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Unified quantum invariants for integral homology spheres
associated with simple Lie algebras

KAzUO HABIRO
THANG TQ LE

For each finite-dimensional, simple, complex Lie algebra g and each root of unity &
(with some mild restriction on the order) one can define the Witten—Reshetikhin—Turaev
(WRT) quantum invariant rM (§) € C of oriented 3—manifolds M . We construct an
invariant Jps of integral homology spheres M , with values in Z[q] the cyclotomic
completion of the polynomial ring Z[q], such that the evaluation of Jjs at each root
of unity gives the WRT quantum invariant of M at that root of unity. This result
generalizes the case g = sl, proved by Habiro. It follows that Jjs unifies all the
quantum invariants of M associated with g and represents the quantum invariants as a
kind of “analytic function” defined on the set of roots of unity. For example, tas (§) for
all roots of unity are determined by a “Taylor expansion” at any root of unity, and also
by the values at infinitely many roots of unity of prime power orders. It follows that
WRT quantum invariants tas () for all roots of unity are determined by the Ohtsuki
series, which can be regarded as the Taylor expansion at ¢ = 1, and hence by the Lé-
Murakami—Ohtsuki invariant. Another consequence is that the WRT quantum invariants
rf,f (&) are algebraic integers. The construction of the invariant Jps is done on the level
of quantum group, and does not involve any finite-dimensional representation, unlike
the definition of the WRT quantum invariant. Thus, our construction gives a unified,
“representation-free” definition of the quantum invariants of integral homology spheres.

57M27; 17B37

1 Introduction

The main goal of the paper is to construct an invariant J 1%/[ of integral homology spheres
M associated to each finite-dimensional simple Lie algebra g, which unifies the Witten—
Reshetikhin—Turaev (WRT) quantum invariants at various roots of unity. The invariant
JJ%/I takes values in the completion Z/[q\] =lim, Z[g]/((1 —¢)(1 - g?)---(1—q")) of
the polynomial ring Z[q], which may be regarded as a ring of analytic functions on
roots of unity. This invariant unifies the quantum invariants at various roots of unity
in the sense that, for each root of unity &, the evaluation evg (J ]%4) atg=£&of J ]%,1 is
equal to the WRT quantum invariant ngid (&) of M at & whenever 11%4 (&) is defined.
This invariant is a generalization of the sl case constructed by Habiro [26].
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1A The WRT invariant

Witten [84], using not mathematically rigorous path integrals in quantum field theory,
gave a physics interpretation of the Jones polynomial [31] and predicted the existence of
3—manifold invariants associated to every simple Lie algebra and certain integers called
levels. Using the quantum group Uy (slz) at roots of unity, Reshetikhin and Turaev [73]
gave a rigorous construction of 3—manifold invariants, which are believed to coincide
with the Witten invariants. These invariants are called the Witten—Reshetikhin—Turaev
(WRT) quantum invariants. Later the machinery of quantum groups helped to generalize
the WRT invariant rf\’l (&) to the case when g is an arbitrary simple Lie algebra and &
is a root of unity.

In this paper we will focus on the quantum invariants of an integral homology 3—sphere,
ie a closed oriented 3—manifold M such that Hy(M,Z) = H(S>, 7).

Let Z C C denote the set of all roots of unity. For each simple Lie algebra g, there is
a subset Z; C Z and the g-WRT invariant of an integral homology sphere M gives a
function

1 Tyt 29— C.

(We recall the definition of ‘E]gw (&) in Section 8. The definition of rf\’/[ (&) for closed
3-manifolds involves the choice of a certain root of &, but it turns out that for integral
homology spheres this choice is irrelevant.)

We are interested in the behavior of the WRT function (1) associated to each Lie
algebra g. It is natural to raise the following questions:

e Is it possible to extend the domain of the map rﬁl to Z in a natural way?

» How strongly are the values at different roots of unity &, &’ € Z; related?

e [s there some restriction on the range of the function? In particular, is 11%4 (&) an
algebraic integer for all g and £?

e How are the quantum invariants related to finite-type invariants of 3—manifolds
(see Ohtsuki [66], Habiro [20] and Goussarov [19])? In particular, is there
any relation between the quantum invariants and the Lé-Murakami—Ohtsuki
invariant [51]?

1B The ring Z/[\q] of analytic functions on roots of unity

Define a completion Z/[E] of the polynomial ring Z[g] by

o~

Zlq] = lim Z[q]/((q: ¢)n),
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where, as usual,

(x:q)n = [ J(1=xg’™").
j=1

The ring Z/[E] may be regarded as the ring of “analytic functions defined on the set
Z of roots of unity”’; see Habiro [22; 26]. This statement is justified by the following
facts. For more details, see [26, Section 1.2].

For a root of unity £ € Z of order r, we have (£;&), = 0 for n > r. Hence the
evaluation map

eve: Zlg) > ZIEL  f(@) > [ ().

induces a ring homomorphism

o~

eve! Zlq] — ZI[&].
We write f(§) =eve(f(q)).

o~

Each element f(q) € Z|g] defines a function from Z to C. Thus we have a ring
homomorphism

2) ev: Z/[E] —-C*

defined by ev(f(¢))(§) = eve(f(¢)). This homomorphism is injective [22], ie f(q)
is determined by the values f(§) for £ € Z. Therefore, we may regard f(g) as a
function on the set Z.

—

In fact, a function f(q) € Z[g] can be determined by values on a subset Z’ of Z if Z’
has a limit point &y € Z with respect to a certain topology of Z; see [22, Theorem 6.3].
In this topology, an element £ € Z is a limit point of a subset 2’ C Z if and only if
there are infinitely many &’ € Z’ such that the orders (as roots of unity) of £’£€~! are

prime powers. For example, each f(g) € Z[q] is determined by the values at infinitely
many roots of unity of prime orders.

For & € Z, there is a ring homomorphism

Tg: Zlq] — Z[Elg — €]
induced by the inclusion Z[g] C Z[£][g], since, for n = 0, the element (¢: ) orace) 18
divisible by (¢ —&)" in Z[£][g]. The image T¢(f(q)) of f(q) € Z[q] may be regarded
as the “Taylor expansion” of f(¢g) at £&. The homomorphism T is injective [22,
Theorem 5.2]. Hence, a function f(g) € Z|q] is determined by its Taylor expansion at
a point & € Z. Injectivity of Tg implies that Z[qg] is an integral domain.
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The above-explained properties of Z/[E] depend on the ground ring Z of integers in an
essential way. In fact, the similar completion Q[q] = lim  Q[q]/((¢; ¢)n) is radically
dlfferent For example, Q[q] is not an integral domaln and the Taylor expansion map
Tg: Q[q] — QI — &] is surjective but not injective; see [22, Section 7.5].

Recently, Manin [59] and Marcolli [60] have promoted the ring Z/[E] as a candidate
for the ring of analytic functions on the nonexistent “field of one element”.

1C Main result and consequences

The following is the main result of the present paper:

Theorem 1.1 For each simple Lie algebra g, there is a unique invariant Jyr = J, Y in
Z[q] of an integral homology sphere M such that for all £ € Z; we have

eve(Jar) = 13, (6).

Theorem 1.1 is proved in Section 8T. It follows from Theorems 2.25, 4.9, 7.3, and 8.1.

The case g = sl, of Theorem 1.1 was announced in Habiro [21] and proved in [26].
For g = sy, the invariant Jps has been generalized to invariants of rational homology
spheres with values in modifications of Z[¢q] in Beliakova, Blanchet and Lé [5], L& [50],
Beliakova and Lé [8] and Beliakova, Biihler and Lé [6].

Theorem 1.1 implies that for integral homology 3—spheres, fﬁl (&) does not depend on
the choice of a root of £ that is used in the definition of fJE\J/I ).

We list here a few consequences of Theorem 1.1. For the results stated without proof and
with the sl, case proved in [26], the proof is the same as the proof of the corresponding
result in [26].

1C1 Analytic continuation of r to all roots of unity Even if a root of unity
& € Z is not contained in Z, the domam of definition of the WRT function rM, we
have a well-defined value evg(Jps) € Z[§]. By the uniqueness of Jpz, it would be
natural to define the g—~WRT invariant rf\’/[ (§) at £ € 2\ Z; as evg(Jp). We may
regard it as an analytic continuation of ‘L']gwi zZ;—C.

The specializations evg(Jps) are compatible also with the projective version of the g—
WRT invariant

(3) 09 Zpy— C,

where Zp is another subset of Z. See Section 8.
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Proposition 1.2  For an integral homology sphere M and for § € Zpg, we have

eve(Jar) = TL0(&).

As a consequence, for £ € Z; N Zpy we have

) ,(§) = 1 2(6).

Remark 1.3 For a closed 3—manifold M which is not necessarily an integral homol-
ogy sphere, we do not have (4), but for some values of & we have identities of the
form

.(5) = L0 )T, 6),

where ?]%4 (&) is an invariant of M satisfying 'fjgw () =1 for M an integral homology
sphere. For details, see eg Blanchet [9], Kirby and Melvin [40], Kohno and Takata [42]
and Lé [49].

1C2 Integrality of quantum invariants An immediate consequence of Theorem 1.1
is the following integrality result:

Corollary 1.4 For any integral homology sphere M and & € Z,, we have 154 &) ez|g].
In particular, r]gu (&) is an algebraic integer.

Here we list related integrality results for quantum invariants for closed 3—manifolds,
which are not necessarily integral homology spheres.

H Murakami [63] (see also Masbaum and Roberts [61]) proved that the Psl, ~-WRT
invariant — also known as the quantum SO(3) invariant (see Kirby and Melvin [40]) —
of a closed 3—manifold at & € Z of prime order is contained in Z[£]. This result, for
roots of unity of prime orders, has been generalized to sl,, by Masbaum and Wenzl [62]
and independently by Takata and Yokota [80], and to all simple Lie algebras by L& [49].

The case of roots of nonprime orders, conjectured by R Lawrence [45] in the sl, case,
was developed later. The case g = sl of Corollary 1.4 was obtained by Habiro [26].
Beliakova, Chen and L& [7] proved that ‘[]SéIZ (&) (which depends on a fourth root of &)
is an algebraic integer for any root of unity &. For general Lie algebras, however, the
proof in [7] does not work. Corollary 1.4 is the first integrality result for general Lie
algebras in the case of nonprime orders.
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1C3 Relationships between quantum invariants at different roots of unity One
can obtain from Theorem 1.1 results about the values of the WRT invariants more
refined than integrality.

Let Q® C C denote the maximal abelian extension of Q, which is the smallest
extension of Q containing Z. The image of the WRT function r]%,l is contained in the
integer ring O(Q®) of Q, which is the subring of Q® generated by Z. Note that
an automorphism « € Gal(Q®/Q) maps each root of unity £ to a root of unity «(£)
of the same order as &. There is a canonical isomorphism

Gal((@ab/@) = AU»tGrp(Z),

which maps & € Gal(Q*/Q) to its restriction to Z. Here Autgp(Z2) is the group of
automorphisms of Z, considered as a subgroup of the multiplicative group C \ {0}.

Proposition 1.5 For every integral homology sphere M , the g—WRT function
12— Q"
is Galois-equivariant, in the sense that, for each automorphism « € Gal(Q*/Q),
Ty (@) = a(ty, ().
The sl, case of Proposition 1.5 is mentioned in Habiro [26].

Proposition 1.6 (see [26] for g = sl;) We have ev{(Jar) = | for every integral
homology sphere M .

Proposition 1.6 is proved in Section 8U.

Proposition 1.7 (see [26] for g =sl,) For £, £ € Z with ord(§’§~") a prime power,
we have

(€ =13(E)  (mod &' —¢)
in Z[§,£'].

Proposition 1.7 holds also when ord(§’£~1) is not a prime power, but in this case the
statement is trivial, since & — £ is a unit in Z[§, &’].

Corollary 1.8 For every integral homology sphere M and every root of unity £ € Z
of prime power order, we have

(&) —1e(1-HZE].
Consequently, we have r]%/[ (&) #0.

For g = sl,, a refined version of Corollary 1.8 is given in [26, Corollary 12.10].
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1C4 Integrality of the Ohtsuki series When M is a rational homology sphere,
Ohtsuki [67] extracted a power series invariant, z;lf (M) € Q[g — 1], from the values
of r]l\),‘;lz (&) at roots of unity of prime orders. The Ohtsuki series is characterized by
certain congruence relations modulo odd primes. The existence of the Ohtsuki series

invariant for other Lie algebras was proved in L& [48; 49]; see also Rozansky [75].

The Ohtsuki series 73,(M) € Q[¢ — 1] and the unified WRT invariant J; are related
as follows:

Proposition 1.9 (see [26] for g =sl,) For every integral homology sphere M , we
have

(M) = Ti1(Jm) € Zlg - 1]-

In other words, the Ohtsuki series is equal to the Taylor expansion of the unified WRT
invariant at ¢ = 1. Moreover, all the coefficients in the Ohtsuki series are integers.

The fact 15, (M) € Z[q — 1] for g = sl, was conjectured by Lawrence [45] and first
proved by Rozansky [76]. Here we have general results for all simple Lie algebras.

1C5 Relation to the Lé-Murakami—Ohtsuki invariant The LMO invariant [51]
is a counterpart of the Kontsevich integral for homology 3—spheres; it is a universal
invariant for finite-type invariants of integral homology 3—spheres; see L& [46]. The
LMO invariant t"MO (A1) of a closed 3—manifold takes values in an algebra A(2) of
the so-called Jacobi diagrams, which are certain types of trivalent graphs. For each
simple Lie algebra g, there is a ring homomorphism (the weight map)

Wy A(2) — Q[A].
It was proved in Kuriya, L& and Ohtsuki [43] that
Wo(t™MO(M)) = 18 (M)] =

Hence, we have the following:

Corollary 1.10 (see [26] for g =sl,) For an integral homology 3—sphere M , the
LMO invariant totally determines the WRT invariant rf\’,l (&) for every simple Lie
algebra and every root of unity & € Z;.

It is still an open question whether the LMO invariant determines the WRT invariant
for rational homology 3—spheres.
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1C6 Determination of the quantum invariants

Corollary 1.11 (see [26] for g = sl,) For an integral homology 3—sphere, Jps is
determined by the WRT function r]%/l. (Thus Jps and r]%,[ have the same strength in
distinguishing two integral homology 3—spheres.) Moreover, both Jjs and ‘17]%/1 are
determined by the values of f]%/[ (&) for & € Z', where Z' C Z is any infinite subset
with at least one limit point in Z (in the sense explained in Section 1B).

For example, the value of r]gw (&) at any root of unity £ is determined by the values
rf\’/[ (&) at & = exp(2mi/2%) for infinitely many integers k > 0.

1D Formal construction of the unified invariant

Here we outline the proof of Theorem 1.1. Since we are not able to directly generalize
the proof of the case g = sl, in [26], we use another approach, which involves deep
results in quantized enveloping algebras (quantum groups). The conceptual definition
of the unified invariant presented here is also different.

1D1 First step: construction of Jj; The first step is to construct an invariant
WVES Z/E] using the quantum group Up(g) of g. Here we use neither the definition of
tf,[ (&) nor the quantum link invariants associated to finite-dimensional representations
of Uy(g). Instead, we use the universal quantum invariant of bottom tangles and the
full twist forms, which are partially defined functionals 71 on the quantum group

Uy (g) and play the role of +1-framed surgery on link components.

Every integral homology 3—sphere M can be obtained as the result .S z of surgery on
S3 along an algebraically split link L with framing 1 on each component. Here
a link is said to be algebraically split if the linking number between any two distinct
components is 0. Surgery on two algebraically split, 1 framing links L and L’ gives
the orientation-preserving homeomorphic integral homology 3—spheres if and only if
L and L' are related by a sequence of Hoste moves (see Figure 7); see Habiro [24].
Hence, in order to construct an invariant of integral homology 3—spheres, it suffices to
construct an invariant of algebraically split, =1 framing links which is invariant under
the Hoste moves.

To construct such a link invariant, we use the universal quantum invariant of bottom
tangles associated to the quantum group Uy(g). Here a bottom tangle is a tangle in
a cube consisting of arc components whose endpoints are on the bottom square in
such a way that the two endpoints of each component are placed side by side (see
Section 2F). For an n—component bottom tangle 7', the universal g quantum invariant

Geometry & Topology, Volume 20 (2016)



Unified quantum invariants for integral homology spheres 2695

Jr = J% of T is defined by using the universal R—matrix and the ribbon element for
the ribbon Hopf algebra structure of Uy (g), and takes values in the n—fold completed
tensor power Uy, (g)®".

The invariant Jys € Z/[E] is defined as follows. As above, let L be an n—component
algebraically split framed link with framings &q,...,&, € {£1}, and assume that
S z =~ M. Let T be an n—component bottom tangle whose closure is isotopic to L,
where the framings of 7" are switched to 0. Define

5) Jpy o= (7;1 ®"'®7;n)(JT).

Here T1: Uy(g) --> C[h] are partial maps (ie maps defined on a submodule of Uy,)
defined formally by
Ta(x) = (x.r¥),

where r € Uy(g) is the ribbon element, and

(-.): Up(9) ® Uy(g) --> C[A]

is the quantum Killing form, which is a partial map. The tensor product 7, ®---® 7,
is not well defined on the whole Uy, (g)®” but is well defined on a Z[q] —submodule
Kn C Up(g) 7 and we have a Z[q]—module homomorphism

Tey ® -+ ®Tg,: Kn — Zlql.

Here we regard Z/[E] as a subring of C[[A] by setting ¢ = exp/. The module K,
contains Jr for all n—component, algebraically split O—framed links 7". We will prove
that Jps as defined in (5) does not depend on the choice of 7" and is invariant under
the Hoste moves. Hence Jjs € Z/[a] is an invariant of an integral homology sphere.

One step in the construction of Jps is to construct a certain integral form of the
quantum group Uj(g) which is sandwiched between the Lusztig integral form and the
De Concini—Procesi integral form.

1D2 Second step: specialization to the WRT invariant at roots of unity The next
step is to prove the specialization property eve(Jas) = r]gw (§) for each £ € Z; - Once
we have proved this identity, uniqueness of Jjs follows, since every element of Z[g] is
determined by the values at infinitely many & € Z of prime power order; see Section 1B.

Organization of the paper In Section 2 we give a general construction of an invariant
of integral homology 3—spheres from what we call a core subalgebra of a ribbon
Hopf algebra. Section 3 introduces the quantized enveloping algebra Uj(g) and its
subalgebras. In Section 4 we construct a core subalgebra of the ribbon Hopf algebra
U /> Which is U, with a slightly bigger ground ring. From the core subalgebra we get
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the invariant Jjs of integral homology 3—spheres. In Section 5 we construct an integral
version of the core algebra. Section 6 a (generically noncommutative) grading of the
quantum group is introduced. In Section 7 we prove that Jys € Z/[;]. In Section 8 we
show that the WRT invariant can be recovered from Jjs, proving the main results. In
appendices we give an independent proof of a duality result of Drinfel’d and Gavarini
and provide proofs of a couple of technical results used in the main body of the paper.

Acknowledgements Habiro was partially supported by the Japan Society for the Pro-
motion of Science. L€ was partially supported in part by National Science Foundation.

The authors would like to thank H Andersen, A Beliakova, A Bruguieres, C Kassel,
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2 Invariants of integral homology 3-spheres derived from
ribbon Hopf algebras

In this section, we give the part of the proofs of our main results that can be stated without
giving the details of the structure of the quantized enveloping algebra U; = Uj(g).
We introduce the notion of a core subalgebra of a ribbon Hopf algebra and show that
every core subalgebra gives rise to an invariant of integral homology 3—spheres.

2A Modules over C[[Z]]

Let C[4] be the ring of formal power C—series in the variable /.

Note that C[/] is a local ring, with maximal ideal (#) = hC[A]. An element x =
> xxh* € C[[h] is invertible if and only if the constant term xg is nonzero.

2A1 h-adic topology, separation and completeness Let V be a C[[h]-module.
Then V is equipped with the h—adic topology given by the filtration AV, k > 0. Any
C[h]-module homomorphism f: V' — W is automatically continuous. In general,
the h—adic topology of a C[[h]-submodule W of a C[[h]-module V is different from
the topology of W induced by the /i—adic topology of V.

Suppose [ is an index set. Let VI be the set of all collections (Xi)ier, xi € V. We
say a collection (x;)jey € V! is O—convergent in V if, for every positive integer k,
X; € kv except for a finite number of i € /. In this case, the sum Zie] X; 18
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convergent in the s—adic topology of V. If [ is finite, then any collection (x;);cy is
O—convergent.

The h—adic completion V of V is defined by

V =1limV/hV.
am
k
A C[h]-module V is separated if the natural map V — V is injective, which is

equivalent to (), WKV = {0}. If V is separated, we identify V with the image of the
embedding V — V.

A C[h]-module V is complete if the natural map V — Vis surjective.

For a C[[h]-submodule W of a completed C[A]-module V', the topological comple-
tion of W in V is the image of W under the natural map W — V = V. One should
not confuse the topological completion of W and the topological closure of W, the
latter being the smallest closed (in the s#—adic topology) subset containing W . See
Example 2.2.

2A2 Topologically free modules For a vector space A over C, let A[/] denote the
C[[h]-module of formal power series ), anh", an € A. Then A[h] is naturally
isomorphic to the s—adic completion of 4 ®c C[A].

A C[h]-module V is said to be topologically free if V is isomorphic to A[4] for some
vector space A. A topological basis of V is the image by an isomorphism A[A] =~ V
of a basis of A C A[h]. The cardinality of a topological basis of V' is called the
topological rank of V .

It is known that a C[A]-module is topologically free if and only if it is separated,
complete, and torsion-free; see eg [35, Proposition XVI.2.4].

Let I be aset. Let C[h]! =[], C[/] be the set of all collections (x;);er, X; € C[A].
Let (C[A]Y)o C C[h]! be the C[h]-submodule consisting of the 0—convergent collec-
tions. Then (C[/]!)o 2 (CI)[4] is topologically free, where C 1 is the vector space
generated by 1.

Note that C[/]! is also topologically free. In fact, we have a C[h]-module iso-
morphism C[/]! = CI[A]. If I is infinite, then the topological rank of C[/] is
uncountable.
For j € I, define a collection §; = ((8;):)ies € (C[h]?)o by

1 if i =,
6 §:)i =8 —
©® e=8=1{y w127
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Suppose V is a topologically free C[4]-module with isomorphism f: (C[A] )o — V.
Let e(i) = f(8;) € V. For x € V, the collection (x;);e; = f~!(x) is called the
coordinates of x in the topological basis {e(i)}. We then have

(7) x =y xie(),

iel

where the sum on the right-hand side converges to x in the /4—adic topology of V.

2A3 Formal series modules A C[i]-module V is a formal series C[h]-module
if there is a C[[/]-module isomorphism f: C[h]! — V for a countable set I .

Remark 2.1 Besides the /—adic topology, another natural topology on C[i]! =
[1;e7 ClA] is the product topology. (Recall that the product topology of [ [;c; C[/]
is the coarsest topology with all the projections p;: [[;c; C[#] — C[h] being contin-
uous.)

Suppose V is a formal series module, with an isomorphism f : C[A]f — V. Let
e(i) = f(8i), where §; is defined as in (6). The set {e(i) | i € I} is called a formal
basis of V.

For x € V the collection f~!(x) € C[A]! is called the coordinates of x in the
formal basis {e(i) | i € I'}. Unlike the case of topological bases, in general the sum
> ;e Xie(i) does not converge in the s—adic topology of V' (but does converge to x
in the product topology). However, it is often the case that V' is a C[[/]]—submodule
of a bigger C[A]-module V' in which {e(i) | i € I} is 0—convergent. Then the sum
> iy Xxie(i), though not convergent in the s—adic topology of V', does converge (to x)
in the A—adic topology of V.

The following example is important for us:

Example 2.2 Suppose V is a topologically free C[i]-module with a countable
topological basis {e(i) | i € I}. Assume that a: I — C[A] is a function such that
a(i) # 0 for every i € I and (a(i));es is O—convergent. Let V' (a) be the topological

completion in V of the C[[h]-span of {a(i)e(i)|i € I}. Then V(a) is topologically
free with {a(i)e(i) | i € I} as a topological basis.

The submodule V(a) is not closed in the /s—adic topology of V. The closure V(a) of
V(a) in the h—adic topology is a formal series C[[i]-module, with an isomorphism

FClhl = V., 8w a(i)e(i).
The topology of V(a) induced by the i-adic topology of V' is the product topology.
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If x € V(a), then we have a unique presentation
(®) x =Y xia(ie(i))
iel
with (xi)ier € (C[A])o.
If x € V(a), then x also has a unique presentation (8), with (x;);e; € C[4]".

2A4 Completed tensor products For two complete C[[/i]-modules V and V', the
completed tensor product V&V’ of V and V' is the h—adic completion of V @ V', ie

VRV =lm(VV)/h"(VeV.
n

Suppose both V' and V' are topologically free with topological bases {b(i) |i € I}
and {b'(j) | j € J}, respectively. Then V ® V' is topologically free with a topological
basis naturally identified with {b(i) ® b'(j)|i €I, j € J}.

Proposition 2.3 Suppose Wy, Vi, W, and V, are topologically free C[h]—modules,
where W is a submodule of V; for j =1,2.
Then the natural maps W1 @ Wo, — V1 ® V, and W, QW) > Vi ®V, are injective.

Proof The map W; ® W, — V1 ® V5 is the composition of two maps W7 @ W, —
Wi ®V, and W1 ® V, — V1 ® V,. This reduces the proposition to the case W, = V5,
which we will assume.

Let ¢ : Wi < V7 be the inclusion map. We need to show that t®id: W1 @V, — V1 QV,
and (®id: W; ® Vo, — Vi ® V, are injective.

Since W; ® V, is separated, we can consider W; ® V, as a submodule of W) R Vs.
Then ¢ ®1id is the restriction of ¢ ®id. Thus, it is enough to show that ¢ ®id is injective.

Suppose x € W; ® V, with (¢ ® id)(x) = 0. We have to show that x = 0.

Let {b(i) | i € I} be a topological basis of V,. Using a topological basis of W one
sees that x has a unique presentation

©) x=) xi®b(i)
iel
with x; € Wy, and the collection (x;);cy is O—convergent in V7. Then we have
0=(®id)(x) =) 1(x)®b(i) € Vi ® V.
iel
The uniqueness of the presentation of the form (9) for elements in V; RV, implies that

t(x;) =0 for every i € I. Because (¢ is injective, we have x; = 0 for every i. This
means x = 0, and hence ¢ ® id is injective. a
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2B Topological ribbon Hopf algebra

In this paper, by a topological Hopf algebra 5 = (7,u,5,A,€,S) we mean a
topologically free C[[i]-module 5# of countable topological rank, together with
C[h]-module homomorphisms
W QA — A, W C[h]— H, A AH—>HSH,
e: X —C[h), S:#—2,
which are the multiplication, unit, comultiplication, counit and antipode of ¢, re-

spectively, satisfying the usual axioms of a Hopf algebra. For simplicity, we include
invertibility of the antipode in the axioms of Hopf algebra. We denote 1n(1) by 1 € 7.

Note that .77 is a C[[h]—-algebra in the usual (noncomplete) sense, although .77 is not
a C[h]—coalgebra in general. A (left) #~module V' (in the usual sense) is said to
be topologically free if V is topologically free as a C[h]-module. In that case, by
continuity the left action # ® V — V induces a C[h]-module homomorphism

HRQXV = V.

For details on topological Hopf algebras and topologically free modules, see eg [35,
Section XVI1.4].

Let pll: 7 ®n s  and AP s — #®" be respectively the multiproduct and the
multicoproduct defined by

= g (id® p) - (d®"D @ u)(d®@D & ),
Al = (d®0=2 § A)(d®TD G A) .- (1[d ® A)A,
with the convention that Al'l = g1l =id, Al%) = ¢ and pl0 = 4.

A universal R—matrix [17] for 5 is an invertible element R =) o« ® f € # QA
satisfying
RAX)R™! = ZX(Z) ® x(1) for x €2,
(A®id)(R) = R13R23, (1d® A)(R) =R13R12,
where A(x) = Y x(1) ® X(2) (Sweedler’s notation), R, =Y ¢ ®BQ1, Ri3 =
Yao®l®pB,and Rz =Y 1 ®a® . A Hopf algebra with a universal R—matrix is
called a quasitriangular Hopf algebra. The universal R—matrix satisfies
RT=(®id)R)=>(®SHR), (®id)(R)=(d®€)(R)=1,
(10) S®S)(R)=R.
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A quasitriangular Hopf algebra (57, R) is called a ribbon Hopf algebra [72] if it is
equipped with a ribbon element, which is defined to be an invertible, central element
r € J satisfying

rP=uSw), Sr)=r, er)=1, AFr)=Fr)(RyuR)" ",
where u =) S(B)a € and Ry =) R« e %2,
The element g := ur~! € 27, called the balanced element, satisfies
Ag)=g®g. S@=g'. gxg'=S5*x) forxex.

See [35; 68; 82] for more details on quasitriangular and ribbon Hopf algebras.

2C Topologically free Z~modules

The ground ring C[[/] is considered as a topologically free .7#~module, called the
trivial module, by the action of the counit:

a-x =e€(a)x.

Suppose V and W are topologically free .7#~modules. Then V ® W has the structure
of an #®.#~module, given by

(@a®b) - (x®y)=(a-x)Q(b-y).
Using the comultiplication, V ® W has an .#~module structure given by
a-(x®y) =A@ - x®y) = Za(l)x ®apyy.
An element x € V is called invariant (or s#~invariant) if, for every a € 7,
a-x =e€(a)x.

The set of invariant elements of V' is denoted by V™. The following is standard and
well-known:

Proposition 2.4 Suppose that V and W are topologically free .»#—modules and
f:V®W — C[h] is a C[h]-module homomorphism.

(a) Anelement x € V ® W is invariant if and only if, for every a € A,
(an S@®)-x=01®a)-x.

(b) Dually, f is an 2/-module homomorphism if and only if, for every a € ¢ and
xeVRW,

flla®)-(x)]= fl(1®S(@)-(x)].
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(¢) Suppose f is an s#-module homomorphism and x € V' is invariant. Then the
C[h]]-module homomorphism

S W—=Clh], vy f(x® ),
is an ##-module homomorphism.

(d) Suppose g: V — CJ[h] is an s#~module homomorphism. Then, for every i with
1<i=<n,

(id®(i—1) &g @)id@(n—i))((V@n)iHV) c (V®(n—1))inv'
Proof (a) Suppose one has (11). Let a € # with A(a) =) a() ® ac). Assume
x =) x'®x". By definition,
a-x=>Y (aqy®ap) ' ®x")=> (any® D1 ®ap)- (' ®x")

=) (am® - (' ®ag)-x")

= (am) ® D(S(a) ¥ & x")

=Y (anSa@)®1)- (' ®x") = e(a)x,
which shows that x is invariant.

Conversely, suppose x is invariant. From the axioms of a Hopf algebra,

1®a=> (S(ag)) ® DAe).
Applying both sides to x, we have
(1®a)-x=) (Saw)®1) (ag) x)
= Z(S(a(l)) ®1)-(e(acz))x) by invariance
=(S@®1)-x,
which proves (11).

(b) The proof of (b) is similar and is left for the reader. Statement (b) is mentioned in
the textbooks [30, Section 6.20] and [41, Section 6.3.2].

(c) Letae s and y € W. One has
fxla-y)=f(x®(a-y))
=f(S7H@-x®y) by part(b)
=€e(S7'a)) f(x®y) by invariance of x
=e€(a) fx(y) since €(S7!(a)) = €(a).
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This proves fy is an s#~module homomorphism.
(d) The map g := id®(i_1) Reg® ig®(”_i) is also an s#~module homomorphism.
Hence, for every a € 5 and x € (V &),

a-g(x)=g(a-x)=g(e(a)x) =e(@)g(x).

This shows g(x) is invariant. a

2D Left image of an element

Let V and W be topologically free C[h]-modules.

Suppose x € V ® W . Choose a topological basis {e(i) |i € I} of W. Then x can be
uniquely presented as an /i—adically convergent sum

(12) x=2xi®e(i),

iel
where {x; € V | i € I} is O—convergent. The left image Vy of x € V & W is the
topological closure (in the s—adic topology of V') of the C[A]—span of {x; | i € I}.

It is easy to show that V. does not depend on the choice of the topological basis
{e(i)|i el} of W.

Proposition 2.5 Suppose V, W are topologically free #-modules. Let x € V & W
and let Vx C V be the left image of x.

(a) If x is ##—invariant, then V is s#-stable, ie 57 -V, C Vy.

() If (f ® g)(x) = x, where [V — V and g: W — W are C[h]-module

isomorphisms, then f(Vy) = V.
Proof Let {e(i) |i € I} be a topological basis of W and let x; be as in (12).
(a) By Proposition 2.4(a), the s#~invariance of x implies that, for every a € ¢,
(13) da-xi®ei)=) x;®S ' (a)-e()).
iel jeIl
Using the topological basis {e¢(i)}, we have the structure constants
SN a)-e(j) =) dle(i),
iel

where aj. € C[h]. Using this expression in (13),

Za-xi Re(i) = ZZa;:xj ®eli).

iel iel jel
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The uniqueness of expression of the form (12) shows that
a-x; = Zajog € Vy.
jel
Since the C[[A]-span of x; is dense in V and the action of « is continuous in the
h—adic topology of V', we have a -V, C V.

