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Asymptotic formulae for curve operators in TQFT

RENAUD DETCHERRY

The Reshetikhin–Turaev topological quantum field theories with gauge group SU2

associate to any oriented surface † a sequence of vector spaces Vr .†/ and to
any simple closed curve  in † a sequence of Hermitian operators T


r on the

spaces Vr .†/ . These operators are called curve operators and play a very important
role in TQFT.

We show that the matrix elements of the operators T

r have an asymptotic expansion

in orders of 1=r , and give a formula to compute the first two terms from trace
functions, generalizing results of Marché and Paul for the punctured torus and the
4–holed sphere to general surfaces.

57R56

1 Introduction

Witten [28] proposed in 1989, by a method using Feynman path integrals, a family
of new invariants of 3–manifolds derived from the Jones polynomial, together with
the structure of a full topological quantum field theory. Reshetikhin and Turaev [24]
formalized the ideas of Witten to construct a family .Z2r .M //r2N� of 3–manifolds in-
variants. Also they defined a TQFT-structure for these invariants in [24] and Turaev [27].
An alternative method to define these 3–manifold invariants and TQFTs using skein
theory of 3–manifolds was later developed by Blanchet, Habegger, Masbaum and
Vogel [11].

Let † be a closed oriented surface maybe with marked points pi colored by elements
yci of Cr Df1; : : : ; r�1g. Neglecting the so-called framing anomaly, the construction of
[11] associates a vector space Vr .†; yc/ to .†; yc/ and, for any cobordism .M; †0; †1/

containing a link L, there is a morphism

Vr .M;L/W Vr .†0/! Vr .†1/

such that for every closed orientable 3–manifold M we have Vr .M /DZ2r .M /.

Let us recall that a multicurve on † is a disjoint union of simple closed curves on †.
In particular, the construction associates to any multicurve  on † a curve operator

T 
r D Vr

�
†� Œ0; 1�;  �

˚
1
2

	�
2 End.Vr .†; yc//:

Published: 21 December 2016 DOI: 10.2140/gt.2016.20.3057

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57R56
http://dx.doi.org/10.2140/gt.2016.20.3057


3058 Renaud Detcherry

Curve operators often play a central role in TQFT; they were used to derive the
asymptotic faithfulness of quantum representations, or to relate the combinatorial
and the geometric framework of TQFT; see Andersen [1; 2] or Andersen and Ueno
[7; 8; 9; 10].

From the construction of [11] it follows also that each vector space Vr .†; yc/ comes
with a natural Hermitian form.

Recall that a pants decomposition of a surface † with marked points is a finite family
of simple closed curves on † which cut † into either pair of pants containing no
marked point or disks containing exactly one marked point.

We will say that a trivalent banded graph � inside † is compatible with a pair of pants
decomposition C D .Ce/e2E if the following conditions are satisfied:

� � has a trivalent vertex vP lying in each pair of pants P of the decomposition,
and these are the only trivalent vertices of � .

� For every e 2E , � has exactly one edge (labeled also by e ) that intersects the
curve Ce . This edge is disjoint from the other curves Cf for f 2E n feg, and
intersects Ce exactly once.

� The graph � has n univalent vertices labeled by p1; : : : ;pn corresponding to
the marked points of †. These are the only univalent vertices of � .

See Figure 1 for an example of such a graph.

The construction of [11] provides the space Vr .†; yc/ with a Hermitian basis .'c/c2Ur

for any choice of a pair of pants decomposition C of † and trivalent graph � compatible
with C . The index set Ur of this basis is the set of r –admissible colorings of the edges
of � , defined as follows:

Let Cr D f1; : : : ; r � 1g be the set of colors.

An r –admissible coloring of � is a map cW E! Cr such that the following conditions
are met:

(1) For any i 2 f1; : : : ; ng, the edge adjacent to pi is colored by ci D yci .

(2) Let S be the set of all triples .e; f;g/ such that the curves Ce , Cf and Cg

bound a pair of pants (possibly two of these curves are the same). Then for any
.e; f;g/ 2 S we have
(i) ceC cf C cg < 2r and ceC cf C cg � 1 .mod 2/;

(ii) ce < cf C cg .

If we have a sequence of coloring of the marked points yci D r ti with t 2 Qn , then
for cr 2 Ur the E–tuple cr=r is in the set U �RE defined by x 2 U if and only if

Geometry & Topology, Volume 20 (2016)



Asymptotic formulae for curve operators in TQFT 3059

(1) xi D ti if i is the edge adjacent to the marked point pi ; and

(2) for any .e; f;g/ 2 S , we have
(i) xeCxf Cxg < 2,

(ii) xe < xf Cxg .

Let i be small simple closed curves encircling the marked points pi . We introduce
the SU2 –moduli space of † with marked points .pi ; ti/, ti 2 Œ0; 1�,

M.†; t1; : : : ; tn/D
˚
�W �1.†/! SU2 j Tr.�.i//D 2 cos.� ti/

	
=SU2:

The quotient here corresponds to the conjugation of representations by an element
of SU2 .

We recall that the subset of irreducible representations in M.†/ has a natural Atiyah–
Bott–Goldman–Seshadri symplectic form, which we call ! .

Any curve  on † induces a natural trace function f on M.†/ by the formula

f W �!�Tr.�. //:

Moreover for any pants decomposition C of †, Jeffrey and Weitsman [20] introduced
a momentum map hC on M.†/ whose image is the closure of the set U introduced
above. This momentum mapping is given by the formula

hC W �! .hCe
.�//e2E D

�
1

�
Acos

�Tr.�.Ce//

2

��
e2E

:

Here U is exactly the set of regular values of the momentum map hC . Jeffrey and
Weitsman showed that the hCe

are independent Poisson-commuting functions, and
that these Hamiltonians induce an action of a torus T on each level set. Thus the
momentum map induces action-angle coordinates on the subset h�1

C .U / of M.†/:
there is a map

RW U �T ! h�1
C .U /; .�; �/ 7!R.�e; �e/:

The map R satisfies that hC.R.�; �// D � and R�.!/ D
P

e2E d�e ^ d�e . These
action-angle coordinates are unique up to a shift in angle coordinates.

Marché and Paul [21] proved from skein calculus that in the case of the once-punctured
torus and the case of the four-punctured sphere, the matrix coefficients of curve operators
hT


r 'c ; 'cCki converge to the k th Fourier coefficient of the trace functions

� 7! f

�
R
�

c

r
; �
��
; � 2 T:

They also gave an expression for the O.1=r/ term in the expansion of hT 
r 'c ; 'cCki.

Geometry & Topology, Volume 20 (2016)
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Figure 1: A banded graph compatible with a pants decomposition of † by
curves fCeg and the associated cell decomposition of a pants into hexagons

Our paper aims to give a generalization of the asymptotic expansion in [21] for any
marked surface †. We observed a new phenomenon when studying general surfaces:
the asymptotic coefficients are again related to Fourier coefficients of trace functions,
but they are twisted by rapidly oscillating signs.

To give an expression for these signs, we introduce some cocycles on †.

Equip † with a pants decomposition C and a compatible graph � . As we can see in
the example in Figure 1, † n� is a trivalent banded graph diffeomorphic to � , so we
get a continuous folding map pW †! � that pastes the two copies of � .

For any r –admissible color c we can define a multicurve Lc inside � : take ce � 1

parallel strands at any edge e and connect at vertices in the unique way avoiding
crossings.

We define a cocycle xc in H 1.†;Z=2/ by the formula

xc. /DLc \p. /:

Here \ is the \–product map H1.�;Z=2/�H1.�; @�;Z=2/! Z=2, and we view
p. / as an element of H1.�; @�;Z=2/.

Geometry & Topology, Volume 20 (2016)



Asymptotic formulae for curve operators in TQFT 3061

Theorem 1.1 Let  be a multicurve in † n fp1; : : : ;png.

For e 2E we write I

e for the geometric intersection number of  with Ce .

We introduce an open set V � U � Œ0; 1� by the formula

V D
˚
.�; „/ j .�eC "e„I


e /e2E 2 U for all " 2 f˙1gE

	
:

Then

(1) Whenever ke > I

e or ke ¤ I


e .mod 2/, the matrix coefficient hT 

r 'c ; 'cCki

vanishes.

(2) If ke � I

e and ke D I


e .mod 2/, there exists a smooth function .F

k
/kWE!Z

defined on V such that, for any c 2 Ur , the matrix coefficient hT 
r 'c ; 'cCki is

xc. /F


k
.c=r; 1=r/.

If we set Fk D 0 for any other kW E! Z, we can write

T 
r 'c D xc. /

X
kWE!Z

F


k

�
c

r
;

1

r

�
'cCk :

As xc is an element of H 1.†;Z=2/, xc. / is just a sign. This sign factor, which did
not appear in [21], will be shown to be trivial when the banded trivalent graph � is
planar (which was the case for the punctured torus and the four-holed sphere).

The coefficients F


k
can be computed by hand for any multicurve  on †, but to give

an explicit formula for a general  is out of reach. However, we will provide a formula
for the first two terms of the Taylor expansion of F



k
in the second variable.

In [21], to make sense of the coefficients of T

r Marché and Paul introduce a complex-

valued function � , which they called the  –symbol of T

r . We follow their approach,

but the signs in our formulae lead us to define the  –symbol as a function with values
in some algebra A� , which we call the intersection algebra. We define A� as follows:

Let � be the map H 1.�;Z=2/!H 1.�; @�;Z=2/ and B be its image. The folding
map p and the map � induce a map p�W H

1.†;Z=2/!H 1.�; @�;Z=2/. We define

A� D
M
Œ �2B

CŒ �

with the product Œ �Œı�D .�1/\
zı Œ C ı�, where �.zı/D Œı� and \ is the intersection

form H 1.�; @�;Z=2/�H 1.�;Z=2/! Z=2.

Geometry & Topology, Volume 20 (2016)



3062 Renaud Detcherry

Definition 1.2 Let  be a multicurve on †. We define the  –symbol of T

r as the

map
� W V � .R=2�Z/!A�

such that
� .�; „; �/D

X
kWE!Z

Fk.�; „/e
ik�� Œp�. /�:

If �W A�!C is a morphism of algebras, we also introduce �� .�; �/D�.� /.�; 0; �/.

Let us add a few remarks on this definition:

(1) k � � stands for
P

e2E ke�e .

(2) The sum over kW E ! Z is actually a finite sum, as only a finite number of
coefficients F



k
does not vanish.

(3) We will often omit the p� and just write Œ � for the element Œp�. /�, when 
is a multicurve.

(4) We will often refer to the zeroth order in „ of the  –symbol, that is, � .�; 0; �/,
as the principal symbol of T


r .

We use this definition to state our main result:

Theorem 1.3 Let  be a multicurve on †. The  –symbol � .�; „; �/ of the curve
operator T


r has the following asymptotic expansion:

� .�; „; �/D � .�; 0; �/C
„

2i

X
e2E

@2

@�e @�e
� .�; 0; �/C o.„/

and, for �W A� ! C a morphism of algebras, we have �� .�; �/ D f .R�.�; �// D

�Tr.R�.�; �/. //, where the R� are action-angle parametrizations on

M.†/D Hom
�
�1.† n fp1; : : : ;png/;SU2

�
=SU2

defined up to a choice of origin of the angles.

The above theorem is quite similar to results obtained by Andersen and Gammelgaard
[6] in the geometric framework of the Witten–Reshetikhin–Turaev TQFT.

Recall that, for any complex structure � on † representing a point in the Teichmüller
space T of †, the smooth part of the moduli space of † has the structure of a Kähler
manifold M� . It is then possible to identify the TQFT vector spaces Vr .†/ with the
space of holomorphic sections H 0.M� ;L

r /, where L is the Chern–Simons vector
bundle; see Andersen and Ueno [7; 8; 9; 10].

Geometry & Topology, Volume 20 (2016)



Asymptotic formulae for curve operators in TQFT 3063

Theorem 7 of [6] shows that curve operators T

r are approximated at order 1 by

Toeplitz operators of principal symbol f and subprincipal symbols

1
4
��f C irX 00

F
f ;

where X 00
F

is the .0; 1/–part of the Hamiltonian vector field for the Ricci potential.

An alternative proof of Theorem 1.3 could be to combine the results of [6] with results
explaining how these Laplace operators degenerate when the complex structure on †
converges to the pair of pants decomposition. See Andersen [5] for an outline of such
techniques.

The methods in [6] rely on the geometric framework of TQFT or the Hitchin connec-
tion so they are quite different from ours, which is based on skein theory and is the
continuation of the work of Marché and Paul [21].

The proof of [21] in the case where † is the punctured torus and the four-holed
sphere relied on explicit computations for some simple set of curves that generates the
Kauffman algebra of †, then extending the result to general curves. This approach
failed in higher genus as no simple set of generators is known. Instead, we developed
a more conceptual and systematic method, which relies on the study of algebraic
properties of the  –symbol and the Kauffman algebra of †.

Marché and Paul [21] used the asymptotic estimation to construct a framework for
curve operators on the punctured torus and the four-holed sphere as Toeplitz operators
on the sphere. This allowed the application of the WKB-approximation for eigenvectors.
From this they deduced asymptotic expansions of quantum invariants (such as a new
proof of the asymptotic expansion of 6j –symbols, and an expression for the punctured
S –matrix). Therefore, we hope to use our asymptotic expansions for general marked
surface to make a connection to the framework of curve operators as Toeplitz operators
on toric varieties, or at least apply the tools of microlocal analysis. Such a Toeplitz
framework for curve operators may be a useful tool to study combinatorial TQFT. Indeed,
in a different approach, Andersen [1] introduced some geometrical curve operators that
are Toeplitz operators to prove the asymptotic fidelity of the quantum representations
of the mapping class group. We think that the idea, initiated by Andersen, of viewing
the standard curve operators as Toeplitz operators is a powerful idea, as has been
demonstrated in various work of his [2; 3; 4]. We believe that our result and methods,
based on the BHMV approach to TQFT, could provide interesting applications in other
directions.

Acknowledgements I am very thankful to my advisor Julien Marché for his guidance
and advice. I also would like to thank Gregor Masbaum for pointing out an error about
intersection forms.
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3064 Renaud Detcherry

2 A quick overview of TQFT and curve operators

In this section we will outline the BHMV approach to TQFT. Their construction relies
on the notion of Kauffman bracket skein modules of 3–manifolds and Kauffman
algebras of marked surfaces.

For M a compact oriented 3–manifold (which can have a boundary), we define
K.M;A/ as the quotient of the free CŒA˙1�–module generated by links modulo
isotopy and the Kauffman relations (see Figure 2).

For t 2 C� , we can define a Kauffman module evaluated at t : we write K.M; t/D

K.M;A/˝ADt C .

Now, if † is a surface with marked points p1; : : : ;pn , we denote by K.†;A/ the
Kauffman module K

�
.† n fp1; : : : ;png/� Œ0; 1�;A

�
.

We call a disjoint union of simple curves on † which is disjoint from the marked points
of † a multicurve on †. It is easy to see that K.†;A/ is spanned by multicurves
on †, and actually multicurves give a basis of this vector space, as shown in [14].

The module K.†;A/ has an algebra structure: the product  � ı of two elements of
K.†;A/ is obtained by isotoping  and ı so they are included in † �

�
1
2
I 1
�

and
†�

�
0I 1

2

�
, respectively, then gluing the two parts into †� Œ0; 1�.

For t 2C� , we define K.†; t/DK.†;A/˝ADt C , which is also an algebra, and admits
the set of multicurves as a basis. Using this basis, we get a linear isomorphism between
K.†; t/ and K.†;�1/ and we embed K.†;�ei�„=2/DK.†;A/˝AD�ei�„=2 CŒŒ„��
into K.†;�1/ŒŒ„��.

The vector spaces Vr .†; yc/ are quotients of Kauffman modules at roots of unity, as
explained below:

Definition [11] Let H be a handlebody with @H D†, where † is a surface with
marked points p1; : : : ;pn .

Given a coloration yc of the marked points, we choose ci � 1 points in a small neigh-
borhood of pi for each i , and write P for the set of all resulting points for i from 1

to n.

DA CA�1

Figure 2: The first Kauffman relation. The other relation states that any trivial
component is identified with �A2�A�2 .

Geometry & Topology, Volume 20 (2016)
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We define the relative Kauffman module K.H; yc; �r / as the CŒA˙1�–module generated
by banded tangles in H whose intersection with † is the set P .

For r a positive integer, we write �r D�ei�=.2r/ . For any embedding j of H in S 3 ,
we define the following submodule of K.H; yc; �r /:

N j
r D

�
x 2K.H; yc; �r /

ˇ̌̌ �
x

ˇ̌̌̌ rO
iD1

fci�1

ˇ̌̌̌
y

�
D 0 for all y 2K.S 3

n Im.j /; yc; �r /
�
;

where we write fk for the k th Jones–Wenzl idempotent, and
˝
xj
Nr

iD1 fci�1jy
˛

stands
for the element of K.S 3; �r / obtained from x and y by pasting H with S 3 n Im.j /,
inserting the Jones–Wenzl idempotent at each marked point.

Theorem 2.1 [11] N
j
r is in fact independent of j and of finite codimension, and we

may define
Vr .†; yc/DK.H; yc; �r /=N

j
r :

With this setting, there is a simple description of the curve operator T

r associated to a

multicurve  on † disjoint from the marked points p1; : : : ;pn , or more generally to
an element of K.†; �r /.

Indeed, we can take an element z of K.H; yc; �r / and stack a multicurve  over it to
obtain another element  �z of K.H; yc; �r /. The induced map factors through N

j
r , since

for any n2N
j
r and any z 2K.S 3nIm.j /; yc; �r /, we have that

˝
 �nj

Nr
iD1 fci�1jz

˛
D˝

nj
Nr

iD1 fci�1j � z
˛
. Thus we have defined an endomorphism T


r of Vr .†; yc/

associated to  2K.†; �r /.

Furthermore, the map

T �r W K.†; �r /! End.Vr .†; yc//;  7! T 
r ;

is a morphism of algebras.

In [11] it is shown that the bracket h � ; � i that we introduced above induces a Hermitian
structure on Vr .†; yc/.

The construction of [11] provides for each admissible coloring c a vector 'c 2Vr .†; yc/.
This vector is obtained by cabling the graph � by a specific combination of multicurves
(we will detail this construction in Section 4). Moreover, the family .'c/ when c runs
over all admissible colorings is a Hermitian basis of Vr .†; yc/.

For a multicurve  , the operators T

r are Hermitian operators for the Hermitian

structure on Vr .†; yc/ given by [11]. The spectrum and the eigenvectors of T

r are

known:

Geometry & Topology, Volume 20 (2016)
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First, as all components of  are disjoint, there exists a pants decomposition of † by a
family of curves C D fCege2E such that  can be isotoped to the union of ne parallel
copies of Ce , for some integers ne 2N . Then the Hermitian basis .'c/ coming from
the pants decomposition C is an eigenbasis of T


r , and we have

T 
r 'c D

� Y
e2E

�
�2 cos

�ce

r

�ne
�
'c :

We should take note that the spectral radius kT 
r k is thus always less than 2n. / , where

we write n. / for the number of components of the multicurve  .

Let
M0.†/D Hom.�1.†/;SL2.C//==SL2.C/

be the space of characters of the fundamental group of † n fp1; : : : ;png in SL2.C/.
This space is actually an affine algebraic variety.

Also let Reg.M0.†// be the algebra of regular functions from M0.†/ to C .

The following theorem, which describes the Kauffman algebra K.†;�1/, will have a
central role in the proof of Theorem 1.3:

Theorem 2.2 The map

� W K.†;�1/! Reg.M0.†//;  7! f such that f .�/D�Tr.�. //;

is an isomorphism of algebras.

This theorem follows from the work of various authors. Bullock [13] and Brumfiel
and Hilden [12] first independently proved that the map from K.†;�1/ to M0.†/
is surjective and has the nilradical of K.†;�1/ as kernel. It was proved later by
Przytycki and Sikora [23] and independently by Charles and Marché [14] that the
algebras K.†;�1/ are indeed reduced, which concluded the proof of Theorem 2.2.

Finally, we end this preliminary section with a formula for products of elements
of the Kauffman algebra at �ei�„=2 to first order in „. We recall that M0.†/ is
a Poisson manifold for the Poisson structure given in [16]. This Poisson structure
depends on a choice of normalization of the symplectic structure on M.†/. We
normalize the symplectic form ! as the symplectic reduction of the form !.˛; ˇ/D

.1=2�/
R
† Tr.˛ ^ ˇ/ for ˛ , ˇ 2 �1.†; su2/. Since, by the previous theorem, it is

possible to link the product of elements of K.†;�1/ with products of trace functions
on M0.†/, the work of Goldman [18] and Turaev [26] gives a way to think of the first
order in „ of a product of elements in K.†;�ei�„=2/ as a Poisson bracket of trace
functions.
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Notice that from the fact that Kauffman algebras have the set of multicurves as a basis,
as linear spaces K.†;�ei�„=2/ is isomorphic to K.†;�1/ŒŒ„��. This last space is
isomorphic to a subspace of Reg.M0.†//ŒŒ„�� via the map � of Theorem 2.2.

Theorem 2.3 [26] Let  and ı be multicurves, viewed as elements of K.†;�ei�„=2/.
We have that

 � ı D ffıC
„

i
ff ; fıgC o.„/:

This result is due to the work of Goldman and Turaev. First Goldman [18] was able
to compute the Poisson bracket of the trace functions of two simple closed curves as
the sum of other trace functions. Then Turaev [26] was able to identify the terms in
Goldman formula for the Poisson bracket with the order 1 terms of the product in the
Kauffman algebra.

3 Algebraic properties of  –symbols

3.1 Some remarks on the intersection algebra

In this section, we fix a surface † with marked points p1; : : : ;pn , with a pants
decomposition C D fCege2E of † and a compatible trivalent banded graph � drawn
on †.

We see from Figure 1 that C and � give us a cell decomposition of † into a bunch
of hexagons, their sides being the boundary components of � and segments of the
curves Ce . For each e 2 E , we name by C 0e (resp. C 00e ) the segment � \Ce (resp.
Ce n Int.Ce \�/); see Figure 1.

We remark that the cocycle xc of H 1.†;Z=2/ can then be computed as

xc. /D
Y
e2E

.�1/.ce�1/.C 0�e . /CC 00�e . //:

In this formula, C 0�e (resp. C 00�e ) is the cellular cochain dual to Ce
0 (resp. Ce

00 ). We
can directly check from the formula that xc is a cocycle, as its value on the boundary
of each hexagon is of the form .�1/ceCcfCcg�1 for e , f and g three adjacent edges,
which equals 1 as c is an admissible color. Also it is easy to see that the formula gives
exactly the intersection number Lc \p�. /.

Now, for ˛ and ˇ in B , the image of � W H1.�;Z=2/!H1.�; @�;Z=2/, we write
h˛; ˇi D z̨ \ˇ , where �.z̨/D ˛ . Recall that we defined the intersection algebra A�
as

A� D
M
˛2B

C � Œ˛�;

Geometry & Topology, Volume 20 (2016)



3068 Renaud Detcherry

with the product structure given by Œ � � Œı�D .�1/h;ıiŒ C ı�. It is not clear at this
point that A� is an algebra, and not even that it is well defined. This comes from the
following lemma:

Lemma 3.1 The form
h ; iW B �B! Z=2

given by h˛; ˇi D z̨ \ ˇ does not depend on the choice of a lift �.z̨/ D ˛ and is
symmetric and bilinear.

Proof Indeed, two lifts of ˛ differ by an element of H1.@�;Z=2/. Furthermore, any
element  of H1.�; @�;Z=2/ can be seen as a linear combination of closed curves
and curves with extremities in @� , and  2 B if and only if its number of extremities
in each component of @� is even. Thus the intersection of an element of H1.@�;Z=2/
with any element of B vanishes, and the form h ; i is independent of the choice of lift.

Actually, this shows that we can think of B as the quotient of H1.�;Z=2/ by the
kernel of the intersection form on H1.�;Z=2/ and h ; i as the corresponding quotient
form.

The bilinearity of the form h ; i is then evident.

Finally we show that the form is symmetric. Given lifts z̨ and ž to H1.�;Z=2/ of
two elements ˛ and ˇ in B , h˛; ˇi D z̨ \ˇ is also the intersection number mod 2 of
z̨ and ž, so it is symmetric.

From the lemma we get that the product on A� is well-defined, associative and
commutative, so A� is a commutative C–algebra of dimension 2d , where d is the
dimension of B . This dimension can be computed using the exact sequence

H1.�;Z=2/!H1.�; @�Z=2/ ı!H0.@�;Z=2/!H0.�;Z=2/! 0:

We have B D Ker ı and dim.Ker ı/C rk.ı/ D g , where g is the genus of � , and
rk.ı/Db�1, where b is the number of boundary components of � . Thus the dimension
of B is g� bC 1.

Note that when � can be embedded in the plane this dimension is 0 and A� DC .

As a finite-dimensional commutative C–algebra, A� is isomorphic to the algebra Cl ,
where l D dim.A�/D Card. yA�/ and we recall that yA� is the (finite) set of algebra
morphisms from A� to C . The isomorphism is given by

˛ 7! .�.˛//
�2 yA�

for ˛ 2A� :
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An element � of yA must send each Œ˛� with ˛ 2 B to some .�1/q.˛/ , with the
conditions that q.˛C ˇ/� q.˛/� q.ˇ/ D h˛; ˇi .mod 2/. Thus yA� is in bijective
correspondence with the set of “relative spin-structures” on .�; @�/.

We end this section with the following lemma, providing a computation of products in
A� based on the cellular decomposition on † into hexagons:

Lemma 3.2 Let  and ı be two simple closed curves on †, and set

i.; ı/D
Y
e2E

.�1/I
ı
e .C
0�
e . /CC 00�e . //:

Then i.; ı/D hp�. /;p�.ı/i.

Proof Let  and ı be two curves on †. After an isotopy of p. / and p.ı/ in � we
can arrange that p.ı/ lies in the interior of � , and p. / follows the edges of the cell
decomposition of � . Then the intersection points lie only in the curves p.Ce/DLe .
The number of intersection points of p. / and p.ı/ in Le is congruent modulo 2 to
].p.ı/\Le/L

�
e .p�. //, where L�e is the dual to the cell Le .

But L�e .p�. //DC 0�e . /CC 00�e . / and ].p.ı/\Le/D ].ı\Ce/ .mod 2/, hence the
formula for i.z ; zı/ computes the number of intersection points of  and ı modulo 2,
that is, hp�. /;p�.ı/i.

3.2 The multiplicativity property

In this section, we will temporarily assume that Theorem 1.1 holds. We can then
define  –symbols, and we will show here that these  –symbol have a property of
compatibility with the product in Kauffman modules. From this algebraic property
alone and the theorem of Bullock, the  –symbols are almost constrained to have the
form predicted by Theorem 1.3. Theorem 1.1 will be proved in Section 4.1 without
using any of the results in this section.

For a fixed .�; „; �/, the definition of the  –symbol only introduces  7! � .�; „; �/

as a map from multicurves to A� . We extend it by multilinearity to obtain a map

�.�; „; �/W K.†;�ei�„=2/!A� ŒŒ„��;

as K.†;�ei�„=2/ is spanned by multicurves.

The proof of Theorem 1.3, giving an asymptotic formula for the  –symbol, will be
the goal of Sections 5 and 6. It will rely heavily on the following property of the
 –symbol, which explains its compatibility with the product in K.†;�ei�„=2/:
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Proposition 3.3 Let  and ı be two multicurves on †. Then we have the asymptotic
expression

� �ı.�; „; �/D

�
� .�; „; �/�ı.�; „; �/C

„

i

X
e

@�e
� .�; „�/ @�e

�ı.�; „; �/

�
C o.„/:

This expression is similar to the composition of symbols of Toeplitz operators. This is
not a surprise, as curve operators can be approximated at order 1 by Toeplitz operators,
by [6]. Theorem 8 of [6] gives the order 1 of the symbols of the composition of two
such operators. It could again be possible to derive this result by degenerating the
complex structure to a pair of pants decomposition.

A version of this proposition appeared already in [21] for the four-holed sphere and the
pointed torus, but they worked with another definition of the  –symbol, which took
values in C , whereas in our definition, the  –symbol takes values in A� .

We can however extract C–valued functions from the  –symbol. As A� is isomorphic
to Cl , we denote the components of the principal symbol � .�; 0; �/ by �� .�; �/D
�.� .�; 0; �// for every � 2 yA� .

Proof of Proposition 3.3 We fix r > 0 and we take two multicurves  and ı on †.
The two functions appearing in the equality are smooth functions on a neighborhood
of U � f0g in U � Œ0; 1�. We remark that any point of U can be approximated by
a sequence cr=r with cr 2 Ur . Hence it suffice to show that they have the same
asymptotic expansion at order 1 on sequences .cr=r; �; 1=r/ where cr=r ! x 2 U .
According to Theorem 1.1, writing � D cr=r and „ D 1=r , the matrix coefficients of
the operator T


r can be written as

T 
r 'c D xc. /

X
kWE!Z

F


k
.�; „/'cCk ;

with the F


k
being smooth functions on V such that F



k
D 0 as soon as there is some

e 2E such that jkej> I

e or ke 6� I


e .mod 2/.

As  2K.†;�ei�=.2r//! T

r 2 End.Vr .†// is an morphism of algebras, we have

T  �ı
r 'c D T 

r .T
ı
r 'c/

and, from the above expression of the matrix coefficients, we get

T  �ı
r 'c D

X
mWE!Z

� X
kClDm

F


l
.� C k„; „/F ık.�; „/xc.ı/cCk. /

�
'cCm

D xc. /xc.ı/i.; ı/
X

mWE!Z

� X
kClDm

F


l
.� C k„; „/F ık.�; „/

�
'cCm:
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To obtain the second equality, note that cCk. /D xc. /xk. / and observe that if there
exists e such that ke ¤ I ıe .mod 2/ then, by Theorem 1.1, F ı

k
is 0.

However, if keDI ıe .mod 2/ for all e2E then xk. /D
Q

e2E.�1/I
ı
e .C
0�
e . /CC 00�e . //D

i.; ı/ is independent of k . Hence we can factor xk. / out of the sum.

Now, as K.†;�ei�„=2/ is generated by multicurves, we can write  �ıD
P
� f�.„/�,

and, in this sum, f� ¤ 0 only when Œ��D Œ �C Œı� 2 H1.†;Z=2/, according to the
Kauffman relations. Thus we have xc.�/D xc. /xc.ı/. We can write another formula for
the curve operator of the product:

T  �ı
r 'c D

X
m

�X
�

xc.�/f�.„/F
�
m.�; „/

�
'cCm:

So, identifying coefficients in the two formulae, we getX
�

f�.„/F
�
m.�; „/D

� X
kClDm

F


l
.� C k„; „/F ık.�; „/

�
i.; ı/:

Now, recall that we defined the  –symbol of an arbitrary element of K.†;�ei�„=2/

by extending linearly the formula for multicurves. Thus, we have

� �ı.�; „; �/D
X
m

X
�

f�.„/F
�
m.�; „/e

im� Œ��;

recalling that Œ��D Œ �C Œı� and using the previous identity of coefficients

� �ı.�; „; �/D i.; ı/
X
m

� X
kClDm

F


l
.� C k„; „/F ık.�; „/

�
eim� Œ C ı�:

Now the Taylor expansion at order 1 in „ of F


l
near .�; „/ in the first variable gives

F


l
.� C k„; „/D F



l
.�; „/C„

X
e2E

ke
@

@�e
F


l
.�; „/C o.„/

D F


l
.�; „/C„

X
e2E

ke
@

@�e
F


l
.�; 0/C o.„/:

Substituting into the previous equation gives us that

� �ı.�; „; �/D i.; ı/
X
m

� X
kClDm

�
F


l
.�; „/C„

X
e2E

ke
@

@�e
F


l
.�; „/

�

� eil�F ık.�; „/e
ik�

�
ŒCı�C o.„/
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D i.; ı/hp�. /;p�.ı/i

�
� .�; „; �/�ı.�; „; �/

C
„

i

X
e2E

@�e
� .�; „; �/ @�e

�ı.�; „; �/

�
Co.„/:

To obtain the second equality recall that Œ �Œı�D hp�. /;p�.ı/iŒ C ı� in A� . From
Lemma 3.2 we have that i.; ı/D hp�. /;p�.ı/i, which completes the proof.

According to this proposition, the principal symbol � �.�; 0; �/W K.†;�1/! A� is
a morphism of algebras. Furthermore, the components ��.�; �/ D �.�.�; 0; �/ are
algebra morphisms from K.†;�1/ to C .

Using the theorem of Bullock, we will show in Section 5.1 that these morphisms
have the form f 7! f .R�/, f 2 Reg.M0.†//, for some representations R� of
�1.† n fp1; : : : ;png/.

Identifying precisely the representations R� will come from checking the special
values of the  –symbol on the curves Ce .

As for the computation of the first-order term, we will proceed in Section 6 in a similar
fashion: first we will show, using only Proposition 3.3, that this term is related to
derivations of algebras K.†;�1/!A, then, by studying the values of the  –symbol
on the curves Ce and on another family of curves De , we will show the first-order
term is indeed given by the formula in Theorem 1.3.

4 Computations of curve operators using fusion rules

This section is devoted to the skein theory computations that will be needed in order
to prove Theorem 1.1. We describe the general form of the matrix coefficients of the
curve operators, and give examples of explicit computations of the coefficients F



k
and

the  –symbol � for some curves  .

4.1 Fusion rules in a pants decomposition

In this subsection, we will work with a fixed closed oriented surface †, along with
a pants decomposition by a family of curves C D fCege2E . We can consider ne � 1

parallel copies .C k
e /1�k�ne

of the curves Ce such that the curves C k
e cut the surface

† into a collection of pants fPsgs2S and annuli fAk
e j e 2E; 1� k � ne � 1g.

We recall that to this pants decomposition is associated a Hermitian basis 'c of Vr .†/,
of which we will recall the construction:
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Let � be a banded trivalent graph compatible with the pants decomposition C of † as
in Section 2. We recall that � is viewed as drawn on †. Given an admissible coloring
cW E! Cr , we define  c 2K.†I ycI �r / as follows:

� Replace each edge e of � by ce � 1 parallel copies of e lying on †.

� Insert in the middle of each edge the idempotent fce�1 , where we recall that fk

is the k th Jones–Wenzl idempotent.

� In the neighborhood of each trivalent vertex, join the three sets of lines in † in
the unique possible way avoiding crossings.

This family of vectors is actually an orthogonal basis of Vr .†; c/ for a natural Hermitian
structure defined in [11], which we do not recall here. We refer to [11, Theorem 4.11]
for the proof and the formula

(1) k ck
2
D

�
2

r

��.�/=2Q
P hc

1
P
; c2

P
; c3

P
iQ

ehcei
:

Here the first product is over all vertices P corresponding to pants of the pants decom-
position, the second over the edges e of the graph � . We write hni for sin.�n=r/;
hni! for

Qn
iD1hii; c1

P
, c2

P
, and c3

P
for the colors of the 3 edges adjacent to P ; and

we also set

ha; b; ci D

˝
aCbCc�1

2

˛
!
˝
aCb�c�1

2

˛
!
˝
a�bCc�1

2

˛
!
˝
bCc�a�1

2

˛
!

ha� 1i!hb� 1i!hc � 1i!
:

As we will work with TQFT vectors locally, inside a pants of the pants decomposition
for example, we will need to give a local version of this norm. Notice that if we forget
the global factor .2=r/�.�/=2 in the norm, we will not change the matrix coefficients
of the curve operators T


r .

Also, after applying fusion rules, we may get trivalent graphs with vertices other than
those in the graph associated to the decomposition. We say then that a vertex is internal
if it is trivalent or univalent and associated to a marked point, and that it is external
otherwise. Then, we will define the square of the norm of a trivalent graph asQ

P hc
1
P
; c2

P
; c3

P
iQ

e2E2
hcei

Q
e2E1
hcei

1=2
;

where the products in the denominator are over E2 , the set of edges adjacent to 2

internal vertices, and E1 the set of edges adjacent to 1 internal vertex and 1 external
vertex. The other edges bear no contribution to the norm. With this definition, if we
paste pieces of colored graph to get the graph � , we obtain the previous norm as the
product of the norm of the pieces.
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�

�
hn� 1i

hni

�1
2n nC 1 n� 1

a

bC 1 cC 1

c
b

a

cC 1bC 1

c

c˙ 1

c˙ 1
D˙

�
hci

hc˙ 1i

�1
2

a

c � 1b� 1

a

c � 1bC 1

a

bC 1 c � 1

c
b

a

b� 1 c � 1

c
b

nC 1

n
D �n�1

r

n

nC 1 n� 1

n
D��

�.nC1/
r

n

n� 1

D

�
h

aCbCcC1
2

ih
bCc�aC1

2
i

hbC 1ihcC 1i

�1
2

D

�
h

a�bCc�1
2
ih

aCb�cC1
2
i

hbC 1ihc � 1i

�1
2

D�

�
h

aCbCc�1
2
ih

bCc�a�1
2
i

hb� 1ihc � 1i

�1
2

D

�
hnC 1i

hni

�1
2

Figure 3: Fusion rules. These “normalized” fusion rules allow us to simplify
the union of a colored banded graph and a curve colored by 2 . The dotted
edges are colored by 2 . The first rule allows to merge an edge colored by 2

with another one. The second line consists of the “half-twist formulae” of [22].
When all curves have been merged with the graph, the 3rd , 4th and 5th lines
can be used to remove trigons, and the last rule to remove bigons.

Geometry & Topology, Volume 20 (2016)



Asymptotic formulae for curve operators in TQFT 3075

Figure 4: Dehn presentation of multicurves

With this setting, we give a normalized version of the fusion rules in TQFT. The fusion
rules derived in [22], give a way to compute the image of the vector 'c under the curves
operators. We list the fusion rules that we will need in Figure 3; our version differs
from the rules in [22], as we express them with the normalized vectors 'c instead of
the vectors  c from [22].

We will perform the computations by using the fusion rules only locally, that is only
inside of a pair of pants of the pants decomposition, or inside an annulus in the
neighborhood of one of the curves Ce .

Indeed, for  a multicurve, by a classification provided by Dehn, we can isotope  so
that the intersection of  with each pants Ps of the decomposition looks like the 4th

picture of Figure 4, and the intersection with each of the annuli Ak
e looks like one of

the first three pictures of Figure 4.

Furthermore, in this isotopy class, the intersection of  with each Ce is the smallest in
the isotopy class of  . We refer to [15, Section 4.3] for this classification.

Now, we do the computations in two steps:

First, we use fusion rules to reduce each type of piece to elements corresponding to the
intersection of the graph � in a pants or annulus with a certain coloring, glued with
“candlesticks”.

A candlestick is an element of the TQFT vector space of an annulus that is the normalized
vector associated to a banded trivalent graph in an annulus, consisting of a central edge
joining the boundary components (with no twist), colored by n 2 Cr on the bottom
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n

nC ı1

nC ı2

nC ı3

nC ı4

Figure 5: A candlestick C.n; "; �/ with 4 legs. We denote by ıi D
Pi

jD1 "j
the partial sums of the color shifts "j . Notice that the legs can go alternatively
to the left or to the right of the central edge.

component, a collection of legs colored by 2, joining the central edge and the bottom
component, as in Figure 5.

