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Higher torsion and secondary transfer of unipotent bundles

BERNARD BADZIOCH

WOJCIECH DORABIAŁA

Given a unipotent bundle of smooth manifolds we construct its secondary transfer
map and show that this map determines the higher smooth torsion of the bundle. This
approach to higher torsion provides a new perspective on some of its properties. In
particular it yields in a natural way a formula for torsion of a composition of two
bundles.

19J10; 55R10

1 Introduction

By a smooth bundle of manifolds we will understand here a smooth submersion
pW E! B where E and B are smooth compact manifolds. A smooth bundle with
the fiber F is unipotent if B is path connected and the graded vector space H�.F IQ/
admits a filtration such that �1B acts trivially on the filtration quotients. Igusa [10]
and J Klein [13] showed using fiberwise Morse theory that to any unipotent bundle one
can associate the higher torsion invariant which depends not only on the topological
structure of p , but also on its smooth structure. Higher torsion proved to be a useful
tool in the study of smooth bundles. In [9] Igusa showed, for example, that it can be
used to detect exotic disc bundles constructed by Hatcher.

In [2] and [1] the present authors in collaboration with Klein and B Williams extended
ideas of Dwyer, Weiss and Williams [7] to obtain an alternative construction of torsion
of unipotent bundles based on the machinery of homotopy theory. This construction
can be briefly described as follows. Let K.Q/ be the infinite loop space underlying
the algebraic K–theory spectrum of the field of rational numbers. Given a smooth
bundle pW E! B we can construct a map cpW B!K.Q/ which, roughly speaking,
assigns to each b 2 B the point of K.Q/ represented by the singular chain complex
C�.p

�1.b/IQ/. The smooth Riemann–Roch theorem of [7] implies that cp admits a
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factorization
Q.EC/

B K.Q/

p!

cp

�E

where Q.EC/D�
1†1.EC/, the map p! is the Becker–Gottlieb transfer and �E is

the linearization map (Section 3.1).

If p is a unipotent bundle then the map cp is homotopic via a preferred homotopy to a
constant map. As a consequence we obtain a lift of p! to the space WhQ

s .E/ which is
the homotopy fiber of �E :

WhQ
s .E/

Q.EC/

B K.Q/

p!

cp

�E

� s.p/

The lift � s.p/ is the smooth torsion of the bundle p .

The homotopy class of � s.p/ is an invariant of the smooth structure of p in the
following sense. If p0W E0!B is another smooth bundle and f W E0!E is a smooth
bundle map then f induces a map

f�W WhQ
s .E

0/!WhQ
s .E/:

The map f�� s.p0/ need not be homotopic to � s.p/ in general, but this property does
hold provided that f is a fiberwise diffeomorphism of bundles.

The map � s.p/ gives rise to a certain cohomology class

t s.p/ 2
M
k>0

H 4k.BIR/

(see [1, Definition 4.10]), which we will call the cohomological torsion of the bundle p .

In [11, Section 9] Igusa showed that the cohomological torsion of the composition pq

can be, in some cases, computed from the torsion of the bundles p and q . Namely, if
q is an oriented linear sphere bundle then

(1-1) t s.pq/D �.Fq/ t s.p/C trE
B .t

s.q//
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where �.Fq/ 2 Z is the Euler characteristic of the fiber of q and

trE
B W H

�.EIR/!H�.BIR/

is the transfer map associated to p . In [11] Igusa calls the formula (1-1) the transfer
axiom and shows that taken together with a few other properties it uniquely determines
the cohomological torsion.

Igusa’s arguments can be used to show that the formula (1-1) holds under more general
conditions on p and q , eg if dimensions of fibers of these bundles have the same parity.
In [1, Theorem 7.1] we verified that the same is true in the case when p is an arbitrary
unipotent bundle and q satisfies the assumptions of the Leray–Hirsch isomorphism
theorem. One of our goals in this paper is to show that this formula holds in general:

1.1 Theorem The formula (1-1) holds for any unipotent bundles pW E ! B and
qW D!E .

In order to prove Theorem 1.1 we develop a new construction of smooth torsion based
on the notion of the secondary transfer of unipotent bundles. The starting point for this
construction is the following fact:

1.2 Theorem Given a smooth bundle of compact manifolds pW E!B with fiber Fp

consider the diagram

(1-2)

Q.BC/ Q.EC/

K.Q/ K.Q/

Q.p!/

�B

�.Fp/

�E

where the lower horizontal map is given by the multiplication by the Euler characteristic
�.Fp/ 2Z of Fp and the upper horizontal map is the Becker–Gottlieb transfer of p . If
p is a unipotent bundle then this diagram commutes up to a preferred homotopy

�pW Q.BC/� Œ0; 1�!K.Q/:

As an intermediate step in the proof of this result it will be convenient to work in
a more general setting of unipotent fibrations, ie fibrations pW E ! B satisfying
some finiteness assumptions and such that the action of �1.B/ on homology of the
fiber satisfies the same unipotency condition as in the case of unipotent bundles (see
Definition 3.4). We show (Theorem 3.5) that for any unipotent fibration an analog
of Theorem 1.2 holds, with spaces Q.BC/ and Q.EC/ replaced with Waldhausen’s
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1810 Bernard Badzioch and Wojciech Dorabiała

algebraic K–theory spaces A.B/ and A.E/, and with A–theory transfer taken in
place of the Becker–Gottlieb transfer.

For a unipotent bundle pW E!B the homotopy �p defines a map of homotopy fibers

WhQ
s .p

!/W WhQ
s .B/!WhQ

s .E/:

We call this map the smooth secondary transfer of the bundle p . Likewise, for any
unipotent fibration p we construct its homotopy secondary transfer

WhQ
h .p

!/W WhQ
h .B/!WhQ

h .E/

where WhQ
h .B/D hofib.A.B/!K.Q//.

The smooth secondary transfer shares some of the basic properties of the Becker–
Gottlieb transfer. It is additive (Theorem 7.3) and it preserves composition of bundles:

1.3 Theorem If pW E! B and qW D!E are unipotent bundles then

WhQ
s ..pq/!/'WhQ

s .q
!/ ıWhQ

s .p
!/:

Analogous additivity and composition properties hold for the homotopy secondary
transfer (Theorem 7.1, Theorem 9.1).

The relationship between the smooth secondary transfer and the smooth torsion is as
follows. If B is a compact, smooth manifold then the identity map idBW B! B is a
unipotent bundle. We have:

1.4 Theorem If pW E! B is a unipotent bundle then

� s.p/'WhQ
s .p

!/ ı � s.idB/:

This shows that the smooth secondary transfer of a unipotent bundle determines the
smooth torsion of the bundle. Since smooth torsion can distinguish bundles that are
fiberwise homotopy equivalent, but not fiberwise diffeomorphic, Theorem 1.4 implies
that the smooth secondary transfer carries information about the smooth structure of a
bundle. In Proposition 6.1 we show that, in contrast, the homotopy secondary transfer
is invariant with respect to fiberwise homotopy equivalences of unipotent fibrations.

Combining Theorems 1.4 and 1.3 we obtain:

1.5 Corollary If pW E! B and qW D!E are unipotent bundles then

� s.pq/'WhQ
s .q

!/ ı � s.p/:
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Theorem 1.1 can be obtained as a direct consequence of this fact. Notice that in this
way we exhibit the simple principle underlying the formula (1-1): the torsion of a
composition of bundles p and q is a composition of two maps, one depending on p

and the other on q .

1.6 Note As it was pointed out to us by the referee, the main results of this paper
bear some resemblance to the work of Lott and Bunke on the secondary K–theory
pushforward map. In [16] Lott constructed for a smooth manifold B the secondary
K–theory group K0.B/ which is generated by flat complex vector bundles over B with
trivial Borel classes. He also constructed for a smooth bundle pW E!B a pushforward
map p!W K

0.E/!K0.B/. Just as the secondary smooth transfer considered in this
paper contains information about the smooth torsion of a bundle, the construction of the
pushforward map involves higher analytic torsion forms of Bismut and Lott [3]. Lott’s
pushforward map was studied by Bunke [6] who showed that it preserves composition
of bundles: if qW D!E and pW E!B are smooth bundles then .pq/! D p!q! . This
parallels our Theorem 1.3. Besides the difference in setting between Lott’s and Bunke’s
results and the ones described in this paper the direction of their work is opposite to
ours. While Lott’s construction of the pushforward map uses explicitly the analytic
torsion form, we construct the secondary transfer first and then show that the smooth
torsion of a bundle can be recovered from it. Also, while we use the composition
property of the secondary transfer to obtain the composition formula for cohomological
torsion (1-1), Bunke derives his result using a theorem of Ma [17] which states that an
analog of the formula (1-1) holds for higher analytic torsion.

1.7 Organization of the paper Section 2 contains a brief review of Waldhausen
categories which provide the technical setting for the majority of the constructions in
this paper. In Section 3 we take a closer look at the statements of Theorem 1.2 and
its analog for unipotent fibrations, Theorem 3.5. The proof of both of these facts uses
a theorem of Brown,1 which states that the singular chain complex of the total space
of a fibration is quasi-isomorphic to a twisted tensor product of the chain complexes
of the base and the fiber. In Section 4 we give an overview of this result and describe
some properties of Brown’s quasi-isomorphism. In Section 5 we complete proofs
of Theorems 1.2 and 3.5, which lets us complete the construction of the secondary
transfers WhQ

s .p
!/ and WhQ

h .p
!/. In Section 6 we show that the homotopy secondary

transfer is a fiberwise homotopy invariant. In Section 7 we obtain additivity formulas
for both smooth and homotopy secondary transfers, and in Sections 8 and 9 we study
secondary transfers of compositions of unipotent bundles and fibrations, which leads us

1 See also Igusa [12] for a nice description of the relationship of Brown’s work to the higher torsion of
Igusa and Klein.
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to the proof of Theorem 1.3. Finally, in Section 10 we prove the relationship between
the smooth secondary transfer and the smooth torsion of a bundle p described by
Theorem 1.4. We also show that it implies the statement of Theorem 1.1. Several
arguments of the paper involve constructions of maps between homotopy fibers and
constructions of homotopies of such maps. The Appendix gives the basic outline of
such constructions.

Acknowledgement We would like to thank the referee for several useful comments
that helped us improve the presentation of this paper.

2 Technical setup

A great majority of constructions described in this paper are set within the realm of
Waldhausen categories [20], ie categories with distinguished classes of weak equiv-
alences and cofibrations that satisfy certain axioms. Our basic setup in this respect
will be largely the same as that of [1, Section 3], so we summarize it here only briefly.
Given a Waldhausen category C we will denote by K.C/ the K–theory of C . The
standard construction of K.C/ proceeds using Waldhausen’s S�–construction. For
our purposes it will be more convenient though to use its variant, the S 0

�
–construction

described by Blumberg and Mandell in [4, Section 2].

2.1 We will work mainly with two specific instances of Waldhausen categories.
For a topological space X the category Rfd.X / has as its objects homotopy finitely
dominated retractive spaces over X , while its morphisms are maps of retractive spaces.
It is a Waldhausen category with cofibrations given by closed embeddings having the
homotopy extension property and weak equivalences defined as homotopy equivalences.
The K–theory of Rfd.X / is the Waldhausen algebraic K–theory of X and it is denoted
by A.X /.2

Next, by Chfd.Q/ we will denote the category of homotopy finitely dominated chain
complexes of Q–vector spaces. This is a Waldhausen category with degreewise
monomorphisms as cofibrations and quasi-isomorphisms as weak equivalences. We
will denote by K.Q/ the K–theory of Chfd.Q/. This space describes the algebraic
K–theory of the field of rational numbers: K.Q/'�BGL.Q/C .

