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Multisections of Lefschetz fibrations
and topology of symplectic 4–manifolds

R İNANÇ BAYKUR

KENTA HAYANO

We initiate a study of positive multisections of Lefschetz fibrations via positive
factorizations in framed mapping class groups of surfaces. Using our methods,
one can effectively capture various interesting symplectic surfaces in symplectic
4–manifolds as multisections, such as Seiberg–Witten basic classes and exceptional
classes, or branched loci of compact Stein surfaces as branched coverings of the
4–ball. Various problems regarding the topology of symplectic 4–manifolds, such as
the smooth classification of symplectic Calabi–Yau 4–manifolds, can be translated
to combinatorial problems in this manner. After producing special monodromy
factorizations of Lefschetz pencils on symplectic Calabi–Yau homotopy K3 and
Enriques surfaces, and introducing monodromy substitutions tailored for generating
multisections, we obtain several novel applications, allowing us to construct: new
counterexamples to Stipsicz’s conjecture on fiber sum indecomposable Lefschetz
fibrations, nonisomorphic Lefschetz pencils of the same genera on the same new
symplectic 4–manifolds, the very first examples of exotic Lefschetz pencils, and new
exotic embeddings of surfaces.

57M50, 57R17, 57R55, 57R57; 53D35, 20F65, 57R22

1 Introduction

Since the groundbreaking work of Donaldson, it is known that every symplectic 4–
manifold admits a symplectic Lefschetz pencil [10], and conversely, every Lefschetz
fibration with nonempty critical locus admits a symplectic structure; see Gompf and
Stipsicz [25]. On the other hand, Lefschetz pencils/fibrations are determined by their
monodromy factorizations, which are prescribed by products of positive Dehn twists
isotopic to identity/boundary multitwist on the fiber; see Kas [28] and Matsumoto
[40]. These results yield a combinatorial description of symplectic 4–manifolds in
terms of ordered tuples of isotopy classes of simple closed curves on an orientable
surface. Here we will extend this fundamental approach, by introducing and studying
positive factorizations in a framed mapping class group, so as to describe symplectic
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4–manifolds together with various important symplectic surfaces in them in terms of
ordered simple closed curves and arcs between marked points on an orientable surface.

Let X be a closed oriented 4–manifold equipped with a Lefschetz fibration f W X!S2 .
We call an embedded, possibly disconnected surface S in X a multisection or n–section
if f jS W X ! S2 is an n–fold branched cover with only simple branched points. We
assume that both Lefschetz critical points and branched points conform to local complex
models; that is, we work with positive Lefschetz fibrations and positive branched points.
Precise definitions and the basic background material are given in Section 2 below.

The first main result of our article is the description of multisections and their ambient
topology via positive factorizations in framed mapping class groups, given in detail
in Theorem 3.6. The framings amount to working with a new mapping class group
of a compact oriented surface with marked boundary circles (one marked point on
each boundary component), which consists of isotopy classes of orientation-preserving
self-diffeomorphisms that are allowed to swap boundary components while matching
the marked points. This group is naturally isomorphic to the mapping class group
of a closed surface with attached vectors at a finite set of marked points, so as to
frame a tubular neighborhood of the multisection S (where the end points of these
vectors, and equivalently the marked points on the boundaries, trace a push-off of S ).
In Section 3, leading to the proof of this theorem, we introduce the notion of positivity
for monodromy factorizations in this more general setting. As we will show, from these
positive factorizations, for each multisection S , one can easily read off the degree (ie
the number of times S intersects the fibers), topology (number of components and
genera of each component of S ) and the self-intersection numbers of the components
of S . Here is our main theorem of Section 3 (Theorem 3.6), stated for a connected S

for simplicity — the reader might want to turn to that section for the description of
various mapping classes appearing in the factorizations below:

Theorem 1.1 A genus-g Lefschetz fibration .X; f / with a self-intersection m con-
nected n–section S �X with k branched points away from Crit.f /, and r branched
points at Lefschetz singularities corresponding to vanishing cycles c1; : : : ; cr among
c1; : : : ; cl , yields a lift of the monodromy factorization of .X; f / to a factorization

z�˛k
� � � z�˛1

� t zcl
� � � t ecrC1

� �tcr
� � � �tc1

D t
a1

ı1
� � � t

an

ın

in Mod.†n
g I fu1; : : : ;ung/, where fu1; : : : ;ung is a subset of @†n

g which covers all
the elements of �0.@†

n
g /, z�˛i

is a lift of the half twist along a simple arc ˛i between
two points in fu1; : : : ;ung as described in Figure 1, and �tci

is a lift of the Dehn twist tci

as described in Figure 3. Here zcj is a simple closed curve in †n
g which is isotopic

Geometry & Topology, Volume 20 (2016)



Multisections of Lefschetz fibrations and topology of symplectic 4–manifolds 2337

to cj via the inclusion i W †n
g ,!†g , and fı1; : : : ; ıng is a set of simple closed curves

parallel to @†n
g , where

g.S/D 1
2
.kC r/� nC 1 and mD�

� nX
iD1

ai

�
C 2kC r:

The connectivity of S implies that the collection of z�˛i
and �tci

act transitively on the
collection of uj .

Conversely, from any such relation in Mod.†n
g I fu1; : : : ;ung/, subject to the conditions

listed above, one can construct a genus-g Lefschetz fibration .X; f / with a connected
n–section S of genus g.S/ and self-intersection m as above, whose monodromy
factorization is given by the image of the factorization on the left hand side under the
homomorphism forgetting fu1; : : : ;ung.

Moreover, up to an extended set of Hurwitz moves, there exists a one-to-one correspon-
dence between Lefschetz fibrations with multisections and positive factorizations in the
above framed mapping class group. The authors show this in [8] (where the intricate
connection between possible choices of ˛i ; zci and ai are explained in detail).

As observed by Donaldson and Smith [11], any, possibly disconnected, symplectic
surface S in .X; !/ can indeed be realized as a multisection of a high enough degree
Lefschetz pencil on X , which does not go through any Lefschetz critical points. Our
theorem, therefore, extends the combinatorial interpretation of a symplectic 4–manifold,
which couples the results of Donaldson and Gompf with the earlier works of Kas and
Matsumoto, to that of a symplectic 4–manifold and disjoint symplectic surfaces in it in
terms of ordered tuples of interior curves zc1; : : : ; zcl and arcs ˛1; : : : ; ˛r with end points
on marked points u1; : : : ;un on distinct boundary components of †n

g (corresponding
to the factors t zci

, and z�
j̨

, respectively). On the other hand, it was shown by Loi and
Piergallini [38] that any compact Stein surface .X;J / can be obtained as a covering
of the unit 4–ball D4 branched along a braided surface S , such that the composition
f W X!D4!D2 is an allowable Lefschetz fibration, along with the obvious converse
result. In this case, we obtain a similar combinatorial description of a Stein surface
.X;J / together with the branched locus S in terms of pairs of arcs ˛0

1
; ˛00

1
; : : : ; ˛0r ; ˛

00
r ,

each with end points on the marked points on the same pair of distinct boundary
components of †n

g (corresponding to the factors �tci
). Although we note that the latter

can be always perturbed (see Remark 3.9) to a factorization which only consists of
factors t zci

and z�
j̨

, we present our results in this full generality so as to not only mark
the case of compact Stein surfaces, but also because we often find it useful to first
produce factorizations containing multisections going through Lefschetz critical points.
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We should make two remarks here. First, although the framed mapping class group
Mod.†n

g I fu1; : : : ;ung/ has a large set of generators, which for instance involve bound-
ary pushing maps (lifts of point pushing maps), what we have manifested in Theorem 1.1
is that, for the geometric situations discussed above, it suffices to work with boundary
twists and usual Dehn twists. Secondly, our framed mapping class group is larger
than the mapping class group of a surface with boundary which consists of isotopy
classes of self-diffeomorphisms that fix each boundary component, the latter being
the natural mapping class group to work with when dealing with n disjoint sections.
The distinction between these two groups is analogous to that of the framed surface
braid group versus the framed pure surface braid group, which have appeared in two
recent works that are worth mentioning here: Bellingeri and Gervais studied the exact
sequences relating these braid groups [9], whereas Massuyeau, Oancea and Salamon
used the same groups to describe the monodromy action of the fundamental group
on the first homology of the fiber in terms of the Picard–Lefschetz intersection data
associated to vanishing cycles of a given Lefschetz fibration [39].

Combining the seminal work of Taubes [53; 54] and Donaldson [10], and following
the ideas of Donaldson and Smith [11] mentioned above, a blow-up of any given
symplectic 4–manifold X with bC.X / > 1 admits a Lefschetz fibration with respect
to which all Seiberg–Witten basic classes are multisections (called standard surfaces in
[11]), as discussed in the Appendix. Translating this to positive mapping class group
factorizations as we prescribed in Section 3, we conclude that symplectic 4–manifolds
and their Seiberg–Witten basic classes can be a priori represented combinatorially in
terms of our positive factorizations. Section 5B contains many examples of Kodaira
dimension zero symplectic 4–manifolds, where all the Seiberg–Witten basic classes are
represented by a collection of .�1/–multisections (as dictated by the blow-up formula
for Seiberg–Witten invariants) of the constructed Lefschetz fibrations on them. In the
Appendix, we present Kodaira dimension-1 examples; namely, we carry out a sample
calculation of monodromy factorizations of Lefschetz fibrations on the knot-surgered
elliptic surfaces which capture all their Seiberg–Witten basic classes.

The remaining Sections 4–7 of the article gather a variety of applications, relying on
the constructive converse direction of our main theorem. Each section focuses on a
different problem related to the topology of symplectic 4–manifolds and Lefschetz
fibrations on them, yet what is in common for all is the essential use of our mapping
class group techniques involving multisections. The novelty of ideas and techniques
employed in our constructions of examples in Section 5–7 can easily be seen to amount
to recipes one can employ with the right set of Lefschetz fibrations and multisections
in hand, where we will be focusing on producing the smallest genus examples of each
kind, which are the hardest to obtain in our experience.
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In Section 4 we provide an alternate approach to the smooth classification of symplectic
4–manifolds of Kodaira dimension zero, ie (blow-ups) of symplectic Calabi–Yau
4–manifolds. The only known examples of Kodaira dimension zero symplectic 4–
manifolds are torus bundles over tori, the K3 and the Enriques surfaces, which, up
to diffeomorphisms, conjecturally exhaust all the possibilities. Using our work from
Section 3 and the following theorem we prove in Section 4 (Theorem 4.1), we translate
the problem to a combinatorial one (see Theorem 4.1, Corollary 4.2 and Question 4.3):

Theorem 1.2 Let .X; f / be a genus-g Lefschetz fibration with g � 2, and X be
neither rational nor ruled. Then, there exists a symplectic form ! on X compatible
with f such that .X; !/ is a (blow-up of) a symplectic Calabi–Yau 4–manifold, if and
only if there is a disjoint collection of .�1/–spheres that are nj –sections of .X; f /
such that

P
j nj D 2g� 2.

Motivated by this, we introduce new techniques based on certain symmetries, to lift
better understood relations from genus-0 and genus-1 surfaces to higher genus surfaces
under involutions, so as to construct explicit monodromy factorizations of Lefschetz
pencils on symplectic Calabi–Yau K3 and Enriques surfaces, ie minimal symplectic
4–manifolds of Kodaira dimension zero, homeomorphic to K3 and Enriques surfaces,
respectively; see Propositions 4.5 and 4.7.

In Section 5 we turn to an interesting conjecture of Stipsicz on fiber sum indecomposable
Lefschetz fibrations, which can be regarded as prime building blocks of any Lefschetz
fibration via the fiber sum operation. In [51], having proved the converse statement,
Stipsicz conjectured that any fiber sum indecomposable Lefschetz fibration admits
a .�1/–sphere section, an affirmative answer to which would allow one to think
of any Lefschetz fibration to be obtained from Lefschetz pencils through blow-ups
and fiber sums. Curiously, up to date, there was only one known counterexample to
this conjecture, which was a genus-2 Lefschetz fibration constructed by Auroux, as
observed by Sato in [45]. In Lemma 5.1, we introduce a generalization of the lantern
relation involving multisections, which allows us to braid exceptional sections into
exceptional multisections of a new Lefschetz fibration obtained by a rational blow-down
of the underlying symplectic 4–manifold. Relying on this key lemma, and our special
monodromy factorizations of symplectic Calabi–Yau Lefschetz fibrations obtained in
Section 4, where one can keep track of all exceptional classes and sections, we prove
that the above counterexample is not a mere exception (Theorems 5.4 and 5.6):

Theorem 1.3 There are several genus-3 and genus-2 fiber sum indecomposable
Lefschetz fibrations on blow-ups of symplectic Calabi–Yau 4–manifolds which do not
admit any .�1/ sphere sections.
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2340 R İnanç Baykur and Kenta Hayano

Section 6 deals with the diversity of Lefschetz pencils/fibrations on a symplectic 4–
manifold. Namely, we prove that blow-ups of symplectic Calabi–Yau K3 surfaces
can be supported by nonisomorphic Lefschetz pencils of the same genera and same
number of base points, which have ambiently homeomorphic fibers. Park and Yun used
monodromy groups to construct pairs of nonisomorphic Lefschetz fibrations on knot-
surgered elliptic surfaces, which are Kodaira dimension 1 symplectic 4–manifolds [44],
and more recently, the first author proved that blow-ups of any symplectic 4–manifold
which is not rational or ruled carry an arbitrarily large number of nonisomorphic
Lefschetz fibrations [6]. Here we show that, for a certain configuration of Lefschetz
vanishing cycles and .�1/–sphere sections, one can perform a pair of monodromy sub-
stitutions which amount to rational blow-downs that “mirror” each other’s topological
effect. These result in Lefschetz fibrations on the same symplectic 4–manifold with
ambiently homeomorphic fibers. Building on our examples of monodromy factoriza-
tions tailored specifically to contain such configurations, we then obtain the following
on symplectic 4–manifolds of Kodaira dimension 0 (Theorem 6.2):

Theorem 1.4 There are pairs of genus-g relatively minimal nonisomorphic Lefschetz
pencils .X; fi/, i D 1; 2, where g can be taken as small as 3, or arbitrarily large.

In Section 7 we investigate a natural question: does the topology of a Lefschetz pencil
(fiber genus, number of separating/nonseparating vanishing cycles and base points)
uniquely determine the diffeomorphism type of a symplectic 4–manifold within its
homeomorphism class? Here we answer this question in the negative by constructing
the first examples of pairwise homeomorphic but not diffeomorphic symplectic 4–
manifolds, supported by Lefschetz pencils with the same topology. To the best of
our knowledge, the only previously known examples of this type were the Lefschetz
fibrations of Fintushel and Stern on knot-surgered elliptic surfaces — all of Kodaira
dimension 1, again. Here we construct the first examples of such pencils (Theorem 7.1):

Theorem 1.5 There are genus-3 exotic Lefschetz pencils .Xi ; fi/, i D 0; 1, with
symplectic Kodaira dimension �.Xi/D i , where Xi are homeomorphic to K3 # CP2 .
Moreover, there are similar examples with arbitrarily high genus and the same topology
for the singular fibers on higher blow-ups of homotopy K3 surfaces.

Lastly, in the same section, we also show that a careful application of the same circle of
ideas provides a new way of constructing exotic embeddings of surfaces in 4–manifolds,
ie Fi in X , i D 1; 2, such that there are ambient homeomorphisms taking one to the
other, but there exist no such ambient diffeomorphisms (Theorem 7.4):
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Theorem 1.6 There are exotic embeddings of genus-3 surfaces Fi in a blow-up
of a symplectic Calabi–Yau K3 surface such that Fi is symplectic with respect to
deformation equivalent symplectic forms !i on X , for i D 1; 2.

We will finish with noting a further motivation for our study of multisections. The
rather explicit description of a 4–manifold obtained via the monodromy of a Lefschetz
fibration on it very often allows one to detect various configurations of symplectic sur-
faces in it; disjoint copies of fibers and sections, as well as matching pairs of Lefschetz
vanishing cycles, are a few examples of this sort. Coupled with the nontriviality of
Seiberg–Witten invariants on symplectic 4–manifolds, this has been the most essential
source of producing new symplectic and smooth 4–manifolds in the past few decades.
(See, for instance, Fintushel and Stern [21] for an excellent survey of such construction
methods.) A close look at these constructions shows that sections and multisections of
such Lefschetz fibrations feature a key role. We therefore expect that the monodromy
factorizations, which involve multisections to produce interesting configurations of
surfaces (such as the ones we used in our rational blow-downs in Sections 6 and 7), will
be useful for building new symplectic and exotic 4–manifolds. We plan to investigate
this direction in future work.
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2 Preliminaries

In this article, we assume that all manifolds are compact, connected, smooth and
oriented, and all the maps between them are smooth.

