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Classification of expanding and steady Ricci solitons
with integral curvature decay

GIOVANNI CATINO

PAOLO MASTROLIA

DARIO D MONTICELLI

In this paper we prove new classification results for nonnegatively curved gradient
expanding and steady Ricci solitons in dimension three and above, under suitable
integral assumptions on the scalar curvature of the underlying Riemannian manifold.
In particular we show that the only complete expanding solitons with nonnegative
sectional curvature and integrable scalar curvature are quotients of the Gaussian
soliton, while in the steady case we prove rigidity results under sharp integral scalar
curvature decay. As a corollary, we obtain that the only three-dimensional steady
solitons with less than quadratic volume growth are quotients of R3 or of R�†2 ,
where †2 is Hamilton’s cigar.

53C20, 53C25

1 Introduction and main results

A gradient Ricci soliton is a smooth n–dimensional, connected, Riemannian mani-
fold M n with metric g satisfying

(1-1) RicCr2f D �g

for some smooth potential function f W M n!R and a real constant �. The soliton is
called expanding, steady or shrinking if, respectively, � < 0, �D 0 or � > 0. When f
is constant, a gradient Ricci soliton is an Einstein manifold. Ricci solitons generate
self-similar solutions to the Ricci flow and often arise as singularity models of the flow;
therefore, it is crucial to study and classify them in order to understand the geometry
of singularities.

The two-dimensional case is well understood and all complete Ricci solitons have been
classified; see for instance the very recent Bernstein and Mettler [2] and references
therein. In particular, it is well known that the only gradient steady Ricci soliton with
positive curvature is Hamilton’s cigar †2 ; see Hamilton [22].
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In dimension three, due to the efforts of Ivey [24], Perelman [30], Ni and Wallach [29]
and Cao, Chen and Zhu [7], shrinking solitons have been completely classified: they
are quotients of either the round sphere S3 , the round cylinder R�S2 or the shrinking
Gaussian soliton R3 .

In the steady three-dimensional case the known examples are given by quotients
of R3, R�†2 and the rotationally symmetric one constructed by Bryant [5]. In the
seminal paper by Brendle [4], it was shown that the Bryant soliton is the only nonflat,
k –noncollapsed, steady soliton, proving a famous conjecture by Perelman [30]. It is
still an open problem to classify three dimensional steady solitons which do not satisfy
the k –noncollapsing condition; see Cao [8] for an interesting result in this direction.

The case of expanding solitons is far less rigid; however, some properties and classifica-
tion theorems have been proved in the recent years by various authors; see for instance
Petersen and Wylie [31], Ma [26], Pigola, Rimoldi and Setti [33], Chen and Deruelle
[15], Schulze and Simon [34], Chodosh [16], Deruelle [19] and references therein.

The aim of this paper is to prove new classification results of gradient expanding and
steady solitons in dimension three and above under integral assumptions on the scalar
curvature. Note that similar conditions have been considered by Deruelle [18] in the
steady case (although the author exploits a completely different approach).

In particular we prove the following:

Theorem 1.1 Let .M n;g/ be a complete gradient expanding Ricci soliton of dimen-
sion n�3 with nonnegative sectional curvature. If R2L1.M n/, then M n is isometric
to a quotient of the Gaussian soliton Rn .

Theorem 1.2 Let .M n;g/ be a complete gradient steady Ricci soliton of dimen-
sion n� 3 with nonnegative sectional curvature. Suppose that

lim inf
r!C1

1

r

Z
Br .o/

RD 0:

Then, M n is isometric to a quotient of Rn or Rn�2 �†2 , where †2 is the cigar
soliton.

In the three-dimensional case we can prove the analogous results under weaker assump-
tions.

Theorem 1.3 Let .M 3;g/ be a three-dimensional complete gradient expanding Ricci
soliton with nonnegative Ricci curvature. If R 2L1.M 3/, then M 3 is isometric to a
quotient of the Gaussian soliton R3 .
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In particular, in dimension three the nonnegativity assumption on the curvature is
automatically satisfied (see Chen [14]), implying:

Theorem 1.4 Let .M 3;g/ be a three-dimensional complete gradient steady Ricci
soliton. Suppose that

lim inf
r!C1

1

r

Z
Br .o/

RD 0:

Then M 3 is isometric to a quotient of R3 or R�†2 , where †2 is the cigar soliton.