(b) Using x = (f ® g)(x), we have
x=Y f(xi)®g(er).

Since g is a C[Ah]-module isomorphism, {g(e;)} is a topological basis of W . It
follows that V is the closure of the C[[4]—span of { f(x;) |i € I}. At the same time,
Vy is the closure of the C[[h]—span of {x; | i € I'}. Hence, we have f(Vy)=Vy. O

2E Adjoint action and ad-invariance

Suppose sZ is a topological ribbon Hopf algebra. The (left) adjoint action
ad: R H — H
of ¢ on itself is defined by
ad(x ® ) = Y x1)»S(x).
It is convenient to use an infix notation for ad:
xr>y=adlx® y).

We regard 7 as a (topologically free) s#—module via the adjoint action, unless
otherwise stated. Then #®" becomes a topologically free #~module, for every n > 0.
The action of x € 2 on y € #®" is denoted by x >, y.

To emphasize the adjoint action, we say that a C[[4]-submodule V C .7 ®n i ad-stable
if V' is an ##~submodule of %" An element x € s#®" is ad-invariant if it is an
invariant element of .2#®" under the adjoint action. For example, an element of .77 is
ad-invariant if and only if it is central.

For ad-stable submodules V C 7#®" and W C #®™ , a C[[h]-module homomorphism
f:V — W is ad-invariant if f is an s#~module homomorphism.

In particular, a linear functional f: V — C[A], where V C »# @’”, is ad-invariant if
V' is ad-stable and, for x € 7 and y e V,

fxeny) =€) f(p).
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ARE (ARS

Ly L, L;

Figure 1: A 3—component bottom tangle 7" = 77 U T, U T3 (left) and its
closure cl(T) = L; U L, U L3 (right)

The main source of ad-invariant linear functionals comes from quantum traces. Here
the quantum trace trfl/: 2 — CJ[h] for a finite-dimensional representation V' (ie a
topologically free .7#—module of finite topological rank) is defined by

tr}l/(x) =tu"(gx) for x € 7,

where tr”’ denotes the trace in V. It is known that tr;/: 2 — C[h] is ad-invariant.

2F Bottom tangles

Here we recall the definition of bottom tangles from [23, Section 7.3].

An n—component bottom tangle T =T U---UT}, is a framed tangle in a cube consisting
of n arc components 77, ..., T, such that all the endpoints of the 7; are in a bottom
line and that, for each 7, the component 7; runs from the 2i™ endpoint to the (2i —1)*
endpoint, where the endpoints are counted from the left. See Figure 1 (left) for an
example. In figures, framings are specified by the blackboard framing convention.

The closure cl(T') of T is the n—component, oriented, ordered framed link in S3,
obtained from 7" by pasting a “U—shaped tangle” to each component of L, as depicted
in Figure 1 (right). For any oriented, ordered framed link L, there is a bottom tangle
whose closure is isotopic to L.

The linking matrix of a bottom tangle 7" = 77 U --- U T}, is defined as that of the
closure 7'. Thus the linking number of 7; and 7}, i # j, is defined as the linking
number of the corresponding components in cl(7"), and the framing of 7; is defined
as the framing of the closure of 7;.

A link or a bottom tangle is called algebraically split if the linking matrix is diagonal.
2G Universal invariant and quantum link invariants

Reshetikhin and Turaev [72] constructed quantum invariants of framed links col-
ored by finite-dimensional representations of a ribbon Hopf algebra, eg the quantum
group Upy(g). Lawrence [44], Reshetikhin [70], Ohtsuki [64] and Kauffman [36]
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A X A

Figure 2: Fundamental tangles: vertical line, positive and negative crossings,
local minimum and local maximum. Here the orientations are arbitrary.

constructed “universal quantum invariants” of links and tangles with values in (quotients
of) tensor powers of the ribbon Hopf algebra, where the links and tangles are not colored
by representations. We recall here construction of link invariants via the universal
invariant of bottom tangles. We refer the readers to [23] for details.

Fix a ribbon Hopf algebra s#. Let T be a bottom tangle with #n components. We
choose a diagram for 7', which is obtained from copies of fundamental tangles — see
Figure 2 — by pasting horizontally and vertically. For each copy of fundamental tangle
in the diagram of 7', we put elements of .7 with the rule described in Figure 3.

We set
Jri=) X1 @ ®@x, € £,

where each x; is the product of the elements put on the i component T}, with
product taken in the order reversing the order of the orientation. The (generally infinite)
sum comes from the decompositions of R*! as (infinite) sums of tensor products. It
is known that Jr gives an isotopy invariant of bottom tangles, called the universal
invariant of 7. Moreover, Jr is ad-invariant [38]; see also [23].

Let x1,..., xn: 2# — C[h] be ad-invariant. In other words, 1, ..., x» are S#~module
homomorphisms. As explained in [23], the quantity

(X1 ®+ ® xn)(Jr) € C[h]

is a link invariant of the closure link cl(7") of T'.

[t A A

Figure 3: How to put elements of .5 on the strings. Here R =) o ® B and
R1'=Ya® ,5 For each string in the positive and the negative crossings,
“S’” should be replaced by id if the string is oriented downward and by S
otherwise.
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In particular, if xi,..., x» are the quantum traces A ,trg" in finite-dimensional
representations V7, ..., V,, respectively, then

(tr)' & ®tr)")(Jr) € C[A]

is the quantum link invariant for cI(7") colored by the representations Vi,..., Vj,.

2H Mirror image of bottom tangles

Definition 2.6 A mirror homomorphism of a topological ribbon Hopf algebra 57 is
an h—adically continuous C—algebra homomorphism ¢: J# — J# satisfying

(14) (¢ ®P)R=TR5;,
(15) p(g)=g.

In general, such a ¢ is not a C[[/i]-algebra homomorphism. In fact, what we will have
in the future is ¢(h) = —h.

For a bottom tangle 7' with diagram D let the mirror image of T be the bottom
tangle whose diagram is obtained from D by switching over/under crossing at every
crossing.

Proposition 2.7 Suppose ¢ is a mirror homomorphism of a ribbon Hopf algebra 7 .
If T' is the mirror image of an n—component bottom tangle T , then

Jr=¢®"(Jr).

Proof Let D be a diagram of 7'. By rotations at crossings if necessary, we can
assume that the two strands at each crossing of D are oriented downwards. Then at
each crossing we assign o and f to the strands if the crossing is positive, and we
assign ,3_ and « to the strands if it is negative, at the same spots where we would
assign o and B if the crossing were positive; see Figure 4. Here R = )« ® f and
R~! =Y @ ® fB. Condition (14) implies that

Y BRI=Y ¢@@p(B). Y a®B=) 0B R¢@).

Together with (15) this shows that the assignments to strands of diagram D’ of T’ can
be obtained by applying ¢ to the corresponding assignments to strands of D. Since ¢
is a C—algebra homomorphism, we get J7+ = ¢®"(JT). o
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o:\/\is 5//&

Figure 4: Assignments on positive and negative crossings

21 Braiding and transmutation

Let R =) «a ® B be the R-matrix. The braiding for # and its inverse

vEL Q> R
are given by
16) y(x®y) =Y Be@@rx). ¥ 'x@y) =) (S@)>y)B>x).
The maps p, 5 and € are .—module homomorphisms. In particular, we have
17 x> yz= Z(X(l) > y)(x@y>z) for x,y,z€ 2.

In general, A and S are not s#~module homomorphisms, but the twisted versions of
A and S, introduced by Majid (see [57; 58]),

A H—>AHQAH, S:H— A,
defined by

(18) A) =) x1)SB)® (@>x2) = Y (B> x2) ®axq),
(19) S(x)=) BS@rx)=) ST (Brx)S(@),

for x € /7, are .#—module homomorphisms. Geometric interpretations of A and S
are given in [23].

Remark 2.8 7 := (s, u,1,A, €, S) forms a braided Hopf algebra in the braided

category of topologically free .7#~modules, called the transmutation of 7 [57; 58].

2J Clasp bottom tangle

Let C* be the clasp tangle depicted in Figure 5. We call ¢ = Jo+ € 29?2 the clasp
element for 7. With R=> a @B => o’ ® B/, we have

(20) ¢ =(S®i)(RyuR) =) _ S@)S(B)®dp.

Let C~ be the mirror image of C* —see Figure 6—and ¢~ = Jc- € 282

Geometry & Topology, Volume 20 (2016)



Unified quantum invariants for integral homology spheres 2709

4

Figure 5: The clasp tangle C*

Let (C )’ be the tangle obtained by reversing the orientation of the second component
of CT,and (CT)” be the result of putting (C*)’ on top of the tangle

RIS

(see Figure 6). By the geometric interpretation of S — see [23, Formula (8-10)] — we
have

J(C+)// = (1d® S)Jc—i-.
Since (C )" is isotopic to C~, we have

(21) ¢ =({d® S)(c).

2K Hoste moves

It is known that every integral homology 3—sphere can be obtained by surgery on S
along an algebraically split link with £1 framings.

The following refinement of the Kirby—Fenn—Rourke theorem on framed links was first
essentially conjectured by Hoste [28]. (Hoste stated it in a more general form related
to Rolfsen’s calculus for rationally framed links.)

Theorem 2.9 [24] Let L and L' be two nonoriented, unordered, algebraically split
+1—framed links in S3. Then L and L' give orientation-preserving homeomorphic
results of surgery if and only if L and L' are related by a sequence of ambient isotopy
and Hoste moves. (Here a Hoste move is a Fenn—Rourke (FR) move between two
algebraically split, +1-framed links; see Figure 7.)

B!

Figure 6: The negative clasp C~ (left) and (C )" are isotopic.
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surgery ’

41 along K
Q 1 full twists
K inverse

operation ’

Figure 7: A Hoste move (including the case when there are no vertical
strands). Here both these two framed links are algebraically split and +1—
framed.

Theorem 2.9 implies that, to construct an invariant of integral homology spheres, it
suffices to construct an invariant of algebraically split, +1-framed links which is
invariant under the Hoste moves.

Lemma 2.10 Suppose f is an invariant of oriented, unordered, algebraically split
=+ 1-framed links which is invariant under Hoste moves. Then f (L) does not depend
on the orientation of the link L. Consequently, f descends to an invariant of inte-
gral homology 3—spheres, ie if the results of surgery along two oriented, unordered,
algebraically split £ 1—framed links L and L' are homeomorphic integral homology
3—spheres, then f(L) = f(L').

Proof Suppose K is a component of L so that L = L; U K. We will show that f
does not depend on the orientation of K by induction on the unknotting number of K.

First assume that K is an unknot. We first apply the Hoste move to K, then apply the
Hoste move in the reverse way, obtaining L; U (—K), where —K is the orientation-
reversal of K. This shows f(L;UK) = f (LU (—K)).

Suppose K is an arbitrary knot with positive unknotting number. We can use a Hoste
move to realize a self-crossing change of K, reducing the unknotting number. Induction
on the unknotting number shows that f* does not depend on the orientation of K. O

2L Definition of the invariant J; for the case when the ground ring is a
field

In this subsection, we explain a construction of an invariant of integral homology
spheres associated to a ribbon Hopf algebra over a field k, equipped with “full twist
forms”. In this subsection, and only here, we will assume that J# is a ribbon Hopf
algebra over a field k. This assumption simplifies the definition of the invariant.
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Figure 8: The trivial bottom tangle

2L1 Full twist forms Recall that ¢ = Jo+ € 5 @ 5 is the universal invariant of
the clasp bottom tangle and r is the ribbon element.

A pair of ad-invariant linear functionals 7, 7_: 5 — k are called full twist forms
for o7 if

(22) (T2 ®id)(¢) = r 1.

The following lemma essentially shows how the universal link invariant behaves under
the Hoste move if there are full twist forms:

Lemma 2.11 Suppose that a ribbon Hopf algebra ¢ admits full twist forms (T4, T-).
Let T =Ty U---UT, be an n—component bottom tangle (n > 1) such that the first
component T; of T is a 1-component trivial bottom tangle (see Figure 8). Let
T'=T,U---UT, be the (n—1)—component bottom tangle obtained from T \ T} =
T,U-.-UT, by surgery along the closure of T1 with framing 1 (see Figure 9). Then
we have

(23) Jr = (Te ®1id® Dy (Jp).

Proof In this proof we use the universal invariant for tangles that are not bottom
tangles. For details, see [23, Section 7.3].

If Tp4 is a (p4q+1)—component tangle as depicted in Figure 10, left, with p, ¢ >0,
then we have
Jr,, = (d®id®? @ §®7)(id @ AlPT4)(c).

tangle ¢ tangle ¢

Figure 9: The tangles T (left) and T’ (right)
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Figure 10: The tangles T}, , (left) and T;’ o (right)

The tangle Tp/ git1 obtained from 7) 4 \ T} by surgery along the closure of the first
component 7T of Tp, with framing +1 (see Figure 10, right) has the universal
invariant

Jr = (id®? ® S®q)A[p+q](,,i1)_

p.q.

Since 7T+ is a full twist form, it follows that
(T @d®PHD)(Jp, )y =Jg .

The general case follows from the above case and functoriality of the universal invariant,
since 7' can be obtained from some 7) 4, by tensoring and composing appropriate
tangles. a

2L2 Invariant of integral homology 3—spheres We will show here that a ribbon
Hopf algebra .# with full twist forms 7 gives rise to an invariant of integral homology
spheres.

Suppose that 7' is an n—component bottom tangle with zero linking matrix and
€1,...,&n€{l,—1}. Let M = M(T;¢q,...,¢&y,) be the oriented 3—manifold obtained
by surgery on S* along the framed link L = L(T'; &1, ..., &,), which is the closure link
of T with the framing on the i component switched to &;. Since L is an algebraically
split link with 1 framing on each component, M is an integral homology 3—sphere.
Every integral homology 3—sphere can be obtained in this way.

Proposition 2.12 Suppose 5 is a ribbon Hopf algebra with full twist forms T+ and
M = M(T;ey,...,&y,) is an integral homology 3 —sphere. Then

I =T, ®...0T,)(Jr) €k
is an invariant of M . In other words, if M(T; ey, ... ,en) = M(T":€/,....¢},), then

(Tey ® ... ®Te) (1) = (T, ® ... ® Ty )(Jr).
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T T

IR

Figure 11: Modification of a bottom tangle with a braid of bands

Proof Since 71 are ad-invariant, (7, ® ... ® 7¢,)(J7) depends only on €1, ..., &,
and the oriented, ordered framed link cl(7"), but not on the choice of T; see eg [23,
Section 11.1]. This shows (7g, ® ... ® T¢,)(Jr) is an invariant of the framed link
L(T;eq,...,¢6n).

We now show that (7, ®...®7¢,)(J1) does not depend on the order of the components
of L. Suppose L = L(T;¢q,...,&,) and L’ is the same L, with the orders of the
(i+1)" and (i+2)" components switched. Then L' = L(T";¢,...,¢},), where
T’ is T on top of a simple braid of bands which switches the (i +1)* and (i +2)"
components; see Figure 11. Also, 8} =g¢jfor j#i+1,i+2,and 8;._H =¢&j47 and
€ipa = Eitl-

According to the geometric interpretation of the braiding [23, Proposition 8.1],

Jr = (id® @ y ®id®" "% (Jr).
By (16),
vY(x®y) = Z(ﬂby)@(abx), where R = Z(x@ﬁ.
Since (e ® €)(R) =1 and Ty are ad-invariant,
(Te; @ ... ®Te, )(Jr) = (T ... & Ty )(JT7).
Thus, (7, ® ... ® Tg,)(Jr) is an invariant of oriented, unordered framed links.

By Lemma 2.11, (7, ®---®7g,)(Jr) is invariant under the Hoste moves. Lemma 2.10
implies that (7, ® --- ® T¢,,)(J1) descends to an invariant of integral homology 3—
spheres. |

2L.3 Examples of full twist forms: factorizable case A finite-dimensional, quasi-
triangular Hopf algebra over a field k is said to be factorizable if the clasp element
¢ € # ®y A is nondegenerate in the sense that there exist bases {¢’(i) | i € I} and
{¢" (i) |i € I} of 22 such that

c= Zc’(i) ®c”(i).

iel
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This definition of factorizability is equivalent to the original definition by Reshetikhin
and Semenov-Tian-Shansky [71].

Suppose 5 is a factorizable ribbon Hopf algebra. The nondegeneracy condition shows
that there is a unique bilinear form, called the clasp form,

L QN —k,
such that, for every x € 57,
(24) (QidDx®c)=x, ({d®.L)(c®x)=x.

Using the ad-invariance of ¢, one can show that .Z: /# ® »# — k is ad-invariant.
Since r*! are ad-invariant, the form 74: 5 — k defined by

(25) Ta(x):=2r* @ x)

is ad-invariant and satisfies (22), due to (24). Hence, 7+ and 7— are full twist
forms for 7, and defines an invariant of integral homology 3—sphere according
to Proposition 2.12.

Remark 2.13 Given a finite-dimensional, factorizable, ribbon Hopf algebra #, one
can construct the Hennings invariant for closed 3—manifolds [27; 37; 65; 38; 55; 77;
83; 23]. The invariant given in Proposition 2.12 constructed from the full twist forms
in (25) is equal to the Hennings invariant.

2M Partially defined twist forms and invariant Jj,

Let us return to the case when . is a ribbon Hopf algebra over C[A4]. Recall that
S is a topologically free .#~module with the adjoint action. In general .7 does not
admit full twist forms.

In the construction of the invariant of integral homology 3—spheres in Proposition 2.12,
one first constructs the universal invariant of algebraically split tangles Jr, then feeds
the result to the functionals 7z, ® - - ® T¢,, , which come from the twist forms 73. We
will show that the conclusion of Proposition 2.12 holds true if the twist forms 7+ are
defined on a submodule large enough so that the domain of 7, ® - -+ ® 7, contains
all the values of Jr, with T  algebraically split bottom tangles.

2M1 Partially defined twist forms Suppose 2" C ./ is a topologically free C[[/]-
submodule. By Proposition 2.3 all the natural maps 2" ®" — 2~ ®n _, jf@’” and
2 & M=)y 8 ype injective. Hence we will consider 2°®", 2 &1 and
2 ® 8= 45 submodules of #®" . This will explain the meaning of statements
like “c € 2 ® A
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Definition 2.14 A twist system 7 = (71, 2") of a topological ribbon Hopf algebra .57
consists of a topologically free C[[h]-submodule 2" C 5# and a pair of C[A]-linear
functionals 71: 2" — C[h] satisfying the following conditions:

(i) & 1is ad-stable (ie 2" is stable under the adjoint action of .#’) and 71 are
ad-invariant.

() ce 2R,
(iii)) One has
(T ®id)(c) = r*".

Recall that, for an n—component bottom tangle 7" with zero linking matrix and
€1,...,&n €{1,—1}, M(T;¢q,...,¢&y) is the integral homology sphere obtained by
surgery on S along the framed link L(T;€1,...,€n), which is the closure link of T
with the framing on the i™ component switched to ;.

Proposition 2.15 Suppose T = (Tx, 2") is a twist system of a topological ribbon Hopf
algebra # such that J; € 2 ®" for any n—component algebraically split 0—framed
bottom tangle T. Let M = M (T ; &1, ..., &) be an integral homology 3—sphere. Then

Im = (T, ® -+ @ T, )(J1) € C[1]
is an invariant of M . In other words, if M(T; ¢y, ...,e,) = M(T":¢/,... ., €,,), then
(Tey ® - ®@Te, ) (J1) = (T @5"'@7};,)(#/)-

Proof First we show the following claim, which is a refinement of Lemma 2.11:

Claim Let T and T’ be tangles as in Lemma 2.11. Then Jp € % @jf@’("_l) and
(26) Jrr = (Te ®1d®D)(Jp) € B0,

Proof of claim If T}, , is a (p+¢+1)—component tangle as depicted in Figure 10
(left) with p, ¢ = 0, then we have

Jr,, = (id®id®” & §%7)(id & AP+l (c).
Since ¢ € 2 & #, we have
Ir,, € 2 &4+,

Since T is obtained from 7}, 4 by tensoring and composing appropriate tangles which
do not involve the first component, we also have

Jre 2 %
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(/\\%
Figure 12: The Borromean tangle

The remaining part of the proof follows exactly the proof of Lemma 2.11. One first
verifies the case of T}, ; using conditions (ii) and (iii) in the definition of twist system,
from which the general case follows. This proves the claim. |

Using the ad-invariance of 7+ and (26), one can repeat the proof of Proposition 2.12
verbatim, replacing ® by ® everywhere, to get Proposition 2.15. a

2M2 Values of the uniVAersal invariant of algebraically split tangles In Proposition
2.15, we need J7 € 2°®" for an n—component bottom tangle 7" with zero linking
matrix. To help prove a statement like that, we use the following result.

Let Kn C jf‘%", n > 0, be a family of subsets. A C[/]-module homomorphism
f: U,‘lX’“ — Uh®b, a,b >0, is said to be (K,)—admissible if we have

27 Ji,)HKitj+a) CKixjtp
forall i, j > 0. Here fy ;) :=id® & f ®id®/ |
Proposition 2.16 (see [23, Corollary 9.15]) Let K, C %‘g’”, n > 0, be a family of

subsets such that

() lcpap € Ko, 1r €Ky, b € K3,
(i) forx € Ky and y € Ky, one has x ® y € Kyy+m , and

(iii) eachof u, y*', A and S is (K,)—-admissible.

Then we have Jr € K, for any n—component algebraically split, 0—framed bottom
tangle T .

Here b € U }? 3 is the universal invariant of the Borromean bottom tangle depicted in
Figure 12.
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2N Core subalgebra

We define here a core subalgebra of a topological ribbon Hopf algebra, and show that
every core subalgebra gives rise to an invariant of integral homology 3—spheres.

In the following we use overline to denote the closure in the s—adic topology of .77 &n

A topological Hopf subalgebra of a topological Hopf algebra .77 is a C[[h]—subalgebra
A C A such that #” is topologically free as a C[[/1]-module and

A CH &, ST CH.
In general, 2#’ is not closed in 7.

Definition 2.17 A topological Hopf subalgebra 2" C .7 of a topological ribbon Hopf
algebra ¢ is called a core subalgebra of ¢ if:

(i) 4 is s-ad-stable, ie it is an #~submodule of 7.
(i) REZQ®Z and g € 2.
(iii) The clasp element ¢, which is contained in 2 ® 2 by (ii) (see below), has a
presentation

(28) =Y cdiH®c" (i),
iel
where each of the two sets {¢/(i) |i € I} and {¢" (i) |i € I} is
e (O-—convergent in 57, and
e atopological basis of 2 .

Some clarifications are in order. As a topological Hopf subalgebra, 2" is topologically
free as a C[2]-module. By Proposition 2.3, all the natural maps 2" ®n - X en
HON are injective. We will consider 2°®" as a C[h] —submodule of %" in (i1)
above when we take its closure in the #—adic topology of ®n, Furthermore, since

1 = (S ®id)(R) and g~! = S(g), condition (ii) implies that R*' € 2" ® 2" and
g*!l e 2. Since Jr, the universal invariant of an n—component bottom tangle T,
is built from R*! and g*!, condition (ii) implies that J7 € 2°®". In particular,
cEZRX.

Remark 2.18 A core subalgebra has properties similar to, but still different from,
those of both a minimal Hopf algebra [69] and a factorizable Hopf algebra [71]. Note
that the notions of a minimal algebra and a factorizable algebra were introduced only
for the case when the ground ring is a field. Over C[A] the picture is much more
complicated. For example, in [69] it was shown that a minimal algebra over a field is
always finite-dimensional. Here our core algebras are of infinite rank over C[A4].
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From now on we fix a core subalgebra 2 of a topological ribbon Hopf algebra 7.

Lemma 2.19 Suppose f: # — # is a C[h]-module homomorphism such that
f(Z)C 2. Then f(2)C 2 . In particular, 2" is ad-stable.

Proof Since f is continuous in the topology of #, we have f(2°) C 2 . |

2N1 Clasp form associated to a core subalgebra Suppose 2  C 7 is a core
subalgebra with the presentation (28) for ¢. Since {¢’(i)} is a topological basis of 2",
every y € 2 has its coordinates y; € C[[4] such that,

y=Y_yic@.
iel

where (y/);es is O—convergent, ie (y!)ies € (C[h]!)o. The map y + (y}) is a
C[[#]-module isomorphism from 2" to (C[A]!),.

The set {¢” (i)} is a formal basis of 2", which is a formal series C[/4]-module. Every
X € 2 has its coordinates x;" € C[/] such that, in the s—adic topology of 7,

(29) x =Y xje"(i).
iel

where (x);er € C[4]!. The map x + (x}') is an C[[h]-module isomorphism from
Z to C[h]*.

Define a bilinear form . = (-,-): 2 ® 2 — C[h], called the clasp form, by
(x, ) =D X[,

iel
The sum on the right-hand side is convergent since (});es is O—convergent. The
bilinear form is defined so that {¢” (i)} and {¢’(i)} are dual to each other:

(30) (" (@), ())) = 6ij.

By continuity (in the /#—adic topology), .# extends to a C[[h]-module map, also
denoted by .Z,

L XX — C[h].
The following lemma says that the above bilinear form is dual to c:

Lemma2.20 (a) Onehasc € (2 @ #)N (AR ).
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(b) Forevery x € Z and y € 2 one has

(31) (Z®id)(x®c) = x,
(32) (d® L)(c®y)=y.

Remark 2.21 By part (a), ¢ € 2 ® #, hence x ® ¢ € Z ® 2 & . This is the
reason why the left-hand side of (31) is well-defined as an element of 7. Similarly,
the left-hand side of (32) is well-defined. With this well-definedness, all the proofs will
be the same as in the case of finite-dimensional vector spaces over a field.

Proof (a) Since {¢” (i)} is O—convergentin 7, ¢ = ;c'(i)®c"(i) € 2 & #.
Similarly, c € # Q 2.

(b) Suppose x has the presentation (29). By (30), we have

(33) (x,¢'(i)) = x" ().
Thus, we have
(34) x =Y (x.c(@)e"0).
i
which is (31). The identity (32) is proved similarly. a
+

Because r*! € 27, one can define the C[[/]-module homomorphisms
(35) T 2= Clhl Te(y) = (r*'. ).
Since ¢ is ad-invariant, one can expect the following:

Lemma 2.22 (a) The clasp form ¢: 2 ® 2 — C[h] is ad-invariant, ie it is an
##—module homomorphism.

(b) The maps Ty: 2 — C[h] are ad-invariant.

Proof (a) By Proposition 2.4(b), .£ is ad-invariant if and only if, for every a € 7,
xeZ,and ye 2,

(36) (avx,y)=(x,S@@)>y),

which we will prove now.

Since ¢ =) _; ¢/(i) ® ¢”(i) is ad-invariant, by Proposition 2.4(a) we have

Y S@rediy®c () =) (i) ®avc"(i).
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Tensoring with x on the left, and applying .¥ ® id,
D (x.S@e (D))" () =) (x.c'(i)avc" (i)

4

=> x"(i)avc"(i)

=an (Zx”(i)c”(i)) =abnXx.
i
Tensoring on the right with ¢’(;) then applying .#, one has

(x.S(@)>c'(j)) = (avx.c'(j)),

which is (36) with y = ¢/(j). Since {¢’(j)} is a topological basis of 2", (36) holds
forany y € 2.

(b) This follows from Proposition 2.4(c). m|

Proposition 2.23 Suppose f: # — 3 and g: # — 3 are C[h]-module isomor-
phisms such that f(2) =2, g(2)=2,and (f ® g)(¢) =c. Then g(Z) = Z
and, forevery x € 2" and y € 2", one has

(37 (g(x), f(¥) =({x,»).
Proof By Lemma 2.19, g*1(2°) ¢ Z . It follows that g(2) = Z . One has

c=Y o)=Y [(() @ gl ().

Since g(x) € 2, one can replace x by g(x) in (31),
g(x) =(ZRid(g(x)®c) =Y (£ ®id)(g(x) ® f(c'(i) ®g(c" (i)

=D (g(x), S N)g(e" ()

- g(Z(g(x), f(c’(i))>c”(i))-

1

Injectivity of g implies

x = (gx), [ DN ().

1

Comparing with (34) we have, for every i € I,

(g(x), f(e' (D)) = (x,¢'(1)),
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which shows that (37) holds for y = ¢’(i), i € I. Hence, (37) holds for every y € 27,
since {¢’(i)} is a topological basis of 2. a

2N2 Twist system from core subalgebra
Proposition 2.24 The collection T = (Tx, Z") is a twist system for 3 .

Proof By definition, £ is ad-stable. By Lemma 2.22, 71 are ad-invariant. By
Lemma 2.20(a), ¢ € 2" ® 4. Finally, (31) with x = r*! gives
(Tx ®id)e = rE!.

This shows T = (71, Z") is a twist system. O

20 From core subalgebra to invariant of integral homology 3—spheres

Theorem 2.25 Let 2 be a core subalgebra of a topological ribbon Hopf algebra .5,
with its associated 7#-module homomorphisms Ty : 2 — C[h]. Assume T is
an n—component bottom tangle with 0 linking matrix, g; € {1} fori = 1,...,n,
and M = M(T;ey, ..., &) is the integral homology 3 —sphere obtained from S* by
surgery along cl(T'), with framing of the i " component changed to ;.

Then Jr € 28", and
I = (Te, ®---®T,,)(Jr) € C[H]

defines an invariant of integral homology 3—spheres.

By Propositions 2.15 and 2.24, to prove Theorem 2.25, it is sufficient to show the
following:

Proposition 2.26 Suppose % is a core subalgebra of a topological ribbon Hopf
algebra s and T is an n—component bottom tangle with 0 linking matrix. Then
Jr e 2%,

The rest of this section is devoted to a proof of this proposition based on Proposition 2.16.
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201 (& é\’")—admissibility The following lemma follows easily from the definition.

Lemma 2.27 Suppose f: 84 s ®b s o C[[h]]-module homomorphism having
a presentatlon as an h—adically convergent sum [ = Zpe p Jp such that, for each p,
Jo(Z ®") c 2® , where P is a countable set. (Here, the sum [ being /—adically
convergent means that for each j > 0, we have f) (%‘8“) C hi #®b for all but
finitely many p € P.) Then f is (2 ®")-admissible.

Proposition 2.28 Eachof pu, y*', A and S is (2 é’")—admissib]e.

Proof (a) Because u(2 ® 2°) C 2, by Lemma 2.27 u is (%é”)—admissible.
(b) Because R € £ ® 2, R has a presentation

R=Y Ri(p)®Ra(p). Ri(p).Ralp) € Z,
peEP

where the sum is convergent in the #—adic topology of . ® 5. Using the definitions
(16)—(19), we have the following presentations as s—adically convergent sums:

Y=Y ¥, . where ¥ (x®y)=Ra(p)>y@Ri(p)>x,
pEP

T=>"y,. where ¥,(x®y)=SRi(p)>y®Rap)rx.
peP

A= Z Ap, where Ap(x) = ZRz(P) > X(2) ® R1X(1),
peP

S=) Sp where Sp(x) = Ra(p)S(Ry > x).
pEP

Since R1(p), Ra2(p) € £, which s a topological Hopf algebra, 1//1, (ZRL)C XL,

Ap(2) C 2 ® 2 and Sp(Z) C 2. By Lemma 2.27, all of Y*E! A and S are
(2 ®")—admissible. O

202 Braided commutator and Borromean tangle We recall from [20; 23] the
definitions and properties of the braided commutator for a braided Hopf algebra and a
formula for universal invariant of the Borromean tangle.

Define the braided commutator Y: # & s — # (for the braided Hopf algebra #)
by
T =pd®y Rid)(id® Rid)(A® A).
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As noted in [23, Section 9.5], with ¢ =), ¢/(i) ® ¢” (i), we have

(38) b= G(d®*&1)(c'()®c'(j)®c" ()@ (D))
i,jel

= > R (HR®YT("(j)®c" (D).
i,jel
Let b; ; be the (i, j)—summand of the right-hand side, so that b = Zl j bi,j with
bijex 83 and the sum converging in the s —adic topology of 93, We want to
show that the sum Zl’ j bi,j is convergent in the h—adic topology of 2~ 83

203 Two definitions of the braided commutator From [23, Section 9.3], we have

(39) Y = p(ad ®id)(id ® (S ® id)A)

(40) = p(id®ad)((id® S)A ®id),

where ad" is the right-adjoint action (of the braided Hopf algebra J#’) defined by
ad":= uPl(S RidRid) (¥ ®id)(id® A).

Lemma 2.29 For x, y € 5, we have

@1 ad'(x®y) =57 () e x.