2A Lefschetz fibrations and multisections

Let X and † be compact manifolds (possibly with boundary) of dimensions 4 and 2,
respectively.

A smooth map f W X ! † is a Lefschetz fibration if Critf is a discrete set in the
interior of X such that for any pi 2 Crit.f /, we can take a complex coordinate .U; '/
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(resp. .V;  /) of pi (resp. f .pi/) compatible with the orientation of X (resp. of †)
so that

 ıf ı'�1.z1; z2/D z1z2:

We furthermore assume that for each point qi 2 C D f .Crit.f //, the singular fiber
f �1.qi/ contains exactly one critical point pi 2 X of f . Any point pi 2 Critf
is called a Lefschetz singularity, and if g is the genus of a regular fiber of f , then
f W X ! † is called a genus-g Lefschetz fibration. Each critical point pi locally
arises from shrinking a simple loop ci on F , called the vanishing cycle. A singular
fiber of a Lefschetz fibration is called reducible (resp. irreducible) if ci is separating
(resp. nonseparating). In particular, if ci is null-homotopic in F , it gives rise to a
.�1/–sphere contained in the singular fiber, which can be blown down preserving the
rest of the fibration. We will always work with relatively minimal Lefschetz fibrations,
which do not contain any .�1/–spheres in the fibers, and our focus will be on nontrivial
Lefschetz fibrations, which are assumed to have nonempty critical locus.

Given any fibration with only Lefschetz critical points, after a small perturbation one
can always guarantee that there is at most one critical point on each fiber, as we built into
our definition above. It shall be clear that f restricts to a genus-g surface bundle over
† nC . Lastly, an achiral Lefschetz fibration is defined similarly as above except that
the local coordinate .U; '/ is allowed to be incompatible with the orientation of X .

Lefschetz fibrations arise naturally from pencils, where the domain 4–manifold is
closed and the target surface is S2 . A Lefschetz pencil on a closed 4–manifold X is a
Lefschetz fibration f W X nB!S2 , defined on the complement of a nonempty discrete
set B in X , such that around any point bj 2 B , we have that f is locally modeled
(again in a manner compatible with orientations) as .z1; z2/! z1=z2 . Blowing up
all the points in B , one obtains an honest Lefschetz fibration zf W zX ! S2 with jDj
distinct .�1/–sphere sections Sj , namely the exceptional spheres of the respective
blow-ups. We will often use the short-hand notation .X; f / for a Lefschetz fibration
or pencil whenever †D S2 .

Definition 2.1 Let f W X !† be a Lefschetz fibration and S an embedded surface
in X . The surface S is called a multisection or n–section of f if it satisfies the
following conditions:

(1) f jS is an n–fold simple branched covering for some nonnegative integer n;

(2) if a branched point p2S is not in Critf , the induced map dfpW NpS!Tf .p/†

is an orientation-preserving isomorphism, where NpS is the fiber of the normal
bundle of S at p which has the canonical orientation induced by that of X

and S ;
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(3) if a branched point p 2 S of f jS is in Crit.f /, then there are complex coordi-
nates .U; '/ and .V;  / as in the definition of a Lefschetz fibration above such
that '.S \U / is equal to f.z; z/ 2C2 j z 2Cg.

Clearly a 1–section is an honest section of a Lefschetz fibration. Note that in both
definitions we have given above, there is a positivity imposed by requiring the compati-
bility with orientations in local complex models. In the language of [11] a multisection
which is branched away from Lefschetz singularities is called a standard surface. As
will become clear later, allowing our multisections to be branched at Lefschetz critical
points as well (although subject to the local model given above), we will have a more
flexible setting which makes is possible to deal with larger families of examples of
Lefschetz fibrations with multisections of geometric significance. Lastly, as in the case
of achiral Lefschetz fibrations, one can possibly work more generally with multisections
that are not necessarily positive by allowing the local models to be incompatible with
the orientations.

2B Mapping class groups

As it will become crucial in capturing the local topology of multisections (namely the
self-intersections of them in the ambient 4–manifold), we are going to set up mapping
class groups relevant to our purposes in a framed fashion.

Let † be a compact, oriented and connected surface. In this paper, we regard † as the
zero-section of the tangent bundle T†. Take subsets Ui ;P � T†. We define a group
ModP .†IU1; : : : ;Un/ as follows:

ModP .†IU1; : : : ;Un/D �0.DiffC
P
.†IU1; : : : ;Un//;

where

DiffC
P
.†IU1; : : : ;Un/D fT 2 DiffC.†/ j dT jP D idjP ; dT .Ui/D Ui for all ig:

Here we denote by DiffC.†/ the group of orientation-preserving self-diffeomorphisms
of †. For simplicity, when P or U1; : : : ;Un is the empty set, we drop it from the
notation. For example, DiffC.†IU1; : : : ;Un/D DiffC∅ .†IU1; : : : ;Un/, ModP .†/D

ModP .†I∅/, and so on. Note that Mod.†/DMod∅.†I∅/ is the “standard” mapping
class group of †, which consists of isotopy classes of orientation-preserving self-
diffeomorphisms of †.

The group structures on all of the above are defined via compositions as maps; ie for
T1;T2 2 DiffC

P
.†IU1; : : : ;Un/, we have T1 �T2 D T1 ıT2 , etc.
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2C Monodromy factorizations

Let hW X ! D2 be a genus-g Lefschetz fibration and C D fp1; : : : ;plg � D2 the
set of critical values of h. We take a regular value q0 2 Int.D2/ and an identification
†g Š h�1.q0/. For each i we also take a path 
i in Int.D2/ connecting q0 with qi

so that all 
i are pairwise disjoint except at q0 . We give indices of these paths so
that 
1; : : : ; 
l appear in this order when we travel around q0 counterclockwise. Let
ai W S

1!D2 nC be a loop obtained by connecting a small circle around qi oriented
counterclockwise using 
i . The pullback a�i h is a †g –bundle over S1 and we can
obtain a self-diffeomorphism by taking a parallel transport of a flow in the total space
of a�i h transverse to each fiber.

Although a diffeomorphism depends on a choice of a flow, its isotopy class is uniquely
determined from the †g –bundle structure. The isotopy class is called a monodromy
of the bundle a�i h. Kas [28] proved that the monodromy of a�i h is the right-handed
Dehn twist along some simple closed curve ci �†g , which is called a vanishing cycle
of the Lefschetz singularity pi in h�1.qi/. Let a be a loop obtained by connecting
a1; : : : ; al in this order. It is easy to verify that a is homotopic to the boundary @D2

in D2 n C . The product tcl
� � � tc1

is the monodromy of the bundle a�h, where tci

denotes a positive (right-handed) Dehn twist along the loop ci . For a genus-g Lefschetz
fibration f W X ! S2 over S2 , we take a disk D � S2 so that D contains all the
critical values of f . The restriction f jf �1.D/ is a Lefschetz fibration over the disk.
Since the monodromy of f jf �1.@D/ is trivial, we can obtain the following factorization
of the unit element of the mapping class group Mod.†g/:

tcl
� � � tc1

D 1;

where ci � †g is a vanishing cycle of a Lefschetz singularity of f . We call this
factorization a monodromy factorization associated with f .

In the case of a Lefschetz pencil, recall that blowing up each base point bj yields a .�1/–
sphere section Sj . The section Sj provides a lift of the monodromy representation
�1.S

2 nf .C //!Mod.†g/ to the mapping class group Modfxj g
.†g/, where xj is a

marked point on †g . One can then fix a disk neighborhood of this section preserved
under the monodromy, and get a lift of the factorization to Mod@†1

g
.†1

g /, which
equals a power of the boundary parallel Dehn twist. Doing this for each bj we get a
defining word

tcl
� � � tc1

D tı1
� � � tım

in Mod@†m
g
.†m

g /, where mDjBj, the number of base points, and ıj are boundary par-
allel along distinct boundary components of †m

g . The powers of the tıj are determined
by the self-intersection number �1 of the corresponding exceptional section.
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2D Symplectic 4–manifolds and Kodaira dimension

By the ground-breaking work of Donaldson every symplectic 4–manifold .X; !/

admits a symplectic Lefschetz pencil whose fibers are symplectic with respect to !
[10]. Conversely, building on a construction of Thurston, Gompf showed that the total
space of a Lefschetz fibration with a homologically essential fiber, and in particular
the blow-up of any pencil, always admits a compatible symplectic form ! , for which
the fibers are symplectic. This holds whenever the fiber genus is at least 2, or there
are critical points. In this case ! can be chosen so that not only the fibers but also
any chosen collection of disjoint sections are symplectic, and moreover, any such two
symplectic forms are deformation equivalent [25]. We will use the notation .X; !; f /
to indicate that f is a symplectic Lefschetz pencil/fibration with respect to ! , where
any explicitly discussed sections of f will always be assumed to be symplectic with
respect to it.

The Kodaira dimension for projective surfaces can be extended to symplectic 4–
manifolds. Recall that a symplectic 4–manifold .X; !/ is called minimal if it does not
contain any embedded symplectic sphere of square �1, and that it can always be blown
down to a minimal symplectic 4–manifold .Xmin; !

0/. Let KXmin be the canonical
class of .Xmin; !min/. We can now define the symplectic Kodaira dimension of .X; !/,
denoted by � D �.X; !/, as

�.X; !/D

8̂̂̂<̂
ˆ̂:
�1 if KXmin � Œ!min� < 0 or K2

Xmin
< 0;

0 if KXmin � Œ!min�DK2
Xmin
D 0;

1 if KXmin � Œ!min� > 0 and K2
Xmin
D 0;

2 if KXmin � Œ!min� > 0 and K2
Xmin

> 0:

Importantly, � is independent of the minimal model .Xmin; !min/ and is a smooth
invariant of the 4–manifold X [34].

3 Multisections via mapping class groups

In this section we explain how to capture multisections of Lefschetz fibrations and
self-intersections of them in terms of mapping class groups.

3A A preliminary lemma

Let † be an oriented surface, �W †!† an orientation-preserving involution, S �†

a union of components of @† and T �† nV a finite set. Suppose that � preserves

Geometry & Topology, Volume 20 (2016)
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the sets S and T setwise. We denote the fixed points set of � by V �†. We define a
subgroup CS .†;T I �/ of DiffC

S
.†IV;T / as follows:

CS .†;T I �/D f' 2 DiffC
S
.†IV;T / j ' ı �D � ı'g:

We denote the sets CS .†;∅I �/ and C∅.†;T I �/ by CS .†I �/ and C.†;T I �/, re-
spectively. The following lemma will be of key use to us for producing several mapping
class relations as well as for proving the main theorem:

Lemma 3.1 The kernel of the natural map

��W �0.CS .†;T I �//!ModS=�.†=�IV =�;T=�/;

induced by the quotient map =�W †! †=�, is generated by the class Œ�� if � pre-
serves S pointwise, and it is trivial otherwise.

Proof We first prove the statement under the assumption that � does not have fixed
points. Let Œ'� be a mapping class in Ker.��/. We denote the self-diffeomorphism of
†=� induced by ' by x' . There exists an isotopy Ht W †=�!†=� such that H0 D x' ,
H1 D id†=� and Ht 2 DiffCS=�.†=�IV =�;T=�/ for any t . Since =�W †! †=� is
an unbranched covering, there exists a lift zHt W †! † of Ht under =� such that
zH0 is equal to ' . The map zHt preserves the set T since Ht .T=�/D T=�. By the

uniqueness of a lift under a covering map, the restriction zHt jS is the identity map for
any t . It is easy to verify that the composition =� ı zHt ı � is equal to =� ı � ı zHt . The
composition zHt ı � is equal to � ı zHt since zH0 D ' and ' commutes with �. Thus
the map t 7! zHt gives a path in CS .†;T I �/. The map zH1 is equal to either id† or �
since =�ı zH1 is equal to id†=� . Hence Œ'� 2 �0.CS .†;T I �// is represented by either
the identity map or �. Since the isotopy class of � is contained in �0.CS .†;T I �// if
and only if � preserves S pointwise, the kernel of �� is generated by Œ�� if �jS D idjS
and is trivial otherwise.

We next consider an involution � with fixed points. Let �V �† be a neighborhood
of V consisting of a disjoint union of disks. The restriction of � on a component of
@�V is the 180–degree rotation (with respect to some local coordinates). For each
component of @�V we take two points in it which are preserved by � setwise, and
denote the set of these points by U � @�V . The following diagram commutes:

�0

�
CS

�
.† n Int.�V //;T [U I �

�� ��
����! ModS=�

�
.† n Int.�V //=�I .T [U /=�

�
C1

??y ??yC2

�0.CS .†;T I �//
��
����! ModS=�.†=�IV =�;T=�/

Geometry & Topology, Volume 20 (2016)



Multisections of Lefschetz fibrations and topology of symplectic 4–manifolds 2347

where the vertical maps are the capping maps. The map C2 is surjective and the kernel
of C2 is generated by the Dehn twists along simple closed curves parallel to components
of @.�V =�/. These Dehn twists are the images of the square roots of the Dehn twists
along components of @�V , which are contained in �0.CS .† n Int.�V /;T [ U I �//

and interchange two points in U. It is easy to verify that the map C1 is surjective.
Furthermore any square root of a Dehn twist along a curve parallel to a component
of @�V is contained in the kernel of C1 . The kernel of the induced map �� defined
on �0.CS .† n Int.�V /;T [ U I �// is generated by Œ�� if �jS D idjS and is trivial
otherwise since the quotient map =� on † n Int.�V / is an unbranched covering. Thus
the kernel of the map

��W �0.CS .†;T I �//!ModS=�.†=�IV =�;T=�/

is generated by Œ�� if �jS D idjS and is trivial otherwise. This completes the proof of
Lemma 3.1.

3B Local model for the fibration around a regular branched point

Let f0W C
2!C be the projection onto the first component. We take a subset S0�C2

as follows:

S0 D f.z
2; z/ 2C2

j z 2Cg:

The restriction f0jS0
is a double branched covering branched at the origin.

Lemma 3.2 Let f W X ! † be a Lefschetz fibration, S � X a multisection of f
and p 2 S n Crit.f / a branched point of f jS . Then there exist a local coordinate
ˆW U ! C2 of p and a local coordinate 'W V ! C of q D f .p/ which make the
following diagram commute:

.U;U \S/
ˆ

����! .C2;S0/

f

??y ??yf0

V
'

����! C

That is, f jS conforms to a local model of a branched covering map with a simple
branched point at p .

Proof Since p is not a critical point of f , there exist local coordinates ˆ0W U !C2

and '0W V ! C of p and f .p/, respectively, such that p is mapped to the origin
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of C2 , and that the following diagram commutes:

U
ˆ0
����! C2

f

??y ??yf0

V
'0
����! C

Without loss of generality, we can assume that the neighborhood U does not contain
any branched points of f jS except p . Then, the intersection U \S is diffeomorphic
to C , and ˆ0.S/ is described as follows:

ˆ0.S/D f.s1.z/; s2.z// 2C2
j z 2Cg;

where si W C!C is a smooth function (i D 1; 2).

Since p is a branched point of f jS , the map s1 is a double branched covering branched
at the origin. Thus, there exist diffeomorphisms �'1W C!C and '1W C!C which
make the following diagram commute:

C
�'1

����! C

s1

??y ??y. � /2
C

'1
����! C

Now, as S is an embedded surface in X , we can assume that the map z 7! .s1.z/; s2.z//

is an embedding. In particular, s2 is locally diffeomorphic at the origin of C . Thus,
by replacing the local coordinates with sufficiently small ones if necessary, we can
take diffeomorphisms �'2W C ! C and '2W C ! C which make the following dia-
gram commute:

C
�'2

����! C

s2

??y ??yid

C
'2
����! C

We put ˆ1 D '1 � id and ˆ2 D id�'2 . Now, the following diagram commutes:

U
ˆ0
����! C2 ˆ1

����! C2 ˆ2
����! C2

f

??y f0

??y f0

??y f0

??y
V

'0
����! C

'1
����! C

id
����! C

The following equality can be checked easily:

ˆ2 ıˆ1 ıˆ0.S \U /D f.z2; �'2 ı �'1
�1
.z// 2C2

j z 2Cg:
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Thus, the diffeomorphisms ˆD .id��'1ı �'2
�1
/ıˆ2ıˆ1ıˆ0 and 'D '1ı'0 satisfy

the desired condition. This completes the proof of Lemma 3.2.

Hence we can always make a local coordinate ' in Lemma 3.2 compatible with the
orientation of †. The branched point p 2 S nCrit.f / of f jS is positive if and only if
a local coordinate ˆ of p obtained in Lemma 3.2 is compatible with the orientation
of X after making ' compatible with the orientation of †.

3C Standard monodromy factorization around a regular branched point

We are now going to study the monodromy factorization around a branched point of a
multisection, which will play a key role in the proof of Theorem 3.6 below.