Remark 1.5 As it will be clear from the proofs of Theorems 1.1 and 1.3, instead
of R 2L1.M n/ we can assume that

lim inf
r!C1

Z
B2r .o/nBr .o/

RD 0:

Remark 1.6 The quantity

(1-2) lim inf
r!C1

1

r

Z
Br .o/

R

that appears in Theorems 1.2 and 1.4 is independent of the choice of the center o2M n .
Moreover, note that our assumptions in the steady case do not imply a priori that the
scalar curvature goes to zero at infinity, in contrast with the results in Deruelle [18]. In
fact, in [18] it is assumed that R 2L1.M n/. This, using the hypothesis that the steady
Ricci soliton has nonnegative sectional curvature, implies that the scalar curvature is
nonnegative, bounded and globally Lipschitz, and thus that R! 0 at infinity.

As a consequence of the integral decay estimate in [18] (see Lemma 4.4), it follows
that the assumption in Theorems 1.2 and 1.4 holds if g has less than quadratic volume
growth, ie Vol.Br .o//D o.r2/ as r !C1. This immediately implies the following:

Corollary 1.7 The only complete gradient steady Ricci solitons of dimension n� 3

with nonnegative sectional curvature and less than quadratic volume growth are quo-
tients of Rn or of Rn�2 �†2 .

Corollary 1.8 The only three-dimensional complete gradient steady Ricci solitons
with less than quadratic volume growth are quotients of R3 or of R�†2 .

We note that the conditions in Theorem 1.4 and Corollary 1.8 are sharp: in fact the
steady Bryant soliton has positive sectional curvature, linear curvature decay and
quadratic volume growth, hence

lim inf
r!C1

1

r

Z
Br .o/

R
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is finite and strictly positive. The three-dimensional rotationally symmetric expanding
example constructed by Bryant in [5] (see also the appendix in Chodosh [16]) has
positive sectional curvature, quadratic curvature decay at infinity and Euclidean volume
growth. Thus, Z

Br .o/

R� C r

for some positive constant C . This suggests that a sharp condition under which one
could hope to improve Theorem 1.3 would be

lim inf
r!C1

1

r

Z
Br .o/

RD 0:

We explicitly remark that Theorems 1.2 and 1.4 improve a result in Deruelle [18],
while the results in the expanding case, to the best of our knowledge, are completely
new and should be compared with Pigola, Rimoldi and Setti [33, Theorem 4] and
Petersen and Wylie [31, Theorem 4.5], where the required integral conditions involve
the measure e�f d�, and the weight e�f , under mild assumptions on the curvature,
has exponential growth (see eg Cao, Catino, Chen, Mantegazza and Mazzieri [6,
Lemma 5.5]). We also note that, in dimension three, the condition

(1-3) lim inf
r!C1

1

r

Z
Br .o/

R� k > 0

implies the k –noncollapsing of balls with sufficiently large radii, a priori nonuniformly
with respect to the center. It would be extremely interesting either to show that the only
three-dimensional gradient steady Ricci soliton satisfying (1-3) is, up to scaling, the
Bryant soliton, or to construct a (k –collapsed) counterexample. The first case, together
with Theorem 1.4, would complete the classification of steady solitons in dimension
three.

One of the main tools in our analysis is a geometric .0; 2/–tensor that we call the
weighted Einstein tensor yE , and which is defined as

(1-4) yE D
�
Ric�1

2
Rg

�
e�f ;

where f is the soliton potential. The weighted Einstein tensor appeared for the first
time in Catino, Mantegazza and Mazzieri [11], where the authors observed that yE is a
Codazzi tensor on every gradient three-dimensional Ricci soliton. Here we prove, in
Section 2, that on every gradient Ricci soliton yE satisfies the Weitzenböck formula

(1-5) 1
2
�j yEj2 D jr yEj2� 1

2
hrj yEj2;rf i � .n� 2/�j yEj2CQ;

where Q is a cubic curvature term. Quite surprisingly, we are able to show that this quan-
tity satisfies nice algebraic properties (see Section 2 and the appendix) under suitable
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curvature assumptions; namely, we prove that Q� 0 if the sectional curvature (or the
Ricci curvature, in dimension three) is nonnegative, and we completely characterize the
equality case. We highlight the fact that equation (1-5) is only effective when ��0; this
feature allows us to exploit, in the expanding and steady case, a technique reminiscent
of those used to prove earlier results concerning gradient shrinking Ricci solitons (see
eg Chow, Lu and Ni [29], Petersen and Wylie [32], Catino [9], Munteanu and Wang
[28], Wu, Wu and Wylie [36]).

Exploiting the above formula and using a careful integration by parts argument, in
Section 3 we prove Theorems 1.1 and 1.3 in the expanding case, while in Section 4 we
prove Theorems 1.2 and 1.4 in the steady case.