2If X is a path connected space then by abuse of notation by Rfd.X / we will understand the
Waldhausen category of path connected retractive spaces over X . From the perspective of K –theory this
change is of little consequence: the functor that embeds this category into the category of all retractive
spaces over X induces a homotopy equivalence of the associated K –theory spaces.
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In order to obtain a convenient combinatorial model of the space Q.XC/ we will use
one more instance of a construction of K–theory which, while it does not come from
a Waldhausen category, is very closely related to the S�–construction. We outline it
briefly here and refer to Waldhausen’s papers [19; 21] where it was originally developed
and [2] for details. Let X be a smooth compact manifold. A partition of X � I is a
codimension-0 submanifold P � X � I such that X � Œ0; 1

3
� � P and that satisfies

some further conditions. By P0.X � I/ we will denote the poset of partitions ordered
by inclusion. Similarly, for k � 0 we define Pk.X � I/ to be the poset of locally
trivial bundles of partitions over the standard simplex �k . These categories taken
together form a simplicial category P�.X � I/. In each category Pk.X � I/ we
can introduce an analog of the Waldhausen category structure where, roughly, every
morphism is a cofibration and weak equivalences are the identity morphisms. While
in general pushouts do not exists in Pk.X � I/ and so the S�–construction cannot be
performed in this setting, it is possible to use its variant, the T�–construction, to obtain
a space jT�Pk.X � I/j. Denote by jT�P�.X � I/j the space obtained by applying
the T�–construction to each category Pk.X � I/ and then taking the geometrical
realization of the resulting simplicial space. The final step in the construction of Q.XC/

is stabilization. It is obtained by means of maps jT�P�.X �Im/j! jT�P�.X �ImC1/j

that are induced by functors Pk.X � Im/! Pk.X � ImC1/ that, roughly, send a
partition P �X � Im to P � I �X � ImC1 . Waldhausen showed that there exists a
weak equivalence

Q.XC/'�colim
m
jT�P�.X � Im/j:

2.2 A functor F W C ! D of Waldhausen categories is exact if it preserves weak
equivalences, cofibrations and pushouts of diagrams

(2-1) c0 c! c00

where one of the morphisms is a cofibration. Any such functor induces a map of infinite
loop spaces K.F /W K.C/!K.D/. The advantage of working with the S 0

�
–construction

is that we can obtain the map K.F / under more relaxed assumptions on the functor F .
Namely, following the terminology of [1, Definition 3.4] we will say that a functor F is
almost exact if it preserves weak equivalences and cofibrations and preserves pushouts
of diagrams (2-1) up to a weak equivalence. An almost exact functor induces a functor
of simplicial categories F W S 0

�
C! S 0

�
D , and so it yields a map K.F /W K.C/!K.D/.

2.3 As we have already mentioned exact and almost exact functors between Wald-
hausen categories define maps between their associated K–theories. We will frequently
need to construct homotopies of such maps. There are two main sources of such
constructions. First, if F;GW C! D are (almost) exact functors then a natural weak
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equivalence 'W F )G defines a homotopy K.'/ between the induced maps K.F /

and K.G/. Second, if Fi W C ! D are (almost) exact functors for i D 0; 1; 2 and
'W F0) F1 and  W F1) F2 are natural transformations such that

F0.c/
'
!F1.c/

 
!F2.c/

is a cofibration sequence for each c 2 C , then the additivity theorem of Waldhausen
[20, Theorem 1.4.2] provides a homotopy ÃW K.C/� I !K.D/ between the maps
K.F1/ and K.F0 _F2/. A convenient combinatorial construction of this homotopy
was given by Grayson in [8].

2.4 Our work will require us to go a step further beyond homotopies and consider
homotopies of homotopies. If f0; f1W X ! Y are two maps between topological
spaces and h0; h1W X �I!Y are homotopies between f0 and f1 then by a homotopy
of homotopies we will understand a map H W X � I � I ! Y such that for each t 2 I

the map Ht DH.�;�; t/ is a homotopy between the maps f0 and f1 with H0 D h0

and H1D h1 . In our constructions of homotopies of homotopies we will almost always
have Y DK.Q/. The homotopies of homotopies we will consider will be obtained as
an application of one of the following lemmas:

2.5 Lemma Let C be a Waldhausen category, let F1;F2W C ! Chfd.Q/ be almost
exact functors, and let '1; '2W F1)F2 be natural weak equivalences. If ˆ is a natural
chain homotopy between '1 and '2 then ˆ defines a homotopy of homotopies K.ˆ/

between K.'1/ and K.'2/.

Proof We start with the following observation. Assume that we are given three
almost exact functors Gi W C! Chfd.Q/, i D 0; 1; 2 and two natural weak equivalences
 0W G0)G1 and  1W G1)G2 . In such a situation we obtain a map

K.C/��2
!K.Q/:

If we consider it as a family of maps K.C/! K.Q/ parametrized by �2 then ver-
tices of �2 correspond to the functions K.Gi/ and edges of �2 correspond to the
homotopies K. 0/, K. 1/ and K. 1 0/.

For a chain complex C , let Cyl.C / denote the mapping cylinder of the identity
function idW C ! C [22, Section 1.5.5]. We have Cyl.C /n D Cn ˚ Cn�1 ˚ Cn .
Let the maps j0; j1W C ! Cyl.C / be the chain maps given by j0.c/ D .c; 0; 0/

and j1.c/D .0; 0; c/. Recall that two chain maps f0; f1W C !D are chain homotopic
if and only if there exists a chain map hW Cyl.C /!D such that hji D fi for i D 0; 1.

Going back to the setting of the lemma the natural chain homotopy ˆ gives a natural
weak equivalence of functors ˆW Cyl.F1/) F2 . Let ‰W Cyl.F1/) F1 denote the
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natural weak equivalence corresponding to the natural chain homotopy from the identity
natural transformation idW F1) F1 to itself. We obtain the following commutative
diagram:

F1

F1 Cyl.F1/ F2

F1

j0

'1id

ˆ‰

j1
'2id

Each vertex of this diagram corresponds to a functor C! Chfd.Q/ and edges are natural
weak equivalences of such functors. By the observation above each commutative triangle
in this diagram induces a map K.C/��2!K.Q/. Taken together these maps define a
map H W K.C/�I2!K.Q/. Considering H as a family of functions K.C/!K.Q/
parametrized by I2 we obtain that two adjacent edges of the square I2 parametrize
the homotopies K.'1/ and K.'2/ and each of remaining two edges parametrizes
the homotopy defined by the identity natural transformation idW F1) F1 . Using the
identity 'i idD 'i we can further modify H to a homotopy of homotopies between
K.'1/ and K.'2/.

2.6 Lemma Assume that Fi ;Gi W C ! Chfd.Q/, for i D 0; 1; 2, are almost exact
functors, and that we have a commutative diagram of natural transformations

F0 F1 F2

G0 G1 G2

�0 �1 �2

where both rows are cofibration sequences and vertical arrows are natural weak equiva-
lences. This yields a diagram:

(2-2)

K.F1/ K.F0 _F2/

K.G1/ K.G0 _G2/

Ã

K.�1/ K.�0 _ �2/

Ã

In this diagram every vertex represents a map K.C/ ! K.Q/ and each edge is a
homotopy of such maps. In this setting there exists a homotopy of homotopies that
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fills this diagram, ie a homotopy of homotopies between the concatenation of Ã
with K.�0 _ �2/ and the concatenation of K.�1/ with Ã.

Proof Let EChfd.Q/ be the Waldhausen category of short exact sequences in Chfd.Q/.
The functors Fi and Gi define functors F;GW C! EChfd.Q/, and the natural weak
equivalences �i define a natural weak equivalence �W F)G . On the level of K–theory
this yields a homotopy

K.�/W K.C/� I !K.EChfd.Q//:

For i D 0; 1; 2, let evi W EChfd.Q/! Chfd.Q/ denote the functor given by

evi.C0! C1! C2/D Ci :

The Waldhausen additivity theorem can be equivalently stated by saying that there
exists a homotopy

EÃW K.EChfd.Q//� I !K.Q/

between the maps K.ev1/ and K.ev0 _ ev2/. The homotopy of homotopies in the
diagram (2-2) is obtained by composing the map

K.�/� idI W K.C/� I � I !K.EChfd.Q//� I

with EÃ.

2.7 Lemma Consider the following commutative diagram of almost exact functors
C! Chfd.Q/ and their natural transformations:

(2-3)

A0 B0 C0

A1 B1 C1

A2 B2 C2

Assume that each row and each column of this diagram is a short exact sequence of
functors and that the canonical natural transformation A1[A0

B0)B1 is a cofibration.
In this situation we obtain two homotopies between the map K.B1/ and the map
K.A0/CK.C0/CK.A2/CK.C2/:

(1) the homotopy Ãrc , which is obtained by applying the additivity theorem to the
middle row, which produces a homotopy K.B1/'K.A1/CK.C1/, and then
applying the additivity theorem to the left and right columns, which gives a
homotopy K.A1/CK.C1/'K.A0/CK.A2/CK.C0/CK.C2/;
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(2) the homotopy Ãcr , which is obtained in the same manner, but applying additivity
to the middle column first, and then to the top and bottom rows.

There exists a homotopy of homotopies between Ãrc and Ãcr .

Proof Let EChfd.Q/ be the Waldhausen category of short exact sequences in Chfd.Q/
and let E2Chfd.Q/ be the Waldhausen category of short exact sequences in EChfd.Q/.
The diagram (2-3) can be interpreted as a functor F W C! E2Chfd.Q/ while columns of
this diagram define functors A;B;C W C! EChfd.Q/. The additivity theorem applied
to E2.Chfd.Q// gives a homotopy E2ÃW K.E2Chfd.Q//!K.EChfd.Q// such that the
composition

K.C/� I K.E2Chfd.Q//� I K.EChfd.Q//
K.F /� idI E2Ã

is a homotopy between the maps K.B/ and K.A/CK.C /. Let

EÃW K.EChfd.Q//� I !K.EChfd.Q//

denote the additivity homotopy described in the proof of Lemma 2.6. The homotopy
of homotopies between Ãrc and Ãcr is then given by the composition

K.C/�I2 K.E2Chfd.Q//�I2 K.EChfd.Q//�I K.Q/:
K.F /�idI2 E2Ã�idI EÃ

3 The linearization and transfer maps

3.1 In preparation for the proof of Theorem 1.2 we start this section by reviewing
briefly the construction of the linearization map �BW Q.BC/!K.Q/. For an arbi-
trary space B we have the assembly map aBW Q.BC/! A.B/. The combinatorial
construction of this map can be outlined as follows. Recall (Section 2.1) that we
are working with a model of Q.BC/ built using the category of partitions, and that
the space A.B/ is constructed using the category Rfd.B/. By definition a partition
P � B � I contains B � f0g as a subspace which gives P the structure of a retractive
space over B . In this way we can regard P as an object of Rfd.B/. It is possible to
extend this assignment to all parametrized and stabilized partitions (using parametrized
and stabilized retractive spaces over B as an intermediate step). The map aB is induced
by this assignment. We refer to [2, Section 3] for details.

Next, recall that K.Q/ was constructed from the Waldhausen category of chain com-
plexes Chfd.Q/. Consider the functor

ƒBW Rfd.B/! Chfd.Q/
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that assigns to a retractive space X the relative singular chain complex C�.X;B/.
This functor is almost exact, so it induces a map �h

B
W A.B/!K.Q/. We will call �h

B

the A–theory linearization. The linearization map �BW Q.BC/!K.Q/ is given by
the composition

�B D �
h
BaB:

3.2 Assume that we have a fibration pW E!B . For a retractive space X 2Rfd.B/

let p�X denote the pullback

p�X WD lim.X ! B
p
 E/:

The assignment X 7! p�X defines an exact functor Rfd.B/!Rfd.E/. We will call
the induced map A.p!/W A.B/!A.E/ the A–theory transfer of p .

If p is a smooth bundle of manifolds then in a similar way we can define a map

Q.p!/W Q.BC/!Q.EC/:

This map is induced by functors of categories of partitions Pk.B�Im/!Pk.E�Im/

that, roughly, associate to a partition P �B�Im the partition .p�id/�1.P /�E�Im .
The map Q.p!/ obtained in this way coincides with the Becker–Gottlieb transfer [2,
Section 4].

3.3 Let pW E!B be a fibration with a homotopy finitely dominated fiber Fp . The
maps described above can be assembled into a diagram:

(3-1)

Q.BC/ Q.EC/

A.B/ A.E/

K.Q/ K.Q/

Q.p!/

aB aE

A.p!/

�h
B �h

E

�.Fp/

The outer rectangle in this diagram coincides with the diagram (1-2). If pW E! B is
a smooth bundle then directly from the constructions described above it follows that
the upper square commutes up to a homotopy induced by the natural transformation
that for a partition P � B � I is given by the isomorphism .p � id/�1.P /! p�P
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of retractive spaces over E . We will denote this homotopy by �p .3 In order to obtain
Theorem 1.2 it is then enough to show that the lower square of (3-1) is homotopy
commutative. We will show that this fact holds for any unipotent fibration p :

3.4 Definition A fibration pW E! B is unipotent if B is a path connected space,
both B and the fiber Fp of p have the homotopy type of a finite CW-complex, and
H�.Fp/ admits a filtration by �1B–modules such that the action of �1B on the
filtration quotients is trivial.