We denote by †n
g an oriented, connected and compact surface of genus g with n

boundary components. Let S0 � C2 be a standard model of a branched point away
from Lefschetz singularities as explained in the previous subsection. We denote the
subset fz 2C j jzj � kg by Bk . We consider the restriction

q D f0jB1�B2
W B1 �B2! B1:

The subset S0 \ .B1 � B2/ is a bisection of q . This bisection, together with an
identification B2 Š†

1
0 , makes the monodromy %0 of qjq�1.@B1/ be contained in the

group Mod@†1
0
.†1

0I fs1; s2g/ where s1 and s2 are two points in q�1.1/\ S0 . It is
known that this monodromy is equal to the positive half twist along an arc between s1

and s2 . Let " 2R be a sufficiently small real number and we put e D 1� ". We take
another subset S 0

0
�C2 as follows:

S 00 D f.z
2; ez/ 2C2

j z 2Cg:

The subset S 0
0
\ .B1 � B2/ is also a bisection of q . By using the bisections, we

can take a lift �%0 2Mod@†1
0
.†3

0 I fu1;u2g/ of the monodromy %0 , where u1 and u2

are points in @†3
0 n @†

1
0 which cover the set �0.@†

3
0 n @†

1
0 /. Note that the group

Mod@†1
0
.†3

0 I fu1;u2g/ is isomorphic to the group Mod@†1
0
.†1

0 I fv1; v2g/, where vi

is a nonzero tangent vector in Tsi
†1

0 .

Lemma 3.3 The mapping class �%0 is represented by the map described in Figure 1.

Proof The element �%0 is a lift of %0 . Thus the bold arc in Figure 1 should be sent
by a representative of �%0 (up to isotopy) as described in the figure. It is sufficient to
prove an arc connecting s1 and s2 is preserved by some representative of �%0 since the
group Mod@†1

0
.†3

0 I fu1;u2g/ is isomorphic to the group Mod@†1
0
.†1

0 I fv1; v2g/. We
denote the arc f.1; 1� 2t/ 2C2 j t 2 Œ0; 1�g by 
 � q�1.1/. This arc connects the two
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u1

u2

u2

u1

Figure 1: The element �%0 interchanges the points u1 and u2 , and keeps the
dotted arc ˛ between u1 and u2 .

points in S0 \ q�1.1/. We take a horizontal distribution P of qjq�1.�@B1/
so that it

coincides with the following distribution on @B1 �B3=2 :D
@

@x1
C

1
2
x3

@

@x3
�

1
2
x4

@

@x4
;

@

@x2
C

1
2
x4

@

@x3
C

1
2
x3

@

@x4

E
;

where .x1;x2;x3;x4/ is a real coordinate determined by the formula

.z1; z2/D .x1C
p
�1x2;x3C

p
�1x4/:

We define a loop cW Œ0; 2��! @B1 as follows:

c.t/D exp.
p
�1t/:

Take a point t0 2 Œ�1; 1�. It is easy to see that the horizontal lift zct0
.t/ with base point

w D .1; 0; t0; 0/ 2 q�1.1/ is given by

zct0
.t/D

�
cos t; sin t; t0 cos 1

2
t; t0 sin 1

2
t
�
:

Thus, the arc 
 is preserved by the parallel transport along the curve c with respect
to P . Since this parallel transport is a representative of �%0 , this completes the proof of
Lemma 3.3.

The two bisections S0 and S 0
0

intersect only at the origin, but do not intersect trans-
versely. In order to make the two bisections intersect transversely, we will take a
small perturbation of S 0

0
. We first take a smooth function �W R! Œ0; "� satisfying the

following conditions:

(a) �.t/D �.�t/;

(b) �.t/D "2 for all t 2 Œ0; "=2�;

(c) �.t/D 0 for all t 2 Œ";1/;

(d) �3" <
d�

dt
.t/ < 0 for all t 2 Œ"=2; "�.
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We define the subset S 0
0;�
�C2 as follows:

S 00;� D f.z
2; ezC �.jzj2// 2C2

j z 2Cg:

The two subsets S0 and S 0
0;�

intersect at .r2
1
; r1/; .r

2
2
; r2/ 2C2 , where r1; r2 2R are

the real numbers which satisfy the following conditions:

r1 D
�.r2

1
/

"
; r2 D

�.r2
2
/

2� "
:

We can see that S0 intersects S 0
0;�

at both points transversely and positively with
respect to the standard orientation of C2 .

3D Multisections branching at Lefschetz critical points

We will now study the local model around a branched point of a multisection coinciding
with a Lefschetz critical point of the fibration. Such branched points appear exclusively
in Loi and Piergallini’s description of compact Stein surfaces, up to diffeomorphisms,
as total spaces of allowable Lefschetz fibrations over the 2–disk with bounded fibers,
arising as the branched cover of the projection D2 �D2 ! D2 branched along a
positive multisection [38] (also see [2]). Such a multisection, along with the fiber,
carries the entire information one needs to describe the diffeomorphism type of any
compact Stein surface.

We take two points s1; s2 2 Int.†2
0 /. We denote an involution with fixed point set

fs1; s2g by �W †2
0 ! †2

0 . The quotient space †2
0=� is diffeomorphic to the disk †1

0 .
Denote the images of s1 and s2 under the quotient map †2

0 ! †2
0=� Š †

1
0 by s0

1

and s0
2

, respectively. The group Mod@†1
0
.†1

0 I fs
0
1
; s0

2
g/ is an infinite cyclic group. By

Lemma 3.1, the following natural map induced by the quotient map is injective:

�0.C@†2
0
.†2

0 I �//!Mod@†1
0
.†1

0 I fs
0
1; s
0
2g/:

The inclusion map C@†2
0
.†2

0 I �/ ,! DiffC@†2
0
.†2

0 / induces the homomorphism

i W �0.C@†2
0
.†2

0 I �//!Mod@†2
0
.†2

0 /Š Z:

Since this map is surjective, the group �0.C@†2
0
.†2

0 I �// is also an infinite cyclic
group and the map i is an isomorphism. On the other hand, the inclusion map
C@†2

0
.†2

0 I �/ ,! DiffC@†2
0
.†2

0 I fs1; s2g/ also induces a homomorphism

i�W �0.C@†2
0
.†2

0 I �//!Mod@†2
0
.†2

0 I fs1; s2g/:

We denote the forgetful map by

Fs1;s2
W Mod@†2

0
.†2

0 I fs1; s2g/!Mod@†2
0
.†2

0 /:
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Since the composition Fs1;s2
ıi� is equal to i and i is isomorphic, the map i� is injective.

Thus, we can regard the group �0.C@†2
0
.†2

0 I �// Š Mod@†2
0
.†2

0 / as a subgroup of
Mod@†2

0
.†2

0 I fs1; s2g/. Under this identification, the Dehn twist tc 2 Mod@†2
0
.†2

0 /

along the curve parallel to @†2
0 , which is the generator of this group, is regarded as an

element in Mod@†2
0
.†2

0 I fs1; s2g/ described in Figure 2.

s1 s2
c tc

s2 s1

Figure 2: The element tc interchanges s1 and s2 .

We denote by Y � C2 the intersection B2 �B2 \ f
�1.B1/, where Bk is the disk

fz 2C j jzj � kg and f W C2!C is the standard local model of a Lefschetz singularity,
that is, f is defined as f .z1; z2/ D z1z2 . Let f0 be the restriction f jY . Take the
standard bisection �0 D f.z; z/ 2 Y j z 2 B1g of f0 . We define the involution
�W C2!C2 as follows:

�.z1; z2/D .z2; z1/:

The fixed point set of � is equal to �0 . The regular fiber f �1
0
.1/ is the annulus †2

0 .
We take an identification f �1

0
.1/Š†2

0 so that the restriction �jf �1
0
.1/ equals to the

involution �. By taking a horizontal distribution P of the fibration f0jY nf0g which is
along both �0 and @Y , we can regard the monodromy %0 of @B1 as an element of
the group Mod@†2

0
.†2

0 I fs1; s2g/, where fs1; s2g is the intersection �0\f
�1

0
.1/.

Lemma 3.4 Under the identification of f �1
0
.1/ with †2

0 as above, the monodromy
%0 is equal to the Dehn twist tc 2Mod@†2

0
.†2

0 I fs1; s2g/.

Proof We take a horizontal distribution P so that P is preserved by �. The mon-
odromy %0 is contained in the group �0.C@†2

0
.†2

0
; �//�Mod@†2

0
.†2

0 I fs1; s2g/. Fur-
thermore, using the result in [28], it is easy to see that this monodromy is sent to the
Dehn twist tc 2Mod@†2

0
.†2

0 / by Fs1;s2
.

We take a disk neighborhood Di �†
2
0 of the point si which is preserved by �. We put

DDD1tD2 and fix an identification †2
0 nDŠ†4

0 . We also take points ui ;u
0
i 2 @Di

so that �.ui/D u0i . We can define the homomorphism

CapW Mod@†2
0
.†4

0 I fu1;u2g/!Mod@†2
0
.†2

0 I fs1; s2g/

by capping †4
0 by D .
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We take a sufficiently small number " > 0 and put � D exp.
p
�1"/. We define another

bisection �0
0

of f0 as follows:

�00 D f.�z; �
�1z/ 2 Y j z 2 B1g:

Note that �0
0

intersects �0 at the origin transversely. This bisection, together with the
bisection �0 , gives a lift �%0 2Mod@†2

0
.†4

0 I fu1;u2g/ of the monodromy %0 under
the map Cap.

Lemma 3.5 Under a suitable identification †4
0 Š f

�1
0
.1/ n ��0 , the monodromy �%0

is represented by the map described in Figure 3.

s1 s2
c

u0
1 u1

c

u0
2

u2
u0

2 u2
u0

1
u1

Figure 3: The element �%0 interchanges the points u1 and u2 .

Proof The map described in Figure 3 is contained in C@†2
0
.†4

0 ; fu1;u
0
1
;u2;u

0
2
gI �/.

By the same argument as in the proof of Lemma 3.4, we can assume that the element�%0 is contained in the group �0.C@†2
0
.†4

0 ; fu1;u
0
1
;u2;u

0
2
gI �//. It is easy to see that

the following map is a diffeomorphism:

C2=�!C2; Œ.z1; z2/� 7!
�
z1z2;

z1C z2

2

�
:

We identify these spaces via this diffeomorphism. The following diagram commutes:

.C2; �0; �
0
0
/

=�
����! .C2;S0;S

0
0
/

f

??y ??yp

C
id

����! C

where S0 and S 0
0

are the subsets of C2 defined in the previous section (in this case, e

is equal to Re.�/). Thus the monodromy �%0 is mapped to the mapping class described
in Figure 1 by the map

��W �0.C@†2
0
.†4

0 ; fu1;u
0
1;u2;u

0
2gI �//!Mod@†1

0
.†3

0 I fu1;u2g/

induced by =�. On the other hand, we can see that the mapping class described
in Figure 3 is also mapped to that described in Figure 1 by �� . Since � does not
preserve @†2

0 pointwise, the homomorphism �� is injective by Lemma 3.1. Thus the
mapping class in Figure 3 coincides with �%0 .
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3E Capturing multisections via mapping class group factorizations

With all the preliminary results we have obtained in the previous subsections, we are
now ready to prove the main theorem of this section (giving Theorem 1.1):

Theorem 3.6 Let f W X ! S2 be a genus-g Lefschetz fibration with monodromy
factorization

tcl
� � � tc1

D 1:

Let S � X be a genus-g surface with self-intersection m, which is an n–section
of f with k branched points away from Crit.f /, and r branched points at Lefschetz
singularities corresponding to cycles c1; : : : ; cr . Then there exists a lift zci �†

n
g of ci

such that the following holds in Mod.†n
g I fu1; : : : ;ung/:

(1) z�˛k
� � � z�˛1

� t zcl
� � � t ecrC1

� �tcr
� � � �tc1

D t
a1

ı1
� � � t

an

ın
;

where fu1; : : : ;ung is a subset of @†n
g which covers all the elements of �0.@†

n
g /,

z�˛i
is a lift of the half twist along a simple arc ˛i between two points in fu1; : : : ;ung

as described in Figure 1, �tci
is a lift of the Dehn twist tci

as described in Figure 3,
and fı1; : : : ; ıng is a set of simple closed curves parallel to @†n

g . Here the arcs for
z�˛1
; : : : ; z�˛k

and the Dehn twist curves for �tc1
; : : : ; �tcr

should contain all u1; : : : ;un ,
and the integral equalities

g.S/D 1
2
.kC r/� nC 1 and mD�

� nX
iD1

ai

�
C 2kC r

should hold. The connectivity of S implies that the collection of z�˛i
and �tci

act
transitively on the collection of uj . The connectivity of S implies that every uj is
acted on nontrivially by some z�˛i

or �tci
.

Conversely, for any relation in Mod.†n
g I fu1; : : : ;ung/ of the form (1) and satisfying

the conditions above, there exists a genus-g Lefschetz fibration f W X ! S2 with
a connected n–section S � X of genus 1

2
.k C r/ � n C 1 and self-intersection

�
�Pn

iD1 ai

�
C 2kC r , whose monodromy factorization is given by the image of the

factorization on the left hand side of (1) under i�W Mod.†n
g I fu1; : : : ;ung/!Mod.†g/

which is induced by the inclusion i W †n
g ,!†g .

Note that after relabeling the arcs we choose for the monodromy description of f ,
we can always assume that the first r cycles are the ones corresponding to those at
which S is branched.

The reader might find it illuminating to look at an example before we move on to
proving our theorem:
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z
c1

ı1

d1

d2 d3

c2 c3

ı2

u1

˛2

y2

y1
˛1

u2

Figure 4: Dehn twist curves c1; c2; c3; d1; d2; d3; z;y1;y2 and arc twist
curves ˛1; ˛2 in †2

2 with framed boundary

Example 3.7 A monodromy factorization of a genus-2 Lefschetz fibration with a
2–section we will produce in Section 5C is the following:

t2
ı1

t3
ı2
D .td3

td2
td1
/2ty2
z�˛2

tz ty1
z�˛1

tt�1
c1

t�2
c3
.c2/

tt�1
c3
.c2/
.tc1

tc2
tc3
/2;

in Mod.†2
2 I fu1;u2g/, where the Dehn twist curves ci ; di ;yj ; z , the arcs j̨ for the

arc twists, the two boundary components ıi and the marked points ui on them are
all given in Figure 4. (One can of course conjugate each z�˛i

all the way to the left
to put it into the above “standard form”.) Since u1 and u2 are connected by �˛i

,
this gives a connected 2–section S of genus .k=2/� nC 1D 0 and self-intersection
�
Pn

iD1 ai C 2k D�1; so it is an exceptional sphere.

Proof of Theorem 3.6 For a given genus-g Lefschetz fibration f W X ! S2 with an
n–section S and its monodromy factorization tcl

� � � tc1
D 1, let 
1; : : : ; 
l be reference

paths from a regular value q0 2 S2 which gives the factorization tcl
� � � tc1

D 1. We
take reference paths ˛1; : : : ; ˛k satisfying the following properties:

� ˛i connects q0 with the image of a branched point of S away from Crit.f /;

� 
1; : : : ; 
l ; ˛1; : : : ; ˛k appear in this order when we go around q0 counterclock-
wise.

We take a perturbation S 0 of S so that the pair .S;S 0/ coincides with either of the pairs
.S0;S

0
0
/ or .�0; �

0
0
/ in a small coordinate neighborhood of each branched point of S .

This perturbation gives a lift of monodromies of f to the group Mod.†n
g I fu1; : : : ;ung/.

By Lemma 3.3, local monodromies obtained from paths ˛i are lifts of half twists
described in Figure 1. On the other hand, by Lemma 3.5, a local monodromy obtained
from a path 
i (i 2 f1; : : : ; rg) is a lift of the Dehn twist tci

described in Figure 3.
Thus we can obtain a factorization in Theorem 3.6.
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Using the observation following the proof of Lemma 3.3 and the fact that �0 inter-
sects �0

0
at the origin transversely, it is easy to verify that this factorization satisfies

the condition on the self-intersection number of S .

Conversely, for a given lift of a factorization given in Theorem 3.6, we can prescribe a
genus-g Lefschetz fibration f W X !S2 and an n–section S of f with desired condi-
tions by pasting local models given in the present section according to the factorization.

There is a correspondence between a multisection S and that of a graph � with
vertices corresponding to ui , and with edges between ui and ui0 corresponding to
half twists z�

j̨
or Dehn twists �tcj

in the relation (1) interchanging them. The Euler
characteristic of S is then given by 2v � e , for v the number of vertices and e the
number of edges of � . Here S is connected if and only if the graph � is. In this case,
we have g.S/D 1

2
.kC r/� nC 1.