Proof In what follows weuse R =) R1®Ry =) RI®R, =) RI®R) =
YR ®R}. One can easily verify

(42) Y(x®y) =Y (RaRh>y) ®Ri1xS(R)).
We have
ad'(x®y) = pPUS ®id®id)(¥ ®id)(x ® A(y))

=> uPl(S ®id&id)(¥ ®id)(x ® y1) ® y2))
=Y uPlS ®id®id) (¥ (x ® y1)) ® y2))
= > uPlS ®id ®id)(RaRy b y1) ® R1xS(R)) ® yz)) by (42)
=Y uPUSRIRy b y1)) @ R1xS(R)) ® y2))
= S(RaRL > ya)) R1xS(R) y(2)-

where A(y) =3 y(1) ® yz)- Using

Yy ®ye =Y (Ry>y@) @R{ya). Sw)=>)_ ST'RY>w)SR),
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we obtain
ad'(x®y) =Y _ S(RaRy > yay)) R1xS(R)ye)

=Y STHRY > (RyRYy > (RY > o)) S(RYVR1xS(R)RY yar)
=Y STHRYRYRLRY > y2) S(RYYR1xS(RY)RY yr).

Since Y} RYR2 ®@ S(R])R1 =Y. RLRy® S(R)R] =R, Ry = 1®1, we obtain

ad'(x®y) =Y S (ye)xyay =S () e x.

This completes the proof of the lemma. a

By Lemma 2.29 and ad(.# ® 2) C 2 we easily obtain

43) ad (2 @ #)C 2.

Lemma 2.30 We have
(44) Y(A#RQX)C X,
(45) Y(Z QH#)CX.

Proof Using (39) and ad(# ® 2°) C 2", we have
YA QRZ)=p@d®id)(id® S ®id)(id® A) (2 ® Z)
Cp@d®id)(id® S ®id)(#® 2 ® 2)
Cpn@d@id) (AL L)
cu(2 %)
cZ.

Using (40) and (43), we can similarly check that Y (2 ® H)C X . O
204 Borromean tangle
Lemma 2.31 One has b € 2°®3 .

Proof Since {¢”(i)|i € I} is O—convergent in 2, we have ¢” (i) = hki¢" (i), where
¢"(i) € s and for any N > 0 we have k; > N for all but finitely many i .

Recall that, by (38), we have

(46) b= Z bi j, where b; ; =)@ Y("(j)®c"i)).
i,jel
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By (44) and (45), we have
Y(" ()@ () =hITE (/)@ ") el 2.
Y(" ()@ ") = MY (" () ®&"(0) € i 27
respectively. Hence,
(47) Y("(j) ®c" (i) € hmKikD g7
Since ¢'(i), ¢/(j) € 2, the sum (46) defines an element of @3 O
205 Proof of Proposition 2.26 It is clear that 1 € 27 &0 _ = C[n], 1 € 2 and

9@ g g®m g &ntm By Proposition 2.28, each of u, ¥ *1, A and S is (,%”‘8’”)—
admissible. By Lemma 2.31, b € & &3 . Hence, by Proposition 2.16, Jr € Z &n

This completes the proof of Proposition 2.26 and also the proof of Theorem 2.25.

2P Integrality of Jjs

Theorem 2.32 Suppose 2" is a core subalgebra of a topological ribbon Hopf algebra

A with the associated twist system Ty : 2 — C[[h]. Assume that there is a family of

subsets Ky, C 2°®" n > 0, such that:

(AL1) lcpp€Klo, lr €Ky, beks, eachof ¢ £, u, A and S is (K)—admissible,
and x ® y € K4, forany x € K, and y € Cpp, .

(AL2) Forany ¢q,...,&e,q € {%},
(7:91 @ te ® En)(ﬁn) C ’EO-
Then the invariant Jps of integral homology 3—spheres has values in Ko.

Proof Suppose 7' is an n—component bottom tangle 7" with zero linking matrix. By
Proposition 2.16, condition (AL1) implies that J7 € K. Condition (AL2) implies that

M =(Te; ® - &T,)(Jr) € Ko.
where M = M(T;¢eq,...,85). O

We will construct a core subalgebra 2" and a sequence of Z/[a] —submodules K, € 2 ®n
satisfying the assumptions (AL1) and (AL2) of Theorem 2.32 for the quantized universal
enveloping algebra (of a simple Lie algebra) with Ko = Z/[E]. By Theorem 2.32, the
corresponding invariant of integral homology 3—spheres takes values in Z[g]. We then
show that this invariant specializes to the Witten—Reshetikhin—Turaev invariant at roots
of unity. In a sense, the (K;) form an integral version of the (2 ®"). The construction
of the integral objects K, is much more complicated than that of 2".
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A, B G D Es¢ E; Es Fi Gy

d 1 2 2 1 1 1 1 2 3
D | I+1 2 2 4 32 1 1 1
hY | I+1 2[—1 [I+1 2/—-2 12 18 30 9 4

Table 1: Constants d, D and 1Y of simple Lie algebras

3 Quantized enveloping algebras

In this section we present basic facts about the quantized enveloping algebras asso-
ciated to a simple Lie algebra g: the /i—adic version Uy(g), the g—version U, (g)
and its simply connected version l;'q (g). We discuss the well-known braid group
actions, various automorphisms of Uy, the universal R-matrix and ribbon structure,
and Poincaré-Birkhoff—Witt bases. New materials include gradings on the quantized
enveloping algebras in Section 3C2, the mirror automorphism ¢, and a calculation of
the clasp element.

3A Quantized enveloping algebras U, U, , and l7q

3A1 Simple Lie algebra Suppose g is a finite-dimensional, simple Lie algebra over
C of rank /. Fix a Cartan subalgebra § of g and a basis IT = {&y,...,a;} of simple
roots in the dual space h*. Set hp = RIT C h*. Let Y = ZII C by denote the root
lattice, @ C Y the set of all roots, and @ C P the set of all positive roots. Denote by ¢
the number of positive roots, t = |®|. Let (-,-) denote the invariant inner product on
bg such that (o, ) = 2 for every short root . For o € &, set dy = %(cx,a) €{l,2,3}.
Let X be the weight lattice, ie X C by is the Z—span of the fundamental weights
@1,...,0 € by, which are defined by (&;, ;) = §;jdy, -

For y = Zle kioj € Y, let ht(y) = ), k;. Let p be the half-sum of positive roots,
p=1 Y acw, o Itis known that p =37 ;.

We list all simple Lie algebras and their constants in Table 1.

3A2 Baserings Let v be an indeterminate and set A := Z[v*!] c C(v). We regard
A also as a subring of C[[A], with v = exp(%h). Set ¢ = v2.

Remark 3.1 We will follow mostly Jantzen’s book [30]. However, our v, ¢ and &
are equal to “q”, “g%” and “—h”, respectively, of [30]. Since ¢ = v2, one could avoid
using either ¢ or v. We will use both ¢ and v because, on the one hand, the use of

half-integer powers of ¢ would be cumbersome and, on the other hand, we would
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like to stress that many constructions in quantized enveloping algebras can be done
over Z[¢*!].

For o € ® and integers n, k > 0, set

Vg i = vd"‘, do ‘= qd"‘ =v

vy — vy, ) i [n—i+ 1]
[n]a3=m, [n]a!3=l_[[l] [ ] 1_[ [l )

i=1 i=1

(e = V0 —vy",  {n}e!i= H{i}a.
i=1

When « is a short root, we sometimes suppress the subscript « in these expressions.

Recall that, for n > 0 and any element x in a Z[g]-algebra,

n—1

= [ (1= xg%).

j=0

3A3 The algebra U, The quantized enveloping algebra Uy, = Uy(g) is defined as
the h—adically complete C[/]—algebra, topologically generated by Ey, Fy and H,
for « € IT, subject to the relations

(48) HyHg = HgH,,

(49) HaEﬂ—EﬂH =(oe,,6)Eﬂ, HaFﬂ—FﬂH =—(O{,,3)Fﬁ,
Ko — K,' 1

(50) EyFg— FgEq = saﬂ where Ko = exp(5/Hy),

o—vgl
Uy

(51) Z( 1)* [ ] ELEgES =0, where r =1—(B.a)/da.

(52) Z( 1)* [ ] FISFgFS =0, where r = 1—(B.a)/ds.

s=0

We also write E;, F; and Kj;, respectively, for Eq,;, Fy, and Ky, fori =1,...,1.

For every A =) ,crp ka@ € by, define Hy =), ko Hy and K = exp(%hHA). In
particular, one can define Ky := Ky for o € I1.
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3A4 Hopf algebra structure The algebra Uy, has the structure of a complete Hopf
algebra over C[[/]], where the comultiplication, counit and antipode are given by

A(Ey)=Eq®1+ Ky ®Ey, €(Eq)=0, S(Eq)=-K,'Eq,

A(Fo)=Fa @K' +1® Fy.  €(Fu) =0, S(Fy)=—FyKq.
A(Hy) = Hy ®1+1Q® Hy, €(Hy) =0, S(Hy) =-—

3AS The algebra U, and its simply connected version 17,1 Let U; denote the
C (v)—subalgebra of U,[h~'] = Uy, ®ciny Clh, h~1] generated by E,, F, and Koﬂfl
for all o € IT. Alternatively, Uy is defined to be the C(v)-subalgebra generated by
the elements Ky, K, 1 E,, F, (a € TI), with relations (50)—(52) and

(53) KoK;' = K;'Ky =1,
(54) KpEq =vPYE Kg, KpFy=v"PYE, Ky,
for «, B € II.

The algebra Uy inherits a Hopf algebra structure from Uy[h~!], where
A(Ky) =Ky ® Ky, €(Ky)=1, S(Kq)= K_l-

Similarly, the simply connected version Uq is the C(v) —subalgebra of Uj[h~'] gener-
ated by Ey, Fy and KjEl for all « € IT. Again Uq is a C(v)-Hopf algebra, which
contains U, as a Hopf subalgebra. Let U, ‘;) be the C(v)—algebra generated by K&H
for a € IT. Then

(55) U, =U00U,.

The simply connected version lv]q has been studied in [14; 18; 11] in connection with
quantum adjoint action and various duality results. We need the simply connected
version Uy (g) for a duality result, and also for the description of the R—matrix.

3B Automorphisms

There are unique /—adically continuous C—algebra automorphisms tp,, ¢, @ of Uy,
defined by

Lbar(h) = —h, lbar(H ) o> Lbar(Ea) = Eq, ‘bar(Foz) = Fy
w(h) =h, w(Hy) =—Hy, w(Ey) = Fg, w(Fy) = Eqy
@(h) = —h, ¢(Hy) = —Hy, 9(Eq) = —Fy Ky, o(Fo) = _K(IIEot’
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and a unique s-adically continuous C—algebra antiautomorphism t defined by
t(hy=h, t1(Hy)=—Hy, t(Ey)=EFEqs, 1(Fy)=Fy.

The map tp, is the bar operator of [54], and v and w are the same t and w in [30].

All three are involutive, ie 72 = tﬁar = w? = id. The restrictions of tp,, ¢, T and w

to U, N Uy, naturally extend to maps from U, to U, and we have

tv) =) =v, 1(Ko)=w(Ke)=K;",
tar(V) = 07, tar(Ko) = K3 ',
p(v)=v7", 9(Kq) = K.

Unlike tpar, T and w, the map ¢ is a C—Hopf algebra homomorphism:

Proposition 3.2 The C-algebra automorphism ¢ commutes with S and A, ie
S =S¢, (P®¢)A=Agp.

Furthermore, ¢ = tpgrTWS = lparWTS = Sty T and

(56) 0> (x) = S(x) = K_3pxK2,.

Proof All the statements can easily be checked to hold on the generators 4, H,, E,
and Fy. O

3C Gradings by root lattice

3C1 Y-grading There are Y—gradings on U and U, defined by
|Eo| =0, [Fo|=—0a, [Hy|=|Ka|l=0.

For a subset A C Uy, denote by Ay, u € Y, the set of all elements of Y—grading u
in 4.

We frequently use the following simple fact: if x is Y~homogeneous and 8 € Y, then
(57) Kpx = vPPDygg

In the language of representation theory, x € Uy, has Y—grading B € Y if and only if it
is an element of weight § in the adjoint representation of Up.
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3C2 (Y/2Y)-grading and the even part of U,

Proposition 3.3 There is a unique (Y /2Y)—grading on the C(v)-algebra U, satisty-
ing

deg(Ky) =, deg(Ey) =0, deg(Fy)=oa (mod2Y)
for o € IT.

Proof Using the defining relations (50)—(54) for Uy, one checks that the (Y /2Y)—
grading is well defined. O

The degree-0 part of Uy, in the (Y/2Y)—grading, which is generated by K&tz, Ey
and Fy Kq for o € I1, is called the even part of Uy and denoted by U;". Elements of
U," are said to be even.

For each o € Y, the degree (¢ mod2Y) part of Uy is KqUj".

Lemma3.4 (a) Suppose u €Y. Let (U;")y be the grading p part of Ug". Then
S(Uw) € KuUg'. MWUSW) € D KU s ® (U
AEY
In particular, A(U;") CU; @ U
(b) The adjoint action preserves the even part, ie Ug > Ug" C Ug".
(c) Each of tar, T and ¢ leaves U stable, ie f(Ug") CUS" for f = tpar, T, ¢.

Proof (a) Suppose x € (U;"),. We have to show that

S(x) € K, U and  A(x) € @D Kn (U)o ® (U
L€Y

If the statements hold for x = x; € (Ug"),, and x = x3 € (Ug")y,, then they hold
for x = x1x2 € (Ug") ) +p, - Since Uev is generated as an algebra by KjE2 € (Uz"o,
Eq € (Ug")a and Fo Ko € (Ug") - 1t is enough to prove the statements when x is one
of K, +2 , Eq or Fy K. For these special values of x, the explicit formulas of S(x)
and A(x) are given in Section 3A4, from which the statements follow immediately.

(b) For x € U, we have the following explicit formulas for the adjoint actions:
Kovx = KoxK ',

(58) Egv>x = Egx — KoxK; ' Eq,
Forx = (Fgx —xFy)K,.
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If x is even, then all the right-hand sides of the above are even. Since U, is generated
by Ky, Eq and Fy, we have U, > U;" C quv.

(c) One can check directly that each of iy, T and ¢ maps any of the generators K, étz ,

Ey and F, K, of U;V to an element of U;V. |

Remark 3.5 In Section 6, we refine the Y /2Y —grading of the C(v)—algebra U, to a
grading of the C(v)-algebra U, by a noncommutative Z /27 —extension of Y /2Y .

By (55), Uq = UOUq, where U0 (C(v)[Kil ,I%lil]. Here we set K; = kai
fori =1,...,1. Let Uev’ = (C(v)[KjEZ ,Kiz] and

Lemma 3.6 One has U, > UeV UeV and Uy > >UN CUS.

Proof The proof is similar to that of Lemma 3.4(b). a

3D Triangular decompositions and their even versions

Let Uh+ (resp. U, , U, ;?) be the /i—adically closed C[/]—-subalgebra of Uy topologi-
cally generated by Ey (resp. Fy, Hy) for o € IT.

Let U, + (resp. Us. 0 0) denote the C(v)-subalgebra of U, generated by Ey (resp.
Fo, Kil)for well.

It is known that the multiplication map
U, ® qu ® Uq+ Uy, x®x' @x"+ xx'x",

is an isomorphism of C(v)—vector spaces. This fact is called the triangular decomposi-
tion of U, . Similarly,

U;@U,?@U;r - U, x®x'®x"~xx'x",

is an isomorphism of C[A]-modules. These triangular decompositions descend to
various subalgebras of U, and Uy, which we will introduce later.

We need also an even version of triangular decomposition for Uz". Although U, q+ cyuy,
the negative part U, is not even.

Let U;"™ := gp(U"') which is the C(v)—subalgebra of U;" generated by Fo Ko =
—¢(Eg), @ € I1. Then U™ C US". Let Uy" % be the even part of U2, ie

U= U3 N0 = COIKT?. .. K},
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Using (57), we obtain the isomorphisms of C (v)-vector spaces and C[[/]-modules

(59) U~ eU)oU, = U;, x®y®ze xyz,
= ,0 + =

(60) U U U, = U, xQy®:zmxyz,

(61) U™ QU U S U,, x®yQz>xyz,

where we set U, = o(U h+), which is the h—adically closed C[[h]-subalgebra of
U, topologically generated by F, Ky, o € T1. We call (59), (60), and (61) the even
triangular decomposition of Uy, Ug" and Uy, respectively.

3E Braid group action

3E1 Braid group and Weyl group The braid group for the root system @ has the
presentation with generators 7, for o € I1 and with relations

TyTg =TTy for o, B € T1 with («, 8) =0,
ToTpgTy = TgToTp for «, B € IT1 with («, ) = —1,
TyTgTauTg=TgTuTgTy for o, B € IT with (o, B) = -2,

TaTﬁTaTﬂTaTﬂ = TﬂTaTlgTaTﬂTa for O[,ﬂ € IT with ((X,,B) =-3.

The Weyl group 2 of ® is the quotient of braid group by the relations 7,2 = 1 for
a € IT. We denote the generator in 20 corresponding to Ty by so. We set T; = Ty,
and s; =8¢, fori =1,...,1.

Suppose i = (iy,...,ix) with ij € {1,2,...,1}. Let w(i) = si,Si, -~ 8, € 0. If
there is no shorter sequence j such that w(i) = w(j), then we say that the sequence i
is reduced, and w(i) has length k. Tt is known that the length of any reduced sequence
is less than or equal to ¢ := |® 4|, the number of positive roots of g. A sequence i
is called longest reduced if i is reduced and has length . There is a unique element
wo € W such that for any longest reduced sequence i one has w(i) = wy.

3E2 Braid group action As described in [30, Chapter 8], there is an action of the
braid group on the C(v)-algebra U,. For « € I1, Ty: U; — Uy is the C(v)-algebra
automorphism defined by

To(Ky) = Koyt Ta(Eq) = —FoKa, Ta(Fo) =K' Eq,

)
To(Eg) =y (D)o  ESVEGED, with r = —(B,a)/da,
i=0

-
Tu(Fp) = ) (=D FOFRFY™,  with r = —(B,@)/da,
i=0
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where y €Y and B € IT\ {«r}. The restriction of Ty, to U, NUj, extends to a continuous
C[[h]—algebra automorphism T, of Uy by setting

Ta(Hy) = Hsa(y) for yevY.
Remark 3.7 Our 7, is the same as Ty in [30]. Our T; = Ty, is T/, in [54], or Tl._l
in [52].
One can easily check that
(62) T(;H(Kﬂquv) C Ksa(lg)quv.
for @ € IT and B € Y. In particular, the even part quv is stable under Tojtl . Thus, we

have:

Proposition 3.8 The even part U;" is stable under the action of the braid group.

3F PBW-type bases

3F1 Root vectors Suppose i = (i,...,i;) is a longest reduced sequence. For
jedll,... t},set
Vi = V/(i) =80y 80y 'Sij_l (aij)'

It is known that yy, ..., y; are distinct positive roots and {y1,...,y:} = ®4+. The
elements

Ey (i) =Ty, T

(11‘2

e Ta,-j_l (Ea,-j.) and  Fy, (i) = Toi To;, T(xij_l (Fa,-j)

are called root vectors corresponding to i . The Y—grading of the root vectors are
|Ey; (i) = yj = —|Fy,; ({)|. Itis known that E, (i) € U}t and Fy, (i) € U, .

In general, Ey, (i) and F), (i) depend on i, butif y; is a simple root, ie y; = a € I1,
then we have Ey, (i) = Eq and Fy,; (i) = Fy.
3F2 PBW-type bases Fix a longest reduced sequence i . In what follows, we often
suppress i and write £, = E, (i) and F), = F) (i) forall y € ®.
The divided powers E)(,”) and FJS") for y € &4 and n > 0 are defined by

EW = E/[nl,! and F{ = F/[n],!.

Following Bourbaki, we denote by N the set of nonnegative integers. For n € N’
define

= ) = )
F® = [T /. E™= T[] By
Vi €@+ Vi €24
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<«
Here ]_[yj cd, Means to take the product in the reverse order of (y1, y2,...,¥:). For
example,

H
F — 1_[ F)g.lj —F(nt)F)S;ltll) FJS’IH)'
Vi €P4

The set {E®™ | n € N} is a basis of the C(v)—vector space Uq+ and a topological
basis of Uj,.

Similarly, the set {F™ | n € N} is a basis of U, and a topological basis of U,

On the other hand {Ky |y €Y} isa C(v)-basis of U0 and {H¥ | k e N/}, where
]_[ i—1 H; 5 for k = (k1,....kp), is atopologlcal basis of UO.

Combining these bases and using the even triangular decompositions (59)—(61), we get
the following proposition, which describes the Poincaré—Birkhoff—-Witt (PBW) bases
of Ug, Ug" and Up:
Proposition 3.9 For any longest reduced sequence i ,

(FM™EK K, E™ |mneN' yeY} isaC(v)-basisfor Uy,

{F(m)KmK)Z,E(”) |m,neN’ yeY} isa C(v)-basis for U,

(FM K, H* E® |m,neN" ke Ny sa topological basis for Uy,
where

t
(63) Kn:=[] Ky} = K_jpw| forn=(ny.....n;)eN".
j=1

3G R-matrix

3G1 Quasi-R-matrix Fix alongest reduced sequence i . Recall that {k }o = vk —v *.

The quasi-R-matrix ©® € U h@z is (see [30; 54]) defined by

(64) ©= ) Fu®En,

neN!

where, for n = (ny,...,n;) € N’

t <~
(65) Ep:=E®™ H{nj}yj! = 1_[ ((vy,; — v;jl)EVj)nj’

j=1 vi€P4
t

(66)  Fy:= F™ [](=1)"v,n "7 = 1‘[ (—1ynivy, D2 gl
Jj=1 Yy €D
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It is known that ® does not depend on i and

(67) O~ = (b ® ) (©) = Y F, ® Ey,
neN?
where

F,/, = Lbar(Fn) and E;, = Lba.r(En)-

3G2 Universal R-matrix and ribbon element Define an inner product on hgr =
Spang{Hy | @ € T1} by (Hy, Hg) = (, ,8) Recall that the @ are the fundamental
weights. Let H, = Hy. Then the set {Ha/da | @ € T1} is dual to {Hy | @ € T}
with respect to the inner product, ie (Hy, Hﬁ /dg) = 84, for a, B € I1. Define the
diagonal part, or the Cartan part, of the R—matrix by

(68) D= exp(’“ Y (Hy® Ha/da)) c (UY®2.

acll

We have D = D,q, where Dy € (U }?)@’2 is obtained from D by permuting the first
and the second tensorands.

A simple calculation shows that, for Y~homogeneous x, y € Uy, we have
(69) D(x®y)D~" = xKjy| ® K|x|y.

The universal R—matrix and its inverse are given by

(70) R=DO"! and R !=06D7'.

Note that our R—matrix is the inverse of the R-matrix in [30].

The quasitriangular Hopf algebra (Uj, R) has a ribbon element » whose corresponding
balanced element (see Section 2B) is given by g = K_,,. For Y-homogeneous x € Uy,
we have

(71) S2(x) = K_apxKap =g~ @Dy,
With R = ) R; ® R, the ribbon element and its inverse are given by
r = Z S(R])K_szz and l"_l = ZR] szRz = ZRZK—Z/)RI-
One has ¥ = Jr and r~! = J7/, where T and T’ are the bottom tangles in Figure 13.

Using (64) and (70), we obtain

(72) r= Z FuKnroEn, r~'= Z Fy K, 'rg E),

neN? neN?
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\ /

Figure 13: Tangles T (left) and T’ (right) determining the ribbon element r
and its inverse

where K, is given by (63) and

ro .= K_zp[L(D_l) = K—2p eXp(—% Z Hotl:lot/dot)-

aell
We also have

(73) S(r)=S@)=r.
3H Mirror homomorphism ¢
We defined the C—algebra homomorphism ¢ in Section 3B.

Proposition 3.10 The C—automorphism ¢ is a mirror homomorphism for Uy, , ie
(74) 9(K2p) = Kp,

(75) (e ®)(R) = (R™ a1

Consequently, it T’ is the mirror image of an n—component bottom tangle T , then
Jr = ¢®"(Jr).

Proof Identity (74) is part of the definition of ¢. One could prove (75) by direct
calculations. Here is an alternative proof using known identities:

By Proposition 3.2, ¢ = 1,0 7.S . Hence, (75) follows from the following four known
identities:

(S®SH(R)=R by (10),
CT®DMR)=C®)POH)=0"1D by [30,7.12)],
(@ ®w)(O 'D)=05!D by [30, 7.1(3)],
(thar ® thar) (07 D) = @2, D' = Ry} by (67).

This shows ¢ is a mirror homomorphism. By Proposition 2.7, J7» = ¢®"(J7). O
Because the negative twist is the mirror image of the positive one, we have the following:

Corollary 3.11 One has ¢(r) =r~!.
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31 Clasp element and quasiclasp element

Here we calculate explicitly the value of the clasp element ¢ = Jo+ € Uy, ® Uy,, which
is the universal invariant of the clasp tangle CT of Figure 5. Recall that we have
defined E,, F, and D in Section 3G. We call

(76) [:=¢D?

the quasiclasp element. Like the quasi-R-matrix, the quasiclasp element enjoys better
integrality than the clasp element itself.

Lemma 3.12 Fix a longest reduced sequence i . We have

(77) c= Y g PED(Fy Ky ® FaKn)(D ) (En ® Em),
m,neN?

(78) = Z q—(p,lEn|)+(|Em|y|En|)(Fm K;,lEn ® Fy K;lEm),
m.,neN’

(79) c=(@®S 'p)(e).

Proof Let D2 =3 (D% (D %), and R'=YR 1 ®R, =Y R, ®R,.
By (20), we obtain

c=) SR)SMRY®R|Ry =Y R1S*(Ry) ®R|R,.
‘We have

R'=0D"'= 3" Fu@D " N@Em(D )= ) FuKm(D )1®(D ")2Em.

meN/! meN!

Substituting this into the formula for ¢, we obtain

¢= Y FmKm(D?)1S*(En) ® FaKu(D™?)2Em,

m.,neN’

which, using (71), is (77). Identity (78) follows from (77), via (69).

Since C~ is the mirror image of C*, by Proposition 3.10 ¢~ = (¢ ® ¢)(c), which,
together with (21), gives (79). m|

From [58, Proposition 2.1.14], one has

(80) (d® S?)(c) = ea1.
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4 Core subalgebra of U ; and quantum Killing form

In this section we construct a core subalgebra X, of the ribbon Hopf algebra
Uf =Uy ®(C[[h]] (C[[«/E]],

which is the extension of U, when the ground ring is C [[\/E 1. We will use the Drinfel’d
dual ¥}, of Uy to construct Xy,. To show that X, is a Hopf algebra we use a stability
principle established in Section 4C, which also finds applications later. We then discuss
the clasp form of X which turns out to coincide with the well-known quantum Killing
form (or Rosso form) when restricted to U, . Thus, we get a geometric interpretation
of the quantum Killing form.

4A A dual of U,

Fix a longest reduced sequence i . For n = (nq,...,ny) € N¥ let

k
Inll = nj.
j=1
Let us recall the topological basis of Uy described in Proposition 3.9. For n =
(ny,ny,n3) € N* x N/ x N | let
ep(n) = F(’H)K”1 H"ZE("3),
where F®1) Kyu,, H"* and E®3) are as defined in Section 3F2. By Proposition 3.9,

ten(n) | m e NFIH
is a topological basis of Uy,.
Let V, be the closure (in the s—adic topology of Uy) of the C[A]-span of the set
(81) (hmley, (n) | n e NIHIHY,

Then ¥}, is a formal series C[[/]-module, having the above set (81) as a formal basis.
(See Example 2.2 of Section 2A.) Every x € V}, has a unique presentation of the form

x= Y xa(hl"leym)).
neN?!+i+t
where x, € C[[h]. The map x — (xp)ner is a C[[h]-module isomorphism between
V), and C[Ah]!, with I = N+t

In the terminology of Drinfel’d [17], V}, is a “quantized formal series Hopf algebra”
(QFSH algebra); see also [12]. As part of his duality principle, Drinfel’d associates
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a QFSH algebra to every so-called “quantum universal enveloping algebra” (QUE
algebra). Gavarini [18] gave a detailed treatment of this duality and showed that the
above-defined ¥}, is the QFSH algebra associated to Uy, which is a QUE algebra.

For n > 0 let Vh®” be the topological closure of Vh®” in U }‘lg’” . Then Vh®” is the n™
tensor power of ¥}, in the category of QFSH algebras; see [18, Section 3.5]. The result
of Drinfel’d, proved in detail by Gavarini [18], says that V}, is a Hopf algebra in the
category of QFSH algebras, where the Hopf algebra structure of ¥}, is the restriction
of the Hopf algebra structure of Uy, . Thus, we have the following:

Proposition 4.1 One has

_WVB Vi, AW CVE S C Vi

For completeness, we give an independent proof of Proposition 4.1 in Appendix A. Yet
another proof can be obtained from Proposition 5.10.

Proposition 4.2 Fix a longest reduced sequence i . Then V}, is the topological closure
(in the h—adic topology of U}, ) of the C[[h]-algebra generated by hHy, hF, (i) and
hE,(i) witha €IT and y € & .

Proof Let V), be the topological closure (in the —adic topology of Uy,) of the C[[h]-
algebra generated by hHy, hF, and hE, with « € IT and y € ®1. One can easily
check Ky € V) for y € Y. The set (h1ley, (n) | n € N*H+1Y is a formal basis of V.

When n = (ny,...,1n,474,) € NIHF is such that all n; = 0 except for one that
is equal to 1, then the basis element /"le;, (n) is one of 1 H,, hF,K, or hE,. It
follows that i1 Hy, hFy,, hE, € V},, and hence V, C V},.

From the definition of e (n), for any n = (m, k,u) € N’ x N/ x N?,

p— s l <~
®2)  WMle,my=a [T aFy™ [] &5 [[GHED)Y [ (hEy)™,

vi€d4 vi€P4 j=1 vi€d4
where m = (my,...,m¢), k= (ky,....k;), u = (uq,...,u;), and
B 1
Loy )y,
j=1UMjly; - \Ujly;-

is a unit in C[[/]. Since the right-hand side of (82) is in Vh’ , we have Vj, C V). Thus,
V, = Vh, . O
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4B Ad-stability and ¢-stability of V},

Recall that we defined the left image of an element x € Uy ® Uy, in Section 2D.

Proposition 4.3 The module V}, is the left image of the clasp element ¢ in U, @ Uy,.
Moreover, Vy, is ad-stable, ie Up>Vy, C V.
Proof For n = (ny,ny,n3) € N+ Jet
e;z/(") — F("3)K,,31:I"2E("1),
Tk I ki l
where H* =[[;_; Hy for k = (ky,... k;) € N°.

Then {e}/(n) |n € N?++1} s a topological basis of Uj,. From (77),

(83) c= Z up(myh"le; (n) ® e (n),

neNt+i+t

where u,(n) is a unit in C[4] for each n € N**/*!_ The exact value of uy(n) is as
follows: for n = (ny,n,,n3) € NI+,

_(P:|En3 Du//

(84) up(ny,ny,n3)=q a(ny)u (n)uy (n3),

where, for k = (ky,....k;) € N' and m = (my,...,m;) € N*,

l ki t —m? .
(=D" vy, (Gy; s Gy Im;
= [T 20 wjomy = [T 2

j=1kjlda; j=1

By definition, the left image of ¢ is the topological closure of the C[/]—span of
{up ()"l e;, (n)}, which is the same as ¥}, since the uy,(n) are units in C[A4].

Since ¢ is ad-invariant, by Proposition 2.5 we have U, >V, C V},. o

Remark 4.4 Proposition 4.3 shows that ¥}, does not depend on the choice of the
longest reduced sequence i .

Proposition 4.5 One has ¢o(Vy,) C Vy,, ie V), is ¢ —stable.
Proof By Lemma 3.12, ¢ = (¢ ® S~ '¢)(c). Note that S~ !¢ is a C[h]-linear

automorphism of Uy . By Proposition 2.5(b), ¢ leaves stable the left image of ¢, ie
o(Vp) =Vj. m
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4C Extension of ground ring and stability principle

Let +/2 be an indeterminate such that 4 = (v/h)2. Then C[h] c C[v/A]. For a
C[h]-module homomorphism f: V — V', we often use the same symbol f to denote
f®id:V ®<C[[h]] Clvh]— V' ®(C[[h]] C[vh].

Suppose the following data are given:

(1) atopologically free C[[#]-module V' with a topological basis {e(i) |i € I}, and

(i) a function a: I — C[h] such that a(i) # 0 and {a(i) |i € I} is O—convergent.
Let V(J/a) be the topologically free C[+/4]-module with the topological basis
{~/a(i)e(i) |i € I} and let V(a) C V be the closure (in the h—adic topology of V')
of the C[h]-span of {a(i)e(i) |i € I}. We call (V,V(y/a),V(a)) a topological
dilatation triple defined by the data given in (i) and (ii).
Proposition 4.6 (stability principle) Suppose

(V.V(Va). V(@) and (V'.V'(Va').V'(@)

are two topological dilatation triples and f: V — V' is a C[[h]-module homomorphism
such that f(V(a)) C V'(d’). Then f(V(J/a)) C V'(Vd').