3.5 Theorem Let pW E! B be a unipotent fibration with fiber Fp . The diagram

(3-2)

A.B/ A.E/

K.Q/ K.Q/

A.p!/

�h
B

�h
E

�.Fp/

commutes up to a preferred homotopy �h
pW A.B/� I !K.Q/.

In the next section we describe some technical tools that we will use in the proof of
this fact. The proof itself is given in Section 5.

4 Twisted tensor products

Consider the diagram (3-2). The lower horizontal map in this diagram can be described
combinatorially as follows. Let H�.Fp/ be the chain complex of rational homology
groups of Fp with trivial differentials. The functor

�˝H�.Fp/W Chfd.Q/! Chfd.Q/

is exact and �.Fp/W K.Q/!K.Q/ is the map induced by this functor. As a conse-
quence the map �.Fp/�

h
B

comes from the functor Rfd.B/! Chfd.Q/ that associates
to a retractive space X the chain complex C�.X;B/˝H�.Fp/. On the other hand
the composition �h

E
A.p!/ is induced by the functor Rfd.B/! Chfd.Q/ that assigns

to a space X the chain complex C�.p
�X;E/. The main ingredient of the proof of

Theorem 3.5 is the fact that under the assumption that pW E!B is a unipotent fibration

3While all maps in the upper square of (3-1), ie the Becker–Gottlieb transfer, the A–theory transfer
and assembly maps, are defined for any fibration, smoothness of p is essential for commutativity. This
diagram does not commute, in general, when p is a fibration. See eg the proof of [14, Theorem F].
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for any X 2Rfd.B/ we can construct a path in K.Q/ joining the points represented
by these two chain complexes. This path is natural to the extent that it gives rise to a
homotopy filling the diagram (3-2). Our main tool in the construction of this path will
be the theorem of Brown [5] which shows that the chain complex of the total space of
a fibration is quasi-isomorphic to a twisted tensor product of the chain complex of the
base and the homology of the fiber. We begin this section by reviewing the relevant
notions in homological algebra. Subsequently we describe Brown’s result and develop
some of its properties that we will need later on.

4.1 Twisting cochains and twisted tensor products Let A be a differential graded
Q–algebra with multiplication �W A˝A!A, and let K be a dg Q–coalgebra with
comultiplication rW K! K˝K . Given homomorphisms of graded vector spaces
'; W K!A, the cup product ' [ W K!A is given by the formula

' [ WD �.'˝ /r:

If M is a left A–module with multiplication �W A˝M !M then for ' as above
and c 2K˝M the cap product ' \ c 2K˝M is given by

' \ c WD .idK ˝ �/.idK ˝'˝ idM /.r ˝ idM /.c/:

For a fixed ' the map
' \�W K˝M !K˝M

is a homomorphism of graded vector spaces.

4.2 Definition Let A, K and M be respectively a dg Q–algebra, a dg Q–coalgebra
and a left A–module as above.

(i) A twisting cochain is a homomorphism of graded vector spaces 'W K!A that
lowers grading by 1 and satisfies the identity

@' �'@C' [' D 0:

(ii) If 'W K ! A is a twisting cochain then the twisted tensor product K ˝'M

is a chain complex such that K˝'M DK˝M as a graded vector space, and the
differential in K˝'M is given by

(4-1) @' WD @˝ idC id˝ @C' \�:

4.3 Twisted chain complex of a fibration Let X be a topological space with a
basepoint x0 . By C 0�.X / we will denote the subcomplex of the singular chain com-
plex C�.X / with coefficients in Q generated by all singular simplices � W �n! X

that send all vertices of �n into x0 . If X is a path connected space then the inclusion
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C 0�.X / ,! C�.X / is a chain homotopy equivalence. The chain complex C 0�.X / can
be equipped with the usual dg coalgebra structure with comultiplication

rW C 0�.X /! C 0�.X /˝C 0�.X /

defined by

r.�/D

nX
iD0

fi.�/˝ bn�i.�/

where � 2C 0n.X / is a singular n–simplex and fi.�/ and bn�i.�/ denote, respectively,
the front i th face and the back .n�i/th face of � .

For a space X we can also consider its associated dg homology algebra End.H�.X //
defined as follows. Let Endn.H�.X // denote the vector space of all maps of graded
vector spaces H�.X /!H�.X / that increase the grading by n, and let

End.H�.X //D
M
n�0

Endn.H�.X //:

We view End.H�.X // as a chain complex with trivial differentials. The dg algebra
structure on End.H�.X // comes from composition of maps. Naturally H�.X / is a
module over this dg algebra.

The main result of [5] says that given a fibration pW E! B with a path connected
base space and a fiber Fp we can find a twisting cochain 'pW C

0
�.B/! End.H�.Fp//

such that the twisted tensor product C 0�.B/˝'p
H�.Fp/ is naturally quasi-isomorphic

to C�.E/. For our purposes it will be convenient to state this fact in the following
form. Let S� denote the category of path connected, pointed spaces, and S�#B be
the over category of S� over a space B . Given a fibration pW E! B and an object
X 2 S�#B denote by pX W p

�X !X the fibration induced from p .

4.4 Theorem Let pW E ! B be a fibration with a path connected, pointed base
space B and a fiber Fp .

(1) For every X 2 S�#B there exists a twisting cochain

'pX
W C 0�.X /! End.H�.Fp//

and a quasi-isomorphism

p̌X
W C�.p

�X / '�!C 0�.X /˝'pX
H�.Fp/:

(2) On C 0
1
.X / the twisting cochain 'pX

W C 0
1
.X / ! End0.H�.Fp// is given as

follows. If � is a singular simplex in C 0
1
.X / then � is a loop in X , and so it
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represents an element Œ� � 2 �1X . For z 2H�.Fp/ we have

'pX
.�/.z/D Œ� �z� z

where the product Œ� �z is defined by the action of �1X on H�.Fp/.

(3) The assignment X 7! C 0�.X /˝'pX
H�.Fp/ defines a functor

F W S�#B! Ch.Q/;

where Ch.Q/ is the category of chain complexes over Q. If f W X ! Y is a
morphism in S�#B then F.f /D f�˝ idH�.Fp/ .

(4) The quasi-isomorphisms p̌X
define a natural transformation of functors.

4.5 Notation For simplicity from now on we will write C 0�.X / p̋X
H�.Fp/ to denote

the complex C 0�.X /˝'pX
H�.Fp/.

4.6 While we refer to Brown’s paper [5] for the proof of Theorem 4.4, a few
comments will be useful later on. Brown constructs the quasi-isomorphisms p̌X

in
two stages. First, he shows that given a path connected space X one can construct
a twisting cochain  X W C

0
�.X /! C�.�X / [5, Theorem 4.1], where the dg algebra

structure on C�.�X / is obtained by composing the Eilenberg–Zilber map and the
map C�.�X ��X /! C�.�X / induced by the loop multiplication. The twisting
cochain  X depends on the space X only, not on a fibration over X . Moreover,
the construction of  X is natural on the category of path connected spaces. The
action of �X on the fiber Fp of pX defines a C�.�X /–module structure on C�.Fp/.
Brown shows [5, Theorem 4.2] that the twisted tensor product C 0�.X /˝ X

C�.Fp/

is chain homotopy equivalent to C�.p
�X / via a chain homotopy equivalence natural

in X . A minor technical point here is that in order to get a suitable action of �X

on Fp one needs to specify a weakly transitive lifting function for the fibration p .
This can be taken care of by first replacing the fibration pW E! B by the homotopy
equivalent fibration zpW PB �B E! B where PB is the space of Moore paths in B .
The fibration zp admits a canonical lifting function [5, page 225] which can be used to
get a chain homotopy equivalence

C�.p
�X / '�!C�. zp

�X / '�!C 0�.X /˝ X
C�.F zp/

where F zp is the fiber of zp . Since F zp ' Fp we have C�.F zp/' C�.Fp/.4

4In [5] Brown gives a quasi-isomorphism C 0�.X /˝ X
C�.F zp/

'
�!C�. zp

�X / going in the opposite
direction. However, since his argument relies on the method of acyclic models it also produces a natural
homotopy inverse of that map, and we work here with this inverse for convenience.
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To complete the construction of p̌X
it suffices to show that we have quasi-isomorphisms

C 0�.X /˝ X
C�.F zp/

'
�!C 0�.X / p̋X

H�.Fp/:

One can proceed as follows. Using the fact that we deal here with chain complexes
over a field we can find chain maps

jFp
W H�.Fp/� C�.F zp/ WrFp

such that for z 2H�.Fp/ŠH�.F zp/ the element jFp
.z/ 2 C�.F zp/ is a chain repre-

senting z , the composition rFp
jFp

is equal to idH�.Fp/ , and jFp
rFp
' idC�.Fzp/ . The

maps jFp
and rFp

define a strong deformation retraction of (untwisted) tensor products

id˝ jFp
W C 0�.X /˝H�.Fp/� C 0�.X /˝C�.F zp/ W id˝ rFp

:

The basic perturbation lemma (see eg [15, Lemma 2.6]) shows that in such a situation
there is a twisting cochain 'pX

W C 0�.X /! End.H�.Fp// and a strong deformation
retraction of twisted tensor products

.id˝ jFp
/1W C 0�.X / p̋X

H�.Fp/� C 0�.X /˝ X
C�.F zp/ W.id˝ rFp

/1:

Following our convention (Notation 4.5) by C 0�.X / p̋X
H�.Fp/ we denote here the

complex C 0�.X /˝'pX
H�.Fp/. We define p̌X

as the composition

p̌X
W C�.p

�X / C 0�.X /˝ X
C�.F zp/ C 0�.X / p̋X

H�.Fp/:
.id˝ rFp /

1

4.7 Homological filtration Let 'W K! A be a twisting cochain and let M be an
A–module. Directly from the definition of a twisted tensor product it follows that the
chain complex K˝'M admits an increasing filtration

U0 � U1 � � � � �K˝'M

where Un WD
�L

q�n Kq

�
˝'M . In the case where M has trivial differentials we

have also a decreasing filtration

K˝'M DL0 �L1 � � � �

given by Ln WDK˝'
�L

q�n Mq

�
. Since we will consider this filtration in the situation

where M is the homology of some chain complex we will call it the homological
filtration of K˝'M .

Let pW E!B be a fibration with fiber Fp , let X 2 S�#B , and let fLn.pX /g denote
the homological filtration of the chain complex C 0�.X / p̋X

H�.Fp/. We will need
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an explicit description of the quotients Ln.pX /=LnC1.pX /. On the level of graded
vector spaces we have isomorphisms

Ln.pX /=LnC1.pX /Š C 0�.X /˝Hn.Fp/:

In order to describe the differential in the filtration quotients notice that the differential
in C 0�.X / p̋X

H�.Fp/ is given by

@.� ˝ z/D @� ˝ zC

nX
iD0

fi.�/˝'pX
.bn�i.�//.z/

where � is a singular simplex in C 0�.X /, z 2 H�.Fp/, and fi.�/ and bn�i.�/ are,
respectively, the i th front face and the .n�i/th back face of � . Using part 2) of
Theorem 4.4 we get from here

@.� ˝ z/D @� ˝ zCfn�1.�/˝ .Œb1.�/�z� z/ .mod LnC1.pX //:

As a consequence we obtain:

4.8 Proposition Let pW E! B be a fibration with a fiber Fp . For X 2 S�#B let
C 0�.X /˝�1X Hn.Fp/ denote the chain complex such that

.C 0�.X /˝�1X Hn.Fp//k D C 0k�n.X /˝Hn.Fp/

with differential given by

@.� ˝ z/D @� ˝ zCfn�1.�/˝ .Œb1.�/�z� z/

for a singular simplex � 2 C 0�.X / and z 2Hn.Fp/. We have a canonical isomorphism

C 0�.X /˝�1X Hn.Fp/ŠLn.pX /=LnC1.pX /:

4.9 Maps of fibrations Assume that we have a map of fibrations over B :

E D

B

g

p q
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For X 2 S�#B let gX W p
�X ! q�X be the map of the induced fibrations over X .

