146
http://dx.doi.org/10.1007/BF01343146
http://msp.org/idx/mr/0062842
http://msp.org/idx/mr/1456253
http://projecteuclid.org/euclid.jdg/1175266265
http://msp.org/idx/mr/2286821
http://dx.doi.org/10.1007/s00220-012-1656-z
http://msp.org/idx/mr/3073160
http://dx.doi.org/10.1007/BF01459248
http://msp.org/idx/mr/1109637
http://dx.doi.org/10.1215/S0012-7094-95-07716-3
http://msp.org/idx/mr/1324633
http://projecteuclid.org/euclid.nmj/1118786571
http://msp.org/idx/mr/641150
http://dx.doi.org/10.1007/s00039-001-8230-8
http://msp.org/idx/mr/1878320
http://projecteuclid.org/euclid.jdg/1214443066
http://msp.org/idx/mr/992334
http://projecteuclid.org/euclid.jdg/1214443067
http://msp.org/idx/mr/992335
http://dx.doi.org/10.1007/BF01221110
http://msp.org/idx/mr/962489
http://projecteuclid.org/euclid.jdg/1214446999
http://msp.org/idx/mr/1114461
http://dx.doi.org/10.1007/s12220-008-9019-x
http://msp.org/idx/mr/2393270
http://dx.doi.org/10.1007/BF01450482
http://msp.org/idx/mr/1289837


1806 Michael T Lock and Jeff A Viaclovsky

[34] M T Lock, J A Viaclovsky, Anti-self-dual orbifolds with cyclic quotient singularities,
J. Eur. Math. Soc. .JEMS/ 17 (2015) 2805–2841 MR

[35] M T Lock, J A Viaclovsky, A smörgåsbord of scalar-flat Kähler ALE surfaces, J. Reine
Angew. Math. (2016) online publication June

[36] D McCullough, Isometries of elliptic 3–manifolds, J. London Math. Soc. 65 (2002)
167–182 MR

[37] H Nakajima, Self-duality of ALE Ricci-flat 4–manifolds and positive mass theorem,
from: “Recent topics in differential and analytic geometry”, (T Ochiai, editor), Adv.
Stud. Pure Math. 18, Academic Press, Boston (1990) 385–396 MR

[38] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401–487
MR

[39] R Stekolshchik, Notes on Coxeter transformations and the McKay correspondence,
Springer, Berlin (2008) MR
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