Proof We first prove:

Claim If x, x5, x3 € C[h] with x3 # 0 and x{x,/x3 € C[h], then
X1 \/XZ/X3 G(C[[\/f_lﬂ

Proof of claim Let x; = 4% y!, where y; is invertible in C[[4]. The assumption
x1X2/x3 € C[h] means ki +kp > k3. Then k1 + 3k» = S (k1 + k2) = k3, which
implies the claim. a

Let us now prove the proposition. The C[A]-module V(a) is a formal series C[Ah]-
module with formal basis {a(i)e(i) | i € I}; see Example 2.2. Every x € V(a) has a
unique presentation as an s—adically convergent sum

x =Y xi(a(i)e(i)). where (x;)ier € C[h]".
iel
Using the topological bases {e(i) |i € I} of V and {¢/(i") | i’ € I’} of V', we have
fle@)=>" 10,

jeI’
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where fl.j € C[A] and, for a fixed i, { fij | j € I'} is O—convergent. Multiplying by
appropriate powers of +/a(i), we get

flae@n = ¥ @Gy, where [ =50
jel’
@)  f(Wae@) =Y JF(Vad()e'(). where f = \/:;l?]))f’ :

jer
The assumption f(V(a)) C V'(a’) implies that f 7 ecC [~], which, together with

f.J € C[/4] and the claim, shows that f.J € (C[[\/_ ]. Equation (85) shows that
f(V(Ja)) C V'(+/a'). This proves the proposition. a

4D Definition of X,

Fix a longest reduced sequence i . Recall that {ej,(n) |[n € N? +Hite } is a topological basis
of Uy ; see Section 4A. Let a: N'T!+ _ C[[h] be the function defined by a(n) = All*|
and consider the topological dilatation triple (U, Uy (s/a), Uy(a)). Denote the middle
one by Xy, ie U, (y/a) = X},. Later we show that X, does not depend on i .

By definition, Uy(a) is the closure (in the /A—adic topology of Uy,) of the C[[h]—span
of {h1"le),(n) | n € N* 1+ Thus, Uy(a) =

Also by definition, X, is the topologically free C[[+/A]-module with the topological
basis

(86) (W11 26, (n) | n e NPHHTY,
Note that X}, is a submodule of U ,; = Uy, ®<C[[h]] C[Vh].

The topological closure X}, of X, in U /i 1s a formal series C[vh]-module with
(86) as a formal basis.

Theorem 4.7 The C[v/h]-module X}, is a topological Hopf subalgebra of U Nz
Moreover U s> X C X, ie X, is ad-stable, and ¢(Xp) C X.

Proof We will show that X, is closed under all the Hopf algebra operations of U ;.

Let us first show that X}, is closed under the coproduct. Both (Uy, Xj, V) and
w, ®2 X ®2 V®2) are topological dilatation triples, and

AU CUP* and AW) C V2

(see Proposition 4.1). Hence, by the stability principle (Proposition 4.6), A(Xj) C X }‘? 2,
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Similarly, applying stability principle to all the operations of a Hopf algebra, namely
i, n, A, e and S (using Proposition 4.1), as well as the adjoint actions (using
Proposition 4.3) and the map ¢ (using Proposition 4.5) we get the results. a

Corollary 4.8 Fix a longest reduced sequence i . The (C[[\/E J-algebra X}, is the topo-
logically complete subalgebra of U s generated by VhHy, «/ZE,, (i) and \/i—sz(i )
witha € Il and y € O

Proof Since X, is an algebra, the proof is the same as that of Proposition 4.2. O

4E X} is a core subalgebra of U 5

Recall that core subalgebras were introduced in Section 2N.

Theorem 4.9 The subalgebra X}, is a core subalgebra of the topological ribbon Hopf
algebra U /.

Proof For the convenience of the reader, we recall the definition of a core subalgebra:
X, 1s a core subalgebra of U s if X}, is a topological Hopf subalgebra of U /; and
the following holds:

(i) Xp is U s—stable.
(i) ReX,® X, and Kzp € Xp,.
(iii) The clasp element ¢ has a presentation
ce=> d)ed ),
iel
where each of {¢/(i)} and {¢"(i)} is O—convergent in U s; and is a topological
basis of X},.
Let us look at all three statements.

(1) By Theorem 4.7, X}, is a topological Hopf subalgebra of U /i and (@) holds.
(i) Since \/ZH(X € X}, (see Corollary 4.8), K4,,= exp(j: Za€¢+ hHa) eX;,C )7;,.
By (70), R~ = ©D~!, where

O = Z F,® E, and D! :exp(—% ZHa®I:Ia/da).

neN’ aell

As VhHy, VhHy € Xj,onehas D7l e X;, ® X3.
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Using the definition (65)-(66) of E, and Fj, and Corollary 4.8, we have
<«
Fn®En~ [] (hFy, ® Ey))" € X3 ® X,
i €@+

where a ~ b means a =ub for some unit u in C[[4]. Hence, ® =) F,Q E, € X;,®X},.
It follows that R~! = @D~ € X;, ® X},. Since R = (id ® S)(R~!), we also have
R € X, ® Xy,. Thus (ii) holds.

(i) Let I = N't+ and forne 1,
(87) () = h"V 2, ), " (m) = ug, (m)n""V 2] (m),
where uy(n) is the unit of C[[/2] in (84). By (83),

c= Zc'(n) ®c’(n).

By definition, {¢’(n)} is a topological basis of X}. Since {FIa | @ € 1} is a basis
of b . {¢”(n)} is also a topological basis of X} . The factors RIn1/2 0 (87) show that
each set {¢’(n)} and {c¢”(n)} is O—convergent. Hence (iii) holds. This completes the
proof of the theorem. a

By Theorem 2.25, the core subalgebra X, gives rise to an invariant Jys € C[v/4] of
integral homology 3—spheres M, via the twists 71, which we will study in the next
subsections.

4F Quantum Killing form

Since X, is a core subalgebra of U N according to Section 2N one has a clasp form,
which is a U /; -module homomorphism

(88) Z: X, ® X, — C[Vh],
defined by
(89) L"(m) @ ¢/ (m)) =8pm for m,m e NI HH,

where ¢”(n) and ¢’(m) are given by (87). We also denote .Z(x ® y) by (x, ).

Let us calculate explicitly the form .#. Recall that Fy, E, € U; were defined by (65)
and (66), which depend on a longest reduced sequence.
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Proposition 4.10 Fix a longest reduced sequence i . Form,n,n’,m' eN*, k, k' eN/,
a,B €Y and k, | € N, one has

ke L
(90) (Fm Kmh>HY En, Fo Ku'h2Hy Em') = 8k 18m,mSn g P EnD (—=1)¥ k) (@, B,
1) (Fin Km Ky En, For Kn' Ky Epyt) = 5m,m’5n,n’q(p’|E"l)v_(u’w)/z.

Proof Formula (90) is obtained from (89) by a simple calculation, using the definition
(87) of ¢/(n) and ¢”(n). Formula (91) is obtained from (90) using the expansion
Ky =exp(3hHy) =Y h*HE /(2K k). O

Suppose x, y € Uy,. There are nonzero a, b € C[v*!'] such that ax, by € Xj,. By (91),
(ax,by) € C[vE!/2]. Hence we can define (x, y) = (ax,by)/(ab) € C(v'/?). Thus,
we have a C (v)-bilinear form

(92) (-.): U, ®@U; - C'/?).

Remark 4.11 The form we construct is not new. On U, the form .# is exactly the
quantum Killing form (or the Rosso form) [74; 81] (see [30]), which was constructed
via an elaborate process. For example, if one defines the quantum Killing form by (91),
then it not easy to check the ad-invariance of the quantum Killing form. Essentially
here we give a geometric characterization of the quantum Killing form: it is the dual
of the clasp element ¢. The ad-invariance of the quantum Killing form then follows
right away from the ad-invariance of ¢. We also determine the space X}, which in a
sense is the biggest space for which the quantum Killing form can be defined (with
values in C[[A]).

4G Properties of quantum Killing form

We again emphasize that the form ¥ is ad-invariant, ie the map .# in (88) is a
U ﬁ—module homomorphism; see Lemma 2.22. It follows that the form (92) is U, —
ad-invariant.

Since each of {¢/(n)} and {c¢”(n)} is a topological basis of X} and they are dual to
each other, the bilinear form (-, -) is nondegenerate.

From (90), we see that the quantum Killing form is triangular in the following sense.
Let x,x" € X, NU;"", y,y € X4NUY, and z,z' € X, N U,¥; then

(93) (xyz,x"y'z') = (x. ) (p. ¥/ )z, ).

The quantum Killing form is uniquely determined up to a scalar by the ad-invariant,
nondegenerate, and triangular properties; see [33, Theorem 4.8].
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The quantum Killing form is not symmetric. In fact, for x, y € Xj, we have

(y.x) = (x,8%(») = (S72(x). »).

which follows from the identity (id ® S?)(c) = ¢»;. If y is central, then S?(y) =
K _,,yK5, = y. Hence,

94) (x,y)=(y,x) if y is central.
The quantum Killing form extends to a multilinear form
(-,): X" ® X®" - C[Vh],

where X ,‘?" is the topological closure of X ,‘? " given by

n

(X1®...Q %0, 1 ®...®ya) = [ [ (xj. 7).
j=1

Lemma 4.12 Suppose x, y and z are elements of X2 = X, N Uj}}? Then

95) (xy,z) = (x ®y,A(2)).
Proof This follows from (90), with n = m = 0. m|

Note that (95) does not hold for general x, y,z € Xj,.

4H Twist system associated to X; and an invariant of integral homology
3—spheres

According to the result of Section 2M, the core subalgebra X gives rise to a twist
system T4: X, — C[v/h], defined by

Te(x) = (r¥ x)

and an invariant Jys € (C[[\/Z ]| of integral homology 3—spheres M . Recall that Jas
is defined as follows. Suppose T is an n—component bottom tangle with 0 linking
matrix and &; € {—1, 1}, and M is obtained from S3 by surgery along the closure link
cl(T) with the framing of the i™ component switched to &;. Then

I =Te, @ T, )(JT).

—

In the next few sections we will show that Jys € Z[q].
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Let us calculate the values of 74+ on basis elements. Recall that

1 .
ro=K_s, exp(—z Z HaHa/da).

acll

Proposition 4.13  (a) Fix a longest reduced sequence i . Form, n e N/, y € Y
and x € X,?, one has

(96) T4 (Fm KmXEn) = 8mng 1 FD (rg, x),
97) (ro. Ky) = vP)=30r1) ¢ gy*1/2),
(b) For every x € Xj,, one has

98) T-(x) = T+ (¢ (x)).

Proof (a) By (72),
r = Z FnKnVOEn.

neN?

Identity (96) follows from the triangular property of the quantum Killing form. The
identities in (97) follow from a calculation using (90) and the explicit expression of rq.

(b) By (79), ¢ = (¢ ® S~'¢)(c). By Proposition 2.23, for y € X}, and x € X}, one
has

(99) (y.x) =(S7"0(y). 0(x)).
By Corollary 3.11 and (73), S~ le(r~!) =r. Using (99) with y =r~!, we get (98). O

41 Twist forms on U,

By construction we have twist forms 74: X;, — C[+/A], with domain X, and
codomain C[[+//1]. We can change the domain to get a better image space.

By Proposition 4.13, for m, n € Nl and y €Y,

(100) T4 (Fm Km Koy En) = 8mnq @1 EnD2 00 =0v1) e 71421 ¢ 7]+,

Because { Fi Km K2y En |m.n € N', y € Y} is a C(v)-basis of U;", we have
T+ (U N Xy) € C(v) NCIVA].

Using 7-(x) = T+(¢(x)) (see Proposition 4.13) and the fact that both Uz" and X,
are gp—stable, we also have

T_(US' N X) € C(v) NC[V].
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Because Ug" N X}, spans Ug" over C(v), we can extend the restriction of 7+ on
U;" N Xy to C(v)-linear maps, also denoted by 7:

Te: U — C(v).
The values of 7 on the basis elements are given by (100). It is clear that

(101) T+(U;") C Q(v).

5 Integral core subalgebra

In Section 4 we constructed a core subalgebra X, of U, that gives rise to an invariant
Jar of integral homology 3—spheres with values in C[[4/%]. In order to show that Jps
takes values in Z/[a] we need an integral version of the core algebra. This section is
devoted to an integral form Xz of the core algebra X .

In order to construct Xz we first introduce Lusztig’s integral form Uz and De Concini
and Procesi’s integral form V7. Then we construct Xz so that (Uz, Xz, Vz) forms an
integral dilatation triple corresponding to the topological dilatation triple (Uy, Xp, V).

Lusztig introduced Uz in connection with his discovery (independently with Kashiwara)
of canonical bases. De Concini and Procesi introduced V7 in connection with their
study of geometric aspects of quantized enveloping algebras. For the study of the
integrality of quantum invariants, Lusztig’s integral form Uy is too big: it does not
have necessary integrality properties. For example, the quantum Killing form (x, »)
with x, y € Uz belongs to Q(v'/?) but not to Z[v*!/2] in general. On the other
hand, De Concini and Procesi’s form Vyz is too small, in the sense that completed
tensor powers of ¥z do not contain the universal invariant of general bottom tangles.
(Recently, however, Suzuki [78; 79] proved that, for g = sl,, the universal invariant of
ribbon and boundary bottom tangles is contained in completed tensor powers of V7 .)
Our integral form X7z is the perfect middle ground, since it is big enough to contain
quantum link invariants and small enough to have the necessary integrality. We believe
that Xz is the right integral form for the study of quantum invariants of links and
3—manifolds.

We will show that De Concini and Procesi’s Vyz is “almost” dual to Lusztig’s Uz under
the quantum Killing form; see the precise statement in Proposition 5.15. This fact can
be interpreted as an integral version of the duality of Drinfel’d [17] and Gavarini [18].
Using the duality we then show that the even part of ¥z is invariant under the adjoint
action of Uy, an important result which will be used frequently later. We then show
that the twist forms have nice integrality on Xz .
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SA Dilatation of based free modules

Let A be the extension ring of A = Z[v*!] obtained by adjoining all V¢, (q),
n=1,2,...,t0 A. Here ¢,(q) is the n™ cyclotomic polynomial and ¢ = v2. One
reason why working over A is not too much a sacrifice is the following:

Lemma 5.1 One has ANQ(q) = Z[g*'].

Proof Since /¢ (q) is integral over Z[g*!], A is integral over Z[g*!]. Hence
ANQ(g) = Z[g*"]. O

Suppose V is a based free A—-module, ie a free A-module equipped with a preferred
basis {e(i) | i € I}. Assume a: I — A is a function such that a(i) is a product of
cyclotomic polynomials in ¢ for every i € I. In particular, (i) # 0 and va(i) € A.
The based free .A-module V(a) C V', with preferred basis {a(i)e(i) |i € I}, is called a
dilatation of V , with dilatation factors a(i). Let V(y/a) be the based free .A-module
with preferred basis {v/a(i)e(i) |i € I}. We call (V, V(/a), V(a)) a dilatation triple
determined by the based free .A-module V' and the function a.

We will introduce the Lusztig integral form Uy, the integral core algebra Xz and the

De Concini—Procesi integral form V7 so that (Uz, Xz, Vz) is a dilatation triple.

5B Lusztig’s integral form Uz

Let Uz be the A—subalgebra of U, generated by all Eé"), FO(,") and K&H with o € I1
and n € N. Set U%‘:UZﬂUq* for x =—, 0, +.

Let us collect some well-known facts about Uz,. Recall that £ ) and F™ | defined
for n € N in Section 3F2, depend on the choice of a longest reduced sequence.

Proposition 5.2 Fix a longest reduced sequence i .

(a) The A-algebra Uy is a Hopf subalgebra of U, and satisfies the triangular
decomposition

UZ_®UZ0®UZ+E>UZ, XQ®YRzr> xyz.

Moreover, Uy, is stable under the action of Tt', o € TI.

(b) The set {F™ | n € N*} is a free A-basis of the A—module U, . Similarly,
{E®™ | n e N} is a free A-basis of Uy .
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(c) The Cartan part UZ0 is the A—subalgebra of U ; generated by

(Kéi Ga)n

K*'  and
* (G ga)n
fora eIl andn e N.

(d) The algebra Uy, is stable under tyy, T and ¢. Moreover U, is stable under iy
and T.

Proof Parts (a)—(c) are proved in [53; 54, Proposition 41.1.3]. Part (d) can be proved by
noticing that each of tpy, T and ¢ maps each of the generators Eé,”), FO(,") and K&H
of Uy into Uz, and each of (y, and t maps each of the generators Fo(l”) of U,
into U, . a

We will consider U, and U. % as based free .A-modules with preferred bases described
in Proposition 5.2(b). Later we will find a preferred basis for the Cartan part U 2.

Let U;' = Uz N U;" be the even part of Uz . From the triangulation of Uz we have
the following even triangulation of Uz and U;":

(102) Uy @UIRUS =5Uz, x®y®:z> xyz,
(103) U™ QU QU S5 U, x®@y®:z xyz.

Here, U;"" = Uy N U3’ with UQ = C(v)[KF2, « € 0], and Uy~ = Ug' N
U~ =oUf).

From Proposition 5.2(b) and U 2\/,— =oU Z+ ), we have the following:
Proposition 5.3 The set { F™ K, | n € N'} is a free A-basis of the A-module U,

We will consider U,"" as a based free .A-module with the above preferred basis.

SC De Concini-Procesi integral form V7

Let Vz be the smallest A—subalgebra of Uz which is invariant under the action of
the braid group and contains (1 — g4) Ey, (1 — gy)Fy and K&H for o € T1. For
*=0, +, —, set VZ*:VZHU;.

Remark 5.4 In the original definition, De Concini and Procesi [15, Section 12] used
the ground ring Q[v*!] instead of A = Z[vT']. Our V7 is denoted by 4 in [15].
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Fix a longest reduced sequence i . For n = (ny,...,n;) € N’ let
t
(104) @0 = [ [@y;:09;)n;-
j=1

Note that (¢;¢g)n depends on i, since y; = y;j(i) depends on i .

Proposition 5.5 Fix a longest reduced sequence i .

(a) The A-algebra Vz is a Hopf subalgebra of Uy, .
(b) We have V.0 = A[K 1&:1’ cee, Klil] and the triangular decomposition
Vi®VZ()®VZ+i>VZ’ XQ® YRz xyz.

(c) Theset {(q;q)n F™ |neN"} is a free A-basis of the A-module V, . Similarly,
{(q: Q)n E™ | n € N} is a free A-basis of VZ+.

Proof The proofs for the case when A = Z[v*!] is replaced by Q[v*!] were given

in [15, Section 12]. The proofs there remain valid for .A. Note that in [15] our V7 is
denoted by A. a

The even part V;" := Vz N Ug" is an A-subalgebra of Vz. From the triangular
decomposition of ¥z, we have the even triangular decompositions

(105) Ve m Vs @V S5V, x®@y®zesxyz,
(106) VZeV’_®VZ0®VZ+i>VZ, XQ@YRzr> xyz,

where V"0 1=V, NU"™" = AIKF2. ... K and V"7 :=Vz 0 US"" = (V).

From Proposition 5.2(b) and U~ = ¢(U,), we have the following:

Proposition 5.6 The set {(¢:q)a F™ Ky, | n € N} is a free A-basis of the A—
module V;"~.

We will consider VZGV’_ as a based free .4-module with the above preferred basis. Then
VZeV’_ is a dilatation of U, EV’_. Similarly, we consider VZJr as a based free .4-module
with preferred basis given in Proposition 5.5. Then VZJr is a dilatation of U Z+ .
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5D Preferred bases for Uz and VZ0

We will equip U; and VZO with preferred .A-bases such that VZO is a dilatation of UZO.
Recall that Kj = Kqo; and gj = qq; -
Forn = (ni,...,n;) € N! and § = (8,...,8;) € {0, 1}/ let

—2|n; /2], —|l(@m;j—1)/2

107 “(n) = ! ! ,
(1o 2" ].1:[1 ()95 )n;
/
(108) 0@m.8):=0%m [ K}
=1
; J
(109) (@:)n = [ [@j:q)n;-
j=1

Proposition 5.7  (a) The sets {Q(n) | n € N'} and {(¢:¢)n Q% (n) | n € N'} are
A-bases of U"*® and V;"°, respectively.

(b) Thesets {Q(n,8)|neN’ §€{0,1}'} and {(¢:q)n Q(n.8)|neN, § {0, 1}/}
are A-bases of U;" and V", respectively.

The proof is not difficult, since UZO and VZO are A-subalgebras of the commutative
algebra Q(v)[K fl, cee, Klil], though it involves some calculation. We give a proof
of Proposition 5.7 in Appendix B.

Remark 5.8 In [52], Lusztig gave a similar, but different, basis of U, 2. Our basis can
be obtained from Lusztig’s by an upper triangular matrix, and hence a proof of the
proposition can be obtained this way. We chose the basis in Proposition 5.7 instead of
Lusztig’s one for orthogonality reasons.

S5E Preferred bases of Uz and V7

Recall that we have defined (¢; ¢)n in two cases depending on the length of n — see
(104) and (109) —either n = (ny,...,n;) € N’ in which case

t
@:0n =[] @y:q9)n;
j=1
orn=(ny,...,n;) €N, then
/
@:0n = [ | Go;:Ga;)n; -

j=1
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The first one depends on a longest reduced sequence since y; does, while the second
one does not.

Introduce another (¢;¢)n, with length n = 2¢ + . For n = (ny,n,,n3) € NIH+1,
where ny, n; € N’ and n, € N/, define

(110) (@ Dn = (@ Dn (4 Dy (G Dns-
Further, if § € {0, 1}, let
(111) e (n) := F"IK, 0%m) E™) . e(n,8):= F®VK, O(ny,8)E™.
Proposition 5.9  (a) The set
{e(n,8) |ne N+ 5 c0 11y
and its dilated set
(g ne(m,8) | ne N"HH 5 € {0, 1)/}

are A-bases of Uz, and Vg, respectively.

(b) The set
{eeV(n) | ne NH—H—t}

and its dilated set
(g @Ine (m) | n e NTHFT

are A-bases of U;" and V", respectively.

Proof The proposition follows from the even triangular decompositions of Uz and Vyz,
together with the bases of U%V’_, UZO and U; , and VZCV’_, VZO and VZJr in Propositions
52,5.5and 5.7. o

We will consider Uz, U;", Vz and V" as based free .A-modules with the preferred
bases described in the above proposition. Then V7 is a dilatation of Uz and V" is a
dilatation of U,".

SF Relation between V7 and V),
Proposition 5.10  (a) Onehas V;" CVz CV.

(b) Moreover, Vj, is the topological closure (in the h—adic topology of Uy, ) of the
C[[A]-span of V;". Consequently, V}, is also the topological closure (in the
h—adic topology of Uy ) of V.
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Proof (a) Itis clear that V;¥ C V7. Let us prove Vz C V.

Fix a longest reduced sequence i . By Proposition 4.2, V}, is the topological closure of
the C[[h]-subalgebra generated by hHy, hF), and hE,, with o € IT and y € ®, .

For every y € @, there is a unit u in C[A4] such that 1 —¢,, = hu and
(112) (1—q,)Fy = u(hF,) € Vy.

Similarly, (1—¢,)E, € V},. We already have K&H eV, Since (1—qy)Fy,, (1—q,)E,
and K&H generate Vz as an A-algebra and V}, is an A-algebra, we have Vz C V},.

(b) Let Vh/ be the topological closure of the C[[/i]—span of V;*. We have to show that
Vh’ = V},. From part (a) we now have that Vh/ C V},. It remains to show ¥V, C Vh/ Ctis
easy to see that V; is a C[[i]-algebra.
Since K2 € V£¥ and
o0
1— K2 n
hHy =log(K2)=—>" UKo

n
n=1

we have /1 Hy € V) for any « € I1. It follows that Kl =exp(£hHy/2) € V,.
From (112),
hFy =u='(1-q))(F, KK, €V], hE,=u"'(1-q,)Ey €V},

Thus, hHy, hF), and hE, arein Vh/ for any o € Il and y € ®4. Since V}, is the
topological closure of the C[[/]—algebra generated by 7 Hy, hF), and hE, , we have
Vy, C Vh’ . This completes the proof of the proposition. a

Corollary 5.11 The algebra V}, is stable under the braid group action, ie TO[il V) vy,
for any o € I1.

Proof Since V7 is invariant under the braid group action and V}, is the topological
closure of the C[[A]-span of V7, the algebra V}, is also invariant under the braid group
action. O

Remark 5.12 Using Corollary 5.11 one can easily prove that V}, is the smallest
C[[h]—subalgebra of Uy which

(i) contains hEy, hFy and hH, for a € I,
(ii) is stable under the action of the braid group,

(iii) is closed in the Ah—adic topology of Uy.
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5G Stability of 'z under ty,., T and ¢
By Proposition 5.2, Uy is stable under tp,, T and ¢.
Proposition 5.13 The algebra Vy is stable under each of t, ¢ and tpq;.

Proof Recall that Vy is the smallest A-subalgebra of Uz containing (1 —gy) Ey,
(1 —¢qq)Fy and Ky for « € I1 and is stable under the action of the braid group. Let
f beone of T, ¢ O tpy.

Claim 1 f(Vz) is stable under the braid group action.

Proof of Claim 1 (i) f =t By [30, Formula 8.14.10], t 7Ty = Ta_lr for every
a € I1. Since the T, generate the braid group, we conclude that, like V7, t(Vyz) is
also stable under the braid group.

(i) f =¢ Recall that S is the antipode. By Proposition 3.2, ¢ = Sk = xS, where
K = tparTw is a C—antiautomorphism of Uy,. Our « is the same « in [15], where it was
observed that x commutes with the action of the braid group, ie kT, = Tk for o € II.
It follows that « (F7) is stable under the braid group. Since ¢(Vz) =«S(Vz) =k (Vz),
@(Vz) is stable under the braid group.

(iii) f =tpar Checking on the generators, one has tpy = kKTW.

By [30, Formula 8.14.9], if x € U, is Y-homogeneous, then Ty (w(x)) ~ wTy(x),
where x ~ y means x = uy for some unit u € A. As Vz has an A-basis consisting
of Y-homogeneous elements (see Proposition 5.9), we conclude that w(F7z) is stable
under the braid group. The results of (i) and (ii) show that v (Vz) = ktw(Vz) is
stable under the braid group.

This completes the proof of Claim 1. O
Claim 2 Onehas Vz C f(Vz).

Proof of Claim 2 Using the explicit formulas of ! in Section 3B, one sees that each
of /(1 =qu)Eq), 71 (1 —qu)Fy) and f~1(Ky) isin Vz. It follows that each
of (1—¢go)Ew, (1 —qo)Fy and Ky isin f(Vz). Together with Claim 1, this implies
f(Vz) is an algebra stable under the braid group and contains f~'((1 — gg)Eg),
(1 —gg)Fy) and f~1(Ky). Hence f(Vz) D Vz. This completes the proof of
Claim 2. O

Since 7 and iy, are involutions and ¢?(x) = K_>,xK,, (by Proposition 3.2), we

have f2(Vz) = Vz. Applying f to Vz C f(Vz), we get f(Vz) C [2(Vz) = Vz.
Hence, Vz = f(Vz). a

Geometry & Topology, Volume 20 (2016)



2756 Kazuo Habiro and Thang T Q Lé

SH Simply connected version of Uz

Recall that the simply connected version lV]q is obtained from U, by replacing the
Cartan part UO (C(v)[KjEl . Klil] with the bigger qu = (C(v)[KfEl, cees Klil].
We introduce an analog of Lusztig’s integral form for U, here.

The C(v)-algebra homomorphism {: qu — (Z;), defined by I(Ky) = Ko, a €11, is
a Hopf algebra homomorphism. Let

U9 :=iUy), U :=1U).
Then I?ZO and IV];’O are A-Hopf subalgebra of quv’ . Define

[jZ = i]ZOUZ’ l?%viz l?;v’oUiv
FormeN! and § = (§,....8)) € {0, l}l, define

0% (m) :=1(Q%(m)), Q(m.3):=UQ(m,3)),
and, furthermore, for n = (ny, ny,n3) € N**/+7 define
)
(113) & (m)i= FOV Ky 0 (mp) EMV, &(n,8):= &% (m) [ | K.
j=1

Proposition 5.14  (a) Uz is an A- —Hopf subalgebra of Uq and U%V is an A-
subalgebra of UZ We also have the even triangular decompositions

(114) U™ QU @US 55U, x®@y®ze xyz,
(115) Uev’_®l?Z0®U+i>I?Z, XQ@ YRz XYz,

(b) The sets {¢(n,8) | n € NI+ § € {0, 1Y} and {6%(n) | n € NTHIF1Y are
A-bases of Uz, and U >, respectively.

(¢) One has UZ > U%V C l?%v. Consequently, Uz, > ﬁ%v C lv]iv.

Proof (a) Asan .A-module, U£ is spanned by

K3 (95K3: qa)k

o o’
(9> 9ok
with @ € IT, m, n € Z and k € N. Hence, l?g = Z(Uz) is A-spanned by fa,m,n,k =
{(famnk). If x € Uz is Y-homogeneous then, using (57), which describes the
commutation between K, and Xx,

(116) fa,m,n,kx = Um(lx"&)xf:x,m,n’,k’

fa,m,n,k =
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where n’ = n + (|x|,@)/dy € Z. Hence, Uz, commutes with Ug in the sense that
Uy U0=U OUZ Since both UZ and U 0 are A-Hopf subalgebras of Uh and they
commute in the above sense, UZ =U OUZ is an A-Hopf subalgebra of Uq

Identity (116) also shows that each of U V.0 and U 0 commutes with each of u,,
U; and U, 9. Hence, U%V = U =0 U;' is an A—subalgebra of Ugz. The triangular
decomposmons for Uzv and UZ follows from those of U, and Uz .

(b) Comblmng the bases {F(’”)K,”} of Uev (see Proposition 5.3), {Qev(nz)}
of U ev,0 (by Proposition 5.7 and 1somorph1sm L) {E ("1)} of U, + (see Proposmon 5.2),
and the even triangular decompositions of U 7 and U, we get the bases of U 7 and
U%" as described.

(c) Since UZ contains Eg’), Fo(t") and K&H , which generate Uz, we have Uz C UZ.
Let us prove
Uz v U c U
From the triangular decompositions of U 7, UEV and Uq, we see that U%V =U 7N U ;V.
Since UZ is a Hopf algebra, we have UZ > U%V C UZ. By Lemma 3.6,
Uz>Uy CcU;r> U;" C qu".

Hence, Uz > U 7 C UzNnU, g = U 7 - This finishes the proof of the proposition. 0O

51 Integral duality with respect to quantum Killing form

Recall that {e®(n) | n € N*T/*1} is an A-basis of U, (see Proposition 5.9) and
{6%V(n) | m € N"HH1} s an A-basis of US' (see Proposulon 5.14). We will show that
these two bases are orthogonal to each other with respect to the quantum Killing form.

Recall that we defined (¢:9)n = (¢: Q)n,(q: 9)n,(q; q)n; ; see Section SE.

Proposition 5.15  (a) Forn, m € N't !+ there exists a unit u(n) € A such that

u(n)

(e (n), e (m)) = Sn,m m

(b) The A-module V" is the A-dual of U%V in Ug" with respect to the quantum
Killing form, ie

V7' ={xelU;" | (x,y) e Aforall y e Uzv :
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Proof Define the following units in A. For m = (my,...,m;) € N’ and k =
(ki,....k;) e N/ let

[
ki+1)/2]?
uy(m) = l_[ v,,j . ux(k) = l_[ o TR
j=1 Jj=1
For n = (ny,ny,n3) € NIH A+ et
u(n) = g @1EnDyy (ny)uy(ny)uy (n3).

(a) We will use the following lemma, whose proof will be given in Appendix B:

Lemma 5.16 For k, k' € N, one has

(117) (0% (k), 0% (k")) = 8k kru2 (k) /(g Dk

For p € N?, using the definition of Ep and F)p in Section 3G1, we have

ur(p)

FP) ® E®P —
(4:9p

—(Fp ® Ep).

Suppose n = (ny,n,,n3) and m = (m,m,, m3) are in N#H A+t Using the definition
of e®(n) and ¢ (n) from (111) and (113), the triangular property of the quantum
Killing form, and formulas (91) and (117),

(e (n), &% (m)) = (FMV Ky, , E™D)(Q% (ny), 0% (my))(E®Y, F™) K, )

 Snim 41 (11) Snymy2(12) Sy my P E Dy (n3)
(@D, (q:Dn, (4:9)ns

_ Sn,mu(n)

@ Dn

(b) By Proposition 5.9, {(¢;q)ne (n) | n € N*t!+1} is an A-basis of V' and a
(C(v)—bas1s of Ug" and, by Proposition 5.14, {€*(n) | n € N+ js an A-basis
of U V. Part (b) follows from the orthogonality of part (a). a

Remark 5.17 From the orthogonality of Proposition 5.15, we can show that

(118) c= Y @D sev ) 3 0 (),

nenitiee 400
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5J Invariance of V" under adjoint action of Uz

The adjoint action makes Uz a Uz-module. The following result, showing that V"
is a Uz —submodule of Uz, is important for us and will be used frequently.