Consider the diagram

C�.p
�X / C�.q

�X /

C 0�.X / p̋X
H�.Fp/ C 0�.X /˝qX

H�.Fq/

gX �

p̌X
ˇqX

where Fp and Fq denote, respectively, the fibers of p and q . We would like to
construct a natural lower horizontal map such that the resulting diagram commutes
up to a homotopy. The obvious candidate for such map is id˝ .gjFp

/� , where the
homomorphism .gjFp

/�W H�.Fp/! H�.Fq/ is induced by restriction of g to the
fibers, but this map is not a chain map in general. We can, however, proceed as follows.
By the construction of quasi-isomorphisms p̌X

and ˇqX
(Section 4.6) we have a

diagram:

(4-2)

C�.p
�X / C�.q

�X /

C 0�.X /˝ X
C�.F zp/ C 0�.X /˝ X

C�.Fzq/

C 0�.X / p̋X
H�.Fp/ C 0�.X /˝qX

H�.Fq/

gX �

' '

id˝ .gj zFp
/�

.id˝ rFp /
1 .id˝ rFq /

1

g1X

The compositions of the vertical maps give p̌X
and ˇqX

. The upper square commutes
by the naturality properties of Brown’s theorem [5, Theorem 4.2]. Recall that the map
.id˝ rFp

/1 is a part of the strong deformation retraction data

.id˝ jFp
/1W C 0�.X / p̋X

H�.Fp/� C 0�.X /˝ X
C�.F zp/ W.id˝ rFp

/1:

Define a map g1
X
W C 0�.X / p̋X

H�.Fp/! C 0�.X /˝qX
H�.Fq/ by

g1X WD .id˝ rFq/
1
ı .id˝ .gj zFp

/�/ ı .id˝ jFp
/1:

The lower square in the diagram (4-2) commutes then up to a chain homotopy. The
basic perturbation lemma gives explicit formulas for this chain homotopy and for the
maps .id˝ rFq/

1 and .id˝ jFp
/1 . Direct computations involving these formulas

yield the following fact:
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4.10 Proposition Let B be a pointed, path connected space. Let pW E ! B and
qW D! B be fibrations, and let gW E!D be a map of fibrations.

(1) The maps g1
X

define a natural transformation of functors S�#B! Ch.Q/.

(2) The diagram

C�.p
�X / C�.q

�X /

C 0�.X / p̋X
H�.Fp/ C 0�.X /˝qX

H�.Fq/

gX �

p̌X ' ˇqX'

g1X

commutes up to a chain homotopy that is natural in X .

(3) For X 2 S�#B consider the homological filtrations fLn.pX /g and fLn.qX /g

of the complexes C 0�.X / p̋X
H�.Fp/ and C 0�.X /˝qX

H�.Fq/, respectively
(Section 4.7). The map g1

X
preserves these filtrations. Moreover, for every n

the following diagram commutes:

Ln.pX /=Ln�1.pX / Ln.qX /=Ln�1.qX /

C 0�.X /˝�1X Hn.Fp/ C 0�.X /˝�1X Hn.Fq/

g1X

Š Š

id˝ .gjFp /�

The vertical isomorphisms in this diagram come from Proposition 4.8.

5 The secondary transfer

We are now ready to give:

Proof of Theorem 3.5 Consider diagram (3-2). We want to construct a homotopy �h
p

between the maps �h
E

A.p!/ and �.Fp/�
h
B

. Recall that the map �h
E

A.p!/ is induced
by the functor

ˆW Rfd.B/! Chfd.Q/

that assigns to a retractive space X the relative chain complex C�.p
�X;E/, while the

map �.Fp/�
h
B

is induced by the functor

‰W Rfd.B/! Chfd.Q/
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given by ‰.X / D C�.X;B/˝H�.Fp/. We will build a sequence of intermediate
functors between ˆ and ‰ and show that maps induced by these functors can be
connected by homotopies.

First, for X 2Rfd.B/ the inclusion iX W B ,!X induces an inclusion z{X W E ,! p�X .
The naturality of the quasi-isomorphisms p̌X

described in Theorem 4.4 implies that
we have a commutative diagram:

C�.E/ C�.p
�X /

C 0�.B/ p̋ H�.Fp/ C 0�.X / p̋X
H�.Fp/

z{X �

p̌ p̌X

iX �˝ id

Define
C 0�.X;B/ p̋X

H�.Fp/ WD coker.iX �˝ id/:

The assignment X 7! C 0�.X;B/ p̋X
H�.Fp/ defines an almost exact functor

ˆ1W Rfd.B/! Chfd.Q/

and the natural quasi-isomorphisms

p̌X
W C�.p

�X;E/ '�!C 0�.X;B/ p̋X
H�.Fp/

define a natural weak equivalence ˇW ˆ) ˆ1 . Denote by K.ˆ1/W A.B/! K.Q/
the map induced by ˆ1 . The natural weak equivalence ˇ defines a homotopy

(5-1) �h
EA.p!/'K.ˆ1/:

Next, since the map iX �˝ id preserves the homological filtration of twisted tensor
products we can define

Ln.pX ;p/ WD coker.Ln.p/ Ln.pX //:
iX �˝ id

The chain complexes Ln.pX ;p/ form a decreasing filtration of C 0�.X;B/ p̋X
H�.Fp/.

Proposition 4.8 shows that the filtration quotient Ln.pX ;p/=LnC1.pX ;p/ can be
identified with the chain complex

C 0�.X;B/˝�1X Hn.Fp/ WD coker.C 0�.B/˝�1B Hn.Fp/! C 0�.X /˝�1X Hn.Fp//:

Since Fp is a homotopy finite space we have Hq.Fp/D 0 for q large enough, and
so fLn.pX ;p/g is in fact a finite filtration. The assignments X 7! Ln.pX ;p/ and
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X 7!C 0�.X;B/˝�1X Hn.Fp/ define almost exact functors Rfd.B/! Chfd.Q/. These
functors are connected by natural short exact sequences

(5-2) 0!LnC1.pX ;p/!Ln.pX ;p/! C 0�.X;B/˝�1X Hn.Fp/! 0:

Let ˆ2W Rfd.B/! Chfd.Q/ denote the almost exact functor given by

ˆ2.X / WD
M

n

C 0�.X;B/˝�1X Hn.Fp/

and let K.ˆ2/W A.B/ ! K.Q/ be the map induced by ˆ2 . Applying repeatedly
Waldhausen’s additivity theorem to the sequences (5-2) we obtain a homotopy

(5-3) K.ˆ1/'K.ˆ2/:

Assume now for a moment that pW E!B is a fibration with the trivial action of �1B

on H�.F /. In this case the action of �1X on H�.Fp/ is trivial as well, so we have
isomorphisms

ˆ2.X /Š C 0�.X;B/˝H�.Fp/:

Since by assumption X and B are path connected spaces we also have natural quasi-
isomorphisms

C 0�.X;B/˝H�.Fp/' C�.X;B/˝H�.Fp/D‰.X /:

As a consequence, for every X 2Rfd.B/ we obtain ˆ2.X /'‰.X /, which induces a
homotopy

(5-4) K.ˆ2/' �.Fp/�
h
B:

Concatenating the homotopies (5-1), (5-3) and (5-4) we get the desired homotopy �h
p .

If p is an arbitrary unipotent fibration we need an additional step to pass between
the maps K.ˆ2/ and �.Fp/�

h
B

. In this case the action of �1B need not be trivial,
but H�.Fp/ admits a decreasing filtration fV ig such that V i is a �1B–module and
the action of �1B on the quotients V iC1=V i is trivial. This defines a filtration
fC 0�.X;B/˝�1X V ig of the complex ˆ2.X /. The quotients of this filtration are the
(untwisted) tensor products C 0�.X;B/˝ .V

i=V i�1/. Define a functor

ˆ3W Rfd.B/! Chfd.Q/

by
ˆ3.X / WD

M
i

C 0�.X;B/˝ .V
i=V i�1/:

Naturally we also have a filtration fC 0�.X;B/˝V ig of the untwisted tensor product
C 0�.X;B/˝H�.Fp/ and ˆ3.X / is the direct sum of the quotients of this filtration.
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This means that using Waldhausen’s additivity theorem (and the quasi-isomorphisms
C 0�.X;B/˝H�.Fp/' C�.X;B/˝H�.Fp/) we get homotopies

(5-5) K.ˆ2/'K.ˆ3/' �.Fp/�
h
B:

The homotopy �h
p is then obtained as a concatenation of the homotopies (5-1), (5-3)

and (5-5).

Proof of Theorem 1.2 The homotopy �p is obtained by concatenating the above
homotopy �h

p and the homotopy �p described in Section 3.3.

Let C 2 Chfd.Q/ be a chain complex. Notice that our construction of K.Q/ lets us
identify C with a point of K.Q/.

5.1 Definition Let B be a path connected space and let C 2 Chfd.Q/. Denote the
homotopy fiber of the linearization map taken over the point C 2K.Q/ by WhQ

s .B/C ,
that is,

WhQ
s .B/C WD hofib.�BW Q.BC/!K.Q//C :

For the zero chain complex 0 2 Chfd.Q/ we will write WhQ
s .B/ to denote WhQ

s .B/0 .

Let pW E! B be a unipotent bundle with a fiber Fp . For any C 2 Chfd.Q/ we have
by Theorem 1.2 a map

WhQ
s .B/C �!WhQ

s .E/C˝H�.Fp/:

This gives rise to the following:

5.2 Definition The smooth secondary transfer of a unipotent bundle pW E! B is
the map

WhQ
s .p

!/W WhQ
s .B/ �!WhQ

s .E/

determined by the Becker–Gottlieb transfer Q.p!/ and the homotopy �p given by
Theorem 1.2.

It will be convenient to consider a variant of this definition in the setting of unipotent
fibrations:

5.3 Definition For a path connected space B let

WhQ
h .B/ WD hofib.�h

BW A.B/!K.Q//0:
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The homotopy secondary transfer of a unipotent fibration pW E! B is the map

WhQ
h .p

!/W WhQ
h .B/ �!WhQ

h .E/

determined by the transfer A.p!/ and the homotopy �h
p given by Theorem 3.5.

5.4 Note Let pW E! B be a unipotent fibration with a fiber Fp . The construction
of the homotopy �h

p described in the proof of Theorem 3.5 makes use of a choice
of a strong deformation retraction H�.Fp/� C�.Fp/ and a choice of a unipotent
filtration fV ig of H�.Fp/. One can check though that the homotopy class of the
map WhQ

h .p
!/ is independent of these choices, and so it depends on the fibration p

only. Likewise, if p is a unipotent bundle then the homotopy class of the smooth
secondary transfer WhQ

s .p
!/ depends only on the bundle p .

6 Homotopy invariance of WhQ
h

.p!/

Let f W E1!E2 be a map of topological spaces. Such a map defines an exact functor
of Waldhausen categories

f�W Rfd.E1/!Rfd.E2/

given by f�.X /D X [E1
E2 for X 2Rfd.E1/. This functor in turn induces a map

f�W A.E1/!A.E2/. Consider the diagram:

A.E1/ A.E2/

K.Q/

f�

�h
E1

�h
E2

Recall �h
E1

is induced by the functor Rfd.E1/! Chfd.Q/ given by X 7! C�.X;E1/.
Similarly, �h

E2
f� comes from the functor defined by X 7! C�.X [E1

E2;E2/. The
natural quasi-isomorphisms C�.X;E1/! C�.X [E1

E2;E2/ define a homotopy hf
between �h

E1
and �h

E2
f� . As a result we obtain a map

f�W WhQ
h .E1/ �!WhQ

h .E2/:

Our goal in this section is to prove the following:

6.1 Proposition For i D 1; 2, let pi W Ei ! B be a unipotent fibration, and let
f W E1!E2 be a fiberwise homotopy equivalence. There is a homotopy

f�WhQ
h .p

!
1/'WhQ

h .p
!
2/:
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Proof Let Fpi
denote the fiber of pi . Using Section A.2 we see that in order to obtain

the desired homotopy it is enough to construct the following data:

(1) a homotopy H A
f
W A.B/� I !A.E2/ between f�A.p!

1
/ and A.p!

2
/;

(2) a homotopy H K
f
W K.Q/� I !K.Q/ between the maps �.Fp1

/ and �.Fp2
/;

(3) a homotopy of homotopies that fills the diagram

(6-1)

�h
E2
f�A.p

!
1
/ �h

E2
A.p!

2
/

�h
E1

A.p!
1
/

�.Fp1
/�h

B
�.Fp2

/�h
B

�h
E2

H A
f

hf ı .A.p
!
1
/� idI /

�h
p2

�h
p1

H K
f
.�h

B
� idI /

where each vertex represents a map A.B/!K.Q/ and edges represent homotopies
of such maps.

(1) Construction of H A
f

Note that the map f�A.p!
1
/ is induced by the functor

Rfd.B/!Rfd.E2/ given by X 7! f�p
�
1
X while A.p!