The data that defines a candlestick with k legs C.n; ";‚/ is the color n 2 Cr of
the central edge at the bottom, the order ‚ in which the legs join the central edge,
and the shifts of the color of the central edge ."i/iD1:::k when we pass each vertex
corresponding to a leg.

Reduction of the different pieces Simple computations using fusion rules give us
the following formulae when the pants or the annuli contain only one curve:

b

c a

b

c a

bC "

cC�

D

X
";�

F";�.a; b; c; r/

where we set

FC;C.a; b; c; r/D

�˝aCbCcC1
2

˛˝
bCc�aC1

2

˛
hbihci

�1
2

;

FC;�.a; b; c; r/D F�;C.a; c; b; r/D�

�˝a�bCc�1
2

˛˝
aCb�c�1

2

˛
hbihci

�1
2

;
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F�;�.a; b; c; r/D�

�˝aCbCc�1
2

˛˝
bCc�a�1

2

˛
hbihci

�1
2

I

next,

D

X
"

G".n; r/
n

n

n

nC "

where

GC.n; r/D .�1/nC1e�i�.n�1/=.2r/

�
hnC 1i

hni

�1
2

;

G�.n; r/D .�1/nC1ei�.nC1/=.2r/

�
hn� 1i

hni

�1
2

I

third,

n

n

n

nC "
D

X
"

H".n; r/

where

HC.n; r/D .�1/nC1ei�.n�1/=.2r/

�
hnC 1i

hni

�1
2

;

H�.n; r/D .�1/nC1e�i�.nC1/=.2r/

�
hn� 1i

hni

�1
2

I

and lastly

n

n

nC "

n

D

X
"

L".n; r/
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where

LC.n; r/D .�1/nC1ei�.nC2/=.2r/

�
hnC 1i

hni

�1
2

;

L�.n; r/D .�1/nC1e�i�.n�2/=.2r/

�
hn� 1i

hni

�1
2

:

All these coefficients are of the required form xc. /F.c=r; 1=r/ for some smooth
function F defined on V .

.�1/ceC1

.�1/ceC1

.�1/cfC1

.�1/cfC1

.�1/cgC1

.�1/cgC1

1 1

1

Figure 6: The cocycle xc on the pants bounded by the curves Ce , Cf and Cg

If we have many curves in a pants or annulus, we only need to choose an order to make
the fusions, and apply the latter formulae. For example, in the case of the pants, we
obtain:

b

ac

b

ac

: : :
˛ curves  curves

ˇ curves

bCB

aCA

cCC

D

X
";�;�

P";�;�.a; b; c; r/

where we use the notation AD
PˇC

iD1
"i , B D

P˛C
jD1

�j and C D
P˛Cˇ

kD1
�k .

Here we have first used fusion on the ˛ curves that go from Cb to Cc , then the ˇ
curves that run from Ca to Cc , and finally the  curves from Ca to Cc . With this
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order for the fusions, the coefficients P";�;�.a; b; c; r/ are products of three factors
corresponding to each series of fusions:

F�1;�1
.a; b; c; r/F�2;�2

.a; bC�1; cC�1; r/ � � �F�˛;�˛

�
a; bC

˛�1X
iD1

�i ; cC

˛�1X
iD1

�i ; r

�
;

F�˛C1;"1

�
bC

X̨
iD1

�i ; a; cC
X̨
iD1

�i ; r

�
� � �F�˛Cˇ;"ˇ

�
bC

X̨
iD1

�i ; aC

ˇ�1X
iD1

"i ; cC

˛Cˇ�1X
iD1

�i ; r

�
;

F�˛C1;"ˇC1

�
cC

X
�; bC

X̨
iD1

�i ; aC

ˇX
iD1

"i ; r

�

� � �F�˛C ;"ˇC

�
cC

X
�; bC

˛C�1X
iD1

�i ; aC

ˇC�1X
iD1

"i ; r

�
:

Notice that, at every step of the fusion, the shifts in the color ce are sums of ˙1 terms,
one term for each arc intersecting Ce that has been merged with � . Thus the coefficients
P";�;� are defined and smooth on the required domain V D f.�; „/ j �e˙ I


e „ 2 U g.

Furthermore, in the end the shift of ce is no greater than the number of curves that
intersect Ce and of the same parity as this number.

We now only need to explain what happens when we glue together two candlesticks.

First, note that we can only paste candlesticks with the same number of legs, and
the same bottom color n. Moreover, if we paste two candlesticks C.n; ";‚/ and
C.n; �;‚0/ with

P
j �j ¤

P
i "i , then we always obtain 0 (as the vector space Vr .†/

of a sphere † with two points marked by different colors is 0).

Proposition 4.1 The gluing of candlesticks C.n; ";‚/ and C.n; �;‚0/ with k legs
with

Pk
iD1 "i D

Pk
jD1 �j is proportional to a band colored by nC

P
"i joining the

two boundary components of the annulus with no twist, the proportionality constant
being G.n=r; 1=r/, where G is a smooth function on f.�; „/ j � ˙ k„ 2 .0; 1/g.

We should point out that, in this proposition, the function G depends on ‚, ‚0 , "
and �.

Proof We prove this proposition by induction on the number of legs of the candlestick.
If we paste two candlesticks with only one leg, this is direct from the fusion rule
eliminating bigons (see Figure 3), as it only produces a factor .hc˙ 1i=hci/1=2 . Now,
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(a) (b) (c)

Figure 7

if nD 2, the only delicate case is when the legs of the two parts are positioned as in
Figure 7(c).

Indeed, in cases (a) and (b), we can simply eliminate two bigons. For (c), we use the
following switching legs formulae:

�
h1i

hci
D C

.hcC 1ihc � 1i/1=2

hci

c˙ 2

c

c˙ 1
D

c˙ 2

c

c˙ 1

c

c

c˙ 1

c

c

c˙ 1

c

c

c� 1

To get such formulae, we have to verify that gluing the left-hand side or the right-
hand side with a two-legs candlestick on the bottom, with any color shifts, we get the
same result after using the fusion rules for bigons and triangles elimination. This is a
straightforward computation, so we will omit it here.

This shows Proposition 4.1 for k � 2.

Now, suppose we glue two candlesticks with kC 1 legs. We have two cases:

In Figure 8 (left), the upper leg of the upper candlestick and the bottom leg of the
bottom candlestick both go to the right (or both to the left); the gluing is obtained by
gluing two candlesticks with k legs, then suppressing a bigon. The factor we get is of
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C.n; �;‚/

D.n; �;‚0/

C.n; �;‚/

D.n; �;‚0/

Figure 8: The two cases of pasting candlesticks with k legs

the form

G
�

n

r
;

1

r

��˝nCPkC1
iD1 "i

˛˝
nC

Pk
iD1 "i

˛ �1
2

;

the factor G.n=r; 1=r/ coming from k –leg candlestick elimination, and the other factor
from the bigon elimination rule. It is indeed a function of .n=r; 1=r/ that is smooth on
the domain we claimed.

In Figure 8 (right), the upper leg of the upper part and the bottom leg of the bottom
part go to different sides. We apply a sequence of switching legs formulae until the leg
connected to the upper leg of the candlestick is the bottom leg of the bottom candlestick.
Each of these operations yields a smooth function on V as a factor; this comes from
the switching legs formulae and the fact that all intermediate colors on the central edge
are of the form nC

Pj
iD1

"i , with j � I

e . Then we are back to the former case.

4.2 Examples of the  –symbol

We derive expressions of the  –symbol for two families of curves on †: the first
family consists of the curves Ce of the pants decomposition itself, and the other of
curves De , e 2E , that are in some sense dual to the curves Ce . The De are defined
this way: if e is an internal edge that joins a vertex to itself, then De is a loop parallel
to e . If e joins two different vertices, then De consists of two arcs parallel to e that
we close into a loop as in Figure 9.

Note that Ce and Df intersect each other if and only if e D f , and in this case
they intersect once or twice. Finally, the classes in H1.�; @�;Z=2/ represented by
p�.Ce/ and by p�.De/ are all zero. Note that in the case where De and Ce have one
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ca

cd

ce

cb

ccDe

Figure 9: The curve De when e joins two distinct trivalent vertices of �

point of intersection, p�.De/ is not zero as a class in H1.�;Z=2/, however it is in
H1.�; @�;Z=2/ as p.De/ is homotopic to a boundary curve in the surface � .

Proposition 4.2 We have, for any e 2E and c 2 Ur :

(1) T
Ce
r 'c D�2 cos.�ce=r/'c and �Ce .�; „; �/D�2 cos.��e/Œ0�.

(2) In the case where e is an edge joining a trivalent vertex to itself as in Figure 10 we
have

�De .�; „; �/D
�
W .��e; ��f ; „/e

i�e CW .��e; ��f ;�„/e
�i�e

�
Œ0�;

where

W .�; ˛; „/D

�
sin.� C˛=2C„=2/ sin.� �˛=2C„=2/

sin � sin.� C„/

�1
2

:

ce

cf

Figure 10: The curve De when e joins a trivalent vertex of � to itself
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(3) In the case where e is an edge between two distinct trivalent vertices as in Figure 9
we have

�De .�; „; �/D�
�
I.��; �„/CJ.��; �„/e2i�e CJ.�.� � 2„ıe/; �„/e

�2i�e
�
Œ0�:

Here, we have set ıe for the element in RE such that ıe;f D 1 if and only if e D f ,

I.�; „/D 2 cos.�c C �d �„/

C 4
sin �aC�d��e�„

2
sin �a��dC�eC„

2
sin �bC�c��e�„

2
sin �b��cC�eC„

2

sin �e sin.�eC„/

C 4
sin �aC�dC�e�„

2
sin ��aC�dC�e�„

2
sin �bC�cC�e�„

2
sin ��bC�cC�e�„

2

sin �e sin.�e �„/

and

J.�; „/D 4

�
sin �aC�d��e�„

2
sin �a��dC�eC„

2
sin �bC�c��e�„

2
sin �b��cC�eC„

2

sin �e sin.�eC„/

�
sin �aC�dC�eC„

2
sin ��aC�dC�eC„

2
sin �bC�cC�eC„

2
sin ��bC�cC�eC„

2

sin.�eC„/ sin.�eC 2„/

�1
2

:

The expressions of T
Ce
r and T

De
r can be derived by using the fusion rules. The

computations are rather long in the last case, but straightforward.

These expressions, as well as the expressions of the  –symbol of the curves Ce and De

were already given in [21]. They also checked by hand that the formulae of Theorem 1.3
were satisfied by these curves. We will only derive from the formulae that the zeroth-
and first-order term for these curves are related as in Theorem 1.3, a fact that we will
use later:

Proposition 4.3 Let  be any of the curves Ce or De . Then

� .�; „; �/D � .�; 0; �/C
„

2i

X
e2E

@2

@�e @�e
� .�; 0; �/C o.„/:

Proof For Ce , there is not much to prove: as �Ce does not depend on „, the first-order
term vanishes, and @2� .�; 0; �/=@�e @�e also vanishes as �Ce does not depend on �e .

For the curves De , we need to separate the case where e joins a vertex to itself, and
the case where it joins two distinct vertices.

In the first case, depicted by Figure 10, we have

�De .�; „; �/D .W .��e; ��f ; �„/e
i�e CW .��e; ��f ;��„/e

�i�e /Œ0�:
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Notice that we get W .��e; ��f ; �„/ D W
�
�
�
�e C

1
2
„
�
; ��f ; 0

�
C o.„/ from the

formula for W given above. Thus

�De .�; „; �/

D �De .�; 0; �/C
„

2

�
@

@�e
ŒW .��e; ��f ; 0/e

i�e ��
@

@�e
ŒW .��e; ��f ; 0/e

�i�e �
�
Œ0�Co.„/

D �De .�; 0; �/C
„

2i

X
e2E

@2

@�e @�e
�De .�; 0; �/Co.„/;

as expected.

Finally, in the second case above, we have

�De .�; „; �/D�
�
I.��; �„/CJ.��; �„/e2i�e CJ.�.� � 2„ıe/; �„/e

�2i�e
�
Œ0�:

It is easily seen that J.�; „/ D J.� C „ıe; 0/. Thus we only need to prove that
I.�; „/D I.�; 0/C o.„/. This is a bit more tricky:

First, notice that we can write

I.�; „/D 2 cos.�c C �d �„/C
1

sin �e
.F.�eC„/�F.��eC„//C o.„/;

where

F.�e/D 4
sin �aC�d��e

2
sin �a��dC�e

2
sin �bC�c��e

2
sin �b��cC�e

2

sin �e

D
.cos.�d � �e/� cos �a/.cos.�c � �e/� cos �b/

sin �e
:

Therefore, the first-order term for I.�; „/ is

„

�
2 sin.�c C �d /C

2

sin �e

d

d�e
P.F /.�e/

�
;

where P.F / is the even part of the function F . From the formula above, we have

P.F /.�e/D sin.�c C �d / cos �e � cos �a sin �c � cos �b sin �d ;

so that .1= sin �e/ dP.F /.�e/=d�e D � sin.�c C �d /, and the first order of I.�; „/

vanishes.

The computations of �Ce and �De were previously used in [21] to prove a version of
Theorem 1.3 for the punctured torus and the 4–holed sphere. Their approach was to
derive from the above formulae that the asymptotic estimate of Theorem 1.3 is valid for
the curves Ce , De and �Ce

.De/, where �Ce
denotes the Dehn twist along Ce . Then

they used the compatibility of the  –symbol with the product in K.†;�ei�„=2/ to
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prove that if Theorem 1.3 is verified for  and ı two multicurves, then it is also true
for their product  � ı . This yielded Theorem 1.3 for all multicurves in the punctured
torus and the 4–holed sphere, as the curves Ce , De and �Ce

.De/ were sufficient to
generate the Kauffman algebra.

However, this approach fails in higher genus, as this set of curves no longer generate
the Kauffman algebra. Therefore, we developed another approach to tackle the higher-
genus cases, which was also more conceptual and required less computations. Our
fundamental idea is to use the multiplicativity of the  –symbol together with the
theorem of Bullock (recalled in Section 2) to view the zeroth- and first-order term of the
 –symbol in terms of algebra morphism and derivation of algebras on Reg.M0.†//.
We then only need to compare this general shape with the values of the  –symbol on
a few curves to get the formula of Theorem 1.3. (In fact, for the zeroth-order term we
will only need the values on the Ce , while the first-order term also requires the values
on the De ).

5 Principal symbol and representation spaces

This section will be centered on the study of the principal symbol � .�; 0; �/, that
is the zeroth order of the  –symbol � .�; „; �/. The goal of the first subsection
is to establish the formula for the principal symbol, which is stated in our main
theorem: �� .�; 0; �/D f .R�.�; �//, where f is the function on M.†/ such that
f .�/D�Tr.�. // and R� are action-angles parametrization on M.†/.

5.1 Principal symbol and the SL2–character variety

This section aims to establish a link between the components of the principal symbol
�� and functions on the space of representations �1.†/! SL2.C/.

We will start our study of the principal symbol by the following proposition, which
describes which values �� .�; �/ can take:

Proposition 5.1 For any multicurve  and � 2 yA� , we have:

(1) �

� .�; �/ 2R.

(2) j�� .�; �/j � 2n. / , where n. / is the number of components of  .

Proof (1) We recall that the components of the  –symbol �� are complex-valued.
The stated property comes from the fact that curve operators are Hermitian: for any
multicurve  , and every r , the operator T


r is a Hermitian endomorphism of Vr .†/.
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By definition, we have T

r 'c D

P
k F



k
.c=r; 1=r/'cCk . As the basis .'c/c2Ur

is a
Hermitian basis, we get

F


�k

�
cCk

r
;

1

r

�
D F



k

�
c

r
;

1

r

�
for all c 2 Ur . Then for r !C1 we have F



�k
.�; 0/D F



k
.�; 0/.

Hence �� .�; �/D �. /
P

k F


k
.�; 0/eik�� 2R for all .�; �/ 2 U � .R=2�Z/E .

(2) We want to find a bound for j�� .�; �/j, where  is a multicurve. By definition,
we have �� .�; �/ D �. /

P
k F



k
.�; 0/eik�� . On the one hand, we know that the

coefficients F


k
are zero as soon as there is an e such that jkej > I


e D ]. \Ce/.

The number of nonzero coefficients is then lower than M D
Q

e2E.2I

e C1/. On the

other hand, for any r � 2 and c 2 Ur ,

F


k

�
c

r
;

1

r

�
D hT 

r 'c ; 'cCki � kT

r k:

We recalled in Section 2 that the spectral radius of T

r is always � 2n. / . Thus we

have jF
k
.c=r; 1=r/j � 2n. / for every r > 0 and every c 2 Ur . Taking the limit, we

get jF
k
.�; 0/j � 2n. / .

These two estimations only allow us to write j�� .�; �/j �M2n. / . To obtain the
promised inequality, we use the multiplicativity of � ��.�; �/:

We have j�
p

� .�; �/j D j�

� .�; �/j

p for any integer p . But p is also a multicurve,
obtained by taking p parallel copies of each component of  .

So we have that j�
p

� .�; �/j �Mp 2n.p/ .

But the number of components n.p/ is just pn. /, and the geometric intersection
numbers

Ie D ]. \Ce/

verify I
p

e � pI

e .

From the product formula defining M , we get that Mp � pjEjM .

We conclude that j�
p

� .�; �/j � pjEjM2pn. / .

Then, taking the limit p ! C1, we get that j�� .�; �/j � 2n. / for all .�; �/ in
U � .R=2�Z/E .

Now, recall that the components of the  –symbol

��.�; �/W K.†;�1/!C
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are morphisms of algebras. There is a simple description of all such morphism of
algebras: indeed, by Theorem 2.2, we have an isomorphism

K.†;�1/' Reg.M0.†//;

where M0.†/ stands for Hom.�1†;SL2.C//==SL2.C/, the space of characters of
the fundamental group of † in SL2.C/. This space is an affine algebraic variety, and
we are writing Reg.M0.†// for the set of regular functions from M0.†/ to C/. A
morphism of algebras � from Reg.M0.†// to C is always of the form

�W f 7! f .�/

for some � 2M0.†/. We deduce the existence of maps

R�W U � .R=2�Z/E!M0.†/

such that �� .�; �/D f .R�.�; �//.

5.2 A system of action-angle coordinates on the SU2–character variety

This subsection will be devoted to the study of the maps R� more closely, the aim
being to prove that it actually gives action-angle coordinates on the character variety
Hom.�1.†/;SU2/=SU2 , which we will denote by M.†/.

In M.†/ there is an open dense subset Mirr.†/ consisting of all conjugacy of irre-
ducible representations. It is a well-known fact that Mirr.†/ consists only of smooth
points of M.†/ and it has a symplectic structure.

The maps R� have at first sight their image in M0.†/. Again, we have a subset
M0irr.†/ � M0.†/ consisting of conjugacy classes of irreducible representations,
and there is a structure of complex symplectic variety on this subspace. Moreover,
Mirr.†/�M0irr.†/.

We have two remarks:

First, we point out that R�.�; �/ is always a noncommutative representation. Indeed,
for a commutative representation, we would have, for three adjacent edges e , f and g ,

hCe
.�/C hCf .�/D hCg

.�/

for one of the three orderings of e , f and g , or have hCe
.�/ChCf .�/ChCg

.�/D 2.
This can not happen for R�.�; �/ as .hCe

/e2E maps it to � 2 U , and we have strict
inequalities �g < �eC �f and �eC �f C �g < 2.

Our second point is that the map R� is smooth. By our first remark its image is
indeed in the smooth part of M0.†/. Note that for any  2 K.†;�1/ the map
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.�; �/! � .�; 0; �/ is smooth on U � .R=2�Z/E , so .�; �/! Tr.R�.�; �/. // is
smooth for every  2 �1.†/. As the space M0.†/ can be parametrized by a finite
collection of coordinates �! Tr.�.j //, where j 2 �1.†/, the map

R�W U � .R=2�Z/E!M0.†/
is smooth.

Proposition 5.2 The maps R� take values in Mirr.†/D Hom.�1†;SU2/=SU2 .

Proof Indeed, we have seen with Proposition 5.1 that �� .�; �/ is real-valued. We can
use a well-known lemma:

Lemma Any irreducible subgroup G � SL2.C/ such that the trace of all elements of
G are real is conjugated to either a subgroup of SL2.R/ or a subgroup of SU2 .

The proof of this lemma is based only on elementary algebra, manipulating trace of
products of elements of G . A detailed proof can be found for example in [19, pages
3040–3041].

As we have � .�; 0; �/D�Tr.R.�; �/. // 2R, we get that R.�; �/ is conjugated to
either a representation in SL2.R/ or a representation in SU2 .

To prove Proposition 5.2, we still need to dismiss the case where the image of R�.�; �/

would be conjugated to a subgroup of SL2.R/. To this end, we use Proposition 5.1(2),
which states that jTr.R�.�; �/ /j � 2 for every  2 �1.†/ representing a simple
closed curve on †. We use the following lemma, proved in [17, Lemma 3.1.1]:

Lemma Let �W �1.†/!PSL2.C/ be a nonelementary representation, then there exist
two simple loops a and b intersecting once such that �.a/ and �.b/ are loxodromic
(meaning jTr.�.a//j> 2 and jTr.�.b//j> 2) and noncommuting.

This lemma follows from elementary considerations in hyperbolic geometry. From the
lemma, we get that, since R.�; �/.a/ is never loxodromic, it must be an elementary
representation into PSL2.C/. But if R.�; �/ was conjugated to a representation in
SL2.R/, it would be a commutative representation, and we saw that R.�; �/ is not.

Proposition 5.3 For any � 2 yA� , the map

R�W U � .R=2�Z/E!M.†/; .�; �/ 7!R�.�; �/;

gives action-angle coordinates on the symplectic variety Mirr.†/.
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Proposition 5.2 of [20] shows that when a pants decomposition C D fCege2E of † is
given, the family of functions hCe

D
1
�

Acos
�
�

1
2
fCe

�
constitutes a moment mapping

hW h�1.U /!U and h�1.U / is an open dense subset of M.†/. The variables �e are
the action coordinates associated to this moment mapping:

hCe
.R�.�; �//D

1

�
Acos

�
�

1
2
fCe

.R�.�; �//
�
D

1

�
Acos

�
�

1
2
�Ce
� .�; �/

�
D �e;

where the third equality comes from the computation of the operator T
Ce
r given in

Section 4: for any coloration c of E , we have T
Ce
r 'c D �2 cos.�c=r/'c , so that

�
Ce
� .�; �; „/D FCe

0
.�; „/�.Œ0�/D�2 cos.��e/.

The only missing condition for .�; �/ to be a system of action-angle coordinates on
M.†/ is that

R��.!/D
X
e2E

d�e ^ d�e;

where ! refers to the symplectic form on the variety M.†/.

It also amounts to the fact that the vector fields @�e
and XhCe

(the symplectic gradient
associated to the function hCe

) on M.†/ are equal. This equality of vector fields can
be rewritten in terms of Poisson brackets:

fhCe
; f g D

@

@�e
f .R�.�; �// for all f 2 C1.M.†/;C/ and all �; �:

As the map f ! fhCe
; f g is a first-order differential operator, and any function f

on M.†/ can be approximated at order 1 near any point � 2M.†/ by a linear
combination of trace functions f associated to multicurves, we only need to verify
the equality when f D f , the trace function of a multicurve  .

To compute such Poisson brackets, we can apply Theorem 2.3:

We denote by " the linear map

"W K.†;�ei�„=2/!K.†;�1/' Reg.M0.†//;X
 multicurve

c .„/ 7!
X

 multicurve

c .0/:

For  and ı 2K.†;�ei�„=2/ we have

ff". /; f".ı/g D f"..i=„/Œ;ı�/

with Œ; ı�D  � ı� ı �  2K.†;�ei�„=2/.

We apply the above formula to compute fhCe
; f g for any  2K.†;�ei�„=2/: We

recall that hCe
D

1
�

Acos
�
�

1
2
fCe

�
. Our strategy to compute the Poisson bracket is to

approximate hCe
with polynomials in fCe

.
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Since � 2U we have �2 cos.��e/ 2 .�2; 2/ and we can choose a polynomial P such
that P

�
�2 cos.�.�eCx//

�
D xC o.x2/.

Now, the maps

f � ; f gW C
1.M.†//! C1.M.†// and .i=„/Œ � ;  �W K.†;�1/!K.†;�1/

being derivations of algebras, we have, by Goldman’s formula,

fP .fCe
/; f g.R�.�; �//D f"..i=„/ŒP.Ce/; �/.R�.�; �//D �

"..i=„/ŒP.Ce/; �/
� .�; �; 0/:

We compute this last quantity: we recall that we wrote T

r 'c D

P
k F



k
.�; „/'cCk and

we gave in Section 4.2 the expression T
Ce
r 'c D�2 cos.��e/'c . Hence T

P.Ce/
r 'c D

P .�2 cos.��e//'c . We deduce that, for c 2 Ur ,

T ŒP.Ce/; �
r 'c D

X
k

P
�
�2 cos.�.�eC ke„//

�
F


k
.�; „/'cCk

�

X
k

P .�2 cos.��e//F


k
.�; „/'cCk :

But, since ŒC k
e �D Œ0� in A� ,

�"..i=„/ŒP.Ce/; �/
� .�; �; 0/

D i
X

k

P
�
�2 cos.�.�eC ke„//

�
�P .�2 cos.��e//

„

ˇ̌̌̌
„D0

F


k
.�; 0/eik���. /:

By our choice of P this reduces toX
k

ikeF


k
.�; „/eik���. /D

@

@�e

�� .�; 0; �/D
@

@�e

f .R�.�; �//:

The last equality ends the proof: we have fhCe
; f g.R�.�; �//D @f .R�.�; �//=@�e

for every multicurve  , and R� gives an action-angle parametrization of Mirr.†/. �

5.3 Origin of angle coordinates

We want to investigate how exactly R� varies with � 2 yA� . We recall that according
to Section 3.2, the values of two different morphisms � and �0 on Œ � differ by a
representation �W H1.�; @�;Z=2/! f˙1g.

Let us also get more precise information about angle coordinates. We recall that we
have a hamiltonian hWMirr.†/! U , given by .h.�//e D 1

�
Acos

�
1
2

Tr.�.Ce//
�
. The

hamiltonian flow gives an action of RE on Mirr.†/. This action has a kernel

ƒD VectZf.2�ue/e2E ; �.ueCuf Cug/.e;f;g/2Sg;
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where .ue/e2E is the canonical basis of RE , E is the set of edges of � and S

is the set of triples of edges adjacent to the same vertex in � . We also define
ƒ0 D VectZ.�ue/ � ƒ. The quotient ƒ0=ƒ then acts on Mirr.†/ by �ue � �. / D

.�1/.Ce; /�. /, where . � ; � / is the intersection form in †.

Now that we know that the maps R� give action-angle coordinates on Mirr.†/, the
only ambiguity is the choice of the origin of the angle part. That is, we must have, for
any �, �0 2 yA� , that R�0.�; �/D R�.�; � C v�;�0.�//, where v�;�0 is a continuous
function from U to R=ƒ.

We use the values of R� on the curves De to get the origin of the angle coordinates. We
have Tr.R�.�; �/.De//D ��

De
� .�; 0; �/D �2W .��; 0/ cos �e if e joins a vertex to

itself, and Tr.R�.�; �/.De//D I.��; 0/C2J.��; 0/ cos.2�e/ otherwise. We see that,
in the first case, �e D 0 is the unique minimum of Tr.R�.�; �/.De//, so that the origin
of this coordinate is the same for all �2 yA� . In the second case, �e 7!Tr.R�.�; �/.De//

has exactly two maxima, one for �eD 0 and one for �eD� . So � is fixed modulo �ue .
Thus, for �, �0 2 yA� , we have v�;�0.�/ 2 ƒ0=ƒ. Furthermore, v�;�0 is continuous,
hence it has to be constant.

Taking two elements � and �0 in yA� , we know that they differ by a morphism

�W H1.�; @�;Z=2/! f˙1g:

It is possible to recover the vector v�;�0 2ƒ0=ƒ from the representation � : by Poincaré
duality, one can write �.p�. // D .�1/hC; i , where C 2 H1.†;Z=2/, p� is the
projection H1.†;Z=2/ ! H1.�; @�;Z=2/ and h � ; � i is the intersection form in
H1.†;Z=2/. Remember that p� maps each Ce to zero, so that the intersection
of C with each Ce must vanish. As the Ce generate a Lagrangian of H1.†;Z=2/,
C is a linear combination of the Ce and this yields a vector v� 2 ƒ0=ƒ such that
R��.�; �/DR�.�; � C v�/.

We need to note that when � is a planar graph we can drop this complicated consid-
eration of angle origins and we could have taken the  –symbol to be just C–valued.
Indeed, in this case the intersection form in H1.�; @�;Z=2/ is trivial, and the image
of H1.†;Z=2/!H1.�; @�;Z=2/ is f0g, so the  –symbol is C–valued.

6 First order of the  –symbol

In this section, we investigate the first-order term in „ of the asymptotic expansion of
the  –symbol. We identify this term by linking it with the principal symbol, for which
we already know a formula.
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We recall that for  a multicurve, the map .�; „; �/ 7! � .�; „; �/ is defined as a finite
sum of smooth functions on V , and V is a neighborhood of U � f0g in U � Œ0; 1�.
We may write, for any multicurve  ,

� .�; „; �/D � .�; 0; �/C„.� .�; �/CD .�; �//C o.„/:

Here, � .�; �/ refers to the expected first order as in Theorem 1.3:

� .�; �/D
1

2i

X
e

@2

@�e @�e
� .�; 0; �/:

Hence, what we want to prove in this section is that the remainder D .�; �/ is zero for
all  and .�; �/ 2 U � .R=2�Z/E .

We remark that the previous expressions define �.�; �/ and D.�; �/ as maps from
the set of multicurves to A� , which we can extend by linearity to linear maps
K.†;�ei�„=2/!A� ŒŒ„��.

Furthermore, � and D are some linear combinations of partial derivatives of the
smooth functions Fk on V , so they are both smooth on U � .Z=2�Z/E .

Proposition 6.1 For any multicurve  and for all .�; �/, the remainder term D .�; �/

vanishes, so that the first-order term of � .�; „; �/ is

� .�; �/D
1

2i

X
e

@2

@�e @�e
� .�; 0; �/:

The proof relies on the following two lemmas:

Lemma 6.2 Let .�; �/ be in U � .R=2�Z/E . We will provide C with the structure
of a K.†;�1/–module (or equivalently of Reg.M0.†//–module): for x 2 C and
f 2Reg.M0.†//, we define f �xDf .R�.�; �//x . Then the corresponding component
of the remainder term  7! �.D .�; �// is a derivation of K.†;�1/–modules from
K.†;�1/ to C .

Lemma 6.3 With respect to the above-discussed Reg.M0.†//–module structure on
C as above, we have an isomorphism Der.Reg.M0.†//;C/'TR�.�;�/M.†/ sending
a vector X 2 TR�.�;�/M.†/ to the derivation f ! LX f .R�.�; �//, and the vector
fields .R�� @=@�e;R

�
� @=@�e/ give a basis of the tangent spaces TR�.�;�/M.†/.

Proof of Lemma 6.2 We use Proposition 3.3 to determine how the remainder term
D.�; �/ behaves with the product of elements in K.†;�ei�„=2/. We work with one
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component �� of the  –symbol at a time. For  2K.†;�1/, we will use the notation
E D�.�CD /, so that we can write �� .�; „; �/D �


� .�; 0; �/C„E .�; �/Co.„/.

Then, applying � 2 yA� to Proposition 3.3 we have

� �ı� .�; „; �/D �� .�; „; �/�
ı
�.�; „; �/C

„

i

X
e

@�e
�� .�; „; �/ @�e

�ı�.�; „; �/C o.„/:

We have �� .�; 0; �/D f .R�.�; �//. Recall that, by Theorem 2.3,

f �ı D ffıC„
�

i
ff ; fıgC o.„/:

So, isolating terms of order 1 in „, we get
�

i
ff ; fıg.R�.�; �//CE �ı.�; �/

DE .�; �/fı.R�.�; �//CEı.�; �/f .R�.�; �//

C
1

i

X
e

@�e
f .R�.�; �// @�e

fı.R�.�; �//;

but ff ; fıg D .1=2�/
P

e @�e
f @�e

fı � @�e
fı @�e

f . We deduce that

E �ı DE�
ı
�CEı�


� C

1

2i

X
e

@�e
�� @�e

�ı�C @�e
�� @�e

�ı�:

However, as for  , ı 2K.†;�1/ we have, by Theorem 2.2, that f �ı D ffı , and

�.� /D
1

2i

X
e

@2f

@�e @�e
ıR�;

the Leibniz rule implies that �.� / satisfies the same law of composition:

�.� �ı/D �.� /fıC�.�ı/f C
1

2i

X
e

@�e
f @�e

fıC @�e
f @�e

fı:

This concludes the proof of Lemma 6.2: � ıD is a derivation.

Proof of Lemma 6.3 It is well known that M0.†/ is an affine algebraic variety whose
smooth points is the open dense subset M0irr.†/ (see [25], for example). The point
R�.�; �/ is thus a smooth point of M0.†/ for any .�; �/ 2 U �R=2�Z.

Then the proof comes from elementary considerations of algebraic geometry: when V

is an affine algebraic variety and x a point of V , we put a structure of Reg.V /–module
on C by defining f ��Df .x/�. Then Derx.V;C/ identifies with TxV Dmx=.mx/

2 ,
the algebraic tangent space to V at x (where mx D ff j f .x/D 0g), and the algebraic
tangent space at a smooth point is the same as the tangent space of V at x in the
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sense of differential manifolds. As the affine variety M0.†/ is smooth on the image
of R� , by this general property, derivations of Reg.M.†// can be viewed as vectors
of the tangent space. As .�; �/ 7!R�.�; �/ is a parametrization of M.†/, the vector
fields ..R�/� @=@�e; .R�/� @=@�e/ give a basis of the tangent space TR�.�;�/M.†/

for each .�; �/.

Proof of Proposition 6.1 Combining Lemmas 6.2 and 6.3 allows us to assert that
�.D.�; �//, viewed as a map Reg.M0.†//!C , is of the form f 7! LX f .R�.�; �//

for some X 2 TR�.�;�/M
0.†/ and we may write X D

P
e ae @=@�e

C be @=@�e
for

some coefficients ae , beWM.†/! C . As D is smooth, so are the coefficients ae

and be .

We want to prove that these coefficients all vanish. To this end, we recall that we proved
in Section 4.2 that the remainder term vanishes for the curves Ce and De . Furthermore,
we have the formula of Section 4:

We have �Ce .�; „; �/D�2 cos��e Œ0�, so that �.DCe
/.�; �/D 2ae� sin.��e/. Since

the remainder term vanishes on Ce , we must have ae D 0.

To show the vanishing of the be , we use the formulae for De :

For the first kind of curve De , described in Section 4.2, we have fDe
.R�.�; �// D

�
De
� .�; 0; �/D 2W .��; 0/ cos �e , where W does not vanish for � 2 U .

We know that the remainder term DDe
vanishes, so we have

�.DDe
.�; �//D be

@

@�e
fDe

.R�.�; �//D�2be� sin.�e/W .��; 0/D 0:

This yields be D 0.

In the second case, fDe
.R�.�; �// D �

De
� .�; 0; �/ D �2J.��; 0/ cos 2�e � I.��; 0/

for the functions I and J defined in Section 4.2, which are nonvanishing for � 2 U .

Again since �.DDe
.�; �// D be @fDe

.R�.�; �//=@�e D 4�be sin.2�e/J.��; 0/ van-
ishes, we must have be D 0. It follows that the remainder term  7!D is the zero
derivation on K.†;�1/ 7! A� , which is the last ingredient we needed to complete
the proof of Proposition 6.1.
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Trisecting 4–manifolds

DAVID T GAY

ROBION KIRBY

We show that any smooth, closed, oriented, connected 4–manifold can be trisected
into three copies of \k.S1 �B3/ , intersecting pairwise in 3–dimensional handle-
bodies, with triple intersection a closed 2–dimensional surface. Such a trisection is
unique up to a natural stabilization operation. This is analogous to the existence, and
uniqueness up to stabilization, of Heegaard splittings of 3–manifolds. A trisection
of a 4–manifold X arises from a Morse 2–function GW X ! B2 and the obvious
trisection of B2 , in much the same way that a Heegaard splitting of a 3–manifold Y

arises from a Morse function gW Y ! B1 and the obvious bisection of B1 .

57M50, 57M99; 57R45, 57R65

1 Introduction

Consider first the 3–dimensional case of an oriented, connected, closed 3–manifold Y 3 .
From a Morse function f W Y ! Œ0; 3� with only one critical point of index 0 and one
of index 3, and all critical points of index i mapping to i , we see that f �1

��
0; 3

2

��
and f �1

��
3
2
; 3
��

are solid handlebodies, \g.S1 �B2/.

For uniqueness, we use Cerf theory [3] to get a homotopy ft W Y ! Œ0; 3� between
f0 and f1 (each giving Heegaard splittings) where this homotopy introduces no new
critical points of index 0 or 3. There are births and deaths of cancelling pairs of
index-1 and -2 critical points, but these stabilize the Heegaard splittings by connected
summing with the standard genus-1 splitting of S3 . The homotopy ft can be chosen
to keep the index-1 critical values below 3

2
and the index-2 above. Then handle slides

between 1–handles, or 2–handles, take one Heegaard splitting to the other. (This is
a now well-known Cerf-theoretic proof of the Reidemeister–Singer theorem (see eg
Saveliev [10]), which was originally proved combinatorially; see Reidemeister [9] and
Singer [11].)

Recall that a Heegaard diagram for a Heegaard splitting is a triple .Fg; ˛; ˇ/, where
Fg is the Heegaard surface and each of ˛ and ˇ is a g–tuple of simple closed curves
in Fg which bounds a basis of compressing disks in each of the two handlebodies. Thus
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every 3–manifold is described by a Heegaard diagram, and two Heegaard diagrams
describe diffeomorphic 3–manifolds if and only if they are related by stabilization,
handle slides, and diffeomorphisms of Fg .

We now set up an analogous story in dimension four: Let Zk D \
k.S1 �B3/ with

Yk D @Zk D ]k.S1 � S2/. Given an integer g � k , let Yk D Y C
k;g
[ Y �

k;g
be the

standard genus-g Heegaard splitting of Yk obtained by stabilizing the standard genus-k
Heegaard splitting g� k times.

Definition 1 Given integers 0� k � g , a .g; k/–trisection (see Figure 1) of a closed,
connected, oriented 4–manifold X is a decomposition of X into three submanifolds
X DX1[X2[X3 satisfying the following properties:

(1) For each i D 1; 2; 3, there is a diffeomorphism �i W Xi!Zk .

(2) For each i D 1; 2; 3, taking indices mod 3,

�i.Xi \XiC1/D Y �k;g and �i.Xi \Xi�1/D Y C
k;g
:

Remark 2 Note that the triple intersection X1\X2\X3 is a surface of genus g and
that �.X /D 2Cg� 3k . Thus k is determined by X and g , and for this reason we
will often refer to a .g; k/–trisection of X simply as a genus-g trisection of X . Also
note that, for a fixed X , different trisections thus have the same genera mod 3.