Theorem 5.18 We have UZ >V;" CV;'. In particular, Uz > V;* C V;", ie V" is
Uy —ad-stable.

Proof By Proposition 5.14, Uz > U > C U 7. and, by Proposition 5.15, V" is the
A-—dual of U 2V with respect to the quantum Kllhng form. Further, the quantum Killing
form is ad-invariant. Hence, one also has U z >V, CV;", as the following argument
shows: Recall that we already have UZ > Uy o cy; ¢V (see Lemma 3.6). Suppose
ace UZ and x € V;*. We will show a>x € Vev We have

avx eV, = (apx,y)e A forallyeU%V
= (x,S(@)ry)e A forallyeUeV,
where the first equivalence is by duality (Proposition 5.15) and the second is by ad-
invariance (Proposition 2.4(b)).

Since S(a)>y € U%V, the last statement {x, S(a) > y) € A holds by Proposition 5.15.
Thus we have proved that Uz > V;" C V,". O

Remark 5.19 We do not have Uz > Vyz C Vg in general. For example, when g = A4,
and o # B €11,
Ea > Kﬁ = (v — 1)K/3Ea Q/ Vz.

However, when g = A, we do have Uz > Vz C Vg, as easily follows from [78,
Proposition 3.2], where a more refined statement is given.

5K Extension from A to A: stability principle

Recall that A is obtained from A by adjoining all square roots /¢x(q), k=1,2,...,
of cyclotomic polynomials ¢ (q).

Suppose V is a based free .A-module with preferred basis {e(i) |i € [} and a: [ — A
is a function such that, for every i € I, a(i) is a product of cyclotomic polynomials
in ¢. We already defined the dilatation triple (V, V(y/a), V(a)) in Section 5A. Recall
that V(a) is the free A-module with basis {a(i)e(i) | i € I} and V(+/a) is the free
A-module with basis {~/a(i)e(i)|i € I}.

For any .A-module homomorphism f: V; — V, we also use the same notation f to
denote the linear extension f ® id: Vi ® 4 A — V5 ® 4 A, which is an A-module
homomorphism.
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Proposition 5.20 (stability principle) Let

V1. Vi(Var), Vi(ay)) and (V2,Va(Vaz), Va(az))
be two dilatation triples and let f: Vi — V, be an A-module homomorphism. If

f(Vi(ay)) C Va(az), then f(Vi(/ay)) C Va(az).

Proof First we prove the following:

Claim Suppose a, b, ¢ € A with b and ¢ products of cyclotomic polynomials ¢y (q).
Ifab/c € A then a/b/c € A.

Proof of claim Since A is a unique factorization domain, one can assume that b
and ¢ are coprime. Then a must be divisible by ¢, say a« = a’c with a’ € A. Then
a\/b/c =d' v/bc' € A, which proves the claim. a

The proof of the proposition is now parallel to that in the topological case (Proposition
4.6). Using the bases {e;(i) | i € I} and {e;(i) | i € I} of V7 and V,, we can write

fler@) =Y fFes(k),

kel
where ]’;.k = 0 except for a finite number of &k (when i is fixed) and ]’;.k € A.

Multiplying by a; (i) and +a;(i), we get

(119 fan@en@) = ¥ 78D @)
kel

(120) War@e@) = 3 gy 2D VaaEreato)
kel

Since f(Vi(ay)) C Va(az), (119) implies that fikal (i)/ay(k) € A, which, together
with fl.k € A and the claim, implies that

k ay(i) -
Ji k) €A
Now (120) shows that f(Vi(y/a1)) C Va(/az). O
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SL The integral core subalgebra Xz

By Proposition 5.9, we can consider Uy, as a based free .4-module with the preferred
basis {e(n,8) | n € N T+t § c {0, 1},

Let a: N*H+ 5 {0, 1} — A be the function defined by a(n,8) = (¢;¢)n, where
(¢: q)n is defined by (110). We consider the dilatation triple (Uz, Uz (s/a), Uz(a)).
By Proposition 5.9, Uz (a) is Vz.

Let Xz be Uz (/a), which by definition is the free A—module with basis

(121) V(@ Dne@ 8) |ne N §e0,1)).
The even part X’ of X7z is defined to be the A-submodule spanned by
(122) (V@ ne () [n e N,

Then X;' = Xz N (U, ® 4 A), and Uz, X7, V;") is a dilatation triple.
Theorem 5.21 (a) The A-module X 7, 1S an ﬂ—Hopf subalgebra of Uz ® 4 A.
(b) The A-module X 7 isan Z—subalgebra of Uz' ® 4 A. Further, X 7 1S
(i) Uy —ad-stable,
(ii) stable under the action of the braid group, and
(iii) stable under (v, and @.

(c) The core algebra X}, is the ~/h—adic completion of the C[[v/h]—span of X 7
(or Xz7)in U i

Proof (a) Let us show that A(Xz) C Xz ® Xz. Since (Ugz, Xz,Vyz) is a di-
latation triple, (Uz ® Uz, X7z ® Xz, Vz ® Vz) is also a dilatation triple. We have
A(Uz)CUz®Ugz and A(Vz) C Vz®Vy . By the stability principle (Proposition 5.20),
we have A(Xz) C Xz ® Xz, ie Xz is an Av—coalgebra.

Similarly, applying the stability principle to all the operations of a Hopf algebra, we
conclude that Xz is an .A—Hopf subalgebra of Uz ® 4 .A.

(b) Because V" is an A-subalgebra of Uy, the stability principle for the dilatation
triple (U;", X3, V") shows that X7' is an A-algebra.

By Theorem 5.18, V" is Uz—ad-stable; and, by Proposition 5.13, V7" is stable under
twar and . Since Uy" is Uz —ad-stable is stable under tp,r and ¢ (by Proposition 5.2),
the stability principle proves that X %V is (i) Uz —ad-stable, (ii) stable under the action
of the braid groups, and (iii) stable under tp,, and ¢.

(c) Each element of the basis (121) of Xz isin Xj. Hence, Xz C X}. On the other
hand, the A-basis (122) of X' is also a topological basis of Xj. Hence, X}, is the
Vh—adic completion of the C[v/]-span of X z n Uy O
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Corollary 5.22 (a) The core algebra X}, is stable under the action of the braid
group.
(b) The core algebra Xy, is the smallest Vh —adically completed topological C [[«/71 1-
subalgebra of U s which (1) is closed in the V'h—adic topology, (ii) contains
Vh Egy, Vh Fy and Vh H,, foreach «a € I1, and (iii) is invariant under the action
of the braid group.

Proof (a) Since X, is the ~/h—adic completion of the C[[v//]—-span of X$', which
is stable under the action of the braid group, X is also stable under the action of the
braid group.

(b) Let X }’l be the smallest completed subalgebra of U Vi satisfying (i), (ii), and (iii).
Since X}, satisfies (i), (ii), and (iii), we have X ,; C Xy.

For each y € @4, E,, and F, are obtained from E, and Fy for a € II by actions
of the braid group. Thus X ,; contains all x/ZEy and \/EFV for y € &4 and VhH,
for & € TT, which generate X} as an algebra (after 4—adic completion). It follows that
X» C X, Hence, X, = X O

Remark 5.23 The disadvantage of Xy is its ground ring is A, not A. Let us define

Xi=XzNUyg.

Then X 4 is an A-algebra. However, X 4 is not an A-Hopf algebra in the usual sense,
since

AXA) € Xa®aXa
Let us define a new tensor product
(123) (XD :=X2"nUZ", (XD = (X" n(UZHE".
Then we have
AX4)=AXzNUz)C(Xz@Xz)N(Uz®@Uz)=X41R X 4.

Hence, X 4, with this new tensor power, is a Hopf algebra, which is a Hopf subalgebra
of both Xz and Uy.

What we will prove later implies that if 7" is an n—component bottom tangle with 0
linking matrix then

Jr € im(X)™" /((4: 9k
k

However, we will not use X 4 in this paper.
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SM Integrality of twist forms 71 on X'

Recall that we have twist forms 7+: X; — C[v/A]. By Theorem 5.21, Xz C Xp,.

The embedding A — C[A] by v = exp(%h) extends to an embedding A — C[vA].
Although there are many extensions, it is easy to see that the image of the extended
embedding does not depend on the extension, because the two roots of ¢y (gq) are
inverse (with respect to addition) to each other.

Proposition 5.24 One has T2 (X§') C A.
The proof of this proposition will occupy the rest of this section (Sections SM1-5M4.)

5M1 Integrality on the Cartan part

Lemma 5.25 (a) The Cartan part X %V’O of X5 is an .Z—Hopf subalgebra of Xz .

(b) Suppose x, y € X%V’O and . € X. Then (x,y) € A and (x, Ky ) € A.

Proof (a) Since X ¥0 is an A- —subalgebra of the commutative cocommutative Hopf
algebra X, we need to check that A(X ;" 0 ¢ X5 % X, % This follows from the
fact that X% is an A-Hopf algebra, and A(Kz) = K2 ® K2

(b) Recall that i: U, ; — U 0 is the algebra homomorphism defined by t(Ka)
Recall that (U;"", -0 X, 0 Vev ) is a dilatation triple. We have UeV’ = (U;v ).
Define

Xev ,0 — (Xev 0) and I}Zev,O — Z(VZSV’O).

Then (U%V’O, X EV’O, Vzev’o) is also a dilatation triple, and X %V’O and X EV’O are free
A-modules with respective bases

(124) (V@ aQm) | neN}y and {/(g:q)n O(n) |neN'}.

Since the inclusion U’ 0y U ov,0 maps v, % into I;Zev’o, Proposition 5.20 shows
that X %V’ C X -0 In partlcular y e X ov,0

The orthogonality (117) and bases (124) show that if x € X, &0 and y € X <% then
(x,y) € A. Since Ky € Xe % we also have (x,Ky) € A. O
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SM2 Diagonal part of the ribbon element The diagonal part ry of the ribbon
element (see Section 3G) is given by

ro=K_, exp(—h Z HaI:Ia/da).

aell
For « € IT let the a—part of X%V’O be X%V’O’a = X%V’O N Z[K&tz].

Lemma 526  (a) Each X%v’o’a is an A—Hopf subalgebra of X%V’o and X%"’O =
® Xev,O,oc
aell 27 .
() (ro. X5""%) € A forany a € 1.

Proof (a) By definition, X" % has A-basis {(V(q:n O (n) | n € N'}, where
0% (n) = ]_[J_l O(aj;nj), Wlth

Q(Ot' }’l) — 2|_n/2j (q—|_(n /2l Kz ‘hx)n ‘

(Ga: ga)n

It follows that X V0% i< the A—module > spanned by v/(¢a: qa)n Q(a;n) and X V0 —
Rgen X5 Because XZ is an A-Hopf algebra (Lemma 5.25), X5 « is an
A-Hopf subalgebra of X %V

(b) We need to show that (rg, v/(¢«; ga)n Q(a;n)) € A for every n € N. Fix such
an n.

Let 7 be the ideal of Z[qa , K jE2] generated by elements of the form (¢ K2; qa)n»
m € N. Then (¢o;ga)nQ(a;n) € Z. By (96),

_ 1.2
(ro, K& ,) = q* 7.

With z = K, the Z[gr']-linear map Li: Z[gF', KF?] — Z[q *1] defined by
E*(Ké‘a) = (rop, Klz‘a) equals the map £_,2,: Z[qjEl A5 7Z)g q; +1] of [7]. By [7,
Theorem 3.2], forany f €Z,

La(f) € (9a> Ga)n 7, ﬂ:l].

(Ge:q9a)|nj2)
As (qa; qa)nQ(a;n) € T, one has

(125) (ro,(qa;qa)nQ(a;n))=g*((qa;qa)nQ(a;n))eM[ 1,
(9o 9o) (n)2]

‘We have

. 2 .
( vV (Gas Go)n ) _ ( (9o Go)n ) c Z[q(, 1

(9a: qa) n)2] (Ga: ) (n/2) Gas qa) |n)2)
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where the last inclusion follows from the integrality of the quantum binomial coefficients.

Hence, from (125),
vV (f]oﬂ%)n Z[q&tl] c A*
(93 qe) |n)2)

This completes the proof of the lemma. |

(ré. vV (@a: qe)n Qa;n)) €

Remark 5.27 Theorem 3.2 of [7], used in the proof of the above lemma, is one of
the main technical results of [7] and is difficult to prove. Its proof uses Andrews’
generalization of the Rogers—Ramanujan identity. Actually, only a special case of [7,
Theorem 3.2] is used here. This special case can be proved using other methods.

SM3 Integrality of r(

ev,0 g

Lemma 5.28 Suppose x € X °; then (r¢, x) € A.
Proof We first prove the following claim:

Claim If (rg,x) € A forall x € JA and all x € 74 , where 5/, and ¢ are jf—Hopf
subalgebras of X5"°, then (ro, x) € A for all x € 74.5.

Proof of claim Suppose x € 5 and y € 5% . Using the Hopf dual property of the
quantum Killing form on the Cartan part (95), we have

(ro,xy) = (A(ro), x ® y).

A simple calculation shows that A(rg) = (ro ® ro)D 2, where D is the diagonal part
of the R—matrix; see (68). We have

o

Writing D72 = Y §; ® §,, we have
(126) (ro.xy) =Y (rod1.x)(rob2. )
= (ro.x))(61. X)) {ro. y1)) (62. )

=Y {ro.x))(ro. Y1) {X2)- ¥())-

where in the last identity we use the fact that > (81, x)(52, y) = (x, y), which is easy
to prove. (Note that, on the Cartan part X ;?, the quantum Killing form is the dual
of D=2, which is the Cartan part of the clasp element c.)

Since x(1) € 71 and y(;) € 4, we have (ro, x(1))(ro, y(1)) € A. By Lemma 5.25(b),

(x(2), ¥(2)) € A. Hence, (126) shows that (ro, xy) € A. This proves the claim. a
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By Lemma 5.26, X" 0 = Qpen X5 "%, each X5"%¢ is a Hopf subalgebra of X570,
and (ro, X" 0% c A. Hence, from the claim we have (ro, Xev’ yC A. O

5M4 Proof of Proposition 5.24
Proof We have to show that 71 (x) € A for every x € X 7 - First we will show
Tr(x) € A.

It is enough to consider the case x = \/(¢;q)n e (n) with n = (n1, k,n3) € Nt
since X' is A-spanned by elements of this form. By the triangular property (93) of
the quantum Killing form and (96),

T4 (xX) = 8nymy g1 En D (ro, /(g1 )k Q(K)) € A.

Here the last inclusion follows from Lemma 5.28. This proves the statement for 7 .

By Theorem 5.21, X7 is p—stable. By (98), we have T_(x) = T (p(x)) € A O

SN More on integrality of r¢

Lemma 5.29 Suppose y € X5°. Then (rF', K,,y) € v 4.

Proof Since X ;’0 is a Hopf algebra (Lemma 5.25), we have A(y) = >_ y(1) ® y(2)
with y1y, y) € X%V’O. Using (126), then (97), we have

(ro, Kapy) = Z(Vo, Kp)(ro, y())(K2p. ¥(2)) = v(e:P) Z(Vo,y(l)Hsz,y(z)),

where we use (ro, K,p) = v which follows from an easy calculation. The second
factor (rg, y(1)) isin A by Lemma 5.28. The last factor (K>, y(2)) is in A. Thus,
we have (ro, K»py) € vPP) 4

Using (98), the fact that X %V’O is p—stable and the above case for rg, we have

(ro s Kapy) = (ro, 9(Kap)) = (ro, Kapp(»)) € vPP 4,

This completes the proof of the lemma. a

6 Gradings

In Section 3C, we defined the Y—grading and the Y /2Y —grading on Uy . In this section
we define a grading of U, by a group G, which is a (possibly noncommutative) central
Z./27Z—extension of Y x (Y /2Y'), thus refining both the gradings by Y and Y/2Y .
This grading is extended to the tensor powers of Uy .
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The reason for the introduction of the G—grading is the following: The integral core
subalgebra Xz will be enough for us to show that the invariant J;s of integral homology
3—spheres, a priori belonging to C[v/4], is in

lim Z[v*"]/((: 9)x)-
k

But we want to show that Jjs belongs to a smaller ring, Z/[a] =lim, Zlg=/(q: i),
and the G—grading will be helpful in the proof. In Section 7 we will show that quantum
link invariants of algebraically split bottom tangles belong to a certain homogeneous
part of this G—grading.

6A The groups G and G

Let G denote the group generated by the elements v, Ky and é, (o € IT) with the
relations

v central, v = th =1, f(akﬂ = KﬂKa,
Koég = 0@PégKy, éqép=0@Pége,.
Let G* be the subgroup of G generated by v and ¢, (« € IT).
Remark 6.1 The groups G and G¢¥ are abelian if and only if g is of type 41 or By
(n>2).
Define a homomorphism G — Y, g — |g|, by
0] = |Ka| =0, |éa|=a (aeTl).

For y =) ;mja; €Y, set

Ky =[] &m. ¢ =]]em =em...cm.

i i

Note that é,, depends on the order of the simple roots «;,...,a; € I1.
One can easily verify the following commutation rules:
(127) gk, =0B8MEK, ¢ for geG, Ley,
(128) gg' =008MENg' s for g g’ € G

Let N be the subgroup of G generated by ©v. Then N has order 2 and is a subgroup
of the center of G. Note that G/N = Y x(Y/2Y) and G®/N =Y.
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6A1 Tensor products of G and G® By G ® G = G ® 5y G, we mean the “tensor
product over N of two copies of G, ie

GG :=(GxG)/((vx,y) ~ (x,0)).

Similarly, we can define G ® G%, G* ® G, etc, which are subgroups of G ® G.
Denote by x ® y the element in G ® G represented by (x, y). Thus we have vx ® y =
X®UVy.

Similarly, we can also define the tensor powers G®" = G ®---® G and (G*)®" =
GV®---®G® C G®" (each with n tensorands). Define ahomomorphism t,,: N —G®"
by
(%) =k @ 180D k=0, 1.
We have
G®" /1,(N) = Y"x (Y/2Y)", (G™)®"/1,(N)=Y™".

For n = 0, we set
G® = (GM® =N.

6B G-grading of U,

By a G—grading of U, we mean a direct sum decomposition of C(g)—vector spaces
Uy = @[Uq]g
geG

such that 1 € [Uy]y and [Ugle[Uyler C [Ugleg for g, g' € G. If x € [Uylg, we write
degg () = g.

Proposition 6.2 There is a unique G—grading on U, such that
degg(v) =0, degg(Kig) = Ko, degg(Eq) = 0%¢y, degg(Fy) = ¢, Ky,

Proof Since vt!, K14, E4 and F, generate the C(g)—algebra U, , the uniqueness
is clear. Let us prove the existence of the G—grading.

-1
o

Let ﬁq denote the free C(g)—algebra generated by the elements 7,77, Ko, K
Ey and Fy. We can define a G—grading of U, by

degG('ﬁil) =7, degG(IZ;H) = Ka, degG(Ea) = i)d“éa, degG(fa) = é;lka.
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The kernel of the obvious homomorphism ﬁq — Uy is the two-sided ideal in ﬁq
generated by the defining relations of the C(g)—algebra Uy :

1 ~2

v=1, 1°=g¢q, 7V central,

~~]

=1
KoK;'=K;'Ko =1, KyKpg=KgKy,
[Zagﬂlzgl _ U(a,ﬂ)fﬂ’ Izaﬁﬂlzgl _ '6—(a,ﬂ)f5’
EqFg— FgEq = 84 p(g% — 1)1 0% (Ko — K1),
1—ayp 1 ~
) (—1>S[ ‘S““ﬂ] Bl BBy =0 (@ £5).
5=0 a
1—agyp

Z (— 1)S[ Saaﬁ] Fy @ T BB =0 (a#B).

Here, for n, s > 0, [ ]; is obtained from ['S’] € Z[va, vy 1 by replacing v:l:1 by

v+ Since the above relations are homogeneous in the G—gradlng of Uq , the assertion
holds. .

From the definition, we have

Uy = P 0yl

geGev

We say that x € U, is G—homogeneous, and write X = g, if x € [Uy], for some g €G.
Similarly, we say x € Uy is G®'—homogeneous if x € [U;]g for some g € G*'.

6B1 The G ®™ —grading of U™ For m > 1, UP™ is G®™ —graded:

D Wk

geG®m
where, for g =g, ® - ®@ gm € G®™" (g; € G), we set

(U™ e = j ((Uqle) ®ciq) - () WUglen) C US™,
where
J:Ug®c(g) - ®c(q) Ug = Ug Ocvy -+ Oc) Ug = UZ™

is the natural map.

Note that C(v) = Uq®0 is N—graded (where N = G®°): [C(v)]x = vk C(g), k=0,1.
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6B2 Total G-grading of Uq@’”' and G-grading-preserving map For g € G and

m >0 set ® ®
m . m
[Uq ]g = E [Uq ]g1®...®gm.
81,---8m€G; g1 gm=¢

This gives a G—grading of the C(¢)-module U(}X’m for each m > 0. (If m =0, we
have [U(}X’O],-)k = [C(v)]yk = v¥C(q) for k =0, 1 and [Uq®°]g =0 for g€ G\{l,0}.)

A C[h]-module map f: U E’" - U hé’m is said to preserve the G—grading if, for
every g € G, f([US"]g) C[US™],. Here

[UF")e = U NUS".
6C Multiplication, unit and counit
From the definition of the G—grading, we have the following:
Proposition 6.3 Each of i, 5 and € preserves the G—grading, ie
IL([Ut?Z]g) ClUgle. n(C(u)le) CUglg. €([Ugle) CIC(v)g-
6D Bar involution t},, and mirror automorphism ¢
From the definition one immediately has the following:
Lemma 6.4 The bar involution tp,: Uy — Uy, preserves the G—grading.

Let ¢: G — G be the automorphism defined by ¢(v) = v, ¢(Kq) = Ko and
P(éq) = v ¢, !. From the definition of ¢ one has the following:

Lemma 6.5 For g € G, we have ¢([Uylg) C [Ugly(g)-

6E Antipode
Define a function S: G — G by
$(gKy) = Ky11g1g = 108 g K,y

for g € G%Y and y € Y. One can easily verify that S is an involutive antiautomorphism.

Lemma 6.6 For g € G, we have S([Uylg) C [Uq]S(g). In particular, if y = S(x)
with x G —homogeneous, then

(129) y = XKy = K| X.

Here y = degg(y) and X = degg(x).
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Proof It is easy to check that if x = v, Ky, Ey, Fy, then S(x) is homogeneous
of degree S (g). If x,y € U; are homogeneous of degrees X,y € G, respectively,
then S(xy) = S(»)S(x) is homogeneous of degree S(7)S(x) = S(x ). Hence, by
induction, we deduce that, for each monomial x in the generators, S(x) is homogeneous
of degree S (x). This completes the proof. a

6F Braid group action

Let « € I1. Define a function 7T: G — G by
Ta(gKy) = v’(r"'l)/2 rgK W(y)s  Where r = —(|g|,a)/dq,
fer g€ G® and y € Y. Note that Ty is an involutive automorphism of G, satisfying
To(G®) C G*.
Lemma 6.7 If g € G, then we have

To([Uqlg) C [U‘I]Ta(g)’

Preof It suffices to check th.a-t To(x) € [U‘I]T'a (dege (x)) for each generator x of Uy,
which follows from the definitions. a
6G Quasi-R-matrix
For A €Y, set

0, = é;lKk Réy € G®2.
We have 8y = 1 ® 1. Note that G.A does not depend on the order of the simple roots
od1,...,07.
Lemma 6.8 For A, u €Y, we have

626 = by
Proof We have o . .
O00u = (&5 ' Kp ®é2)(6,," K ®éy)

=& ' Ké ' Ky ® 636,

= é;lé)Tl K)\KM ®éxeépu

= (e2éu) ™ Ky p ® é26y

= é;iukﬂu« ® Exntu

:9)“"/1" O

Geometry & Topology, Volume 20 (2016)



2772 Kazuo Habiro and Thang T Q Lé

The automorphism Tyw: G — G induces an automorphism

T22:G®* - G, g1 ®g2> Tulg)) ® Tu(g2).

Lemma 6.9 Ifo €Il and A €Y, then we have
78%(6)) = b5, 00)-

Proof We have
TE(61) = T2 Ky ®¢éy)
= To(é; ) Ta(Ky) ® Ta(é)
= To(é1) ™" Kyy) ® Tu(én).
Hence it suffices to show that

(130) Ta() ™' @ Tu(ér) = é; 5y ® és, )

which can be verified using the fact that there is k € {0, 1} such that Ty (é;) = bkésa(x).
O

Recall that ® is the quasi-R—matrix and its definition is given in Section 3G1. For
y €Yy, let ®, € Uq®2 denote the weight-(—y,y) part of ©, so that we have
Q= Zy€Y+ ®, . Similarly, let ©,, denote the weight-(—y, y) part of ® = O~ 1.

Lemma 6.10 For y € Y., we have ©,, ©, € [Uq®2]9-y.

Proof Suppose i = (iy,...,i;) is a longest reduced sequence. Note that

Oy = 2 Op, O

m=(my,...m;)€L!, |E}(i)|=y

where we set
O = (Tuy, -+ Toy, ®2(=1)"v V2P @ B ).
For each « € IT, we have

(_l)nv;n(n—l)/Z Fo(gn) R EZ c [Uq®2]éna-

By Lemma 6.9, we deduce that @Ef] el q®2 is homogeneous of degree
. . ®2/7 o
(Tot,-1 te TO{ji_l) (Qnaji) = Qnso[jl ~-~sa].i_1 (ot,-l.)-

Hence, it follows that ®,, is homogeneous of degree éy. The case of (:)y follows from
O = (tpar ® thar)(®) and Lemma 6.4, which says iy, preserves the G-grading. O
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Corollary 6.11 Fix a longest reduced sequence i . Form ¢ N” and y €Y,

(131)  Em® KmFm. Epy ® Km Fy, €Uy @ Uy
(132) FnKmKzy Em €[Uz];.

_1 C [ Uiv]ls

e)\ ®e

(Here Am = |Em| = |E | )

Proof Wehave ® =), Fu® Ey and e l= Y m Fra ®E,, . Hence, (131) follows
from Lemma 6.10. In turn, (132) follows from (131), because K,, = 1. m|

6H Twist forms

Recall that we have defined 71: U;" — Q(v); see Section 41.

Proposition 6.12 Both maps T+: U;' — Q(v) preserve the G-grading, ie

Tx([Uz'lg) C Q)]

Proof (a) First we consider the case of 74 . The set
{FmKmKzy En |n,m € N, yeY}
is a Q(v)-basis of U;' ® 4 Q(v). Hence,
(V' FiuKmKoyEn |n,meN', y €Y, §€{0,1}}

is a Q(g)-basis of U;" ® 4 Q(v). Each element of this basis is G-homogeneous.
By (101),

T4 (0 Fu Km K2y En) = 80, mv® g P =012 € 37 14% 1 = [A]5.
By Corollary 6.11, the G—grading of vSFm Km K>y En is 8. Hence, we have
(133) T+(Uz ®4Q()]g) C[QV)]g-
(b) Now consider 7_. Using (98), Lemma 6.5 and (133), we have

T-(U7 4QW)]g) = T+ (e((Uz ®4Q()]g))
CT+([U7 ®4Q(W)4(g)) CIQW)]p(e) = [Q(V)]g.

where the last identity follows from the fact that, for the involution ¢, we have ¢(1) =1
and ¢(v) = v, and, for any g & {1, v}, we have [Q(v)]g = 0. a
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61 Coproduct

Lemma 6.13 Suppose x € U, is G —homogeneous. There exists a presentation

A(x) = Zx(l) ® X(2)

such that, for each x(1) ® x(2),

(i) x(1) is G-homogeneous,

(i) x(2) and x(1)K|x,,| are G*'~homogeneous, and

(134) X(1) Kixgy 1 %2) = X = %2) Kjx o1 X(1)-

Remark 6.14 A presentation of A(x) as in Lemma 6.13 is called a G—good presenta-
tion. When x is G®'—homogeneous, we always use a G—good presentation for A(x).

Proof Suppose x,y are G*'—~homogeneous. If A(x) =", x/ ® x; and A(y) =
2 Vi® yJ’.’ are G—good presentations of x and y, respectively, then it is easy to check
that 3, ; x; yJ’. ®x; yJ’.’ is a G-good presentation of A(xy). Hence, one needs only to
check the statement for x equal to the generators K,,, Eq and Fy Ky of U;". For
each of these generators, the defining formulas of A show that the statement holds. O

6J Adjoint action
Define a map
ad: G ® G — G*
by
ad(gK; ® ¢') = 18D gg’

for €Y and g, g’ € G%. Note that for g, g’ € G= we have ad(g ® g') = gg’.

Lemma 6.15 For g, g’ € G* and y € Y, we have

ad([Uy ® quv]gl'(y o) C [U;V]a'd(glfy ®g')’

In particular, if z = x> y and both x and y are G®'—homogeneous, then z is G* —
homogeneous with

F=xJ.
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Proof Suppose x and y are G®'-homogeneous and y € Y. Choose a G-good
presentation A(X) = ) x(1) ® X(2) (see Section 6I). By definition,

(xKy)>y = Zx(l)Kny(x(z)KV)
=Y XKy K, S(x@) = D v Pxi) yS(xa)).
The term of the last sum is in [Uy],, where
U= i,(y,lyl)x(l));g(x(z))
— D(y’|y|))'c(1)ﬁk|x(2)|?'€(2) by Lemma 6.6
— b(y,lyl)x(l)glx(z)lx(z)y
— i)(y,lyl)xj, by (134).

Hence we have the assertion. O

7 Integral values of J,,

By Theorem 2.25, the core subalgebra X, constructed in Section 4, gives rise to
an invariant Jjs of integral homology 3—spheres. A priori, Jas € C[vh]. The
main purpose of this section is to show that Jps € Zf[a] for any integral homology 3—
sphere M . To prove this fact we will construct a family of .4-submodules K, C X f’"

—

satisfying conditions (AL1) and (AL2) of Theorem 2.32, with Ko = Z|q]. Then, by
Theorem 2.32, Jas € Ko = Z[q].

7A Module iC,
For n >0, let [(U3")®"]; denote the G-grading-1 part of (U5")®". Define
(135) Kn = (X$)®" N[(UH®"]; € (XE" N US™.

In the notation of (123), K, = [X?”]l . For example, Ko = Z[gT!]. Define filtrations
on IC, by
Fie(Kn) = (q: @)k Kn C (H*X 2" N RFUE.

Let K, be the completion of [, by the filtrations Fz (K,) in U h@’” ,1e
(XD ~ ~
Kn:= {x = Z Xk ( Xk € ]-"k(IC,,)} CXP'NUB").
k=0
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Since Ko = Z[g*!], we have Ko = Z/[;]. Each K, has the structure of a complete
Z[g]-module.

Proposition 7.1 The family (IE,,) satisfies condition (AL2) of Theorem 2.32. Namely,
ifer,...,en €{x1} and x € K,, then

(Tey ® -~ B Te,))(x) € Ko = Z[g).

Proof By definition, x has a presentation

X =) (G Drxx

k=0
with x; € K, C Xj,. Since 7+ are continuous on the i—adic topology of X ,‘lg’” , We
have

(136) (T, ®-- & Te,)(x) = Z(q Die(Te, &+ & T, ) (xx) € C[Vh].
k=0
Since x; € K, C (X%V)®", by Proposition 5.24 (T, ® -+ ® Tz, ) (xx) C A.

Since xy; € [(U%V)@’”]] , by Proposition 6.12 (7, R---® Te,) (x1) CIQW)]1 = Q(g).
Hence,
(Te) &+ ®Te,) (k) € AN Q(q) = Z[g™"],

where the last identity is Lemma 5.1. From (136), (Tz, ® ---® T, )(x) € Z/[E] a

7B Finer version of IE,,
We will show that, for an n—component bottom tangle 7" with 0 linking matrix, Jr € Kn.
Then Proposition 7.1 will show that Js € Z[q] for any integral homology 3—spheres.

For the purpose of proving that Jjs recovers the Witten—Reshetikhin—Turaev invariant,
we want Jr to belong to smaller subsets of K, which we will describe here.

Suppose U is an A-Hopf subalgebra of Uz . Define (with the convention Y% = A)
KnU) := Kn NUB", Fre(KaU)) := Fie(Kn) U™,

Let K, (U4) be the completion of /C,,(U/) with respect to the filtration (Fj (KCp)) in Uy,

1€ 00

Kt == {x =3 | efk(/cn(u))}.

k=0

Since Fi (K (U)) C Fi(Ky) we have K, (U) C Ky C X}‘?”. We always have Ko (1) =
Ko = Z[q].
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7C Values of universal invariant of algebraically split bottom tangle

Throughout we fix a longest reduced sequence i .
Recall that T' = ¢D? is the quasiclasp element; see Section 3I. By Lemma 3.12,

F= )" Tim)®Tyn),

neN2!

where, for n = (ny,n,) € N? x N’
(137) Ty(n) =g 1 EmbEn) py KoVE,,,  Ta(n) = Fuy Ky En,.
Proposition 7.2 Suppose U is an A—Hopf subalgebra of Uz, such that K, € U for all
acll,and Fiy  Em, F), ® E},, €U QU forall m € N,

Then the family (K,(U)) satisfies condition (AL1) of Theorem 2.32. Namely, the
following statements hold:

(1) lcpap € Ko@), ly, € KiU), and x ® y € KptmU) whenever x € K,(U)
and y € Ky (U).