Per the last paragraph of the proof above, the monodromy factorization in Theorem 3.6
can be generalized to disconnected multisections in a straightforward way — see
Section 4A. A sample calculation of a monodromy factorization of a Lefschetz fibration
with its multisections is given in the Appendix, and many more examples can be found
in Sections 4–6.

Remark 3.8 After a small modification of the proof above we can similarly obtain
a monodromy factorization for a not necessarily positive multisection, where each
negative branched point away from Crit.f / contributes �2 and each branched point
at a negative critical point contributes �1 to the total count of the self-intersection of
the multisection.

Remark 3.9 We shall note that, although multisections going through Lefschetz
critical points are of particular interest in certain contexts (for instance for allowable
Lefschetz fibrations on Stein surfaces), it is in fact always possible to perturb any
given multisection of a Lefschetz fibration so as to obtain one which is branched
completely away from the Lefschetz critical points. This can be achieved by the
following perturbation around each branched point on a Lefschetz singularity:

�" D f.zC "; z� "/ 2C2
j z 2Cg;

where " is a sufficiently small positive number. In this perturbation, a branched point
on a Lefschetz singularity is substituted for a positive branched point. Indeed, we
can easily verify the following relation in the group Mod@†2

0
.†4

0 I fu1;u2g/ (using the
Alexander method [15, Proposition 2.8], for example):

(2) �tc D t�1
ı tc0�
 ;

Geometry & Topology, Volume 20 (2016)



Multisections of Lefschetz fibrations and topology of symplectic 4–manifolds 2357

u1

c0



u2

Figure 5: Simple closed curves and paths in †4
0

where ı is a simple closed curve parallel to the boundary component containing u2 , c0

is a simple closed curve described in Figure 5 and �
 is a lift of a half twist preserving
the path 
 in Figure 5.

Using Theorem 3.6, we can then make a multisection avoiding Lefschetz singularities
by substituting a lift ztc in a lift of a factorization (1) of the right hand side of (2).

Remark 3.10 (Hurwitz equivalence for Lefschetz fibrations with multisections) It
is well-known that for g � 2, there is a one-to-one correspondence between genus-g
Lefschetz fibrations up to isomorphisms and monodromy factorizations in Mod.†g/ up
to Hurwitz moves and global conjugations. It is possible to extend this correspondence
to our setting, by considering positive factorizations in the framed mapping class
group Mod.†n

g I fu1; : : : ;ung/ up to usual Hurwitz moves, global conjugations that
are allowed to swap boundary components, and an additional move which compensates
for the ambiguity in boundary framings. A detailed study will be given in [8].

4 Lefschetz fibrations on symplectic Calabi–Yau 4–manifolds

Symplectic 4–manifolds of negative Kodaira dimension are classified up to sym-
plectomorphisms, which are precisely the rational and ruled surfaces [34]. The next
compelling target has been the symplectic 4–manifolds of Kodaira dimension zero,
which are analogues of the Calabi–Yau surfaces that have torsion canonical class [36].
With a slight abuse of language, we will thus call .X; !/ with � D 0 a symplectic
Calabi–Yau, referring to its minimal model having a torsion canonical class. It has been
shown by Li, and independently by Bauer [35; 36; 4], that the rational homology type
of any minimal symplectic Calabi–Yau 4–manifold is that of either a torus bundle over
a torus, the K3 surface, or the Enriques surface. In particular, a folklore conjecture
states that a symplectic Calabi–Yau with b1 D 0 is diffeomorphic to a (blow-up of)
either the Enriques surface or the K3 surface.

With this conjecture in mind, below we will determine the defining properties for a
Lefschetz pencil/fibration to be on a (blow-up of) a symplectic Calabi–Yau 4–manifold,
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essentially relying on Taubes’ seminal work [53; 54]. We will then construct two model
examples, a genus-3 Lefschetz pencil on a symplectic Calabi–Yau K3 surface, and
a genus-2 pencil on a symplectic Calabi–Yau Enriques surface. (That is, these are
symplectic Calabi–Yaus homeomorphic to K3 and Enriques surfaces, respectively.)

4A Characterizing Lefschetz fibrations on symplectic Calabi–Yaus

Fibers of a symplectic Lefschetz fibration .X; !; f / are J –holomorphic with respect
to any almost complex structure J –compatible with ! . It follows from Taubes’
seminal work on the correspondence between Gromov and Seiberg–Witten invariants
on symplectic 4–manifolds with bC.X / > 1 that exceptional classes ej in H2.X /

are represented by disjoint J –holomorphic .�1/–spheres Sj [53; 54], and by the
work of Li and Liu [37], the same holds even when bC.X /D 1, as long as X is not
a rational or ruled surface. We then conclude from the positivity of intersections for
J –holomorphic curves that each Sj is an nj –section, intersecting the genus g � 2

fiber F positively at exactly nj D S �F � 1 points. Moreover, in this case, we can use
the Seiberg–Witten adjunction inequality to show that

P
nj D

�P
Sj

�
�F � 2g� 2.

Note that this can fail to be true only for rational and ruled surfaces; a Lefschetz pencil
on a rational or ruled surface can have more than 2g� 2 base points. We will show
that the equality is sharp precisely for Lefschetz fibrations on symplectic Calabi–Yaus.

We can now characterize Lefschetz fibrations on minimal symplectic Calabi–Yau
4–manifolds and their blow-ups, using Sato’s work in [46]:

Theorem 4.1 Let .X; f / be a genus-g Lefschetz fibration with g � 2, and X be
neither rational nor ruled. Then, there exists a symplectic form ! on X compatible
with f such that .X; !/ is a (blow-up of) a symplectic Calabi–Yau 4–manifold, if and
only if there is a disjoint collection of .�1/–spheres that are nj –sections of .X; f /
such that

P
j nj D 2g� 2.

Note that if X is minimal, then .X; !; f / can be a symplectic Calabi–Yau only if the
fiber genus is 1, by the adjunction formula. We can thus assume that X is not minimal
and g � 2.

Proof In this case, .X; !/ should be an m� 1 times blow-up of a minimal symplectic
Calabi–Yau, so c1.X; !/ is Poincaré dual to

Pm
jD1 ej , where ej are the exceptional

classes. We have m disjoint nj –sections Sj , representing the exceptional classes ej .
Then the adjunction formula for the symplectic fiber dictates thatX

j

nj D

�X
Sj

�
�F DKX �F D 2g� 2�F2

D 2g� 2:
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Conversely, it is shown by Sato [46, Theorem 5.5.] that for a genus g � 2 Lefschetz
fibration on a nonminimal 4–manifold .X; f /, where X is not rational or ruled, if
the maximal collection of exceptional classes ej intersect the fiber exactly at 2g� 2

times, then c1.X; !/ is Poincaré dual to
P

ej . Although there is an oversight in this
observation, which for instance contradicts with the case of Lefschetz fibrations on
blow-ups of the Enriques surface (such examples for homotopy Enriques surfaces
are given in the later sections), Sato’s proof in [46], which is obtained by a thorough
analysis of intersections between pseudoholomorphic curves, goes through for a rational
homology class, ie modulo torsion. With this corrected statement in mind, blowing
down all ej yields a minimal symplectic model for .X; !/ with torsion canonical
class.

We will thus call .X; f / a genus-g symplectic Calabi–Yau Lefschetz fibration if X

is not rational or ruled, and there is a disjoint collection of .�1/–spheres that are
nj –sections of .X; f / with

P
j nj D 2g� 2. Note that not every symplectic Calabi–

Yau Lefschetz fibration is a blow-up of a Lefschetz pencil on a minimal symplectic
Calabi–Yau, the examples of which we will provide in Sections 4–6.

Let W be a factorization of the multitwist t
a1

ı1
� � � t

an

ın
in Mod.†2g�2

g I fu1; : : : ;ung/:

(3) z�˛k
� � � z�˛1

� t zcl
� � � tzc1

D t
a1

ı1
� � � t

an

ın
;

for n D 2g � 2. Recall that by Remark 3.9 we can simplify the right-hand side
as above so that there are no �tcj

. Consider the associated graph � D �W whose
vertices correspond to ui and edges to half twists z�

j̨
interchanging them. After

relabeling ıj if needed, we can assume that the connected components �1; : : : ; �s of �
have vertices fu1; : : : ;uj1

g; fuj1C1; : : : ;uj2
g; : : : ; fujs�1C1; : : : ;ung, respectively, for

a subsequence j1; : : : ; js�1 of 1; : : : ; n. Let kt be the corresponding number of z�
j̨

involved in the points ui in each �t . We impose the following additional conditions:

� 2vt � et D 2 for each �t , and

� �
�Pjt

jDjt�1C1
aj

�
C 2kt D�1 for every t D 1; : : : ; s .

Observe that these two conditions translate to each connected component of the cor-
responding multisection to be a 2–sphere and of self-intersection �1, respectively.
Isolated vertices of �W amount to exceptional sections, which can be blown down to
a pencil.

Let G.W / be the quotient of �1.†g/ by N.c1; : : : ; cl/, the subgroup normally gen-
erated by ci , and denote by b1.W / the first Betti number of G . Let �.W / be the
signature of the image of the positive word tc1

� � � tcl
in Mod.†g/ under the boundary
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2360 R İnanç Baykur and Kenta Hayano

capping homomorphism, and e.W /D 4�4gC l be the associated Euler characteristic.
We can then set bC.W /D 1

2
.e.W /C 2b1.W /� 2C �.W //.

We obtain a characterization of monodromy factorizations of symplectic Calabi–Yau
Lefschetz fibrations:

Corollary 4.2 Let W be a factorization in the framed mapping class group for g � 2,
such that either G.W / is not a surface group, or G.W /D 1 but bC.W /¤ 1. If the
associated graph �W satisfies the properties listed above and, in addition, has at least
one isolated vertex, then the reduced word tcl

� � � tc1
is a monodromy factorization of a

symplectic Calabi–Yau Lefschetz pencil. Conversely, on any symplectic Calabi–Yau
4–manifold, one can find a Lefschetz pencil with a monodromy lift like such W .

As demonstrated by our examples in Section 5, one can also have SCY Lefschetz
fibrations with no exceptional sections. The first direction of the corollary can be
extended to include such examples, too, provided a little care is given to the calculation
of G.W / (and thus b1.W /) if no other lifts with pure sections are known.

Motivated by the conjectural smooth classification of symplectic Calabi–Yau 4–
manifolds, we can formulate a parallel problem for groups that can possibly be
fundamental groups of SCYs [22]:

Question 4.3 (symplectic Calabi–Yau groups via mapping class factorizations) For
any positive factorization W of the boundary multitwist as in the corollary, is it always
the case that G.W /D 1, Z=2Z, or an infrasolvmanifold1 fundamental group?

A negative answer to this question amounts to the existence of new symplectic Calabi–
Yaus. Whereas for a positive answer, since it suffices to work with pencils on minimal
SCYs, one can restrict to positive factorizations W in Mod@†2g�2

g
.†2g�2

g / with no �˛i

on the left and all ai D 1 on the right side of the Equality (3). Thus, understanding all
possible SCY groups is equivalent to understanding G.W /, where W runs through all
possible positive Dehn twist factorizations of the boundary multitwist tı1

� � � tı2g�2
.

However, constructing mapping class group factorizations of the boundary multitwist in
Mod.†2g�2

g IU / is a rather challenging task in general. The next two subsections will
demonstrate two successful cases: we will construct Lefschetz pencils on symplectic
Calabi–Yau K3 and Enriques surfaces with explicit monodromy factorizations, respec-
tively. These will serve as sources of various interesting fibrations we will derive from
them via surgical operations in the later sections of our paper. What is of key importance

1which covers all other known SCYs with b1 ¤ 0 [22]
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here is the special configurations of Lefschetz vanishing cycles in the factorizations
we get, and to produce them we will appeal to several symmetries of surfaces and
lift better known mapping class relations on spheres or tori with boundaries to higher
genera surfaces.

4B A genus-3 pencil on a symplectic Calabi–Yau K3 surface

We now construct an explicit monodromy for a genus-3 Lefschetz fibration with exactly
4 disjoint .�1/–sphere sections on a 4 times blown-up symplectic Calabi–Yau K3
surface, thus a pencil on a symplectic Calabi–Yau 4–manifold homeomorphic to the
K3 surface. The equivalent monodromy factorization we derive at the end will be used
in further constructions, and is the main motivation for us to go after this particular
factorization.

Lemma 4.4 The following relation holds in Mod@†4
3
.†4

3 /:

(4) .tc1
tc7

tc3
tc5

tc2
tc6

ta1
ta2

tb1
tb2

tc1
tc7

tc3
tc5

tb1
tb2

tc2
tc6
/2 D tı1

tı2
tı3

tı4
;

where ai ; bj ; ck ; ıl �†
4
3 are simple closed curves shown in Figure 6.

c1 c2
c3

ı1

ı2

ı3

ı4

c5 c6
c7

a1

a2

b1 b2

Figure 6: Simple closed curves in †4
3 . The curve ıi is parallel to a boundary component.

Proof Let � be an involution on †4
3 as shown in Figure 7. The quotient space †4

3=�

is diffeomorphic to the surface †4
1 . We describe the images of curves under =� by

hatted symbols. Using the relation given in [32, Section 3.4] we obtain the following

�

=� yc2
ya1

yc1
ya2

yc3

Figure 7: The quotient map by an involution �
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relation in Mod@†4
1
.†4

1 /:

(5) .tyc1
tyc3

tyc2
tya1

tya2
tyc2
/2 D tyı1

tyı2
tyı3

tyı4

() .tyc1
tyc3

tyc2
tya1

tya2
tyc2

tyc1
tyc3

tyc2
tya1

tya2
tyc2
/2 D t2

yı1

t2
yı2

t2
yı3

t2
yı4

() .tyc1
tyc3

tyc2
t2
ya1

t2
ya2

tyb1
tyc1

tyc3
tyb1

tyc2
/2 D t2

yı1

t2
yı2

t2
yı3

t2
yı4

;

where the last relation holds since tyb1
is equal to .tya1

tya2
/�1tyc2

tya1
tya2

. The quotient
map =�W †4

3 !†4
1 induces the following homomorphism:

��W �0.C@†4
3
.†4

3 I�//!Mod@†4
1
.†4

1 /:

By Lemma 3.1 this homomorphism is injective. Furthermore it is not hard to see that
the following equalities hold:

tyc1
D ��.tc1

tc7
/; tyc2

D ��.tc2
tc6
/; tyc3

D ��.tc3
tc5
/;

t2
yai
D ��.tai

/; tyb1
D ��.tb1

tb2
/; t2

yıj
D ��.tıj /:

Thus we can obtain the relation (4) using a homomorphism

�0.C@†4
3
.†4

3 I�//!Mod@†4
3
.†4

3 /

induced by the inclusion C@†4
3
.†4

3 I�/ ,! DiffC@†4
3
.†4

3 /. This completes the proof of
Lemma 4.4.

The relation (4) gives rise to a genus-3 Lefschetz fibration .X; f / over the 2–sphere
with four disjoint .�1/–sphere sections.

Proposition 4.5 .X; f / is a genus-3 symplectic Calabi–Yau Lefschetz fibration,
where the minimal model of X is homeomorphic to a K3 surface.

Proof The topological invariants of X can be calculated using the monodromy
factorization. The Euler characteristic of X is the easiest to derive from e.X / D
4 � 4g Cm D 28, where g D 3 is the genus of the fibration and m D 36 is the
number of critical points. On the other hand, as the fibration f W X ! S2 has a section,
�1.X / Š �1.†3/=C , where C is the normal subgroup of �1.†3/ generated by the
vanishing cycles of f . The subcollection c1; c2; c5; c6; c7; b1 of vanishing cycles of f ,
taken with base points on the fiber in a straightforward fashion, generates the group
�1.†3/. It follows that C D �1.†3/, and in turn, �1.X /D 1.

The signature calculation is more involved, and will constitute the rest of the proof. Note
that if we knew bC.X / > 1 at this point (or simply that X was not a rational surface)
then Theorem 4.1 would imply that .X; f / is a symplectic Calabi–Yau Lefschetz
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fibration which is a 4 times blow-up of its minimal model. Since it should then have a
minimal model which has the rational type of K3 surface, by Freedman’s topological
classification, the minimal model of X should be homeomorphic to K3. However, we
will be able to derive the simple, yet essential conclusion bC.X / > 1 after coupling
our signature calculation to follow with our knowledge of e.X / and vanishing b1.X /.