Given a .g; k/–trisection X DX1[X2[X3 , consider the handlebodies Hij DXi\Xj

and the central genus-g surface Fg DX1\X2\X3 D @Hij . A choice of a system of
g compressing disks on Fg for each of the three handlebodies gives three collections
of g curves: ˛ D .˛1; : : : ; ˛g/, ˇ D .ˇ1; : : : ; ˇg/ and  D .1; : : : ; g/, such that
compressing along ˛ gives H12 , compressing along ˇ gives H23 and compressing
along  gives H31 . Furthermore, each pair .˛; ˇ/, .ˇ;  / and .; ˛/ is a Heegaard
diagram for ]k.S1 �S2/.

Definition 3 A .g; k/–trisection diagram is a 4–tuple .Fg; ˛; ˇ;  / such that each
triple .Fg;˛;ˇ/, .Fg;ˇ; /, .Fg;;˛/ is a genus-g Heegaard diagram for ]k.S1�S2/.
The 4–manifold determined in the obvious way by this trisection diagram will be
denoted X.Fg; ˛; ˇ;  /.

Theorem 4 (existence) Every closed, connected, oriented 4–manifold X has a
.g; k/–trisection for some 0� k � g . Moreover, g and k are such that X has a handle-
body decomposition with 1 0–handle, k 1–handles, g�k 2–handles, k 3–handles
and 1 4–handle.

Remark 5 There are two trivial consequences of the handle decomposition mentioned
in the theorem which are worth noting:
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X1

X2

X3

Figure 1: How the pieces of a trisection fit together

(1) If k D 0, ie X1 , X2 and X3 are each 4–balls, then X has no 1– or 3–handles,
and is thus simply connected.

(2) If g D k , then X has no 2–handles, so X Š ]kS1 �S3 .

The following is immediate:

Corollary 6 Every closed 4–manifold is diffeomorphic to X.Fg; ˛; ˇ;  / for some
trisection diagram .Fg; ˛; ˇ;  /.

Remark 7 Readers familiar with the Heegaard triples used by Ozsváth and Szabó [8]
to define the Heegaard Floer 4–manifold invariants will see that a trisection diagram is a
special type of Heegaard triple and may suspect that this corollary follows fairly quickly
from the Heegaard triple techniques in [8]. In all fairness this is probably true; we will
present two proofs of Theorem 4, one of which tells the story of how we discovered
the result using Morse 2–functions, while the other is more in the spirit of [8], directly
using ordinary handle decompositions. In some sense, then, our existence result can be
thought of as a particularly nice packaging of the topological setup for [8].

Exactly as with Heegaard splittings in dimension 3, our uniqueness result for trisections
of 4–manifolds is uniqueness up to a stabilization operation, which we now define.
The idea is illustrated in Figure 2, in dimension 3.

Definition 8 (stabilization) Given a 4–manifold X with a trisection .X1;X2;X3/,
we construct a new trisection .X 0

1
;X 0

2
;X 0

3
/, as follows: For each i; j 2f1; 2; 3g, let Hij

be the handlebody Xi\Xj , with boundary FDX1\X2\X3 . Let aij be a properly em-
bedded boundary parallel arc in each Hij , such that the end points of a12 , a23 and a31

are disjoint in F . Let Nij be a closed 4–dimensional regular neighborhood of aij

in X (thus diffeomorphic to B4 ), with N12 , N23 and N31 disjoint. Then we define

� X 0
1
D .X1[N23/ n . VN31[

VN12/,

� X 0
2
D .X2[N31/ n . VN12[

VN23/,

� X 0
3
D .X3[N12/ n . VN23[

VN31/.
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X1

X2

X3

H31

H12

H23

Figure 2: Stabilizing a trisection in dimension 3

The operation of replacing .X1;X2;X3/ with .X 0
1
;X 0

2
;X 0

3
/ is called stabilization.

Since any two boundary parallel arcs in a handlebody are isotopic, it is clear that this
operation does not depend on the choice of arcs or neighborhoods.

In terms of trisection diagrams we have:

Definition 9 Given a trisection diagram .Fg; ˛; ˇ;  /, the trisection diagram .F 0g0 D

FgC3; ˛
0; ˇ0;  0/ obtained by connected summing .Fg; ˛; ˇ;  / with the diagram in

Figure 3 is called the stabilization of .Fg; ˛; ˇ;  /.

Figure 3: Stabilizing a trisection diagram means connected summing with
this diagram. By itself, this describes the simplest nontrivial trisection of S4 ,
of genus 3 . Red, blue and green indicate ˛ , ˇ and  curves, respectively.

We prove the following fact at the beginning of Section 5:

Lemma 10 If .X1;X2;X3/ is a genus-g trisection of X 4 with diagram .Fg; ˛; ˇ;  /,
and .X 0

1
;X 0

2
;X 0

3
/ is a stabilization of .X1;X2;X3/, then .X 0

1
;X 0

2
;X 0

3
/ is also a trisec-

tion of X , with genus g0 D gC 3 and diagram .Fg0 ; ˛
0; ˇ0;  0/, the stabilization of

.Fg; ˛; ˇ;  /.
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The reader may find Figure 2 useful in proving this lemma before reading our proof.

Theorem 11 (uniqueness) Given two trisections .X1;X2;X3/ and .X 0
1
;X 0

2
;X 0

3
/

of X , after stabilizing each trisection some number of times there is a diffeomorphism
hW X ! X isotopic to the identity with the property that h.Xi/D X 0i for each i . In
particular, h.Xi \Xj / D X 0i \X 0j for i ¤ j in f1; 2; 3g, and h.X1 \X2 \X3/ D

h.X 0
1
\X 0

2
\X 0

3
/.

Corollary 12 Given trisection diagrams .Fg; ˛; ˇ;  / and .Fg0 ; ˛
0; ˇ0;  0/, the corre-

sponding 4–manifolds X.Fg; ˛; ˇ;  / and X.Fg0 ; ˛
0; ˇ0;  0/ are diffeomorphic if and

only if .Fg; ˛; ˇ;  / and .Fg0 ; ˛
0; ˇ0;  0/ are related by stabilization, handle slides, and

diffeomorphism. (Handle slides are slides of ˛s over ˛s, ˇs over ˇs and  s over  s.)

Proof Any two handle decompositions of a fixed genus-g handlebody, each with one 0–
handle and g 1–handles, are related by handle slides; this is proved in Johannson [5].

2 Discussion and examples

We begin with a few explicit examples of trisections and corresponding trisection
diagrams.

� S4 �C �R3 can be explicitly divided into three pieces

Xj D f.rei� ;x3;x4;x5/ j 2�j=3� � � 2�.j C 1/=3g;

giving a genus-0 trisection of S4 . The diagram is S2 with no curves.

� Stabilizing the genus-0 trisection of S4 gives a genus-3 trisection, with trisection
diagram shown in Figure 3. Since it is not known if the mapping class group of S4

is trivial, we cannot say that the diagram determines the trisection up to isotopy, but
the original description of stabilization of trisections (as opposed to stabilization of
trisection diagrams) does determine this trisection up to isotopy, and thus we call this
the standard genus-3 trisection of S4 .

� There is an obvious connected sum operation on trisected 4–manifolds, obtained
by removing standardly trisected balls from each manifold and gluing along the bound-
ary spheres so as to match the trisections. Stabilization can then also be defined as
performing a connected sum with S4 with its standard genus-3 trisection.

� The standard toric picture of CP2 as a right triangle gives a natural trisection into
three pieces X1;X2;X3 as the inverse images under the moment map of the three
pieces of the right triangle shown in Figure 4. These pieces are diffeomorphic to B4

Geometry & Topology, Volume 20 (2016)



3102 David T Gay and Robion Kirby

but they intersect along solid tori all meeting along a central fiber diffeomorphic to T 2 ,
so that this is a genus-1 trisection of CP2 . The trisection diagram shows a .1; 0/–, a
.0; 1/– and a .1; 1/– curve; this is because the normals to the edges of the moment
polytope tell us the direction in the torus which collapses along that edge. Alternatively,
this trisection can be seen simply as the 0–handle, 2–handle and 4–handle in the
standard handle decomposition of CP2 , and the C1 framing on the 2–handle can be
seen in the .1; 1/–curve.

X1

X2 X3 ˛

ˇ 

Figure 4: Trisection of CP 2

� Reversing the orientation of the central surface in a trisection diagram reverses the
orientation of the 4–manifold; ie X.Fg; ˛; ˇ;  /D�X.�Fg; ˛; ˇ;  /. Thus CP2 has
a genus-1 trisection, with trisection diagram given by a .1; 0/–, .0; 1/– and .1;�1/–
curve.

� Looking at the standard toric picture of S2 �S2 as a square also leads to a natural
trisection of S2 �S2 as follows: We divide the square into four regions labelled X1 ,
X2a , X2b and X3 as indicated in Figure 5, and label the inverse images of these
regions in S2 �S2 with the same labels. Each of X1 , X2a , X2b and X3 is a 4–ball,

X1
X2a

X2b X3

Figure 5: Trisection of S2 �S2

and in fact they give the standard handle decomposition of S2 �S2 , with X1 being
the 0–handle, X2a and X2b being the 2–handles and X3 being the 4–handle. Note
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that X1\X3 is T 2� Œ0; 1�, with T 2�f0g being X1\X3\X2a and T 2�f1g being
X1\X3\X2b . Let p be a point in T 2 and let a be the arc fpg � Œ0; 1��X1\X3 .
Remove a tubular neighborhood of this arc from X1 and X3 and add it as a tube joining
X2a to X2b . The union of X2a and X2b with this tube is the X2 of our trisection,
and the new X1 and X3 are the results of removing the tube from the original X1

and X3 . A little thought shows that this is a trisection with k D 0 (each piece is a
4–ball) and g D 2. (Thanks to Bob Edwards for giving us the initial picture that led to
this description.)

� It may not be entirely obvious how to draw the trisection diagram for the above
trisection of S2 �S2 . However, it is not hard to draw a genus-2 trisection diagram
from scratch that does give S2 �S2 . In Figure 6 we show this diagram, as well as a
diagram for S2 z�S2 and a diagram for S1�S3 . We leave it to the reader to see how to
relate these diagrams to the standard handle diagrams for these 4–manifolds. It is also
an illuminating exercise, knowing that S2 z�S2ŠCP2 ]CP2 , to verify Corollary 12in
this case. The earlier discussion of connected sums and of ˙CP2 gives a trisection
diagram for CP2 ]CP2 and one checks that this is equivalent to that in Figure 6 for
S2 z�S2 via handle slides and diffeomorphism of Fg . (It turns out that in this case we
do not need stabilization.)

S2 �S2 S2 z�S2 S1 �S3

Figure 6: Various genus-2 trisection diagrams

Now we briefly discuss trisection diagrams more generally. Given a trisection di-
agram .Fg; ˛; ˇ;  /, the 4–manifold X.Fg; ˛; ˇ;  / is constructed by attaching 4–
dimensional 2–handles to Fg�D2 along ˛�f1g, ˇ�fe2�i=3g and  �fe4�i=3g, with
framings coming from Fg �fpg, and the remainder of X is 3– and 4–handles. Recall
that there is a unique way, up to diffeomorphism, to attach the 3– and 4–handles [6].

Since each of .Fg; ˛; ˇ/, .Fg; ˇ;  /, .Fg; ; ˛/ is a Heegaard diagram for ]k.S1�S2/,
each can, after a sequence of handle slides, be made to look like the standard genus-g
Heegaard diagram of ]k.S1 �S2/ [12; 5]. However, there is no reason to expect that
we can simultaneously arrange for all three pairs of sets of curves to be standard.

Figure 7 illustrates a general trisection diagram (except that only one  curve is shown)
where we have made the .Fg; ˛; ˇ/ standard, where ˛ is red and ˇ is blue; the reds
and blues give the standard genus-g Heegaard diagram for ]k.S1�S2/. The important
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point is that most of the information about the 4–manifold X is then carried by the
 curves (one of which is drawn here in green). These green curves can be drawn
anywhere with the proviso that some sequence of handle slides of the greens amongst
the greens and the reds amongst reds, followed by a diffeomorphism of Fg , can make
the reds and greens look like the reds and blues. The same proviso holds for the greens
and blues, but a different sequence of handle slides and a different diffeomorphism
may be required.

k g� k

˛1 ˇ1

1

˛kC1

ˇkC1

Figure 7: A general trisection diagram; only one  curve is drawn, although
there should be g of them.

In fact, if a trisection diagram is drawn so that ˛s and ˇs are standard as in Figure 7,
then a framed link diagram for X.Fg; ˛; ˇ;  / is obtained by erasing the last .g� k/

˛s and ˇs (which appear as meridian–longitude pairs) and then replacing each of the
first k parallel pairs of ˛s and ˇs by a parallel dotted circle (1–handle) pushed slightly
out of Fg . The  s remain as the attaching maps for 2–handles, and their framings
come from the surface Fg .

An extended example: 3–manifold bundles over S 1 (Thanks to Stefano Vidussi
for asking interesting questions that led to this example.) Suppose X 4 fibers over S1 ,
M ,!X ! S1 , with fiber a closed, connected, oriented 3–manifold M 3 , and mon-
odromy �W M !M .

A trisection of X is not immediately obvious, just as a bisection (Heegaard splitting)
is not immediate when a 3–manifold fibers over a circle: Fg ,!M ! S1 .

In the latter case, one takes two fibers over distinct points of S1 , separating M into
two copies of I �F . Choose a Morse function on F with one critical point of index 2

and thus one 2–handle H . Remove I �H from one I �F and add it to the other
copy of I �F . This turns the first copy into a handle body with 2g 1–handles, and
adds a 1–handle to the second copy. Again let H be the 2–handle of the second copy
(disjoint from the first H ), and remove I �H from the second copy of I �F and add
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it to the first copy. Now both copies are handle bodies with 2gC 1 1–handles and we
have the desired Heegaard splitting.

In the 4–dimensional case, X 4 D S1 �� M , pick a Morse function �0W M ! Œ0; 3�

with only one critical point yx of index 3 and only one xx of index 0 (�0 could give a
minimal genus Heegaard splitting if desired).

Then �0� is another Morse function on M with the same kind of critical points, and
� can be isotoped so as to fix the maximum yx and the minimum xx . Then there is a
homotopy �t W M ! Œ0; 3�, t 2 Œ0; 1�, such that

(1) �1 D �0�,

(2) �t D �0 D �0� on yx and xx and there are no other definite critical points of �t ,

(3) �t is a Morse function for all but a finite number of values of t at which �t has
a birth or a death of a cancelling pair of indefinite critical points.

Since S1 D Œ0; 1�=0� 1, property (1) allows us to define

� W X 4
D .Œ0; 1��M /=.1;x/� .0; �.x//! S1

� Œ0; 3�

by setting �.t;x/D .t; �t .x//. To check, note that

�.1;x/D .1; �1.x//D .0; �0.�.x///D �.0; �.x//:

Thus we have a smoothly varying family of Morse functions on the fibers of X , except
for the births and deaths. There are an equal number of births and deaths because �0

and �0� have the same number of critical points. Then we can make all the births
happen earlier at t D 0 and the deaths later at t D 1, and furthermore by an isotopy
of �, the births and deaths can be paired off and happen at the same points of M . In
that case the pairs can be merged and then � is a family of Morse functions of the fibers
of X with only one fixed maximum and minimum and g critical points of indices 1

and 2. Furthermore, it is straightforward to arrange that all critical points of index 1

(resp. 2) take values in a small neighborhood of 1 (resp. 2) for each t 2 S1 .

Now draw a hexagonal-like grid on Œ0; 1�� Œ0; 3� as in Figure 8 and label the boxes
with Xi ; i D 1; 2; 3. Recall that the left and right ends are identified so as to have
S1 � Œ0; 3�.

The trisection of X into X1[X2[X3 is to be made by tube-connect summing the
preimages under � of the Xi in Figure 8. Over each vertical line segment in Figure 8
is Hg which is defined to be a 3–dimensional handle body with g 1–handles, so over
the interior vertices lie surfaces Fg . Over the diagonally sloped line segments lie
3–manifolds I �Fg .
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X1 X2 X3 X1

X3 X1 X2

.0; 0/

.0; 1/

.0; 2/

.0; 3/

.1; 0/

.1; 3/

Fg

Hg D \
gS1 �B2

I �
Fg

Figure 8: Fibering over S1

Let H be the 2–handle in Fg and define a 4–dimensional 1–handle to be a thickening
of I �H into the bounding Xi on either side of I �Fg . Add such a 1–handle to
connect each Xi to another Xi across a sloping line segment, for i D 1; 2; 3. Doing
this twice for X1 , once along a SW-NE sloping line and once along a NW-SE sloping
one as in Figure 9, we see that X1 has become connected and is a 4–dimensional
handlebody with 2gC 1 1–handles. Similarly with X2 and X3 .

\gS1 �B3 X2 X3

X3 \gS1 �B3 X2

1–h
1–h

Figure 9: Connect the regions with 1–handles; here the 1–handles connecting
the X1 s are highlighted.

Next we calculate X1 \X2 . Its various parts are shown in Figure 10. Note that the
sloping edges with labels H2g arise from I�Fg by having removed the I�H . Thus we
have Hg[H2g[Hg[H2g[4 1–handles, and three of the 1–handles cancel 0–handles
leaving H6gC1 DX1\X2 DX2\X3 DX3\X1 . Then the central fiber Fg0 of the
trisection has genus g0D6gC1 and gives a Heegaard splitting of @XiD #2gC1S1�S2 .
Note that k D 2gC 1 and we can check that �.X /D 0D 2Cg0� 3k .

(The referee for this paper pointed out an alternative, perhaps simpler, construction:
By the Reidemeister–Singer theorem for 3–manifolds, there is a Heegaard splitting
of M which is invariant under the monodromy �. Then, by splitting the base S1 into
two intervals, we split X into four pieces, each a 3–dimensional handlebody crossed
with an interval, or, in other words, a 4–dimensional 1–handlebody. Tubing two of

Geometry & Topology, Volume 20 (2016)



Trisecting 4–manifolds 3107

X1 X2 X3 X1

X3 X1 X2

1–h
1–h 1–h

1–h

Hg

Hg

H2g

H2g

Figure 10: Understanding the pairwise intersections when fibering over S1

these together as in Figure 5 produces a trisection, which may need a few more tubes
to get the same k in each piece.)

Surface bundles over S 2 Now suppose that X 4 fibers over S2 with fiber F a closed
surface of genus gF . We construct a trisection in a similar fashion to the preceding
example.

Let � W X ! S2 be the fibration. Identify S2 with a cube and trisect S2 as S2 D

A1[A2[A3 , where each Ai is the union of two opposite (closed) faces of the cube.
Choose disjoint sections �1 , �2 and �3 over A1 , A2 and A3 , respectively, and let Ni

be a closed tubular neighborhood of �i , for i D 1; 2; 3, with the Ni also disjoint. The
trisection of X is X DX1[X2[X3 where

Xi D .�
�1.Ai/ n VNi/[NiC1;

with indices taken mod 3.

We now verify that this is indeed a trisection, and compute g and k along the way.
First, ��1.Ai/ is two copies of D2�F . Next, removing VNi leaves us with two copies
of D2�F 0 , where F 0 has genus gF and one boundary component. Thus ��1.Ai/n VNi

has two 0–handles and 4gF 1–handles. Finally, NiC1 is two 1–handles connecting
the two components of ��1.Ai/n VNi . Thus one of the 0–handles is cancelled by one of
these two 1–handles, and we are left with one 0–handle and k D 4gF C 1 1–handles.

Now we consider the pairwise intersections. The 3–dimensional intersection X1\X2

is the union of four pieces:

� .��1.A1/ n VN1/ \ .�
�1.A2/ n VN2/: Since A1 and A2 intersect along four

edges of the cube, this is four copies of Œ0; 1��F 00 , where F 00 has genus gF

and two boundary components. In other words, this 3–manifold is built from
four 0–handles and 4.2gF C 1/D 8gF C 4 1–handles.

� .��1.A1/ n VN1/\N3 : This sits over the four edges making up A1\A3 , and
thus contributes four 1–handles, two connecting two of the components above,
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and two connecting the other two. Cancelling two of the 0–handles from the
preceding step with two of these 1–handles, we are left with two 0–handles and
8gF C 6 1–handles.

� N2 \ .�
�1.A2/ n VN2/: This is just @N2 , which is two copies of D2 � S1 ,

joining up the four copies of Œ0; 1��F 00 , from the first step above, in pairs, with
the S1 factor in D2�S1 lining up with one of the boundary components of the
F 00 factor of Œ0; 1��F 00 . Thus we get two new 1–handles and two new 2–handles.
One of the 1–handles cancels a 0–handle, and both 2–handles cancel 1–handles.
This leaves us with one 0–handle and 8gF C 6C 1� 2D 8gF C 5 1–handles.

� N2\N3 : This is empty.

Thus X1\X2 is a 3–dimensional handlebody with genus gD 8gF C 5, and the same
holds for X2\X3 and X3\X1 .

The triple intersection is necessarily the boundary of each pairwise intersection, so
we see that we have a trisection with k D 4gF C 1 and g D 8gF C 5. This gives
�D 2Cg� 3k D 4� 4gF , which is what we expect for a genus-gF bundle over S2 .

When this technique is applied to S2 �S2 we get the genus-5 diagram in Figure 11.
With some work this can be shown to be handle slide and diffeomorphism equivalent
to a single stabilization of the genus-2 diagram of S2 �S2 in Figure 6.

Gluing maps A 4–manifold X with a trisection .X1;X2;X3/ is determined up to
diffeomorphism by the data of k , g and three gluing maps between the sectors; see
Figure 12. Here we discuss this gluing data carefully and show how to reduce the data

Figure 11: A genus-5 trisection diagram for S2 � S2 obtained by seeing
S2 �S2 as an S2 bundle over a cube. The surface shown here is naturally
the boundary of a tubular neighborhood of the 1–skeleton of a cube.
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X1

X2

X3

�1 �2

��1
1
��1

2

 1  2

 3

Y C
k;g

Y �
k;g

Y C
k;g

Y �
k;g

Y C
k;g

Y �
k;g

Fg

Figure 12: Gluing maps

to two elements of the mapping class group of a closed genus-g surface satisfying
certain constraints.

Let X1 , X2 and X3 be copies of Zk D \
k.S1�B3/. Let Yk D @Zk D Y C

k;g
[Y �

k;g
be

the standard genus-g Heegaard splitting of Yk D ]
k.S1�S2/ with Hk;gDY C

k;g
\Y �

k;g

the Heegaard surface, with a fixed identification Hk;g Š Fg . We can then construct
a 4–manifold with three diffeomorphisms  i W Y

�
k;g
! �Y C

k;g
, for i D 1; 2; 3, such

that  i glues Xi to XiC1 (indices taken mod. 3) by gluing the copy of Y �
k;g

in @Xi

to the copy of Y C
k;g

in @XiC1 . Let �i D  i jFg
W Fg ! Fg and note that we need

�3 ı�2 ı�1 to be isotopic to the identity in order for the resulting manifold to close
at the central fiber Fg . Furthermore, since an automorphism of a 3–dimensional
handlebody is completely determined up to isotopy by its restriction to the boundary
surface, this entire construction is actually determined by the two (isotopy classes of)
maps �1; �2W Fg! Fg , with �3 D �

�1
1
ı��1

2
.

However, this characterization is slightly misleading because an arbitrary pair �1; �2 of
mapping classes of Fg does not necessarily produce a trisected 4–manifold: we need
that each of �1 , �2 and ��1

1
ı��1

2
extends to a diffeomorphism  i W Y

�
k;g
!�Y C

k;g
,

a slightly messy condition that is not entirely trivial to check.

Gluing maps from model manifolds In fact we can reduce the gluing map data to a
single gluing map if we construct trisected 4–manifolds by cutting open and regluing
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fixed model trisected manifolds. For each 0� k � g let

X k;g
D .]kS1

�S3/ ] .]g�kCP2/:

Note that X k;g has a standard .k;g/–trisection X k;g D .X k;g
1
;X k;g

2
;X k;g

3
/, because

S1 � S3 has a standard .1; 1/–trisection and CP2 has a standard .0; 1/–trisection.
Also, for each such .k;g/, fix an identification of X k;g

1
\X k;g

2
with the standard

genus-g handlebody Hg D \
gS1 �B2 . Then any other 4–manifold X with a .k;g/–

trisection is obtained from X k;g by cutting X k;g
1

, X k;g
2

and X k;g
3

apart, regluing
X k;g

1
to X k;g

2
by some automorphism � of X k;g

1
\X k;g

2
DHg , and then observing that

gluing in X k;g
3

amounts to attaching a collection of 3–handles and a 4–handle, so that
no other gluing data needs to be specified. Again, not any automorphism �W Hg!Hg

will work, but now one needs to verify that @.X k;g
1
[� X k;g

2
/ is diffeomorphic to

]k.S1 �S2/ in order to verify that � actually produces a closed trisected 4–manifold.

Lagrangians, Maslov index, signature and intersection triples Given a genus-g
trisection diagram .Fg; ˛; ˇ;  /, one can write down a triple .Q˛ˇ;Qˇ ;Q˛/ of
g�g integer matrices, giving the intersection pairing between curves. Our uniqueness
theorem tells us that this intersection triple is uniquely determined by the diffeomor-
phism type of X.Fg; ˛; ˇ;  / up to elementary row-column operations and stabilization.
Here, the row-column operations are precisely those corresponding to handle slides.
Thus, for example, sliding ˛1 over ˛2 corresponds to adding row 2 to row 1 in Q˛ˇ

while simultaneously adding column 2 to column 1 in Q˛ . Stabilization replaces
.Q˛ˇ;Qˇ ;Q˛/ with the following triple:0BBB@

26664
Q˛ˇ 0

0
1 0 0

0 1 0

0 0 0

37775 ;
26664

Qˇ 0

0
1 0 0

0 0 0

0 0 1

37775 ;
26664

Q˛ 0

0
0 0 0

0 1 0

0 0 1

37775
1CCCA

The fact that each pair of collections of curves gives a Heegaard diagram for ]kS1�S2

tells us that each of the three matrices is, independently, row-column equivalent to�
0k

0
0

Ig�k

�
. We thus have an invariant of 4–manifolds taking values in this set of triples,

subject to this ]kS1 �S2 condition, modulo an interesting equivalence relation. Of
course, this invariant may contain nothing more than homological information, for
example, but even if that were true it would be interesting to understand exactly how
this works.

Alternatively, one can define three Lagrangian subspaces .L˛;Lˇ;L / in the sym-
plectic vector space V DH1.FgIR/; ie L˛ is the kernel of the map H1.FgIR/!
H1.H˛IR/ where H˛ is the handlebody determined by the ˛ curves, and so on.
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One immediately recovers the three intersection matrices above as the symplectic
form on V restricted to each pair of Lagrangians, relative to chosen bases on the
Lagrangians. Thus our uniqueness theorem also gives us a 4–manifold invariant taking
values in the set of quadruples .V;L˛;Lˇ;L /, where V is a symplectic vector
space and the Ls are linear Lagrangian subspaces, subject again to the ]kS1 � S2

condition, modulo an equivalence relation. This equivalence relation is linear sym-
plectomorphism and stabilization, which in this case means taking the direct sum with
.R6; hx1;x2;y3i; hx1;y2;x3i; hy1;x2;x3i/.

This Lagrangian setup has in fact been studied in the more general context of Wall’s [13]
nonadditivity of the signature. A direct application of the interpretation in [2] of Wall’s
nonadditivity result shows that the signature of a closed 4–manifold with a trisection is
precisely the Maslov index of this associated triple of Lagrangians.

However, one expects more information to be encoded in these Langrangians triples
than just the signature. In particular, the Maslov index ignores the integer lattice
structure of H1.Fg;Z/�H1.Fg;R/. Quotienting out by this lattice gives us a triple
of Lagrangian g–tori in a symplectic 2g–torus, and one again gets a 4–manifold
invariant taking values in these triples mod symplectomorphism and stabilization. It
seems that a further study of this setup could be fruitful.

Curve complex perspective To record much more data than simply the homology
classes of curves which bound disks in the three handlebodies, we can consider, for each
handlebody H12 , H23 and H31 , the subsets U12 , U23 and U31 , respectively of the
curve complex for Fg given by those essential simple closed curves which bound disks
in the respective handlebody. Because each pair of handlebodies gives ]k.S1�S2/, we
know that the three intersections U12\U23 , U23\U31 and U31\U12 are nonempty.
This perspective raises many interesting questions, such as: What is the minimal area
of a triangle with vertices in the three intersections? If U12\U23\U31 is nonempty,
what does that tell us about X ? If the gluing map coming from the model manifold
construction described above is, for example, pseudo-Anosov, does this tell us that the
three subcomplexes are “far apart” in any sense?

3 Existence via Morse 2–functions

The proof presented in this section is an application of tools developed in [4], using
Morse 2–functions. In the following section we will rewrite the proof entirely in terms
of ordinary Morse functions and handle decompositions, but the trisection is so natural
from the point of view of Morse 2–functions that we feel this proof is worth presenting.
However, to give the basic idea for those most comfortable with the language of handle
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decompositions, our construction ends up putting the 0– and 1–handles of X into X1 ,
the 3– and 4–handles into X3 , and the 2–handles together with some “connective
tissue” into X2 .

A Morse 2–function is a smooth, stable map GW X n ! †2 ; in this paper we will
always map to R2 . (Stable implies generic when mapping to dimension two.) Just like
Morse functions, Morse 2–functions can be characterized by local models, and we now
give these local models only in the case of nD 4, ie we are considering an R2–valued
Morse 2–function G on a 4–manifold X :

(1) Each regular value q 2R2 has a coordinate neighborhood over which G looks
like F2 �B2! B2 for some closed fiber surface F .

(2) The set of critical points of G is a smooth 1–dimensional submanifold CritG�X

such that GW CritG!R2 is an immersion with isolated semicubical cusps and
crossings. The noncusp points of CritG are called fold points, and arcs of such
points are called folds.

(3) Each point q 2 G.CritG/ which is not a cusp or crossing has a neighborhood
U D I � I with coordinates .t;y/, with G�1.U / diffeomorphic to I �M 3 for
a 3–dimensional cobordism M , so that G.t;p/D .t;g.p//, where gW M ! I

is a Morse function on M with one critical point. The index of this critical
point is then called the index of the fold, although this is only well-defined up to
i 7! 3� i . When the image of the fold is co-oriented, the index is well-defined
by insisting that the y–coordinate on I � I increases in the direction of this
co-orientation.

(4) Each cusp point q 2G.CritG/ has a neighborhood U D I � I with coordinates
.t;y/, with G�1.u/ D I �M 3 , so that G.t;p/ D .t;gt .p//, where gt is a
1–parameter family of Morse functions on M with no critical points for t D 0

and a birth of a cancelling pair of critical points at t D 1
2

. In our examples, these
two critical points will always be of index 1 and 2.

(5) Each crossing point q2G.CritG/ has a neighborhood U DI�I with coordinates
.t;y/, with G�1.u/ D I �M 3 , so that G.t;p/ D .t;gt .p//, where gt is a
1–parameter family of Morse functions on M with two critical points for all t ,
such that the critical values cross at t D 1

2
. In our examples, these two critical

points will never be of index 0 or 3.

The basic example of a Morse 2–function is .t;p/ 7! .t;gt .p// for an arbitrary
generic homotopy gt between two given Morse functions g0;g1W M

3! Œ0; 1�, and
the message of the above local models is that Morse 2–functions look locally like
homotopies between Morse functions, but globally we may not have a preferred “time”
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z

t

Figure 13: The “eye”, a Cerf graphic in which a pair of cancelling critical
points is born and then dies.

direction. When G is of the form .t;p/ 7! .t;gt .p//, we call G.CritG/ a Cerf
graphic [3]. Conversely, given a Morse 2–function GW X 4 ! R2 and a rectangle
I � I �R2 in which G.CritG/ has no vertical tangencies, we can find coordinates in
which G is of this form .t;p/ 7! .t;gt .p//, and so again we will say that G.CritG/
is a Cerf graphic in this rectangle.

There is one move on Morse 2–functions (ie local model for a generic homotopy
between Morse 2–functions) that is central to this paper, which we call the “introduction
of an eye”. In a local chart in which a given Morse 2–function G on a 4–manifold has
no critical points, we can assume G has the form .t;x;y; z/ 7! .t;x/ or, equivalently,
.t;x;y; z/ 7! .t;x3C .t2C 1/x�y2C z2/ with t 2 Œ�2; 2�. Introducing a parameter
s 2 Œ�1; 1� we get a homotopy .t;x;y; z/ 7! .t;x3C.t2�s/x�y2Cz2/, with sD�1

corresponding to the given map and s D 1 the end result of “introducing an eye”.
Figure 13 shows the image of the critical locus at s D 1, justifying the terminology.
Note that this is a Cerf graphic in which, as t increases from �2 to 2, we see a Morse
function on x;y; z space which starts with no critical points, develops a cancelling
pair of index-1 and -2 critical points, and then the cancelling pair disappears again so
that at t D 2 there are again no critical points. Note also that the introduction of an eye
takes place in a ball and is localized to a disk in the fiber cross a disk in the base; thus,
as long as fibers are connected, we need only specify a disk in the base without critical
points and then there is a unique, up to isotopy, way to introduce an eye in that disk.

Proof of Theorem 4 (existence) Throughout we will use coordinates .t; z/ on R2 ,
with t horizontal and z vertical. Here is an outline of the proof:

(1) First we will show that there is a Morse 2–function G1W X !R2 such that the
image of the fold locus is as in Figure 14. In this and the following figures, three dots
between two curves indicate that there are some number of parallel copies of the two
curves in between. Fold indices are indicated with labelled transverse arrows. Boxes
with folds coming in from the left and out at the right represent arbitrary Cerf graphics,
with the left-right axis being time. Note that a Cerf graphic may contain left-cusps,
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Figure 14: The image of the fold locus for G1

right-cusps and crossings, but may not contain any vertical tangencies on the image of
the fold locus.

(2) In Figure 14, the vertical tangencies of the folds are highlighted in red; these
become critical points of the projection t ıG1W X !R. These critical values in R are
also indicated at the bottom of the diagram along the t–axis, with their indices.

(3) After constructing G1 , we will show how to homotope G1 to G2 such that the
image of the fold locus for G2 is as in Figure 15. Here the two Cerf graphics have no
cusps. We have achieved two goals here: (1) Splitting the Cerf graphic into two, each
involving only critical points of the same index and no cusps. (2) Replacing each kink
that corresponds to an index-2 critical point of t ıG1 with a pair of cusps.

(4) Figure 16 is simply a redrawing of Figure 15 that highlights a natural trisection
of R2 into three sectors R2

1
, R2

2
and R2

3
. Note that the critical locus over each sector

consists of g components, where g is the genus of the central fiber. Also, each such
component has at most one cusp. We no longer indicate the indices of the folds; the
outermost fold is index-0 pointing inwards, and all other folds are index-1 pointing in.

(5) The form of the folds in Figure 16 is a special case of the form shown in Figure 17,
where now we are not paying attention to which folds in a given sector, with or without
cusps, connect to which folds in the next sector, with or without cusps, and we allow
for arbitrary Cerf graphics (without cusps) between the sectors.
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Figure 15: The image of the fold locus for G2

R2
1

R2
2

R2
3

Figure 16: A more symmetric drawing of the image of the fold locus for G2 .
We no longer indicate the indices of the folds; the outermost fold is index-0
going inwards, the others are index-1 going inwards.

(6) Now we have G2 such that the image of the fold locus is as in Figure 17. At this
point we could take Xi D G�1

2
.R2

i / and we would have each Xi diffeomorphic to
\ki S1 �B3 for different ki . There is one last step to arrange that the ki are equal: In
fact, ki is equal to the number of folds in sector Xi without cusps. We will show how
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Figure 17: A slightly more general form for the image of the fold locus,
which fits G2 .

to add a fold without a cusp to any one sector while adding a fold with a cusp to each
of the other two sectors. This allows us to construct a homotopy from G2 to G3 , such
that G3 has the image of its fold locus of the same form as G2 (ie as in Figure 17),
with the same number of folds without cusps in each sector, ie k1 D k2 D k3 D k .

(7) Finally we will justify the claim that each Xi D G�1
3
.R2

i / is diffeomorphic to
\kS1 �B3 with overlap maps as advertised.

We now fill in the details.

Begin with a handle decomposition of X with one 0–handle, i1 1–handles, i2 2–
handles, i3 3–handles and one 4–handle. The union of the 0– and 1–handles, X1 is
diffeomorphic to I � .\i1S1 �B2/. Map this to I � I by .t;p/ 7! .t;g.p// where
gW \i1S1 �B2! I is the standard Morse function with one index-0 critical point and
i1 index-1 critical points. Postcompose this map with a diffeomorphism from I � I to
a half-disk and we have constructed G1 on the union of the 0– and 1–handles so that
the image of the fold locus is as in the right half of Figure 18.

Now note that @X1D ]
i1.S1�S2/ sits over the right edge of the half disk in Figure 18

and that the vertical Morse function on @X1 , ie z ı G1j@X1
is the standard Morse

function with i1 index-1 critical points and i1 index-2 critical points, inducing the
standard genus-i1 splitting of @X1 , with Heegaard surface F .
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0

1

0

1

Figure 18: The first Morse 2–function, G1 , on the 0– and 1–handles of X .

Consider the framed attaching link L� @X1 for the 2–handles of X . Generically L

will be disjoint in @X1 from the ascending 1–manifolds of the index-2 critical points of
z ıG1j@X1

as well as the descending 1–manifolds of the index-1 critical points. Thus
L can be projected onto the Heegaard surface F along gradient flow lines to give an
immersed curve L in F with at worst double points. By adding kinks if necessary, we
can assume that the handle framing of L agrees with the “blackboard framing” coming
from L� F . Then by stabilizing this Heegaard splitting once for each crossing of L,
we can resolve these crossings and get L to lie in the Heegaard surface with framing
coming from the surface. This process translates into an extension of the thus-far
constructed G1 from X1 to X1[ .Œ0; 1�� @X1/ with fold locus as in Figure 19, with
one cusp for each stabilization. In other words, the sequence of stabilizations translates
into a homotopy gt from g0 , the standard Morse function on ]i1.S1�S2/, to g1 , the
stabilized Morse function. This homotopy then becomes a Morse 2–function on the
collar Œ0; 1�� @X1 .

Now let F refer to the stabilized Heegaard surface, in which L lies. Attaching a
4–dimensional 2–handle to X1 along a component K of L is the same as attaching I

times a 3–dimensional 2–handle to X1 along I �K � I �F � @X1 . In Figure 20 we
show the resulting Morse 2–function at the left, where the handle sits over a vertical
rectangle. Next we bend this rectangle to make the image again a half-disk. Finally,
noting that the vertical Morse function at the right edge now has an index-2 critical value
below an index-1 critical value, we switch these values to get the Morse 2–function at
the right side of Figure 20.