(ii) Eachof p, y*', A and S is (K,(U))-admissible.

(iii) The Borromean element b belongs to KsU).
Note that, under the assumption of Proposition 7.2, we have ['1(n) @ ['2(n) e U Q U
for all n € N2/,
Before embarking on the proof of the proposition, let us record some consequences.
Theorem 7.3 Suppose U is an A—Hopf subalgebra of Uy, satisfying the assumption
of Proposition 7.2. Then:

(a) For any n—component bottom tangle T with 0 linking matrix, Jt € Kn (). In
particular, JT € Kj,.

(b) Jp € Z/[E] for any integral homology 3—sphere M .

Proof (a) By Proposition 2.16, Proposition 7.2(i)—(iii) imply that J7 € IE,, ) cC l%n.

(b) By Propositions 7.2 and 7.1, (Kn (U)) satisfies both conditions (AL1) and (AL2)
of Theorem 2.32. By Theorem 2.32, Jas € Ko(U) = [ 1. O

The remaining part of the section is devoted to the proof of Proposition 7.2. Statement
(i) of Proposition 7.2 follows trivially from the definitions. We will prove (ii) and (iii)
in this section. We fix U satisfying the assumptions of Proposition 7.2.
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Remarks 7.4  (a) One can relax the assumption of Proposition 7.2, requiring only
that K, € U for all o € IT and that both ® and ®~! are in the topological
closure of & ® U (in the h—adic topology of Uy, ® Up).

(b) Almost identical proof shows that Theorem 7.3 holds true if ¢/ is an .Z—Hopf
subalgebra of Xz instead of Y C Ug.

7D Quasi-R-matrix

Recall that © =), ¢ Fu ® Ey; see Section 3G. For a multiindex n = (ny, ..., ng)
in N¥ let max(n) = max; (n;) and

(138) o(n) := (¢: ¢) max()/2) € ZIgE'].

Lemma 7.5 Foreach n € N’ we have

(139) En. El € o(m)US,
(140) KnFn® En, KnFly ® Ej € o(n)(X5 @ US).

Proof We write x ~ y if x =uy with u a unit in A. From the definition of E, (see
Section 3G),

En ~(@:QnE™ € (q:q)aUS Co(n)US.

Recall that E;, = wpar(En) and F,, = tper(Fn). Since e preserves the even part
(Lemma 3.4) and (. leaves both Uz and Xz stable (Proposition 5.2 and Theorem 5.21),
lbar leaves both U%V and X %V stable. Hence, we have

Ey = tar(En) Co(m)toar(Uy") = 0(m)Uy’,
which proves (139). Let us now prove (140). We have
KnFn ® En ~(q:q)n F™ Ko ® E®

~ V@ Dn(V (@ )n FPKy) @ E™
e V(@ n Xz ®UZ Co(m)Xz @ Uy

Applying tp,r, we get
K,'F,® E, con) (X3 @US).

Since Kj € X5', we also have K, Fj, ® E, € o(n)(X5 @ US"). O
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7E On Fi (K,)

Lemma 7.6 Forany k, n € N, one has

(141)  Fr(Kn) = (¢: O (X" N [(UZ)H®"1 = (¢: ) (X ®" N[(Uz)®"]1,
(142) (¢: Dx(X2)®" N (USH®" @ 4 A) = (¢: r (X5)®".

Proof The preferred basis (121) of Xy is a dilatation of the preferred basis of Uz
(described in Proposition 5.9). The basis of Uz gives rise to an .A-basis {e(z) |iel}
of Uy, ®n in a natural way. By construction, there is a function a: I — A such that
{a(l)e(l) | i € I} is an A-basis of X®” Further, there is a subset /¢ C I such
that {e(i) | i € I®} is an A-basis of (U%V)@’” and {a(i)e(i) | i € I} is an A-basis
of (X %")@’”.

Using the A-basis {e(i) | i € I}, every x € (Ui@” ®.4 A) has unique presentation
X = Zx,-e(i), x; € A.

Iel
Then

(@ xeUS" ifandonlyif x; € A forall i € 1.

(b) xe€ (Uév)‘g’” if and only if x; € A forall i € I and x; =0 for i & [°.

© xe((U)®"®4.A) if and only if x; = 0 for i & I¢".

(d) x € (q:9)x(Xz)®" if and only if x; € (q:q)xa(i)A forall i € I.

() xe (q;q)k(X%V)@’ if and only if x; € (¢;¢)ga(i)A forall i € I and x; =0
fori & 1.

Proof of (142) By (¢) and (d), x € (¢;¢)x (X7)®" N ((U%V)g’” ®.4 A) if and only if
xi €(q;q)ra(i)A forall i € I and x; =0 for i & I, which, by (e), is equivalent to
x € (4; )k (X5)®". Hence we have (142). |

Proof of (141) Since F(Ky) = (¢; ¢k ((Xe")@” N [(Uev)®”]1), we have

Fi(Kn) C (g Dk (XZ)H®" N LW C (43 )k (XF)H®" N [(Uz)®" s

It remains to prove the converse inclusion, ie if y € (¢;q)r (X %V)‘g’” N[(Uz)®"]; then
x 1= y/(q: )k belongs to (X5)®" N[(U5)®"];. By definition,

[(Uz)®"];,

x e (X0 (4: Dk
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and we need to show x € [(U5')®"];. Since both y and (¢;¢)x have G-grading 1,
x = y/(q;q)x is an element of (Uy)®" of G-grading 1. It remains to show that
x € (USH®".

Because x € (X%V)®”, (e) implies that x; € A and x; = 0 if i & I*'. Because
x € (1/(q;:9)x)(Uz)®", (a) implies x; € Q(v). It follows that x; € ANQ(v) = A
and x; =0 if i ¢ I'. By (b), x € (U3")®". |

7F Admissibility decomposition
Suppose f: (Uh)®“ — (Uh)éb is a C[]-module homomorphism. We also use f to
denote its natural extension f: (Uﬁ)®“ — (Uﬁ)®b ,where U /; =Uj @C[[h]](C[[«/E]].
Recall that [ preserves the G —grading if, for every g € G%,
7 (WEY*) ClWEH® e

and f is (K (U))—admissible if for every i, j € N,

fi.yKita+jU) CKiyprj W),
where fi; ) =id® & f ®id®/ .
The following definition is useful in showing a map is (K, (U/))—admissible.
Definition 7.7 Suppose f: (Uh)@"’ — (Uh)é’b is a C[[h]-module homomorphism.

An admissibility decomposition for f is a decomposition f =3 ¢ P Jp asan h—
adically converging sum of C[[/]-module homomorphisms

ot (UN®* — (Up®°
over a set Py, satisfying the following conditions:

(A) fp preserves the G*'—gradings for p € Py.
B) fpU®*) CU®® for pe Py.

(C) There are mp € N for p € Py such that limpepf mp = 0o and for each p € Py
we have

(X)) C (4: Q)m, (X)) ®°.

Here, lim,¢ P, Mp = 00 means that if n» > 0 then m, > n for all but a finite number
of p € Pr. By definition, if Py is finite then we always have limpe p, kp = 0.

Lemma 7.8 If f: (U;,)®” — (Uh)@’b has an admissibility decomposition then f is
(Kn(U))—admissible.
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Proof Recall that Fy (K, (U)) = Fi (KCn) NUB™. From (141),
(143) Fi(Kn@) = (g: )k (XZHE" N [(UFHZ" nu®”.

Let /=) ,cp fp be an admissibility decomposition of /. Suppose x € Kitat i)
with presentation

X=Xk, Xk € Fi(Kitat; U)).

Then, with the s—adic topology, we have

Ja.n @) =) a.p xp)-

k,p

We look at each term of the right-hand side. Since x4 € [(Ug)®+4%/];, (A) implies
that

(144) (fp)ai) (k) € [(UZHEHo+Y,.

Since xj € U®*T91J  condition (B) implies that

(145) (o) iy (xx) €UBTH,

We have x; = (¢:q)x vk With yy € (X5)®' T4/ By condition (C),
p)a.nx) = @ Dk (p) ) i) € (@ Dk (q: O, (XFHET0H

C (4 Dmk,p) (X5 EHIH,

where m(k, p) = max(k, mp). Together with (144), (145) and (143), this implies

(f2) ./ Xk) € Faniie, p) Kitb+5)-
Condition (C) implies that

lim m(k, p) = oo.
(k,p)eNx Py ( p)

Hence, f(i,j)(x) = >k ,(/p)G.j)(xk) belongs to /”c'i+b+,-. O

Remark 7.9 It is not difficult to show that the set of (lEn)—admissible maps are closed
under composition and tensor product. Thus there is a monoidal category whose objects
are nonnegative integers and whose morphisms from m to n are (K)—admissible
C[h]-module homomorphisms from U h®’" to U h®”. According to Lemma 7.11, this
category is braided with 1 ;1 = ¥, and contains a braided Hopf algebra structure.
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7G Admissibility of u

Lemma 7.10 The multiplication p : U, ® Uy — Uy, is (IEn)—admissible.

Proof We show that the trivial decomposition, Py = {0} and ¢ = p, is an admissi-
bility decomposition for u :

(A) The fact that p preserves the G*'—grading is part of Proposition 6.3.
(B) Since U is a subalgebra of Uz, we have u(UY QU) CU.
(C) Since X' is an A-algebra, we have p(X 7 ® X;') C X', which proves (C).

By Lemma 7.8, p is (K,)—admissible. a

7H Admissibility of ¢
Lemma 7.11 Each of ¢! is (Kn)—admissible.
Proof First consider ¢ . Using (70) and (67), we obtain ¢ =) .. p " ¥m , where
Py =N’ and
(146) Ym(x @ y) = v P IHFRm X2 (B ) @ (Fy, o),
with A, = |E},|. We will show this is an admissibility decomposition of ¥ .
(A) Suppose x, y € U;" are G*'~homogeneous. By Lemma 6.10,
Epn®Fy €lUz@Usz;, o 6 Ko
From (146) and Lemma 6.15, we have ¥, (x ® y) € [(Uév)‘g’z]u, where
u = o HAm.|xI=Am) a'd(é}w Q) ad(é);l me R X)
— i,(|y|+?wn,IXI—)»m)+()»m,IXI)ékmJ-,e-;”llx
— i)(|y|+)wna|x|_)wn)+(}\m,|X|)+()\ma|J’|)+(|x|’|y|)X~)}
=Xy.
This shows that v, preserves the G —grading.

(B) By the assumptions on U, E,, ® F,, € U @ U and U is a Hopf algebra. Now
(146) shows that ¥, (U @ U) CU ® U. This proves (B).

(C) By (139), E;, ® F),, € o(m)Uz ® Uz Hence, from (146),
Um (X7 ® X5') Com)(Uz > X5)® (Uz>X;) Co(m)X; & X7,

Geometry & Topology, Volume 20 (2016)



Unified quantum invariants for integral homology spheres 2783

where for the last inclusion we use Theorem 5.21(a), which in particular says X7 is
Uy —stable. This establishes (C) of Definition 7.7.

By Lemma 7.8, ¢ is (K, (U))—admissible.

Now consider the case ¥ ~'. By computation, we obtain ¢! = Y meN! W Hm,
where

W Dm(x®y) = v D (Fy o ) @ (Em > x)

for homogeneous x, y € Uy. The proof is similar to the case of ¢ . |

Remark 7.12 One can check that ¥ ! = (¢ ® 0)¥ (¢! ® ¢~ !). Hence, the admis-
sibility of ¥ ~! can also be derived from that of ¥ .

71 Admissibility of A
Lemma 7.13 The braided coproduct A is (K, (U))-admissible.

Proof Suppose x € U;' is G*'~homogeneous. By a simple calculation, we have

(147) A= 3" Am,
meN!
where, with An, 1= |E,, |,
(148) Am(x) =) v~ @ (EL & x0)) ® (Km Fpy) (K1 X(1))-

(A) By Corollary 6.11, E,, ® KmF,, € [Ug' ® Uz'l;, @é:1 - We will use a G-good
presentation A(x) =) x(1)®X(2) (see Section 6I). From Lemma 6.15, each summand
of the right-hand side of (148) is in [(U£')®?],, where

_ a—(x2lAm) 5 N R . . : . .
u=v @LIe L X2)€) Kixo)1X(1) = X2) Kjxo) X1) = X-

Here the last identity is (134). Thus, A,, preserves the G®' —grading.
(B) Since Ky €U and E},, ® K F;,, € U @ U, (148) shows that A, (U) CURU.
(C) Let x € X;'. By an argument similar to the proof of Lemma 6.13, we see that
X@) ® Kixpy Xy € Xz © X7
By (140),
E; @ KmFy, € o(m)Uy’ ® X7
Hence, from (148),
Am(x) co(m)(U; > X)X, Co(m)X;,

where for the last inclusion we again use the fact that X %V is Uz —stable (Theorem 5.21).
This shows (C) of Definition 7.7 holds. By Lemma 7.8, A is (K, (if))—admissible. O
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7J Admissibility of S

Lemma 7.14 The braided antipode S is (K, (1)) —admissible.
Proof By computation, we obtain S =), .n¢ Sm, Where
(149) Sm(x) =S Y Em®>x)FnK_|y|

for Y-homogeneous x € Uj,. We will assume x is G**—homogeneous.

(A) By Lemma 6.6, we have S, (x) € [Uz]g, where
g =S (ad(éy,, ® $)é; ! Ky, K_jx) = S (€2, )3} Ky, K5
= K313 K3, €165 K Ko = %.
(B) Since Koy €eUd and Eyy @ Frp €U QU (149) shows that S, (U) CU.
(C) We rewrite (149) as
(150) Sm(x) = v XHEmD SV (E L b VK £, 1~ x| Km Frm-
By (140), Em ® Km Fm € 0o(m)(Uz ® X7'). Since X' is Uz -stable,
Emv>x® KmFm €co(m)(Uz> X7 @ X3') Co(m)(X5 ® X7).

Hence, from (150) we have
Sm(x) € o(m)X7,
which proves property (C).
By Lemma 7.8, S is (I%n(u))—admissible. a

Thus, Proposition 7.2(ii) holds.

7K Borromean tangle

The goal now is to establish Proposition 7.2(iii). Namely, we will show that b € Ks,
where b is the universal invariant of the Borromean bottom tangle.

First we recall (38), which describes b through the clasp element ¢ using the braided
commutator. With ¢ = Y, .2 [T1 (1) ® T2(n)]D2, (38) says

where, for n, m € N2,
(IS1)  bum = (d®* @ T)([T1 (1) ® T (m) ® [y(m) & Lo (m)]D17 D).
Here,if x =) x’®x" then x14, =) X’ ®1®1®x" and x,3 =) 1 @x' @x"®1.
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Lemma 7.15 For n, m € N?! one has by m € o(n,m)K3(U). Thus, b € K3(U).
(Recall that o(n, m) = (¢: q) |max(n,m)/2] -)

The remaining part of this section is devoted to the proof of Lemma 7.15.

7K1 Quasiclasp element Recall that I';(r) and ['»(n) are given by (137) for
neN?,

Lemma 7.16 Suppose n = (n{,n,) € N’ x N’. Then

(152) Ti(n) ® T2 (n) € K = (X)) N[(UF)H®?];,
(153) Fi(n)@Ty(n) co(n) Xy @ U,

Proof We write x ~ y if x = uy with u a unit in A. Note that ,/(q;q),,lF("l) and
(q:q9)n, E ®2) are in X 7 » as they are among the preferred basis elements. Using
the definition (137) of I'y(n) and I';(n), we have

(154) Ty (m)®T2(n)~ (g PIn, (¢: m, FOVKG ED @ DG TEMD € (X5)2,

From Corollary 6.11, I'y (n) ® T'»(n), which is in (U$")®?, has G-grading equal to
() ény)(Cpyény) = 1.

This shows 'y (n) @ ['2(n) € (X%V)®2 N [(Ui")‘g’z]l = K, . This proves (152).

Because /(¢:¢)n, (q;q)nzF("l)K;llE("Z) € X7’ and F("Z)K;;E("l) e Uy, from
(154) we have

Li(n) @ Ta(n) € V(q: n, (4:Dn,(X7) @ Uy Co(n)(Xz) @ Uy
This proves (153). a

7K2 Decomposition of b, ,, Recall that D = exp(%h > wern He ® Hy/ dy) is the
diagonal part of the R-matrix. We will freely use the following well-known properties
of D:

(A®1)(D) =Dy3D23, (e@1)(D) =1, (S®1)(D)=D"!,

where D13 =) D1 ® 1®D, and D3 =1 ®D are in Uh®3‘ In the sequel we set

D= 86 ®5h=) 5§ ®8).
Recall (151):
bnm = (1d®?® Y)([T1(n) ® T1(m) ® T2 (m) ® T2 (n)|D}D57).
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By (39), Y is the composition of four maps:
YT=po(ad®id)o(id® S ®id)o (id® A).
Using the above decomposition, one gets
(155) bum = f* o fa'o fS o fAT1(n) @ Ty (n)),
where
(156) f2: US> > U, fA(x)=[(d® A)(xD )P, D2,
(157) f5:U® > U®,  fS(x) =[(d® S ®id)(xD;2)ID}2,
(158) fad: Uh®3 U®4
S (x) = (1d®2®ad®1d)([x1 RT1(m) QT2 (m)®x,®x3]Dy3 D%4)D1_3 ,
(159) fH: U;?“ — Uh®3, FH(x) = (1d®2 & ) (xD3, D7
Similarly, using (40) instead of (39), we have
(160) bum = ["0 [3o [0 fA(T)(m) ® Ta(m)),
where f2 and fS are as above, and
(161) j2. U U,
F(x) = [(1d®3 ®ad”) ([T (1) ® x1 @ x2 ®x3 @ T, (m)]D32D72) | D2,
(162) [H US> U, [*(x) = (d®2 & p)(xD3,D37).

We will prove that each of f A fS and f* is (K,)-admissible, while each of S
and £ maps K3 to o(n)K4. From here, Lemma 7.15 will follow easily.

7K3 Extended adjoint action To study the maps 2, /S, £2 and £, we need
the following extended adjoint action: For a € U = Uy ®(C[[h]] C[~/h] and Y-
homogeneous x, y € U s, define

(163) a» (y®x) := [([d®ady)(y @ X)D})|D? =Y yKja, ® ayxS(ag)).
Itis easy to check that (¢ ® x ® y) —a » (x ® y) gives rise to an action of U '/ on
U ® Uy
Lemma7.17 (a) Ifa,x,y € U%V are G%' —homogeneous, then
(164) ar (y®x)elU; Uy ;04x-

(b) OnehasU ™ (UQU) CURU.
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(c) One has
Uz» (X; ®X;)CX; ®X5.

Proof (a) The right-hand side of (163) shows that a » (y ® x) has G®?—grading
equal to

P ®amxS () = J ®amXan) Kiam) = 7 ®41)a@)Klap| ¥ = J ®ax,
where we use d(l)d(z)K|a(2)| = a from (134). This shows (164).

(b) By the assumptions on U/, K&H € U and U is a Hopf algebra. Hence, (b) follows
from (163).

(c) Suppose a € Uz and x, y € X;'; we need to show that a » (y®x) € X' ® X'.
Because (ab)» (y ®@x) =a» (b» (y ® x)), it is sufficient to consider the case when
a is one of the generators Eg'), FO({") or K&H of Uz, where o € Il and n € N. The
cases a = K&H are trivial.

For a = Eé"), a calculation by induction on n shows that

n
2jn+("%! —j j
EO» @)=Y (2" )y (K2 o)y © ESDED 5 )
Jj=0

_ Yy om0 %]
Zo N

® [V (Ga: qa)n—j Eén_j)][Eéj) > x].

The right-hand side belongs to X;' ® X', since each factor in square brackets is
in X5
Z

The case a = FOE”) can be handled by a similar calculation, or can be derived from the
already-proved case a = ¢(Fy) = K, ! Eo, using

(pRp)a» (y®x)) =g¢(a) ™ (p(y) ® ¢(x)),

which follows from the fact that ¢ commutes with S, A and ¢(Ky) = K, . a

7K4 The map f2
Lemma 7.18 The map f2: UE’Z — Uh‘g’3 is (K, (U))-admissible.
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Proof Using the definition (156) and the decomposition (147) of A we have fA =
Y ueN! fué, where

[ @x) =3 v61 ® Au(x8) | D3, Dk,

We will show that f2 = D ueNt f,,é is an admissible decomposition. Using the
definitions, we have

D 181 ® Au(x62)
=Y 81 ® Epp > (x2)(82) ) ® Kiy +1x0y FuX() (82) 1)
=D 1818, ® Ey > (x@)82) ® Kiy x| FaX(1)8)
=Y 8618 ® (E)(1)X@32S(E) ) ® Kiy +1xcy FaX()8h
=D K(E 018181 © (B ()X S(EL) )82 ® Ky + x| FuX ()5
= (X vKaiEnml ® B X0 S(E)@) & Kiy tix FaXm) ) D12 D12
= (VOO EL > (9 ® x(2) ® (Ku Fy) Kix o)1) i3 Dy
This shows that
(165)  fir(y®x) =Y v (EL b (5 ® x2) ® (Ku Fy)(Kjx i X(1))-

(A) Suppose x,y € U;" are G*'-homogeneous. By G-good presentation (see
Section 6I) and Lemma 7.17, all the factors in parentheses on the right-hand side
of (165) are in U;".

From (165) and Lemma 7.17, fué(y ®x) € [(U%V)®3]g, where
g =vr@bhdye, X283 Kixey 1 %(1) = 7% K1 X (1) = JX.
with the last equality obtained from (134). This shows f;,é preserves the G¢¥—grading.

(B) Suppose x,y € U. By the assumptions on U, we have that K, € U and
E,® KyF;, € U ®U. Now Lemma 7.17 shows that the right-hand side of (165)
is in U®3. Thus, f,2WU®?) c u®3.

(C) By (140), E, ® Ky F,, € o(u)(Uy' ® X3'). Lemma 7.17 and (165) show that
S (X5)®2) € o(u)(X5) .

By Lemma 7.8, f2 is (K,)—admissible. a
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7K5 The map f$
Lemma7.19 The map fS: US® — US? is (K, (U))-admissible.
Proof Using the definition (157) and the decomposition (149) of S, we have f S =
Y ueN! fug, where
[ exen =3 6 ®Su(xs) ® )07
— (el ®Z)(Z 81 ® Su(x62) ® 1)1);22.

Using the definitions, we have
> 81 ® Su(x6y)

= 251 ® STHEy > (x82)) Fu K_|x|

= 819 ST (Ew)(1)(x82)S(Eu) () Fu K|

= 61 ® (Ex))S ' (62)S 1 (0)S T (Ew) (1)) Fu K_ x|

= Ko (x| 4B |+ Fu D81 ® (E) @S ™ ()S T (Ew) (1)) Fu K—jx|S ™' (62)

= (Z Ko (1x|+1(Ew) (1) |+ Fu ) @ (Eu)(Z)S_l(X)S_l((Eu)(l))FuK—lxl)D2

=Y [ ® K_ x| F) (S ® ST (Ey » (K_jx ® X)) |D?.
It follows that

(166) fi (» ®x®7)
=> (1D ([1®K_1x Fu) (ST @S (Ey > (K_315 ®x))|®2).
Assume that x, y,z € U;" are G*'~homogeneous. By Lemma 6.10,
Fu®EyelU; Uy 6 Ky @iy
Hence, from Lemma 7.17(a), fu§ (re®x®:z)e [(U%’)®3]g, where
2=y ® K ey Ky, ST (6, ) ®:=y®i®:,
where the last equality follows from a simple calculation. Thus,
(167) fi (8 x®2) (U |spra:

(A) From (167), fu§ preserves the G°¥—grading.
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(B) Assume that x, y,z €eU. Since Ky €Y and F,, ® E,, e U U, Lemma 7.17(b)
shows that the right-hand side of (166) is in U®3.

(C) By (140), F, ® Ey € 0(u) X7 @ Uz,. Lemma 7.17 and (166) show that
S v
fiu (XF)®) Co(u)(Xz)®>.
On the other hand, (167) shows that
S % % T
fu (X)) c(UH®* @4 A).

Because B
o(u)(X2)® N (WUFH®* @4 A) = o(u)(XF)®?
by (142), we have f,f((X%V)@) Co(u)(X5)®3. =

7K6 The maps £ and f2d
Lemma7.20 For /= [ or f = f2 one has f(K3(U)) C Flmaxm/2) (Kal1)).

Proof Assume x @ y ® z € K3(U) = (X%V)®3 N [(UEV)®3]1 NU®3 . First assume
f = £ Recall that

ad(x1 ® X2 ®x3)
- [Z(id®2®ad®id)(x1S(81)®I‘1 (m)8] R T (m)8, ®x28, ®X3)]D1_32
=(x;®T1(m®1 ®xs)[Z(id®2®ad)(S(81)®5’l ®F2(m)8;®x282)®1]p;32.
‘We have
(d®id® ad)(z S(1) ®8, ® x5, ® y82)
= 561 ® 8] ® (x83) > (¥62)
=" S(61) ® 8] ® x(1)(8)) (1) ¥825((8)) 2) S (x(2))
= 8(81) ® K_a)y) ® x(1)¥825(x(2))
= Z K2jx5)1S(31) @ K]y @ x(1)yS(x(2))d2
= [Z Kalx) @ K—2)y ® X<1)yS(X<z))]Df3

=[(x» (1@ y)13(1® K_3, ® 1)]D7;.
It follows that

(168)  frl(x1 ® X2 ® x3)
=[(x1 ®T1(m) ® 1)(T2(m) » (1 ®x2))13(1 ® K_3/x,| ® 1)] ® x3.
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Since I'y(m) ® T'»(m) € [(US)®?];, Lemma 7.17(a) shows that
£3(x1 ® x2 ® x3) € [(US)®*,,

where g = X I (m)f‘2 (m)x,x3 = X1X2x3 = 1. Thus, the right-hand side of (168) is
in [(UZ)®%;.

Since x ® y ® z € U®3, Lemma 7.17(b) shows that the right-hand side of (168) is
in U®4.

Since I'y(m) ® 'z (m) € o(m) X, ® U, by (153), Lemma 7.17(c) shows that

F38(x; ® X ® x3) € 0o(m)(X5)®*.

Hence,
Sl (x1 ® x2 ® x3) € 0(m)(X)® N[(UZ)2*) NUB* = Fimaxmy2) (KaUh)),
which proves the statement for f = f3d.

The proof for f = f:f,d is similar: Using the definition and formula (41) for ad", one
gets

(169)  f¥(x) ® x; ® x3)
= ([ (m) K3jxy | 120, ® X1 © X2 @ 1)(STH (T2 (m)) » (1 ® x3)),,.

By Lemma 7.17(a), the right-hand side of (169) is in (U%V)®4 , with G—grading equal
to
[y(m)x1X2%302(m) = Ty (m)2(m) = 1.

Again, Lemma 7.17(b) shows that the right—hand~side of (169) is in Y®* and Lemma
7.17(c) shows that it is in o(m)(X%V)@"‘. Hence, £39(x;®x,®x3) € Flmaxm/2)Kald).

O
7K7 Themaps f* and f*

Lemma 7.21 Both f* and f K are (K, (U))—admissible.

Proof By definition,
S ®x2®8x3®x4) = (1d®? ®u)(z x1818(8))®x2 ®X35/2®X452)

= (x@xe )| (d®2en)() 8 SE)sI@x8 818 ) |
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We have
(id ® [L)(Z 515(8)) ® x8, ® y82> =Y 8156 ®x8, 8,
= 86158 Kapy| ® X835,
= K3y ® x).
It follows that f# has the very simple expression
SEx1®x2®x3®x4) = (X1 ® X2 ® 1)(K2|x,| ® I ®x3x4) = X1 Kjjy ® X2 ® X3X4.
The trivial decomposition for f# is admissible. Hence, f* is (K, (U))—admissible.
Similarly, a simple computation shows that
FH(x1 ® x2 ® X3 ® x4) = X1 ® X2 K3y ® X34

The trivial decomposition for f~ H is admissible. Hence, f~ K is (Kn(U))—admissible. O
7K8 Proof of Lemma 7.15

Proof First suppose max(m) > max(n). By (155)

bum = J"0 fy' o [0 [A(T1(m) ® Ta(m).
By (152), T'1 (n)®TI'(n) e K, . Lemmas 7.18,7.19, 7.20 and 7.21 show by m € 0(m)l€3 .
Suppose max(n) > max(m). Using (160) instead of (155), we have by m € o(n)l€3.

Hence by m € o(n, m)K3. As a consequence, b =) by m € Ks. |

7L Proof of Proposition 7.2

Proof As noted, statement (i) follows trivially from the definition of l%(l/{). State-
ment (ii) follows from Lemmas 7.10, 7.11, 7.13 and 7.14. Finally, statement (iii) is
Lemma 7.15. o

7M Integrality of the quantum link invariant

Lé [47] proved that, for a framed link L = L; U---U L, in S3, the quantum g
link invariant Jz (Vj,,...,V3,), up to multiplication by a fractional power of ¢, is
contained in Z[q, ¢~ ']. Here we sketch an alternative proof, using Theorem 7.3 of the
following special case for algebraically split framed links.
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Theorem 7.22 [47] Let L =L, U---U L, be an algebraically split 0—framed link
inS3. Let Ay,..., A, € Xy be dominant integral weights. Then we have

JLWVayse s Va,) €4PZlg.q7 '),

where p = (2p, A1 + -+ An).

It is much easier to prove

(170) JLWVayseo s Va,) €qPZlv, v,

and the difficult part of the proof is to show that the normalized invariant
g PILVy,,. .. Va,) € Z[v, v

is contained in Z[g, g~ ']. In [47], a result of Andersen [1] on quantum groups at roots
of unity is involved in the proof. The main idea of the proof below is, implicitly, the use
of the G—grading of the quantum group U, as C(g)-module described in Section 6.

Sketch proof of Theorem 7.22 Let 7' be an algebraically split O—framed bottom
tangle such that the closure link of 7" is L. Recall that the quantum invariant
JL(Va,.-....Va,) can be defined by using quantum traces:

V; V;
(171) JL(Vayse s Vo) = (' ® ... @trg™)(J7).
It is not difficult to prove that, for 1 <i <n, A € X4, we have
(172) (d® ! @ tr)* ®id®")(Ky) € PP Koy

Using (172), one can prove that

—

1% ~ ~
(173) (tr,' ® ... @ty ") (Ky) C qPKo = qPZq).
Hence, using (171), (173) and Theorem 7.3(a), we have
VA] V)Ln =~ P S
JL(Va,s....Va,) ety ®...@1trg™")(Kyn) C qP Zlq],

which, combined with (170), yields Jp.(Vy,.....Va,) € ¢PZ[q, g~ ], since we have
Zlv.v™'IN Zlg) = Zlg. 7. o
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8 Recovering the Witten—Reshetikhin—Turaev invariant

In Section 7 we showed that Jps € Z/[E] , where Jjs is the invariant (associated to a
simple Lie algebra g) of an integral homology 3—sphere M . Hence we can evaluate
Jyr at any root of unity. Here we show that by evaluating Jj, at a root of unity we
recover the Witten—Reshetikhin—Turaev invariant. We also prove Theorem 1.1 and
Proposition 1.6 of the introduction.

S8A Introduction

Recall that g is a simple Lie algebra and Z is the set of all roots of unity. Suppose ¢ € Z
and M is closed oriented 3—manifold. Traditionally the Witten—Reshetikhin—Turaev
(WRT) invariant (see [73; 3]) tg,[ (&;¢) € C is defined when ¢ is a root of unity of order
2Ddk with k > hY, where hV is the dual Coxeter number, d € {1, 2,3} is defined
as in Section 3A, and D = | X/Y|. Here £ = ¢2P. In this case, k — 1" is called the
level of the theory. The definition of rﬁ/[ (&; ) can be extended to a bigger set Zé that
contains all roots of unity of order divisible by 2d D; see Section 8D. For values of d,
D and 1Y of simple Lie algebras, see Table 1 in Section 3A.

This section is devoted to the proofs of the following theorem and its generalizations:

Theorem 8.1 Suppose M is an integral homology 3—sphere and { € Zé. Then
9 (g7 —
w8 (E:0) = Tur |, -

Remarks 8.2 (a) Although £ is determined by ¢, we use the notation 137 (&;¢)
since, in many cases, tf\’d (£:¢) depends only on &, but not a 2D™ root ¢ of £. In
that case, we write 7p7(§) instead of 7a7(&;¢). The set Z; in Section 1 is defined by
Zy=1{0P |t ez

(b) The theorem implies that for an integral homology 3—sphere, r]%,l (&;¢) depends
only on £, but not a 2D™ root ¢ of £. This does not hold true for general 3—manifolds.