2
/ comes from the functor

given by X 7! p�
2
X . Since f is a fiberwise homotopy equivalence the natural

maps f�p�1X ! p�
2
X induced by f are weak equivalences, and so they define the

homotopy H A
f

.

(2) Construction of H K
f

Recall for iD1; 2 the map �.Fi/ is induced by the functor
Chfd.Q/! Chfd.Q/ given by C 7! C ˝H�.Fi/. Since the map f jF1

W F1! F2 is a
homotopy equivalence it induces an isomorphism of homology groups of the fibers

.f jF1
/�W H�.F1/

Š
�!H�.F2/:

This gives a natural isomorphism of functors

�˝H�.F1/)�˝H�.F2/:

The homotopy H K
f

is defined by this natural isomorphism.
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(3) Construction of the homotopy of homotopies Consider the following diagram:

C�.f�p
�
1
X;E2/ C�.p

�
2
X;E2/

C�.p
�
1
X;E1/

C 0�.X;B/ p̋1X
H�.Fp1

/ C 0�.X;B/ p̋2X
H�.Fp2

/

C 0�.X;B/˝H�.Fp1
/ C 0�.X;B/˝H�.Fp2

/

p̌2X

fX �

p̌1X

f1
X

id˝ .f jF1
/�

additivity additivity

À

Á

Â

Each vertex of this diagram represents a functor Rfd.B/ ! Chfd.Q/. The edges
represent natural weak equivalences, with the exception of the lowest vertical edges
where the passage between functors is obtained using additivity. The maps p̌1X

and p̌2X
are the Brown quasi-isomorphisms (Theorem 4.4) and the maps f1

X
come

from Proposition 4.10. On the level of K–theory each vertex of this diagram represents
a map A.B/!K.Q/ and the edges represent homotopies of such maps. The outer
rectangle coincides with diagram (6-1).

In order to show that the diagram (6-1) can be filled by a homotopy of homotopies it is
enough to show that each of the subdiagrams À through Â in the above diagram of
functors can be filled by a homotopy of homotopies. In the case of subdiagram À such
a homotopy of homotopies exists since this subdiagram commutes. By Proposition 4.10
subdiagram Á commutes up to a natural chain homotopy, so it again can be filled by
a homotopy of homotopies. Proposition 4.10 says also that the maps f1

X
preserve

the homological filtration of the twisted tensor products and that they induce the
map id˝ .f jF1

/� on the filtration quotients. This, together with the fact that the
map .f jF1

/�W H�.F1/!H�.F2/ is an isomorphism of �1B –modules, implies that
we also have a homotopy of homotopies filling subdiagram Â.
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7 Additivity of the secondary transfer

Our goal of this section is to prove that secondary transfer maps have additivity
properties that are analogous to additivity of the Becker–Gottlieb transfer and the
A–theory transfer. We start by considering additivity of the homotopy secondary
transfer:

7.1 Theorem For i D 0; 1; 2, let pi W Ei! B be a unipotent fibration. Assume that
we have maps of fibrations

E1 E0 E2

B

p1

p0

j

p2

where j is a cofibration over B . Let E WD E1 [E0
E2 and let pW E ! B be the

fibration given by p WD p1[p0
p2 . Then p is a unipotent fibration and we have

(7-1) ŒWhQ
h .p

!/�D Œk1�WhQ
h .p1/�C Œk2�WhQ

h .p2/�� Œk0�WhQ
h .p0/�:

Here ki�W WhQ
h .Ei/!WhQ

h .E/ is induced by the map ki W Ei!E .

7.2 Lemma Consider a diagram of chain complexes

A B

A0 B0

f

g g0

f 0

that commutes up to a chain homotopy h. There exists a map zg0W Cyl.f /! B0 such
that the diagram

A Cyl.f /

A0 B0

g zg0

f 0

commutes. Moreover zg0 is chain homotopic to the composition Cyl.f /! B
g0
�!B0 .

Proof Recall that Cyl.f /n D An ˚An�1 ˚ Bn . The map zg0nW Cyl.f /n ! B0n is
given by

zg0n.a1; a2; b/D f
0g.a1/C h.a2/Cg0.b/:
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The second statement of the lemma is easy to verify.

Proof of Theorem 7.1 Let F denote the fiber of the fibration p and for i D 0; 1; 2,
let Fi be the fiber of pi . The fact that the action of �1.B/ on F D F1 [F0

F2 is
unipotent can be obtained using the Mayer–Vietoris sequence for homology of the
fibers.

The strategy of the proof of additivity of the secondary transfer is as follows. We will
construct maps

f h
1 W WhQ

h .B/!WhQ
h .E/ and f h

2 W WhQ
h .B/!WhQ

h .E2/

such that Œf h
1
�D Œk2�f

h
2
�. We will also show that

ŒWhQ
h .p

!/�D Œk1�WhQ
h .p

!
1/�C Œf

h
1 � and ŒWhQ

h .p
!
2/�D Œj�WhQ

h .p
!
0/�C Œf

h
2 �:

Since k0 D k2j the second of these equations will give

Œk2�WhQ
h .p

!
2/�D Œk0�WhQ

h .p
!
0/�C Œk2�f

h
2 �D Œk0�WhQ

h .p
!
0/�C Œf

h
1 �;

which, combined with the first equation, will yield the formula (7-1).

The construction of the map f h
1

will proceed following the scheme outlined in Sec-
tion A.1. First, we will construct a map f A

1
W A.B/! A.E/. Subsequently we will

consider the diagram:

(7-2)

A.B/ A.E/

K.Q/ K.Q/

f A
1

�h
B

�.Cone.k1jF1�
//

�h
E

Here Cone.k1jF1�/ denotes the mapping cone of the map k1jF1�W H�.F1/!H�.F /,
and the map

�.Cone.k1jF1�//W K.Q/!K.Q/

is induced by the functor Chfd.Q/! Chfd.Q/ given by tensoring by Cone.k1jF1�/.
We will show that the diagram (7-2) commutes up to a preferred homotopy h1 . This
homotopy together with the map f A

1
will define the map f h

1
.

In order to obtain the map f A
1

recall that the map k1�A.p
!
1
/ is induced by the

functor that assigns to a space X 2 Rfd.B/ the space k1�p
�
1
X 2 Rfd.E/, and that

the map A.p!/ is induced by the functor X 7! p�X . For X 2 Rfd.B/ we have a
cofibration k1�p

�
1
X ! p�X . Let MX 2Rfd.E/ denote the cofiber of this map. The
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assignment X 7!MX defines an exact functor Rfd.B/!Rfd.E/. The map f A
1

is
induced by this functor. The above constructions give a short exact sequence of functors

(7-3) k1�p
�
1X ! p�X !MX :

Applying Waldhausen’s additivity theorem we obtain a homotopy

(7-4) A.p!/' k1�A.p
!
1/Cf

A
1 :

Next, in order to describe a homotopy that fills the diagram (7-2) consider the following
diagram of functors:

(7-5)

C�.k1�p
�
1 X;E/ C�.MX ;E/

C�.p
�
1 X;E1/ C�.p

�X;E/ coker.kX �/

C�.p
�
1 X;E1/ Cyl.kX �/ Cone.kX �/

C 0�.X;B/ p̋1X
H�.F1/ Cyl.k1

X
/ Cone.k1

X
/

C�.X;B/˝H�.F1/ C�.X;B/˝Cyl.k1jF1�
/ C�.X;B/˝Cone.k1jF1�

/

'

kX �

'

D

p̌1X
gX

additivity additivity additivity

The map kX � in this diagram is induced by the map of fibrations kX W p
�
1
X ! p�X .

The complexes Cyl.kX �/ and Cone.kX �/ are, respectively, the mapping cylinder and
the mapping cone of kX � . Similarly Cyl.k1

X
/ and Cone.k1

X
/ are the mapping cylinder

and the mapping cone of the map

k1X W C
0
�.X;B/ p̋1X

H�.F1/! C 0�.X;B/ p̋X
H�.F /

given by Proposition 4.10. Finally, Cyl.k1jF1�/ and Cone.k1jF1�/ are the mapping
cylinder and the mapping cone of the map k1jF1�W H�.F1/!H�.F /. The horizontal
maps are defined in the obvious way so that each row of the diagram forms a short
exact sequence.

All vertical maps are quasi-isomorphisms. They are defined in the obvious way with
the exception of the map gX , which is given as follows. By Proposition 4.10 we have
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a diagram

C�.p
�
1
X;E1/ C�.p

�X;E/

C 0�.X;B/ p̋1X
H�.F1/ C 0�.X;B/ p̋X

H�.F /

kX �

p̌1X p̌X

k1
X

that commutes up to a chain homotopy. Using Lemma 7.2 we obtain from here a
commutative diagram:

C�.p
�
1
X;E1/ Cyl.kX �/

C 0�.X;B/ p̋1X
H�.F1/ C 0�.X;B/ p̋X

H�.F /

p̌1X
x̌
pX

k1X

The map gX is the composition of x̌pX
and the inclusion

C 0�.X;B/ p̋X
H�.F / ,! Cyl.k1X /:

The lowest vertical edges in the diagram indicate a passage between chain complexes
using additivity. This means the following construction. Since the map k1

X
preserves

the homological filtrations on C 0�.X;B/ p̋1X
H�.F1/ and C 0�.X;B/ p̋X

H�.F /, the
complexes Cyl.k1

X
/ and Cone.k1

X
/ are endowed with induced filtrations. Each lowest

vertical edge indicates a passage from the filtered chain complex to the direct sum of
the filtration quotients. As usual, after passage to the induced maps A.B/!K.Q/
each additivity edge gives a homotopy obtained using Waldhausen’s additivity theorem.
We note here that the additivity edges are related to one another as follows. The maps
in the short exact sequence

C 0�.X;B/ p̋1X
H�.F1/ �! Cyl.k1X / �! Cone.k1X /

preserve filtrations. Moreover, their restrictions to the filtration subcomplexes also form
short exact sequences, and so do the induced maps of filtrations quotients. The bottom
row of the diagram is the direct sum of the short exact sequences of these filtration
quotients.

Each vertex of the diagram (7-5) induces a map A.B/!K.Q/. All vertical edges
define homotopies of such maps. Concatenation of homotopies defined by rightmost
vertical edges gives a homotopy filling the diagram (7-2). This homotopy, together
with the map f A

1
, defines the map f h

1
W WhQ

h .B/!WhQ
h .E/.
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The existence of a homotopy between the maps WhQ
h .p

!/ and k1�WhQ
h .p

!
1
/C f h

1

follows directly from the above construction. The map k1�WhQ
h .p

!
1
/ is defined by

the map k1�A.p
!
1
/ and the homotopy induced by the leftmost vertical edges in the

diagram (7-5). The map WhQ
h .p

!/ is homotopic to the map defined by A.p!/ and the
homotopy induced by the middle vertical edges in (7-5). As we have already noticed
applying Waldhausen’s additivity theorem to the short exact sequence of functors (7-3)
defines a homotopy between A.p!/ and k1�A.p

!
1
/Cf A

1
. In order to lift this homotopy

to a homotopy between the maps WhQ
h .p

!/ and k1�WhQ
h .p

!
1
/C f h

1
it is enough to

apply the additivity theorem to the horizontal short exact sequences in the diagram (7-5).

Construction of the map f h
2
W WhQ

h .B/!WhQ
h .E2/ proceeds in the same way as the

construction of f h
1

, with the cofibration j W E0!E2 used in place of k1 . By the same
argument as above we obtain a homotopy WhQ

h .p
!
2
/ ' j�WhQ

h .p
!
0
/C f h

2
. Finally,

that the maps f h
1

and k2�f
h

2
are homotopic can be verified directly by inspecting the

construction of f h
1

and f h
2

.

A statement analogous to Theorem 7.1 holds for the smooth secondary transfer. Given
a smooth bundle pW E! B whose fibers are manifolds with boundary, by the vertical
boundary of p we will understand the smooth bundle @vpW @vE ! B obtained by
restricting p to the union of boundaries of its fibers. We have:

7.3 Theorem Let pW E!B be a smooth bundle with closed fibers, and for iD0; 1; 2,
let pi W Ei! B be unipotent subbundles of p such that p0 is the vertical boundary of
both p1 and p2 , and that E DE1[E0

E2 . Then p is a unipotent bundle and we have

ŒWhQ
s .p

!/�D Œk1�WhQ
s .p1/�C Œk2�WhQ

s .p2/�� Œk0�WhQ
s .p0/�:

Here ki�W WhQ
s .Ei/!WhQ

s .E/ is induced by the map ki W Ei!E .

