Volume 20, issue 6 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
A $1$–parameter family of spherical CR uniformizations of the figure eight knot complement

Martin Deraux

Geometry & Topology 20 (2016) 3571–3621
Bibliography
1 S Anan’in, C H Grossi, N Gusevskii, Complex hyperbolic structures on disc bundles over surfaces, Int. Math. Res. Not. 2011 (2011) 4295 MR2838042
2 S Basu, R Pollack, M F Roy, Algorithms in real algebraic geometry, 10, Springer (2006) MR2248869
3 N Bergeron, E Falbel, A Guilloux, Tetrahedra of flags, volume and homology of SL(3), Geom. Topol. 18 (2014) 1911 MR3268771
4 H Cohen, A course in computational algebraic number theory, 138, Springer (1993) MR1228206
5 M Deraux, Deforming the –Fuchsian (4,4,4)–triangle group into a lattice, Topology 45 (2006) 989 MR2263221
6 M Deraux, On spherical CR uniformization of 3–manifolds, Exp. Math. 24 (2015) 355 MR3359222
7 M Deraux, E Falbel, Complex hyperbolic geometry of the figure-eight knot, Geom. Topol. 19 (2015) 237 MR3318751
8 M Deraux, J R Parker, J Paupert, New non-arithmetic complex hyperbolic lattices, Invent. Math. 203 (2016) 681 MR3461365
9 E Falbel, A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69 MR2401419
10 E Falbel, A Guilloux, P V Koseleff, F Rouillier, M Thistlethwaite, Character varieties for SL(3, ) : the figure eight knot, Exp. Math. 25 (2016) 219 MR3463570
11 E Falbel, P V Koseleff, F Rouillier, Representations of fundamental groups of 3–manifolds into PGL(3, ) : exact computations in low complexity, Geom. Dedicata 177 (2015) 229 MR3370032
12 G Giraud, Sur certaines fonctions automorphes de deux variables, Ann. Sci. École Norm. Sup. 38 (1921) 43 MR1509233
13 W M Goldman, Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3–manifolds, Trans. Amer. Math. Soc. 278 (1983) 573 MR701512
14 W M Goldman, Complex hyperbolic geometry, Clarendon (1999) MR1695450
15 W M Goldman, M Kapovich, B Leeb, Complex hyperbolic manifolds homotopy equivalent to a Riemann surface, Comm. Anal. Geom. 9 (2001) 61 MR1807952
16 W M Goldman, J R Parker, Dirichlet polyhedra for dihedral groups acting on complex hyperbolic space, J. Geom. Anal. 2 (1992) 517 MR1189043
17 M Heusener, V Muñoz, J Porti, The SL(3, )–character variety of the figure eight knot, preprint (2015) arXiv:1505.04451
18 Y Kamishima, T Tsuboi, CR-structures on Seifert manifolds, Invent. Math. 104 (1991) 149 MR1094049
19 J R Parker, Complex hyperbolic Kleinian groups, to appear
20 J R Parker, I D Platis, Open sets of maximal dimension in complex hyperbolic quasi-Fuchsian space, J. Differential Geom. 73 (2006) 319 MR2226956
21 J R Parker, P Will, A complex hyperbolic Riley slice, preprint (2015) arXiv:1510.01505
22 R Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975) 281 MR0412416
23 R Riley, Nonabelian representations of 2–bridge knot groups, Quart. J. Math. Oxford Ser. 35 (1984) 191 MR745421
24 F Rouillier, Solving zero-dimensional systems through the rational univariate representation, Appl. Algebra Engrg. Comm. Comput. 9 (1999) 433 MR1697179
25 R E Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105 MR1828374
26 R E Schwartz, Complex hyperbolic triangle groups, from: "Proceedings of the International Congress of Mathematicians, Vol II" (editor T Li), Higher Ed. Press (2002) 339 MR1957045
27 R E Schwartz, Real hyperbolic on the outside, complex hyperbolic on the inside, Invent. Math. 151 (2003) 221 MR1953259
28 R E Schwartz, Spherical CR geometry and Dehn surgery, 165, Princeton University Press (2007) MR2286868
29 D Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom. 29 (1989) 125 MR978081
30 P Will, The punctured torus and Lagrangian triangle groups in PU(2,1), J. Reine Angew. Math. 602 (2007) 95 MR2300453