In Sections 8C and 8D we recall the definition of the WRT invariant and define the
set Zé. Section 8F contains the proof of a stronger version of Theorem 8.1, based on
results proved in later subsections. To prove the main results we introduce an integral
form U of U, which is sandwiched between Lusztig’s integral form Uz and De
Concini and Procesi’s integral form V7. For g = sl,, the algebra &/ was considered by
Habiro [25; 26]. A large part of the proof is devoted to the determination of the center
of a certain completion of ¢/. For this part we use, among other things, integral bases
of Uz -modules, the quantum Harish-Chandra isomorphism, and Chevalley’s theorem
in invariant theory. In Section 8M, we give a geometric interpretation of Drinfel’d’s
construction of central elements.
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8B Finite-rank Uj;-modules

Suppose V' is a topologically free Uj—module. For u € X the weight-pu subspace of
V' is defined by

Vi =1e €V | Hy(e) = (a, u)e forall a € I},

and p € X is called a weight of V if V[,;; # 0. We call V' a highest weight module if
V' is generated by a nonzero element 1, € V[, for some p € X such that E41, =0
for o € I1. Then 1, is called a highest weight vector of V', and p the highest weight.

By a finite-rank Uy —module, we mean a Uj—module which is (topologically) free of
finite rank as a C[/A]]-module. The theory of finite-rank Uj—modules is well known
and is parallel to that of finite-dimensional g—modules; see eg [12; 30; 54]: every
finite-rank Uj—-module is the direct sum of irreducible finite-rank Ujy—modules. For
every dominant integral weight A € X4 := {ZaeH kot | kg € N}, there exists a
unique finite-rank irreducible U, —module with highest weight A, and every finite-rank
irreducible Uy —module is one of V) . The Grothendieck ring of finite-rank Uy —modules
is naturally isomorphic to that of finite-dimensional g—modules.

8C Link invariants and symmetries at roots of unity

8C1 Invariants of colored links Suppose L is the closure link of a framed bottom
tangle 7', with m components. Let Vq,..., V), be finite-rank Uj—modules. Recall
that the quantum link invariant [72] can be defined by

IV, Vi) = (' @ - @t} ™)(Jr) € C[h].

Actually, Jz. (V.. .., Viu) belongs to a subring Z[v=/P] of C[h], where D=|X/Y|;
see [47]. (D is also equal to the determinant of the Cartan matrix.) We say that V;
is the color of the j th component, and consider Jr(Vi,..., Vy) as an invariant of
colored links, which is a generalization of the famous Jones polynomial [31].

Let U be the trivial knot with O framing. For a finite-rank Uj-modules V', dimy (V) :=
Juy (V) is called as the quantum dimension of V. Tt is known that, for A € X,

Zwemsgn(w)v—(Z(Aer),w(p)) _ —(A " l_[ gO+pe) _ |

(174) dlmq(V)\,) = Zwew Sgn(w)v_(2(p)’w(p)) q(p o) _ 1

OlECI)+
Here 20 is the Weyl group and sgn(w) is the sign of w as a linear transformation.

One has maxqea, (0, ) = d(hY —1), where 1" is the dual Coxeter number of g.
Hence, if £ is a root of unity with

(175) ord(8) > d(hY — 1),
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then the denominator of the right-hand side of (174) is not 0 under the evaluation ¢ =§£.
For this reason we often make the assumption (175).

8C2 Evaluation at a root of unity Throughout we fix a root of unity { € C. Let
€ =¢2D and r = ord(¢2P).

For f € C[vt!/P] let evy1/p—¢(f) be the value of f at v!/P = ¢. Note that if
v1/2D — ¢ then ¢ = £. If f € Clg™!] then evy1/p—¢(f) is the value of f at g =§.

Suppose f, g € C[v£!V/P]. If evy/p=¢(f) = evyi/p_¢(g), then wesay [ =g at ¢
and write

=08
We say that 1 € X is a {—period if for every link L, evy1/p_¢(Jr) does not change

when the color of a component changes from V) to V1, for arbitrary A € X such
that A + u € X4 (the colors of other components remain unchanged).

The set of all {—periods is a subgroup of X . It turns out that if ord(§) > d(h¥ — 1),
then the group of {—periods has finite index in X ; in [47] it was proved that the group
of {—periods contains 2rY , which, in turn, contains (2rD)X (because DX C Y).

When ord(§) < d(hY — 1), the behavior of evy/p—¢(Jr) is quite different. For
example, when ¢ = 1, from (174) and the Weyl dimension formula, one can see that
dimg(V}) is the dimension of the classical g—module of highest weight A. When
¢ =1, the action of the ribbon element on any V) is the identity, and the braiding
action ¥ is trivial on any pair of U;—modules. Hence, we have the following:

Proposition 8.3 For any framed oriented link L with m ordered components and
Wiseoos bm € Xy,

m
eVyr/o—y (JL(Viy .- Vi) = [ [ dim(V,)).
j=1

(Here dim(V},;) is the dimension of the irreducible g—module with highest weight j; .)

8D The WRT invariant of 3—manifolds

Here we recall the definition of the WRT invariant.
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8D1 3-manifolds and Kirby moves Suppose L is a framed link in the standard
3—sphere S3. Surgery along L yields an oriented 3—manifold M = M (L). Surgeries
along two framed links L and L’ give the same 3—manifold if and only L and L’ are
related by a finite sequence of Kirby moves, ie handle slide moves and stabilization
moves; see eg [39; 40]. If one can find an invariant of unoriented framed links which
is invariant under the two Kirby moves, then the link invariant descends to an invariant
of 3—manifolds.

8D2 Kirby color Let B:= A®z C = C[v*!]. We call any B-linear combination
of Vi, A€ X4, a color. By linear extension we can define Jz (V1. ..., Vin) € Clv=!/P]
when each V; is a color.
A color Q is called a handle-slide color at level v'/P = ¢ if

(i) evy/p_¢(JL(S2,...,)) is an invariant of nonoriented links, and

(i) evy/p—¢(JL(S2,...,L)) is invariant under the handle slide move.

Let U4+ be the unknot with framing +1. A handle-slide color is called a Kirby color
(at level p!/D

(176) Ju, (Q) #@) 0.

Suppose € is a Kirby color at level v!/? = ¢, and M = M(L) is the 3—manifold
obtained by surgery on S3 along a framed link L. Then

Jr(2,....Q) )
(Ju, (2))7+ (Ju, (R2))°-
is invariant under both Kirby moves, and hence defines an invariant of M . Here o+

(resp. o—) is the number of positive (resp. negative) eigenvalues of the linking matrix
of L.

= () if it satisfies the nondegeneracy condition

(177) v (R2) = ev;(

8D3 Strong Kirby color All the known Kirby colors satisfy a stronger condition on
the invariance under the handle slide move, as described below.

A root color is any B-linear combinations of V) with A € Y N X4 . A handle-slide
color Q at level v!/P = ¢ is a strong handle-slide color if it satisfies the following:
Suppose the first component of L is colored by €2 and other components are colored
by arbitrary root colors Vi, ..., V. Then a handle slide of any other component over
the first component does not change the value of the quantum link invariant, evaluated

at v1/P = ¢ ieif L, is the resulting link after the handle slide then
(178) Jo (2, Vi Vi) =@ JL, (R, Vi, Vin).

A nondegenerate strong handle-slide color is called a strong Kirby color.
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8D4 Strong Kirby color exists Let P be the following half-open parallelepiped,
which is a domain of translations of X by elements of the lattice (2rD)X,

/
Pe = {)\ = Zki&i e Xy ‘ 0<k< 2I”D}.
i=1
Let
Q) =) dimg(V)Va, QP4 = D> dimg()Va.
APy AEP:NY

In [49], it was proved that both ©8(¢) and QF9(¢) are handle-slide colors at level
/P = ¢ if ord(¢2P) > d(hY —1). Actually, the proof there shows that §29(¢)
and QP9(¢) are strong handle-slide colors at level v'/? = ¢. Hence, assuming
ord(¢2P) > d(hY — 1), Q9(¢) (resp. QP9(¢)) is a strong Kirby color at v!/P = ¢ if
and only Q9(¢) (resp. QF9(¢)) is nondegenerate at v!/P = ¢. There are many cases
of v!/P = ¢ when both ord(¢2P) and Q9(¢) are strong Kirby colors, and there are
many cases when one of them is not. Let Z , (resp. Z), ) be the set of all roots of unity
¢ such that Q9(¢) (resp. QF9(¢)) is a strong Kirby color

For ¢ € Zé the g WRT invariant of an oriented closed 3—manifold M is defined by

(50 =t (Q4D)).
Similarly, for { € Z},g the Pg WRT invariant of an oriented closed 3—manifold M is
defined by
P
T (€:0) = (7).

Proposition 8.4 Suppose ¢ is a root of unity with ord(¢2P) > d(h¥ —1). Then
fezyu Z},g. More specifically, if ord(¢2P) is odd then ¢ € Z},g and if ord(¢2P) is
even then { € Z|.

We will give a proof of the proposition in Appendix C.3. Actually, in the appendix we
will describe precisely the sets Z; and Z},g (for ord(¢2P) > d(h™ —1)).

The proposition shows that Z’ U Z’ is all Z except for a finite number of elements.

This means that rM (&:0) or ‘[M 9(E; Z ) can always be defined at all but a finite number
of ¢.

Remarks 8.5 (1) If ord(¢) is divisible by 2d D, the proposition had been well known,
since in this case a modular category, and hence a topological quantum field theory
(TQFT), can be constructed; see eg [3]. The rigorous construction of the WRT invariant
and the corresponding TQFT was first given by Reshetikhin and Turaev [73] for g =sl5,.
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The construction of TQFT for higher rank Lie algebras (see eg [3; 82]) uses Andersen’s
theory of tilting modules [2]. In [49], the WRT invariant was constructed without
TQFT (and no tilting modules theory). Here we are interested only in the invariants
of 3—manifolds, but not the stronger structure TQFT. We don’t know if a modular
category — the basis ground of a TQFT — can be constructed for every root ¢ of unity
with ord(¢?P) > d(hY —1). At least for g = sl,, if the order of ¢ is 2 (mod 4)
and 7 is even, then according to [10], the corresponding premodular category is not
modularizable.

(2) In general, different strong Kirby colors give different 3—manifold invariants. The
invariant corresponding to %9, called the projective version of the WRT invariant,
was first defined in [40] for g = sl,, then in [42] for sl;, and then in [49] for general
Lie algebras. When both ©9(¢) and QF9(¢) are nondegenerate, the relation between
the two invariants 737 (Q9) and 17 (279) is simple if ord(¢2P) is coprime with dD,
but in general the relation is more complicated; see [49].

(3) It is clear that in the definition of Q9(¢) and Q9(¢), instead of P¢ one can take
any fundamental domain of any group of {—periods which has finite index in Y.

8D5 Dependence on £ = {22 When components of a framed link L are colored
by QF9(¢), Jr takes values in ClgT!] € C[g*'/2P]; see [49]. Hence, the Pg-WRT
invariants rAZg (€: ), if defined, depend only on £ = 2P but not on any choice of a
2D™ root ¢ of &.

The g-WRT invariant rf,l (£:¢) does depend on a choice of a 2D™ root ¢ of &, even
in the case g =sl,. We will see that when M is an integral homology 3—sphere, the g—
WRT invariant of M depends only on & = ¢22 | but not on any choice of a 2D™ root
¢ of &. However, there are cases when (2P =& = ()*P, but ¢ Zyand ' ¢ 2.
For example, suppose g = sl, and & = exp(2w/(2k + 1)), a root of unity of odd order.
Then ¢ = exp(27/(8k +4)) and ¢’ =i ¢ are both 4" roots of £ (in this case 2D =4).
But { € Z; and {' ¢ 2.

8D6 Trivial color at { = 1 and the case when ord($) <d(hY —1)

Proposition 8.6 Let Q@ = C[k] be the trivial Uy —module. Then Q2 is a strong Kirby
coloratlevel { =1 and 1p4(2) = 1.

This follows immediately from Proposition 8.3 and the defining formula (177) of s (€2).

It is not true that the trivial color is a strong Kirby color for all ¢ with ord(¢??) <
d(hY —1). For example, if g = slg and ord(¢2P) = 4, then the trivial color is not a
strong Kirby color. One can prove that if n =0, £1 (mod r), then the trivial color is a
strong Kirby color for sl, at level ¢ with r = ord(¢?P).
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Remark 8.7 If ord({) = 2d Dk, then the level of the corresponding TQFT is k —hVY.
Hence, if the level is nonnegative, as assumed by physics, we automatically have
ord(¢2P) > d (v —1).

8E Stronger version of Theorem 8.1

Proposition 8.4 shows that strong Kirby colors exist at every level ¢ if the order of
¢ is big enough. Although different Kirby colors at level { might define different
3—manifold invariants, we have the following result for integral homology 3—spheres,
which is more general than Theorem 8.1.

Theorem 8.8 Suppose 2 is a strong Kirby color at level /D = ¢ and M is an
integral homology 3—sphere. Then

™M () =evyin_¢(Im) = evy=£(Im).

Remark 8.9 There is no restriction on the order of ¢ in the right-hand side of this
equation. We do not know how to directly define the WRT invariant with ord(¢2P) <
d(hY —1).

The remaining part of this section is devoted to a proof of this theorem. Throughout
we fix a root of unity ¢ and a strong Kirby color © at level ¢. Let £ = ¢2P and
r =ord(§).

8F Reduction of Theorem 8.8 to Proposition 8.10
Here we reduce Theorem 8.8 to Proposition 8.10, which will be proved later.

8F1 Twisted colors 21 Suppose the j™ component of a link L is colored by
V =V, and L' is obtained from L by increasing the framing of the ;™ component

by 1; then it is known that

tr” (r!
(179) Jp (..., V,..)=fJr(....V....), where fk=q(’~“2m/2=g.
dimg V

For example, if U4 is the unknot with framing £1, then
Ju, (V) = ! dimg (V3) = Ju (' V).

By definition Q is a finite sum = " ¢3 V3, where ¢;, € B = C[v*!]. Define the pair
Q4 of C-linear combinations of finite-rank irreducible Uj—modules by

ev,1/D_ (C)Lfil)
Qy = Z v EATA -
V0= (U (D)
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Suppose a distinguished component of L has framing ¢ = +1 and color 2, and L’ is
the same link with the distinguished component having framing 0 and color €2.. Then
from (179) and the definition of €2, one has

(180) Jr(o.. 2, .) =@ Ju. () I (..., Q,...).
8F2 Reduction of Theorem 8.8 Here we reduce Theorem 8.8 to the following:

Proposition 8.10 Let Q2 be a strong Kirby color. Suppose T is an algebraically split
0—framed bottom tangle T with m ordered components and (&1, ...,&m) € {£1}™.
Then

Qe em
(ttg " ® -+ ® g ") (JT) =(¢) (Te, ® & T, )(JT).

Proof of Theorem 8.8 assuming Proposition 8.10 Suppose 7 is an m—component
bottom tangle, &1,...,&yn € {+1} and M = M(T,e,...,&n). This means that, if
L is the closure link of 7 and L’ is the same L with framing of the i component
switched to &;, then M is obtained from S3 by surgery along L’. Every integral
homology 3—sphere can be obtained in this way. By construction,

I = (Tey ® - @ Te,, ) (JT).
From (180) and the definition (177) of tas(£2), we have
Qe Qe
(@) = eve(tr, ) ® - @ty ™) (7).

By Proposition 8.10, we have tps (2) = ev,1/p—¢(Jpr). This proves Theorem 8.8. O

The rest of this section is devoted to the proof of Proposition 8.10.

8G Integral form U of U,

Besides the integral form Uy (of Lusztig) and ¥z (of De Concini and Procesi), we
need another integral form U of Uy, with Vz CU C Ugz. Let

U:=UzVy =Uz VYV, =Uy" " VOV,F
and
U =UNUy = Uy VWt
Theorem 8.11 (a) The A-module U is an A—Hopf subalgebra of Uz,
(b) Each of Y and U®' is stable under ty,, and t.
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(c) There are even triangular decompositions
Uev’_®VZO®V+i>U, XQy®z>xyz
U~ @V @V, Zsu™, x®@y@zrs xyz.
(d) For any longest reduced sequence, the sets
{FnKmKyEn|nmeN', yeY}, {FnmKmKyyEn|nmeN', yeY}

are A-bases of U and U, respectively.

(e) The Hopf algebra U satisfies the assumptions of Theorem 7.3, ie K&H €U for
acTl and F ® En, F, ® E,, eU®U forn e N".

(f) One has T (U®) C A= Z[v,v"!].
(g) For any n > 0, one has (U%V)‘X’” NUB™ = (UV)®",

Proof (a) We have the following statement, whose easy proof is dropped:

Claim If 577 and % are A-Hopf subalgebras of a Hopf algebra ¢ such that
HHh I C A5, then 74 5% is an A—Hopf subalgebra of 7 .

We will apply the claim to 73 = U, V and % = Vz. By checking the explicit
formulas of the coproducts and the antlpodes of Fy () and Ky for ¢ € I1, n € N, which
generate the A-algebra 721 = U, VZ , we see that .7 is an A-Hopf subalgebra of Uz .
Since /7 is also an A-Hopf subalgebra of Uy, it remains to show J% 54 C 541565.

Given x and y in any Hopf algebra, we have xy = ) y(z)(S_l (¥(1)) > x). Hence,
since 71 is a Hopf algebra, and J71 > V" C V" (Theorem 5.18),

(181) Vi o Cc oV, ) oy
Because Vz = VZeVVZ0 and VZO% = VZOUZ_VZO = UZ_VZO = J7,, we have
A = Vg = Vg Vpoti = Vg A C V5 C A,
where we used (181). By the above claim, /7] 5% is an A-Hopf subalgebra of Uy .

(b) Let f =tpar or f =7. By Propositions 5.2 and 5.13, f(U;)=U, CU,Vz=U
and f(Vz) =Vz CU,Vz =U.Hence f(U)= f(U,Vz)CU.

By Lemma 3.4, f(Ug") C Ug". Hence
SUT) = fUnU) C fu)n U cunty” =u.

(c) The even triangular decompositions of Uy (see Section 5B) imply the even
triangular decompositions of /.
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(d) Since Fp ~ F™ and E, ~ (¢:q)n E™, where a ~ b means a = ub with
u a unit in A, Propositions 5.3 and 5.5 show that {F,, K, } and {E,} are A-bases
of UEV’_ and VZ+, respectively. It is clear that {K, | y € Y} and {K;,, | y € Y}
are A-bases of VZ0 and VZeV’O, respectively. Combining these bases using the even
triangular decompositions, we get the desired bases of &/ and /.

(e) Since K;H , Fp and E,, are among the basis elements described in (d), we have
K&H €U and F, ® E, e U ®U. Since U is stable under tpyr, and Fj, = tpar(Fp) and
E}, = toar(Em), we also have F, ® E;, cUQU.

(f) Applying 7+ to a basis element of U4/" in (d), using (96) and (97),

(182) T+ (FmKm K2y En) = Sn,mq(p,lEnI)q(y,p)—(y,y)/Z e Zlgt c A.

It follows that 74 (") C A.

Let us now show 7_ (") C A. By [30, Section 6.20], for any x, y € Uy, one has

(@S(x), 0S(y)) = (y.x).
Because S(r~ ') =r~', and (x,r7') = (r~', x) = 7_(x) by (94), we have
T-(x) =T-(0S(x)),
which is the same as 7_(x) = 7_((wS)~!(x)). Hence,
T-UY) = T-((0S) ™' U™))

=T (po (@S)™'U™) by (98)
= T+ (toarTUT)) because ¢ = tprTwS by Proposition 3.2
CT+UY) C A,

where we have used part (b), which says tp T (U) C U .

(g) Itis clear that U=V)®" C (U5")®" NU®". Let us prove the converse inclusion.

The A-basis of U described in (d) is also a C(v)-basis of Uy, . This basis generates in
a natural way an A-basis {e(i) | i € I} of 4®", which is also a C(v)-basis of U(;@".
There is a subset /¢ C I such that {e(i) | i € I®} is an A-basis of (1/V)®" and at
the same time a C(v)-basis of (U, ;V)@’”. Using these bases, one can easily show that
U2 = (U)®" NUS". Hence,

(UEV)@H mu@n C (U;V)®n mu@n — (uCV)@Il’

which is the converse inclusion. The proof is complete. a

Theorems 8.11(d) and 7.3 give the following:
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Corollary 8.12 If T is an n—component bottom tangle with 0 linking matrix, then
Remarks 8.13 (a) Inthe case g =sl, the algebra I/ was studied by Habiro [25; 26].
(b) The algebra U is not balanced between E, and Fy, and ¢(U) # U.

8H Complexification of Kom (Z))

To accommodate the complex coefficients appearing in the definition of €4, we often
extend the ground ring from A = Z[v*!] to B = C[v*!]. Let

C[v] := im C[v*")/(g: q)x = lim C[v]/(q: @)
k k
By (143),
Fie(KmU)) = (q: e (XZ)E" N UL nuU®™

C (X2 N U)®™ by Theorem 8.11(g).
Let

Fi(Kp) = (q: Dr(XE)®™ 0 UN)®™) @ 4 B < W (X4)®™ hkU®”’.

Define the completion
o0

(183) K;n={x=2xk)xk € Fr (K, )}C(Xh)®mﬂ(U )®m
k=0

Then K, (U) C Ian, and l%:) = (6-[;] We will work with IE; instead of K, (Uf).

81 Integral basis of V)

For A € X4 recall that V), is the finite-rank Up—-module of highest weight A. Let
1, € V) be a highest-weight element. It is known that the Uz —module Uz - 1) is a
free .A-module of rank equal to the rank of V) over C[/]. Further, there is an .A-basis
of Uy - 1, consisting of weight elements; see eg [12]. We call such a basis an integral
basis of V) . For example, the canonical basis of Kashiwara [34] and Lusztig [54] is
such an integral basis. An integral basis of V) is also a topological basis of V) .

Recall that I?Z =U OUZ and (?q =U OUq are the simply connected versions of Uy
and Uy, respectively; see Section SH. For A € X4 we have the quantum trace map

VA Uy~ C[/]. This maps extends to trq Uh[h 1 — C[A][~™"]. In particular, if
by e Uq then one can define trq* (x) € CIAIAY].

Lemma 8.14 Suppose A is a dominant weight, A € X .
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(a) Ifx € Uy then trp (x) e A.

(b) If x € Uy then try*(x) € Qu¥!/ D),
(¢) Ifxe Uy and A € Y then trq’\(x) e A.
(d) If x € Xz then trq’\ (x) e A.

Proof Fix an integral basis of V). Using the basis, each x € Uy acts on V) by a
matrix with entries in C[4], called the matrix of x.

(a) If x € Uz then its matrix has entries in 4. Thus, tr;/’\ (x) = tr" (xK_5,) € A.

(b) As a Q(v)-algebra, l?q is generated by U, and Ko, @ € TI. Since U, =
Uy ®A(C(v) the matrix of x € U, has entries in C(v). For an element e of weight p,
we have Ky (e) = v@Me . Note that (&, p) € (1 / D)Z. 1t follows that the matrix of
Ky (e) has entries in Q(v*!/P). Hence the matrix of every x € Uq has entries in
C*YP), and try* (x) € C(v*1/P).

(c) As an A-algebra, l?Z is generated by Uz and

( vé:‘]tx)k

Ka, k —Kn
/ m k) (%u%t)k

neZ,keN, exdell.

When A €7, all the weights of V) are in Y. From the orthogonality between simple
roots and fundamental weights we have (&, i) € dyZ for every « € I1 and y € Y.

Hence,

dy
(a,u)/ o)k

f(v(“ ). ‘n, k) = Un(oc,u) (9o
(9o o)k

€A
Suppose e € Vj has weight u € Y. Then
F(Kain.k)e) = f0 @M n k)e € Ae.

Thus, the matrix of f (Ka, n, k) on Vj has entries in .A. We conclude that the matrix
of every x € Uy has entries in A, and tqu (x) e A.

(d) Because Xz C Uz ® 4 A, by part (a) we have trg’\ (x) e A. a

8J Quantum traces associated to 2 1

Define
Ti: Up— ClhlL  Ta(x) = try * (x).
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Note that 7+, being quantum traces, are ad-invariant. Since Q2 are C-linear combi-
nations of V), Lemma 8.14 shows that 71 restricts to a B—linear map from Uz ® 4 B
to B=C[v*!].

=/ Y N
Recall that (IC,,)™ denotes the set of elements in KC,, which are Uz —ad-invariants.

Proposition 8.15 Suppose f is one of T+ or T+. Then f is (K™ —admissible in
the sense that, form > j > 1,

(d® 71 ® £ @id®" ) (Ry,)™) € (Kppey)™.
Proof Recall that 74 and 7} are ad-invariant. By Proposition 2.4(d) it is enough to
prove

(d® '@ f®id®" )&, )k, |
which, in turn, will follow from
(184) (d® 7' ® £ @id®" ) (Fi(K)y)) C Fr (K1)
Let us prove (184) for f = 7. By Proposition 5.24,
(1d® ™! @ T2 ®id®" ) ((¢: ) (XF)®™) C (g: 9w (XF) 2"
By Theorem 8.11(f),
(id® ' ® To @ id®™ ) (U™)®™) ¢ @*)® 1.

Because Fx(K),) = ((¢; q)k(X%V)‘X’m N U)®™) ® 4 B, we have

(d® ' @ T2 ® id®™ ) Fr(K),) C Fie(K_y).

Let us now prove (184) for f = 7. . Because Q4 is a C—linear combination of |78
by Lemma 8.14(d), 7+(X ;') C A®.4 B. Hence,

(185)  (d® ' @ T: ®id®" /) ((q: )k (XF)®™) C (¢: D (XF)®" ' @4 B).
From Lemma 8.14(a), 74 (U) C B, and hence
(id®j—1 ® 77'—:|: ®id®m—j)((ueV)®m) C (ueV)®m—1 R4 B.

which, together with (185), proves (184). O
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8K Actions of Weyl group on U ,? and Chevalley’s theorem

The Weyl group acts on the Cartan part U ;? by algebra automorphisms given by
w(H)) = Hyy)- Then w(Ky) = Ky («)» and 2 restricts and extends to actions on
the Cartan parts U 0 VZO, and X }?.

We say an element x € U ,? is W—invariant if w(x) = x for every w € 20, and x is
A —skew-invariant if w(x) = sgn(w)x for every w € Q. As usual, if 20 acts on V
we denote by V% the subset of QJ—invariant elements.

By Chevalley’s theorem [13], there are / homogeneous polynomials ej,...,e; in
Z[Hy, ..., Hj] suchthat (C[H,..., H/)®¥ =Cley,...,e], the polynomial ring freely
generated by / elements eq,...,e;.

Suppose the degree of ¢; is k;. Since exp(hHy) = K2, we have
(186) & = exp(hfie;) e ZIKE2, ... KEF W c (V5%

Proposition 8.16 One has

(187) (U =Cley, ..., e/lhl

(188) (XD)T = C[*1/%ey, ... h¥1 2| [Vh],
(189) WO¥ =Clhkrey, ..., hkie][h]

(190) =C[ey..... 2]

(Here the overline in (189) and (190) denotes the topological closure in the /—adic
topology of Uy,.)
Proof We have
UHY = (C[Hy,.... HIWD® = (C[Hi, ... HDP[h] = Cley, ..., ef]lA],

which proves (187). Similarly, using

(X)® = (C[h' 2 Hy,....h > HIAD™,

V)¥ = (ClhH,y, ... hH][AD™,
we get (188) and (189). We have

& —1=hrie; + h(V)™.

It follows that
C[ey,....&lh] = Clhkrey, ... h*1 el

from which one has (190). O
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8L The Harish-Chandra isomorphism, center of U

Let 3(Uy) be the center of Uy, which is known to be U }il“v, the ad-invariant subset
of Uy,. For any subset V C Uy, write 3(V) =V N 3(Uy), the set of central elements
in V.

Let po: U, > U ,? be the projection corresponding to the triangular decomposition.
This means, if x = x_xox4, where x_ € U, , x4 € UhJr and xo € U?, then pg(x) =
€(x_)e(x4+)xo. Here € is the counit.

For pn € X, define the algebra homomorphism shy,: U}? — U,? by shy(Hy) =
Hy + (or, o). Then shy (Ky) = v K - Since v = (K_2u, Ko), we have

(191) shy, (Kg) = (K_2;, Ko) Kq.
The Harish-Chandra map is the C[[h]-module homomorphism
x=sh_popo: Uy — U =C[H,,..., H][h].

The restriction of y to the Y—degree 0 part of Uy, denoted x by abuse of notation, is
a C[h]-algebra homomorphism, called the Harish-Chandra homomorphism.

One has the following description of the center (see eg [12; 74]):

Proposition 8.17 The restriction of x on the center 3(Uy) is an algebra isomorphism
from 3(Uy,) to (U}?)Qn =C[H,, ..., H)]¥[Hh].

Remark 8.18 Suppose .2# C Uy, is any subring satisfying the triangular decomposition
(like Uz, or V}). By definition,

(192) x(3()) C (%)%,

For # = Uy, we have equality in (192) by Proposition 8.17. But in general, the
left-hand side is strictly smaller than the right-hand side. For example, one can show
that

x(3(Uz)) # (UDH™.

Over the ground ring A, the determination of the image of the Harish-Chandra map is
difficult. Later we will determine x(3()) for two cases, # = V;;*, which is defined
over A, and # = X, which is defined over C[+/%]. In both cases, the duality with
respect to the quantum Killing form will play an important role.
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OO

Figure 14: The open Hopf link (left) and the Hopf link

8M From Uj-modules to central elements

In the classical case, the center of the enveloping algebra of g is isomorphic to the ring
of g—modules via the character map. We will recall (and modify) here the corresponding
fact in the quantized case.

For a dominant weight A € X, recall that Vj, is the irreducible Uj—module of highest
weight A. Since the map tr,;/*: U, — CJ[h] is ad-invariant and the clasp element ¢ is
ad-invariant, by Proposition 2.4(d) the element

z), = (tr)* ®id)(c)

isin (Uj)™ = 3(Uy). This construction of central elements was sketched in [17], and
studied in detail in [33; 4]. Our approach gives a geometric meaning of z) as it shows
that z) = Jr, where T is the open Hopf link bottom tangle depicted in Figure 14, with
the closed component colored by V. Let us summarize some more or less well-known
properties of z; ; see [4; 11; 33].

Proposition 8.19 Suppose A, A/ € X.
(a) Forevery x € ﬁq,

(193) try (x) = (2, x).
(b) One has

- Y wean SEN(W) K 21 +4p)
(194) x(zy) = dim(Vy ) K—2u =
Z [ =20 > weay SE(W) K_2u(p)

neX
(c) If L is the Hopf link (see Figure 14) then
(195) TL(Va. Vi) = (23, 2p) = tr)* (2p0),

(d) One has z; € U, andif A € Y then e Uy
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Proof (a) Recall that the quantum Killing form is the dual to ¢ = ) ¢y ® ¢;, and
x =Y (c2,x)c;. We have

(zn,x <Z trV'\ (c1)ea, > Ztrp (c1){c2,x) = Ztr;/’\((cz, x)ey) = trgA (x).
(b) In [30, Chapter 6], it is proved that if A € X+ N %Y, then
(196) X)) =) dim((V)gu) K-ap.
nex

where dim((V),)) is the rank of the weight-i submodule. Actually, the simple proof
in [30, Chapter 6] works for all A € X . The second equality of (194) is the famous
Weyl character formula; see eg [29].

(c) Let T be the open Hopf link bottom tangle depicted in Figure 14, with the closed
component colored by V3. Then J7 = z) . We have

V.
JL(Va, Vo) =t (J7) = (2, 1) = (20, 22) = (20, 200)-

(d) Joseph and Letzter [32, Section 6.10] (see [4, Proposition 5] for another proof)
showed that z; € Uq > K_,). Since K_,) € U*, we have z) € Uq > Uev C Uev
Lemma 3.6. If A € Y, then K_5) € Uz, hence z; € Ug" again by Lemma 3. 6. |:|

Note that the right-hand 51de of (194) makes sense, and is in (U N for any A € X
not necessarily in X4 N 5 Y For any A € X, define z) € 3(Uq) by

Z) = X_l( Z dim(VA)[u]K—ZM)-

ueX

If A + p and A’ + p are in the same 2J—orbit then, by (194), z; = z),. On the other
hand, if A 4 p is fixed by a nontrivial element of the Weyl group, then z; = 0.

When A is in the root lattice Y, the right-hand side of (194) is in A[KF2,...  KZ* ™.
Actually, the theory of invariant polynomials says that the right-hand side of (194),
with A € Y, gives all A[Kéclz, e Kflz]W; see eg [56, Section 2.3]. Hence, we have
the following statement:

Proposition 8.20 The Harish-Chandra homomorphism is an isomorphism of the
A-—span of {zy | ¢ € Y} onto A[Kojflz, e, K&t]z]w.
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8N Center of V"
Lemma 8.21 Suppose B €Y. Then zg € V;".

Proof By Proposition 5.15, V" is the A-dual of U 7 Wwith respect to the quantum
Killing form, ie

Vz' ={xeU;" | (x,y) € A forall yeUg).