7.4 Note Recall that the construction of the smooth secondary transfer we are
working with uses the combinatorial model of Q.EC/ built using partitions (Sec-
tion 2.1). This model is functorial with respect to embeddings of submanifolds of
codimension 0. As a consequence, in the notation of Theorem 7.3, for i D 1; 2 the
inclusion maps ki W Ei ,!E induce maps ki�W Q.EiC/!Q.E/, which then lift to
maps ki�W WhQ

s .Ei/!WhQ
s .E/. The map k0�W Q.E0C/!Q.EC/ is constructed

as follows. Let bW E0 � Œ�1; 1�! E be a fiberwise bicollar neighborhood of E0 .
Thus, b is a smooth embedding of bundles over B such that b.E0 � f0g/ D E0 ,
b.E0� Œ�1; 0�/�E1 and b.E0� Œ0; 1�/�E2 . The inclusion k0W E0 ,!E coincides
with the composition

E0!E0 � f0g �E0 � Œ�1; 1� b
�!E:
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For a partition P � E0 � I the submanifold P � Œ�1; 1� � E0 � Œ�1; 1� defines
(modulo permutation of coordinates) a partition of .E0� Œ�1; 1�/�I . This assignment
induces a map Q.E0C/!Q.E0 � Œ�1; 1�C/ Furthermore, since b is an embedding
of codimension 0 it gives a map b�W Q.E0 � Œ�1; 1�C/!Q.EC/. Composing these
two maps we obtain a map k0�W Q.E0C/!Q.EC/ which lifts to

k0�W WhQ
s .E0/!WhQ

s .E/:

Proof of Theorem 7.3 The basic scheme of the proof is the same as that of the proof
of Theorem 7.1: it suffices to show that there exist maps f s

1
W WhQ

s .B/!WhQ
s .E/

and f s
2
W WhQ

s .B/!WhQ
s .E2/ such that

ŒWhQ
s .p

!/�D Œk1�WhQ
s .p

!
1/�C Œf

s
1 � and ŒWhQ

s .p
!
2/�D Œj�WhQ

s .p
!
0/�C Œf

s
2 �;

where j W E0 ,! E2 is the inclusion map, and that Œf s
1
� D Œk2�f

s
2
�. Moreover,

the construction of the maps f s
1

, f s
2

and verification that they satisfy the above
identities also mimics the arguments we used in the proof of Theorem 7.1. Recall
that the map f h

1
in that proof was defined using a map f A

1
W A.B/ ! A.E/ and

a preferred homotopy in the diagram (7-2). Similarly, to define the map f s
1

we
need to construct a map f Q

1
W Q.BC/!Q.EC/ together with a preferred homotopy

�Ef
Q

1
'�.Cone.k1jF1�//�B . To obtain a homotopy WhQ

s .p
!/'k1�WhQ

s .p
!
1
/Cf s

1

it suffices to construct a homotopy

(7-6) Q.p!/' k1�Q.p
!
1/Cf

Q
1

together with an appropriate homotopy of homotopies.

The construction of the map f Q
1

can be simplified in two ways. First, let S.B/
denote the simplicial set of smooth singular simplices of B . It will suffice to con-
struct a map f Q

1
W jS.B/j ! Q.EC/. Since B ' jS.B/j this map will extend to

a map of infinite loop spaces f Q
1
W Q.BC/ ! Q.EC/. Second, the construction

of the map f Q
1
W jS.B/j !Q.EC/ can be reduced to the following combinatorial

construction. Let T1P�.E � I/ be the simplicial category given by the first stage of
the T�–construction. Thus for k � 0 the objects of T1Pk.E � I/ are pairs .P0;P1/

where P1 is a bundle of partitions of E � I over the standard simplex �k , and P0 is
a subbundle of P1 . Considering S.B/ as a (discrete) simplicial category, it will suffice
to give a functor FQ

1
W S.B/! T1P�.E � I/. Such a functor will determine the map

f Q
1
W jS.B/j !Q.EC/ (see [2, Remark 2.5]).

In order to describe the functor FQ
1

we will use the setup of [2, Section 4.3]. Using
the notation introduced there for a k –simplex � 2 S.B/, by ��TB" we denote the
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disc bundle over �k induced by � from the disc bundle of the tangent bundle of B .
The exponential map defines a map of bundles

��TB" B ��k

�k

exp

which is a fiberwise embedding. Let 1
3
< a< b < 1. Define

P� WD �
�TB" � Œa; b�[ .B ��

k/�
�
0; 1

3

�
:

This space admits a map P�!B��k�I which lets us consider it (modulo permutation
of factors) as a bundle of partitions of B � I over �k . For � 2 S.B/ we set

FQ
1 .�/ WD ..p1 � id/�1.P� /[E ��k

�
�
0; 1

3

�
; .p� id/�1.P� //:

To describe the homotopy (7-6) we will use Waldhausen’s preadditivity theorem [1,
Section 3.6]. Let T2P�.E�I/ be the second stage of the T�–construction on P�.E�I/.
This is a simplicial category with objects in the k th simplicial dimension given by
triples .P0;P1;P2/ where Pi is a bundle of partitions of E� I over �k , and Pi is a
subbundle of PiC1 . For 0� i <j �2, let Dij W T2P�.E�I/!T1P�.E�I/ denote the
functor given by Dij .P0;P1;P2/D .Pi ;Pj /. For a functor H W S.B/! T2P�.E�I/

the preadditivity theorem gives a homotopy between the map jS.B/j!Q.EC/ induced
by the functor D02H and the sum of maps induced by the functors D01H and D12H .
Consider the functor H given by

H.�/ WD .E ��k
� Œ0; 1

3
�; .p1 � id/�1.P� /[E ��k

� Œ0; 1
3
�; .p� id/�1.P� //:

Notice that D12H DFQ
1

. It remains to notice that by [2, Section 4] the maps induced
by the functors D01H and D02H are, respectively, k1�Q.p

!
1
/� and Q.p!/� where

�W jS.B/j !Q.BC/ is the coaugmentation map.

The above constructions of the map f Q
1

and the homotopy Q.p!/'Q.p!
1
/Cf Q

1
are

obtained by replicating the constructions from the proof of Theorem 7.1 of the map f h
1

and the homotopy A.p!/ ' A.p!
1
/C f A

1
using partitions and the T�–construction

in place of retractive spaces and the S�–construction. The arguments that show that
f Q

1
admits a lift to f s

1
W WhQ

s .B/!WhQ
s .E/ and that the homotopy (7-6) lifts to a

homotopy WhQ
s .p

!/' k1�WhQ
s .p

!
1
/Cf s

1
involve constructions on the level of chain

complexes that duplicate the constructions from the proof of Theorem 7.1. The map f s
2

and the homotopy WhQ
s .p

!
2
/D j�WhQ

s .p
!
0
/Cf s

2
are obtained in an analogous way.
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8 Composition of unipotent fibrations

Our next goal is to give a proof of Theorem 1.3. Recall that this theorem states that the
homotopy secondary transfer preserves compositions of unipotent fibrations, and the
smooth secondary transfer preserves compositions of unipotent bundles.

The statement of Theorem 1.3 relies on the fact that the composition of unipotent
bundles (or unipotent fibrations) is again unipotent. While this property is implicitly
present in the work of Igusa [11] we give its proof below for completeness, and also
because its main ingredient, Lemma 8.1, will be needed later on.

8.1 Lemma [11, Lemma 8.9] Let

Fp!E
p
�!B

be a unipotent fibration. There is a finite sequence of unipotent fibrations

E0 E1 � � � Ek

B

p0

p1 pk

such that

(i) E0 D†
n
B

E for some n� 0;

(ii) pk W Ek ! B is a rational homotopy equivalence;

(iii) for every i we have a cofibration sequence

B �Sni ˛i
�!Ei �!EiC1

over B (ie EiC1 DEi [B�Sni B �DniC1 ).

We denote here by †n
B

E ! B the n–fold fiberwise suspension of the fibration p ,
while B �Sni ! B and B �DniC1! B are, respectively, a product sphere bundle
and a product disc bundle.

8.2 Theorem (Igusa) If qW D ! E and pW E ! B are unipotent bundles (resp.
unipotent fibrations) then the composition pqW D!B is also a unipotent bundle (resp.
a unipotent fibration).
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Proof Let Fp , Fq , Fpq denote the fibers of p , q , pq , respectively. Since the only
nontrivial property we need to verify is that the action of �1B on H�.Fpq/ is unipotent,
it is enough to show that the statement of the theorem holds for unipotent fibrations.
We will split our argument into a few steps.

Step 1 The fibration pq is unipotent for an arbitrary unipotent fibration p and any
product fibration qW E �Fq!E .

Indeed, in this case we have an isomorphism of �1B –modules

H�.Fpq/ŠH�.Fp/˝H�.Fq/

where the action of �1B on the right-hand side is given by ˛.x˝y/D ˛x˝y .

Step 2 The fibration pq is unipotent for an arbitrary unipotent fibration pW E! B

and any fibration qW D!E with fiber Fq such that zH�.Fq/D 0.

This holds since the map .qjFpq
/�W H�.Fpq/!H�.Fp/ is in this case an isomorphism

of �1B –modules.

Step 3 For i D 0; 1; 2, let pi W Ei ! B be a fibration with a path connected base
space B and fiber Fi of a finite homotopy type. Assume that we have maps of fibrations

E1
f
 �E0

i
�!E2

where i is a cofibration over B . Let pW E1[E0
E2!B be the pushout map. If three

of the fibrations p0 , p1 , p2 , p are unipotent then so is the fourth.

This follows from the Mayer–Vietoris sequence for the homology of the fibers and the
fact that unipotent �1B –modules form a Serre category.

Step 4 As an application of Step 3 we obtain that if p and q are unipotent fibrations
and †EqW †ED!E is a fiberwise suspension of q then pq is a unipotent fibration
if and only if p†Eq is unipotent.

Step 5 Assume now that p and q are arbitrary unipotent fibrations. Applying
Lemma 8.1 to q we obtain a sequence of fibrations:

D0 D1 � � � Dk

E

q0

q1 qk

We will show that pqi is a unipotent fibration for all i . In the case of i D k this is
a consequence of Step 2. Arguing inductively, assume that pqiC1 is unipotent for
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some i . Since pqiC1 is the pushout in the diagram of fibrations over B

E �DniC1
 E �Sni !Di

and the fibrations E �DniC1! B and E �Sni ! B are unipotent by Step 1, we
obtain using Step 3 that pqi is also a unipotent fibration. As a consequence we get
that pq0 is unipotent. Since q0 is an iterated fiberwise suspension of q by Step 4 we
obtain that pq is unipotent as well.

9 Composition of secondary transfers

In this section we prove Theorem 1.3 as well as its analog for the homotopy secondary
transfer:

9.1 Theorem If pW E! B and qW D!E are unipotent fibrations then

WhQ
h ..pq/!/'WhQ

h .q
!/ ıWhQ

h .p
!/:

Our strategy will be as follows. First, in Lemmas 9.2 and 9.3 we show that Theorem 9.1
holds in two special cases, and then we will use an argument of Igusa to show that
its general statement follows from these special cases. Finally, we will show that
essentially the same reasoning can be used to obtain a proof of Theorem 1.3.

9.2 Lemma Let pW E! B and qW D! E be unipotent fibrations with fibers Fp

and Fq respectively. If zH�.Fq/D 0 then

WhQ
h ..pq/!/'WhQ

h .q
!/ ıWhQ

h .p
!/:

Proof Let Fpq denote the fiber of pq . Recall (Definition 5.3) the map WhQ
h ..pq/!/

is defined by the diagram

A.B/ A.D/

K.Q/ K.Q/

A..pq/!/

�h
B

�h
D

�.Fpq/

which commutes up to the homotopy �h
pq . One the other hand, the composition
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WhQ
h .q

!/WhQ
h .p

!/ is induced by the diagram:

A.B/ A.E/ A.D/

K.Q/ K.Q/ K.Q/

A.p!/

�h
B

A.q!/

�h
E

�h
D

�.Fp/ �.Fq/

The left square in this diagram commutes up to the homotopy �h
p , and the right

square commutes up to the homotopy �h
q . It follows that the outer square, defining

the map WhQ
h .q

!/WhQ
h .p

!/, commutes up to the homotopy obtained by concatenating
�q ı .A.p

!/� idI / with �.Fq/�p .