Note that everything in the preceding paragraph happened in a neighborhood of K , so
that the rest of L still lies in the middle Heegaard surface for the Morse function at the
right edge of the final diagram in Figure 20. Thus we can attach each 4–dimensional
2–handle this way to get the Morse 2–function at the left side of Figure 21. Each
2–handle of X corresponds to a kink in the image of the folds, ie a smoothly immersed
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0
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2

Figure 19: G1 extended to a collar on @X1 . In the two vertical slices shown,
both diffeomorphic to ]n.S1 �S2/ , the Heegaard surface sits over the high-
lighted red points. The framed attaching link L for the 2–handles of X

lies in the Heegaard surface for the right-most Morse function, ie over the
right-most red point, with framing coming from the surface.
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Figure 20: G1 after attaching a 4–dimensional 2–handle

arc with a single transverse double point. Repeating our construction for X1 with the
union of the 3– and 4–handles, we construct the Morse 2–function at the right side of
Figure 21. The two halves give vertical Morse functions on the boundary of the union
of the 3– and 4–handles, which are related by some Cerf graphic. Putting this Cerf
graphic in between the two parts of Figure 21 gives us G1 as in Figure 14.

To get to Figure 15, first we take the Cerf graphic section of Figure 14 and pull the
births (left-cusps) to the left of the Cerf graphic and the deaths (right-cusps) to the
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Figure 21: Two halves of G1 : the 0–, 1– and 2–handles on the left and the
3– and 4–handles on the right. Connecting them with a Cerf graphic gives
Figure 14.

1 2

3 4

Figure 22: Pulling cusps out of the Cerf graphic. Here we suppress the “three
dots” notation as well as the indices of the folds, as these are understood from
earlier figures.

right, and then pull all index-1 critical points below all index-2 critical points. Then the
left-cusps can be pulled further left, past the kinks which correspond to 4–dimensional
2–handles, because the 4–dimensional 2–handle attachments are independent of the
3–dimensional stabilizations corresponding to the cusps. This is shown in Figure 22.
Next we homotope the kinks into pairs of cusps as in Figure 23. The first step of
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Figure 23 introduces a swallowtail at the vertical tangency of the kink; this move has
been discussed extensively elsewhere [7] and is a standard singularity that occurs in a
homotopy between homotopies between Morse functions. The second step moves an
arc of index-1 critical points in a homotopy (Cerf graphic) below an arc of index-2
critical points. This is also standard and is possible because the descending manifold
for the index-1 point remains disjoint from the ascending manifold for the index-2
point throughout the homotopy. (Equivalently, in homotopies between Morse functions
we never expect 1–handles to slide over 2–handles.)

2 1 1

1

2

1

2

1

2

1

2

Figure 23: Turning kinks into pairs of cusps

Finally, Figure 24 shows how to add folds and cusps to a Morse 2–function as in
Figure 17 so as to increase the number of folds without cusps in one of the three sectors.
Here we are introducing an eye, as in Figure 13, modified by a slight isotopy. Note
that the transition from the second to the third diagram in the figure is not essential,
but only serves to put the resulting diagram in the form of Figure 17. Depending on
how we orient the new eye with respect to the trisection of R2 , we either add the fold
without cusps to R2

1
, R2

2
, or R2

3
.

Figure 24: Adding an extra fold without cusps in one sector; again we
suppress the “three dots” notation and the fold indices.

(Note that if we do this operation three times, once for each sector, we increase k

by 1 and g by 3; this is precisely a stabilization of the trisection, as will be shown in
Section 5.)

Now we need to show that, having put our Morse 2–function finally into the form of
Figure 17, with k folds in each sector without cusps and g� k folds with cusps, then
for each i , G�1.R2

i /DXi Š \
k.S1�B3/. However, we have already seen this: Each
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sector, ignoring the Cerf graphic block, looks just like Figure 19, which we already
know is \k.S1 �B3/ with a .g� k/–times stabilized standard Heegaard splitting on
the boundary. The Cerf graphic block connecting one sector to another is a product
which does not interfere with the Heegaard splitting.

4 Trisections and handle decompositions

The techniques of the previous section lead to a relationship between trisections and
handle decompositions equipped with certain extra data. We will use this relationship
both to provide an alternate proof of Theorem 4 and to prove Theorem 11.

By a system of compressing disks for a 3–dimensional handlebody H of genus g , we
mean a collection of properly embedded disks D1; : : : ;Dg �H such that cutting H

open along D1[ � � � [Dg yields a 3–ball.

Lemma 13 If X DX1[X2[X3 is a trisection of a 4–manifold X , then there is a
handle decomposition of X as in Theorem 4 satisfying the following properties:

(1) X1 is the union of the 0– and 1–handles.

(2) Considering the Heegaard splitting @X1 DH12[H31 with Heegaard surface F ,
the attaching link L for the 2–handles lies in the interior of H12 .

(3) The framed attaching link LDK1[ � � � [Kg�k is isotopic in H12 to a framed
link L0 DK0

1
[ � � � [K0

g�k
� F , with framings equal to the framings induced

by F .

(4) There is a system of compressing disks D1; : : : ;Dg for H12 such that the curves
K0

1
; : : : ;K0

g�k
are geometrically dual in F to the curves @D1; : : : ; @Dg�k . In

other words, each K0j intersects @Dj transversely once and is disjoint from all
other @Di .

(5) There is a tubular neighborhood N D Œ��; ���H12 of H12 with Œ��; 0��H12D

N \X1 , such that X2 is the union of Œ0; ���H12 with the 2–handles.

Proof Each sector of the trisection of X is diffeomorphic to \k.S1 �B3/ with a
genus-g splitting of its boundary. Thus it has a standard Morse 2–function onto a
wedge in R2 ; see Figure 17. Two sectors meet at Xi \XiC1 D \

k.S1 �B2/, and the
two Morse 2–functions on the two sectors give two Morse functions on the intersection
Xi \XiC1 . The two Morse functions are homotopic and thus give a Cerf diagram
which can be inserted into the little wedges in Figure 17. In the existence proof from
the previous section we avoided cusps in the Cerf graphic boxes, but at this point we
do not care; any Cerf graphic will do.
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An isotopy of R2 makes the picture look like Figure 25. Now projection to the
horizontal axis gives a Morse function in which the vertical tangencies become Morse
critical points. X1 , to the left of the vertical red line, is clearly the union of the 0– and
1–handles. X2 , between the legs of the red letter h is then a handlebody H12 , cross I ,
with g� k 2–handles attached. And X3 is obviously what remains.

X1

X2

X3

Figure 25: Extracting a handle decomposition from a trisection

We only need to show now that the attaching link for the 2–handles is as advertised.
This can be seen from the fact that the attaching circle for each 2–handle, between the
legs of the h, is one of a dual pair of curves on the fiber near a cusp. The other curve
in the dual pair is the attaching curve for the fold that cuts across H12 and gives one
of the compressing disks for this handlebody. This is illustrated in Figure 26, which
shows a zoomed in region of Figure 25. The fiber over a specific point is drawn as a
once punctured torus; this is just part of the fiber, but the rest of the fiber does not play
a role in this local picture. The attaching circles for the two folds are drawn as green
and blue circles on the fiber. This is just the usual picture of the fiber between the two
arms of a cusp, with attaching circles being geometrically dual. Here, however, we
reinterpret this picture to see the blue circle as the boundary of a compressing disk for
the handlebody lying over the vertical dotted red line, and to see the green circle as the
attaching circle for the 4–dimensional 2–handle coming from the vertical tangency in
the fold.

Lemma 14 Consider a handle decomposition of a 4–manifold X 4 with one 0–handle,
k 1–handles, g�k 2–handles, k 3–handles and one 4–handle. Let X1 be the union of
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Figure 26: Zooming in on a region of Figure 25.

the 0– and 1–handles. Suppose there is a genus-g Heegaard splitting @X1DH12[H31

of @X1 satisfying the following properties in relation to the framed attaching link L for
the 2–handles:

(1) L lies in the interior of H12 .

(2) L is isotopic in H12 to a framed link L0 �F , with framing equal to the framing
induced by F .

(3) There is a system of compressing disks D1; : : : ;Dg for H12 such that the
g� k components of L0 are, respectively, geometrically dual in F to the curves
@D1; : : : ; @Dg�k .

Let N D Œ��; ���H12 be a small tubular neighborhood of H12 with Œ��; 0��H12 D

N \X1 , which the 2–handles intersect as Œ0; ��� �L , where �L is a tubular neighbor-
hood of L in H12 . Declare X2 to be the union of Œ0; ���H12 with the 2–handles, and
declare X3 to be what remains (the closure of X n.X1[X2/). Then X DX1[X2[X3

is a trisection.

Proof Almost everything we need for X1[X2[X3 to be a trisection is immediate:

(1) X1 and X3 are both diffeomorphic to \k.S1 �B3/.

(2) H31 DX3\X1 and H12 DX1\X2 are genus-g handlebodies.

(3) F DX1\X2\X3 is a genus-g surface.

It remains to verify that X2 Š \
k.S1 �B3/ and that H23 D X2 \X3 is a genus-g

handlebody.

In fact X2 is built by attaching g� k 2–handles to X12 Š \
k.S1 �B2/ along g� k

copies of S1�f0g�S1�B2 in the first g�k S1�B3 summands. Thus the 2–handles
“cancel” g� k copies of S1 �B3 , giving both desired results immediately.
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Using Lemma 14, we now present a proof of the existence of trisections in the spirit
of [8]:

Proof of Theorem 4 (existence) Start with a handle decomposition of X 4 with
one 0–handle, k1 1–handles, k2 2–handles, k3 3–handles and one 4–handle. Add
cancelling 1–2 and 2–3 pairs if necessary so as to arrange that k1 D k3 . Let X1 be
the union of the 0–handle and the 1–handles. Note that @X1 is a connected sum of k1

copies of S1 �S2 . Let L� @X1 be the framed attaching link for the 2–handles.

Consider the genus-k1 Heegaard splitting of @X1 as @X1 D H12 [H31 with F D

H12 \ H31 . (We will soon be stabilizing this Heegaard splitting, but after each
stabilization we will use the same names for the surface and the handlebodies.) The
attaching link L� @X1 can be projected onto the Heegaard surface F with transverse
double points (crossings), so that the handle framing is the surface framing. (Add kinks
to get the framing right.) Make sure that each component has at least one crossing
using Reidemeister 2 moves if necessary. Let c be the number of crossings in this
projection.

If c � k2 then we are almost done. Stabilize the Heegaard splitting exactly k2 times,
with c of these stabilizations occuring at the crossings. Then L can be isotoped so
as to resolve all the crossings by sending the over strand at each crossing over the
new S1 �S1 summand in F coming from the stabilization at that crossing. Now we
have a genus-g D k1C k2 Heegaard splitting. Letting k D k1 and g D k1C k2 , and
pushing L into the interior of H12 , we now satisfy the hypotheses of Lemma 14 and
apply that lemma to produce our trisection. (We get duality to a system of meridians as
follows: Each component K of L goes over at least one stabilization which no other
components go over, and therefore is the unique component intersect the meridian for
that stabilization. For every other meridian which K intersects, slide that meridian’s
compressing disk over the compressing disk corresponding to the stabilization singled
out in the preceding sentence.)

If c > k2 then add c�k2 cancelling 1–2 pairs and c�k2 cancelling 2–3 pairs to the
original handle decomposition of X . Now we have k 0

1
Dk1Cc�k2 1–handles, and the

same number of 3–handles, as well as k 0
2
D 2c � k2 2–handles. We consider the new

X 0
1
DX1\

c�k2S1�B3 with the natural genus-k 0
1

Heegaard splitting @X 0
1
DH 0

12
[H 0

31

with F 0DH 0
12
\H 0

31
. The original attaching link L still projects onto F 0 in the same

way, with the same crossings, since F 0 is naturally F]c�k2S1 �S1 .

However, we also have 2.c � k2/ new 2–handles. Half of these, coming from the 1–2

pairs, are attached along the meridians of the c � k2 new S1 �S1 summands in F 0

and thus immediately satisfy the conditions in Lemma 14. The other half, coming from
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the 2–3 pairs, are attached along 0–framed unknots, which project onto F 0 as circles
bounding disks in F 0 .

Now stabilize the new Heegaard splitting 2c � k2 times: The first c of these stabi-
lizations should happen at the crossings of L, allowing us to resolve crossings as
before. The other c�k2 of the stabilizations should occur next to the c�k2 0–framed
unknots. Then each of these unknots is isotoped to go over the new S1�S1 summand
coming from the adjacent stabilization. Now the entire attaching link satisfies the
hypotheses of Lemma 14. The new genus of the stabilized Heegaard splitting of @X 0

1

is g0 D k 0
1
C 2c � k2 . To conclude the theorem by applying Lemma 14 we need that

k 0
2
D g0� k 0

1
, and this is precisely what we have arranged.

5 Uniqueness

We first prove that the stabilization operation of Definition 8 really does produce a new
trisection. This can be done directly, but instead we will do so by showing that, from a
Morse 2–function point of view, this stabilization corresponds to adding three eyes at
the center of a trisected Morse 2–function. After that we can proceed with the proof of
uniqueness.

Proof of Lemma 10 We are given a trisection .X1;X2;X3/ of X , with handlebodies
Hij D Xi \Xj , properly embedded arcs Aij � Hij , and regular neighborhoods of
these arcs Nij �X .

As we will see at the beginning of the proof of Theorem 11, it is easy to construct a
Morse 2–function as in Figure 17 which recovers this trisection. We claim that adding
three eyes arranged as in Figure 27 modifies each sector Xi exactly as in Definition 8,
and since the new Morse 2–function again gives a trisection, then stabilization as
defined in Definition 8 produces a trisection.

We see that the claim is true one eye at a time. Each time we add an eye, first add
it away from the center straddling the intersection of two sectors, such as H31 , as
on the left in Figure 28. We will then pull the lower fold across the central fiber to
achieve the right-hand diagram in Figure 28. Up to isotopy, moving from the left to the
right in this figure is the same as not moving the eye, but instead enlarging the lower
sector X2 by attaching the inverse image of the green region labelled N . This inverse
image is in fact a 1–handle cobordism attached to X2 , since this fold is an index-1
fold going in towards the middle of the eye. Furthermore, the 1–handle is cancelled
by a 2–handle immediately above it. The 1–handle and 2–handle are actually I cross
3–dimensional 1– and 2–handles, respectively, and thus we see that we have simply
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Figure 27: Stabilizing a Morse 2–function by adding three “eyes”

X2

N

H31

X 0
2

Figure 28: Adding one eye to a trisected Morse 2–function

removed a neighborhood of an arc in H31 from both X1 and X3 and added it to X2 .
Repeat this for each of the three eyes.

Proof of uniqueness, Theorem 11 Consider two trisections of the same 4–manifold:
X 4 DX1[X2[X3 DX 0

1
[X 0

2
[X 0

3
. Apply Lemma 13 to each trisection to get two

handle decompositions D and D0 of X , respectively, with corresponding Heegaard
splittings of @X1 , with attaching links L and L0 behaving as in Lemma 13. Cerf theory
tells us that we can get from D to D0 by the following operations:

(1) Add cancelling 1–2 and 2–3 pairs to both D and D0 .

(2) Slide 1–handles over 1–handles, 2–handles over 2–handles and 3–handles over
3–handles.

(3) Isotope the handles and their attaching maps without sliding over any handles.

From the description of trisection stabilization in the proof of Lemma 10 above, we can
see that trisection stabilization adds both a 1–2 pair and a 2–3 pair to an associated
handle decomposition. Thus, after arranging that we add the same number of 1–2
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pairs as 2–3 pairs, we can stabilize the two original trisections to take care of the first
operation above.

Clearly sliding 1–handles over 1–handles and 3–handles over 3–handles, as well
as isotoping 1–handles and 3–handles without handle slides, does not change the
associated trisection.

Thus we are left to investigate the effect of 2–handle slides and 2–handle isotopies.

Suppose that we wish to perform a single 2–handle slide to the handle decomposition D .
Associated to the trisection T which gives rise to D we have a Heegaard splitting
H12[H31 for @X1 , with the attaching link L for the 2–handles of D lying in H12 .
Isotope L into @H12 D F so that the components of L are dual to the g� k curves
in a system of g meridinal curves (boundaries of compressing disks), as in Lemma 13.
The handle slide involves a framed arc connecting two components K1 and K2 of L.
This arc can be projected (following the flow of a Morse function of @X1 for the given
Heegaard splitting) onto F , but with crossings. We can arrange for its framing to agree
with the surface framing with kinks, as usual. We want to avoid self-crossings as well
as crossings between the arc and L and between the arc and the system of meridinal
curves.

Stabilizing the Heegaard splitting, however, allows us to resolve the crossings. In other
words, we get a new Heegaard splitting @X1DH 0

12
[H 0

31
obtained from H12[H31 by

Heegaard splitting stabilizations and isotopy such that L and the band lie in @H 0
12
DF 0 ,

still maintaining the property that the components of L are dual to the first g � k

meridinal curves in a system of meridinal curves of H 0
12

. In addition, the bands are
disjoint from these g�k meridinal curves. (Note that we can do this without moving L

or the bands, but just by stabilizing and isotoping the Heegaard splitting.) Then sliding
one component of L over another along the chosen band maintains this property; we
have to change one of the meridinal curves in the system of compressing disks by a
handle slide as well.

Again, from the proof of Lemma 10, we see that stabilization of the Heegaard splitting
of @X1 can be achieved by stabilizing the trisection, at the expense of introducing
cancelling 1–2 and 2–3 pairs to the associated handle decomposition.

Thus we have shown that, if D and D0 are related by handle slides supported in small
neighborhoods of arcs in @X1 , then they are adapted to trisections related by trisection
stabilization and isotopy.

Finally, suppose that D and D0 are related only by an isotopy of the 2–handles and
their attaching maps, without any handle slides. Then this isotopy extends to an isotopy
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of X with the result that we can assume that the handle decompositions are identical,
and the only difference between the trisections is the Heegaard splitting of @X1 .

So we have two Heegaard splittings @X1 D H12 [H31 D H 0
12
[H 0

31
, respectively,

coming from T and T 0 . The fixed attaching link L for the 2–handles lies in both H12

and H 0
12

, in both cases satisfying the condition of being dual to meridinal curves.

Note that both H12[H31 and H 0
12
[H 0

31
are genus-g Heegaard splittings of @X1 Š

\k.S1 �S2/, so that Waldhausen’s theorem [12] gives us an isotopy of @X1 taking
H12 to H 0

12
. However, this does not imply that the trisections T and T 0 are isotopic,

because this isotopy will in general move the link L. If we can find an isotopy that
does not move L, then we will be done, but first we will probably need to stabilize.

To see how to do this, construct two Morse functions f and f 0 on @X1 with regular
values a< b such that

(1) f and f 0 agree on f �1.�1; a�D f 0�1.�1; a�, which is a tubular neighbor-
hood of L (thus each has g�k index-0 critical points and g�k index-1 critical
points),

(2) f �1.�1; b�DH12 ,

(3) f 0�1.�1; b�DH 0
12

,

(4) f and f 0 have only critical values of index 1 in Œa; b� and critical values of
index 2 and 3 in Œb;1/.

Now Cerf theory gives us a homotopy ft from f0 D f to f1 D f
0 which involves

1–2 births and deaths on f �1.b/ and otherwise no critical values crossing b , and such
that ft D f D f

0 on f �1.1; a�. Thus, after stabilizing the Heegaard splittings away
from L, there is an isotopy fixing L taking the one Heegaard splitting to the other.

Again, the Heegaard splitting stabilizations are achieved by trisection stabilizations.

Remark 15 Morally it seems that there should be a Morse 2–function proof of
uniqueness that starts with a generic homotopy between two Morse 2–functions cor-
responding to two given trisections. Then the proof would homotope this homotopy
so as to arrange that the Cerf 2–graphic in Œ0; 1��R2 , a surface of folds with cusps
and higher codimension singularities, is in a nice position with respect to the standard
trisection of Œ0; 1��R2 . This surface of folds is, however, not trivial to work with. A
good model might be the method of braid foliations used by Birman and Menasco to
prove Markov’s theorem in [1].
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6 The relative case

When @X ¤∅, we should define a trisection as the kind of subdivision of X which
naturally arises from a Morse 2–function GW X ! B2 where B2 is trisected as in
Figure 1, the locus of critical values behaves well with respect to this trisection of B2 ,
and the trisection of X is just G�1 of the three sectors of B2 . “Behaving well” should
mean that the folds all have index 1 when transversely oriented towards the center of
B2 , that the only tangencies to rays of B2 are the cusps, that there is at most one cusp
per fold in each sector, and that each sector has the same number of cusps. We now
formulate this without mention of a Morse 2–function.

First, when M 3 has a boundary @M , then a Heegaard splitting is a splitting into
compression bodies rather than solid handlebodies. Traditionally, a compression body
is the result of attaching n� k 3–dimensional 2–handles to f1g�Fk � Œ0; 1��Fk so
as to get a cobordism from Fk to Fk�n , where Fk is a closed surface of genus k . In
fact, we can even consider the case where F is a compact surface Fk;b of genus k

with b � 0 boundary components, in which case we get a cobordism to F.k�n/;b . Note
that the diffeomorphism type of such a cobordism is completely determined by k , b

and n; let Ck;b;n denote a standard model for this compression body. To summarize,
both ends of Ck;b;n are surfaces with b boundary components, the higher genus end
has genus k and there are n compression disks yielding a lower genus end with genus
k � n.

Now consider Zk;b;n D Œ0; 1��Ck;b;n . Part of @Zk;b;n is

Yk;b;n D .f0g �Ck;b;n/[ .Œ0; 1��Fk;b/[ .f1g �Ck;b;n/;

which has a natural genus-k Heegaard splitting into two compression bodies

Y C
k;b;n
D
��

1
2
; 1
�
�Fk;b

�
[.f1g�Ck;b;n/ and Y �k;b;nD .f0g�Ck;b;n/[

��
0; 1

2

�
�Fk;b

�
:

Finally, given any g � k , let Yk;b;n D Y C
k;b;n;g

[ Y �
k;b;n;g

be the genus-g Heegaard
splitting obtained from the natural genus-k splitting by stabilizing g� k times.

Definition 16 A trisection of a 4–manifold X with boundary is a splitting X D

X1 [ X2 [ X3 and integers 0 � k; b; n;g with n � k � g such that each Xi is
diffeomorphic to Zk;b;n via a diffeomorphism �i W Xi!Zk;b;n for which

�i.Xi \XiC1/D Y C
k;b;n;g

and �i.Xi \Xi�1/D Y �k;b;n;g:

We leave the proof of the following to the reader:

Geometry & Topology, Volume 20 (2016)



3130 David T Gay and Robion Kirby

Lemma 17 A trisection of a 4–manifold X with nonempty boundary restricts to the
boundary M 3 D @X as either a fibration over S1 (when b D 0) or an open book
decomposition (when b ¤ 0). In the first case, Xi \ @X is the inverse image under the
fibration of Œ2� i=3; 2�.i C 1/=3� � S1 . In the second case, Xi \ @X is the union of
this inverse image and the binding.

Remark 18 Lefschetz fibrations over B2 can be perturbed to give examples of tri-
sections in this relative setting. Assume that f W X 4! B2 is a bundle with fiber Fk;b

except for exceptional fibers which have nodes where f is given in local coordinates
.z; w/ by f .z; w/Dzw . Lekili showed in [7] that the map f could be locally perturbed
so that the node is replaced by three 1–folds in the shape of a hyperbolic triangle, as in
Figure 29. We need such a triangle to go around the central fiber of our trisection, so
we move a cusp up to and past the central fiber. This ups the genus of the central fiber
by one. Now it is easy to trisect X for the only folds are these triangles.

node

1 1

1

Figure 29: Perturbation of a Lefschetz node singularity

Remark 19 Given two 4–manifolds X and X 0 , with diffeomorphic boundary, both
trisected with bD 0, and with a gluing map @X !�@X 0 respecting trisections, gluing
along the boundary does not immediately produce a trisection of the closed manifold
X [X 0 . However, we naturally have six pieces which fit together like the faces of a
cube. From this, the technique described in Section 2 for producing a trisection of a
bundle over S2 can be generalized to give a natural trisection of X [X 0 .

Theorem 20 Given a 4–manifold X with an open book decomposition or fibration
over S1 on @X , there exists a trisection of X restricting to @X as the given fibration
or open book.

Proof Use the given boundary data to see X as a cobordism from F � Œ0; 1� to
F � Œ0; 1�, where F is either the fiber or the page. Using a handle decomposition of X

compatible with this cobordism structure, repeat the second version of the proof of
Theorem 4.

Stabilization of trisections makes sense in the relative case, since it takes place inside a
ball in the interior of X .
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Theorem 21 Any two trisections of a fixed 4–manifold X which agree on @X are
isotopic after stabilizations.

Proof Again, the proof of Theorem 11 works verbatim in this case, once we fix the
appropriate cobordism structure on X . The key idea is that Cerf theory works perfectly
well when we fix behavior on compact subsets.
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The Picard group of topological modular forms
via descent theory

AKHIL MATHEW

VESNA STOJANOSKA

This paper starts with an exposition of descent-theoretic techniques in the study of
Picard groups of E1–ring spectra, which naturally lead to the study of Picard spectra.
We then develop tools for the efficient and explicit determination of differentials in the
associated descent spectral sequences for the Picard spectra thus obtained. As a major
application, we calculate the Picard groups of the periodic spectrum of topological
modular forms TMF and the nonperiodic and nonconnective Tmf. We find that
Pic.TMF/ is cyclic of order 576 , generated by the suspension †TMF (a result
originally due to Hopkins), while Pic.Tmf/DZ˚Z=24 . In particular, we show that
there exists an invertible Tmf–module which is not equivalent to a suspension of
Tmf.

14C22, 55N34, 55P43, 55S35, 55T99; 55P47

1 Introduction

Elliptic curves and modular forms occupy a central role in modern stable homotopy
theory in the guise of the variants of topological modular forms: the connective tmf, the
periodic TMF, and Tmf, which interpolates between them. These are structured ring
spectra which have demonstrated surprising connections between the arithmetic of ellip-
tic curves and v2–periodicity in stable homotopy. For example, tmf detects a number
of 2–torsion and 3–torsion classes in the stable homotopy groups of spheres through
the Hurewicz image. Even more interestingly, the more geometric-natured TMF can
be used to detect and describe, using congruences between modular forms, the 2–line
of the Adams–Novikov spectral sequence at primes p � 5, according to Behrens [7].

From a different perspective, the structure of topological modular forms as E1–ring
spectra leads to symmetric monoidal 1–categories of modules which give rise to well-
behaved invariants of algebraic or algebrogeometric type. For instance, Meier [48] has
studied TMF–modules which become free when certain level structures are introduced;
these can be thought of as locally free sheaves with respect to a predetermined cover.
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Our goal in this paper is to understand another such invariant, the Picard group. Any
symmetric monoidal category has an associated group of isomorphism classes of
objects invertible under the tensor product, which is called the Picard group. The
classical examples are the Picard group Pic.R/ of a ring R , ie of the category Mod.R/
of R–modules, or the Picard group of a scheme X , ie of the category Mod.OX / of
quasicoherent modules over its structure sheaf. In homotopy theory, the interest in
Picard groups arose when Mike Hopkins made the observation that the homotopy cate-
gories of En–local and K.n/–local spectra have interesting Picard groups, particularly
when the prime at hand is small in comparison with n. Here, En is the Lubin–Tate
spectrum and K.n/ is the Morava K–theory spectrum at height n. In the few existing
computations of such groups, notably those in Hopkins, Mahowald and Sadofsky [26],
Hovey and Sadofsky [27], Kamiya and Shimomura [29], Goerss, Henn, Mahowald
and Rezk [17] and Heard [21], one often uses that an invertible En–module must be a
suspension of En itself.

The K.2/–localization of any of the three versions of topological modular forms gives
a spectrum closely related to the Lubin–Tate spectrum E2 ; namely, this localization is
a finite product of homotopy fixed point spectra of finite group actions on E2 (or slight
variants of E2 with larger residue fields). More generally, each En is an E1–ring
spectrum with an action, through E1–ring maps, by a profinite group Gn called the
Morava stabilizer group (see Rezk [57] for the E1–ring case). The K.n/–local sphere
is obtained then as the Devinatz–Hopkins homotopy fixed points. However, Gn also has
interesting finite subgroups when the prime is relatively small with respect to n. If G
is such a subgroup, the homotopy fixed points EhGn are an E1–ring spectrum, which
is in theory easier to study than the K.n/–local sphere, but hopefully contains a lot of
information about the K.n/–local sphere. For instance, Hopkins has observed that in
all known examples, the Picard group of EhGn (unlike that of the K.n/–local category)
is very simple as it only contains suspensions of EhGn , and raised the following natural
question.

Question (Hopkins) Let G be a finite subgroup of the Morava stabilizer group Gn

at height n. Is it true that any invertible K.n/–local module over EhGn is a suspension
of EhGn ?

The periodic TMF is closer to its K.2/–localization than Tmf, and this is demonstrated
by the following result, originally due to Hopkins but unpublished.

Theorem A (Hopkins) The Picard group of TMF is isomorphic to Z=576, generated
by the suspension †TMF.
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In the paper at hand, we prove Theorem A using a descent-theoretic approach. In
particular, our method is different from Hopkins’s. The descent-theoretic approach
also enables us to prove that, nonetheless, the nonconnective, nonperiodic flavor of
topological modular forms Tmf behaves differently and has a more interesting Picard
group.

Theorem B The Picard group of Tmf is isomorphic to Z˚Z=24, generated by the
suspension †Tmf and a certain 24–torsion invertible object.

In addition, we explicitly construct the 24–torsion module in Construction 8.4.2. We
note that, after the initial submission of this paper, the preprint of Hill and Meier [23]
appeared, in which the authors use techniques from C2–equivariant stable homotopy
to construct exotic torsion elements in the Picard group of Tmf1.3/. In contrast, our
construction is given by an unusual gluing of locally trivial modules.

We hope that our method of proof of Theorems A and B, which is very general, will
also be of interest to those not directly concerned with TMF. Our method is inspired by
and analogous to the forthcoming work of Gepner and Lawson [15] on Galois descent
of Brauer as well as Picard groups, though the key ideas are classical.

Take, for example, the periodic variant TMF. Its essential property is that it arises as
the global sections of the structure sheaf Otop of a regular “derived stack” .Mell;Otop/

refining the moduli stack of elliptic curves Mell . Thus

TMFD �.Mell;Otop/D lim
 ��

SpecR!Mell

�.SpecR;Otop/;

where the maps SpecR!Mell range over all étale morphisms from affine schemes
to Mell . Moreover, the E1–ring spectra �.SpecR;Otop/ are weakly even periodic;
thus we have TMF as the homotopy limit of a diagram of weakly even periodic
E1–rings. It follows by the main result in Mathew and Meier [42] that the module
category of TMF can also be represented as the inverse limit of the module categories
Mod.Otop.SpecR//, that is, as quasicoherent sheaves on the derived stack. In any
analogous situation, our descent techniques for calculating Picard groups apply.

Over an affine chart SpecR!Mell , the Picard group of �.SpecR;Otop/ (ie that of an
elliptic spectrum) is purely algebraic, by a classical argument in Hopkins, Mahowald
and Sadofsky [26] and Baker and Richter [4] with “residue fields”. This results from the
fact that the ring ���.SpecR;Otop/ is homologically simple: in particular, it has finite
global dimension, which makes the study of �.SpecR;Otop/–modules much easier.
One attempts to use this together with descent theory to compute the Picard group
of TMF itself; however, doing so necessitates the consideration of higher homotopy
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coherences. For this, it is important to work with Picard spectra rather than Picard
groups, as they have a better formal theory of descent.

The Picard spectrum pic.A/ of an E1–ring A is an important spectrum associated
to A that deloops the space of units GL1.A/ of May [46]:1 it is connective, its �0 is
the Picard group of A, and its 1–connective cover ��1 pic.A/ is equivalent to † gl1.A/

for gl1.A/ the spectrum of units of [46]. We find that the Picard spectrum of TMF
is the connective cover of the homotopy limit of pic.Otop.SpecR//, taken over étale
maps SpecR!Mell . This statement is a homotopy-theoretic expression of the descent
theory that we need. Thus, we get a descent spectral sequence for the homotopy groups
of pic.TMF/, which is a computational tool for understanding the aforementioned
homotopy coherences concretely. We use this technique to compute �0.pic.TMF//,
the group we are after.

The descent spectral sequence has many consequences in cases where it degenerates
simply for dimensional reasons, or in cases where the information sought is coarse. For
instance, in a specific example (Proposition 2.4.9), we show that the Picard group of
the E1–ring C �.S1IQŒ��=�2/ is given by Z�Q, which yields a counterexample to a
general conjecture of Balmer [5, Conjecture 74] on the Picard groups of certain tensor-
triangulated categories. We also prove the following general results in Sections 4 and 5.

Theorem C Let A be a weakly even periodic Landweber exact E1–ring with �0A
regular noetherian. Let n� 1 be an integer, and let Ln denote localization with respect
to the Lubin–Tate spectrum En . The Picard group of LnA is

Pic.LnA/D Pic.��A/���1.LnA/;

where Pic.��A/ refers to the (algebraic) Picard group of the graded commutative
ring ��A.

Note that Pic.��A/ sits in an extension

0! Pic.�0A/! Pic.��A/! Z=2! 0;

which is split if A is strongly even periodic.

Theorem D Let A be an E1–ring such that �0A is a field of characteristic zero and
such that �iAD 0 for i > 0. Then Pic.A/ is infinite cyclic, generated by †A.

Theorem E Let G be a finite group, and let A!B be a faithful G–Galois extension
of E1–rings in the sense of Rognes [59]. Then the relative Picard group of B=A, ie
the kernel of Pic.A/! Pic.B/, is jGj–power torsion of finite exponent.

1See Ando, Blumberg, Gepner, Hopkins and Rezk [2] for a very important application.
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For TMF, the descent spectral sequence does not degenerate so nicely, and we need to
work further to obtain our main results. The homotopy groups of the Picard spectrum
of an E1–ring A, starting with �2 , are simply those of A: in fact, we have a natural
equivalence of spaces

�1C2 pic.A/'�1C1A:

This determines the E2–page and many of the differentials in the descent spectral
sequence for Pic.TMF/, but not all the ones that affect �0 . A key step in our argument
is the identification of the differentials of the descent spectral sequence for the Picard
spectra, in a certain range of dimensions, with that of the (known) descent spectral
sequence for ��.TMF/. We prove this in a general setting in Section 5.

At the prime 2, this technique is not sufficient to determine all the differentials in the
descent spectral sequence, and we need to determine in addition the first “unstable”
differential in the Picard spectral sequence (in comparison to the usual descent spectral
sequence). We give a “universal” formula for this first differential in Theorem 6.1.1,
which we hope will have further applications.

Conventions Throughout, we will write S for the 1–category of spaces, S� for
the 1–category of pointed spaces, and Sp for the 1–category of spectra. We
will frequently identify abelian groups A with their associated Eilenberg–Mac Lane
spectra HA. Finally, all spectral sequences are displayed with the Adams indexing
convention, ie the vertical axis represents the cohomological degree, and the horizontal
axis represents the total topological degree.
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Part I Generalities

2 Picard groups

We begin by giving an introduction to Picard groups in stable homotopy theory. General
references here include [26; 47].
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2.1 Generalities

Let .C;˝; 1/ be a symmetric monoidal category.

Definition 2.1.1 The Picard group of C is the group of isomorphism classes of
objects x 2 C which are invertible, ie such that there exists an object y 2 C such
that x˝y ' 1. We will denote this group by Pic.C/.

Remark 2.1.2 If C is a large category, then it is not necessarily clear that the Picard
group is a set. However, in all cases of interest, C will be presentable so that this will
be automatic (see Remark 2.1.4).

When C is the category of quasicoherent sheaves on a scheme (or stack) X , then this
recovers the usual Picard group of X : line bundles are precisely the invertible objects.
The principal goal of this paper is to compute a Picard group in a homotopy-theoretic
setting.

We will repeatedly use the following simple principle, which follows from the observa-
tion that tensoring with an invertible object induces an autoequivalence of categories.

Proposition 2.1.3 Let C0 � C be a full subcategory that is preserved under any
autoequivalence of C . Suppose the unit object 12C belongs to C0 . Then any x 2Pic.C/
belongs to C0 as well.

For example, if 1 is a compact object (that is, if HomC.1; � / commutes with filtered
colimits), then so is x .

Suppose now that, more generally, C is a symmetric monoidal 1–category in the
sense of [39], which is the setting that we will be most interested in. Then we can
still define the Picard group Pic.C/ of C , which is the same as Pic.Ho.C//. Moreover,
Proposition 2.1.3 is valid, but where one is allowed to (and often should) use 1–
categorical properties.

Remark 2.1.4 The theory of presentable 1–categories [34, Section 5.5] enables
one to address set-theoretic concerns. If C is a presentable symmetric monoidal 1–
category, then the unit of C is �–compact for some regular cardinal � . Therefore, by
Proposition 2.1.3 (strictly speaking, its 1–categorical analog), every invertible object
of C is �–compact, and the collection of �–compact objects of C is essentially small.
In particular, the collection of isomorphism classes forms a set and the Picard group is
well defined.
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Example 2.1.5 Suppose that C is a symmetric monoidal stable 1–category such that
the tensor product commutes with finite colimits in each variable. Then one has a
natural homomorphism

Z! Pic.C/;
sending n 7!†n1.

Example 2.1.6 Let Sp be the 1–category of spectra with the smash product. Then it
is a classical result [26, page 90] that Pic.C/'Z, generated by the sphere S1. A quick
proof based on the above principle (which simplifies the argument in [26] slightly)
is as follows. If T 2 Sp is invertible, so that there exists a spectrum T 0 such that
T ^T 0 ' S0, then we need to show that T is a suspension of S0.

Since the unit object S0 2 Sp is compact, it follows that T is compact: that is, it is a
finite spectrum. By suspending or desuspending, we may assume that T is connective,2

and that �0T ¤ 0. By the Künneth formula, it follows easily that H�.T IF / is
concentrated in one dimension for each field F . Since H�.T IZ/ is finitely generated,
an argument with the universal coefficient theorem implies that H�.T IZ/ is torsion-
free of rank one and is concentrated in dimension zero: ie H0.T IZ/ ' Z. By the
Hurewicz theorem, T ' S0.

Example 2.1.7 Other variants of the stable homotopy category can have more compli-
cated Picard groups. For instance, if E 2 Sp, one can consider the 1–category LESp
of E–local spectra, with the symmetric monoidal structure given by the E–localized
smash product .X; Y / 7! LE .X ^Y /. The Picard group of LESp is generally much
more complicated than Z. When E is given by the Morava E–theories En or the
Morava K–theories K.n/, the resulting Picard groups have been studied in [26; 27],
among other references.

Another important example of this construction arises for R an E1–ring, when we
can consider the symmetric monoidal 1–category Mod.R/ of R–modules.

Definition 2.1.8 Given an E1–ring R , we write Pic.R/ to denote the Picard group
Pic.Mod.R//.

Using the same argument as in Example 2.1.6, it follows that any invertible R–module
is necessarily compact (ie perfect): in particular, the invertible modules actually form
a set rather than a proper class. Note that if R is simply an E2–ring spectrum, then
Mod.R/ is a monoidal 1–category, so one can still define a Picard group. This raises
the following natural question.

