Volume 20, issue 4 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Some examples of repetitive, nonrectifiable Delone sets

María Isabel Cortez and Andrés Navas

Geometry & Topology 20 (2016) 1909–1939
Bibliography
1 P Alestalo, D A Trotsenko, Y Vyaĭsyalya, The linear extension property of bi-Lipschitz mappings, Sibirsk. Mat. Zh. 44 (2003) 1226 MR2034930
2 J Aliste-Prieto, D Coronel, J M Gambaudo, Linearly repetitive Delone sets are rectifiable, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013) 275 MR3035977
3 D Burago, B Kleiner, Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8 (1998) 273 MR1616135
4 D Burago, B Kleiner, Rectifying separated nets, Geom. Funct. Anal. 12 (2002) 80 MR1904558
5 M I Cortez, S Petite, G–odometers and their almost one-to-one extensions, J. Lond. Math. Soc. 78 (2008) 1 MR2427048
6 M I Cortez, S Petite, Invariant measures and orbit equivalence for generalized Toeplitz subshifts, Groups Geom. Dyn. 8 (2014) 1007 MR3314939
7 A I Garber, On equivalence classes of separated nets, Model. Anal. Inform. Sist. 16 (2009) 109
8 M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol 2" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1 MR1253544
9 A Haynes, M Kelly, B Weiss, Equivalence relations on separated nets arising from linear toral flows, Proc. Lond. Math. Soc. 109 (2014) 1203 MR3283615
10 Y Lima, d–actions with prescribed topological and ergodic properties, Ergodic Theory Dynam. Systems 32 (2012) 191 MR2873166
11 A N Magazinov, The family of bi-Lipschitz classes of Delone sets in Euclidean space has the cardinality of the continuum, Tr. Mat. Inst. Steklova 275 (2011) 87 MR2962972
12 C T McMullen, Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8 (1998) 304 MR1616159
13 D Shechtman, I Blech, D Gratias, J W Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984) 1951
14 Y Solomon, Substitution tilings and separated nets with similarities to the integer lattice, Israel J. Math. 181 (2011) 445 MR2773052
15 B Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997) 695 MR1452190