Volume 20, issue 4 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Circle actions, quantum cohomology, and the Fukaya category of Fano toric varieties

Alexander F Ritter

Geometry & Topology 20 (2016) 1941–2052

We define a class of noncompact Fano toric manifolds which we call admissible toric manifolds, for which Floer theory and quantum cohomology are defined. The class includes Fano toric negative line bundles, and it allows blow-ups along fixed point sets.

We prove closed-string mirror symmetry for this class of manifolds: the Jacobian ring of the superpotential is the symplectic cohomology (not the quantum cohomology). Moreover, SH(M) is obtained from QH(M) by localizing at the toric divisors. We give explicit presentations of SH(M) and QH(M), using ideas of Batyrev, McDuff and Tolman.

Assuming that the superpotential is Morse (or a milder semisimplicity assumption), we prove that the wrapped Fukaya category for this class of manifolds satisfies the toric generation criterion, ie is split-generated by the natural Lagrangian torus fibers of the moment map taken with suitable holonomies. In particular, the wrapped category is compactly generated and cohomologically finite.

We prove a generic generation theorem: a generic deformation of the monotone toric symplectic form defines a local system for which the twisted wrapped Fukaya category satisfies the toric generation criterion. This theorem, together with a limiting argument about continuity of eigenspaces, are used to prove the untwisted generation results.

We prove that for any closed Fano toric manifold, and a generic local system, the twisted Fukaya category satisfies the toric generation criterion. If the superpotential is Morse (or assuming semisimplicity), also the untwisted Fukaya category satisfies the criterion.

The key ingredients are nonvanishing results for the open-closed string map, using tools from the paper by Ritter and Smith; we also prove a conjecture from that paper that any monotone toric negative line bundle contains a nondisplaceable monotone Lagrangian torus. The above presentation results require foundational work: we extend the class of Hamiltonians for which the maximum principle holds for symplectic manifolds conical at infinity, thus extending the class of Hamiltonian circle actions for which invertible elements can be constructed in SH(M). Computing SH(M) is notoriously hard and there are very few known examples beyond the cases of cotangent bundles and subcritical Stein manifolds. So this computation is significant in itself, as well as being the key ingredient in proving the above results in homological mirror symmetry.

symplectic topology, symplectic geometry, Floer cohomology, Floer homology, Fukaya category, generation, generator, generating, toric variety, quantum cohomology, symplectic cohomology, Jacobian ring, Fano, symplectic cohomology, Lagrangian submanifold
Mathematical Subject Classification 2010
Primary: 53D05, 53D20, 53D35, 57R17, 53D37
Secondary: 14J33, 14N35
Received: 29 August 2014
Revised: 16 July 2015
Accepted: 25 August 2015
Published: 15 September 2016
Proposed: Yasha Eliashberg
Seconded: Ciprian Manolescu, Leonid Polterovich
Alexander F Ritter
Mathematical Institute
University of Oxford
Radcliffe Observatory Quarter
Woodstock Road
United Kingdom