2 A Weitzenböck formula for the weighted Einstein tensor

Let .M n;g/ be a complete gradient Ricci soliton of dimension n � 3, that is a
Riemannian manifold satisfying the equation

(2-1) RicCr2f D �g

for some smooth function f W M ! R and some constant � 2 R. For the weighted
Einstein tensor yE defined in (1-4) we prove the following:

Proposition 2.1 Let .M n;g/ be a complete gradient Ricci soliton of dimension n� 3.
Then

(2-2) 1
2
�j yEj2 D jr yEj2� 1

2
hrj yEj2;rf i � .n� 2/�j yEj2

� 2 Rm. yE; yE/� 1
2
.n� 2/R

�
j yEj2�

1

n� 2
.tr. yE//2

�
;

where Rm is the Riemann curvature tensor, Rm. yE; yE/DRijkl
yEik
yEjl and tr is the

trace.

Proof From (1-4) we have, on a local orthonormal frame,

ef yEij DRij �
1
2
Rıij ;

which implies, taking the covariant derivative,

(2-3) ef .fk
yEij C

yEij ;k/DRij ;k �
1
2
Rkıij :

Taking the divergence of the previous equation we get

(2-4) ef .jrf j2 yEij C 2fk
yEij ;k C�f yEij C

yEij ;kk/DRij ;kk �
1
2
�Rıij :
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Now we recall that, for a gradient Ricci soliton, we have the validity of the following
equations (see eg [20] or [27]):

Rij ;kk D fkRij ;k C 2�Rij � 2RktRikjt ;

�RD hrf;rRiC 2�R� 2jRicj2;

RC�f D n�:

Inserting the previous relations in equation (2-4), using the definition of yE (which
implies that RijDef yEijC

1
2
Rıij and jRicj2De2f j yEj2�1

4
.n�4/R2 ) and simplifying

we deduce

(2-5) ef . yEij ;kk Cfk
yEij ;k C .n� 2/� yEij /

D�2ef yEktRikjt �
1
4
.n� 2/R2ıij C e2f

j yEj2ıij :

Now we contract (2-5) with yEij , observing that tr. yE/D yEt t D�
1
2
.n� 2/Re�f , and

we obtain

(2-6) yEij
yEij ;kk D�

1
2
hrj yEj2;rf i � .n� 2/�j yEj2� 2 Rm. yE; yE/

�
1
2
.n� 2/R

�
j yEj2�

1

n� 2
.tr. yE//2

�
;

which easily implies (2-2) since 1
2
�j yEj2 D jr yEj2C yEij

yEij ;kk .

Remark 2.2 Since j yEj2 D
�
jRicj2C 1

4
.n� 4/R2

�
e�2f in principle Proposition 2.1

can be related to the evolution equation of the squared norm of the Einstein tensor
under the Ricci flow which is essentially contained in [21].

Corollary 2.3 Let .M n;g/ be a complete gradient Ricci soliton of dimension n� 3.
Then

(2-7) 1
2
�j yEj2 D jr yEj2� 1

2
hrj yEj2;rf i � .n� 2/�j yEj2CQ;

where

Q WD e�2f

�
.n� 2/3

4n2
R3
� 2RikjtTij Tkt �

.n� 2/.n� 4/

2n
RjT j2

�
;

where T is the traceless Ricci tensor.

Proof We recall that, in a local orthonormal frame, the components Tij of T are

Tij DRij �
R

n
ıij :
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Using the definition of yE we deduce that

�2Rikjt
yEij
yEkte

2f
D�2RikjtTij Tkt C

2.n� 2/

n
RjT j2�

.n� 2/2

2n2
R3:

Now the claim follows inserting the previous equation into (2-2).

In the particular case of dimension three we have:

Corollary 2.4 Let .M 3;g/ be a three-dimensional complete gradient Ricci soliton.
Then

(2-8) 1
2
�j yEj2 D jr yEj2� 1

2
hrj yEj2;rf i ��j yEj2CQ;

with

QD e�2f
�
4Rij RjkRki �

7
2
RjRicj2C 3

4
R3
�
:

Proof The proof of the corollary is a simple computation using the fact that, in
dimension three, one has

jT j2 D jRicj2� 1
3
R2;

RijktTij Tkt DRijktRij Rkt �
2
3
RjRicj2C 1

9
R3;

Rijkt DRikıjt �Ritıjk CRjtıik �Rjkıit �
1
2
R.ıikıjt � ıitıjk/:

In the next proposition we prove the main integral estimate that will be used in the
proof of our results.

