Volume 20, issue 6 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Asymptotic formulae for curve operators in TQFT

Renaud Detcherry

Geometry & Topology 20 (2016) 3057–3096
Bibliography
1 J E Andersen, Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups, Ann. of Math. 163 (2006) 347 MR2195137
2 J E Andersen, The Nielsen–Thurston classification of mapping classes is determined by TQFT, J. Math. Kyoto Univ. 48 (2008) 323 MR2436739
3 J E Andersen, Asymptotics of the Hilbert–Schmidt norm of curve operators in TQFT, Lett. Math. Phys. 91 (2010) 205 MR2595923
4 J E Andersen, Toeplitz operators and Hitchin’s projectively flat connection, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 177 MR2681692
5 J E Andersen, Mapping class group invariant unitarity of the Hitchin connection over Teichmüller space, preprint (2012) arXiv:1206.2635
6 J E Andersen, N L Gammelgaard, Hitchin’s projectively flat connection, Toeplitz operators and the asymptotic expansion of TQFT curve operators, from: "Grassmannians, moduli spaces and vector bundles" (editors D A Ellwood, E Previato), Clay Math. Proc. 14, Amer. Math. Soc. (2011) 1 MR2807846
7 J E Andersen, K Ueno, Abelian conformal field theory and determinant bundles, Internat. J. Math. 18 (2007) 919 MR2339577
8 J E Andersen, K Ueno, Geometric construction of modular functors from conformal field theory, J. Knot Theory Ramifications 16 (2007) 127 MR2306213
9 J E Andersen, K Ueno, Modular functors are determined by their genus zero data, Quantum Topol. 3 (2012) 255 MR2928086
10 J E Andersen, K Ueno, Construction of the Witten–Reshetikhin–Turaev TQFT from conformal field theory, Invent. Math. 201 (2015) 519 MR3370620
11 C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883 MR1362791
12 G W Brumfiel, H M Hilden, SL(2) representations of finitely presented groups, 187, Amer. Math. Soc. (1995) MR1339764
13 D Bullock, Rings of SL2(C)–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521 MR1600138
14 L Charles, J Marché, Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv. 87 (2012) 409 MR2914854
15 A Fathi, F Laudenbach, V Poenaru, Travaux de Thurston sur les surfaces, 66, Société Mathématique de France (1979) 284 MR568308
16 V V Fock, A A Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and the r–matrix, from: "Moscow Seminar in Mathematical Physics" (editors A Y Morozov, M A Olshanetsky), Amer. Math. Soc. Transl. Ser. 2 191, Amer. Math. Soc. (1999) 67 MR1730456
17 D Gallo, M Kapovich, A Marden, The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. 151 (2000) 625 MR1765706
18 W M Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986) 263 MR846929
19 M Heusener, E Klassen, Deformations of dihedral representations, Proc. Amer. Math. Soc. 125 (1997) 3039 MR1443155
20 L C Jeffrey, J Weitsman, Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula, Comm. Math. Phys. 150 (1992) 593 MR1204322
21 J Marché, T Paul, Toeplitz operators in TQFT via skein theory, Trans. Amer. Math. Soc. 367 (2015) 3669 MR3314820
22 G Masbaum, P Vogel, 3–valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994) 361 MR1272656
23 J H Przytycki, A S Sikora, On skein algebras and Sl2(C)–character varieties, Topology 39 (2000) 115 MR1710996
24 N Reshetikhin, V G Turaev, Invariants of 3–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547 MR1091619
25 A S Sikora, Character varieties, Trans. Amer. Math. Soc. 364 (2012) 5173 MR2931326
26 V G Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. 24 (1991) 635 MR1142906
27 V G Turaev, Quantum invariants of knots and 3–manifolds, 18, de Gruyter (1994) MR1292673
28 E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351 MR990772