Each Dehn twist on the left hand side of (4) corresponds to a Lefschetz singularity of f .
In particular there are two pairs of consecutive critical values of f corresponding to
the elements ta1

ta2
. For each of the pairs we take a disk containing them which is away

from the other critical values. We denote these disks by D1;D2 � S2 and assume that
D1 and D2 are disjoint. We also take disk neighborhoods S1; : : : ;S32 � S2 of the
other critical values of f which are mutually disjoint and away from D1[D2 . Let
D0 � S2 be a small disk away from all the disks above. We decompose the surface
S2n

�
Int.D0/ t

F
i Int.Si/ t

F
j Int.Dj /

�
into pants P1; : : : ;P33 (which are surfaces

diffeomorphic to †3
0 ) as follows:

� @P1 contains @S1 and @S2 . We denote the circle @P1 n .@S1[ @S2/ by L1 .

� @Pi contains Li�1 and @SiC1 for each i D 2; : : : ; 31. We denote the circle
@Pi n .Li�1[ @SiC1/ by Li .

� @Pj contains Lj�1 and @Dj�31 for j D 32 and 33. We denote the circle
@Pj n .Lj�1[ @Dj�31/ by Lj . We take the pants P33 so that L33 D @D0 .

The signatures of f �1.D0/ and f �1.Si/ are equal to �1 and 0, respectively, which
can be easily calculated from the intersection forms of their respective Kirby diagrams,
or by invoking the algorithm of Ozbagci in [43]. We can thus deduce the following
equality by the Novikov additivity:

�.X /D �

�
f �1

�
S2
n

�
Int.D0/ t

G
i

Int.Si/ t
G
j

Int.Dj /

���

C �.f �1.D0//C

32X
iD1

�.f �1.Si//C

2X
jD1

�.f �1.Dj //

D �

�
f �1

�
S2
n

�G
i

Int.Si/ t
G
j

Int.Dj /

���
� 2

D

33X
iD1

�.f �1.Pi//� 2:

Let � be an involution of †3 shown in Figure 8. We denote by H3 the image
of the homomorphism �1.C.†3I �// ! Mod.†3/ induced by the inclusion map
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�

c1 c2
c3 c5 c6

c7

Figure 8: The involution �

C.†gI �/ ,! DiffC.†3/. Let �3W H3! Z=7 be a class function given in [13, Propo-
sition 3.1]. For a simple closed curve L � S2 nCrit.f / we denote the monodromy
along L by �.L/, which is a conjugacy class of an element in Mod.†3/. By the
configuration of vanishing cycles of f we can regard �.@Si/, �.@Dj / and �.Lk/ as
conjugacy classes in H3 . We obtain the following equality by [42, Satz 1] and [13,
Proposition 3.1]:

�.X /D �3.�.L1//��3.�.@S1//��3.�.@S2//

C

31X
iD2

�
�3.�.Li//��3.�.@SiC1//��3.�.Li�1//

�
C

33X
jD32

�
�3.�.Lj //��3.�.@Dj�31//��3.�.Lj�1//

�
� 2

D�

32X
iD1

�3.�.@Si//�

2X
jD1

�3.�.@Dj //C�3.�.L33//� 2:

Since the curve L33 is equal to @D0 the monodromy �.L33/ is trivial. In particular
�3.�.L33// is equal to 0. The monodromy �.@Si/ is a Dehn twist along a nonsepa-
rating simple closed curve in †3 . Thus the value �3.�.@Si// is equal to 4

7
(see [13,

Lemma 3.3]). Since the monodromy �.@D1/ is equal to �.@D2/, the value �3.�.@D1//

is equal to �3.�.@D2//.

The manifold S2 � T 2 # 8CP2 admits a genus-3 Lefschetz fibration f with the
following properties (see [31]):

� f has 16 Lefschetz singularities with nonseparating vanishing cycles;

� a monodromy factorization of f contains four pairs of Dehn twists along
bounding pairs (a bounding pair of curves in a closed surface † is a pair
of nonseparating simple closed curves such that the complement of the union of
them is disconnected);

� the other eight vanishing cycles are preserved by the involution �.
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Since the function �3 is preserved by conjugation and a bounding pair in †3 is unique
up to conjugation, we obtain the following equality (using the same method as above):

�8D �.S2
�T 2 # 8CP2/D�8 � 4

7
� 4�3.�.@D1//� 4

D) �3.�.@D1//D�
1
4

�
�8C 4C 32

7

�
D�

1
7
:

As a result we can calculate the signature of X as

�.X /D�32 � 4
7
� 2 �

�
�

1
7

�
� 2D�20:

We can now use

bC.X /�b�.X /D �.X /D�20 and 2�2b1.X /CbC.X /Cb�.X /D e.X /D 28;

where b1.X /D 0, to conclude that bC.X /D 3. Hence, per our discussion preceding
the signature calculation, .X; f / is a symplectic Calabi–Yau Lefschetz fibration, where
the minimal model of X is homeomorphic to a K3 surface.

4C A genus-2 pencil on a symplectic Calabi–Yau Enriques surface

We now construct a genus-2 Lefschetz fibration with exactly two disjoint .�1/–sphere
sections on a 2 times blown-up symplectic Calabi–Yau Enriques surface, that is, a
genus-2 Lefschetz pencil on a symplectic Calabi–Yau 4–manifold homeomorphic to
the Enriques surface.

Lemma 4.6 The following relation holds in Mod@†2
2
.†2

2 /:

.td4
td3

td2
/2tdC td� D tı1

tı2
;

where d�; ıi �†
2
2 are simple closed curves shown in Figure 9.

ı1

d2
d4

d3

ı2

dC

d�

Figure 9: Simple closed curves in †2
2

Proof We regard †4
2 as a subsurface of †2

2 in the obvious way. We take simple closed
curves d1; �i �†

4
2 , a point ui 2 @†

4
2 and involutions � and � as shown in Figure 10.

Denote a simple closed curve in †4
2 parallel to the component of @†4

2 containing ui

by ıi and fixed points of � (resp. �) by vi (resp. wi ). We add a hat to any symbols to
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u1

u4 u2

u3

�

�1

�2

d1
=�

yu1 v1

yd1

yu2
v2

� =�

yyu1 yv1

yyd1
yy�1

w1 w4

Figure 10: Symmetries on surfaces

describe the image of quotient maps. Let ˛i �†
1
0 n fw1; : : : ; w4g be a loop with the

base point yv1 obtained by connecting yydi with a counterclockwise circle around wi .
The following equality holds in Mod@†1

0
.†1

0 ; fw1; : : : ; w4g/:

Push.˛4/Push.˛3/Push.˛2/Push.˛1/D t�1
yy�1

tyyı1
:

By Lemma 3.1, the following homomorphism is injective:

��W �0.C@†2
1
.†2

1 I �//!Mod@†1
0
.†1

0 I fw1; : : : ; w4g/:

It is easy to verify (by using Alexander’s lemma, for example) that the following
equalities hold:

Push.˛i/D ��.� ydi
/; t yy�1

D ��.ty�1
ty�2
/; tyyı1

D ��.tyı1
tyı2
/:

Thus we obtain the following relation in �0.C@†2
1
.†2

1 I �//:

(6) � yd4
� yd3
� yd2
� yd1
D t�1
y�1

t�1
y�2

tyı1
tyı2
:

Using the inclusion C@†2
1
.†2

1 I �/ ,!DiffC@†2
1
.†2

1 I fv1; v2g/ we obtain the same relation
as (6) in Mod@†2

1
.†2

1 I fv1; v2g/.

The involution � induces the following homomorphism which is injective by Lemma 3.1:

��W �0.C@†4
2
.†4

2 I �//!Mod@†2
1
.†2

1 I fv1; v2g/:

It is easy to see that the images of the mapping classes tdi
; t
�i

and tıi
tıiC2

under the
homomorphism �� are � ydi

, t2
y�i

and tyıi
, respectively. Thus we obtain the following

relation in �0.C@†4
2
.†4

2 I �//:

(7) .td4
td3

td2
td1
/2 D t�1

�1
t�1
�2

t2
ı1

t2
ı2

t2
ı3

t2
ı4

() .td4
td3

td2
/2..td4

td3
td2
/�1td1

.td4
td3

td2
//td1

D t�1
�1

t�1
�2

t2
ı1

t2
ı2

t2
ı3

t2
ı4
:

We can obtain the same relation as (7) via the inclusion C@†4
2
.†4

2 I �/ ,!DiffC@†4
2
.†4

2 /.
Let C W Mod@†4

2
.†4

2 / ! Mod@†2
2
.†2

2 / be a homomorphism obtained by capping
the components of @†4

2 containing u3 and u4 with punctured disks. It is easy to
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see that the image of the left (resp. right) side of the equality (7) under C is equal to
the left (resp. right) side of the equality in the statement. This completes the proof of
Lemma 4.6.

Let c2; c3; c4 �†
2
2 be simple closed curves shown in Figure 11.

c2
c3

c4

Figure 11: Simple closed curves in †2
2

By the chain relation (see [15, Proposition 4.12]) and Lemma 4.6 we obtain the
following relation in Mod@†2

2
.†2

2 /:

.td4
td3

td2
/2.tc2

tc3
tc4
/4 D tı1

tı2
:

This relation gives rise to a genus-2 Lefschetz fibration hW Y ! S2 with two .�1/–
sphere sections.

Proposition 4.7 .Y; h/ is a genus-2 symplectic Calabi–Yau Lefschetz fibration, where
the minimal model of Y is homeomorphic to an Enriques surface.

Proof Since h has 18 Lefschetz singularities, e.Y /D 14. As the genus-2 mapping
class group is hyperelliptic, we can also calculate �.Y / easily by using Matsumoto’s
signature formula [40, Theorem 3.3(2), Proposition 3.6] as

�.Y /D 16
�
�

3
5

�
C 2

�
�

1
5

�
D�10:

The calculation that is more involved this time is that of �1.Y /, since the vanishing
cycles of .Y; h/ do not kill all the generators of �1.†2/, the fundamental group of
the fiber. To calculate �1.Y /, let us take oriented based loops ˛i and ˇi in †2

as shown in Figure 12. We also use the symbols ˛i and ˇi to represent the ho-
motopy classes of each loop. The fundamental group �1.†2/ has the presentation
h˛1; ˇ1; ˛2; ˇ2 j Œ˛1; ˇ1�Œˇ2; ˛2�i. The curves c2; c3 and c4 are homotopic to the

ˇ1 ˇ2

˛1 ˛2

Figure 12: Generators of �1.†2/
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curves ˇ1; ˛1˛2 and ˇ2 , respectively, where ˛2 is the based loop ˛2 with the op-
posite orientation. It is easy to see that the curves d2; d3 and d4 are homotopic to
˛1ˇ1ˇ2˛2; ˛1ˇ2˛2ˇ2 and Œ˛1; ˇ1�, respectively. Since the fibration h has a section
the fundamental group of Y is calculated as follows:

�1.Y /

Š �1.†2/=hc2; c3; c4; d2; d3; d4i

Š h˛1; ˇ1; ˛2; ˇ2 j Œ˛1; ˇ1�Œˇ2; ˛2�; ˇ1; ˛1˛2; ˇ2; ˛1ˇ1ˇ2˛2; ˛1ˇ2˛2ˇ2; Œ˛1; ˇ1�i

Š h˛1; ˛2 j ˛1˛2; ˛1˛2i

Š h˛ j ˛2
i Š Z=2Z:

Now, since Y is not rational or ruled, it is a symplectic Calabi–Yau, and has two disjoint
exceptional spheres. Blowing them down, we arrive at the minimal symplectic Y 0 .
Since its signature is not divisible by 16, w2.Y

0/ does not vanish. It is easily seen that
the universal cover zY 0 of Y 0 has a torsion canonical class, and is trivial since H 2. zY 0/

has no torsion. Since the modulo 2 reduction of the canonical class coincides with
the second Stiefel–Whitney class, w2. zY 0/ vanishes. Thus, Y 0 has the same w2 –type
[26] as that of the Enriques surface. By [27, Theorem C], we conclude that Y 0 is
homeomorphic to the Enriques surface.

As we are unable to detect whether the total spaces of our pencils are diffeomorphic to
the K3 and the Enriques surfaces, we finish by highlighting this question:

Question 4.8 Are the symplectic Calabi–Yau manifolds X and Y we have constructed
above diffeomorphic to blow-ups of the K3 and the Enriques surfaces, respectively?

5 Fiber sum indecomposability and Stipsicz’s conjecture

A common way of constructing new Lefschetz fibrations from given ones is the fiber sum
operation, defined as follows: Let .Xi ; fi/, i D 1; 2, be genus-g Lefschetz fibrations
with regular fiber F . The fiber sum .X1; f1/ #F;ˆ .X2; f2/ is a genus-g Lefschetz
fibration obtained by removing a fibered tubular neighborhood of a regular fiber from
each .Xi ; fi/ and then identifying the resulting boundaries via a fiber-preserving,
orientation-reversing diffeomorphism ˆ. In terms of monodromy factorizations, this
translates to a monodromy factorization with a proper subfactorization of the identity
in the mapping class group of F . A Lefschetz fibration .X; f / is called fiber sum
indecomposable (or indecomposable in short) if it cannot be expressed as a fiber sum
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of any two nontrivial Lefschetz fibrations. These can be regarded as prime building
blocks of Lefschetz fibrations.

Stipsicz in [51], and Smith in [49] independently proved that Lefschetz fibrations
admitting .�1/–sphere sections are fiber sum indecomposable. Moreover, Stipsicz
conjectured in the same work that the converse is also true, that is, every fiber sum
indecomposable Lefschetz fibration contains a .�1/–sphere section, an affirmative
answer to which would suggest blow-ups of Lefschetz pencils as the elementary building
blocks of Lefschetz fibrations through fiber sums. However, Sato showed that a genus-2
Lefschetz fibration constructed by Auroux on a once blown-up minimal symplectic 4–
manifold provided a counterexample to this conjecture, by showing that the exceptional
class could only be represented by a 2–section of this fibration [45].

Here we will show that Auroux’s genus-2 fibration is not a mere exception, by con-
structing further counterexamples to Stipsicz’s conjecture via explicit monodromy
factorizations of Lefschetz fibrations with their multisections. To be able to detect
how all exceptional classes lie with respect to a Lefschetz fibration .X; f / (and that
none is a section), we will work with Lefschetz fibrations on blow-ups of symplectic
Calabi–Yau 4–manifolds, which are the perfect fit to our purposes because of two
reasons: any symplectic Calabi–Yau .X; f / is fiber sum indecomposable ([7; 55]),
and, as we have reviewed earlier, each 2–sphere Sj representing an exceptional class
is an sj –section of .X; f /, where the inequality

P
sj D

�P
Sj

�
�F � 2g� 2 in this

case is sharp. The strategy of our proof then boils down to constructing an explicit
monodromy factorization for a symplectic Calabi–Yau .X; f / detecting all exceptional
multisections, and then applying monodromy substitutions which turn all exceptional
classes to sj –sections with sj � 2 for all j . This monodromy substitution comes from
a generalization of the lantern relation to the framed mapping class group, which we
present next.

5A A lantern relation for multisections

We generalize the lantern relation to that in the mapping class group with commutative
boundary components:

Lemma 5.1 (braiding lantern relation) Let a; b; c; d; ı1; ı2 �†
6
0 be simple closed

curves parallel to boundary components. Denote the boundary components parallel
to ıi by Si . Let x � †6

0 be a simple closed curve and y; z � †6
0 pairs of arcs,

where x;y and z become simple closed curves in the usual lantern relation when
we cap off S1 and S2 by disks (see Figure 13). The following relation holds in
Mod@†6

0
n.S1tS2/.†

6
0 I fu1;u2g/:

ztz tx zty D tatbtc td tı2
:
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a

b c

d

u0
1

u1
y

x

y

z z

ı1

u0
2

u2

ı2

Figure 13: Curves in †6
0

Proof Let � be an involution of †6
0 defined as the 180–degree rotation as shown in

Figure 14.

�

w
=� �

ya

yb

yı1
yu1

yw

yx

yy

yı2

yu2

=�

yya

yyı1

yyy

v1 yyx

yyw

yyu1

v2

Figure 14: The quotient map =�W †6
0 !†6

0=�Š†
4
0

The quotient space †6
0=� is homeomorphic to the surface †4

0 . We take a pair of arcs w
in †6

0 as shown in Figure 14. Let yw � †4
0 be the image of w under the quotient

map =�. We define other symbols in the same way (see Figure 14).