Proposition 2.5 Let .M n;g/ be a complete gradient Ricci soliton of dimension n� 3.
Then, either .M n;g/ is Ricci flat or, for every nonnegative cutoff function ' with
compact support in M n , we have

(2-9)
Z

M

ŒQ� .n� 2/�j yEj2�'3ef

j yEj
� �3

Z
M

hrj yEj;r'i'2ef :

Proof For every "� 0 define �" WD fx 2M n W j yE.x/j � "g and let

h".x/ WD

�
j yE.x/j if x 2�";

" if x 2M n�":

Geometry & Topology, Volume 20 (2016)



2672 Giovanni Catino, Paolo Mastrolia and Dario D Monticelli

Let ' be a smooth nonnegative cutoff function with compact support in M . We
multiply equation (2-7) by h�1

" '3ef and integrate on M n , deducing

1

2

Z
M

�j yEj2'3ef

h"

D

Z
M

hrj yEj;rh"ij
yEj'3ef

h2
"

�3

Z
M

hrj yEj;r'ij yEj'2ef

h"
�

Z
M

hrj yEj;rf ij yEj'3ef

h"
:

Since h" D j
yEj on �" and rh" D 0 on M n�" , we obtain

1

2

Z
M

�j yEj2'3ef

h"

D

Z
M

jrh"j
2'3ef

h"
� 3

Z
M

hrj yEj;r'ij yEj'2ef

h"
�

Z
M

hrj yEj;rf ij yEj'3ef

h"
:

Equation (2-7) and Kato’s inequality yield

0D

Z
M

jr yEj2'3ef

h"
�

Z
M

jrh"j
2'3ef

h"

C 3

Z
M

hrj yEj;r'ij yEj'2ef

h"
C

Z
M

ŒQ� .n� 2/�j yEj2�'3ef

h"

�

Z
M

ˇ̌
rj yEj

ˇ̌2
'3ef

h"
�

Z
M

jrh"j
2'3ef

h"

C 3

Z
M

hrj yEj;r'ij yEj'2ef

h"
C

Z
M

ŒQ� .n� 2/�j yEj2�'3ef

h"

D

Z
Mn�"

jr yEj2'3ef

h"
C 3

Z
M

hrj yEj;r'ij yEj'2ef

h"
C

Z
M

ŒQ� .n� 2/�j yEj2�'3ef

h"

� 3

Z
M

hrj yEj;r'ij yEj'2ef

h"
C

Z
M

ŒQ� .n� 2/�j yEj2�'3ef

h"
:

Now, since every complete Ricci soliton is real analytic in suitable coordinates (see [1]
and [13, Theorem 2.4]), by the unique continuation property one has that either j yEj � 0

or the zero set of j yEj has zero measure. In the first case, Bianchi identity implies that
g is Ricci flat while in the second case, taking the limit as "! 0, since j yEjh�1

" ! 1

almost everywhere on M n , inequality (2-9) follows.
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3 Expanding case: proof of Theorems 1.1 and 1.3

The n–dimensional case

Let .M n;g/ be a complete gradient expanding Ricci soliton of dimension n� 3 with
nonnegative sectional curvature and assume that R 2L1.M n/.

From Proposition 2.5, we have that either the soliton is Ricci flat (hence flat, since g

has nonnegative sectional curvature) or

(3-1)
Z

M

ŒQ� .m� 2/�j yEj2�'3ef

j yEj
� �3

Z
M

hrj yEj;r'i'2ef

for every nonnegative smooth cutoff function ' with compact support in M n . Since
.M n;g/ has nonnegative sectional curvature, jRmj �˛R, for some positive constant ˛
(see eg [3]) Moreover, for expanding solitons with nonnegative Ricci curvature we
have that the scalar curvature R is bounded; see for instance [19, Proposition 2.4].
Thus g has bounded curvature. We recall that for every gradient Ricci soliton we have
Hamilton’s identity

RCjrf j2� 2�f D c

for some real constant c [23]. Since R� 0, we deduce that jrf j2 � 2�f C c . By [6,
Lemma 5.5] there exist positive constants c1 , c2 , c3 such that

(3-2) �
1
2
�.r.x/� c1/

2
� c2 � �f .x/� �

1
2
�.r.x/C c3/

2;

where r.x/D dist.x; o/ for some fixed origin o 2M n ; in particular f is proper and,
up to translation, we can assume that �f � 0. We define, for t � 1,

�t D fx 2M n
W �f .x/� tg:

We choose '.x/D  .�f .x//, where  .s/D �.s=t/ with �� 1 on Œ0; 1�, positive,
decreasing and with support in Œ0; 2�. Since in �t we have jrf j � c

p
jf j � c

p
t , we

deduce

(3-3) jr'j � j 0jjrf j �
c
p

t
in �t I

moreover, since �f D n��R� n� on M ,

(3-4) j�'j �
ˇ̌
 0�f C 00jrf j2

ˇ̌
�

c

t
in �t :

Then, integrating by parts we haveˇ̌̌̌ Z
M

hrj yEj;r'i'2ef

ˇ̌̌̌
D

Z
�2tn�t

.j�'j'2
C 2'jr'j2Cjrf jjr'j'2/j yEjef :
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By the definition of yE and the nonnegative curvature assumption one has j yEjef � cR,
and from the previous estimates (3-3) and (3-4) we getˇ̌̌̌ Z