By Section A.2 in order to obtain a homotopy between the maps WhQ
h .q

!/WhQ
h .p

!/

and WhQ
h ..pq/!/ it is enough to construct the following data:

(1) a homotopy HA.p; q/W A.B/� I !A.D/ between A..pq/!/ and A.q!/A.p!/;

(2) a homotopy HK W K.Q/�I!K.Q/ between the maps �.Fpq/ and �.Fq/�.Fp/;

(3) a homotopy of homotopies that fills the following diagram:

(9-1)

�h
D

A.q!/A.p!/ �h
D

A..pq/!/

�.Fq/�
h
E

A.p!/

�.Fq/�.Fp/�
h
B

�.Fpq/�
h
B

�h
D

HA.p; q/

�h
q ı .A.p

!/� idI /

�h
pq

�.Fq/�
h
p

HK .�
h
B
� idI /

Each vertex of this diagram represents a map A.B/! K.Q/ and edges represent
homotopies of such maps.

(1) Construction of HA.p; q/ The map A..pq/!/W A.B/!A.D/ comes from the
functor Rfd.B/! Rfd.D/ that assigns to a retractive space X the space .pq/�X ,
while the composition A.q!/A.p!/ comes from the functor that sends X to q�p�X .
The canonical isomorphisms

.pq/�X Š
�! q�p�X

define a natural transformation of functors, and so they induce a homotopy between
A..pq/!/ and A.q!/A.p!/. This is the homotopy HA.p; q/.
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(2) Construction of HK Recall that the maps �.Fp/; �.Fq/ and �.Fpq/ are
induced by functors Chfd.Q/!Chfd.Q/ that tensor a chain complex C by, respectively,
H�.Fp/, H�.Fq/ and H�.Fpq/. As a consequence the map �.Fq/�.Fp/ is induced
by the functor that tensors C 2 Chfd.Q/ by the chain complex H�.Fp/˝H�.Fq/.
Since zH�.Fq/D 0 we have an isomorphism

H�.Fpq/
.qjFq /�
����!H�.Fp/

Š
�!H�.Fp/˝H�.Fq/:

This induces a natural isomorphism of functors

�˝H�.Fpq/)�˝ .H�.Fp/˝H�.Fq//

which, in turn, defines the homotopy HK .

(3) Construction of the homotopy of homotopies In order to show that the diagram
(9-1) can be filled by a homotopy of homotopies we will first replace it by the underlying
diagram of functors:

C�.q
�p�X;D/ C�..pq/�X;D/

C 0�.p
�X;E/˝H�.Fq/

C�.p
�X;E/˝H�.Fq/ C�.p

�X;E/

C 0�.X;B/ p̋X
H�.Fp/˝H�.Fq/ C 0�.X;B/ p̋X

H�.Fp/ C 0�.X;B/˝.pq/X
H�.Fpq/

C�.X;B/˝H�.Fp/˝H�.Fq/ C�.X;B/˝H�.Fp/ C�.X;B/˝H�.Fpq/

ˇq

q�

'

q�

p̌q'

ˇq˝id

Š

ˇq

Š q1

Š id˝q�

additivity additivity

À

Á

Â

Ã

Ä

Each vertex of this diagram represents a functor Rfd.B/ ! Chfd.Q/. The edges
represent natural weak equivalences, with the exception of the lowest vertical edges
where the passage between functors is obtained using additivity. The outer edges of
this diagram correspond to the homotopies in the diagram (9-1). Since zH�.Fq/D 0

the twisted tensor product of the fibration q�p�X ! p�X is just the untwisted tensor
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product C�.p
�X;E/˝H�.Fq/. In effect the homotopy �h

q ı .A.p
!/� idI / in (9-1) is

induced simply by the quasi-isomorphisms

C�.q
�p�X;D/

ˇq
�!C 0�.p

�X;E/˝H�.Fq/
'
�!C�.p

�X;E/˝H�.Fq/

without using additivity.

In order to show that the diagram (9-1) can be filled by a homotopy of homotopies it
is enough to show that each of the subdiagrams in the above diagram of functors can
be filled by a homotopy of homotopies. In the case of the subdiagrams À through Ã

such homotopies of homotopies exist since subdiagrams À and Â commute strictly
and subdiagrams Á and Ã commute up to natural chain homotopies. Homotopy
commutativity of the subdiagram Á follows from [5, (7.4)]. The subdiagram Ã is
homotopy commutative since it is obtained by applying Proposition 4.10 to the map of
fibrations:

D E

B

q

pq p

Finally, the subdiagram Ä can be filled by a homotopy of homotopies since the maps

C�.X;B/˝.pq/XH�.Fpq/
q1
�!C�.X;B/ p̋X

H�.Fp/�!
Š C�.X;B/ p̋X

H�.Fp/˝H�.Fq/

preserve the homological filtrations and induce isomorphisms on the filtration quotients.

9.3 Lemma Let pW E! B be a unipotent fibration and let qW E �S0!E be the
product fibration with fiber S0 . Then

WhQ
h ..pq/!/'WhQ

h .q
!/ ıWhQ

h .p
!/:

Proof The basic outline of our argument is the same as in the proof of Lemma 9.2. The
same construction as there gives a homotopy HA.p; q/ between the maps A..pq/!/

and A.p!/A.q!/. Next, we need a homotopy HK between the maps �.Fp � S0/

and �.S0/�.Fp/. The first map comes from the functor C 7! C ˝H�.Fp � S0/

while the second map is induced by the functor C 7! C ˝H�.Fp/˝H�.S
0/. The

isomorphism H.Fp/˝H�.S
0/ŠH�.Fp �S0/ induces a natural isomorphism of the

above functors, which in turn defines the homotopy HK .

As the result of these constructions we obtain a diagram of homotopies (9-1) (with
Fq D S0 and Fpq DFp�S0 ). The remaining step is to show that this diagram can be
filled by a homotopy of homotopies. Existence of such a homotopy of homotopies can
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be verified in a straightforward manner using the fact that for X 2Rfd.B/ we have a
commutative diagram:

C�.q
�p�X;E �S0/ C.p�X;E/˝H�.S

0/

C 0�.X;B/˝.pq/X H.E �S0/ .C.X;B/ p̋X
H�.Fp//˝H�.S

0/

Š

p̌q p̌˝ id

Š

9.4 Igusa’s argument In [11], Igusa used Lemma 8.1 to show that two higher
torsion invariants of unipotent bundles coincide. We will adapt this argument to prove
Theorems 1.3 and 9.1. The main idea of Igusa’s proof is to define a “difference torsion”,
which is a new invariant that measures the difference between the given two invariants of
bundles, and then to show that this difference torsion vanishes for all unipotent bundles.
The essential properties of Igusa’s difference torsion are encapsulated in Definition 9.5.
Proposition 9.6 spells out the conditions that guarantee its vanishing.

9.5 Definition Let B be a space of the homotopy type of a finite CW-complex,
and let ƒ be an abelian group. An additive homotopy B–invariant of unipotent
fibrations with values in ƒ is an assignment ˆ that associates to each unipotent
fibration pW E! B an element ˆ.p/ 2ƒ and that satisfies the following conditions:

Additivity Given maps of fibrations over B

E1 E0 E2

B

p1

p0

j

p2

where pi is a unipotent fibration for i D 0; 1; 2 and j is a cofibration, we have

ˆ.p1[p0
p2/Dˆ.p1/Cˆ.p2/�ˆ.p0/:

Homotopy invariance If unipotent fibrations pi W Ei! B (i D 1; 2) are fiberwise
homotopy equivalent then ˆ.p1/Dˆ.p2/.

9.6 Proposition Let ˆ be an additive homotopy B–invariant with values in ƒ.
Assume that

� ˆ.p/D 0 for the product fibration pW B �S0! B ;
� ˆ.p/D 0 if the map pW E! B is a rational homotopy equivalence.

Then ˆ.p/D 0 for all unipotent fibrations pW E! B .
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Proof First notice that ˆ.p/D 0 if pW B �F !B is a product fibration where F is
either a disc or a sphere. Indeed, in the first case p is a rational homotopy equivalence.
If F is a sphere we can argue inductively starting with F D S0 and using additivity.

Next, let pW E!B be an arbitrary unipotent fibration. Applying Lemma 8.1 to p we
obtain a sequence of fibrations:

(9-2)

E0 E1 � � � Ek

B

p0

p1 pk

Since pk is a rational homotopy equivalence we have ˆ.pk/D 0. Next, since pi is
obtained as a pushout of pi�1 and product fibrations with disc and sphere fibers we
can use additivity of ˆ to get that ˆ.pi/Dˆ.pi�1/. This gives

0Dˆ.pk/Dˆ.pk�1/D � � � Dˆ.p0/:

Finally, since p0 is an n–fold fiberwise suspension of p we can use additivity of ˆ
again to get

ˆ.p/D .�1/nˆ.p0/D 0:

9.7 Note Igusa uses a variant of Proposition 9.6 that will be also useful to us later on.
Namely, for a smooth compact manifold B consider an assignment ˆ that satisfies
additivity and homotopy invariance properties as in Definition 9.5, but is defined only
for unipotent bundles over B . Then the statement of Proposition 9.6 still holds: if ˆ
vanishes on the product bundle B�S0!B and on bundles that are given by a rational
homotopy equivalence then it vanishes on all unipotent bundles. The proof of this fact
is essentially the same as the proof of Proposition 9.6 with two additional observations:

� The homotopy invariance of ˆ lets us define this invariant on all smoothable
unipotent fibrations over B , ie all fibrations that are fiberwise homotopy equivalent to
a unipotent bundle.

� If pW E!B is a unipotent bundle then all fibrations appearing in the diagram (9-2)
are smoothable [11, Lemma 8.6].

We are now ready to give:
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Proof of Theorem 9.1 Let pW E! B and qW D! E be unipotent fibrations. We
have commutative diagrams:

WhQ
h .B/ WhQ

h .D/

A.B/ A.D/

WhQ
h ..pq/!/

iB iD

A..pq/!/

WhQ
h .B/ WhQ

h .D/

A.B/ A.D/

WhQ
h .q

!/WhQ
h .p

!/

iB iD

A.q!/A.p!/

In the same way as in the proof of Lemma 9.2 we construct a homotopy HA.p; q/

between the maps A..pq/!/ and A.q!/A.p!/. By Section A.3 this data defines a
map '.p; q/W WhQ

h .B/!�K.Q/ such that Œ'.p; q/�D 0 if and only if HA admits a
lift to a homotopy between the maps WhQ

h ..pq/!/ and WhQ
h .q

!/WhQ
h .p

!/.

Fix a fibration pW E! B . Let p̂ be the assignment that associates to a unipotent
fibration qW D! E the homotopy class Œ'.p; q/�. We claim that p̂ is an additive
homotopy E–invariant with values in the group ŒWhQ

h .B/;�K.Q/�; see Definition 9.5.
In order to verify homotopy invariance of p̂ assume that we have a fiberwise homotopy
equivalence:

D1 D2

E

f

q1 q2

We need to check that '.p; q1/ and '.p; q2/ are homotopic. By Proposition 6.1 we
can construct a homotopy

H
Wh.E/
f

W WhQ
h .E/� I !WhQ

h .D2/

between the maps f�WhQ
h .q

!
1
/ and WhQ

h .q
!
2
/. As a consequence the map

H
Wh.E/
f

WDH
Wh.E/
f

ı .WhQ
h .p

!/� idI /

is a homotopy between f�WhQ
h .q

!
1
/WhQ

h .p
!/ and WhQ

h .q
!
2
/WhQ

h .p
!/. On the other

hand f is also a fiberwise homotopy equivalence of the fibrations pq1 and pq2 , so
we have a homotopy

H
Wh.B/
f

W WhQ
h .B/� I !WhQ

h .D2/

between the maps f�WhQ
h ..pq1/

!/ and WhQ
h ..pq2/

!/. By the proof of Proposition 6.1
we also have a homotopy

H
A.B/

f
W A.B/� I !A.D2/
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between the maps f�A..pq1/
!/ and A..pq2/

!/ as well as a homotopy

H
A.E/

f
WDH

A.E/

f
ı .A.p!/� idI /

between f�A.q!
1
/A.p!/ and A.q!

2
/A.p!/. All these homotopies fit into commutative

diagrams:

WhQ
h .B/� I WhQ

h .D2/

A.B/� I A.D2/

H
Wh.B/
f

iB � idI iD2

H
A.B/

f

WhQ
h .B/� I WhQ

h .D/

A.B/� I A.D/

H
Wh.E/
f

iB � idI iD2

H
A.E/

f

Consider the diagram:

(9-3)

f�A..pq1/
!/ f�A.q

!
1
/A.p!/

A..pq2/
!/ A.q!