We further take an involution � on †4
0 as shown in Figure 14. The quotient space †4

0=�

is homeomorphic to the surface †2
0 . Denote the image of the fixed points of � under

the quotient map =�W †4
0!†2

0 by v1; v2 . We use double-hatted symbols to describe
images of curves and arcs in †4

0 under the map =�; see Figure 14. We denote by yyS the
boundary component of †2

0 parallel to the curve yyı1 . Let Y and W be simple closed
curves in †2

0 which bound regular neighborhoods of the unions yyy [ yyS and yyw [ yyS ,
respectively, and X a simple closed curve which bounds the arc yyx . By the lantern
relation [15, Proposition 5.1], we obtain the following relation in Mod@†2

0
.†2

0 I v1; v2/:

tW tX tY D tyya tyyı1
:(8)

Geometry & Topology, Volume 20 (2016)



Multisections of Lefschetz fibrations and topology of symplectic 4–manifolds 2371

Consider the following homomorphism induced by the quotient map =�W †4
0 !†2

0 :

��W �0.C@†4
0
n. yS1tyS2/.†

4
0 I �//!Mod@†2

0
.†2

0 I v1; v2/:

By Lemma 3.1 this homomorphism is injective. Since the paths yy; yw and a loop yx are
invariant under �, we can regard �yy ; � yw and tyx as elements in �0.C@†4

0
n. yS1tyS2/.†

4
0 I �//,

where �yy (resp. � yw ) is the half twist along yy (resp. yw ) interchanging the boundary
components yS1 and yS2 . It is not hard to see (by using the Alexander method [15,
Section 2.3], for example) that the following equalities hold:

��.�yy/D tY ; ��.� yw/D tW ; ��.t
2
yx
/D tX ; ��.tyatyb/D tyya ; ��.tyı1

tyı2
/D tyyı1

:

Thus we obtain the following relation in �0.C@†4
0
n. yS1tyS2/.†

4
0 I �// from the relation (8):

(9) � ywt2
yx
�yy D tyatybtyı1

tyı2
:

Since the inclusion

C@†4
0
n. yS1tyS2/.†

4
0 I �/ ,! DiffC@†4

0
n. yS1tyS2/

.†4
0 I fu1;u2g/

induces a homomorphism

�0.C@†4
0
n. yS1tyS2/.†

4
0 I �//!Mod@†4

0
n. yS1tyS2/.†

4
0 I fu1;u2g/;

we can regard the relation (9) as that in Mod@†4
0
n. yS1tyS2/.†

4
0 I fu1;u2g/.

We denote by t
1=2

ıi
2 Mod@†6

0
n.S1tS2/.†

6
0 I fu1;u

0
1
;u2;u

0
2
g/ the square root of the

Dehn twist along ıi , which interchanges the points ui and u0i . In a way quite similar
to that in the previous paragraph, from the relation (9), we obtain the following relation
in Mod@†6

0
n.S1tS2/.†

6
0 I fu1;u

0
1
;u2;u

0
2
g/:

ztwtx zty D tatbtc td t
1=2

ı1
t
1=2

ı2
() t

1=2

ı2
ztwtx zty t

�1=2

ı1
D tatbtc td tı2

() .t
1=2

ı2
ztwt
�1=2

ı2
/tx zty D tatbtc td tı2

() ztz tx zty D tatbtc td tı2
:

This completes the proof of Lemma 5.1.

Remark 5.2 As the braiding lantern relation allows us to perform a local substitution
in a monodromy factorization, it can be used to pass from one Lefschetz fibration to
another while braiding two given sheets of (multi)sections. If the boundary components
ı1 and ı2 correspond to two sections S1 and S2 of self-intersections s1 and s2 ,
the substitution will hand a new Lefschetz fibration with a 2–section S12 which is
an embedded 2–sphere of self-intersection s1C s2C 1. In particular, if S1 and S2
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are exceptional classes, so is S12 , which will play a crucial role in our applications
to follow.

Remark 5.3 Let us sketch a toy example of our braiding lantern substitution: Consider
the trivial rational fibration on S2�S2 , and blow up one of the fibers 4 times so it now
consists of a .�4/–sphere V and 4 exceptional spheres. Let S1 and S2 be two disjoint
self-intersection 0 sections of this fibration on S2 �S2 # 4CP2 ŠCP2 # 5CP2 , each
intersecting V once. The braiding lantern substitution along the vanishing cycles and
the two boundary components for the sections S1 and S2 amounts to rationally blowing
down V , and the result will be a new rational Lefschetz fibration on CP2 # 4CP2 with
3 vanishing cycles and a 2–sphere bisection S12 of self-intersection C1. The latter is
equivalent to the blow-up of the degree-2 pencil on CP2 , where S12 is identified with
CP1

�CP2 .

5B Genus-3 counterexamples to Stipsicz’s conjecture

In the previous section, we have obtained the following monodromy factorization for a
genus-3 Lefschetz fibration with 4 .�1/–sphere sections on a symplectic Calabi–Yau
K3 surface:

.tc1
tc7

tc3
tc5

tc2
tc6

ta1
ta2

tb1
tb2

tc1
tc7

tc3
tc5

tb1
tb2

tc2
tc6
/2 D tı1

tı2
tı3

tı4
:

We will now derive a factorization Hurwitz equivalent to this one. In fact, the motivation
behind all of our constructions in that section is indeed to arrive at this next configuration
containing various lantern curves.

Denote by y1;y2; z1; z2; w1; w2 pairs of arcs shown in Figure 15. By Lemma 5.1, we

y2

y1

w1 w2

z1

z2

Figure 15: Pairs of arcs in †4
3
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obtain the following relations in Mod.†4
3 I fu1;u2;u3;u4g/:�tz1

ta1
�ty1

t�1
ı1
D tc1

tc3
tc5

tc7
;(10) �tz2

ta2
�ty2

t�1
ı4
D tc1

tc3
tc5

tc7
;(11) ftw2

tc5
ftw1

t�1
ı3
D t2

c3
ta1

ta2
:(12)

The monodromy factorization of f given in Lemma 4.4 can be then changed by
elementary transformations to obtain the following:

(13) tı4
tı3

tı2
tı1
D tc1

tc7
tc3

tc5„ ƒ‚ …
.a/

tc2
tc6

ta1
ta2

tb1
tb2

tc1
tc7

tc3
tc5„ ƒ‚ …

.b/

tb1
tb2

tc2
tc6

� tc1
tc7

tc5
ttc3

.c2/tc6
tc3

ta1
ta2

tc3„ ƒ‚ …
.c/

tb1
tt�1

c3
.b2/

tc1
tc7

tc5
tb1

tb2
tc2

tc6
:

We will denote this fibration as .X; f / D .X.1;1;1;1/; f.1;1;1;1// in regards to the
intersection numbers nj of the exceptional classes with the fiber, which are all honest
sections in this case.

Let S1;S2;S3;S4 be the exceptional sections of .X; f /. By Lemma 5.1 we can
derive the following new symplectic Calabi–Yau Lefschetz fibrations: The monodromy
substitution by the relation (10) at the part (a) gives rise to a new genus-3 Lefschetz
fibration .X.2;1;1/; f.2;1;1// with a 2–section S12 derived from S1 and S2 and the
two sections S3 and S4 inherited from .X; f /. By Theorem 3.6, S12 is a 2–sphere
with self-intersection equal to �1.

It was shown in [14] that a substitution by the lantern relation corresponds to a ratio-
nal blow-down along C2 . (Basic definitions and properties of rational blow-downs
are reviewed in Section 6A.) Since the relation (10) is a lift of a lantern relation in
Mod.†3/, the substitution applied above corresponds to a rational blow-down along
some C2 �X . Since bC does not change under the rational blow-down operation, we
obtain bC.X.2;1;1//D bC.X /D 3. In particular, X.2;1;1/ is not a rational or a ruled
surface. Note that we could also apply the lantern substitution along (b) to arrive at a
similar Lefschetz fibration.

We can further apply the substitution by the relation (11) at part (b) to .X.2;1;1/; f.2;1;1//.
This substitution now gives rise to a genus-3 Lefschetz fibration .X.2;2/; f.2;2// with
two .�1/–spheres S12 and S34 that are 2–sections. Once again, bC.X.2;2// D

bC.X / D 3. We have, therefore, obtained a fiber sum indecomposable Lefschetz
fibration on X.2;2/ , which is not a rational or ruled surface, where there are no other
exceptional classes other than S12 and S34 , and thus, there are no .�1/ sphere sections
due to formula

P
nj D

�P
Sj

�
�F D 4.
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We can apply a substitution by the relation (12) at (c) to arrive at a symplectic Calabi–
Yau Lefschetz fibration .X.4/; f.4// with a single exceptional class represented by
a sphere 4–section S1234 . By the same arguments as above, this is a fiber sum
indecomposable fibration without any .�1/ sphere sections. Note that we could change
the order of substitutions and braid S1 , S2 and S3 using simultaneous substitutions
along (a) and (b) first into a 3–section S123 , and then apply a substitution along (c) to
arrive at .X.4/; f.4//.

Hence we have obtained a pair of counterexamples to Stipsicz’s conjecture:

Theorem 5.4 The Lefschetz fibrations .X.2;2/; f.2;2// and .X.4/; f.4// are fiber sum
indecomposable, but do not admit any .�1/ sphere sections.

Remark 5.5 As shown above, fiber sum indecomposable Lefschetz fibrations without
.�1/–sphere sections do appear when the fiber has genus g > 2 as well. Furthermore,
invoking Endo’s signature formula for hyperelliptic Lefschetz fibrations, one can easily
observe that these fibrations are not hyperelliptic, as opposed to any genus-2 example
one can produce.

5C A new genus-2 counterexample

The following is the monodromy factorization for a genus-2 symplectic Calabi–Yau
Lefschetz fibration obtained in the previous section:

tı1
tı2
D .td4

td3
td2
/2.tc2

tc3
tc4
/4

D .td4
td3

td2
/2 t2

c2
t2
c4„ƒ‚…

.d/

tt�1
c2

t�2
c4
.c3/

tt�1
c4
.c3/
.tc2

tc3
tc4
/2:

We can apply the braiding lantern substitution at the part (d) above as we applied
in the previous subsection. This substitution changes the two exceptional sections
into a sphere bisection with self-intersection �1. We denote the resulting fibration by
h.2/W Y.2/! S2 . Using [24, Lemma 5.1] we can prove that Y.2/ is diffeomorphic to
the blow-down of Y.1;1/ (see also Proposition 6.1). In particular Y.2/ is not rational
or ruled. Thus, by the same argument as in the previous subsection we obtain the
following theorem:

Theorem 5.6 The Lefschetz fibration .Y.2/; h.2// is fiber sum indecomposable, but
does not admit any .�1/ sphere sections.

Tracing the braided lantern curves in the above monodromy substitution, one can
verify that the explicit positive factorization of this fibration, along with its exceptional
bisection, is the one we have given earlier in Example 3.7.
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Remark 5.7 (more examples) Following the same recipe, one can also obtain coun-
terexamples to Stipsicz’s conjecture from the already known 2–boundary chain relation
on the genus-2 surface:

.tc1
tc2

tc3
tc4

tc5
/6 D 1;

which prescribes a Lefschetz fibration f on X D K3 # 2CP2 . Through Hurwitz
moves, one can easily find a lantern configuration in an equivalent factorization. Since
the 4 curves of the lantern configuration yield a symplectic 2–sphere V of self-
intersection �4 [23], and since .X; f / is an SCY, we know that there are 2 exceptional
sections S1 and S2 of f , each hitting V once. In turn, this a priori tells that we have a
lift of this factorization where one can apply the braiding lantern relation of Lemma 5.1
to produce a new SCY Lefschetz fibration, which is fiber sum indecomposable but
doesn’t have any exceptional sections. In fact, Auroux’s genus-2 Lefschetz fibration,
the first known counterexample to Stipsicz’s conjecture [45], can be seen to arise in
this way as well; see [8].

Intrinsic to our strategy to argue that we obtain true counterexamples is that they are
all symplectic Calabi–Yau Lefschetz fibrations. Although one would expect the answer
to be affirmative, a natural question that arises is:

Question 5.8 Are there any fiber sum indecomposable Lefschetz fibrations with no
.�1/–sphere sections on symplectic 4–manifolds of nonzero Kodaira dimension?

As we discussed earlier, by Usher’s theorem [55], any Lefschetz fibration on a non-
minimal symplectic 4–manifold is necessarily fiber sum indecomposable. (A short
alternative proof of this particular fact was given in [7] making use of multisections.) To
the best of our knowledge, there are no known examples of fiber sum indecomposable —
nontrivial — Lefschetz fibrations on minimal symplectic 4–manifolds, while there are
many examples of fiber sum decomposable ones such as the Lefschetz fibrations on
knot-surgered elliptic surfaces [20]. We end with noting this curious question:

Question 5.9 Are there any fiber sum indecomposable Lefschetz fibrations on minimal
symplectic 4–manifolds?

6 Rational blow-downs and nonisomorphic
Lefschetz fibrations

Two Lefschetz pencils/fibrations .X; fi/ are called isomorphic if there are orientation-
preserving self-diffeomorphisms of the 4–manifold and the base S2 which make the
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two commute. In particular, the fiber genera, as well as the number of base points in
the case of pencils, should match. This translates to the two associated monodromy
factorizations to be equivalent up to global conjugations and Hurwitz moves. Park and
Yun used the latter approach to show that there are pairs of odd genus g�5 inequivalent
Lefschetz fibrations on certain knot-surgered elliptic surfaces [44] of Fintushel and
Stern. These are all fiber sum decomposable, in particular do not blow down to pencils,
and are easily seen to be equivalent via partial conjugations — conjugations applied to a
subword of monodromy factorizations. (Another isolated example on T 2�†2 #9CP2 ,
as we learn from the same authors, is given by Smith in his thesis.) More recently, the
first author constructed arbitrary number of nonisomorphic Lefschetz pencils/fibrations
on blow-ups of any symplectic 4–manifold which is not a rational or ruled surface [6].

Here we will introduce a new approach and construct the first examples of nonisomor-
phic Lefschetz pencils with fiber genus as low as 3. To do so, we will employ rational
blow-down operations that correspond to certain monodromy substitutions, which we
briefly review below. The key ingredient in our arguments will be an observation
originally due to Gompf which we review in the next subsection.

6A A mirror rational blow-down operation

The rational blow-down operation introduced by Fintushel–Stern [17] is defined as
follows: Let p � 2 and Cp be the smooth 4–manifold obtained by plumbing disk
bundles over the 2–sphere according to the linear diagram in Figure 16, where each
vertex ui of the linear diagram represents a disk bundle over 2–sphere with the indicated
Euler number.

�.pC 2/ �2 �2

u1up�2up�1

Figure 16: A plumbing diagram representing Cp

The boundary of Cp is the lens space L.p2; 1 � p/, which also bounds a rational
ball Bp with �1.Bp/D Z=pZ and �1.@Bp/! �1.Bp/ surjective. Whenever Cp is
embedded in a 4–manifold X , we can thus produce a new 4–manifold

Xp D .X nCp/[Bp:

Algebraic topological invariants of Xp are easily derived from those of X :

bC.Xp/D bC.X /; e.Xp/D e.X /� .p� 1/; �.Xp/D �.X /C .p� 1/;

c1
2.Xp/D c1

2.X /C .p� 1/:
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If X and X nCp are simply connected, then so is Xp .

A monodromy substitution is the trading of a subword in a given monodromy factoriza-
tion by positive Dehn twists with another subword of the same type. We will employ
this operation more generally to monodromy factorizations capturing multisections as
well; ie not only positive Dehn twists but also positive arc twists for multisections will
be allowed in the subwords. As shown by Endo and Gurtas, a particular substitution in
a monodromy factorization of a Lefschetz fibration which trades 4 Dehn twists with 3

Dehn twists by the lantern relation on a 2–sphere with 4 holes corresponds to produce
a new Lefschetz fibration corresponds to the simplest possible rational blow-down
operation for the underlying 4–manifolds: blowing down a C2 configuration which is a
.�4/–sphere formed by the 4 vanishing cycles on the fiber. Notably, the two fibrations
can be supported by symplectic structures in a natural way [23].

We will be interested in a special configuration, which can be blown down in 3 different
ways: two disjoint .�4/–spheres V1;V2 and a .�1/–sphere S intersecting each of
the .�4/–sphere positively at one point. One can then blow down S or rationally
blow down Vi . As it will become apparent in the proof of Theorem 6.2, we will be
interested in monodromy substitutions that correspond to this “mirror” blow-downs
of V1 and V2 in the presence of a .�1/–sphere section intersecting both. The essential
ingredient here is a result of Gompf [24] (also see [12]) quoted below, for which we will
sketch a handlebody proof. Thus the 4–manifolds that result from rationally blowing
down V1 or V2 and S are diffeomorphic, yielding diffeomorphic 4–manifolds for all
3 blow-downs.

Proposition 6.1 [24, Lemma 5.1] Let Vi be disjoint embedded .�4/–spheres, each
intersecting a .�1/–sphere S in X once, let Xi denote the 4–manifold obtained by a
rational blow-down of Vi in X , i D 1; 2, and X0 be the one obtained by the blow-down
of S . Then the 4–manifolds Xi , i D 0; 1; 2, are all diffeomorphic.

Proof Let X0 denote the manifold obtained by blowing down S . It is sufficient to
prove that each of X1 and X2 is diffeomorphic to X0 . We will verify the blow-downs
along Vi and S give rise to diffeomorphic 4–manifolds using handlebody diagrams.