M

hrj yEj;r'i'2ef

ˇ̌̌̌
� c

Z
�2tn�t

R:

By (3-2) and since R 2 L1.M n/, the left-hand side tends to zero as t !C1, and
from (3-1) we obtain, applying Fatou’s lemma,Z

M

ŒQ� .m� 2/�j yEj2�ef

j yEj
� 0:

Now, we use the fact that under our assumptions Q is nonnegative (see Proposition A.2
in the appendix), and since � is strictly negative we get yE� 0. By Bianchi identity we
get R� 0, and so g is flat by the nonnegative curvature assumption. This concludes
the proof of Theorem 1.1.

The 3–dimensional case

The proof of Theorem 1.3 in dimension three is formally the same as the higher
dimensional case, with some minor corrections. In fact, under the weak assumption
of nonnegativity of the Ricci curvature we still have that the full curvature tensor is
controlled by the scalar curvature, ie jRmj�˛R for some constant ˛ . Hence, following
the proof in the previous subsection, we obtain that either .M 3;g/ is flat, orZ

M

ŒQ��j yEj2�ef

j yEj
� 0:

Now, we use the fact that under our assumptions Q is nonnegative (see Proposition A.4
in the appendix), and since � is strictly negative we get yE� 0. By Bianchi identity we
get R� 0, and so g is flat by the nonnegative curvature assumption. This concludes
the proof of Theorem 1.3.

Remark 3.1 Theorems 1.1 and 1.3 can be proved also using a L1 –Liouville property
for the operator ��f . In fact, since Q � 0 it follows from equation (2-7) that
��f j

yEj�0 in a distributional sense. Moreover, the nonnegativity of the Ricci curvature
implies that Ric�f D Ric�r2f D 2 Ric��g � 0. Therefore, since R 2 L1.M n/

implies j yEj 2L1.ef d�;M n/, we can apply [35, Theorem 1.5], which asserts that on
a complete Riemannian manifold .M n;g/ with Ric�f � 0 every positive solution u

of ��f u� 0 with u 2L1.ef d�;M n/ must be constant. Thus j yEj is constant, and
therefore zero from equation (2-7).
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4 Steady case: proof of Theorems 1.2 and 1.4

The n–dimensional case

Let .M n;g/ be a complete gradient steady Ricci soliton of dimension n � 3 with
nonnegative sectional curvature and assume that

lim inf
r!C1

1

r

Z
Br

RD 0:

In particular, there exists a sequence frig, i 2N , of positive radii converging to C1
such that

(4-1) lim
i!C1

1

ri

Z
Bri

RD 0:

From Proposition 2.5, we have that either the soliton is Ricci flat (hence flat, since g

has nonnegative sectional curvature) or

(4-2)
Z

M

Q'3ef

j yEj
� �3

Z
M

hrj yEj;r'i'2ef
� 3

Z
M

ˇ̌
rj yEj

ˇ̌
jr'j'2ef

for every nonnegative smooth cutoff function ' with compact support in M n . Since
.M n;g/ has nonnegative sectional curvature, jRmj�˛R, for some positive constant ˛ .
Hamilton’s identity

RCjrf j2 D c

implies that both the scalar curvature R and jrf j2 are bounded. Moreover, it follows
eg from [12] that either R> 0 or the soliton is Ricci flat, thus flat. So from now on we
will assume that the scalar curvature is strictly positive. Using Kato’s inequality and
the fact that jr Ricj � jrRj=

p
n, we getˇ̌

rj yEj
ˇ̌
� jrEj �

�
jr RicjC 1

2
njrRjC jrf j

ˇ̌
Ric�1

2
Rg

ˇ̌�
e�f

� c.jr RicjC jrf jR/e�f
� c.jr RicjCR/e�f

for some positive constant c . Hence, the left-hand side of (4-2) can be estimated asZ
M

ˇ̌
rj yEj

ˇ̌
jr'j'2ef

�

Z
M

jr Ricjjr'j'2
C

Z
M

Rjr'j'2:

Now we fix an index i and choose ' with support in B2ri
D B2ri

.o/ for some
origin o 2M n and such that ' � 1 in Bri

and jr'j � 2=ri on M n . Then, by (4-1),
the second term of the left-hand side tends to zero as i !C1. By Hölder inequality
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and the fact that R> 0, the remaining term can be estimated as

(4-3)
Z

M

jr Ricjjr'j'2
�

�Z
M

jr Ricj2'2

R

�1=2�Z
M

Rjr'j2'2

�1=2

:

To conclude the estimate we need the following lemma:

Lemma 4.1 Let .M n;g/ be a complete, nonflat, gradient steady Ricci soliton of
dimension n � 3 with nonnegative sectional curvature. Then, for every nonnegative
cutoff function ' with compact support in M n , there exists a positive constant c such
that Z

M

jr Ricj2'2

R
� c

Z
M

.R'2
CRjr'j2/:

Proof First of all, in some local frame, we have

jr Ricj2 D 1
2
jrkRij �rj Rik j

2
CrkRijrj Rik :

From the soliton equation and the commutation rule of covariant derivatives, one has

rkRij �rj Rik DRkijlrlf:

Since jRmj � ˛R and jrf j2 � c for some ˛; c > 0, we obtain

(4-4) jr Ricj2 � cR2
CrkRijrj Rik :

Hence, to finish the proof we have to estimate the right-hand side. Integrating by parts,
commuting indices and using Young’s inequality we getZ

M

rkRijrj Rik'
2

R
D�

Z
M

Rijrkrj Rik'
2

R
�2

Z
M

Rijrj Rikrk''

R

C

Z
M

Rijrj RikrkR'2

R2

��

Z
M

RijrjrkRik'
2

R
�

Z
M

.RkjilRij RklCRij RilRjl/'
2

R

C"

Z
M

jr Ricj2'2

R
Cc."/

Z
M

�
Rjr'j2C

jrRj2

R
'2

�
;
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for every ">0 and some constant c."/. Using Bianchi identity, the fact that jRmj�˛R

and the well known soliton identity rRD 2 Ric.rf / (see eg [20] or [27]), we obtainZ
M

rkRijrj Rik'
2

R

� �
1

2

Z
M

Rijrirj R'2

R
C "

Z
M

jr Ricj2'2

R
C c."/

Z
M

.R'2
CRjr'j2/

D
1

4

Z
M

jrRj2'2

R
C "

Z
M

jr Ricj2'2

R
C c1."/

Z
M

.R'2
CRjr'j2/

� "

Z
M

jr Ricj2'2

R
C c2."/

Z
M

.R'2
CRjr'j2/;

for every " > 0 and some constant c2."/. Choosing "� 1, this estimate and (4-4)
conclude the proof of the lemma.

Now we can return to the proof of Theorem 1.2. Using the previous lemma and (4-3),
we obtainZ

M

jr Ricjjr'j'2
� c

�Z
M

.R'2
CRjr'j2/

�1=2�Z
M

Rjr'j2'2

�1=2

�
c

ri

Z
B2ri

R

which, by (4-1), tends to zero as i !C1. Applying Fatou’s lemma, from (4-2), we
get Z

M

Q'3ef

j yEj
� 0:

Hence, Proposition A.2 implies that Q � 0 on M . The equality case implies that
the Ricci tensor at every point has at most two distinct eigenvalues ƒ D 0 with
multiplicity .n�2/ and ‡ D 1

2
R with multiplicity two. In order to conclude the proof

we need the following general result (see [32, Lemma 3.2]) for constant rank, symmetric,
nonnegative tensors. We recall the definition of the X –Laplacian �X D��g.X; � /,
for some smooth vector field X (see eg [12]).

Lemma 4.2 Let T be a constant rank, symmetric, nonnegative tensor on some tensor
bundle. If .�X T /.V;V / � 0 for V 2 Ker T and X is a vector field, then the kernel
of T is a parallel subbundle.

Let fe1; : : : ; eng be a local orthonormal frame such that Ric.e1; e1/DRic.e2; e2/D
1
2
R

and Ric.ek ; � /D 0 for every k D 3; : : : ; n. In particular, the only nonzero sectional

Geometry & Topology, Volume 20 (2016)



2678 Giovanni Catino, Paolo Mastrolia and Dario D Monticelli

curvature is �12 , where �ij is the sectional curvature defined by the two-plane spanned
by ei and ej . Then, by the well known soliton identity (see eg [20] or [27])

�rf Rij D 2�Rij � 2RiljtRlt D�2RiljtRlt ;

we see, for every fixed k D 3; : : : ; n, that ek 2 Ker Ric and

.�rf Ric/.ek ; ek/D�2
X

i

Rm.ek ; ei ; ek ; ei/Ric.ei ; ei/D�R.�1k C �2k/D 0:

Moreover, since g has nonnegative sectional curvature, 1
2
Rg �Ric is nonnegative,

and a simple computation shows that�
�rf

�
1
2
Rg�Ric

��
.e1; e1/D

�
�rf

�
1
2
Rg�Ric

��
.e2; e2/D 0:

Now Lemma 4.2 applies, and by the de Rham decomposition theorem (see for instance
[25, Chapter 1, Section 6]) the metric splits and Theorem 1.2 follows since, as we said
in the introduction, the cigar soliton †2 is the only complete two-dimensional steady
soliton with positive curvature.