2We always use “connective” to mean “.�1/–connected”.
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Question 2.1.9 Is there an example of an E2–ring whose Picard group is nonabelian?

We will only work with E1–rings in the future, as it is for these highly commutative
multiplications that we will be able to obtain good (from the point of view of descent
theory) infinite loop spaces that realize Pic.R/ on �0 .

2.2 Picard 1–groupoids

If .C;˝; 1/ is a symmetric monoidal 1–category, we reviewed in the previous section
the Picard group of C . There is, however, a more fundamental invariant of C , where
we remember all isomorphisms (and higher isomorphisms), and which behaves better
with respect to descent processes.

Definition 2.2.1 Let Pic.C/ denote the 1–groupoid (ie space) of invertible objects
in C and equivalences between them. We will refer to this as the Picard 1–groupoid
of C ; it is a group-like E1–space, and thus [45; 60] the delooping of a connective
Picard spectrum pic.C/.

We have in particular
�0 Pic.C/' Pic.C/:

However, we can also describe the higher homotopy groups of Pic.C/. Recall that since
C is symmetric monoidal, End.1/ is canonically an E1–space and Aut.1/ consists of
the grouplike components. Since

�Pic.C/' Aut.1/;
we get the relations

�1 Pic.C/D .�0 End.1//� and �i Pic.C/D �i�1 End.1/ for i � 2:

Example 2.2.2 Let R be an E1–ring. We will write

Pic.R/ def
D Pic.Mod.R// and pic.R/

def
D pic.Mod.R//:

Then Pic.R/ is a delooping of the space of units GL1.R/ studied in [46] and more
recently using 1–categorical techniques in [2]. In particular, the homotopy groups
of Pic.R/ look very much like those of R (with a shift), starting at �2 . In fact, if
we take the connected components at the basepoint, we have a natural equivalence of
spaces

��1.GL1R/' ��1.�Pic.R//' ��1.�1R/;

given by subtracting 1 with respect to the group structure on the infinite loop space �1R.
Nonetheless, the spectra pic.R/ and R are generally very different: that is, the infinite
loop structure on Pic.R/ behaves very differently from that of �1R .

Geometry & Topology, Volume 20 (2016)



The Picard group of topological modular forms via descent theory 3141

Unlike the group-valued functor Pic, both Pic and pic have the fundamental property,
upon which the calculations in this paper are based, that they commute with homotopy
limits.

Proposition 2.2.3 The functor

picW Cat˝! Sp�0;

from the 1–category Cat˝ of symmetric monoidal 1–categories to the 1–category
Sp�0 of connective spectra, commutes with limits and filtered colimits, and the functor
PicD�1 ı picW Cat˝! S� does as well.

Proof We will treat the case of limits; the case of filtered colimits is similar and easier.
It suffices to show that Pic commutes with homotopy limits, since �1W Sp�0! S�
creates limits. Let CAlg.S/ be the 1–category of E1–spaces. Now, Pic is the
composite inv ı �̄ where:

(1) �̄W Cat˝!CAlg.S/ sends a symmetric monoidal 1–category to the symmetric
monoidal 1–groupoid (ie E1–space) obtained by excluding all noninvertible
morphisms.

(2) invW CAlg.S/!S� sends an E1–space X to the union of those connected com-
ponents which are invertible in the commutative monoid �0X , with basepoint
given by the identity.

It thus suffices to show that �̄ and inv both commute with limits.

(1) The functor �W Cat! S that sends an 1–category C to its core �C commutes
with limits: in fact, it is right adjoint to the inclusion S! Cat that regards a space as
an 1–groupoid. See for instance [58, Section 17.2]. Now, to see that �̄ commutes
with limits, we observe that limits either in Cat˝ or in CAlg.S/ are calculated at the
level of the underlying spaces (resp. 1–categories), so the fact that � commutes with
limits implies that �̄ does too.

(2) It is easy to see that inv commutes with arbitrary products. Therefore, we need to
show that inv turns pullbacks in CAlg.S/ into pullbacks in S� . We recall that if A, B
are complete 1–categories, then a functor F W C!D preserves limits if and only if it
preserves pullbacks and products [34, Proposition 4.4.2.7]. Suppose given a homotopy
pullback

(2-1)

A

��

// B

��

C // D
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in CAlg.S/; we need to show that

inv.A/

��

// inv.B/

��

inv.C / // inv.D/

is one too, in S� . Given the construction of inv as a union of connected components,
it suffices to show that if x 2 �0A has the property that x maps to invertible elements
in the monoids �0B , �0C , then x itself is invertible.

To see this, consider the homotopy pullback square (2-1). Addition of x induces an
endomorphism of the square. Since it acts via homotopy equivalences on B , C , D , it
follows formally that it must act invertibly on A, ie that x 2 �0A has an inverse.

2.3 Descent

Let R!R0 be a morphism of E1–rings. Recall the cobar construction, a cosimplicial
E1–R–algebra

R0 �!�! R0˝R R
0 �!
�!
�! � � � ;

important in descent procedures, which receives an augmentation from R . The cobar
construction is the Čech nerve (see [34, Section 6.1.2]) of R! R0, in the opposite
1–category.

Definition 2.3.1 [37, Definition 5.2] We say that R ! R0 is faithfully flat if the
map �0R! �0R

0 is faithfully flat and the natural map ��R˝�0R �0R
0! ��R

0 is
an isomorphism.

In this case, the theory of faithfully flat descent goes into effect. We have:

Theorem 2.3.2 [37, Theorem 6.1] Suppose R! R0 is a faithfully flat morphism
of E1–rings. Then the symmetric monoidal 1–category Mod.R/ can be recovered
as the limit of the cosimplicial diagram of symmetric monoidal 1–categories

Mod.R0/ �!�! Mod.R0˝R R0/ �!�!�! � � � :

As a result, by Proposition 2.2.3, Pic.R/ can be recovered as a totalization of spaces,

(2-2) Pic.R/' Tot.Pic.R0˝.�C1///:

Equivalently, one has an equivalence of connective spectra

(2-3) pic.R/' ��0 Tot.pic.R0˝.�C1///:
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In this paper, we will apply a version of this, except that we will work with morphisms
of ring spectra that are not faithfully flat on the level of homotopy groups. As we will
see, the descent spectral sequences given by (2-2) and (2-3) are not very useful in the
faithfully flat case for our purposes.

Example 2.3.3 A more classical example of this technique (eg [20, Exercise 6.9])
is as follows. Let X be a nodal cubic curve over the complex numbers C . Then X
can be obtained from its normalization P1 by gluing together 0 and 1. There is a
pushout diagram of schemes:

f0;1g

��

// �

��

P1 // X

Therefore, one would like to say that the category QCoh.X/ of quasicoherent sheaves
on X fits into a homotopy pullback square

(2-4)

QCoh.X/

��

// QCoh.�/

��

QCoh.P1/ // QCoh.�t�/

and that therefore the Picard groupoid of X fits into the homotopy cartesian square:

(2-5)

Pic.X/

��

// Pic.�/

��

Pic.P1/ // Pic.�/�Pic.�/

Unfortunately, (2-4) is not a pullback square of categories, because restricting to a
closed subscheme is not an exact functor. It is possible to remedy this (up to connectivity
issues) by working with derived 1–categories [36, Theorem 7.1], or by noting that
we are working with locally free sheaves and applying a version of [49, Theorems
2.1–2.3]. In any event, one can argue that (2-5) is homotopy cartesian.

Alternatively, we obtain a homotopy pullback diagram of connective spectra. Using
the long exact sequence on �� , it follows that we have a short exact sequence

0!C�! Pic.X/! Pic.P1/' Z! 0:

The approach of this paper is essentially an elaboration of this example.
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2.4 Picard groups of E1–rings

We now specialize to the case of interest to us in this paper. Let R be an E1–ring, and
consider the Picard group Pic.R/, and better yet, the Picard 1–groupoid Pic.R/ and
the Picard spectrum pic.R/. The first of these has been studied by Baker and Richter
in the paper [4], and we start by recalling some of their results.

We start with the following useful property.

Proposition 2.4.1 The functor R 7! Pic.R/ commutes with filtered colimits in R .

Proof This is a consequence of a form of “noetherian descent” [19, Section 8]. Given
an E1–ring T , let Mod!.T / denote the 1–category of perfect T –modules. If I is
a filtered 1–category and fRigi2I is a filtered system of E1–rings indexed by I ,
then the functor of symmetric monoidal 1–categories

(2-6) lim
��!
i2I

Mod!.Ri /!Mod!.lim
��!
I

Ri /

is an equivalence. We outline the proof of this below.

Assume without loss of generality that I is a filtered partially ordered set and write
R D lim

��!I
Ri . To see that (2-6) is an equivalence, observe that the 1–category

lim
��!i2I

Mod!.Ri / has objects given by pairs .M; i/ where i 2 I and M 2Mod!.Ri /.
The space of maps between .M; i/ and .N; j / is given by

lim
��!
k�i;j

HomMod.Rk/.Rk˝Ri
M;Rk˝Rj

N/:

For instance, this implies that if i 0 � i , the pair .M; i/ is (canonically) equivalent to
the pair .Ri 0 ˝Ri

M; i 0/. Thus, the assertion that (2-6) is fully faithful is equivalent to
the assertion that if M; N 2Mod!.Ri / for some i , then the natural map

(2-7) lim
��!
j�i

HomMod!.Rj /.Rj ˝Ri
M;Rj ˝Ri

N/!HomMod!.R/.R˝Ri
M;R˝Ri

N/

is an equivalence. But (2-7) is clearly an equivalence if M D Ri for any N . The
collection of M 2Mod!.Ri / such that (2-7) is an equivalence is closed under finite
colimits, desuspensions, and retracts, and therefore it is all of Mod!.Ri /. It therefore
follows that (2-6) is fully faithful.

Moreover, the image of (2-6) contains R2Mod!.R/ and is closed under desuspensions
and cofibers (thus finite colimits). Let C �Mod!.R/ be the subcategory generated
by R under finite colimits and desuspensions. We have shown the image of the
fully faithful functor (2-6) contains C . Any object M 2Mod!.R/ is a retract of an

Geometry & Topology, Volume 20 (2016)



The Picard group of topological modular forms via descent theory 3145

object X 2 C , associated to an idempotent map eW X ! X . We can “descend” X
to some Xi 2Mod!.Ri / and the map e to a self-map ei W Xi ! Xi such that e2i is
homotopic to ei . As is classical, we use the idempotent ei to split Xi ; see [52,
Proposition 1.6.8] or the older [12] and [13, Theorem 5.3]. Explicitly, form the filtered
colimit Yi of Xi

ei
�!Xi

ei
�!� � � , which splits off Xi . The tensor product R˝Ri

Yi is
the direct summand of X given by the idempotent e and is therefore equivalent to M .

The association C 7! Pic.C/ commutes with filtered colimits of symmetric monoidal
1–categories by Proposition 2.2.3. Taking Picard groups in the equivalence (2-6), the
proposition follows.

Purely algebraic information can be used to begin approaching Pic.R/. Let Pic.R�/
be the Picard group of the symmetric monoidal category of graded R�–modules. The
starting point of [4] is the following.

Construction 2.4.2 There is a monomorphism

ˆW Pic.R�/! Pic.R/;

constructed as follows. If M� is an invertible R�–module, it has to be finitely gen-
erated and projective of rank one. Consequently, there is a finitely generated free
R�–module F� of which M� is a direct summand, ie there is a projection p� with a
section s� :

F� p�
// M�

s�
tt

Clearly, F� can be realized as an R–module F which is a finite wedge sum of copies
of R or its suspensions. Let e� be the idempotent given by composition s� ıp� . Since
F is free over R , e� can be realized as an R–module map eW F ! F which must
be idempotent. Define M to be the colimit of the sequence F e

�!F e
�!� � � ; ie the

image of the idempotent e . Observe that the homotopy groups of M are given by M� ,
as desired. If M 0� is the inverse to M� in the category of graded R�–modules, we can
construct an analogous R–module M 0, and clearly M˝RM 0'R by the degeneration
of the Künneth spectral sequence. Thus, M 2 Pic.R/. The association M� 7! M

defines ˆ.

Note that any two R–modules that realize M� on homotopy groups are equivalent
by the degeneration of the Ext spectral sequence, and that ˆ is a homomorphism by
the degeneration of the Künneth spectral sequence. Observe also that ˆ is clearly a
monomorphism as equivalences of R–modules are detected on homotopy groups.

Definition 2.4.3 When ˆ is an isomorphism, we say that Pic.R/ is algebraic.
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Baker and Richter [4] determine certain conditions which imply algebraicity. There
are, in particular, two fundamental examples. The first one generalizes Example 2.1.6.

Theorem 2.4.4 [4] Suppose R is a connective E1–ring. Then the Picard group
of R is algebraic.

Proof Since the formulation in [4, Theorem 21] assumed a coherence hypothesis
on ��R , we explain briefly how this (slightly stronger) version can be deduced from
the theory of flatness of [39, Section 8.2.2]. Recall that an R–module M is flat if
�0M is a flat �0R–module and the natural map

��R˝�0R �0M ! ��M

is an isomorphism.

Since the Picard group commutes with filtered colimits in R , we may assume that
R is finitely presented in the 1–category of connective E1–rings: in particular, by
[39, Proposition 8.2.5.31], �0R is a finitely generated Z–algebra and in particular
noetherian; moreover, each �jR is a finitely generated �0R–module. These are the
properties that will be critical for us.

Let M be an invertible R–module. We will show that ��M is a flat module over ��R ,
which immediately implies the claim of the theorem. Localizing at a prime ideal
of �0R , we may assume that �0R is a noetherian local ring; in this case we will show
the Picard group is Z generated by the suspension of the unit. We saw that M is
perfect, so we can assume by shifting that M is connective and that �0M ¤ 0. Now
for every map3 R! k , for k a field, ��.M ˝R k/ is necessarily concentrated in a
single degree: in fact, M ˝R k is an invertible object in Mod.k/ and one can apply
the Künneth formula to see that Pic.Mod.k//' Z generated by †k . By Nakayama’s
lemma, since �0M ¤ 0, the homotopy groups of M ˝R k must be concentrated in
degree zero. Thus, M ˝R k ' k itself. Using Lemma 2.4.5, it follows that M is
equivalent to R as an R–module, so we are done.

Lemma 2.4.5 Let R be a connective E1–ring with �0R noetherian local with residue
field k . Suppose moreover each �iR is a finitely generated �0R–module. Suppose M
is a connective (ie .�1/–connected) perfect R–module. Then, for n� 0, the following
are equivalent:

(1) M 'Rn.

(2) M ˝R k ' k
n.

3Recall that we are using the same symbol to denote an abelian group and its Eilenberg–Mac Lane
spectrum.
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Proof Suppose M ˝R k is isomorphic to kn and concentrated in degree zero. Note
that �0.M ˝R k/' �0M ˝�0R k . Choose a basis x1; : : : ; xn of this k–vector space
and lift these elements to x1; : : : ; xn 2 �0M . These define a map Rn!M which
induces an equivalence after tensoring with k , since M ˝R k ' kn.

Now consider the cofiber C of Rn ! M . It follows that C ˝R k is contractible.
Suppose C itself is not contractible. The hypotheses on ��R imply that C is connective
and each �jC is a finitely generated module over the noetherian local ring �0R . If j is
chosen minimal such that �jC ¤ 0, then

0D �j .C ˝R k/' �jC ˝�0R k;

and Nakayama’s lemma implies that �jC D 0, a contradiction.

Some of our analyses in the computational sections will rest upon the next result about
the Picard groups of periodic ring spectra.

Theorem 2.4.6 (Baker and Richter [4, Theorem 37]) Suppose R is a weakly even
periodic E1–ring with �0R regular noetherian. Then the Picard group of R is
algebraic.

The result in [4, Theorem 37] actually assumes that �0R is a complete regular local
ring. However, one can remove the hypotheses by replacing R with the localization Rp

for any p 2 Spec�0R and then forming the completion at the maximal ideal.

We will need a slight strengthening of Theorem 2.4.6, though.

Corollary 2.4.7 Suppose R is an E1–ring satisfying the following assumptions:

(1) �0R is regular noetherian.

(2) The �0R–module �2kR is invertible for some k > 0.

(3) �iRD 0 if i 6� 0 mod 2k .

Then the Picard group of R is algebraic.

Proof Using the obstruction theory of [3] (as well as localization), we can construct
“residue fields” in R as E1–algebras in Mod.R/ (which will be 2k–periodic rather
than 2–periodic). After this, the same argument as in Theorem 2.4.6 goes through.
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Remark 2.4.8 If R is a ring spectrum satisfying the conditions of Corollary 2.4.7,
then Pic.R/Š Pic.��R/ sits in a short exact sequence

0! Pic.�0R/! Pic.��R/! Z=.2k/! 0:

The extension is such that the .2k/th power of a set-theoretic lift of a generator
of Z=.2k/ to Pic.��R/ is identified with the invertible �0R–module �2kR .

An example of a nonalgebraic Picard group, based on [41, Example 7.1], is as follows.

Proposition 2.4.9 The Picard group of the rational E1–ring R D QŒ�0; ��1�=�20
(free on two generators �0 , of degree 0, and ��1 , of degree �1, and with the relation
�20 D 0) is given by Z�Q.

Proof The key observation is that R is equivalent, as an E1–ring, to cochains
over S1 on the (discrete) E1–ring QŒ�0�=�20 , because C �.S1IQ/ is equivalent
to QŒ��1�. By [40, Remark 7.9], we have a fully faithful, symmetric monoidal embed-
ding Mod.R/� LocS1.Mod.QŒ�0�=�20// into the 1–category of local systems (see
Definition 4.2.1 below) of QŒ�0�=�20 –modules over the circle, whose image consists of
those local systems of QŒ�0�=�20 –modules such that the monodromy action of �1.S1/
is ind-unipotent.

In particular, to give an object in Pic.R/ is equivalent to giving an element in the
Picard group Pic.QŒ�0�=�20/ (of which there are only the suspensions of the unit, by
Theorem 2.4.4) and an ind-unipotent (monodromy) automorphism, which is necessarily
given by multiplication by 1C q�0 for q 2 Q. We observe that this gives the right
group structure to the Picard group because .1C q�0/.1C q0�0/D 1C .qC q0/�0 .

Proposition 2.4.9 provides a counterexample to [5, Conjecture 74], which states that in
a tensor triangulated category generated by the unit with a local spectrum (eg with no
nontrivial thick subcategories), any element L in the Picard group has the property that
L˝n is a suspension of the unit for suitable n> 0. In fact, one can take the (homotopy)
category of perfect R–modules for R as in Proposition 2.4.9, which has no nontrivial
thick subcategories by [41, Theorem 1.3].

Remark 2.4.10 Other Picard groups of interest come from the theory of stable module
1–categories of a p–group G over a field k of characteristic p , which from a
homotopy-theoretic perspective can be expressed as the module 1–categories of the
Tate construction ktG. The Picard groups of stable module 1–categories have been
studied in the modular representation theory literature (under the name endotrivial
modules) starting with [10], where it is proved that the Picard group is algebraic (and
cyclic) in the case where G is elementary abelian. The classification for a general
p–group appears in [8].
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3 The descent spectral sequence

In this section, we describe a descent spectral sequence for calculating Picard groups.
The spectral sequence (studied originally by Gepner and Lawson [15] in a closely
related setting) is based on the observation (Proposition 2.2.3) that the association
C 7! Pic.C/, from symmetric monoidal 1–categories to E1–spaces, commutes with
homotopy limits. We will describe several examples and applications of this in the
present section. Explicit computations will be considered in later parts of this paper.

For example, let fCU g be a sheaf of symmetric monoidal 1–categories on a site, and
let �.C/ denote the global sections (ie the homotopy limit) 1–category. Then we
have an equivalence of connective spectra

pic.�.C//' ��0�.pic.CU //;

and one can thus use the descent spectral sequence for a sheaf of spectra to approach
the computation of pic.�.C//. We will use this approach, together with a bit of descent
theory, to calculate Pic.TMF/. The key idea is that while TMF itself has sufficiently
complicated homotopy groups that results such as Theorem 2.4.6 cannot apply, the
1–category of TMF–modules is built up as an inverse limit of module categories over
E1–rings with better behaved homotopy groups.

3.1 Refinements

Let X be a Deligne–Mumford stack equipped with a flat map X!MFG to the moduli
stack of formal groups. We will use the terminology of [42].

Definition 3.1.1 An even periodic refinement of X is a sheaf Otop of E1–rings on
the affine, étale site of X , such that for any étale map

SpecR!X;

the multiplicative homology theory associated to the E1–ring Otop.SpecR/ is func-
torially identified with the (weakly) even-periodic Landweber-exact theory4 associated
to the formal group classified by SpecR!X !MFG . We will denote the refinement
of the ordinary stack X by X.

A very useful construction from the refinement X is the E1–ring of “global sections”
�.X;Otop/, which is the homotopy limit of the Otop.SpecR/ as SpecR!X ranges
over the affine étale site of X .

4See [35, Lecture 18] for an exposition of the theory of weakly even-periodic theories.
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Example 3.1.2 When X is the moduli stack Mell of elliptic curves, with the natural
map Mell ! MFG that assigns to an elliptic curve its formal group, fundamental
work of Goerss, Hopkins, and Miller, and (later) Lurie constructs an even periodic
refinement Mell . The global sections of Mell are defined to be the E1–ring TMF of
topological modular forms; for a survey, see [16]. There is a similar picture for the
compactified moduli stack Mell , whose global sections are denoted Tmf.

Definition 3.1.3 Given the refinement X, one has a natural symmetric monoidal stable
1–category QCoh.X/ of quasicoherent sheaves on X, given as a homotopy limit of
the (stable symmetric monoidal)1–categories Mod.Otop.SpecR// for each étale map
SpecR!X .

There is an adjunction

(3-1) Mod.�.X;Otop//� QCoh.X/;

where the left adjoint “tensors up” and the right adjoint takes global sections.5

Our main goal in this paper is to investigate the left hand side; however, the right hand
side is sometimes easier to work with, since even periodic, Landweber-exact spectra
have convenient properties. Therefore, the following result will be helpful.

Theorem 3.1.4 [42, Theorem 4.1] Suppose X is noetherian and separated, and
X !MFG is quasiaffine. Then the adjunction (3-1) is an equivalence of symmetric
monoidal 1–categories.

For example, since the map Mell ! MFG is affine, it follows that Mod.TMF/ is
equivalent to QCoh.Mell/. This was originally proved by Meier, away from the prime 2,
in [48]. Theorem 3.1.4 implies the analog for Tmf and the derived compactified moduli
stack, as well [42, Theorem 7.2].

Suppose X ! MFG is quasiaffine. In particular, it follows that there is a sheaf of
symmetric monoidal 1–categories on the affine, étale site of X , given by

.SpecR!X/!Mod.Otop.SpecR//;

whose global sections are given by Mod.�.X;Otop//. This diagram of 1–categories
is a sheaf in view of the descent theory of [37, Theorem 6.1], but [42, Theorem 4.1]

5One way to extract this from [39] is to consider the thick subcategory C of QCoh.X;Otop/ generated
by the unit. Then, one obtains by the universal property of Ind an adjunction Ind.C/� QCoh.X;Otop/ .
However, the symmetric monoidal 1–category Ind.C/ is generated under colimits by the unit, so it is by
Lurie’s symmetric monoidal version [39, Proposition 8.1.2.7] of Schwede–Shipley theory equivalent to
modules over �.X;Otop/ , which is the ring of endomorphisms of the unit.
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gives the global sections. We are now in the situation of the introduction to this section.
In particular, we obtain a descent spectral sequence for pic.�.X;Otop//, and we turn
to studying it in detail.

3.2 The Gepner–Lawson spectral sequence

Keep the notation of the previous subsection: X is a Deligne–Mumford stack equipped
with a quasiaffine flat map X !MFG , and .X;Otop/ is an even periodic refinement.

Our goal in this subsection is to prove:

Theorem 3.2.1 Suppose that X is a regular Deligne–Mumford stack with a quasiaffine
flat map X !MFG , and suppose X is an even periodic refinement of X . There is a
spectral sequence with

(3-2) E
s;t
2 D

8̂̂̂̂
<̂
ˆ̂̂:
H s.X;Z=2/ if t D 0;

H s.X;O�X / if t D 1;

H s.X; !.t�1/=2/ if t � 3 is odd;

0 otherwise,

whose abutment is �t�s�.X; pic.Otop//. The differentials run dr W E
s;t
r !EsCr;tCr�1.

The analogous spectral sequence for a faithful Galois extension has been studied in
work of Gepner and Lawson [15], and our approach is closely based on theirs.

Proof In this situation, as we saw in the previous subsection, we get an equivalence
of symmetric monoidal 1–groupoids,

Pic.�.X;Otop//' holimSpecR!X Pic.Otop.SpecR//;

where SpecR ! X ranges over the affine étale maps. Equivalently, we have an
equivalence of connective spectra

pic.�.X;Otop//' ��0
�
holimSpecR!X pic.Otop.SpecR//

�
:

Let us study the descent spectral sequence associated to this. We need to understand
the homotopy group sheaves of the sheaf of connective spectra

.SpecR!X/ 7! pic.Otop.SpecR//;

ie the sheafification of the homotopy group presheaves

.SpecR!X/ 7! �i pic.Otop.SpecR//:

Geometry & Topology, Volume 20 (2016)



3152 Akhil Mathew and Vesna Stojanoska

First, we know that
�1 pic.Otop.SpecR//'R�;

and, for i � 2, we have

�i .pic.Otop.SpecR//' �i�1Otop.SpecR/D
�
!.i�1/=2 for i odd,
0 for i even.

It remains to determine the homotopy group sheaf �0 . If X is a regular Deligne–
Mumford stack, so that each ring R that enters is regular, then we can do this using
Theorem 2.4.6. In fact, it follows that if R is a local ring, then �0 pic.Otop.SpecR//
is isomorphic to Z=2. Thus, up to suitably suspending once, invertible sheaves are
locally trivial. Using the descent spectral sequence for a sheaf of spectra, we get that
the above descent spectral sequence for �.X; pic.Otop// is almost entirely the same as
the descent spectral sequence for �.X;Otop/ in the sense that the cohomology groups
that appear for t � 3, ie H s.X; !.t�1/=2/, are the same as those that appear in the
descent spectral sequence for �.X;Otop/. However, the terms for t D 1 are the étale
cohomology of Gm on X . In particular, we obtain the term

H 1.X;O�X /' Pic.X/;

which is the Picard group of the underlying ordinary stack.

Remark 3.2.2 One may think of the spectral sequence as arising from a totalization,
or rather as a filtered colimit of totalizations. Choose an étale hypercover A given
by U�! X by affine schemes fUng. For any E1–ring A, denote by PicZ.A/ the
symmetric monoidal subcategory of Pic.A/ spanned by those A–modules such that,
after restricting to each connected component of Spec�0A, become equivalent to a
suspension of A. Denote by picZ.A/ the associated connective spectrum. Then we
form the totalization

Tot
�
picZ.Otop.U�//

�
;

whose associated infinite loop space �1 Tot
�
picZ.Otop.U�//

�
is, by descent theory, the

symmetric monoidal 1–subgroupoid of Pic.�.X;Otop// spanned by those invertible
modules which become (up to a suspension) trivial after pullback along U0!X . In
particular, the filtered colimit of these totalizations is the spectrum we are after. The
descent spectral sequence of Theorem 3.2.1 is the filtered colimit of these Tot spectral
sequences.

3.3 Galois descent

We next describe the setting of the spectral sequence that was originally considered
in [15]. Let A! B be a faithful G–Galois extension of E1–ring spectra in the
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sense of [59]. In particular, G acts on B in the 1–category of E1–A–algebras and
A! BhG is an equivalence. Then A! B is an analog of a G–Galois étale cover
in the sense of ordinary commutative algebra or algebraic geometry. As in ordinary
algebraic geometry, there is a good theory of Galois descent along A!B , as has been
observed by several authors, for instance in [15; 48].

Theorem 3.3.1 (Galois descent) Let A! B be a faithful G–Galois extension of
E1–rings. Then there is a natural equivalence of symmetric monoidal 1–categories
Mod.A/'Mod.B/hG.

The “strength” of the descent is in fact very good. As shown in [40, Theorem 3.36],
any faithful Galois extension A! B satisfies a form of descent up to nilpotence: the
thick tensor-ideal that B generates in Mod.A/ is equal to all of Mod.A/. This imposes
strong restrictions on the descent spectral sequences that can arise.

Applying the Picard functor, we get an equivalence of spaces

(3-3) Pic.A/' Pic.B/hG ;

or an equivalence of connective spectra

(3-4) pic.A/' ��0 pic.B/
hG :

Remark 3.3.2 The spectrum † gl1B is equivalent to ��1 pic.B/; consider the in-
duced map of G–homotopy fixed point spectral sequences. All the differentials
involving the t � s D 0 line will be the same for picB and † gl1B . Hence, we
obtain a short exact sequence

0! �0.† gl1B/
hG
! �0.pic.B//

hG
!E0;01 ! 0;

where E0;01 is the kernel of all the differentials supported on H 0.G; �0 picB/. This
short exact sequence exhibits �0.† gl1B/

hG as the relative Picard group of A! B ,
which consists of invertible A–modules which after smashing with B become isomor-
phic to B itself.

Our main interest in Galois theory, for the purpose of this paper, comes from the
observation, due to Rognes, that there are numerous examples of G–Galois extensions
of E1–rings A! B where the homotopy groups of B are significantly simpler than
that of A. In particular, one hopes to understand the homotopy groups of pic.B/,
and then use (3-3) and (3-4) together with an analysis of the associated homotopy
fixed-point spectral sequence

(3-5) H s.G; �t pic.B//) �t�s.pic.B//
hG ;
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whose abutment for t D s is the Picard group Pic.A/.

Example 3.3.3 [59, Proposition 5.3.1] The map KO!KU and the C2–action on KU
arising from complex conjugation exhibit KU as a C2–Galois extension of KO.

Example 3.3.3 is fundamental and motivational to us: the study of KO–modules, which
is a priori difficult because of the complicated structure of the ring ��KO, can be
approached via Galois descent together with the (much easier) study of KU–modules.
In particular, we obtain

pic.KO/' ��0 pic.KU/hC2 ;

and one can hope to use the homotopy fixed-point spectral sequence (HFPSS) to
calculate pic.KO/. This approach is due to Gepner and Lawson [15],6 and we shall
give a version of it below in Section 7.1 (albeit using a different method of deducing
differentials).

Other examples of Galois extensions come from the theory of topological modular
forms with level structure.

Example 3.3.4 Let n2N . Let TMF.n/ denote the periodic version of TMF for ellip-
tic curves over Z

�
1
n

�
–algebras with a full level n structure. Then, by [42, Theorem 7.6],

TMF
�
1
n

�
! TMF.n/ is a faithful GL2.Z=n/–Galois extension. The advantage is that,

if n� 3, the moduli stack of elliptic curves with level n structure is actually a regular
affine scheme (by [30, Corollary 2.7.2], elliptic curves with full level n� 3 structure
have no nontrivial automorphisms). In particular, TMF.n/ is even periodic with
regular �0 , and one can compute its Picard group purely algebraically by Theorem 2.4.6.
One can then hope to use GL2.Z=n/–descent to get at the Picard group of TMF

�
1
n

�
.

We will take this approach below.

3.4 The En–local sphere

In addition, descent theory can be used to give a spectral sequence for pic.LnS
0/.

This is related to work of Kamiya and Shimomura [29] and the upper bounds that they
obtain on Pic.LnS0/.

Consider the cobar construction on LnS0!En , ie the cosimplicial E1–ring

En �!�! En ^En
�!
�!
�! � � � ;

whose homotopy limit is LnS0. It is a consequence of the Hopkins–Ravenel smash
product theorem [56, Chapter 8] that this cosimplicial diagram has “effective descent”.

6The original calculation of the Picard group of KO, by related techniques, is unpublished work of
Mike Hopkins.
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Proposition 3.4.1 The natural functor

Mod.LnS0/! Tot.Mod.E^.�C1/n //;

is an equivalence of symmetric monoidal 1–categories.

Proof According to the Hopkins–Ravenel smash product theorem, the map of E1–
rings LnS0 ! En has the property that the thick tensor-ideal that En generates
in Mod.LnS0/ is all of Mod.LnS0/.7

According to [40, Proposition 3.21], this implies the desired descent statement (the
condition is there called “admitting descent”). The argument is a straightforward
application of the Barr–Beck–Lurie monadicity theorem [39, Section 6.2].

In particular, we find that

pic.LnS
0/' ��0 Tot pic.E^.�C1/n /:

Let us try to understand the associated spectral sequence.

The higher homotopy groups, �i for i � 2, of pic.E^.�C1/n / are determined in terms
of those of E^.�C1/n . Once again, it remains to determine �0 . Now En is an even
periodic E1–ring whose �0 is regular local, so Pic.En/ ' �0 pic.En/ ' Z=2 by
Theorem 2.4.6. The iterated smash products E^mn are also even periodic, so their
Picard group contains at least a Z=2. We do not need to know their exact Picard groups,
however, to run the spectral sequence, as only the Z=2 component is relevant for the
spectral sequence (as it is all that comes from �0 pic.En/).

Next, we need to determine the algebraic Picard group. After taking �0 , the simplicial
scheme

� � �
�!
�!
�! Spec�0.En ^En/ �!�! Spec�0En

is a presentation of the moduli stack M�nFG of formal groups (over Z.p/–algebras) of
height at most n.

Proposition 3.4.2 Pic.M�nFG /' Z, generated by ! .

Proof We use the presentation of MFG (localized at p ) via the simplicial stack

(3-6) � � �
�!
�!
�! .Spec.MU ^MU/�/=Gm

�!
�! .SpecMU�/=Gm:

7The argument in [56, Chapter 8] is stated for the uncompleted Johnson–Wilson theories, but also can
be carried out for the completed ones. We refer in particular to the lecture notes of Lurie [35]; Lecture 30
contains the necessary criterion for constancy of the Tot–tower.
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Since the Picard group of a polynomial ring over Z.p/ is trivial,8 and each smash
power of MU has a polynomial ring for �� , the Picard group of each of the terms
in the simplicial stack without the Gm–quotient is trivial, and the group of units
is Z�.p/ , constant across the simplicial object. In other words, the Picard groupoid of
each Spec.MU^.sC1//� is BZ�.p/ . When we add the Gm–quotient, we get Z�BZ�.p/
for the Picard groupoid of each term in the simplicial stack because of the possibility of
twisting by a character of Gm : this twisting corresponds to the powers of ! . By descent
theory, this shows that Pic.MFG/ ' Z, generated by ! . More precisely, the Picard
groupoid of MFG is the totalization of the Picard groupoids of Spec.MU^.sC1//�=Gm ,
and each of these is Z�BZ�.p/ : that is, the cosimplicial diagram of Picard groupoids
is constant and the totalization is Z�BZ�.p/ again.

When we replace MFG by M�nFG , we can replace the above presentation by excising
from each term the closed substack cut out by .p; v1; : : : ; vn/. This does not affect
the Picard groupoid since the codimension of the substack removed is at least 2 (ie
neither the Picard group nor the group of units is affected).9 That is, when we modify
each term in (3-6) to form the associated presentation of M�nFG , the Picard groupoid
is unchanged. It follows by faithfully flat descent that the inclusion M�nFG ! MFG

induces an isomorphism on Picard groups (or groupoids) and that the Picard group is
generated by ! .

We obtain the following result.

Theorem 3.4.3 There is a spectral sequence

E
s;t
2 D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z=2 if t D 0;

H s.M
�n
FG ;O

�
MFG

/ if t D 1;

H s.M
�n
FG ; !

.t�1/=2/ if t � 3 is odd;

0 otherwise,

which converges for t � s � 0 to �t�s pic.LnS0/. The relevant occurrences of the
second case are H 0.M

�n
FG ;O

�
MFG

/' Z�.p/ and H 1.M
�n
FG ;O

�
MFG

/' Z.

Note in particular that the E2–term is determined entirely in terms of the Adams–
Novikov spectral sequence for the En–local sphere. As we will see in Section 5, many
of the differentials are also determined by the ANSS.

8Since the Picard group commutes with filtered colimits, one reduces to the case of a polynomial ring
on a finite number of variables, and here it follows from unique factorization.

9Once again, this is a familiar result for regular rings, and here one must pass to filtered colimits since
one is working with polynomial rings on infinitely many variables.
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4 First examples

In this section, we will give several examples where descent theory gives a quick
calculation of the Picard group. In these examples, we will not need to analyze
differentials in the descent spectral sequence (3-5). The main examples of interest,
where there will be a number of differentials to determine, will be treated in the last
part of this paper.

4.1 The faithfully flat case

We begin with the simplest case. Suppose R!R0 is a morphism of E1–rings which
is faithfully flat. In this case, we know from [37, Theorem 6.1] that the tensor-forgetful
adjunction Mod.R/�Mod.R0/ is comonadic and we get a descent spectral sequence
for the Picard group of R , as

pic.R/' ��0 Tot pic.R0˝.�C1//:

This spectral sequence, however, gives essentially no new information that is not
algebraic in nature. That is, the entire E2–term E

s;t
2 for t > 1 vanishes, as it can be

identified with the E2–term for the cobar resolution R0˝.�C1/ of R , and this cobar
resolution has a degenerate spectral sequence with nonzero terms only for sD 0 at E2 .
For example, an element in Pic.R/ is algebraic if and only if its image in Pic.R0/ is
algebraic, by faithful flatness.

Thus, faithfully flat descent will be mostly irrelevant to us as a tool of computing the
nonalgebraic parts of Picard groups. In the examples of interest, we want ��R0 to be
significantly simpler homologically than ��R , so that we will be able to conclude (using
results such as Theorem 2.4.6) that the Picard group of R0 is entirely algebraic. But if
��R

0 is faithfully flat over ��R , it cannot be much simpler homologically. (Recall for
example that regularity descends under faithfully flat extensions of noetherian rings.)

4.2 Cochain E1–rings and local systems

In this subsection, we give another example of a family of E1–ring spectra whose
Picard groups can be determined, or at least bounded.

Let X be a space and R an E1–ring. Let RX D C �.X IR/ be the E1–ring of
R–valued cochains on X .

Definition 4.2.1 Let LocX .Mod.R//D Fun.X;Mod.R// denote the 1–category of
local systems of R–module spectra on X .
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Then we have a fully faithful embedding of symmetric monoidal 1–categories

Mod!.RX /� LocX .Mod.R//;

which sends RX to the constant local system at R and is determined by that. As
discussed in [40, Section 7], this embedding is often useful for relating invariants
of RX to those of R . In particular, since any invertible RX –module is perfect, we
have a fully faithful functor of 1–groupoids

Pic.RX /! Pic
�
LocX .Mod.R//

�
DMap

�
X;Pic.Mod.R//

�
;

where the last identification follows because Pic commutes with homotopy limits
(Proposition 2.2.3). Thus, we get the following useful upper bound for the Picard group
of RX.

Proposition 4.2.2 If R is an E1–ring and X is any space, then Pic.RX / is a sub-
group of �0.pic.R/X /.