Rational blowdown is equivalent to removing a tubular neighborhood of a .�4/–sphere
and pasting CP2 n�C , where C is a nonsingular quadratic curve and �C is its tubular
neighborhood. Following a procedure for drawing a diagram of the surface complement
in [25, Section 6.2], we can obtain a diagram of CP2n�C which is shown in Figure 17
(left) (the configuration of C in the diagram of CP2 was discussed in [1]). By turning
the handlebody corresponding to the diagram up side down, we obtain the diagram in
Figure 17 (middle). The diagram in Figure 17 (right) can be obtained by blowdown.
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1h0i h�1i

0

S3�h
4�h

h4i 1

S3�h
4�h

Figure 17: Diagrams of CP 2 n �C

Thus attaching CP2n�C to the boundary of a tubular neighborhood of a .�4/–sphere is
equivalent to attaching handles as shown in Figure 17 (right). We eventually obtain the
diagram of the manifold obtained by rationally blowing down a regular neighborhood
of Vi [S along Vi as shown in Figure 18 (left). (Note that the 0–framed handle in
this diagram coincides with the .�1/–sphere S ). On the other hand, Figure 18 (right)

1 h4i h1i

0

S3�h
4�h

0

h4i h1i

S
4�h

Figure 18: The manifolds obtained by blowing down a neighborhood of Vi [S

shows a diagram of the manifold resulting from blowing down a regular neighborhood
of Vi [S along S . These two manifolds are diffeomorphic relative to the boundaries
as shown in Figure 19. The diagram in Figure 19 (left) can be obtained by sliding
the 0–framed 2–handle in Figure 18 (left) to the knot with the label h1i. Sliding the
resulting .�1/–framed handle to that with framing 1 yields the diagram in Figure 19
(middle). The resulting 0–framed handle becomes a meridian of the knot with the label
h4i after sliding the 1–framed handle to the knot with the label h4i, especially we can
obtain the diagram in Figure 19 (right). Lastly, sliding the 1–framed handle to the knot
with the label h1i and removing the canceling pair yields the diagram in Figure 18
(right).

1 h4i h1i

�1

S3�h
4�h

0 h4i h1i

1

S3�h
4�h

0

h4i h1i

1

S3�h
4�h

Figure 19: A sequence of handleslides
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6B A new construction of nonisomorphic Lefschetz fibrations

Here we prove the main theorem of this section:

Theorem 6.2 There are pairs of genus-g relatively minimal Lefschetz pencils .X; fi/,
i D 1; 2, which are nonisomorphic, where g can be taken as small as 3, and arbitrar-
ily large.

Proof Let .X.2;1;1/; f.2;1;1// be the genus-3 symplectic Calabi–Yau Lefschetz fi-
bration constructed in Section 5B by a monodromy substitution along (a) in (13).
Alternatively, we can construct another genus-3 symplectic Calabi–Yau Lefschetz
fibration .X.20;1;1/; f.20;1;1// by a monodromy substitution along (c). Note that the
exceptional section S4 descends to both fibrations. The configurations of the lantern
curves for these are as in Figure 20. Since the section S2 intersects both .�4/–

c1 c3 c5 c7

x

z y

a1

a2
c3

x

y

z

Figure 20: The lantern curves appearing in the substitution at parts (a) (left)
and (c) (right)

spheres V1 and V2 corresponding to the monodromy substitutions along (a) and (c),
respectively, this provides us the configuration of surfaces in X.1;1;1;1/ studied in
the previous paragraph. As we observed, the 4–manifolds X.2;1;1/ and X.20;1;1/ are
diffeomorphic. Since only one of them contains a separating vanishing cycle, they are
nonisomorphic genus-3 Lefschetz pencils on a once blown-up symplectic Calabi–Yau
K3 surface.

An infinite family of pairs of nonisomorphic Lefschetz pencils of arbitrarily high fiber
genera can be produced by applying the degree doubling construction (as discussed in
detail in the next section) simultaneously to both .X; fi/, at each step changing the
genus and number of base points by zg D 2gCm� 1 and zmD 4m. The separating
vanishing cycle in .X; f2/, obtained from .X.20;1;1/; f.20;1;1// by blowing down the
.�1/–sphere section S4 splits the fiber to genus-1 and genus-2 components, only one
of which is hit by S4 . As seen by the explicit monodromy factorization obtained by
Auroux and Katzarkov [3], this separating vanishing cycle will then contribute to a
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separating vanishing cycle of the resulting pencil. On the other hand, doubling produces
no new separating vanishing cycles. Therefore, iterated doubles of .X; fi/, for i D 1; 2

at each step will remain to be nonisomorphic, as one will contain a reducible fiber and
the other one will not.

Remark 6.3 (an interlude on smallest possible fiber genera of nonisomorphic Lef-
schetz fibrations/pencils) Here we would like to make a few remarks on how small
the genus of nonisomorphic Lefschetz pencils/fibrations can be, discussed by varying
the additional features of such examples that we know of so far.

First of all, if we are after obtaining nonisomorphic Lefschetz fibrations, for g � 1 this
phenomenon does not appear. If we ask for nonisomorphic examples with differing
number of reducible fibers as we have in Theorem 6.2, our g D 3 fibrations can be
seen to be the smallest possible genera representatives of this kind. For, any genus-2
Lefschetz fibration is hyperelliptic, the signature formula of Endo shows that the
signature contributions of reducible and irreducible singular fibers are different, and
thus their total spaces cannot have the same total space.

As for having nonisomorphic Lefschetz fibrations in general (so both can have the
same number of reducible fibers, or even none), the smallest possible genus among
Park and Yun’s examples of nonisomorphic Lefschetz fibrations is g D 5 for a pair
of knot-surgered E.2n/ with nD 1 where the knots are 2–bridge knots of genus 2.
This is now improved to g D 3 by our examples, leaving out g D 2 as the smallest
possible genus.

We speculate that g D 2 examples with transitive monodromy and without reducible
fibers do not exist. Indeed, it is known that any such a Lefschetz fibration is isomorphic
to a fiber-sum whose components are either of the two basic Lefschetz fibrations.
Furthermore, the number of the two basic fibrations in the fiber-sum decomposition is
uniquely determined by the number of Lefschetz singularities in the original fibration
(see [48, Corollary 0.2] for details), in particular the isomorphism class of such a
fibration is uniquely determined by the number of Lefschetz singularities. This rigidity
then implies that the only counterexamples can come from fibrations with reducible
fibers or intransitive monodromies. This concludes our interlude.

The examples of nonisomorphic Lefschetz fibrations with topologically isotopic fibers
we have constructed here are all on symplectic 4–manifolds of � D 0. We hope to
address the same question for the remaining Kodaira dimensions in a future work.

On the other hand, given higher genus fibrations with many exceptional sections and
several (braiding) lantern factorizations embedded in them (which are hard to produce!),
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one can turn our strategy of the proof above into a recipe to produce examples of
arbitrarily many pairwise nonisomorphic Lefschetz fibrations with pairwise ambiently
homeomorphic fibers.

Nevertheless, the following question remains open:

Question 6.4 [44] Are there infinitely many nonisomorphic Lefschetz fibrations of
the same genera on any symplectic 4–manifold?

7 Exotic Lefschetz pencils and exotic embeddings of surfaces

A pair of 4–manifolds Xi , i D 0; 1, that are pairwise homeomorphic but not diffeomor-
phic, is commonly called an exotic pair of 4–manifolds. Pairs that are both symplectic
are particularly interesting in regards to the symplectic botany problem, which asks
about the diversity of symplectic structures supported in the same homeomorphism
class. Similarly, a pair of Lefschetz pencils/fibrations .Xi ; fi/ is called exotic if Xi

constitute an exotic pair of symplectic 4–manifolds and fi have the same fiber genus
and the same number of base points. Up to date, the only known examples are some
particular families of exotic Lefschetz fibrations: for Xi D E.n/Ki

knot-surgered
elliptic surfaces, it was shown by Fintushel and Stern that for Ki fibered knots with
the same genus g but different Alexander polynomials, one obtains genus-.2gCn�1/

exotic Lefschetz fibrations .Xi ; fi/ — which, however, do not yield pencils. (These are
discussed in detail in our Appendix.) However, although every symplectic 4–manifold
admits a Lefschetz pencil by Donaldson, there are no known exotic pairs of Lefschetz
pencils up to date. Our goal in this final section is to present the first examples of
this kind.

Theorem 7.1 There are genus-3 exotic Lefschetz pencils .Xi ; fi/, i D 0; 1, with
symplectic Kodaira dimension �.Xi/D i , where Xi are homeomorphic to K3 # CP2 .
Moreover, there are similar examples with arbitrarily high genus and the same topology
for the singular fibers on higher blow-ups of homotopy K3 # CP2 s.

Note that since any symplectic 4–manifold X with � D �1 is diffeomorphic to a
rational or ruled surface, and any minimal X with � D 2 has c2

1
> 0, this is the best

possible result one can obtain for varying the Kodaira dimensions within the same
homeomorphism class.

Lastly, in Section 7B, we will show that similar techniques can be employed to produce
exotic embeddings of surfaces.
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7A Constructing pairs of exotic Lefschetz pencils

Recall the monodromy factorization of the symplectic Calabi–Yau Lefschetz fibration
.X.1;1;1;1/; f.1;1;1;1// we have produced in (13). A monodromy substitution at (a)
(resp. (b)) amounts to rationally blowing down a .�4/–sphere split off from the regular
fiber by the 4 vanishing cycles in (a) (resp. (b)), for which there are two possibilities:
one can blow down the .�4/–sphere intersecting the sections S1 and S2 or the one
intersecting S3 and S4 . (This choice was implicitly made when producing our earlier
examples by each time indicating which sections we were braiding.) Thus, we can
blow down two disjoint .�4/–spheres in .X.1;1;1;1/; f.1;1;1;1// both intersecting S1

and S2 by monodromy substitutions along (a) and (b) to produce a new Lefschetz
fibration .X.Œ2�;1;1/; f.Œ2�;1;1//. The Euler characteristic and the signature of X.Œ2�;1;1/
is easily calculated from those of X.1;1;1;1/ under rational and regular blow downs,
whereas its fundamental group can be seen to be trivial for instance by observing that
the collection of unused vanishing cycles in the above substitutions already contain the
loops c1; c2; c5; c6; c7; b1 which fully generate the fundamental group of the fiber. We
conclude that X.Œ2�;1;1/ is homeomorphic to K3 # 2CP2 .

Using Theorem 3.6 we see that S1 and S2 together turn into a self-intersection 0

torus bisection of f.Œ2�;1;1/ , whereas the .�1/–sphere sections S3 and S4 descend to
sections of the new fibration as well. Since the minimal model of an SCY with bCD 3

should have the same rational homology as the K3 surface, by Theorem 4.1 this cannot
be a symplectic Calabi–Yau Lefschetz fibration. Blowing down S3 , we get a Lefschetz
pencil .X1; f1/. Calculating c2

1
D 2eC 3� D 0 on the minimal model of X1 we note

that �.X1/D 1.

On the other hand, let .X0; f0/ be the pencil obtained by blowing down the SCY
Lefschetz fibration .X.3;1/; f.3;1// we constructed earlier along the only .�1/–sphere
section, so �.X0/D 0. Thus .Xi ; fi/ for i D 0; 1 is a pair of genus-3 Lefschetz pencils
promised in Theorem 7.1.

The only caveat in our construction of these exotic Lefschetz pencils is that .X1; f1/

has no reducible fibers, whereas .X0; f0/ has one reducible fiber. Below, we will show
that, if we compromise on the smallness of the pencil genus, we can also produce
exotic Lefschetz pencils both having only irreducible fibers.

In the arguments to follow, we will need a variant of the degree doubling procedure
[50; 3], introduced in [6]. Degree doubling construction produces a new genus- zg
symplectic Lefschetz pencil .X; !; zf / with zm base points from a given genus-g
symplectic Lefschetz pencil .X; !; f / with m base points, where zg D 2gCm� 1

and znD 4m. It is described for Donaldson’s pencils in Smith’s work [50], for pencils
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obtained via branched coverings of CP2 by Auroux and Katzarkov in [3], and for
arbitrary topological pencils by the first author in [6] based on [50; 3] — which is the
one that suits to pencils constructed via monodromy factorizations. We define a partial
double along m� k � 1 points as the Lefschetz pencil one gets by first symplectically
blowing up .X; !; f / at m�k points and then taking the double of the resulting pencil
on . zX ; z!; zf /, where zX DX # .m�k/CP2 . Moreover, if . zX ; z!; zf / is obtained from
.X; !; f / by a sequence of partial doublings, where in the very last step we in addition
blow up all the base points, then both the smooth 4–manifold zX and the genus zg
of zf are uniquely determined by the initial pencil .X; !; f / and the ordered tuple
of integers k1; : : : ; kd , for each partial doubling along kj points. We can then blow
down the .�1/–sphere sections to produce a pencil.

Following [6], we denote the latter sequence by DD Œk1; : : : ; kd �, which is only subject
to the condition 4kj � kjC1 � 1 for all j . The next lemma is a simple variation of [6,
Lemma 3.1] proved in an identical way:

Lemma 7.2 Let f and f 0 be genus-g0 and genus-g0
0

Lefschetz pencils on home-
omorphic 4–manifolds X and X 0 with m0 and m0

0
base points, respectively. Two

partial doubling sequences

D D Œk1; : : : ; kd � and D0 D Œk 01; : : : ; k
0
d 0 �

applied to f and f 0 , respectively, result in Lefschetz fibrations on X # M CP2 and
X 0 # M CP2 with the same fiber genus g if and only if

M Dm0C 3

dX
iD1

ki Dm00C 3

d 0X
iD1

k 0i ;

and

g D 2dg0C

dX
iD1

2d�i.ki � 1/D 2d 0g00C

d 0X
iD1

2d 0�i.k 0i � 1/:

Now let .X; f / be a genus-8 Lefschetz pencil on the K3 surface with 14 base points
[50], so �.X /D 0. We can then apply Lemma 7.2 to .X; f / and .X 0; f 0/D .X1; f1/

above, using the (very short!) partial doubling sequences

D D Œ1� and D0 D Œ2; 3�

to produce a pair of genus-g Lefschetz fibrations on the topological 4–manifold
K3 # M CP2 with g D 16 and M D 17. Blowing down the same number of .�1/–
sphere sections (and at most 4 of them, as the doubling sequence D results in 4 base
points) in both we obtain the desired exotic pair of Lefschetz pencils .X0; f0/ and

Geometry & Topology, Volume 20 (2016)
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.X1; f1/ (overriding our earlier picks of .Xi ; fi/) where X0 now denotes (a blow-up)
of K3 # 13CP2 and X1 is homeomorphic to it.

Applying further simultaneous doublings to any one of the exotic Lefschetz pencils
.Xi ; fi/ we produced above give us exotic pairs of pencils of arbitrarily high genera.
This completes the proof of Theorem 7.1.

Remark 7.3 We can obtain, after one more substitution along part (c) in the mon-
odromy of .X.Œ2�;1;1/; f.Œ2�;1;1//, another fibration .X1; f1/D .X.Œ3�;1/; f.Œ3�;1//. Let-
ting .X0; f0/D .X.4/; f.4// be the SCY Lefschetz fibration produced in Section 5, we
then obtain a pair of exotic genus-3 Lefschetz fibrations .Xi ; fi/ with �.Xi/D i , both
of which having one reducible fiber — and thus, with exact same topology.

7B Exotic embeddings of symplectic surfaces

We call two surfaces Fi �X , i D 1; 2, exotically embedded in X if there exists an am-
bient homeomorphism of X taking F1 to F2 but there exists no such diffeomorphism.
Such symplectic surfaces are harder to produce: for instance, the work of Siebert and
Tian shows that up to isotopy there is a unique symplectic surface in the homology
class of an algebraic curve of degree � 17 in CP2 [48]. In contrast, Finashin [16],
and H-J Kim [29] (also see [30]) constructed knotted surfaces in CP2 that are not
isotopic to algebraic curves, which can be seen to be not symplectic. The latter rely on
a construction method of Fintushel and Stern [18], called (twisted) rim-surgery, and
up to date this has been the only way of producing exotic embeddings of surfaces —
and curiously, only producing symplectic tori when asked to lie in the same homology
class. The purpose of this section is to present a new way of constructing exotically
embedded orientable surfaces:

Theorem 7.4 There is a pair of genus-3 surfaces Fi exotically embedded in a blow-
up of a symplectic Calabi–Yau K3 surface such that Fi is symplectic with respect to
deformation equivalent symplectic forms !i on X , for i D 1; 2.