Remark 4.3 Note that, under our assumptions, f in general is not proper, thus one
cannot exploit the argument used in the expanding case involving a cutoff function
depending on the potential f .

The 3–dimensional case

The proof of Theorem 1.4 in dimension three follows the lines of the higher dimensional
case. First of all, by Chen [14] we have that g must have nonnegative sectional curvature,
and since RCjrf j2D c , we have that g also has bounded curvature. From Hamilton’s
strong maximum principle (see eg [17]) we deduce that .M 3;g/ is either flat, or it
splits as a product R�†2 (where †2 is again the cigar steady soliton) or it has strictly
positive sectional curvature. In the latter case, following the proof of Theorem 1.2 we
obtain Z

M

Q'3ef

j yEj
� 0:

Now, we use the fact that under our assumptions Q is nonnegative (see Proposition A.4
in the appendix), and we get Q� 0. The equality case in Proposition A.4 implies that
the Ricci curvature has a zero eigenvalue, a contradiction. This concludes the proof
of Theorem 1.3.
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Proof of Corollary 1.7

Corollary 1.7 is a direct consequence of the following:

Lemma 4.4 [18, Lemma 4.3] Let .M n;g/ be a complete gradient steady Ricci
soliton with nonnegative Ricci curvature. Then, for every o 2M n and every r > 0,Z

Br .o/

R� n
p

c
Vol.Br .o//

r
;

where c is the constant in Hamilton’s identity RCjrf j2 D c .

Proof Integrating the equation RC�f D 0 one hasZ
Br .o/

RD�

Z
Br .o/

�f �

Z
@Br .o/

jrf j � CA.@Br .o//;

where A.@Br .o// is the .n� 1/–dimensional volume of the geodesic sphere @Br .o/.
Now, since .M n;g/ has nonnegative Ricci curvature, by the Bishop–Gromov theorem
(see for instance [17]) for every o 2M and every r > 0 one has

rA.@Br .o//

Vol.Br .o//
� n;

which implies the thesis.

Appendix

Here we prove some new algebraic curvature estimates needed for the proof of the
main theorems. First we recall the following lemma (see [10, Proposition 3.1]):

Lemma A.1 Let .M n;g/ be a Riemannian manifold of dimension n � 3 with non-
negative sectional curvature. Then the following estimate holds:

RikjlTij Tkl �
n� 2

2n
RjT j2;

with equality if and only if the Ricci tensor has at most two distinct eigenvalues, ƒ of
multiplicity .n� 2/ and ‡ of multiplicity two.

Proof Let feig, iD1; : : : ; n, be the eigenvectors of T and let �i be the corresponding
eigenvalues. Moreover, let �ij be the sectional curvature defined by the two-plane
spanned by ei and ej . We want to prove that the quantity

RikjlTij Tkl �
n� 2

2n
RjT j2 D

nX
i;jD1

�i�j�ij �
n� 2

2n
R

nX
kD1

�2
k
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is nonpositive if �ij � 0 for all i; j D 1; : : : ; n. The scalar curvature can be written as

RDRijij D

nX
i;jD1

�ij D 2
X
i<j

�ij :

Hence, one has the following:
nX

i;jD1

�i�j�ij �
n� 2

2n
R

nX
kD1

�2
k D 2

X
i<j

�i�j�ij �
n� 2

n

X
i<j

�ij

nX
kD1

�2
k

D

X
i<j

�
2�i�j �

n� 2

n

nX
kD1

�2
k

�
�ij :

On the other hand, one has
nX

kD1

�2
k D �

2
i C�

2
j C

X
k¤i;j

�2
k :

Moreover, using the Cauchy–Schwarz inequality and the fact that
Pn

kD1�k D 0, we
obtain X

k¤i;j

�2
k �

1

n� 2

� X
k¤i;j

�k

�2

D
1

n� 2
.�i C�j /

2;

with equality if and only if �k D �k0 for every k; k 0 ¤ i; j . Hence, the following
estimate holds:

nX
kD1

�2
k �

n� 1

n� 2
.�2

i C�
2
j /C

2

n� 2
�i�j :

Using this, since �ij � 0, it follows that
nX

i;jD1

�i�j�ij �
n� 2

2n
R

nX
kD1

�2
k �

n� 1

n

X
i<j

.2�i�j � .�
2
i C�

2
j //�ij

D�
n� 1

n

X
i<j

.�i ��j /
2�ij � 0:

This concludes the proof of the estimate.