Without loss of generality, we will assume that X is connected. Note that we have a
cofiber sequence

† gl1.R/! pic.R/!H.Pic.R//;

where H.Pic.R// is the Eilenberg–Mac Lane spectrum associated to the group Pic.R/.
If we take the long exact sequence after taking maps from X , we get an exact sequence

(4-1) 0! ��1.gl1.R/
X /! �0.pic.R/

X /! Pic.R/:

Our object of interest, Pic.RX /, is a subobject of the middle term, by the above
proposition.

Let us unwind the exact sequence further. First, observe that the composite map
Pic.RX / ! �0.pic.R/

X / ! Pic.R/ comes from the map of E1–rings RX ! R

given by choosing a basepoint of X . In particular, it is split surjective as it has a section
given by R!RX (so (4-1) is a split exact sequence). Next, using the truncation map
gl1.R/!HR

�
0 , we have a map ��1.gl1.R/X /!��1..HR�0 /

X /DHom.�1.X/;R�0 /.
We can understand this map in terms of Pic.RX /. Very explicitly, suppose given an
invertible RX –module M with associated local system L 2 LocX .Mod.R//. Then if
the image of M in Pic.R/ is trivial, we conclude that Lx'R for any basepoint x 2X .
An element in �1.X; x/ induces a monodromy automorphism of Lx and thus defines
an element of R�0 . This defines a map in Hom.�1.X; x/; R�0 /. Let Pic0.RX / denote
the kernel of Pic.RX /! Pic.R/. Then we have just described the map

(4-2) Pic0.RX / �!Hom.�1.X; x/; R�0 /;
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that comes from the exact sequence (4-1).

The monodromy action cannot be arbitrary, since this local system is not arbitrary: it is
in the image of Mod!.RX / and therefore belongs to the thick subcategory generated
by the unit. As in [40, Section 8], it follows that the monodromy action of any element
of the fundamental group must be ind-unipotent. In particular, fix an element M
of Pic0.RX /. Given any loop  2 �1.X; x/, the associated element uD u;M 2R�0
under the homomorphism �.M/W Pic0.RX / ! Hom.�1.X; x/; R�0 / of (4-2) must
have the property that u� 1 is nilpotent.

Hence if R0 is a reduced ring, we deduce from (4-1) the following conclusion.

Corollary 4.2.3 If R is an E1–ring with �0R reduced, and X is any connected
space, then we have a split short exact sequence

0! A! Pic.RX /! Pic.R/! 0;

where A���1.gl1.R/X / is contained in ��1..��1 gl1.R//X /���1..gl1.R//X /. In
particular, if ��1..��1 gl1.R//X /D 0, then Pic.R/! Pic.RX / is an isomorphism.

Again, we note that the map ��1..��1 gl1.R//X /! ��1.gl1.R/
X / is injective, by

the long exact sequence and the fact that �0.gl1.R/X / ! �0..HR
�
0 /
X / ' R�0 is

surjective.

As an application, we obtain a calculation of the Picard group of a nonconnective
E1–ring in a setting far from regularity.

Theorem 4.2.4 Let A be any finite abelian group and let En be Morava E–theory.
Then the Picard group of EBAn is Z=2, generated by the suspension †EBAn . The same
conclusion holds for any finite group G whose p–Sylow subgroup is abelian, where p
is the prime of definition for En .

Proof We induct on the p–rank of A. When A has no p–torsion, then EBAn 'En
and Theorem 2.4.6 implies that the Picard group is Z=2.

If the p–rank of A is positive, write A ' Z=pm �A0 where the p–rank of A0 has
smaller cardinality than that of A. The inductive hypothesis gives us that the Picard
group of EBA

0

n is Z=2. Now EBAn ' .EBA
0

n /BZ=pm

. Moreover, EBA
0

n is well known
to be even periodic (though its �0 is not regular).10

10We refer to [25, Section 7] for a general analysis of the question of when EBGn is even-periodic for
G a finite group.
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We claim now that ��1..��1 gl1.EBAn //BZ=pm

/ D 0. To see this, we note that the
homotopy groups of ��1 gl1.EBA

0

n / are concentrated in even degrees and are all
given by torsion-free p–complete abelian groups. Therefore, the cohomology groups
H i .Z=pm; �j ��1 gl1.E

BA
n // vanish if i is odd, since the Z=pm–action on them is

trivial. In the homotopy fixed point spectral sequence for .��1 gl1.EBAn //BZ=pm

(ie the
Atiyah–Hirzebruch spectral sequence), there is no room for contributions to ��1 . In
fact, there is no room for differentials at all, which indicates that any lim1 terms cannot
occur either. Now Corollary 4.2.3 shows that the map EBA

0

n ! EBAn induces an
equivalence on Picard groups, which completes the inductive step.

For the last claim, fix any finite group G with an abelian p–Sylow subgroup A�G . For
any connected space X , denote as before Pic0.RX / the kernel of Pic.RX /! Pic.R/.
We have a commutative square:

Pic0.EBGn / //

� _

��

Pic0.EBAn /
� _

��

��1.��1 gl1.En/
BG/ // ��1.��1 gl1.En/

BA/

The bottom horizontal map is injective since ��1 gl1.En/ is p–local and BG is p–
locally a wedge summand of BA in view of the transfer †1

C
BG!†1

C
BA, which has

the property that the composite †1
C
BG!†1

C
BA!†1

C
BG is a p–local equivalence

by inspection of p–local homology. It follows that Pic0.EBGn / ! Pic0.EBAn / is
injective, and since the latter is zero, the former must be as well.

Recall that the spectrum E1 is p–complete complex K–theory.

Proposition 4.2.5 Let G be any finite group. Then the Picard group of EBG1 is finite.

Proof In fact, ��1.��1 gl1.E1/BG/ is finite. We know that ��3 gl1.E1/' †4kuyp
by a theorem of Adams and Priddy [1]. Moreover, .kuyp/�.BG/ is finite in each odd
dimension, by comparing with E�1 .BG/ which vanishes in odd dimensions. It follows
now from Corollary 4.2.3 that the desired Picard group has to be finite.

Question 4.2.6 Let G be any finite group. Can the Picard group of EBG1 be any
larger than Z=2? What about the higher Morava E–theories?

4.3 Coconnective rational E1–rings

We can also determine the Picard groups of coconnective rational E1–ring spectra. A
rational E1–ring R is said to be coconnective if:
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(1) �0R is a field (of characteristic zero).

(2) �iRD 0 for i > 0.

Theorem D If R is a coconnective rational E1–ring, then the Picard group Pic.R/
is infinite cyclic, generated by †R .

Proof Let k D �0R . We use [38, Proposition 4.3.3] to conclude that R' Tot.A�/,
where A� is a cosimplicial E1–k–algebra with each Ai of the form k ˚ V Œ�1�,
where V is a discrete k–vector space; the E1–structure given is the “square-zero”
one.

We thus begin with the case of R D k˚ V Œ�1�: we will show that Pic.R/ ' Z in
this case. Since Pic commutes with filtered colimits, we may assume that V is a
finite-dimensional vector space. In this case,

R' kS
1_���_S1

;

where the number of copies of S1 in the wedge summand is equal to the dimension
nD dimk V ; by [38, Proposition 4.3.1], any rational E1–ring with these homotopy
groups is equivalent to k˚V Œ�1�. But we can now use Corollary 4.2.3 to see that the
Picard group of kS

1_���_S1

is Z, generated by the suspension, because ��1 gl1.k/D 0.

Now suppose that R is arbitrary. As above, we have an equivalence R ' Tot.A�/
where each Ai is a coconnective E1–ring of the form k˚V Œ�1� for V a discrete
k–vector space. We have seen above that Pic.Ai /' Z. We know, moreover, that we
have a fully faithful embedding of symmetric monoidal 1–categories

Mod!.R/� Tot.Mod.A�//;

which implies that we have a fully faithful functor of 1–groupoids

Pic.R/! Tot.Pic.A�//:

But each Pic.Ai /, as an 1–groupoid, has homotopy groups given by

�j Pic.Ai /'
�

Z if j D 0;
k� if j D 1;

and in particular, in the cosimplicial diagram Pic.A�/, all the maps are equiva-
lences. This is a helpful consequence of coconnectivity. Therefore we find that
Tot.Pic.A�// maps by equivalences to each Pic.Ai /, and we get an upper bound
of Z for Pic.R/. This upper bound is realized by the suspension †R (which hits the
generator of Z' �0 Tot.Pic.A�//).
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Remark 4.3.1 If k DQ, then a large class of coconnective E1–rings with �0 'Q
(eg those with reasonable finiteness hypotheses and vanishing ��1 ) arise as cochains
on a simply connected space, by Quillen and Sullivan’s rational homotopy theory. The
comparison with local systems can be carried out directly here to prove Theorem D for
these E1–rings.

4.4 Quasiaffine cases

We now consider a case where the descent spectral sequence enables us to produce
nontrivial elements in the Picard group. Let A be a weakly even-periodic E1–ring
with �0A regular noetherian, and write !D�2A. Then A leads to a sheaf of E1–rings
on the affine étale site of Spec�0A. That is, for every étale �0A–algebra A00 , there is
(functorially) associated [39, Section 8.5] an E1–ring A0 under A with �0A0 ' A00
and A0 flat over A. We will denote this sheaf by Otop .

Let a1; : : : ; an 2�0A be a regular sequence, for n�2. We consider the complement U
in Spec�0A of the closed subscheme V.a1; : : : ; an/ and the sections AD �.U;Otop/.
A is an E1–A–algebra and is a type of localization of A, albeit not (directly) an
arithmetic one.11 Note that Pic.A/ is algebraic by Theorem 2.4.6, but the situation
for A is more complicated.

The homotopy groups ��.A/ are given by the abutment of a descent spectral sequence

H s.U; !˝t /) �2t�s.A/:(4-3)

We can first determine the zero-line. We have

H 0.U; !˝t /DH 0.Spec�0A;!˝t /;

because Spec�0A is regular and U � Spec�0A is obtained by removing a subscheme
of codimension at least two.

Proposition 4.4.1 The only other nonzero term in the descent spectral sequence (4-3)
occurs for s D n� 1. The descent spectral sequence degenerates.

Proof Cover the scheme U by the n open affine subsets Ui D Spec�0.A/ nV.ai /,
for 1 � i � n. Given any quasicoherent sheaf F on U , it follows that the coherent
cohomology H�.U;F/ is that of the Čech complex (which starts in degree zero)

nM
iD1

F.Ui /!
M
i<j

F.Ui \Uj /! � � � ! F.U1\ � � � \Un/:

11Forthcoming work of Bhatt and Halpern-Leistner identifies the universal property of A .
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Let RD �0A, and suppose F is the restriction to U � SpecR of the quasicoherent
sheaf zM on SpecR for an R–module M . Then the final term is the cokernel of the
map

nM
iD1

MŒ.a1 � � � bai � � � an/�1�!MŒ.a1 � � � an/
�1�;

where the hat denotes omission. If M is flat, the complex is exact away from degrees 0
and n� 1 as the sequence a1; : : : ; an is regular, using a Koszul complex argument
(see [28] for a detailed treatment or [18] for a short exposition with a view towards
topological applications), and the zeroth cohomology is given by M itself.

Now, in view of the map A! A, clearly everything in the zero-line of the E2–page
of the spectral sequence survives, so the spectral sequence must degenerate.

We now study the Picard group of A: as above, ��A is not regular but instead has a
great deal of square-zero material. Let UD .U;Otop jU / denote the derived scheme
consisting of the topological space U � Spec�0A, but equipped with the sheaf Otop of
E1–rings restricted to U. A arises as the global sections of the structure sheaf Otop

over the derived scheme U.

Since U is quasiaffine as an (ordinary!) scheme, it follows by [42, Corollary 3.24] that
the global sections functor is the right adjoint of an inverse equivalence

Mod.A/� QCoh.U/;

of symmetric monoidal 1–categories. In particular, the Picard group Pic.A/ can be
computed as Pic.QCoh.U//.

As before, we have a descent spectral sequence (3-2) converging to �t�s pic.A/. But
from (3-2), we know that almost all of the terms at E2 are identified with the descent
spectral sequence for ��A. In addition, we know that H 1.U;O�U / ' Pic.�0A/,
as �0A is regular and the complement of U has codimension � 2. These classes
must be permanent cycles as they are realized in Pic.A/: in fact, they are realized
in Pic.A/ itself. Thus, the descent spectral sequence for pic degenerates as well.
We get three contributions to the Picard group: Z=2 and Pic.�0A/, which together
build Pic.��A/ (compare Remark 2.4.8), and a group that is identified with ��1A. The
relevant extension problem is solved because of the map Pic.��A/Š Pic.A/! Pic.A/
realizing the algebraic part of the Picard group. We get:

Theorem 4.4.2 Let AD �.U;Otop/ as above. Then we have a natural isomorphism

Pic.A/' Pic.��A/���1.A/:
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Moreover, observe that

(4-4) ��1.A/D

8<:
coker

�Ln
iD1!

n=2�1Œ.a1 � � � bai � � � an/�1�
! !n=2�1Œ.a1 � � � an/

�1�
�

for n� 4 even,
0 for n odd:

Example 4.4.3 Let A be a Landweber-exact weakly even periodic E1–ring with �0A
regular noetherian; for instance, A could be Morava E–theory En . In this case, we
take a1; : : : ; ak D p; v1; : : : ; vk�1 , so that A ' LkA. This gives Theorem C as a
special case of Theorem 4.4.2.

Part II Computational tools

5 The comparison tool in the stable range

This is a technical section in which we develop a tool that will enable us to compare
many of the differentials in a Picard spectral sequence for Galois or étale descent
with the analogous differentials in the corresponding descent spectral sequence before
taking the Picard functor (ie for the E1–rings themselves). For example, in the Galois
descent setting, we are given a G–Galois extension A! B , and we know the descent,
ie homotopy fixed point, spectral sequence for A' BhG. The tool we develop in this
section will allow us to deduce many differentials in the homotopy fixed point spectral
sequence for .pic.B//hG.

For a spectrum or a pointed space X , and integers a , b , we denote by ��aX , ��bX
and �Œa;b�X the truncations of X with homotopy groups in the designated range. Our
main observation is that if R is any E1–ring, then for any n� 2, there is a natural
equivalence of spectra

�Œn;2n�1�R' �Œn;2n�1� gl1.R/:

This equivalence is natural at the level of 1–categories, and enables us to identify
a large number of differentials in descent spectral sequences for gl1 and therefore
also for pic. This observation, however, fails if we increase the range by 1, and an
identification of the relevant discrepancy (as observed in such spectral sequences) will
be the subject of the following section and the formula (6-1).

The main result of Section 5.1 is essentially a formulation of the classical concept of
the “stable range” in 1–categorical terms, as can be seen from the fact that the major
ingredients of the proof are Freudenthal’s suspension theorem as well as the existence
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of Whitehead products in the unstable setting. Nonetheless, our formulation will be
extremely useful in the sequel.

5.1 Truncated spaces and spectra

Throughout, n� 2.

Definition 5.1.1 Let SpŒn;2n�1� � Sp denote the 1–category of spectra with homo-
topy groups concentrated in degrees Œn; 2n� 1�. Let S� denote the 1–category of
pointed spaces, and let S�;Œa;b� � S� denote the subcategory spanned by those pointed
spaces whose homotopy groups are concentrated in the interval Œa; b�.

The main goal of this subsection is to prove the following result identifying spaces and
spectra whose homotopy groups are concentrated in a range of dimensions.

Theorem 5.1.2 The functor �1W SpŒn;2n�1� ! S� is fully faithful. The functor
�1W SpŒn;2n�2�! S�;Œn;2n�2� is an equivalence of 1–categories.

Proof Let X , Y 2 SpŒn;2n�1� . We want to show that the natural map

(5-1) HomSp.X; Y /! HomS�.�
1X;�1Y /

is a homotopy equivalence. By adjointness, we can identify this with the map

HomSp.X; Y /! HomSp.†
1�1X; Y /

that arises from the counit map †1�1X ! X . Observe that we have a natu-
ral equivalence HomSp.†

1�1X; Y /' HomSp.��2n�1†
1�1X; Y / because Y is

.2n�1/–truncated. In particular, to prove Theorem 5.1.2, it will suffice to show that
the natural map of spectra

��2n�1†
1�1X !X ' ��2n�1X;

is an equivalence, for any X 2 SpŒn;2n�1� . Equivalently, we need to show that for any
such spectrum X , the map

(5-2) �k.†
1�1X/! �k.X/

is an isomorphism for k � 2n� 1. But we have maps of spaces

�1X !�1†1�1X !�1X;

where the composite is the identity. The first map is the unit Y !�1†1Y applicable
for any Y 2 S� , and the second map is �1 applied to the counit. By the Freudenthal
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suspension theorem, the first map induces an isomorphism on homotopy groups �k
for k � 2n� 1, and therefore the second map does as well. This proves the claim that
(5-2) is an equivalence and the first part of the theorem.

The functor �1W SpŒn;2n�1�!S�;Œn;2n�1� is not essentially surjective, because spaces
with homotopy groups concentrated in degrees Œn; 2n� 1� can still have Whitehead
products, and spaces with nontrivial Whitehead products can never be in the im-
age of �1 . However, we claimed in the statement of the theorem that the functor
�1W SpŒn;2n�2�! S�;Œn;2n�2� is an equivalence of 1–categories. To show this, it
suffices to show that the functor is essentially surjective.

Given a pointed space X with homotopy groups in the desired range, we suppose
inductively (on k ) that ��kX is in the image of �1 . If k � 2n�2, then we are done.
Otherwise, we have a pullback square:

��kC1X

��

// �

��

��kX // K.�kC1X; kC2/

Observe that the pointed spaces ��kX , K.�kC1X; kC2/ and � are all in the image
of �1 (the first by the inductive hypothesis), and K.�kC1X; kC2/ 2 S�;Œn;2n�1� .
Moreover, the maps in the diagram are in the image of �1 by the previous part of
the result. Therefore, the object ��kC1X is in the image of �1 , as �1 preserves
homotopy fiber squares.

Given an integer k , we could precompose the functor of Theorem 5.1.2 with the
equivalence �k W SpŒnCk;2nCk�1�! SpŒn;2n�1� , and obtain the following:

Corollary 5.1.3 For any integer k , the functor �1Ck W SpŒnCk;2nCk�1�!S� is fully
faithful.

5.2 Comparisons for E1–rings

Our basic example for all this comes from the spectrum gl1.R/ associated to an E1–
ring R , and the comparison between the two. This comparison is the main obstacle in
understanding the descent spectral sequence for the Picard group: it is generally easier
to understand descent spectral sequences for the E1–rings themselves (eg for TMF).

We emphasize again that given an E1–ring R , the spectra R and gl1.R/ are generally
very different, and for an illustration we provide the following example.
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Example 5.2.1 (Lawson [33]) Consider the commutative differential graded algebra
F2Œx�=x3 where jxj D 1 and dx D 0 (so d � 0). Let R be the associated E1–ring
under F2 . Then gl1.R/ has homotopy groups in dimensions 1, 2 given by F2 ; however,
they are connected by multiplication by �. In particular, gl1.R/ is not an F2–module
spectrum.

More generally, let R be the E1–ring associated to the commutative differential
graded algebra F2Œx�=x3 where jxj D n and dx D 0. R can also be constructed by
applying the Postnikov section ��2n to the free E1–F2–algebra on a class in degree n.
Then �n.gl1.R//' �2n.gl1.R//' F2 and all the other homotopy groups of gl1.R/
vanish. Therefore, gl1.R/ is the fiber of a k–invariant map HF2Œn�!HF2Œ2nC 1�.
In this case, we can identify the k–invariant and thus identify gl1.R/.

Proposition 5.2.2 Given R as above, the k–invariant of gl1.R/ is given by the map

SqnC1W HF2Œn�!HF2Œ2nC 1�:

Proof We begin by arguing, following Lawson, that gl1.R/ cannot be the spectrum
HF2Œn�_HF2Œ2n�. In fact, in this case, the map of spectra HF2Œn�! gl1.R/ would
by adjointness [2] lead to a map of E1–rings

†1CK.F2; n/!R;

carrying the class in �nK.F2; n/ to the nonzero class in �nR . Smashing with HF2 ,
we would get a map of E1–HF2–algebras

HF2 ^†
1
CK.F2; n/!R

with the same property. Now �n.HF2^†1CK.F2; n//' F2 , with the nontrivial class
coming from �n.K.F2; n//. However, this class squares to zero by [9, Lemma 6.1,
Chapter 1] while the nonzero class in �nR does not square to zero. This is a contra-
diction and proves that such a map cannot exist. Consequently, the k–invariant map
for gl1.R/ must be nontrivial.

On the other hand, �1 gl1.R/'K.F2; n/�K.F2; 2n/ because �1 gl1.R/ is the con-
nected component at 1 of �1R . In particular, the k–invariant HF2Œn�!HF2Œ2nC1�
defines, upon applying �1 , the trivial cohomology class in H 2nC1.K.F2; n/IF2/.

So, for the k–invariant of gl1.R/, we need a nonzero element � of degree nC 1 in
the (mod 2) Steenrod algebra such that, if �n 2 Hn.K.F2; n/In/ is the tautological
class, then ��n D 0. By the calculation of the cohomology of Eilenberg–Mac Lane
spaces [61] (see also [50, Chapter 9] for a textbook reference), the only possibility
is SqnC1.
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Nonetheless, we will show that right below the range of the previous example, the
spectra gl1.R/ and R can be identified.

Corollary 5.2.3 Let n� 2 and let R be any E1–ring. Then there is an equivalence
of spectra, functorial in R ,

�Œn;2n�1� gl1.R/' �Œn;2n�1�R:

Similarly, there is an equivalence of spectra, functorial in R ,

�ŒnC1;2n� pic.R/'†�Œn;2n�1�R:

Proof For any E1–ring R , the space �1 gl1.R/ D GL1.R/ is a union of those
components of �1R that correspond to units in �0R . In particular, �1��1 gl1.R/
is canonically identified with �1��1R in S� . Applying Theorem 5.1.2, we now get a
canonical identification as desired in the corollary. The second half of Corollary 5.2.3
follows from the first, as ��0� pic.R/' gl1.R/ as spectra.

Take now a faithful G–Galois extension A ! B of E1–rings, and consider the
HFPSS (3-5) for the G–action on pic.B/. We want to understand �0.pic.B/hG/, or
equivalently ��1.� pic.B/hG/, and we can do this by understanding the HFPSS for
the G–action on � pic.B/. Observe first that �t� pic.B/'�tB functorially for t �1:
in fact, �1.� pic.B//' GL1.B/. In other words, the spectrum � pic.B/ equipped
with the G–action has the property that, after applying �1 , it is identified with a
union of connected components of �1B (with the G–action on B ).

As a result, we have a map of spaces with G–action

�1.� pic.B//!�1B;

which identifies the former with a union of connected components of the latter. As
a result, we can identify the respective HFPSS for the spaces �1.� pic.B//, �1B
for t >0, both at E2 and differentials (including the “fringed” ones). This identification
comes from the map ��1 GL1.B/!�1B given by subtracting one.

In particular, shifting by one again, most of the differentials in the HFPSS for pic.B/
are determined by the HFPSS for B . More precisely, any differential out of Es;tr
for t � s > 0, s > 0, depends only on the G–space �Pic.B/, so the equivalence
of �Pic.B/ with a union of connected components of �1B implies that the differ-
ential can be identified with the analogous differential in the HFPSS for B .

However, to understand �0.pic.B/hG/' �0.Pic.B/hG/' Pic.A/, we need to deter-
mine differentials out of Es;tr with t D s . These differentials cannot be determined
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by �Pic.B/, as a space with a G–action. Our strategy to determine these differentials
is to use the equivalence of spectra with G–action

�ŒnC1;2n� pic.B/'†�Œn;2n�1�B;

which is a special case of Corollary 5.2.3.

Assume that r � t � 1. In this case, any differential dr W E
s;t
� ! E

sCr;tCr�1
� in the

HFPSS for pic.B/ is determined by the G–action on �Œt;tCr�1� pic.B/. Since we have
an equivalence �Œt;tCr�1� pic.B/'†�Œt�1;tCr�2�B , compatible with the G–actions,
we can identify the differentials.

Denote the differentials in the homotopy fixed point spectral sequence

H s.G; �t picB/) �t�s.picB/
hG

by d s;tr .picB/, and similarly d s;tr .B/ for those in the HFPSS for B . The upshot of
this discussion is the following.

Comparison Tool 5.2.4 Let A! B be a G–Galois extension of E1–rings. When-
ever 2� r � t � 1, we have an equality of differentials d s;tr .picB/D d s;t�1r .B/.

Of course, we also have an identification of differentials out of .s; t/ if t�s > 0, s > 0.

Remark 5.2.5 Our original approach to the Comparison Tool 5.2.4 was somewhat
more complicated than the above and has been described in [44]. Namely, our strategy
was to identify the HFPSS with a Bousfield–Kan spectral sequence for a certain
cosimplicial space X� built from Pic.B/ with its G–action, and argue that these
differentials only depended on the fiber of TottCr.X�/! Tott�1.X�/ (as well as the
other fibers in between). In the appropriate range, these fibers depend only on �X�

as a cosimplicial space. However, �X� can be (almost) identified with the analogous
cosimplicial space for the G–action on �1�1.��0B/ because �Pic.B/ is a union
of components of �1B . This forces the differentials to correspond to one another.

For the same reasons, we have analogous comparison results for the spectral se-
quence as Theorem 3.2.1. Again, any differential in the descent spectral sequence
for pic.�.X;Otop// that only depends on the diagram �ŒnC1;2n� pic.Otop/ can be identi-
fied with the corresponding differential in the descent spectral sequence for �.X;Otop/,
thanks to the equivalence of diagrams of spectra �ŒnC1;2n� pic.Otop/'†�Œn;2n�1�Otop .

Remark 5.2.6 The equivalence �Œn;2n�1�R' �Œn;2n�1� gl1.R/ resembles the follow-
ing observation in commutative algebra. Let A be an ordinary commutative ring and
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let I � A be a square-zero ideal. Then 1C I � A� and there is an isomorphism of
groups

I ' 1C I � A� with x 7! 1C x:

This correspondence is a very degenerate version of the exponential and logarithm.

Suppose p is a prime number and .p � 1/Š is invertible in A. Then if J � A is an
ideal with J p D 0, we have 1CJ � A� and a natural isomorphism of groups

J ' 1CJ with x 7! 1C xC
x2

2
C � � �C

xp�1

.p� 1/Š
;

given by a p–truncated exponential.

Similarly, let R be an E1–ring with .p� 1/Š invertible. Motivated by the above, for
any n� 1, one could surmise a functorial equivalence of spectra

�Œn;pn�1�R' �Œn;pn�1� gl1.R/:

We expect to construct such an equivalence in ongoing joint work with Clausen
and Heuts.

5.3 A general result on Galois descent

As a quick application of the preceding ideas, we can prove a general result about
Galois descent for Picard groups.

Theorem E Let A! B be a faithful G–Galois extension of E1–rings. Then the
relative Picard group of B=A is jGj–power torsion of finite exponent.

Proof We know that the relative Picard group of A! B is given by ��1.gl1.B/hG/
(compare Remark 3.3.2). There is a HFPSS that converges to the homotopy groups,
which begins with the group cohomology of G with coefficients in ��.gl1.B//. Every
contributing term is jGj–power torsion: in fact, every term is a H i .G; � / for i >0 and is
thus killed by jGj. However, in view of the potential infiniteness of the filtration, as well
as the possibilities of nontrivial extensions, this alone does not force ��1.gl1.B/hG/
to be jGj–power torsion.

Our strategy is to compare the HFPSS for ��1.gl1.B/hG/ with that of ��1.BhG/.
The map A! B admits descent in the sense of [40, Definition 3.17]. In particular, by
[40, Corollary 4.4], the descent spectral sequence for A!B (equivalently, the HFPSS)
has a horizontal vanishing line at a finite stage. It follows that, above a certain filtration,
everything in the HFPSS for ��.A/' ��.BhG/ is killed by a dk for k bounded.
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In view of our Comparison Tool 5.2.4, it follows that any class in the relative Picard
group has bounded filtration (though possibly the bound is weaker than the analog
in ��1.B/). Since every contributing term in the spectral sequence is killed by jGj,
the theorem follows.

6 The first unstable differential

6.1 Context

Let R� be a cosimplicial E1–ring, and consider the Bousfield–Kan spectral sequences
(BKSS) fEs;tr g and fEs;tr g for the two cosimplicial objects R� and gl1.R

�/, converging
to �t�s of the respective totalizations in Sp.

For t � s � 0, the spectral sequences and the differentials are mostly identified with
one another, as the space �1 gl1.R/ is a union of connected components of �1R .
But for t � s D�1, we get differentials

dr W E
tC1;t
r !EtCrC1;tCr�1r and d r W E

tC1;t
r !EtCrC1;tCr�1r :

These depend on more than the spaces �1R� , �1 gl1.R
�/: they require the one-fold

deloopings. As we saw in Corollary 5.2.3, for any n � 2, in the range Œn; 2n� 1�,
the cosimplicial spectra �Œn;2n�1�R� and �Œn;2n�1� gl1.R�/ are identified. As a result,
for r � t , the groups in question are (canonically) identified and dr D d r .

But in general, dtC1 ¤ d tC1 . Since all the previous differentials entering or leaving
this spot between the two spectral sequences were identified, the groups in question
are identified. We let the correspondence EtC1;ttC1 'E

tC1;t
tC1 be given as

x 7! x:

Similarly, we have a correspondence E2tC2;2ttC1 'E
2tC2;2t
tC1 .

In this subsection, we will give a universal formula for the first differential out of the
stable range. We will need this in Section 8.2 to obtain the 2–primary Picard group
of TMF.

Theorem 6.1.1 We have the formula

(6-1) d tC1.x/D dtC1.x/C x2 for x 2EtC1;ttC1 :

Remark 6.1.2 The above formula actually makes d tC1 into a linear operator. This
follows from the graded-commutativity of the BKSS for R� . Note in particular that
the difference between d tC1 and dtC1 is annihilated by 2.
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6.2 The universal example

The proof of (6-1) follows a standard technique in algebraic topology: we reduce to
a “universal” case and show that (6-1) is essentially the only possibility. We want
to consider the universal case of a cosimplicial E1–ring R� with a class in EtC1;ttC1 .
This class represents an element in ��1 Tot2tC1.R�/ trivialized in Tott .R�/; the
differential dtC1 represents the obstruction to lifting to Tot2tC2 . So, we need to make
the analysis of differentials in the cosimplicial E1–ring which corepresents the functor
R� 7! A.R�/D�1

�
†�1fib.Tot2tC1.R�/! Tott .R�//

�
.

The relevant cosimplicial E1–ring X� can be constructed as follows.

Definition 6.2.1 Let Lan denote the operation of left Kan extension; let Lan��t!�.�/

denote the left Kan extension of the constant functor ��t!S at a point to �. Similarly,
define Lan��2tC1!�.�/. Consider the homotopy pushout

(6-2)

Lan��t!�.�/C

��

// �

��

Lan��2tC1!�.�/C
// F�

where F�W �! S� is a functor to the 1–category S� of pointed spaces.

Consider

G�
def
D †1�1F�W �! Sp

and the functor

X� D FreeCAlg.G
�/W �! CAlg

into the1–category CAlg of E1–rings, obtained by applying the free algebra functor
everywhere to G. By construction, X� corepresents the functor AW Fun.�;CAlg/! S
in which we are interested. In particular, it suffices to prove (6-1) for this particular
functor. As we will see in the next paragraph, G� takes values in connective spectra
and therefore so does X� . Since we are only interested in differentials in a particular
range, we may (by naturality) only consider the Postnikov section ��2tX�. We get the
following basic step.

Proposition 6.2.2 In order to prove Theorem 6.1.1, it suffices to prove it for ��2tX�

(and the tautological class).
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In fact, we have a reasonable handle on what the functor ��2tX� looks like and can
entirely determine the BKSS. To see this, we recall the construction of F� ; compare
also the discussion in [44]. The functor

Lan
��t!�

.�/W �! S

sends any finite nonempty totally ordered set T to the nerve of the category ��t
=T

of
all order-preserving morphisms fS ! T g where

(1) S is a finite, nonempty totally ordered set, and

(2) jS j � t C 1.

Proposition 6.2.3 Lan��t!�.�/ is naturally equivalent to the functor which sends T
in � to the nerve of the poset P�tC1.T / of nonempty subsets of T of cardinality at
most t C 1.

Proof In fact, for any T , there is a natural map P�tC1.T / ! �
�t
=T

, which is a
homotopy equivalence as it is right adjoint to the functor ��t

=T
! P�tC1.T / which

sends S ! T to image.S ! T /� T .

In view of the last proposition, one can also consider the following approach to the left
Kan extension. There is a standard cosimplicial simplicial set sending Œn� 7!�n. The
functor of the proposition is equivalent to the barycentric subdivision of the cosimplicial
simplicial set Œn� 7! skt �n.

As in [44], the nerve of P�tC1.T /, for any choice of T , is (pointwise) homotopy
equivalent to a wedge of t –spheres, and contractible if jT j � tC1. We get from (6-2):

Proposition 6.2.4 The functor F�W � ! S� constructed above has the following
properties:

(1) For any T , F.T / is always a wedge of copies of S tC1 and S2tC1.

(2) Restricted to ��t, the functor F� is contractible. Restricted to ��2t, the functor
F� is pointwise a wedge of copies of S tC1.

6.3 Some technical lemmas

Our first goal is to understand the BKSS for G� D†1�1F� . Observe that pointwise,
this cosimplicial spectrum is a wedge of copies of S t and S2t by Proposition 6.2.4. In
order to do this, we need to understand the cosimplicial abelian group ��.†1�1F�/.
We will prove the following:
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Proposition 6.3.1 The cohomology H s.��.G
�// is given by

(6-3) H s.��.G
�//'

�
��S

t if s D t C 1;
��S

2t if s D 2.t C 1/:

In the spectral sequence, the differential dtC1 is an isomorphism.

6

5

4

3

2

1

0

�3 �2 �1 0 1 2 3

Z �1 �2 �3 : : :

Z �1 �2 �3 : : :

Figure 1: Bousfield–Kan spectral sequence for G�, with t D 2 (�k denotes �kS0 )

The spectral sequence is depicted in Figure 1. The proof of Proposition 6.3.1 will take
work and will be spread over two subsections. In the present subsection, our main
result is that the totalization of G� (and related cosimplicial spectra) is contractible, and
we will deduce the differentials from that. The approach to this is not computational
and relies instead on ideas involving the 1–categorical Dold–Kan correspondence
of Lurie.

We recall from [34, Notation 1.2.8.4] the cone construction, which associates to a
simplicial set K , the cone KC. If K is an 1–category, KC is as well, and is obtained
by adding a new initial object to K .

Lemma 6.3.2 Let K be a simplicial set and D an 1–category with colimits. Let
F W KC! D be a functor with the property that F carries the cone point to an initial
object of D . Then the natural map

lim
��!
K

F jK ! lim
��!
KC

F

is an equivalence in D .
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Proof It suffices to show12 that the natural map

(6-4) DKC=! DK=

is an equivalence of 1–categories. But we have DKC= ' D.�0?K/= ' .D�0=/K= in
view of the definition of the overcategory [34, Section 1.2.9], where ? denotes the
join of simplicial sets [34, Section 1.2.8]. However, we also know that the projection
map D�0=! D is an equivalence since �0! D maps to an initial object. Therefore,
we obtain that (6-4) is an equivalence, as desired.

Lemma 6.3.3 Let C , D be 1–categories and assume that D has colimits. Let
F W CC! D be a functor such that F carries the cone point to an initial object of D .
Let C0 � C be a full subcategory. Then the following are equivalent:

(1) F jC is a left Kan extension of its restriction to C0.

(2) F is a left Kan extension of its restriction to C0C.

Proof Suppose the first condition is satisfied. Then if c 2 C is arbitrary, the natural
map

lim
��!

c0!c2C0
=c

F.c0/! F.c/

is an equivalence. Now, we have an equivalence of 1–categories .C0
=c
/C ' .C0C/=c ,

because C adds a new initial object. Therefore, for arbitrary c 2 C , we also get that
the natural map

lim
��!

c0!c2.C0C/=c

F.c0/ ' lim
��!

c0!c2.C0
=c
/C
F.c0/! F.c/

is an equivalence, thanks to Lemma 6.3.2. At the cone point, the left Kan extension
condition is automatic. Thus, it follows that F is a left Kan extension of F jC0C . The
converse is proved in the same way.

Proposition 6.3.4 Let C be a stable 1–category and let F W ��n! C be any functor.
Suppose F is a left Kan extension of its restriction to ��n�1. Then lim

 ����n F is
contractible.

Proof Observe that the cone .��n/C is given by the category ��n
C

of the finite totally
ordered sets fŒi �g�1�i�n since Œ�1� is an initial object of this category. Consider the
functor zF W ��n

C
' .��n/C! C extending F that sends the cone point to the initial

12We are indebted to the referee for substantially simplifying our original argument here.
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object (one can always make such an extension). To show that lim
 ����n F is contractible,

it suffices to show that zF is a right Kan extension of FD zF j��n .

Now, we recall a basic result of Lurie [39, Lemma 1.2.4.19] (which we use for the
opposite category), a piece of the 1–categorical version of the Dold–Kan correspon-
dence: given any functor GW ��n

C
! C , G is a right Kan extension of Gj��n if and

only if G is a left Kan extension of Gj��n�1
C

. In our case, it follows that to show that
zF is a right Kan extension of F (as we would like to see), it suffices to show that zF

is a left Kan extension of zF j��n�1
C

. But by Lemma 6.3.3, this follows from the fact
that zF j��n D F is a left Kan extension of zF j��n�1 D F j��n�1 .

6.4 The BKSS for F

The goal of this subsection is to complete the proof of Proposition 6.3.1. To begin with,
we analyze the BKSS for the functor †1

C
Lan��t!�.�/W �! Sp.

Proposition 6.4.1 The BKSS for the cosimplicial spectrum †1
C

Lan��t!�.�/ satis-
fies

(6-5) E
s;�
2 DH

s
�
��.†

1
C Lan
��t!�

.�//
�
D

�
��.S

0/ if s D 0;
��.S

t / if s D t C 1:

The differential dtC1 is an isomorphism. (The result for t D 2 is displayed in Figure 2.)

3

2

1

0

�3 �2 �1 0 1 2 3

Z �1 �2 �3

Z �1 �2 �3 : : :

Figure 2: Bousfield–Kan spectral sequence for †1C Lan��t!�.�/ , with t D 2

Proof Observe that Lan��t!�.�/ is, pointwise, a wedge of t –spheres, so to compute
the desired cohomology H s

�
��.†

1
C

Lan��t!�.�//
�
, it suffices to do this for �t .

(The disjoint basepoint contributes the ��.S0/ for s D 0 in cohomology.) In other
words, we may consider the cosimplicial HZ–module M �DHZ^†1

C
Lan��t!�.�/.
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Now we know, for each n, that ��.M n/ is concentrated in degrees 0 and t , and that
�0.M

�/ is the constant cosimplicial abelian group Z. Moreover, by Proposition 6.3.4,
Tot.M �/ is contractible. A look at the spectral sequence for Tot.M �/ shows that
H s.�tM

�/ must be concentrated in degree s D t C 1 and must be a Z there. The
claim about differentials also follows from contractibility of the totalization.