2
/A.p!/

f�HA.p; q1/

H
A.B/

f
H

A.E/

f

HA.p; q2/

Each vertex of the above diagram represents a map A.B/! A.D2/, and its edges
represent homotopies of such maps. The diagram is induced by a diagram of functors
Rfd.B/! Rfd.D2/ and natural equivalences of such functors. It is straightforward
to check that this underlying diagram of functors commutes. This implies that the
diagram (9-3) can be filled by a homotopy of homotopies. This homotopy of homotopies
can be interpreted as a homotopy between H A.B/

f and H A.E/
f . By Section A.3 this

homotopy defines a map WhQ
h .B/ � I ! �K.Q/. One can check that this map

determines a homotopy between '.p; q1/ and '.p; q2/. Additivity of p̂ can be
verified in a similar way, using additivity of secondary transfers.

By Lemma 9.2 and Lemma 9.3 we have p̂.q/ D 0 if q is a product fibration or a
rational homotopy equivalence. Proposition 9.6 implies then that Œ'.p; q/�D p̂.q/D0

for any unipotent fibration qW D!E .

Proof of Theorem 1.3 Let pW E! B and qW D!E be unipotent bundles. Recall
(Section 3.2) that the map Q.p!/ is induced by functors between categories of partitions
that assign to a partition P � B � I the partition .p � id/�1.P / � E � I . Since
.pq� id/�1.P /D .q� id/�1.p� id/�1.P / we obtain a homotopy HQ.p; q/ between
the maps Q..pq/!/ and Q.q!/Q.p!/. By Section A.3 the maps WhQ

s .q
!/WhQ

s .p
!/,
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WhQ
s ..pq/!/ and the homotopy HQ.p; q/ define a map  .p; q/W WhQ

s .B/!�K.Q/
such that WhQ

s .q
!/WhQ

s .p
!/'WhQ

h ..pq/!/ if Œ .p; q/�D 0.

It remains to show that Œ .p; q/� D 0 for all unipotent bundles p and q . Recall
(Section 3.3) that by �p we denoted the homotopy between A.p!/aB and aEQ.p!/.
Consider the diagram:

(9-4)

aDQ..pq/!/ aDQ.q!/Q.p!/

A.q!/aEQ.p!/

A..pq/!/aB A.q!/A.p!/aB

aDHQ.p; q/

�pq

�q ı .Q.p
!/� idI /

HA.p; q/ ı .aB � idI /

HA.p; q/ ı .aB � idI /

Vertices of this diagram corresponds to a map Q.BC/!A.D/ and edges correspond to
homotopies of such maps. Each of these homotopies is induced by natural isomorphisms
between retractive spaces over D obtained from partitions P � B � I :

.pq � id/�1.P / .q � id/�1.p� id/�1.P /

q�.p� id/�1.P /

.pq/�P q�p�P

Since this diagram commutes we obtain a homotopy of homotopies filling diagram (9-4).

Let bBW WhQ
s .B/!WhQ

h .B/ be the map induced by the map of fibrations:

WhQ
s .B/ WhQ

h .B/

Q.BC/ A.B/

K.Q/

bB

aB

�B �h
B
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The construction of the map  .p; q/ described in Section A.3 combined with existence
of a homotopy of homotopies in the diagram (9-4) gives

 .p; q/' '.p; q/bB

where '.p; q/ is the map defined in the proof of Theorem 9.1. In that proof we showed
that Œ'.p; q/�D 0, so also Œ .p; q/�D 0.

10 Secondary transfer and smooth torsion

In [2] and [1] (joint with Williams and Klein) we described a homotopy theoretical
construction of the smooth torsion of unipotent bundles and showed that it defines
characteristic classes which coincide with the higher torsion invariants of Igusa and
Klein. The construction of the smooth torsion of a bundle pW B ! E proceeds as
follows. Let �BW B!Q.BC/ denote the coaugmentation map. By [2, Theorem 6.7]
the map

�EQ.p!/�BW B!K.Q/

is homotopic via a preferred homotopy !p to a constant map. This defines a map
� s.p/W B ! WhQ

s .E/ which is a lift of Q.p!/�B . The map � s.p/ is the smooth
torsion of the bundle p .

The secondary transfer of unipotent bundles described in this paper can be used
to construct another map �̄ s.p/W B ! WhQ

s .E/. Namely, since the identity map
idBW B! B can be considered as a unipotent bundle, it defines the smooth torsion
� s.idB/W B!WhQ

s .B/. We set

�̄ s.p/ WDWhQ
s .p

!/� s.idB/:

Our final goal in this paper is to prove Theorem 1.4, which says that for any unipotent
bundle p the maps � s.p/ and �̄ s.p/ are homotopic. We will also show that as a
consequence the statement of Theorem 1.1 holds: for any pair of composable unipotent
bundles p and q the higher torsion cohomology classes of p , q and pq are related by
the formula (1-1).

The proof of Theorem 1.4 will use the same scheme as the proof of the composition
formula of unipotent fibrations (Theorem 9.1). We will first show that this theorem
holds when p is either a product bundle or it is a rational homotopy equivalence, and
then we will use Igusa’s argument (Section 9.4) to extend this result to all unipotent
bundles.

10.1 Lemma Let pW E!B be a unipotent bundle. If p is either the product bundle
with fiber S0 or a rational homotopy equivalence then � s.p/' �̄ s.p/.
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Proof This follows essentially from [1, Section 6]. We proved there that if pW E!B

is a unipotent bundle that satisfies the assumptions of the Leray–Hirsch theorem then
the quasi-isomorphisms

C�.p
�X / '�!C�.X /˝H�.Fp/

given for X 2Rfd.B/ by that theorem define a map

WhQ
LH .p

!/W WhQ
s .B/!WhQ

s .E/

and that � s.p/'WhQ
LH .p

!/� s.idB/. It is straightforward to check that if p is a product
bundle B�S0!B or a rational homotopy equivalence then WhQ

LH .p
!/'WhQ

s .p
!/.

Proof of Theorem 1.4 Both � s.p/ and �̄ s.p/ are defined as lifts of the map Q.p!/�B .
As a consequence they define a map %.p/W B!�K.Q/ such that the homotopy class
of the composition

B
%.p/
���!�K.Q/ �!WhQ

s .E/

coincides with the element Œ� s.p/�� Œ�̄ s.p/� 2 ŒB;WhQ
s .E/�. It suffices to show that

Œ%.p/�D 0 in ŒB; �K.Q/�.

We claim that the assignment p 7! Œ%.p/� is an additive homotopy B–invariant of
unipotent bundles with values in ŒB; �K.Q/�; see Note 9.7. Indeed, additivity of this as-
signment follows essentially from the additivity of the secondary transfer (Theorem 7.3)
and the additivity of the smooth torsion [1, Theorem 5.1]. Homotopy invariance can
be verified using the fact that the construction of %.p/ involves only chain complexes
associated to p . Using Lemma 10.1 we obtain that Œ%.p/�D 0 if p is either a product
bundle or a rational homotopy equivalence. By Proposition 9.6 and Note 9.7 we get
then that Œ%.p/�D 0 for all unipotent bundles p .

Proof of Theorem 1.1 Combining Theorems 1.4 and 1.3 we obtain the statement
of Corollary 1.5: for any unipotent bundles pW E ! B and qW D ! E there is a
homotopy

� s.pq/'WhQ
s .q

!/� s.p/:

In [1, Theorem 7.1] an analogous decomposition of the smooth torsion of pq (in the
case where q is a Leray–Hirsch bundle) was the main ingredient in the proof of the
fact that the cohomological torsion of p and q satisfies the formula (1-1). The same
argument can be now used to obtain the formula (1-1) for arbitrary unipotent bundles
p and q .
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Appendix: Maps of homotopy fibers

Multiple arguments in this paper involve constructions of maps between homotopy
fibers as well as constructions of homotopies between such maps. We summarize here
the basic scheme of such constructions.

A.1 Maps of homotopy fibers For a space X with a basepoint x0 let Px0
X denote

the space of paths in X that start at x0 . By the homotopy fiber of a map pW Y !X

over x0 we understand the standard construction

hofib.p/x0
WD f.!;y/ 2 Px0

X �Y j !.1/D p.y/g:

We will denote by iY W hofib.p/x0
! Y the map given by iY .!;y/D y .

Assume that we have a diagram

Y Y 0

X X 0

zf

p p0

f

such that f .x0/ D x0
0

. Given a homotopy h from fp to p0 zf we obtain a map
zzf W hofib.p/x0

! hofib.p0/x0
0

given by

zzf .!;y/ WD .f! � hy ; zf .y//:

Here hy denotes the path in X 0 defined by hy.t/D h.y; t/, and � indicates concate-
nation of paths. We have

iY 0
zzf D zf iY :

A.2 Homotopies of maps of homotopy fibers Assume that we have two diagrams

(A-1)
Y Y 0

X X 0

zf0

p p0

f0

Y Y 0

X X 0

zf1

p p0

f1

that commute up to homotopies h0 and h1 , respectively, with f0.x0/D f1.x0/D x0
0

.
This gives two maps of the homotopy fibers:

zzf0 ;
zzf1 W hofib.p/x0

! hofib.p0/x0
0
:

Geometry & Topology, Volume 20 (2016)



1854 Bernard Badzioch and Wojciech Dorabiała

In order to obtain a homotopy between these maps it suffices to construct the following
data:

(1) a homotopy zH W Y � I ! Y 0 between zf0 and zf1 ;

(2) a basepoint preserving homotopy H W X � I !X 0 between f0 and f1 ;

(3) a homotopy of homotopies between the two homotopies p0 zf0 ' f1p : the one
given as a concatenation of p0 zH with h1 , and the one obtained by concatenating h0

with H.p� idI /:

f0p f1p

p0 zf0 p0 zf1
p0 zH

h0 h1

H.p� idI /

Giving such a homotopy of homotopies is equivalent to giving a map

‚W Y � I � I !X 0

such that ‚jY �fig�I Dhi for iD0; 1, ‚Y �I�f0gDp0 zH and ‚Y �I�f1gDH.p�idI /.
The homotopy zzH between zzf1 and zzf2 is defined by

zzH ..!;y/; t/ WD .Ht! �‚y;t ; zH .y; t//

where Ht W X ! X 0 is given by Ht .x/DH.t;x/ and ‚y;t is the path in X 0 given
by ‚y;t .s/D‚.y; t; s/.

A.3 An obstruction to lifting a homotopy Assume again that we have two homotopy
commutative squares (A-1) with zzf0 and zzf1 the maps of homotopy fibers defined
by these squares. Assume also that we have a homotopy zH between zf0 and zf1 , and
that we want to determine whether there exists a homotopy zzH between zzf1 and zzf2

that fits into a commutative diagram:

(A-2)

hofib.p/x0
� I hofib.p0/x0

0

Y � I Y 0

zzH

iY � idI iY 0

zH

In Section A.2 we described data that suffice to construct such zzH , but here we are
interested in a condition that is equivalent to the existence of this homotopy. We can
describe such a condition as follows.5

5 See also [18, Lemma 4.1].
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Let CpW hofib.p/x0
� I ! X be the map given by Cp..!;y/; t/ D !.t/. This is a

homotopy between the constant map into x0 and the map piY . Consider the following
diagram:

p0 zf0iY p0 zf1iY

f0piY f1piY 0

x0
0

p0 zH .iY �idI
/

h0.iY � idI / h1.iY 0 � idI /

f0Cp f1Cp

Each vertex of this diagram represent a map hofib.p/x0
! X 0 and edges represent

homotopies of such maps. Concatenating all homotopies appearing here we obtain a
homotopy from the constant map into x0

0
to itself, or equivalently a map

'W hofib.p/x0
!�X 0:

It is straightforward to verify that the map ' is contractible if and only if there exists a
homotopy zzH such that the diagram (A-2) commutes. In other words the homotopy
class of ' is an obstruction to lifting the homotopy zH to a homotopy defined on the
level of the homotopy fibers.

Note Let p0W .Y 0;y0
0
/! .X 0;x0

0
/ be a map of infinite loop spaces where x0

0
and y0

0

are the trivial elements in X 0 and Y 0 . In this case the map ' has a simpler interpretation.
Namely, let jY 0 W �X 0! hofib.p0/x0

0
be the map given by jY 0.!/D .!;y0/. The set

of homotopy classes Œhofib.p/x0
; hofib.p0/x0

0
� has a structure of an abelian group and

we have
jY 0�Œ'�D Œ zf1�� Œ zf2�:
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