In the equality case we have that �k D �k0 for every k; k 0 ¤ i; j and for i < j

.�i ��j /
2�ij D 0:

Hence, either, for every i < j , we have �ij D 0 (and RmD 0) or there exists i < j

such that �ij > 0. In this second case, without loss of generality we can assume
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that �12> 0 and we have that �1D �2 and �3D � � � D �n . Since RicDT C.1=n/Rg ,
the conclusion on the Ricci tensor follows and this concludes the proof of the lemma.

Proposition A.2 Let .M n;g/ be a Riemannian manifold of dimension n � 3 with
nonnegative sectional curvature. Then

P WD
.n� 2/3

4n2
R3
� 2RikjtTij Tkt �

.n� 2/.n� 4/

2n
RjT j2 � 0;

with equality if and only if the Ricci tensor has at most two distinct eigenvalues, ƒD 0

with multiplicity .n� 2/ and ‡ D 1
2
R with multiplicity two.

Proof From Lemma A.1 we deduce that

�2RikjlTij Tkl � �
n� 2

n
RjT j2I

using the previous estimate in the definition of P we get

(A-1) P �
.n� 2/3

4n2
R3
�
.n� 2/2

2n
RjT j2 D

.n� 2/2

2n
R

�
.n� 2/

2n
R2
� jT j2

�
:

By the nonnegativity assumption on the sectional curvature we know that

jRicj2 � 1
2
R2;

which implies

jT j2 �
n� 2

2n
R2:

Inserting the previous relation in (A-1) we get P � 0.

If P D 0 at a point, we have jRicj2D 1
2
R2 and the equality case in Lemma A.1. Hence,

the Ricci tensor has at most two distinct eigenvalues, ƒ of multiplicity .n� 2/ and ‡
of multiplicity two. In particular RD .n�2/ƒC2‡ . Combining this with the identity

jRicj2 D .n� 2/ƒ2
C 2‡2

D
1
2
R2

we obtain
ƒ2
D

2

n
Rƒ:

Now either ƒ D 0 and ‡ D 1
2
R or ƒ D .2=n/R and ‡ D �..n� 2/=2n/R. But,

since g has nonnegative sectional curvature, this second case implies RD 0 and so g

is flat. In both cases we have the splitting result and this concludes the proof of the
proposition.

For the three-dimensional case we need the following algebraic lemma:

Geometry & Topology, Volume 20 (2016)



2682 Giovanni Catino, Paolo Mastrolia and Dario D Monticelli

Lemma A.3 For x;y; z � 0 let

P .x;y; z/D 5.x3
Cy3

C z3/� 5.x2yCxy2
Cx2zCxz2

Cy2zCyz2/C 18xyz:

Then P .x;y; z/ � 3xyz � 0 and P .x;y; z/D 0 if and only if x D 0 and y D z , or
y D 0 and x D z , or z D 0 and x D y .

Proof It is easy to see that

(A-2) P .x;y; z/D 5x.x�z/.x�y/C5y.y�z/.y�x/C5z.z�x/.z�y/C3xyz:

Since P .x;y; z/ is symmetric in .x;y; z/, ie it is invariant under any permutation of
the variables x , y , z , we can assume without loss of generality that 0 � x � y � z .
Hence

(A-3) P .x;y; z/ WD 5x.x� z/.x�y/C 5y.y � z/.y �x/C 5z.z�x/.z�y/

D 5x.x� z/.x�y/C 5.z�y/2.zCy �x/� 0:

From (A-2) and (A-3) we conclude that for every x;y; z � 0,

(A-4) P .x;y; z/D P .x;y; z/C 3xyz � 3xyz � 0:

If P .x;y; z/D 0, by (A-4) we have that xyz D 0. If x D 0 then

0D P .0;y; z/D 5.y3
C z3

�y2z�yz2/D 5.y � z/2.yC z/;

thus we have y D z . The cases when y D 0 or z D 0 can be obtained by permutation
of the variables x , y , z .

Proposition A.4 Let .M 3;g/ be a three-dimensional Riemannian manifold with
nonnegative Ricci curvature. Then

P WD 4Rij RjkRki �
7
2
RjRicj2C 3

4
R3
� 0;

with equality if and only if the Ricci tensor has at most two distinct eigenvalues, ƒD 0

and ‡ D 1
2
R with multiplicity two.

Proof Let fe1; e2; e3g be a local orthonormal frame such that Ric.ei ; �/ D �iei

for i D 1, 2, 3. Then

4PD.�3
1C�

3
2C�

3
3/�14.�1C�2C�3/.�

2
1C�

2
2C�

2
3/C3.�1C�2C�3/

3

D5.�3
1C�

3
2C�

3
3/�5.�2

1�2C�1�
2
2C�

2
1�3C�1�

2
3C�

2
2�3C�2�

2
3/C18�1�2�3:

Now the proposition follows from Lemma A.3.
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