Proof of Proposition 6.3.1 The definition (6-2) of F� and Proposition 6.4.1 together
give the E2–page of the spectral sequence, when one uses the long exact sequence
in homotopy groups. The differentials are forced, again, by Proposition 6.3.4 which
implies that Tot.G�/ is contractible.

6.5 Completion of the proof

Now we need to consider the cosimplicial E1–ring defined earlier

Y�
def
D ��2tX

�
' ��2t FreeCAlg.G

�/:

We recall that this is well defined as a cosimplicial E1–ring because G� is (pointwise)
connective.

In this subsection, we will determine the relevant piece of the BKSS for Y and then
complete the proof of Theorem 6.1.1. We have that

Y� ' ��2tS
0
_ ��2tG

�
_ ��2t ..G

�/^2h†2
/;

because, by a connectivity argument, no other terms contribute. In particular, the
cohomology H s.��.Y

�// picks up a copy of ��.S0/ for s D 0 (which is mostly
irrelevant). In Proposition 6.3.1, we determined the BKSS for G� ; in bidegrees .tC1; t/
and .2t C 2; 2t/, this picks up copies of Z such that the first one hits the second one
with a dtC1 . We will prove:

Proposition 6.5.1 E
2tC2;2t
2 ' Z˚Z=2 in the BKSS for Y�. The Z=2 is generated

by the square of the class in bidegree .t C 1; t/.

Proof We will use the notation and results of Appendix C. Let A� be the cosimplicial
abelian group �tG�, which is levelwise free and finitely generated. As we have seen
(Proposition 6.3.1), H tC1.A�/' Z and the other cohomology of A� vanishes. Now,
using the notation of Definition C.1,

�2t .G
�^2
h†2

/D

�
Sym2A

� for t even,gSym2A� for t odd:

By Proposition C.3, we find that the E2tC2;2t2 term of .G�/^2
h†2

is as claimed.

Geometry & Topology, Volume 20 (2016)



3178 Akhil Mathew and Vesna Stojanoska

We are now ready to complete the proof and determine the differential in the gl1
spectral sequence. Using the notation of the beginning of this section, it follows
that EtC1;ttC1 ' Z and E2tC1;2ttC1 ' Z˚Z=2, and similarly for E . The dtC1 carries
the Z into the other Z. By naturality of the spectral sequence, it follows that there
must exist a universal formula

(6-6) d tC1.x/D adtC1.x/C �x2 for a 2 Z and � 2 f0; 1g:

The main claim is that aD � D 1. Our first goal is to compute a .

Lemma 6.5.2 We have an equivalence of 1–categories between the 1–category
FunL.Sp�0;Sp�0/ of cocontinuous functors Sp�0! Sp�0 and Sp�0 given by eval-
uating at the sphere. The inverse equivalence sends a connective spectrum Y to the
functor X 7!X ˝Y .

Proof It suffices to show that evaluation at the sphere induces an equivalence of 1–
categories FunL.Sp�0;Sp/'Sp (with inverse given as above). But the1–category Sp
is the stabilization [39, Section 1.4] of Sp�0 (as one sees easily from the fact that † is
fully faithful on Sp�0 and an equivalence on Sp), so that, by [39, Corollary 1.4.4.5],
we have an equivalence FunL.Sp;Sp/' FunL.Sp�0;Sp/ given by restriction. But we
know that FunL.Sp;Sp/' Sp by evaluation at the sphere spectrum, with inverse given
by the smash product; see [39, Section 4.8.2].

We need the following fact about gl1 .

Proposition 6.5.3 Let X be a connective spectrum, and let S0_X be the square-zero
E1–ring. Then there is a natural equivalence of spectra,

gl1.S
0
_X/' gl1.S

0/_X:

On homotopy groups, this equivalence is compatible with the purely algebraic equiva-
lence �t gl1.S0 _X/' �t .S0 _X/' �t .S0/˚�t .X/' �t .gl1.S0//˚�t .X/.

Proof Given the connective spectrum X , we can use the composite S0!S0_X!S0,
in which the second map sends X to 0, to get a natural splitting

gl1.S
0
_X/' gl1.S

0/_F.X/;

where F W Sp�0 ! Sp�0 is a certain functor that we want to claim is naturally iso-
morphic to the identity. First, observe that F commutes with colimits. Namely, F
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commutes with filtered colimits (as one can check on homotopy groups), F takes �
to �, and given a pushout square

(6-7)

X1

��

// X2

��

X3 // X4

in Sp�0 , the analogous diagram

(6-8)

F.X1/

��

// F.X2/

��

F.X3/ // F.X4/

is a pushout square in Sp�0 . This in turn follows by considering long exact sequences
in homotopy groups. More precisely, given the pushout square (6-7), the diagram
of E1–rings

S0 _X1

��

// S0 _X2

��

S0 _X3 // S0 _X3

is a homotopy pullback in E1–rings, so that applying gl1 (which is a right adjoint)
leads to a pullback square

gl1.S
0 _X1/

��

// gl1.S
0 _X2/

��

gl1.S
0 _X3/ // gl1.S

0 _X4/

and in particular, (6-8) is homotopy cartesian too in Sp�0 . Therefore, it is homotopy
cocartesian as well if we can show that the map

�0.gl1.S
0
_X3//˚�0.gl1.S

0
_X2//! �0.gl1.S

0
_X4//

is surjective. This follows from the analogous fact that �0.X3/˚�0.X2/! �0.X4/

is surjective as (6-7) is a pushout.

Therefore, as F commutes with colimits, F is necessarily of the form X 7!X ˝Y

for some Y 2 Sp�0 , by Lemma 6.5.2. For X DHZ, we find F.X/DHZ, so that
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HZ˝Y is concentrated in degree zero and is isomorphic to HZ. This forces Y ' S0

and proves the claim.

Proof of Theorem 6.1.1 Proposition 6.5.3 implies that in the universal formula (6-6),
the constant a D 1. In fact, we know that if X� is any cosimplicial spectrum, then
the cosimplicial spectra gl1.S

0 _X�/ and gl1.S
0/_X� are identified in a manner

compatible with the identifications of homotopy groups. In particular, the differentials
in the spectral sequence for gl1.S

0 _X�/ and in the spectral sequence for S0 _X�

are identified, forcing aD 1.

It remains to show that �D 1. For this, we need an example where the two differentials
do not agree. This will be a generalization of Example 5.2.1. Consider the E1–ring R
of Proposition 5.2.2, with nD t , so that, in particular, gl1.R/ has homotopy groups in
dimensions t and 2t only. Proposition 5.2.2 shows that the k–invariant is nontrivial.

Consider the space X DK.F2; t C 1/, and consider the Atiyah–Hirzebruch spectral
sequences for the homotopy groups of gl1.R/

X and RX (these can be identified
with BKSS’s by choosing simplicial resolutions of X by points). The latter clearly
degenerates because R is an Eilenberg–Mac Lane spectrum, but we claim that the
former does not.

More precisely, we claim that there is no map of spectra

†�1†1K.F2; t C 1/! gl1.R/;

inducing an isomorphism on �t . The degeneration of the AHSS would certainly imply
the existence of such a map. To see this, it is equivalent to showing that there is no
map of (pointed) spaces

K.F2; t C 1/! BGL1.R/;

with the same properties. If there existed such a map, then we could combine it with the
map ��2tC1BGL1.R/'K.F2; 2tC1/!BGL1.R/ via the infinite loop structure to
obtain a map

K.F2; t C 1/�K.F2; 2t C 1/! BGL1.R/;

which would be an equivalence by inspection of homotopy groups. However, this
contradicts Proposition 5.2.2, which shows that the space BGL1.R/ has a nontrivial
k–invariant.

This completes the proof of Theorem 6.1.1.
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Part III Computations

7 Picard groups of real K –theory and its variants

Before we embark on the lengthy computations for the Picard groups of the various
versions of topological modular forms, let us work out in detail the case of real K–
theory, as well as the Tate K–theory spectrum KO..q//. In particular, these examples
will illustrate our methodology without being computationally cumbersome.

7.1 Real K –theory

In this subsection, we compute the Picard group of KO using C2–Galois descent
from the C2–Galois extension KO! KU and the Comparison Tool 5.2.4 (but not the
universal formula of Theorem 6.1.1).

We begin with the basic case of complex K–theory.

Example 7.1.1 (complex K–theory) The complex K–theory spectrum has a very
simple ring of homotopy groups KU� D ZŒu˙1� with u in degree 2. In particular,
KU is even periodic with a regular noetherian �0 , so its Picard group is algebraic
by Theorem 2.4.6. The inner workings of Theorem 2.4.6 would use that the only
(homogeneous) maximal ideals of KU� are generated by prime numbers p ; for each p ,
there is a corresponding residue field spectrum, namely mod p K–theory, also known
as an extension of the Morava K–theory of height one at the given prime. As the
Picard group of KU0DZ is trivial, and Pic.KU�/'Z=2, any invertible KU–module
is equivalent to either KU or †KU.

To compute Pic.KO/, we start with this knowledge that, thanks to Example 7.1.1,
�0 pic.KU/D Pic.KU/ is Z=2. We have the spectral sequence from (3-5)

H�.C2; �� pic.KU//) ��.pic.KU//hC2

which will allow us to compute �0.pic.KU//hC2 ' Pic.KO/. We note that

�1 pic.KU/' .KU0/� D Z=2

and
H�.C2;Z=2/D Z=2Œx�;

where x is in cohomological degree 1. The higher homotopy groups of pic.KU/
coincide (as C2–modules) with those of KU, suitably shifted by one.
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Recall, moreover, that the E2–page of the HFPSS for ��KO is given by the bigraded
ring

E
�;�
2 D ZŒu2; u�2; h1�=.2h1/ with ju2j D .4; 0/ and jh1j D .1; 2/;

where u2 is the square of the Bott class in ��KU'ZŒu˙1�, and h1 detects in homotopy
the Hopf map �. The class h1 is in bidegree .s; t/D .1; 2/, so it is drawn using Adams
indexing in the .1; 1/ place. The differentials are determined by d3.u2/D h31 and the
spectral sequence collapses at E4 . For convenience, we reproduce a picture in Figure 3;
the interested reader can find the detailed computation of this spectral sequence in [22,
Section 5].

6

4

2

0

�4 �2 0 2 4 6 8

� � u2�
h1

h21

h31

Figure 3: Homotopy fixed point spectral sequence for �� KO' ��.KUhC2/

(� denotes Z=2 and � denotes Z)

Therefore, the E2–page of the spectral sequence for .pic.KU//hC2 is as in Figure 4.
To deduce differentials, we use our Comparison Tool 5.2.4: in the homotopy fixed
point spectral sequence for KU, there are only (nontrivial) d3–differentials. By the
Comparison Tool 5.2.4, we conclude that we can “import” those differentials to the
HFPSS for pic.KU/ when they involve terms with t � 4. In particular, we see that
the differentials drawn in Figure 4 are nonzero; moreover, everything that is above
the drawn range and in the s D t column either supports or is the target of a nonzero
differential. Note that we are not claiming that there are no other nonzero differentials,
but these suffice for our purposes.

We deduce from this that �0 pic.KU/hC2 D Pic.KO/ has cardinality at most eight. On
the other hand, the fact that KO is 8–periodic gives us a lower bound Z=8 on Pic.KO/.
Thus we get:

Theorem 7.1.2 (Hopkins; Gepner and Lawson [15]) Pic.KO/ is precisely Z=8,
generated by †KO.
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6

4

2

0

�4 �2 0 2 4 6 8

�u2
h1

h21

h3
1

u2

Figure 4: Homotopy fixed point spectral sequence for pic.KU/hC2

Theorem 7.1.2 was proved originally by Hopkins (unpublished) using related tech-
niques. The approach via descent theory is due to Gepner and Lawson in [15]. Their
identification of the differentials in the spectral sequence is, however, different from
ours: they use an explicit knowledge of the structure of gl1.KU/ with its C2–action
(which one does not have for TMF).

Remark 7.1.3 In view of Remark 3.3.2, we conclude that the relative Picard group of
the C2–extension KO! KU is ��1.gl1 KU/hC2 ' Z=4.

Remark 7.1.4 In the usual descent spectral sequence for KO, the class h31=u
2 (in

red) supports a d3 . By Theorem 6.1.1 and the multiplicative structure of the usual
SS, h31=u

2 does not support a d3 in the descent SS for Pic. We saw that above by
counting: if h31=u

2 did not survive, the Picard group of KO would be too small. For
2–local TMF, simple counting arguments will not suffice and we will actually need to
use Theorem 6.1.1 as well.

Remark 7.1.5 We can also deduce from the spectral sequence that the cardinality of
the relative Brauer group for KO =KU, which is isomorphic to ��1.pic.KU//hC2, is
at most eight. However, we do not know how to construct necessarily nontrivial elements
of this Brauer group in order to deduce a lower bound as in the Picard group case.

7.2 KOŒq�; KOŒŒq�� and KO..q//

We now include a variant of the above example where one adds a polynomial (resp.
power series, Laurent series) generator, where we will also be able to confirm the answer
using a different argument. This example can be useful for comparison with TMF
using topological q–expansion maps. We begin by introducing the relevant E1–rings.
This subsection will not be used in the sequel and may be safely skipped by the reader.
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Definition 7.2.1 We write for S0Œx� the suspension spectrum †1
C

Z�0 . Since Z�0
is an E1–monoid in spaces (in fact, a commutative topological monoid), S0Œx�
naturally acquires the structure of an E1–ring. Given an E1–ring R , we will write
RŒx�DR^S0Œx�.

We can also derive several other variants:

(1) We will let RŒŒx�� denote the x–adic completion of RŒx�, so its homotopy groups
look like a power series ring over ��R .

(2) We will let RŒx˙1� denote the localization RŒx�Œ1=x�, so its homotopy groups
are given by Laurent polynomials in ��R .

(3) We will let R..x//DRŒŒx��Œ1=x�, so that its homotopy groups look like formal
Laurent series over ��R .

On the one hand, ��.RŒx�/' .��R/Œx� is a polynomial ring over ��R on a generator
in degree zero. On the other hand, as an E1–algebra under R , the universal property
of RŒx� is significantly more complicated than that of the “free” E1–R–algebra on
a generator (often denoted Rfxg). A map RŒx�! R0, for an E1–R–algebra R0, is
equivalent to an E1–map

Z�0!�1R0;

where �1R0 is regarded as an E1–space under multiplication. In general, given a
class in �0R0, there is no reason to expect an E1–map RŒx�!R0 carrying x to it,
since Z�0 as an E1–monoid is quite complicated. Classes for which this is possible
(together with the associated maps RŒx�!R0 ) have been called “strictly commutative”
by Lurie.

Example 7.2.2 There is a map RŒx�! R satisfying x 7! 1. This comes from the
map of E1–spaces Z�0!�!�1S0 where � maps to the unit in �1S0.

Example 7.2.3 There is a map RŒx�!R satisfying x 7! 0.13

To obtain this in the universal case RD S0, we consider the adjunction

.†1; �1/W S�� Sp:

Here S� and Sp are symmetric monoidal with the smash product and †1 is a sym-
metric monoidal functor. In particular, †1 carries commutative algebra objects in S�
to E1–ring spectra.

13We are grateful to the referee for suggesting this argument over our previous one.
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We start with the commutative monoid M with a single element m. Then we have that
MC D f�; mg 2 S� is a commutative algebra object of S� with respect to the smash
product: in fact, it is the unit S0 as a pointed space. Similarly, .Z�0/C is a commutative
algebra object of S� . Now we have equivalences of E1–ring spectra †1.MC/' S0

and †1.Z�0/C '†1CZ�0 . There is a map of commutative monoids in S�

.Z�0/C!MC;

which carries 0 2 Z�0 to m and everything else to �. After applying †1 , we obtain
the desired map S0Œx�! S0 of E1–rings.

The map RŒx� ! R given in Example 7.2.3 has the property that it exhibits the
RŒx�–module R as the cofiber RŒx�=x . It follows in particular that if R0 is any
E1–R–algebra and x0 2 �0R0 is a strictly commutative element, then we can give
the cofiber R0=x0 'R0˝RŒx�R the structure of an E1–R0–algebra.

Remark 7.2.4 Consider the sphere spectrum S0. No cofiber S0=n for n … f˙1; 0g
can admit the structure of an E1–ring by, for example, [43, Remark 4.3].14 It
follows that the only element of �0S0 ' Z, besides 0 and 1, that can potentially
be strictly commutative is �1. Now, �1 is not strictly commutative in the K.1/–
local sphere LK.1/S0 at the prime 2 because of the operator � of [24]: we have
�.�1/ D 1

2
..�1/2 � .�1// D 1 ¤ 0, while power operations such as � annihilate

strictly commutative elements. Therefore, �1 cannot be strictly commutative in S0.
(One could have applied a similar argument with power operations to every other integer,
too.) However, we observe that it is strictly commutative in S0

�
1
2

�
: the obstruction is

entirely 2–primary (Proposition 7.2.6 below).

Example 7.2.5 Let a , b 2 �0R be strictly commutative elements for R an E1–ring.
Then ab is also strictly commutative. If a is a unit, then a�1 is strictly commutative.
This follows because there is a natural addition on E1–maps Z�0!�1R .

Proposition 7.2.6 Let R be an E1–ring with n invertible. Then any u 2 �0R

with un D 1 (ie an nth root of unity) admits the structure of a strictly commutative
element.

Proof We consider the map of E1–monoids Z�0! Z=nZ and the induced map
of E1–ring spectra

(7-1) RŒx�!R^†1CZ=nZ:

14It is an unpublished result of Hopkins that no Moore spectrum can even admit the structure of an
E1–algebra.
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Since 1=n 2 �0R , we have that R ^†1
C

Z=nZ is étale over R and the homotopy
groups are given by ��RŒx�=.xn � 1/. We can thus produce a map of E1–rings
R^†1

C
.Z=nZ/!R sending 1 2 Z=nZ to u by étaleness.15 Composing with (7-1)

gives us the strictly commutative structure on u.

Using these ideas, we will be able to give a direct computation of the Picard group of
the E1–ring KOŒŒq��. (We have renamed the power series variable to “q” in accordance
with “q–expansions”.)

Proposition 7.2.7 The map Pic.KO/! Pic.KOŒŒq��/ is an isomorphism, where q is
in degree zero.

Proof Suppose M is an invertible KOŒŒq��–module such that M=qM 'M˝KOŒŒq�� KO
is equivalent to KO. We will show that then M is equivalent to KOŒŒq�� using Bock-
steins. Specifically, consider the generating class in �0.M=qM/ ' Z; we will lift
this to a class in �0M . It will follow that the induced map KOŒŒq��!M becomes an
equivalence after tensoring with KO' KOŒŒq��=q . Since M is q–adically complete, it
will follow that KOŒŒq��'M .

By induction on k , suppose that:

(1) ��1.M=q
kM/D 0.

(2) �0.M=q
kM/! �0.M=qM/ is a surjection.

These conditions are clearly satisfied for k D 1. If these conditions are satisfied for k ,
then the cofiber sequence of KOŒŒq��–modules

M=qkM !M=qkC1M !M=qM

shows that they are satisfied for k C 1. In the limit, we find that there is a map
KOŒŒq��!M which lifts the generator of �0.M=qM/, which proves the claim.

Proposition 7.2.7 can also be proved using Galois descent, but unlike for KO, we need
to use Theorem 6.1.1.

Second proof of Proposition 7.2.7 The faithful C2–Galois extension KO ! KU
induces upon base-change a faithful C2–Galois extension KOŒŒq��! KUŒŒq��. The
Picard group of KUŒŒq��, again by Theorem 2.4.6, is Z=2 generated by the suspension.

15The étale obstruction theory has been developed by a number of authors; a convenient reference for
the result that we need is [39, Theorem 8.5.4.2].
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Consider now the descent spectral sequence for .pic.KUŒŒq��//hC2, which is a modifica-
tion of the descent spectral sequence for KUhC2 in Figure 4. One difference is that
every term with t � 2 is replaced by its tensor product over Z with ZŒŒq��; the other is
that the t D 1 line now contains the C2–cohomology of the units in �0 KUŒŒq��, which
is a bigger module than .�0 KU/� D Z=2. Namely, these units are Z=2˚ qZŒŒq��,
with trivial C2–action. The resulting E2–page is displayed in Figure 5.

6

4

2

0

�4 �2 0 2 4 6 8
� �

Figure 5: Homotopy fixed point spectral sequence for pic.KUŒŒq��/hC2

(� denotes Z=2 , � denotes Z=2ŒŒq�� , and � denotes ZŒŒq��)

Since the d3 is the only differential in the ordinary HFPSS for ��KOŒŒq��, as be-
fore, it follows that the only contributions to Pic.KOŒŒq��/ can come from the Z=2
with t D s D 0 (the suspension), the Z=2 with .s; t/D .1; 1/ (ie the algebraic Picard
group), and the Z=2ŒŒq�� in bidegree .s; t/D .3; 3/.

But here, E3;32 D Z=2ŒŒq��.h31=u
2/ is infinite, so unlike previously, we do not get

the automatic upper bound of eight on jPic.KOŒŒq��/j. On the other hand, we can
use Theorem 6.1.1 to determine the d3 supported here. Note that in the HFPSS
for .KUŒŒq��/hC2, we have

d3.f .q/.h
3
1=u

2//D f .q/.h61=u
4/ for f .q/ 2 Z=2ŒŒq��:

Therefore, in view of (6-1), in the HFPSS for pic.KUŒŒq��/hC2, we have

d3.f .q/.h
3
1=u

2//D .f .q/Cf .q/2/.h61=u
4/:

(Note that a crucial point here is that in the HFPSS for KO, squaring or applying d3
to h31=u

2 yields the same result.) It follows from this that in the HFPSS, the kernel
of d3 on E3;32 is Z=2 generated by 1.h31=u

2/: the equation f .q/C f .q/2 D 0 has
only the solutions f .q/� 0, 1. Therefore, we do get an upper bound of eight on the
cardinality of Pic.KOŒŒq��/ after all, as nothing else in E3;32 lives to E4 .
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Corollary 7.2.8 The maps KO! KOŒq� and KO! KO..q// induce isomorphisms
on Picard groups.

Proof This result is not a corollary of Proposition 7.2.7 but rather of its second
proof. In fact, the same argument shows that d3 has a Z=2 as kernel on the relevant
term E3;32 , which gives an upper bound of cardinality eight on the Picard group of KOŒq�
or KO..q// as before.

Remark 7.2.9 Corollary 7.2.8 cannot be proved using the Bockstein spectral sequence
argument used in the first proof of Proposition 7.2.7. However, a knowledge of the
Picard group of KOŒŒq�� can be used to describe enough of the C2–descent spectral
sequence to make it possible to prove Corollary 7.2.8 without the explicit formula (6-1).
We leave this to the reader.

8 Picard groups of topological modular forms

In the rest of the paper we proceed to use descent to compute the Picard groups of various
versions of topological modular forms. We will analyze the following descent-theoretic
situations:

� The Galois extension TMF
�
1
2

�
! TMF.2/, with structure group GL2.Z=2/,

also known as the symmetric group on three letters.

� The Galois extension TMF
�
1
3

�
! TMF.3/, with structure group GL2.Z=3/, a

group of order 48 which is a nontrivial extension of the binary tetrahedral group
and C2 .

� Étale descent from the (derived) moduli stack of elliptic curves or its compactifi-
cation.

In each of these cases, we will start with the knowledge of the original descent spectral
sequence, computing the homotopy groups of the global sections or homotopy fixed
point spectrum. This information plus some additional computation of the differing
cohomology groups will provide the data for the E2–page of the descent spectral
sequence for the Picard spectrum. The additional computations are somewhat lengthy,
hence we are including them separately in the appendices.

8.1 The Picard group of TMF
�

1
2

�
When 2 is inverted, the moduli stack of elliptic curves Mell has a GL2.Z=2/–Galois
cover by Mell.2/, the moduli stack of elliptic curves with full level 2 structure. This
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remains the case for the derived versions of these stacks, and on global sections
gives a faithful Galois extension TMF

�
1
2

�
! TMF.2/ by [42, Theorem 7.6]. The

extension is useful for the purposes of descent as the homotopy groups of TMF.2/ are
cohomologically very simple.

To be precise, we have that

TMF.2/� D Z
�
1
2

�
Œ�˙11 ; �˙12 �Œ.�1��2/

�1�;

where the (topological) degree of each �i is four. To see this, one can use the presenta-
tion of the moduli stack Mell.2/ from [63, Section 7]. There it is computed that Mell.2/

is equivalent to (the stacky) Proj Z
�
1
2

�
Œ�1; �2�. Moreover, the substack classifying

smooth curves, ie Mell.2/, is the locus of nonvanishing of �21�
2
2.�1 � �2/

2. More
precisely, Mell.2/, as a stack, is the Gm–quotient of the ring

Z
�
1
2

�
Œ�1; �2; .�

2
1�
2
2.�1��2//

�1�;

where the Gm–action is as follows: a unit u acts as �i 7! u2�i for i D 1, 2, so that it
is an open substack of a weighted projective stack.

In particular, TMF.2/� has a unit in degree 4, and is zero in degrees not divisible by 4.
It will be helpful to write TMF.2/� differently, so as to reflect this periodicity more
explicitly; for example, we have that TMF.2/� D TMF.2/0Œ�˙12 �, and

TMF.2/0 D Z
�
1
2

�
Œs˙1; .s� 1/�1�;(8-1)

where s D �1=�2 . Therefore, Corollary 2.4.7 applies to give the following conclusion.

Lemma 8.1.1 Pic.TMF.2// is Z=4, generated by the suspension †TMF.2/.

Remark 8.1.2 The proof of Corollary 2.4.7 relies on the construction of “residue
field” spectra; let us specify what they are in the case at hand. The maximal ideals
in TMF.2/0 are mD .p; f .s//, where p is an odd prime and f .s/ a monic polynomial
irreducible modulo p (and not congruent mod p to s , s�1). For each of these ideals,
we have an associative ring spectrum (the “residue field”) with homotopy groups
TMF.2/�=m by [3]; denote it temporarily by TMF.2/=m. After extending scalars so
that f splits, we get that TMF.2/=m is a product of (extensions of) mod p Morava
K–theory spectra at height one or two, one for each zero of f . By [62, Chapter V,
Theorem 4.1], the factor associated to the zero a of f has height two precisely when

.p�1/=2X
iD0

 
.p� 1/=2

i

!
ai

is zero modulo p .
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Next we use descent from TMF.2/ to TMF
�
1
2

�
to obtain the following result.

Theorem 8.1.3 Pic
�
TMF

�
1
2

��
is Z=72, generated by the suspension †TMF

�
1
2

�
. In

particular, this Picard group is algebraic.

Proof We use the homotopy fixed point spectral sequence (3-5)

H s
�
GL2.Z=2/; �t pic.TMF.2//

�
) �t�s pic.TMF.2//hGL2.Z=2/:(8-2)

To begin with, note that the homotopy groups �t pic.TMF.2// for t � 2 are isomorphic
to �t�1 TMF.2/ as GL2.Z=2/–modules. This tells us that the t � 2 part of the E2–
page of the HFPSS (8-2) for pic.TMF.2// is a shifted version of the corresponding
part for TMF.2/.

The latter is immediately obtained from the analogous computation for Tmf.2/ depicted
in [63, Figure 2], as we now describe. Recall that TMF.2/'Tmf.2/Œ��1�; the nonneg-
ative homotopy groups ��0 Tmf.2/ are the graded polynomial ring ƒDZ

�
1
2

�
Œ�1; �2�

[63, Proposition 8.1], and the class � 2 �24 Tmf.2/ is

�D 16�21�
2
2.�2��1/

2

by [63, Proposition 10.3]. Now, by [63, Proposition 10.8] we have that

H�
�
GL2.Z=2/; �� TMF.2/

�
DH�

�
GL2.Z=2/;ƒ

�
Œ��1�:

In particular, the invariants H 0
�
GL2.Z=2/;ƒ

�
Œ��1� are the ring of �–inverted mod-

ular forms
Z
�
1
2

�
Œc4; c6; �

˙1�=.123�� c34 C c
2
6/:

The higher cohomology H>0
�
GL2.Z=2/;ƒ

�
is computed in [63, Section 10.1], and

in particular is killed by c4 and c6 . Consequently,

H>0
�
GL2.Z=2/; ��0 TMF.2/

�
DH>0

�
GL2.Z=2/;ƒ

�
DH>0.GL2.Z=2/; ��0 Tmf.2//:

Let us recall (the names of) certain interesting classes in these cohomology groups:

(1) There is the class a in H 1.GL2.Z=2/; �4 TMF.2// D Z=3, hence also in
H 1

�
GL2.Z=2/; �5 pic.TMF.2//

�
(so, a is in bidegree .s; t/ D .1; 5/ in the

Picard HFPSS, and depicted in position .s; t � s/ D .1; 4/ using the Adams
convention). In homotopy, this element detects the Greek letter element ˛1 in
the Hurewicz image in TMF

�
1
2

�
.

(2) There is b in H 2
�
GL2.Z=2/; �13 pic.TMF.2//

�
DZ=3 (b is in bidegree .2; 13/

or position .2; 11/); in homotopy it detects ˇ1 .

Geometry & Topology, Volume 20 (2016)



The Picard group of topological modular forms via descent theory 3191

Then, H>0
�
GL2.Z=2/;TMF.2/�

�
is precisely the ideal of Z=3Œa; b�Œ�˙1�=.a2/ of

positive cohomological degree. For example

H 5
�
GL2.Z=2/; �5 pic.TMF.2//

�
DH 5

�
GL2.Z=2/; �4 TMF.2/

�
D Z=3;

generated by ab2��1. We see this class depicted in red in Figure 6.

Next, we turn to the information which is new for the Picard HFPSS, ie the group
cohomology of �0 and �1 of the spectrum pic.TMF.2//. By Lemma 8.1.1, we know
that the zeroth homotopy group is Z=4, and since it is generated by the suspension
†TMF.2/, the action of GL2.Z=2/ on this Z=4 is trivial. Even though for our
purposes only the invariants H 0

�
GL2.Z=2/; �0 pic.TMF.2//

�
are necessary, we can

in fact compute all the cohomology groups. This is done in Lemma A.1.

The last piece of data needed for the determination of the E2–page of the Picard HFPSS
is the group cohomology with coefficients in �1 pic.TMF.2//D .�0 TMF.2//� . This
is done in Proposition A.2. The range s � 15 and �6 � t � s � 7 of the spectral
sequence is depicted in Figure 6. Note that in this range, the t � s D 0 column has
three nonzero entries: there is a Z=4 for s D 0, a Z=6 for s D 1 and a Z=3 for s D 5.

14

12

10

8

6

4

2

0

�6 �4 �2 0 2 4 6
�

� �
a

�

� �

ab2

�
�

�

�

b5

�2

�

b7

�3
�

�

Figure 6: Homotopy fixed point spectral sequence for
�
pic.TMF.2//

�hGL2.Z=2/

(� denotes Z , � denotes Z=2 , and � denotes Z=3)

Now we are ready to study the differentials in the HFPSS for pic.TMF.2//hGL2.Z=2/ .
Comparison with the HFPSS for the GL2.Z=2/–action on TMF.2/ gives a number of
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differentials, using our Comparison Tool 5.2.4. To distinguish between the differentials
in the two spectral sequences, let us denote by dor those in the HFPSS of TMF.2/.
The superscript o stands for “original”.

Recall that in the HFPSS for TMF.2/, there are nonzero do5 and do9 differentials,
which are obtained, for example, by a comparison with the HFPSS for Tmf.2/ which is
fully determined in [63]. In particular, in the HFPSS for TMF.2/, the first differential
is do5 .�/D ab

2, and the rest of the do5 ’s are determined by multiplicativity and the
fact that a and b are permanent cycles. In particular, we have

do5

�
b5

�2

�
D
ab7

�3
and do5

�
b3

�

�
D�

ab5

�2
:(8-3)

Next (and last) is do9 ; we have that do9 .a�
2/D b5. Consequently, we also have

do9

�
ab2

�

�
D
b7

�3
:(8-4)

Let us now see which of these differentials also occur in the HFPSS for pic.TMF.2//;
according to Comparison Tool 5.2.4, the d5–differentials are imported in the t > 5
range, and the d9–differentials in the t > 9 range. In particular, the differentials
in (8-3) are the same in the Picard HFPSS; these are the two differentials drawn in
Figure 6. Moreover, everything in the zero column and above the depicted region, ie
such that s D t > 16, either supports a differential or is killed by one which originates
in the t > 9 range. Hence, everything above the depicted region is killed in the spectral
sequence and nothing survives to the E1–page.

Note, however, that we cannot (and should not attempt to) import the differential (8-4);
this would be a d9–differential with t D 5, so it does not satisfy the hypothesis of
Comparison Tool 5.2.4.

Let us analyze the potentially remaining contributions to �0 pic.TMF.2//GL2.Z=2/ ;
regardless of what the rest of the differentials could possibly be, we have

� a group of order at most 4 (and dividing 4) in position .0; 0/,

� a group of order at most 6 (and dividing 6) in position .0; 1/, and

� a group of order at most 3 (and dividing 3) in position .0; 5/.

Therefore Pic
�
TMF

�
1
2

��
D �0 pic.TMF.2//GL2.Z=2/ has order at most 4� 6� 3D 72,

and dividing 72. This is an upper bound. But we also have a well-known lower bound:
the suspension †TMF

�
1
2

�
generates a nontrivial element of Pic

�
TMF

�
1
2

��
of order 72

because TMF
�
1
2

�
is 72–periodic. Thus we have proven the result.
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Remark 8.1.4 Our computations give an independent proof of the result of Fulton and
Olsson [14] that the Picard group of the classical moduli stack of elliptic curves Mell

over Z
�
1
2

�
is Z=12. (Fulton and Olsson carry out the analysis over any base, though.)

This is a toy analog of the above analysis, as we now see.

The Picard groupoid of the moduli stack Mell
�
1
2

�
is the homotopy fixed points of

the GL2.Z=2/–action on the Picard groupoid of Mell.2/. Now the Picard group
of Mell.2/ is Z=2, as Mell.2/ is an open subset in a weighted projective stack over
a UFD, so that quasicoherent sheaves on Mell.2/ correspond simply to graded modules
over Z

�
1
2
; �1; �2; .�

2
1�
2
2.�1 � �2//

�1
�

and the only nontrivial invertible object is
the shift by one of the unit. Note that this is the algebraic setting: the generator
of Pic.Mell.2// would correspond to the two-fold suspension of TMF.2/.

Next, in the HFPSS for computing Pic
�
Mell

�
1
2

��
, we see by the above computation of

H 1
�
GL2.Z=2/; �.Mell.2/;O�/

�
that one gets a contribution of order 6. Together with Pic.Mell.2//D Z=2 from the
previous paragraph, we get that

ˇ̌
Pic
�
Mell

�
1
2

��ˇ̌
� 12, but we know that ! has order

twelve, so we are done.

8.2 The Picard group of TMF
�

1
3

�
This section will be similar to Section 8.1, but with more complicated computations
as is to be expected from 2–torsion. In this case we will use the GL2.Z=3/–Galois
extension TMF

�
1
3

�
! TMF.3/, coming from the Galois cover Mell.3/!Mell

�
1
3

�
of

the moduli stack of elliptic curves with 3 inverted by the moduli stack of elliptic curves
equipped with a full level 3–structure.

From [64, Section 4.2], we can immediately compute the homotopy groups of TMF.3/:
the moduli stack Mell.3/ is affine, and is given as the locus of nonvanishing of

�D 3�5�.1� �/31
3
2 .1C �2/

3.2� �1/
3

in the compact moduli stack Mell.3/ D Proj Z
�
1
3
; �
�
Œ1; 2�. Here i are variables

in (topological) degree 2, and � is a primitive third root of unity, whose appearance
is due to the fact that the Weil pairing on the 3–torsion points of an elliptic curve
equips Mell.3/ with a map to Spec Z

�
1
3
; �
�
.16 Hence the descent spectral sequence

computing TMF.3/� collapses to give

TMF.3/� D Z
�
1
3
; �
�
Œ˙11 ; ˙12 �Œ.1C �2/

�1; .2� �1/
�1�:

16The map is given by the usual Weil pairing on the locus of smooth curves; for what it does at the
cusps, see for example [11, IV.3.21].
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Written differently, we have that TMF.3/� D TMF.3/0Œ˙12 �, and

TMF.3/0 D Z
�
1
3
; �
�
Œt˙1; .1� �t/�1; .1C �2t /�1�;(8-5)

for t D 1=2 . In particular TMF.3/0 is regular noetherian, and TMF.3/ is even
periodic. Thus, Theorem 2.4.6 (together with the fact that the ring ZŒ�; t � and hence
any of its localizations has unique factorization) implies the following conclusion.

Lemma 8.2.1 The Picard group Pic.TMF.3// is Z=2, generated by †TMF.3/.

Naturally, we will use this lemma as an input in computing the HFPSS for the associated
Picard spectra.

Theorem 8.2.2 Pic
�
TMF

�
1
3

��
is Z=192, generated by the suspension †TMF

�
1
3

�
. In

particular, this Picard group is algebraic.

Proof As is to be expected, we use the HFPSS (3-5)

H s
�
GL2.Z=3/; �t pic.TMF.3//

�
) �t�s pic.TMF.3//hGL2.Z=3/:(8-6)

The homotopy groups �t .pic.TMF.3/// for t � 2 are isomorphic to �t�1 TMF.3/
as GL2.Z=3/–modules; therefore the t � 2 part of the E2–page of the HFPSS
for pic.TMF.3// is same as the corresponding part in the HFPSS for TMF.3/. We will
use the fact that TMF.3/' Tmf.3/Œ��1� to identify this part of the spectral sequence
for TMF.3/ and therefore for pic.TMF.3//.

Computed in [64], and depicted in Figure 9 of loc. cit., is the E2–page of the HFPSS
computing the homotopy groups of Tmfy2 as .Tmf.3/y2/hGL2.Z=3/ . Since we are work-
ing with 3 inverted, and 2 and 3 are the only primes dividing the order of GL2.Z=3/,
we conclude that

H>0.GL2.Z=3/; �� Tmf.3//DH>0.GL2.Z=3/; �� Tmf.3/y2/:

The invariants H 0.GL2.Z=3/; ��0 Tmf.3// are the ring of modular forms

Z
�
1
3

�
Œc4; c6; ��=.12

3�� c34 C c
2
6/:

Let � denote the graded ring Z
�
1
3
; �
�
Œ1; 2�. As in the case of level 2–structures, we

have that

H�.GL2.Z=3/; �� TMF.3//DH�.GL2.Z=3/; �/Œ�
�1�:

In the group cohomology of � , computed and depicted in [64, Figure 7], there are a
number of interesting torsion classes, including
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(1) h1 in bidegree .s; t/ D .1; 2/, depicted in position .s; t � s/ D .1; 1/, which
detects (the Hurewicz image of) the Hopf map � in homotopy,

(2) h2 in position .1; 3/, which detects (the Hurewicz image of) the Hopf map � ,

(3) d in position .2; 14/, which detects in homotopy the class known as � ,

(4) g in position .4; 20/, which detects in homotopy the class �̄ , and

(5) c in position .2; 8/, which detects in homotopy the class � .