Proof In Section 5B, we constructed a Lefschetz fibration .X.2;1;1/; f.2;1;1// by a
braiding lantern substitution at part (a) of (13). We can now apply another braid-
ing lantern substitution at part (c), which yields to the genus-3 Lefschetz fibration
.X.2;2/; f.2;2// with two .�1/–sphere bisections S12 and S34 we obtained earlier,
or at part (b), which yields to a new genus-3 Lefschetz fibration .X.3;1/; f.3;1// with
.�1/–sphere 3–section S123 and a .�1/–section S4 .

Since X.2;2/ and X.3;1/ are obtained from X.2;1;1/ by rational blow-downs along
.�4/–spheres V1 and V2 (prescribed by the Lantern curves in parts (c) and (b))
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both intersecting the exceptional sphere S3 at one point, they are diffeomorphic by
Proposition 6.1. Let F1 and F2 be regular fibers of f.2;2/ and f.3;1/ , respectively.

There exists a pairwise homeomorphism between .X.2;2/;F1/ and .X.3;1/;F2/: To
see this, we first observe that the vanishing cycles in the complement of X.2;2/ nF1 ,
and respectively of X.3;1/ nF2 , allows us to easily compute

�1.X.2;2/ nF1/D 1D �1.X.3;1/ nF2/:

So both homology classes ŒFi � are indivisible. Moreover, F1 �S12 D 2 but S2
12
D�1,

whereas f.3;1/ has a reducible fiber component R for F2 ; hence F1 �R D 0, but
R2 D �1. So both ŒFi � are not characteristic. Since b2 � � � 4 and �1 D 1 for
X.2;2/ Š X.3;1/ , by Wall’s theorem on automorphisms of the intersection form and
Freedman’s topological h-cobordism theorem (see for example [47, pages 152–153]),
we get a homeomorphism between X.2;2/ and X.3;1/ matching the homology classes
of F1 and F2 . Finally, viewing the two surfaces in the same manifold under this
homeomorphism, we can invoke [52] to find a topological isotopy between them, which
yields the desired homeomorphism between the pairs .X.2;2/;F1/ and .X.3;1/;F2/.

On the other hand, since X.2;2/ and X.3;1/ are symplectic Calabi–Yaus, and thus
not rational or ruled, by Li’s work in [33], any diffeomorphism between them maps
exceptional classes to exceptional classes in the same homology classes. However,
in X.2;2/ , the two exceptional classes S12 and S34 intersect F1 both twice, whereas
in X.3;1/ we have two exceptional classes S123 and S4 intersecting F2 thrice and once.
Hence, there is no pairwise diffeomorphism between .X.2;2/;F1/ and .X.3;1/;F2/.

Now if we let X DX.3;1/ and identify F1 with its image under the diffeomorphism
between X.2;2/ and X.3;1/ , we conclude that F1;F2 is a pair of exotically embedded
surfaces in X . Lastly, to prove our additional claim on the existence of deformation
equivalent symplectic forms !i on X with respect to which Fi are symplectic, we
first perturb the Lefschetz fibration f.2;1;1/ so that each quadruple of vanishing cy-
cles appearing in part (c) and (b) of the monodromy factorization lie on the same
singular fiber, forming a reducible .�4/–sphere fiber component Vi . We can then
equip .X.2;1;1/; f.2;1;1// with a compatible symplectic form with respect to which
both V1 and V2 , and the section S3 , are symplectic. Now, by the work of McDuff
and Symington, who showed that Gompf’s diffeomorphism we employed here can be
interpreted as a symplectic 4–sum operation, the symplectic 4–manifolds we produce
by rational blow-downs of Vi are symplectic deformation equivalent [41], with Fi

symplectic surfaces in them. We thus obtain the desired symplectic forms on X by
pulling-back the latter form on X.2;2/ .
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Appendix: Seiberg–Witten basic classes of
homotopy K3 surfaces via mapping class group factorizations

A1 Seiberg–Witten basic classes of symplectic 4–manifolds

Let X be a symplectic 4–manifold with bC.X / > 1. We further assume that it has an
integral symplectic form ! , which can always be achieved by replacing a given form
with a multiple of a rational symplectic form approximating it. By Taubes, for a generic
almost complex structure J on .X; !/, any Seiberg–Witten basic class ˇ 2H2.X IZ/
can be represented by a sum of J –holomorphic curves Ci in X [53; 54]. Moreover,
each component of the representative of ˇ D†imi ŒCi � is an embedded smooth curve
unless it is a torus of self-intersection zero (in which case the image of the curve is still
smoothly embedded, but the parametrization is a multiple cover) or a sphere of negative
self-intersection. Since J is ! tamed, each Ci is a symplectic surface in .X; !/.

Since the number of basic classes of a 4–manifold is finite, so is the collection of the
symplectic surfaces Ci , sums of which represent the basic classes in .X; !/. As noted
by Donaldson and Smith [11, Proposition 2.9] replacing ! with a sufficiently high
multiple k! , we can then assume that there exists a symplectic Lefschetz pencil on X

for which all Ci are multisections (“standard surfaces” in the language of [11]). By the
blow-up formula for Seiberg–Witten classes, we conclude that after passing to a blow-up
of X we get a symplectic Lefschetz fibration f W zX ! S2 where all basic classes are
represented by a collection of symplectic surfaces Ci and the exceptional spheres Ej .
Hence, each Seiberg–Witten basic class of zX is represented by a multisection (possibly
with several components).

To sum up, combining the works of Taubes and Donaldson, after passing to a blow-
up zX , one can represent all Seiberg–Witten classes of a symplectic 4–manifold X as
multisections with respect to a Lefschetz fibration. We shall note that this is merely an
existence result, as the construction of such a Lefschetz fibration is not explicit.

A2 Sample calculation: basic classes of knot-surgered elliptic surfaces

We will now present explicit monodromy factorizations in the framed mapping class
group capturing all basic classes of knot-surgered elliptic surfaces as multisections of
certain Lefschetz fibrations on them.

Here is a quick review of the knot-surgery construction: Let X be a smooth 4–manifold
and T �X an embedded torus with self-intersection 0. For a fibered knot K � S3 ,
let MK denote the 3–manifold obtained by 0–surgery along K from S3 , then MK

admits a natural fibration over S1 , where fibers are capped of Seifert surfaces. In
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turn, S1 �MK is a genus-g symplectic surface bundle over T 2 , with g the Seifert
genus of K . For �K the meridian of K in S3 , we obtain a torus S1 � �K as a
symplectic section of this bundle. We then define a knot-surgered 4–manifold XK as
the generalized fiber sum XK DX n �T [S1��K

S1 �MK , which can be performed
symplectically. (When K is not fibered, the same construction — for MK admitting
an S1 –valued Morse function this time — results in a new 4–manifold which is not
necessarily symplectic.) Fintushel and Stern [19] introduced this operation and proved
that a Laurent polynomial associated with the Seiberg–Witten invariant of XK is the
product of that of X and the symmetrized Alexander polynomial of the knot K for
homologically essential T in X . For X DE.n/, all basic classes arise as multiples of
the image of the elliptic fiber T of X in XK . Moreover, assuming K is a fibered knot
with Seifert genus-g , the knot-surgery 4–manifold E.n/K admits a genus-.2gCn�1/

Lefschetz fibration .E.n/K ; fn;K / [20]. It is easy to see that T becomes a bisection
(ie a 2–section) of this fibration. Capturing all basic classes of XK in this case
therefore comes to identifying disjoint copies of T via a monodromy factorization of
an appropriate lift of fn;K to the framed mapping class group.

Let A1; : : : ;A2n�2;B1; : : : ;B2gC1;C1;C2 be simple closed curves in †2gCn�1 as
described in Figure 21. We remove two disks D1 and D2 from †2gCn�1 as in
Figure 21 and take points u1 and u2 on each boundary component of †2

2gCn�1 D

†2gCn�1 n .D1 tD2/. Let K be a fibered knot with genus-g and 'K 2Mod.†g/

a monodromy of K . We decompose †2gCn�1 into three pieces: the upper †g , the

A1

A2 A2n�2

g

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

� u1 �

u2

g

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

n� 18̂̂̂̂ ˆ̂ <̂ ˆ̂̂̂̂ :

C1

C2

B0

B1

B2g

B2gC1

Figure 21: Simple closed curves and a path in †2
2gCn�1

Geometry & Topology, Volume 20 (2016)
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lower †g and the central †n�1 in Figure 21, so that both of the disks D1 and D2 are
contained in †n�1 . Let ˆK be an element Mod.†2gCn�1/ defined as follows:

ˆK D 'K # id # idW †g #†n�1 #†g!†g #†n�1 #†g:

The genus-.2gCn�1/ Lefschetz fibration fn;K W E.n/K ! S2 mentioned above has
the following monodromy factorization (see [20]):

�n;g�n;gˆK .�n;g/ˆK .�n;g/D 1;

where �n;g is equal to tA2n�2
� � � tA1

tA1
� � � tA2n�2

tB0
� � � tB2gC1

and ˆK .�n;g/ is a fac-
torization obtained from �n;g by substituting Ai and Bj in �n;g for ˆK .Ai/ and
ˆK .Bj /, respectively.

Proposition A.1 The following equality holds in Mod.†2
2gCn�1 I fu1;u2g/:

tA2n�2
� � � tA1

tA1
� � � tA2n�2

tB0
� � � tB2gC1

D tı1
tı2
z��1�;

where ıi is a simple closed curve in †2
2gCn�1 parallel to the boundary component

containing ui , z� is a lift of a half twist along a path given in Figure 21 as described in
Figure 1 and � is an involution described on the left side of Figure 21.

Proof We cut the surface †2
2gCn�1 along the curves C1 and C2 to obtain the sur-

face †4
2g . Take points u3 2C1 and u4 2C2 . We denote the set fu1;u2;u3;u4g by U

and the fixed points of � in †4
2g by v1 and v2 . Since the simple closed curve Bi is

preserved by �, we can regard the Dehn twist tBi
as an element in �0.C.†

4
2g ;U I �//

(for the definition of C.†4
2g ;U I �/, see Section 3A). The quotient space †4

2g=� is
homeomorphic to †2

g . The quotient map =�W †4
2g ! †2

g induces the following
homomorphism:

��W �0.C.†
4
2g ;U I �//!Mod.†2

g I
yU ; fyv1; yv2g/;

where yU and yvi are the images of U and vi , respectively, under =�; see Figure 22. By
Lemma 3.1 the kernel of �� is generated by the isotopy class of �. Let yBi be the image
of the simple closed curve Bi under =�. Since the image ��.tBi

/ is the half twist � yBi
,

the following holds in Mod.†2
g I
yU ; fv1; v2g/:

(14) ��.tB0
� � � tB2gC1

/D � yB0
� � � � yB2gC1

:

Let � be an involution of †2
g as in the middle of Figure 22 and w0; : : : ; w2gC1 2†

2
g

fixed points of � . Regard the half twist � yBi
as an element in �0.C.†

2
g ; yU I �/; id/. The

quotient space †2
g=� is homeomorphic to †1

0 . Thus the quotient map =�W†2
g!†1

0

induces the following homomorphism:

��W �0.C.†
2
g ; yU I �//!Mod@†1

0
.†1

0 I f yw0; : : : ; yw2gC1g/;
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B0

B1

B2g

B2gC1

� =�

yB0

yB1

yu3

yv2

yB2g

yB2gC1

yv1

yu1

�

=�

yyB0
yw0

yw1

yw2

�

yyv1
yyB2gC1

yw2gC1

Figure 22: The involutions � and �

where ywi is the image =�.wi/. By Lemma 3.1 the kernel of �� is generated by
the isotopy class of � . Let yyBi be the image of yBi under =� (see Figure 22). We
take an oriented loop ˇi �†

1
0 based at yv1 D =�.v1/ by connecting p0 with a small

circle around ywi oriented counterclockwise using yyBi . The following equation holds in
Mod@†1

0
.†1

0 I f yw0; : : : ; yw2gC1g/:

(15) ��.� yB0
� � � � yB2gC1

/D Push.ˇ0/ � � � Push.ˇ2gC1/

D Push.�/;

where � is an oriented based loop described in Figure 22. Combining the equations
(14) and (15), we obtain the following relation in Mod.†4

2g IU /:

tB0
� � � tB2gC1

D z��1z��1tC1
tC2

tı1
tı2
�;

�

u1 u2

�

�

u3 u4

Figure 23: Paths in †4
2g
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where � �†4
2g is a path between u3 and u4 described in Figure 23. Thus, we calculate

the following product:

tA2n�2
� � � tA1

tA1
� � � tA2n�2

tB0
� � � tB2gC1

D tA2n�2
� � � tA1

tA1
� � � tA2n�2

z��1z��1tC1
tC2

tı1
tı2
Œ�j†4

2g
�

D tA2n�2
� � � tA1

tA1
� � � tA2n�2

.tA2n�3
� � � tA1

/2n�2
z��1z��1tı1

tı2
Œ�j†4

2g
�

D tA2n�2
� � � tA1

tA1
� � � tA2n�3

.tA2n�2
� � � tA1

/.tA2n�3
� � � tA1

/2n�3
z��1z��1tı1

tı2
Œ�j†4

2g
�

D tA2n�2
� � � tA1

tA1
� � � tA2n�4

.tA2n�2
� � � tA1

/2.tA2n�3
� � � tA1

/2n�4
z��1z��1tı1

tı2
Œ�j†4

2g
�

D � � �

D .tA2n�2
� � � tA1

/2n�1
z��1z��1tı1

tı2
Œ�j†4

2g
�:

It is easy to verify (using the Alexander method, for example) that the product
.tA2n�2

� � � tA1
/2n�1z��1Œ�j†4

2g
� is equal to � in Mod.†2

2gCn�1 I fu1;u2g/. Thus, we
obtain

tA2n�2
� � � tA1

tA1
� � � tA2n�2

tB0
� � � tB2gC1

D �z��1tı1
tı2
:

This completes the proof of Proposition A.1.

We take simple closed curves c1; c2; c3 in †2mC1
0 and points u1; : : : ;u2m on the

boundary of †2mC1
0 as described in Figure 24. Let �i be a radial arc between ui

and umCi and U 0 the set fu1; : : : ;u2mg. We denote by � 2Mod@†0
.†2mC1

0 IU 0/ a
mapping class represented by a diffeomorphism which is a positive 180–degree rotation
inside of �c3 and preserves the outside of �c3 , where @†0 is the outermost boundary
component of †2mC1

0 in Figure 24.

u2m

umC1
um

u1

�1

�m

c2 c1

c3

Figure 24: Simple closed curves and arcs in the disk with 2m small disks removed
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Proposition A.2 The following equality holds in Mod@†0
.†2mC1

0 IU 0/:

tc1
tc2
��1
D tı1

� � � tı2m
z�1
�1
� � � ��m

�1
;

where z�i 2 Mod@†0
.†2mC1

0 IU 0/ is a lift of a half twist along �i as described in
Figure 1.

Proof We denote the involution of †2mC1
0 given by the 180–degree rotation by z�.

We regard z�i and tıi
tımCi

as elements in �0.C@†0
.†2mC1

0 ;U 0I z�//. The quotient map

=z�W †2mC1
0 !†2mC1

0 =z�Š†mC1
0

induces the following homomorphism:

z��W �0.C@†0
.†2mC1

0 ;U 0I z�//!Mod@†0
.†mC1

0 I fu0g; yU
0/;

where u0 2†
mC1
0 is the image of the origin of the disk under =z� and yU 0 D =�.U 0/.

By Lemma 3.1 the map z�� is an isomorphism and the image z��.z�i
�1tıi

tımCi
/ is

a pushing map along some loop based at u0 . We can easily obtain the equality in
Proposition A.2 using these fact together with some equality in �1.†

mC1
0 n yU 0;u0/.

The details are left to the readers.

We remove m disks from the disk †0 to obtain †mC1
0 �†0 . We obtain the surface

†2m
2gCn�1 by attaching two †mC1

0 to †2
2gCn�1 :

†2m
2gCn�1 D†

2
2gCn�1 [@†2

2gCn�1
D@†0t@†0

.†mC1
0 t†mC1

0 /:

Combining the equalities in Propositions A.1 and A.2, we obtain the following equality
in Mod.†2m

2gCn�1 IU
0/:

�n;g�n;gˆK .�n;g/ˆK .�n;g/D t4
ı1
� � � t4

ı2m
z�1
�4
� � � ��m

�4
:

Eventually, for arbitrarily large m, we can find m disjoint bisections in the Lefschetz
fibration fn;K W E.n/K !S2 each of which has self-intersection 0. Furthermore, each
of the bisections has 4 branched points. Thus, all the bisections are tori.

Remark A.3 It is in fact possible to generalize these examples to cover knot-surgered
elliptic surfaces which are not symplectic, when the knots used in the construction are
not fibered. In this case, following the arguments in [5], we instead obtain a broken
Lefschetz fibration on each knot-surgered 4–manifold, where Seiberg–Witten basic
classes still appear as a collection of torus bisections.
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