Volume 20, issue 3 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Cross-effects and the classification of Taylor towers

Gregory Arone and Michael Ching

Geometry & Topology 20 (2016) 1445–1537
Abstract

Let F be a homotopy functor with values in the category of spectra. We show that partially stabilized cross-effects of F have an action of a certain operad. For functors from based spaces to spectra, it is the Koszul dual of the little discs operad. For functors from spectra to spectra it is a desuspension of the commutative operad. It follows that the Goodwillie derivatives of F are a right module over a certain “pro-operad”. For functors from spaces to spectra, the pro-operad is a resolution of the topological Lie operad. For functors from spectra to spectra, it is a resolution of the trivial operad. We show that the Taylor tower of the functor F can be reconstructed from this structure on the derivatives.

Keywords
Goodwillie calculus, homotopy functors, operads
Mathematical Subject Classification 2010
Primary: 55P65, 55P48
Secondary: 18D50
References
Publication
Received: 14 April 2014
Revised: 30 March 2015
Accepted: 18 July 2015
Published: 4 July 2016
Proposed: Mark Behrens
Seconded: Haynes Miller, Bill Dwyer
Authors
Gregory Arone
Department of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden
Michael Ching
Department of Mathematics and Statistics
Amherst College
Amherst, MA 01002
United States