Since zg € Uy by Proposition 8.19, it is sufficient to show that (zg, y) € A for
any y e U;'.
We can assume that 8 is a dominant weight, 8 € X4 NY . By Proposition 8.19,

(2. 0) =11y (1) € A
where the inclusion follows from Lemma 8.14. This shows zg € V;". o
Proposition 8.22  (a) One has 3(V;") = 3(U) = A-span({zq | € Y'}).

(b) The Harish-Chandra homomorphism maps 3(V5") isomorphically onto (VZeV’O)m,
ie

(197) xGWE) =W " = AIKE2. ... KEP.
Proof (a) Let us prove the inclusions

(198) 3(V5) € 3WU™) € A-span(izy | @ € V) C 3(V5)).
which imply that all the terms are the same and prove part (a).

The first inclusion is obvious, since VZev C U, while the third is Lemma 8.21.

Because /"0 = A[Koﬂff, e, Kofz], one has x(3U)) C A[Kojflz, e, Koﬂflz]m. Hence,
by Proposition 8.20 we have 3(U®) C A-span({z, | « € Y'}), which is the second
inclusion in (198). This proves (a).

(b) This follows from (a) and Proposition 8.20. O

Proposition 8.23 The Harish-Chandra map x is an isomorphism between 3(V})
and (Vho)m.

Proof Since x(3(V3)) C (Vho)m, it remains to show (Vho)Qﬁ C x(3(Vy)). By (189),

WVH¥ =Cley,.... el
By (186) and (197),

g e (V5" = x(3VEY)) € xB(W)).

Hence, (Vho)(m C x(3(Vg)). This completes the proof of the proposition. a
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80 Center of X,

Proposition 8.24 The Harish-Chandra map x is an isomorphism between 3(Xj)
and (X }(l) ),

Proof By definition, x(3(X})) C (X,?)w. We need to show ! ((X;l))w) C 3(Xp).
Because x~!((X }?)m) consists of central elements, one needs only to show that
X (X)) € Xj,. We will use the stability principle of dilatation triples.

From (187), (188), and (189), the triple (U™, (X)), (¥,2)® forms a topological
dilatation triple (see Section 4C).

The triple Uy, Xy, V), also forms a topological dilatation triple (see Section 4D).
Since X_l((U}?)w) C Uj, and x~! ((Vho)w) C ¥V}, by Proposition 8.23, one also has
x N ((X ;l) )¥) C X}, by the stability principle (Proposition 4.6). o

8P Quantum Killing form and Harish-Chandra homomorphism
Since x(x) and x(y) determine x and y for central x, y € Uz, one should be able to

calculate {(x, y) in terms of x(x) and x(»).
Let D be the denominator of the right-hand side of (194), ie

D:= Z sgn(w) K_y(2p)-
weW

By the Weyl denominator formula,

(199) D= ] (K;'—Ka) =Kz [] (K> —1) € K, V5"

O!Eq>+ O!thr

Let us define

d:= K_zp, 1_[ (U _va)

aed

From the formula for the quantum dimension (174), we have
(200) d dimg(Vy) = (K_3p—22. D).

Here is a formula expressing (x, y) in terms of x(x), x(»):

Proposition 8.25 Suppose x € 3(X},), and y = z;, A € Y. Then
(201) |20]d (x, y) = (D x(x), Dx(»))
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Proof As x is central, it acts on V) by c¢(A, x)id, where ¢(A, x) € C[/]. Recall that
1, is the highest-weight vector of V) . We have Ky - 1) = @b, = (Ko, K_53) 15,
Hence, for every z € U 0

(202) -1 = ({x, K_ap) 1.

Since the highest-weight vector 1 is killed by all £y, o € IT, we have

x -1y = po(x) - 1p = shp x(x) - 1p = (shp x(x), K_23) 15 by (202).
Thus, c¢(A, x) = (shp x(x), K_5y). Further, by (191),

c(h,x) = (shy x(x). K_z3) = ((K—2p. x(x)) X(x), K_33)
200 X)) (X (%), K_23)
K20, X () K 23, X(x)) = (K_2p-21. X (X))

(

= (K_

=

<K DX(X)> _ (K_2p—22,Dx(x)) _ (K_2p—22.Dx(x))
ek (K_2p-21..D) d dimg (V)

> sgn(w) K_zuw(n4p)- Dx(x>>

<d1 dlmq(V;L) < |20] e

1
_ mmx(m,mm).

Here the last equality on line four follows from (200) and the equality on the line five
follows from the fact that D y(x) is QJ—skew-invariant and the quantum Killing form
is W—invariant on X }?.

Using (193) and the fact that x = ¢(A, x)id on V},

(x,22) = trg* (x) = ¢(h, x) dimg (V3) = == (D x(z2), D x(x)),

|20|d
where for the last equality we used the value of ¢(A, x) calculated above. a

Remark 8.26 Tt is not difficult to show that Proposition 8.25 holds for every y € 3(X}).

8Q Center of i,

Recall that IE/I is the set of all elements of the form
X = Zxk, X € fk(/CII).

. ~/ .
One might expect that every central element of /C; has the same form with x; central.
We don’t know if this is true. We have here a weaker statement, which is enough for
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our purpose. In our presentation, x is central, but might not be in F (K ). However,
Xy still has enough integrality.

Lemma 8.27 Suppose x € 3(16/1). There are central elements xj, € 3(X},) such that
(@) |20]x =Y 220(q: @)Xk
() (q:9)kxk € 3(Vy' ®4B) forevery k >0,
(¢) Tx(xg) € (1/d)C[v*!] forevery k >0, and
(d) Tx(xx) € (1/d)C[vE!] for every k > 0.

Proof (a) Recall that i (K}) = ((¢:@)x(X5) N (U)) ®4 B. Hence, x has a
presentation

o0
(203) X =Y (4 QrXp
k=0

where x; € X5 ® 4B and (¢;q)kx;, € U ®4B.

Let yg =) eqn w(X(x})), which is Q—invariant. Then yj € (X }? )Z. By Proposition
8.24, xj := x~'(yx) is central and belongs to 3(X}).

Using the QJ—invariance of x(x) and (203), and the Q—invariance of x(x),

Wx() =D wx(x) =D @k Y wx(xp) =D @Dk

weW k=0 weW k=0
Applying x~! to the above, we get the form required in (a), |20|x = >t o (@ i Xk -
(b) Since (¢;q)kx) €U ®4 B and U0 = Vzv’o, one has

(@ Dkye =@k Y wx(xp) € Vg @B,
weW

(c) Because V;' CU®, we have T(V;') C A, by Theorem 8.11(f). From (b), we
have

(@D TE(xx) € AQ LB =B,
or

B.

(204) T+(xg) € :
(q: Dk

A simple calculation shows that x(r) = v(p’p)szro. Since X 2’0 is an .Z—Hopf
algebra (Lemma 5.25), we have

A(K2pX5"%) C KapX5® ® Kap X350
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Slnce]D)eszV V-0 we have ]D)ykeszXe . Hence, ADyi) =" K25y, K25y},
where y; , y EXCV’ ®aB. Since DK+1,,€ X, 0 \we have ADK+ir,) =) a;1Qa;
with aq, a, E Xz" 0 . Using (201), we have

d7% () = d(r = xg) = Dy (r=). Dx(xp))
= PP DK pgprE! Dyy)
= y(:P) Z(DKizp,szy;;)(”S_le Kapyg) by (95)
— p(P:P) Z(al’ Kizp)(az,y}c)(ﬁl, K»pyy)  again by (95).

The first two factors (aq, Kizp) and (az,y;) are in B by Lemma 5.25, where
B = A®4B. The third factor (ro , Kzpyy) is in v(®P) 3 by Lemma 5.29. Hence
A7+ (xx) € v2PP) B = B. Together with (204),

d T+(xx) e C(v)NB =B.

(d) By definition, Q4 =) cf V)., where the sum is finite and cf € C. We have

d T2 () = D eifd ) (xp).

Hence, to show that d 7+ (xx) € B, it is enough to show that d tr’* (x;) € B for any
A € X4 Using (193) and (201), we have

|201d trg* (xg) = 120]d (23, xx) = (D x(22), D x(x%))

=< > Sgn(w)K—zw(A+p),Dyk> by (194)
weW

= Y sen()(K_2u(i40)> Dyk)
weW

= Y sgn(W){K 20040 DY K_20(i+0) Vk)-
weW

The second factor (K_3y(3+p), Vk) is in B by Lemma 5.25. As for the first factor, for
any p € X,

(Kau. D) =<K2M, I1 (Ka—K;1)>

aed
= ] (Ko Ka) = (Koo K—a)) = [ 070 —v®®) e Cp*1y,

a€<1>+ aed>+

Hence, d tr};’x (xx) € B.
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Figure 15: Links L; (left) and L,, which is obtained from L; by sliding.
Here ¢ = —1

On the other hand, since (¢; q)xx € V;' ® 4 B, we have (z;, (¢; q)xx) € B. Hence,
d try* (xx) € BN C(v) = C*!].

This completes the proof of the lemma. |

8R Comparing 7 and 7

Proposition 8.28 Suppose 2 is a strong Kirby color at level {, x € (Ian)i“", and
gj ==x1for j=1,...,m. Then

(@7;,-)(90 =© (@%j)(X)-
j=1 j=1

Proof We proceed in three steps:

Stepl (m=1and x € (V" @ 4B)™ = 3(V; ®4B)) By Proposition 8.22, x isa
B-linear combination of z), A € Y. We can assume that x = z; forsome A € X, NY.

Let L; be the disjoint union of U_, and U,, where the first is colored by V) and the
second by €2. Sliding the first component over the second, from L we get a link L,,
which is the Hopf link where the first component has framing 0 and the second has
framing ¢; see Figure 15. From the strong handle slide invariance (178) we get

(205) I, (Va, 2) =) JL,(Va, ).
Let us rewrite the left-hand side of (205):

IL, (V. Q) = Ju_ (Vo) Ju, (Q) =t} (r¥) Jy, () = (22, 1) Ju, () = Te(22) Ju, ().
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Let L¢ be the Hopf link with 0 framing on both components. Then the right-hand side
of (205) is
L, (V. ) = Jy (2)Jr,(Vi, ) by (180)

=) Ju.(Q) uge(z2) by (195)
= Ju, (Q)7Te(z0)-
Comparing the left-hand side and the right-hand side of (205) we get T¢(z;) =(¢) 7-s(Zk)-

Step 2 (m =1 and x is an arbitrary element of (I'éll)i“V =7 (IEII)) Let x =
Y re0(q: @)Xk be the presentation of x described in Lemma 8.27. Since xi € 3(X})
and all 71 and 71 are continuous in the /s-adic topology of X},

Te() =D (G PrTe(n).  Te(x) = (g: )T (xp).
k=0 k=0

Both right-hand sides are in (l/dl)(C/[;] because T (xg), T+ (xx) € (1/d)C[vE!] b
Lemma 8.27. Since (q:q)k =) 0 if K > r and d #) 0, we have

r—1 r—1

T (X) =@ Y _(@:DrTe(xx) =) Ti( Z((]:f])kxk),
k=0 k=0
r—1

Te(x) =) Z(Cl DrTe(x) =) Ti( Z(é] C])kxk)

By Lemma 8.27(b), the elements in the big parentheses are in 3(V;" ® 4 B). Hence,
by the result of Step 1, we have T1(x) =) T=(x).

Step 3 (general case) Define a5 (for k =0,1,...,m)and by (for k =1,...,m)
as follows:

k m k—1
ak=(®7‘;,.® X 7;,.)(x), bk—(®7;,®ld® ® %,)(x)
j=1 j=k+1 j= j=k+1
Then
(206) k-1 =T (by) and  ag = Te, (bg).

By Proposition 8.15, by € (/%Q)inv, By Step 2,
Ter (br) =) Ter (b

Using (206), the above identity becomes aj_; =) ak. Since this holds true for
k=1,2,...,m,wehave ag =(¢) dm» Which is the statement of the proposition. O
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8S Proof of Proposition 8.10

By Theorem 7.3, if T is an algebraically split m—component bottom tangle, then
~ ~/

Jr € Km(U) C K,,,. Hence Proposition 8.10 follows from Proposition 8.28. This also

completes the proof of Theorems 8.8 and 8.1.

8T Proof of Theorem 1.1

The existence of the invariant Jps = J ]%,[ € Z/[E] is established by Theorem 7.3.
Theorem 8.8 shows that evg(Jy,) = 73,(6). The uniqueness of Jps follows from
noting

(i) every element of Z/[E] is determined by its values at infinitely many roots of 1
of prime power orders (see Section 1B), and

(ii) Z},g contains infinitely many such roots of unity (by Proposition 8.4).

This completes the proof of Theorem 1.1.

8U The case { = 1, proof of Proposition 1.6

Let © be the trivial Uy —module C[[4]. By Proposition 8.6, €2 is a strong Kirby color,
and 77 (2) = 1. By Theorem 8.8, we have ev;(Jas) = 1. This completes the proof
of Proposition 1.6.

Proposition 1.6 can also be proved using the theory of finite-type invariants of integral
homology 3-spheres as follows. Note that evy(Jas) is the constant coefficient of the
Taylor expansion of Jys at ¢ = 1, which is a finite-type invariant of order 0 (see [43],
for example). Hence, evy(Jas) is constant on the set of integral homology 3—spheres.
For M = S3, we have ev,(Jas) = 1. Hence, ev;(Jps) = 1 for any integral homology
3—sphere M .

Appendix A: Another proof of Proposition 4.1

In the main text we take Proposition 4.1 from work of Drinfel’d [17] and Gavarini [18].
Here we give an independent proof.

Each of Uhso = (U,?Uh_)’\ and tho = (U,?U;’)A, where (-)” denotes the h—adic
completion, is a Hopf subalgebra of Uy, and R € U hso QU hZO. Let A CU hso and
ArCU hZO be the left image (see Section 2D) and right image of R € U hSO QU
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respectively. Here the right image is the obvious counterpart of the left image and can
be formally defined so that A g is the left image of 0,1 (R), where
Oat Uhso & tho N tho ) Uhso
is the isomorphism given by 071 (x ® y) = y ® x.
Explicitly, A7 and Ag are defined as follows: For n = (ny,n,) € N’ x N let
R'(n) = F®V g™ R"(n) = E™) f"2,

Then {R/(n) | n € N*t!} is a topological basis of Uhfo and {R"(n) |[ne N'T!} isa
topological basis of U hzol From (70), there are units f(n) in C[[4] such that

R= Y f@h"R n)®R" ).

neN?+!

Then Ay and Ag are the topological closures (in Uy) of the C[[/]—span of
(207) MR () | n e N*YY and {(WI"IR(n) | n e NPT,
respectively.
For C[h]-submodules 7, s C Uy, let A4 @ 53, called the closed tensor product,
be the topological closure of .#] ® 7% in the h—adic topology of Uy ® Uy,.
Proposition A.1 Foreachof A = Ay, AR, one has
RAR®A)CA, AA)CAR®A, S(A4)CA.
This means, each of Ay and A g is a Hopf algebra in the category where the completed

tensor product is replaced by the closed tensor product.

Remark A.2 When the ground ring is a field, the fact that both A7 and A are Hopf
subalgebras is proved in [69]. Here we modify the proof in [69] for the case when the
ground ring is C[[A].

Proof We prove the proposition for A = Ay, since the case A = A g is quite analogous.

Let R'(n) = f(m)hA"™IR'(n). Then R = Y, R'(n) ® R”(n). Using the defining
relation (A ® id)(R) = R13R33, we have

(208) S AR @) @R () =Y R'(m) @R (k) @ R (m)R" (k).

k.,m
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Since {R”(n)} is a topological basis of U hzo , there are structure constants /.7 , € C[h]
such that

R'(m)R"(k) =) fm R (n),
n
and the right-hand side converges. Using the above in (208), we have
AR (m) =Y fo (R (m) @ R' (k).
m.k

with the right-hand side convergent in the /1—adic topology of Uy, ® Uy, . This proves
A(AL) C Ap ® A, . Actually, we just proved that the coproduct in Ay, is dual to the
product in U hZO.

Similarly, using (id ® A)(R) = R13R12, one can easily prove that the product in A4y,
is dual to the coproduct in U hzo’ ie
R(m)R (k) =" ¥R (n), where AR"(n)) =Y f"*R"(m) @ R" (k).
n m.k
This proves that u(Ay ® Ay) C Ayr.
Next we consider the antipode. We have (S ® id)(R) = (id® S~1)(R) = R™!. Let
A’ be the left image of R7L.

Since S~! is a C[[h]-module automorphism of U=°, the identity (id®S~1)(R)=R"!
shows that A} = Ay .

Identity (S ® id)(R) = R~! shows that A} = S(AL). Thus, we have Ay = S(AL).
O

Proposition 4.1 follows immediately from:

Proposition A.3 (a) One has ARAy = Ap Ag. It follows that A; Ag is a Hopf
algebra with closed tensor products.

(b) One has ARAr =V},.

Proof (a) We use the following identities in a ribbon Hopf algebra: for every y € Uy,
one has

(209) ROy®1D =Y (r2)®y1)R1® S(ys)).
o)

(210) (Y& DR=Y (1®SGm)RYE@) & ¥3):
(62)
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(211) RA®y) =Y (y3) @ y2)RES™ vy ® 1)),
)
(212) AR =Y (S7'(ray® DRG) ® ¥@2)-

(62

which are [69, (6)—(9)]. Suppose x € Ay and y € Agr. We will show that xy € AgpAy .
This will imply that A7 Agr C ArAr . We only need the fact that 4 is a coalgebra
in the closed category: A(AR) CAR® Ar C UhZO ® tho‘

Since x € Ay, we have a presentation
X = Z xaR'(n), xp€C[h] forall ne N+,
neN/t+!
Let p: U hZO — C[1] be the unique C[[i]-module homomorphism with p(R” (n)) = xp.
Then x =), R'(n) p(R"(n)). Hence,

xy =Y RmypR' )= yayR @) p(rmyR"()S(yz)) € ARAL.

Similarly, one can prove AgrA; C Ap AR, and conclude that Ay Agr = ARAL.

(b) The two sets {AI"I H" | n € N’} and {nl"] H" | n € N'} span the same C[A]-
subspace of U }? . Using spanning sets (207), we see that Ay A is the topological
closure of the C[4]-span of

{h||n1||+||"2||+||”3|| F) gn2 pns) |ny.ns € N n, € Nl}.

Comparing this set with the formal basis (81) of ¥V}, one can easily show that Vj, =
AL AR. i

Appendix B: Integral duality

B.1 Decomposition of U;V’O

Recall that
U =C)IKF2 aell], V"% =AKF? aeTl).

For a simple root « € I1, the even a.—part of UZO is defined to be Z, :=C (v)[K;tz]ﬂ UZO .
Note that Z, is an A-Hopf subalgebra of Q(v)[K;tz]. From Proposition 5.2, Z,, is
A-spanned by

(213)

{Ké’”(qZ K2 qa)k

mmnelZ,ke N},
(Gas Ga)k
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and there is an isomorphism

(214) X 7. = U5, ®aa|—>1_[aa

aell aell

Hence, if one can find .A-bases for Z, then one can combine them using (214) to get
an A-basis for U;V’O.

Similarly, let V5" N C(v)[KE?] = A[KZ?] be the even a—part of
,0
Vg = AIKG?, a e TI].
The analog of (214) is much easier for VZCV’0 , since in this case it is

215) QR AKFE V" = Ak aell], X)aq— Haa

aell aell

B.2 Bases for 7, and A[x*!]

Fix o € IT, and let x = K2 and y = K2. The even a—part of V," 0 s Alx*!], and Ty,
the even a—part of U, V-0 is now an .4-submodule of Q(v)[xil] The quantum Killing
form restricts to the Q(v)—blhnear form

216)  (-.-): QXTI QW)= Q). (x™, y") =g;™"

Let I: Q(v)[x*!] - Q(v)[y*!] be the Q(v)-algebra map defined by I(x) = y.
For n € N, let

Q' (a;n) 1= x W2 (g LD gy, O (e, n) = 1(Q (a5 m)),

@17) @ V
(i) = 2@ O(e.n) == (Q(@:n)).
(Ga: ga)n

We will consider A[x¥'] ¢ C[Hy][/k] by setting x = exp(hHy).

Proposition B.1  (a) The A-module T, is the A—dual of A[y*'] with respect to
the form (216) in the sense that

To = {/(x) € QW)XT'T (f(x), g(»)) € A forall g(y) € Q)[y*']}.
(b) The set {Q’(a;n) | n € N} is an A-basis of Ax*1].
(c) One has the orthogonality

(218) (Q(a;n), Q' (a;m)) = Sm,nq;L("H)/ZJZ'
(d) The set {Q(a;n)|n e N} is an A-basis of Zy .
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Proof (a) In Section B.1, Zy is the A-submodule of Q(v)[x*'] spanned by the
set (213) with K2 replaced by x. This set spans the module of polynomial with g—
integral values: By [7, Proposition 2.6], Z, is exactly the set of all Laurent polynomials
f(x) € Q(v)[x*"] such that f(qg) € A= Z[v*!] for every k € Z.

For f(x) € Q)[x*'], g(») € Q()[y*'] and k € Z, from (216),

(219) (S 79) = @z (F.g() = g(a").

Suppose now f(x) € Q(v)[x*!]. Since {y¥ | k € Z} is an A-basis of A[yF!],
f(x) is in the A-dual of A[yt'] < (f(x).y¥)eA forall keZ

= f(q;k)eA forall k € Z

— f(x)€Iy.
This proves part (a).

(b) The bijective map j: N — Z given by j(n) = (—1)"*! |_%(n + I)J defines an
order on Z, by j(0) < j(1) < j(2) <---. This order looks as follows:

0<1<-1<2<-2<3<-3<---

We define an order on the set of monomials {x" | n € Z} by x" < x™ if n < m.
Using this order, one can define the leading term of a nonzero Laurent polynomial
f(x) € Q(v)[x*!]. One can easily calculate the leading term of Q’(«;n),

(220) 0’ (a;n) = (=1)"x/™ + lower order terms.
It follows that {Q'(c;n) | n € N} is an A-basis of A[x*!].
(c) Suppose m < n. By (219),

(Q'(@in). y7 ) = Q' (@:n)| _ymiom =0,

™) annihilates one of the factors of Q' (a;n) when m <n. By expanding
O’ (a; m) using (220), we have

since X =¢q '

(0'(a;n), O'(a:m)) =0 if m <n.

Similarly, one also has (Q'(«;n), Q/ (a;m)) =0 if m > n. It remains to consider the
case m = n. Using (220), we have

(Q(@:n), Q' (:n)) = (Q'(a:n), (—=1)"y7 @)
= (_l)an(a;n)‘x=q;j(n) = q‘;L(n+1)/2J2(qot;Q(x)n,

where the last identity follows from an easy calculation. This proves part (c).
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(d) By part (b), {Q’(a;n) | n € N} is an A-basis of A[yT!]. Because Z, is the
A-dual of A[y*!] with respect to the form (216), the orthogonality (218) shows that
{Q(a;n) | n € N} is an A-basis of Z, . This proves part (d). a

B.3 Proof of Proposition 5.7

Proof (a) The definition (107) means that, for n = (ny,...,n;) € N’,
/ /
@) 0% =[] 0@l og2. (@ @nQ%m) =[] Q'@jin)l g
j=1 j=1
By Proposition B.1(d),
(0@iml,_gz |ne N}
is an A-basis of Z, . Hence the isomorphism (214) shows that { Q" (n) | n € N’V is
an A-basis of U%V’O.

Similarly, Proposition B.1(b) and (215) show that {(¢;¢)n O%(n) | n € N'} is an
A-basis of VZCV’O.

(b) Let K% = Hj Kfi’] for § = (61,...,6;). We have
vi= @ kv uvp= P KPup”
§e{0,1}/ §e{0,1}/

where the first identity is obvious and the second follows from Proposition 5.2. Hence,
(b) follows from (a). This completes the proof of Proposition 5.7. m|

B.4 Proof of Lemma 5.16

Proof For o, B € I1, we have (K2, I%é) = 84,89« - Hence, with Q% (n), Qev(m) as
in (221),
/

/
(0% (m), 0% (m)) = [T(Q(ejin;), Oteysm)) = Snm [ [ 4y "2

j=1 j=1

where the last identity follows from Proposition B.1(c). This proves Lemma 5.16. O

Appendix C: On the existence of the WRT invariant
Here we prove Proposition 8.4 on the existence of strong Kirby colors at every level ¢

such that ord(¢2P) > d(hY —1). We also determine when ¢ € 2, and when { € Z},g,
if ord(?P) > d(hv —1).
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C.1 Criterion for nonvanishing of Gauss sums

Suppose 2 is a free abelian group of rank / and ¢: AxA — Z is a symmetric Z—bilinear
form. Assume further ¢ is even, in the sense that ¢ (x, x) € 2Z for every x € 2.

The quadratic Gauss sum associated to ¢ at level m € N is defined by

Gy(m):= Y exp( ¢()’;x))

x€A/mA

Let Ql(’; be the Z—dual of 2 with respect to ¢ and
kery(m) :={x € A| ¢(x,y) emZ forall y €A} = miZl;; nA.

We have the following well-known criterion for the vanishing of &4(m); see [16,
Lemma 1].

Lemma C.1  (a) Ifm isodd, then &4(m) # 0.
(b) &4 (m) # 0 if and only if, for every x € kerg(m), one has ﬁ¢(x, X)eZL.

Lemma C.2 Forevery x € kerg(m), we have ﬁqﬁ(x, Xx) € %Z.
Proof Because x € le;Z one has ¢(x, x) € mZ. Hence, ﬁqﬁ(x, Xx) € %Z. a

C.2 Gauss sums on weight lattice

Recall that X and Y are the weight lattice and the root lattice, respectively, in by,
which is equipped with the invariant inner product. The Z—dual X™* of X is Z-spanned
by o/dy, @ € I1.

Lemma C.3 For y € X*, we have (y,y) € Z():={a/b|a,b € Z, b odd}.

Proof Suppose y =) kja;/d;. Then

(,y) = Zkz (Ol,,ot,) ZZ (051’05]) Zkz 2 Z 2(05i’60l’5ij)/dj c %Z.

i<j i<j

Since d is one of 1, 2 or 3, we see that (y, y) € Z(y). a

Lemma C.4 Suppose { is aroot of 1 of order s. Let r = 5 /gcd(s,2D) be the order
of £ =¢2D.
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(a) Suppose r is odd. Then &79(¢) # 0, where
@Pg(é-) = Z é-D()\.,)ri-Zp) — Z E(X,)\+2p)/2.

AEPNY AEPNY

(b) Suppose r is even. Then B8(¢) # 0, where
6g(§):= Z {D(X,l+2p).

A.GPZ‘

Proof After a Galois transformation of the form ¢ — ¢ with ged(k, s) = 1 we can
assume that ¢ = exp(27i/s).

(a) The following is the well-known completing the square trick:
") = Z gRA+200r+ D)2 gince ord(£) = r
)»EP;HY
— E—(r+1)2(p,p)/2 Z E(X+(r+1)p,k+(r+1)p)/2
)»EPgﬂY
— E—(r+1)2(p,p)/2 Z 5(1\,)»)/2.

)\.GPCQY

Here the last identity follows because 2p € Y and hence (r + 1)p € Y, since r + 1 is
even and because the shift A — A + 8 does not change the Gauss sum for any S € Y.

The expression & (.M)/2 )\ e Y, is invariant under the translations by vectors in both
rY and 2rX . Hence,

- 2 — 2 vol(2rX)
A B G LT SRR S (DGR e A )

Vol(rY)
AEP:NY AEY/rY

By Lemma C.1(a) with 2l =Y, ¢(x,y) = (x, y) and m = r, the right-hand side is
nonzero.

(b) Again using the completing the square trick, we get

(222) ®9(¢) = PwPP) Z D0

)LGP(

—D(p, i
= Pen Y exp(T2D(k,k))

reX/2rDX

=§—D(P,p)(2sﬂ)l Z exp(%i2D()x,)x)).

reX/sX
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Note that s/gcd(s, 2D) is even if and only if
s
4D
Apply Lemma C.1(b) with 2 = X, ¢(x,y) =2D(x,y) and m = s. Then SQL; =
(s/2D)X™. Suppose x €kerg(s) = sA; NAC sAy. Then x = (s/2D)y with y € X'*.

We have

(223) € Z).

1 s
qu(x’x) - 4D (J’»y) EZ(z),

where the last inclusion follows from (223) and Lemma C.3. From Lemma C.2 we
have . |
XQ{)(X,X) € EZ n Z(z) =7.

By Lemma C.1(b), the right-hand side of (222) is nonzero. O

C.3 Proof of Proposition 8.4

Proof of Proposition 8.4 By [49, Proposition 2.3 and Theorem 3.3], 29(¢) and
QP9(¢) are strong handle-slide colors. Although the formulation in [49] only says that
Q9(¢) and QF9(¢) are handle-slide colors, the proofs there actually show that $9(Z)
and QP9(¢) are strong handle-slide colors.

It remains to show that Jy, (29(¢)) # 0 if r is even, and Jy (QP9I(&)) #£0if r is
odd.

From [49, Section 2.3], with the assumption ord(¢2P) > d(hY — 1), we have
—o &9(%)

Ha€<1>+ (1- é:(a,p)) ’

6790
Ju. (@7(©) = :
+ ©® H(x€<1>+(1 _ é-(a,p))

Further, Jy_(Q9(¢)) and Jy_(2F9(2)) are the complex conjugates of Ju, (29(8))
and Jy, (€2 Pa(¢)), respectively.

By Lemma C.4, if ord(¢2P) is even then Ju, (2%(8)) # 0, and if ord(¢%P) is odd
then Jy, (2 Pa(£)) # 0. This completes the proof of Proposition 8.4. a

Ju, (2%(0))
(224)

C.4 Thesets Z and Z;,g for each simple Lie algebra
Proposition C.5 (a) One has $9(¢) = 0 in and only in the following cases:
e g= A; with [ odd and ord({) =2 (mod 4).
e g= B; with!/ odd and ord({) =2 (mod 4).
e g=B; with!/ =2 (mod4) and ord({) =4 (mod 8).
e g=Cj and ord({) =4 (mod 8).
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e g= D; with! odd and ord({) =2 (mod 4).
e g= D; with! =2 (mod4) and ord({) = 4 (mod 8).
e g=FE; and ord({) =2 (mod 4).

(b) In particular, if ord(¢) is odd or ord({) is divisible by 2d D, then &%({) # 0.

The proof is a careful, tedious, but not difficult check of the vanishing of the Gaussian
sum using Lemma C.1 and the explicit description of the weight lattice for each simple
Lie algebra, and we drop the details.

Corollary C.6 Suppose ¢ € Z with ord(¢*P) > d(hY —1). Then ¢ € Zé if and only
if ¢ satisfies the condition of Proposition C.5(a).

Similarly, using Lemma C.1, one can prove the following:

Proposition C.7 Let r = ord(£) = ord(¢2P).

(a) One has &9(¢) = 0 in and only in the following cases:
e g=A; and ordy(r) =ord,(/ +1) > 1.
e g=B;andr =2 (mod4).
e g=Cj,revenand rl =4 (mod8).
e g=2D;,revenand rl =4 (mod?8).
e g=FE;andr =2 (mod4).

Here, ord, (n) is the order of 2 in the prime decomposition of the integer n.
(b) In particular, if r is coprime with 2°"92(P) then &P9(Z) £ 0.

Corollary C.8 Suppose ord(¢2P) > d(hV—1). Then ¢ € Z},g if and only if ¢ satisfies
the condition of Proposition C.7(a).

List of symbols

Notation Defined in Remarks
Zlq), (x;q)n 1B

(CIA1 o 2A2

A0, A€, S 2B Hopf algebra
R 2B, 3G2 R—matrix

r 2B, 3G2 ribbon element
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ad(x ® y), x>y 2E
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T 202
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la b el mjal [ | 342
Uy, Fy, Ey, Hy, F;, E; 3A3
K. Ko K; 3A3
U,. Uy, U 3A5
lbar, @, @, T 3B

x| 3C1
Uy, U 3C2
UE UL UE UL, Ug" ™, U™ 3D

0, Sq Si 3E

Ty 3E
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D, Hy, ro 3G2

r 31
Uﬁ 4

Inll. en(m). Vi, V2" 4A

X 4D

A 5A
Uz UF UY. U Uy~ Ug™® 5B

Vo, VE VY VE Ve = Vg 5C
(4:9)n 5C, 5D, 5E
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balanced element

adjoint action

quantum trace

universal invariant of bottom tangle
braiding, transmutation

clasp, ¢ = Jo+

full twist forms

invariant of 3—manifold

braided commutator

universal invariant of Borromean tangle
clasp form

Lie algebra, its rank, Cartan subalgebra

weight lattice, root lattice
simple roots, all roots, positive roots

g =v2=exp(h), A= Z[vt]

(anti) automorphisms of Uy,
Y—grading
even grading

Weyl group, reflection
braid group action

quasiclasp element

Uﬁ =Uy, @)C[[h]] (CII\/Z]]

core subalgebra of U s
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