Volume 20, issue 3 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Quotient singularities, eta invariants, and self-dual metrics

Michael T Lock and Jeff A Viaclovsky

Geometry & Topology 20 (2016) 1773–1806
Abstract

There are three main components to this article:

  1. A formula for the η–invariant of the signature complex for any finite subgroup of SO(4) acting freely on S3 is given. An application of this is a nonexistence result for Ricci-flat ALE metrics on certain spaces.
  2. A formula for the orbifold correction term that arises in the index of the self-dual deformation complex is proved for all finite subgroups of SO(4) which act freely on S3. Some applications of this formula to the realm of self-dual and scalar-flat Kähler metrics are also discussed.
  3. Two infinite families of scalar-flat anti-self-dual ALE spaces with groups at infinity not contained in U(2) are constructed. Using these spaces, examples of self-dual metrics on n # 2 are obtained for n 3. These examples admit an S1–action, but are not of LeBrun type.
Keywords
quotient singularities, eta invariants, self-dual, ALE, orbifold
Mathematical Subject Classification 2010
Primary: 53C25, 58J20
References
Publication
Received: 11 May 2015
Accepted: 21 August 2015
Published: 4 July 2016
Proposed: Simon Donaldson
Seconded: Tobias H Colding, Ciprian Manolescu
Authors
Michael T Lock
Department of Mathematics
University of Texas
Austin, TX 78712
United States
Jeff A Viaclovsky
Department of Mathematics
University of Wisconsin
Madison, WI 53706
United States