The homotopy elements detected by these classes satisfy some relations; for example,

�3 D 4� and ��2 D 4�̄:

Let us also name one of the less famous elements in the descent spectral sequence
for tmf.2/ , which also appears in the HFPSS for TMF

�
1
3

�
. Namely, there is a Z=2 in

position .1; 5/; we will denote the generating class by the generic name x (in [6] it
bears the name a21h1 ).

All torsion classes with the exception of (powers of) h1 are annihilated by c4 and c6 .
In the Picard spectral sequence, all of these classes appear shifted by one to the right;
we have labeled some such classes in Figure 9. A zoomed in portion of the Picard
spectral sequence is depicted in Figure 8. There, and in all of the related spectral
sequences, lines of slope 1 denote h1–multiplication, and lines of slope 1

3
denote

h2–multiplication.

A zoomed out portion of the Picard HFPSS (8-6) is depicted in Figure 7; the elements
that are to the right of the t D 2 line are, of course, a shift of the corresponding elements
in the spectral sequence for TMF

�
1
3

�
. However, to avoid cluttering the picture, a family

of classes is not shown. The family consists precisely of the h1–power multiples of
nontorsion classes. An exception is made for the elements depicted in green, namely
h31c4c6=� and h61c

2
4=� (in the .0; 3/ and .�1; 6/ positions, respectively; these classes

are also labeled in Figure 8), as well as the tower supported on 1, which do belong to
this family, but are nonetheless depicted. In the zoomed in Figure 9 this family is also
not shown.

More specifically, the nontorsion subring of the E2–page of the TMF
�
1
3

�
spectral

sequence is precisely the part in cohomological degree 0 and consists of the ring of
modular forms MF�

�
1
3

�
D Z

�
1
3

�
Œc4; c6; �

˙1�=.123�� c34 C c
2
6/. On the E2–page,

these support infinite h1–multiples, ie MF�
�
1
3

�
Œh1�=.2h1/ is a subring of the E2–page.

Note in degree zero, MF0
�
1
3

�
DZ

�
1
3
; j
�
, where j D c34=� is the classical j –invariant.

What we have omitted drawing in Figure 7 and 9 are all of the elements coming
from this subring, with the exception of the mentioned classes. For comparison, these
elements are drawn in the smaller-range Figure 8.
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Figure 7: Homotopy fixed point spectral sequence for pic.TMF.3//hGL2.Z=3/ :
zoomed out version with some h1–omissions (� denotes Z , � denotes Z=2 ,
� denotes Z=2Œj � , and � denotes Z=3)
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Figure 8: Homotopy fixed point spectral sequence for pic.TMF.3//hGL2.Z=3/ :
zoomed in version without omissions (� denotes Z , � denotes Z=2 , �
denotes Z=2Œj � , and � denotes Z=3)
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Figure 9: Homotopy fixed point spectral sequence for pic.TMF.3//hGL2.Z=3/ :
zoomed in version with some h1–omissions (� denotes Z , � denotes Z=2 ,
� denotes Z=2Œj � , and � denotes Z=3)
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Remark 8.2.3 The two classes h31c4c6=� and h61c
2
4=�, which we have depicted in

green (in the .0; 3/ and .�1; 6/ positions, respectively), do not appear in the spectral
sequence for Tmf

�
1
3

�
, as they involve a negative power of �. Another difference

between the Tmf and TMF situation is that in the E2–page of the latter, there are
infinite groups, isomorphic to Z=2Œj � and generated by h1 , h21 , h31 , etc, in positions
.1; 1/, .2; 2/, .3; 3/, etc. Moreover, the element x in position .1; 5/ also generates an
infinite Z=2Œj �, as do all of its h1–multiples.

Note that in the range that we are considering (namely, t > 1), the HFPSS for
the GL2.Z=3/–action on Tmf.3/ coincides with the descent spectral sequence for
Tmf

�
1
3

�
as the sections of Otop over Mell

�
1
3

�
, and the differentials in the latter have

been fully determined in Johan Konter’s master thesis [32]. Of course, these differentials
really come from the connective tmf, whose descent spectral sequence is fully computed
in [6]. In these spectral sequences, do3 is the first nontrivial differential, followed by
do5 ; d

o
7 ; d

o
9 ; : : : ; d

o
23 . In particular, we have the following differentials [6, Section 8]:

(8-7)

do3 .c6/D c4h
3
1; do3 .x/D h

4
1;

do5 .�/D gh2; do7 .4�/D gh
3
1;

do9 .�
2h1/D g

2c; do11.d�
2/D g3h1;

and a number of others.

Let us see now which of these differentials we can import using our Comparison Tool
5.2.4. In the TMF

�
1
3

�
spectral sequence, we have that do3 .h

3
1c4c6=�/D h

6
1c
2
4=�; in

the Picard SS, the element corresponding to h31c4c6=� has t D 3, thus we cannot
import this differential. We deal with this class later, ie in the next paragraph. However,
all the other classes which are on the s D t column and are h1–power multiples
of nontorsion classes, ie members of the family which we have not drawn in Figure 7,
are well within the t > 3 range, so that we can indeed conclude by Comparison Tool
5.2.4 that they either support a differential or are killed by one. For example, the
h1–multiple of the differential just discussed does happen, ie in the Picard SS we
have d3.h41c4c6=�/D h

7
1c
2
4=�. In particular, we need not worry about these omitted

classes any more.

We turn to the question of whether any differentials are supported on the .s; t�s/D .3; 0/
position in the HFPSS for pic.TMF.3//hGL2.Z=3/ . For this purpose we use the universal
formula (6-1) of Theorem 6.1.1, just as we did in the second proof of Proposition 7.2.7.
We have that E3;32 of the Picard spectrum HFPSS is Z=2Œj � generated by h31c4c6=�;
the corresponding element in the original HFPSS has

do3

�
h31
c4c6

�

�
D h61

c24
�
:
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Now we have that�
h31
c4c6

�

�2
D h61

c24c
2
6

�2
D .j � 123/h61

c24
�
D jh61

c24
�
;

using the fact that 123�D c34�c
2
6 and that by definition, j D c34=�. Thus we conclude

by (6-1) that in the Picard HFPSS, the differential d3W E3;33 !E6;53 is given by

d3

�
f .j /h31

c4c6

�

�
D .f .j /C jf .j /2/h61

c24
�
;

where .f .j /h31c4c6=�/ is an arbitrary element of E3;33 . However, .f .j /C jf .j /2/
in Z=2Œj � is zero only if f .j / is zero, hence this d3 is injective and has trivial kernel.
(Note this is an interesting difference between the present situation and the one in
Proposition 7.2.7.) Consequently, E3;34 is zero.

Further use of Comparison Tool 5.2.4 determines that all the differentials we have
drawn in blue in Figures 7–9 are nonzero. Note that of the classes in the s D t column,
ie the one which contributes to the Picard group of TMF

�
1
3

�
, everything with s � 8 is

killed. However, h2g=�, generating a Z=4 in s D 5, and h31g=� generating a Z=2
in s D 7, remain. In the original spectral sequence, the first one of these supported
a do5 and a do13 , and the second supported a do23 .

Next we need to determine the rest of the spectral sequence, ie the part which in-
volves �0 and �1 of the Picard spectrum of TMF.3/. Detailed computations for
this are deferred until Appendix B. The piece in which we are most interested is
H 1

�
GL2.Z=3/; �1 pic.TMF.3//

�
, which is a cyclic group of order 12 according

to Proposition B.1; we have also determined H�
�
GL2.Z=3/; �0 pic.TMF.3//

�
in

Proposition B.2 using a more general result of Quillen.

Now we are ready to make conclusions about the Picard group of TMF
�
1
3

�
: in the t D s

vertical line of the HFPSS, ie the one that abuts to �0 pic
�
TMF

�
1
3

��
D Pic

�
TMF

�
1
3

��
,

nothing above the s D 7 line survives the spectral sequence. The following might
survive:
� at most a group of order 2 in position .0; 0/,
� at most a group of order 12 in .1; 0/,
� at most a group of order 4 in .5; 0/, and
� at most a group of order 2 in .7; 0/.

The upshot is that we get an upper bound of 2 � 12 � 4 � 2 D 192 on the order of
the Picard group. But TMF

�
1
3

�
is 192–periodic, so this upper bound must also be

a lower bound. In conclusion, Pic
�
TMF

�
1
3

��
D Z=192, as claimed, generated by

†TMF
�
1
3

�
.
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Remark 8.2.4 As in Remark 8.1.4, we can use some of our computations to reprove
Fulton and Olsson’s [14] result that the moduli stack of elliptic curves Mell

�
1
3

�
also has

a Picard group Z=12. Namely, we start with the knowledge that Pic.Mell.3// is trivial,
as Mell.3/ is the prime spectrum of a UFD. Then, we consider the Picard HFPSS for
the algebraic stack Mell

�
1
3

�
, which must collapse. The only contribution towards the

Picard group is
H 1

�
GL2.Z=3/; �.Mell.3/;O�/

�
;

which we saw by Proposition B.1 has order 12. But ! has order 12, hence Pic
�
Mell

�
1
3

��
is cyclic of order 12.

8.3 Calculation of Pic.TMF/

In this section we will compute the Picard group of the integral periodic version of
topological modular forms TMF. The result, as stated in the introduction, is:

Theorem A The Picard group of integral TMF is Z=576, generated by †TMF.

Proof There is no nontrivial Galois extension of the integral TMF by [40, Theorem
10.1], but we can use étale descent, as TMF is obtained as the global sections of the
sheaf Otop of even-periodic E1–rings on the moduli stack of elliptic curves. Namely,
we can use Theorem 3.2.1 because the map Mell!MFG is known to be affine. The
spectral sequence is

H s.Mell; �t picOtop/) �t�s�.picOtop/;

and we are interested in �0 . Using Theorem 3.2.1, the E2–page of this spectral
sequence is given by (for t � s � 0)

E
s;t
2 D

8̂̂̂̂
<̂
ˆ̂̂:

Z=2 if t D s D 0;

H s.Mell;O�Mell
/ if t D 1;

H s.Mell; !
.t�1/=2/ if t � 3 is odd,

0 otherwise.

Over a field k of characteristic ¤ 2, 3, Mumford [51] showed that

H 1..Mell/k;O�Mell
/' Z=12;

ie the Picard group of the moduli stack is Z=12, generated by the line bundle ! that
assigns to an elliptic curve the dual of its Lie algebra. This result is also true over Z by
the work of Fulton and Olsson [14]. However, using descent we can reprove that result.
Namely, in Remarks 8.1.4 and 8.2.4 we saw that the Picard groups of both Mell

�
1
2

�
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and Mell
�
1
3

�
are Z=12, both generated by ! . Cover the integral stack Mell by these two;

their intersection is Mell
�
1
6

�
, which is the weighted projective stack Proj Z

�
1
6

�
Œc4; c6�

(with c4 and c6 in degrees17 4 and 6 respectively), and which therefore has Picard
group Z=12 also generated by ! . The descent spectral sequence for pic associated to
this cover gives the result.

Since Mell
�
1
6

�
has no higher cohomology, the groups H s.Mell; !

.t�1/=2/, when s > 0,
are given as the direct sum of the corresponding cohomology groups of Mell

�
1
2

�
and Mell

�
1
3

�
. These groups, in turn, are isomorphic to

H s
�
GL2.Z=p/; �t�1 TMF.p/

�
DH s

�
GL2.Z=p/;H

0.Mell.p/; !
.t�1/=2/

�
;

where p is 2 or 3, as the map Mell.p/! Mell
�
1
p

�
is Galois, and Mell.p/ has no

higher cohomology. We computed these groups in the previous examples.

The machinery of Section 5 now allows us to compare this Picard descent spectral se-
quence to the one which computes the homotopy groups of TMF. From Corollary 5.2.3
and an analogue of Comparison Tool 5.2.4, we conclude that the differentials involving
3–torsion classes wipe out everything above the s D 5 line, and those involving
2–torsion classes wipe out everything above the s D 7 line. These differentials are
identical to what happens in the homotopy fixed point spectral sequences in the previous
two examples. We conclude that the following are the only groups that can survive:

� at most a group of order 2 in .t � s; s/D .0; 0/,

� at most a group of order 12 in .0; 1/,

� at most a group of order 12 in .0; 5/, and

� at most a group of order 2 in .0; 7/.

This gives us an upper bound 2632 D 576 on the cardinality of �0 , which is exactly
the periodicity of TMF. The spectral sequence is depicted in Figure 10.

8.4 Calculation of Pic.Tmf/

We will now prove the following result stated in the introduction.

Theorem B The Picard group of Tmf is Z˚Z=24, generated by †Tmf and a certain
24–torsion invertible module.

17These are the algebraic degrees, which get doubled in topology.
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Figure 10: Descent spectral sequence for �.picOtop/ on Mell with some
h1–omissions as in Figure 7 (� denotes Z , � denotes Z=2 , � denotes
Z=2Œj � , and � denotes Z=3)
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While Tmf
�
1
n

�
can be described as the homotopy fixed point spectrum Tmf.n/hGL2.Z=n/

for nD 2; 3 just as in the periodic case, the extension Tmf
�
1
n

�
!Tmf.n/ is not Galois,

and therefore we cannot use Galois descent to compute the Picard group. However, we
can use Theorem 3.2.1 for the compactified moduli stack Mell .

First, we need a lemma.

Lemma 8.4.1 Let L be the line bundle on Mell obtained by gluing the trivial line
bundles on Mell D MellŒ�

�1� and MellŒc
�1
4 � via the clutching function j . Then

L' !�12.

Proof To give a section of L ˝ !12 over Mell is equivalent to giving sections
s1 2 �.Mell; !

12/ and s2 2 �.MellŒc
�1
4 �; !12/ such that

.js1/jMellŒc
�1
4 � D .s2/jMellŒc

�1
4 �:

We take s1 D� and s2 D c34 , and we get a nowhere vanishing section of L˝!12.

Proof of Theorem B The relevant part of the Picard descent spectral sequence is
similar to that of TMF, with the following exceptions: the algebraic part H 1.Mell;O�/
is now Z generated by ! , according to Fulton and Olsson [14], and all the torsion
groups are now finite, ie there are no Z=2Œj �’s appearing. In particular, E3;32 is zero,
and we have

� at most a group of order 2 in .t � s; s/D .0; 0/,

� a subquotient of Z in .0; 1/,

� at most a group of order 12 in .0; 5/, and

� at most a group of order 2 in .0; 7/

as potential contributions to the s D t line of the E1–page. The depiction is in
Figure 11.

Note that the Z=2 in .0; 0/, which corresponds to a single suspension of the even-
periodic spectra that Tmf is built from, is represented by †Tmf in the Picard group
of Tmf. Similarly, the element 1 2 Z D E0;12 D Pic.Mell/ corresponds to the line
bundle ! , which topologically is represented by †2 Tmf. Thus these groups survive
to the E1–page and are related by an extension. The rest of the E1–filtration now
tells us that Pic.Tmf/ sits in an extension

0! A! Pic.Tmf/! Z! 0;

where A is a finite group of order at most 24.
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We claim that AD Z=24 and therefore Pic.Tmf/D Z˚Z=24. To see this, we will
construct a line bundle I such that I˝24'Otop, but no lower power of I is equivalent
to Otop.

In order to proceed with the construction, we make the preliminary observation that
the modular function j D c34=� is a homotopy class in �0 TMFŒc�14 �, ie it survives
the descent spectral sequence

H�.MellŒ�
�1; c�14 �; !�/ŠH�.Mell; !

�/Œc�14 �) �� TMFŒc�14 �:

In fact, it is an invertible element of �0 TMFŒc�14 �. We reason as follows. The torsion
in the E2–page consists only of h1–towers supported on the nontorsion classes, since
all other torsion classes in H�.Mell; !

�/ are annihilated by c4 . Therefore, when c4 is
inverted only d3–differentials can be nonzero, and they wipe out everything above the
line s D 3. As � and c4 do not support any of those differentials, j is a permanent
cycle, as is j�1.

Construction 8.4.2 Consider the cover of Mell by MellŒ�
�1�DMell and MellŒc

�1
4 �

which fit in the pushout diagram:

MellŒ�
�1; c�14 � //

��

MellŒ�
�1�

��

MellŒc
�1
4 � // Mell

Let J be the line bundle on the derived moduli stack Mell D .Mell;Otop/ obtained
by gluing Otop on MellŒ�

�1� and Otop on MellŒc
�1
4 � using the clutching function

j D c34=� on MellŒ�
�1; c�14 �.

We claim that J is not a suspension of Otop, and that I D†24J is an element of the
Picard group of order 24.

To see the first assertion, note that by Lemma 8.4.1, �0J is !�12, so if J is a suspen-
sion of Otop, it ought to be †�24Otop. However, †�24Otop restricted to MellŒ�

�1� is
†�24Otop jMellŒ��1� , whereas J restricts to Otop jMellŒ��1� .

This argument can be repeated with any power J˝m such that m is not divisible by 24.
In this case, �0J˝m is !�12m, so if J˝m were a suspension of Otop, it would be
the .�24/mth suspension. At the same time, J˝m restricts to

.Otop/˝mjMellŒ��1� DOtop
jMellŒ��1�
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Figure 11: Descent spectral sequence for �.picOtop/ on Mell (� denotes Z ,
� denotes Z=2 , and � denotes Z=3)
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upon inverting �. If J˝m were a suspension, therefore, one would have that

†�24mOtop
jMellŒ��1� 'Otop

jMellŒ��1�:

By Theorem A, this holds if and only if m is divisible by 24.

This shows that the order of J in Pic.Otop/=Z, where the Z is generated by †Otop, is
at least 24. The spectral sequence argument above, however, showed that this quotient
has order at most 24.

The same analysis shows that Pic.Tmf.2//D Z˚Z=8 and Pic.Tmf.3//D Z˚Z=3,
the torsion being generated by the respective localizations of I . Moreover, when p is
greater than 3, Pic.Tmf.p//D Z.

8.5 Relation to the E2–local Picard group

Notice that I is the only “exotic” element in all of our examples involving the various
forms of topological modular forms. Let us see how it relates to the exotic piece of
the Picard group of the category of E2–local spectra, ie modules over the E2–local
sphere spectrum. The exotic phenomena only occur at p D 2 and p D 3, but since
only the 3–primary E2–local Picard group is known, let us concentrate on that case
for the remainder of this section.

In [17], the authors compute �2 , the exotic part of the Picard group of the category
of 3–primary K.2/–local spectra; they show �2 D Z=3�Z=3.

Additionally, they look at the localization map from the E2–local category to the
K.2/–local category and show that it induces an isomorphism �L2

! �2 , where �L2

denotes the exotic E2–local Picard group.

Consider now the commutative diagram

�L2
//

t
��

�2

tK.2/

��

Pic.Tmf.3// // Pic.TmfK.2//

in which the horizontal maps are given by K.2/–localization, and the vertical maps are
given by smashing with Tmf and TmfK.2/ , respectively. In [17, Theorem 5.5], the au-
thors show there is an element P of �2 such that LK.2/.P ^TmfK.2//'†48 TmfK.2/ ,
ie tK.2/P D 482Z=72�Pic.TmfK.2//. Under the top horizontal isomorphism, this P
lifts to an element zP of �L2

, such that t . zP / has order three in Pic.Tmf.3// and such
that the K.2/–localization of t . zP / is LK.2/.†48 Tmf/. Thus t . zP / must be twice
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the class of I . In other words, the exotic element zP of �L2
is detected as an exotic

element of Pic.Tmf.3//.

The other Z=3 in �2 , ie �2 modulo the subgroup generated by P , is generated by a
spectrum Q such that tK.2/Q D 0. This Q lifts to zQ 2 �L2

, still of order 3, which
must map under t to an element of order 3 in Pic.Tmf.3// which is in the kernel of
the bottom localization map. But there are no nontrivial elements of finite order in this
kernel, hence zQ is not detected in Pic.Tmf.3//.

Perhaps at the prime 2 as well there is an element of the exotic E2–local Picard group
which is detected in the torsion of Pic.Tmf.2//.

Appendices

Appendix A: Group cohomology computations for TMF.2/

In this appendix, we will compute the group cohomology for the GL2.Z=2/–action
on �0 pic.TMF.2//D Z=4 (with trivial action), and on �1 pic.TMF.2//D TMF.2/�0
with the natural action. The group GL2.Z=2/ is the symmetric group on three letters,
so it has a (unique) normal subgroup of order 3, which we denote by C3 , with
quotient C2 . We can therefore use the associated Lyndon–Hochschild–Serre spectral
sequence (LHSSS)

Hp.C2;H
q.C3;M//)HpCq.GL2.Z=2/;M/(A-1)

for GL2.Z=2/–modules M .

Let us first deal with the easier case.

Lemma A.1 The group cohomology for the GL2.Z=2/–action on the trivial mod-
ule Z=4 is

H�
�
GL2.Z=2/; �0 pic.TMF.2//

�
D

�
Z=4 if � D 0;
Z=2 if �> 0:

Proof Since 3 is invertible in Z=4, we have that H�.C3;Z=4/D Z=4 concentrated
in degree zero, and with trivial action by C2 D GL2.Z=2/=C3 . Hence the LHSSS
(A-1) collapses, giving

H s.GL2.Z=2/;Z=4/DH
s.C2;Z=4/;

which is Z=4 for s D 0 and Z=2 otherwise.
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Next we compute the group cohomology for the GL2.Z=2/–action on �1 pic.TMF.2//,
which is the multiplicative group of units in �0 TMF.2/. For brevity, we call this
module M , and to begin with, we explicitly describe the action of GL2.Z=2/ on M .

Let � and � be the generators of GL2.Z=2/ of order 3 and 2 respectively as chosen in
[63, Lemma 7.3]; of course, � generates the normal subgroup C3 . It follows from (8-1)
that M is isomorphic to Z=2˚Z˚3, where Z=2 is multiplicatively generated by �1,
and the Z’s are multiplicatively generated by 2, s and .s�1/. The action is determined
by [63, Lemma 7.3], where it is shown that the chosen generators � and � act as

� W s 7!
s� 1

s
and � W s 7!

1

s
:

Written additively, so that mD.�; k; a; b/2M represents .�1/�2ksa.s�1/b2TMF.2/�0 ,
the action is given by

� W m 7! .�C b; k;�a� b; a/;

� W m 7! .�C b; k;�a� b; b/:

We use this information to compute H�.C3;M/ as a C2–module. We get that

H s.C3;M/D

8<:
Z=2˚Z if s D 0;
.Z=3/ if s � 0; 1.4/ and s > 0;
.Z=3/sgn if s � 2; 3.4/ and s > 0:

This gives the E2–page of the LHSSS (A-1), which must collapse and give that

(A-2) H s.GL2.Z=2/;M/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z=2˚Z if s D 0;
Z=2˚Z=3 if s � 1.4/;
Z=2˚Z=2 if s � 2.4/;
Z=2 if s � 3.4/;
Z=2˚Z=2˚Z=3 if s � 0.4/ and s > 0:

We have thus proven the following result.

Proposition A.2 The group cohomology for the GL2.Z=2/–action on �0 pic.TMF.2//
is as in (A-2). In particular, we have that H 1.GL2.Z=2/;TMF.2/�0 /D Z=6.

Appendix B: Group cohomology computations for TMF.3/

This appendix is devoted to computing the group cohomology for GL2.Z=3/ acting
on �1 pic.TMF.3/0/� ; we also determine the cohomology of �0 pic.TMF.3//D Z=2
as a simple consequence of a result of Quillen [55]. The group GL2.Z=3/ has order 48
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and has the binary tetrahedral group as a normal subgroup, in the guise of SL2.Z=3/.
We have found it difficult to compute the higher cohomology groups of .TMF.3/0/� ,
but since we are only using H 1.GL2.Z=3/; .TMF.3/0/�/ in Section 8.2, we will
concentrate on computing this group only.

In this section, we denote .TMF.3/0/� by M . From (8-1), we see that M � TMF.3/0
is isomorphic to Z=2˚Z=3˚Z˚4 multiplicatively generated by �1; � , .1� �/, t ,
.1� �t/ and .1C �2t /. (To see the appearance of .1� �/, note that .1� �/2 D�3� .)
The GL2.Z=3/–module structure is determined in [64, Section 4.3]; to describe it,
let x , y , z be the elements of GL2.Z=3/ chosen in loc. cit. Explicitly,

x D

�
0 �1

1 0

�
; y D

�
�1 �1

�1 1

�
; z D

�
0 �1

1 �1

�
:

Then x and y generate a quaternion group Q8 , and x , y , z generate SL2.Z=3/.
Let � be the matrix

�
1
0

0
�1

�
. These generate the whole group, and their action on the

element t D 1=2 is as determined in loc. cit.18 to be

x.t/D�
1

t
; y.t/D �2

1� �t

1C �2t
; z.t/D �

t

1C �2t
; �.t/D

1

t
:

The rest is determined by the fact that everything fixes Z
�
1
3

�
� TMF.3/0 , a matrix A

in GL2.Z=3/ takes � to �detA, and the action respects the ring structure.

To be brutally explicit, let mD .�; ˛; ˇ; a; b; c/ 2M denote the element

.�1/��˛.1� �/ˇ ta.1� �t/b.1C �2t /c :

Then the generators x , y , z , � 2 GL2.Z=3/ act as

(B-1)

xW m 7!.�C aC c; ˛C b� c; ˇ;�a� b� c; c; b/;

yW m 7!.�C bC c; ˛� a� c; ˇ; b; a;�a� b� c/;

zW m 7!.�; ˛C a; ˇ; a; c;�a� b� c/;

� W m 7!.�CˇC b;�˛�ˇ� bC c; ˇ;�a� b� c; b; c/:

Since we know a set of generators and relations for GL2.Z=3/, and the action is
given explicitly, we can compute H 1 directly as crossed homomorphisms modulo
coboundaries. We found it a little bit simpler, however, to do this for SL2.Z=3/, and
then use the Lyndon–Hochschild–Serre spectral sequence for the extension

1! SL2.Z=3/! GL2.Z=3/! C2! 1;

18Actually, the formulas in loc. cit. determine a right action, although the left action that we include
here is almost the same.
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in which C2 is generated by the image of � 2 GL2.Z=3/. The contributions to
H 1.GL2.Z=3/;M/ are from H 1.SL2.Z=3/;M/C2 and H 1.C2;M

SL2.Z=3//, and
there is a potential differential

d2W H
1.SL2.Z=3/;M/C2 !H 2.C2;M

SL2.Z=3//:(B-2)

To compute these groups and the differential, we note that the invariants M SL2.Z=3/

are the submodule Z=2˚Z=3˚Z with aD bD cD 0. Here, ker.1C�/D im.1��/,
so that H 1.C2;M

SL2.Z=3//D 0.

Next, suppose f W SL2.Z=3/!M represents a class in H 1.SL2.Z=3/;M/C2, ie it is
a crossed homomorphism which is � –invariant modulo coboundaries. Since each f .g/
is in the kernel of the norm of g , we must have that

f .x/D .�x; cx; 0; ax;�cx; cx/;

f .y/D .�y ;�ay � cy ; 0; ay ;�ay ; cy/;

f .z/D .0; ˛z; 0; 0; bz; cz/:

The relations x2 D y2 , xyx D y , xz D zy3 and zyx D yz , imply that

axC cx D ay C cy ; bz D�cx; cz D cy ; �x D cxC cy ; �y D ax :

One directly checks that any crossed homomorphism of this form is � –invariant modulo
coboundaries. Finally, suppose an f of this form is itself a coboundary, ie there is
an m D .�; ˛; ˇ; a; b; c/ 2 M , such that f .g/ D gm � m for all g 2 SL2.Z=3/.
Then 4b D ax C 3cx � 2cy , a D b � ax � cx C 2cy , c D b � cx and ˛z D a .
Consequently,

H 1.SL2.Z=3/;M/C2 D Z=12:(B-3)

It remains to compute the differential (B-2). This is a transgression, and we have an
explicit formula for it, for example in [31, Section 3.7] or [53, Section I.6]. One checks
that this formula gives that d2 is zero in our case. Thus we have proved the following.

Proposition B.1 H 1.GL2.Z=3/;TMF.3/�0 / is cyclic of order 12.

Although not directly affecting the computation of Pic
�
TMF

�
1
3

��
, we record the fol-

lowing result of Quillen that determines a few more entries in the spectral sequence
(8-6).

Proposition B.2 [55, Lemma 11] The cohomology ring H�.GL2.Z=3/;Z=2/ is
Z=2Œc1; c2�˝ƒ.e1; e2/, where the cohomological degrees are jci jD2i and jei jD2i�1.

Geometry & Topology, Volume 20 (2016)



3212 Akhil Mathew and Vesna Stojanoska

Appendix C: Derived functors of the symmetric square

The purpose of this appendix is to prove the necessary auxiliary results on symmetric
squares of cosimplicial abelian groups.

Definition C.1 Let A be an abelian group. We let Sym2.A/ D .A˝A/C2
be the

coinvariants for the C2–action on A˝A given by permuting the factors. We also
let gSym2.A/ denote the C2–coinvariants in .A˝A/˝Z� where the first factor is
given the permutation action and Z� is the sign representation. Note that if A is a free
abelian group, then the 2–torsion in gSym2.A/ is canonically isomorphic to A˝Z F2
via the “Frobenius” map

A=2A! gSym2.A/; a 7! a˝ a:

In [54], Priddy gives a complete description of the actions of the symmetric algebra
functor on cosimplicial vector spaces, or equivalently the analog of the Steenrod algebra
for cosimplicial algebras. We will only need a small piece of this, which we state
next. We note that the generators in question are the Steenrod squares applied to the
fundamental class �. For example, the generator in maximal degree is the cup square.

Proposition C.2 [54, Theorem 4.0.1] Let A� be a cosimplicial F2–vector space.
Suppose that H tC1.A�/'F2 and the cohomology of A� is concentrated in degree tC1
by a class �. Then

H i .Sym2A
�/'

�
F2 if t C 1� i � 2.t C 1/;
0 otherwise.

Proposition C.3 Let t � 2 and let A� be a levelwise free, finitely generated cosimpli-
cial abelian group with H�.A�/ concentrated in degree �D tC1 and H tC1.A�/DZ
generated by �. Then:

(1) If t is even, then H 2tC2.Sym2A
�/' Z=2, generated by �2.

(2) If t is odd, then H 2tC2.gSym2A�/' Z=2, generated by �2.

Proof Consider first the case t even. In this case, we have maps of cosimplicial
abelian groups

Sym2A
�
! A�˝A�! Sym2A

�

where the first map is the norm map and the second map is projection. The composite
is multiplication by two. Note that H 2tC2.A�˝A�/ ' Z, but since t is even, the
C2–action is the sign representation, so that the map H�.Sym2A

�/!H�.A�˝A�/
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must be the zero map as it lands in the C2–invariants on cohomology. In particular, the
cohomology of Sym2.A

�/ is all annihilated by 2. By the universal coefficient theorem, it
suffices to show that H 2tC2.Sym2A

�˝ZZ=2/'Z=2 and Hk.Sym2A
�˝ZZ=2/D0

for k > 2t C 2, which is the statement of Proposition C.2. In addition, we see that �2

is a generator, as desired, by working modulo 2.

Now suppose t is odd. Again, using the norm mapsgSym2A�! A�˝A�˝ �! gSym2A�;

we find that the cohomology of gSym2A� is annihilated by 2. We note that at the level
of cosimplicial abelian groups gSym2A�˝Z F2 ' Sym2A

�˝Z F2 , but working with
the underived tensor product is problematic here because gSym2A� has 2–torsion. If
we take the derived tensor product

gSym2.A�/
L
˝ F2;

we obtain in addition a copy of A�˝ZF2 (ie the 2–torsion in gSym2A� ) in �1 that does
not contribute in the relevant dimensions, so we may ignore it. Now, by Proposition C.2,
we know that

Hk.gSym2A�˝Z F2/'

�
F2 for k D 2t C 2;
0 for k > 2t C 2:

So we can apply the universal coefficient theorem as in the previous case. We conclude
that �2 is a generator similarly.
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Combinatorial tangle Floer homology

INA PETKOVA

VERA VÉRTESI

We extend the idea of bordered Floer homology to knots and links in S3 : Using a
specific Heegaard diagram, we construct gluable combinatorial invariants of tangles
in S3 , D3 , and I �S2 . The special case of S3 gives back a stabilized version of
knot Floer homology.

57M27, 57R58

1 Introduction

Knot Floer homology is a categorification of the Alexander polynomial, defined by
Ozsváth and Szabó [16], and independently by Rasmussen [23], in the early 2000s. To
a knot or a link one associates a filtered graded chain complex over the field of two
elements F2 or over a polynomial ring F2ŒU1; : : : ;Un�. The filtered chain homotopy
type of this complex is a powerful invariant of the knot. For example, it detects genus
(see Ozsváth and Szabó [15]), fiberedness (see Ghiggini [2] and Ni [13]), and gives a
bound on the four-ball genus (see Ozsváth and Szabó [14]). The definition of knot Floer
homology is based on finding a Heegaard diagram presentation for the knot and defining
a chain complex by counting certain pseudoholomorphic curves in a symmetric product
of the Heegaard surface. Suitable choices of Heegaard diagrams (for example, grid
diagrams as in Manolescu, Ozsváth and Sarkar [11] and Manolescu, Ozsváth, Szabó,
and Thurston [12], or nice diagrams as in Sarkar and Wang [25]) lead to combinatorial
descriptions of knot Floer homology. However, in its nature knot Floer homology is
a “global” invariant — one needs a picture of the entire knot to define it — and local
modifications are only partially understood; see for example Ozsváth and Szabó [16;
20] and Manolescu [10].

Around the same time that knot Floer homology came to life, Khovanov [3] introduced
another knot invariant, a categorification of the Jones polynomial now known as
Khovanov homology. Khovanov’s construction is somewhat simpler in nature, as one
builds a chain complex generated by the different resolutions of the knot. Khovanov
homology has an extension to tangles [4], thus local modifications can be understood
on a categorical level.
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In this paper, we extend knot Floer homology by defining a combinatorial Heegaard
Floer type invariant for tangles. Note that a similar extension exists for Heegaard Floer
homology, which is an invariant of closed 3–manifolds, generalizing it to manifolds
with boundary; see Lipshitz, Ozsváth, and Thurston [8]. This extension is called
bordered Floer homology.

1.1 Tangle Floer invariants

A tangle (see Figure 1 and Section 2.2 for precise definitions) is a properly embedded
1–manifold in D3 or I � S2 . Inspired by Lipshitz, Ozsváth, and Thurston [7], we
define

� a differential graded algebra A.P/ for any finite set of signed points P on the
equator of S2 ;

� a right type A module 1CFTA.T / over A.@T / for any tangle T in D3 ;

� a left type D module 1CFDT .T / over A.�@T / for any tangle T in D3 ;

� a left–right A.�@0T /-A.@1T / type DA bimodule 2CFDTA.T / for any tangle
T in I �S2 .

Figure 1: A projection of a tangle in S2 � I

The above (bi)modules are topological invariants of the tangle. (See Theorems 10.4,
10.2 and 10.7 for the precise statements.)

Theorem 1.1 For a tangle T in D3 the type A equivalence class of the module
1CFTA.T / is a topological invariant of T , and the type D equivalence class of the
module 1CFDT .T / is a topological invariant of T . For a tangle T in S2 � I the type
DA equivalence class of the bimodule 2CFDTA.T / is a topological invariant of T .

Furthermore, the invariants behave well under compositions of tangles. (See Theorem
12.4 and Corollary 12.5 for the precise statement.)1

1In each of the equivalences in Theorems 1.2 and 1.3, the left-hand side should also be tensored with
V ˝.jT1jCjT2j�jT1ıT2j/ , where V DF2˚F2 has one summand in bigrading .0; 0/ and the other summand
in bigrading .�1;�1/ . This is discussed in the full statements of the theorems, and omitted here for
simplicity.
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Theorem 1.2 Suppose that T1 and T2 are tangles in S2� I such that @1T1 D�@
0T2 .

Then, up to type DA equivalence,

2CFDTA.T1 ı T2/' 2CFDTA.T1/ z̋ 2CFDTA.T2/:

Thus, the above definitions give a functor from the category of oriented tangles OTAN
to the category of bigraded type DA bimodules up to type DA equivalence. In other
words, our invariant behaves like a .0C1/–dimensional TQFT.2

Note that there are analogs of Theorem 1.2 if one of the tangles is in D3 . When T1

and T2 are both in D3 , their composition T1 ı T2 is a knot (or a link), and we recover
knot Floer homology:

Theorem 1.3 Suppose that T1 and T2 are tangles in D3 with @T1 D �@T2 , and let
K D T1 ı T2 be their composition. Then

bCFK .K/˝W ' 1CFTA.T1/ z̋ 1CFDT .T2/;

where W D F2˚F2 with Maslov and Alexander bigradings .M;A/ equal to .0; 0/
and .�1; 0/.

The combinatorial description of the invariants depends on the use of a certain Heegaard
diagram associated to the tangle (see Figure 2). This diagram is “nice” in the sense
of Sarkar and Wang [25]. The use of this diagram enables a purely combinatorial
description of the generators, as partial matchings of a bipartite graph associated to the
tangle. (See Figure 3 for an example.)

Figure 2: A Heegaard diagram associated to a tangle. The thick lines denote
parallel ˛– and ˇ–curves. The number of twice punctured tori in the middle
depends on how complicated the tangle is. This figure shows the Heegaard
diagram for a closed link. Diagrams for tangles can be obtained by deleting
one or both of the once punctured tori from the sides.

2Note that it is not a proper TQFT as the target is not the category of vector spaces, and the functor
does not respect the monoidal structure of the categories. In fact there is no obvious monoidal structure on
the category of type DA structures.
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Figure 3: The bipartite graph associated to the tangle of Figure 1. The edges
(not drawn) are between the consecutive vertex-sets.

Here we develop two versions of the invariants: one over F2 , which we call a tilde
version, and an enhanced minus version over F2ŒU1; : : : ;Un�. As Theorem 1.3 depends
only on a Heegaard diagram description, it holds for both versions. However, we
currently only have proofs for the tilde versions of Theorems 1.1 and 1.2. This is due
to the fact that our proofs rely on analytic techniques. In Section 5.3 we give evidence
for the existence of completely combinatorial proofs of Theorems 1.1 and 1.2 in the
minus version.

We also develop an ungraded tilde version of tangle Floer homology for tangles in
arbitrary manifolds with boundary S2 or S2qS2 . Versions of the above theorems hold
in this more general case too; see Theorems 10.2, 10.4, 10.7 and 12.4 and Corollary 12.5.

This TQFT-like description of knot Floer homology allows one to localize questions in
Heegaard Floer homology. For instance, in a subsequent note we show that there is a
skein exact sequence for tangles. The theory has the potential to help understand the
change of knot Floer homology under more complicated local modifications such as
mutations, or, for example, help understand the rank of the knot Floer homology of
periodic knots.

We hope that our construction may provide a new bridge between Khovanov homology
and knot Floer homology. Rasmussen [24] conjectures a spectral sequence connecting
the two. It is possible that a relationship between the two theories can be found for
simple tangles, and used to prove the conjecture.

The Jones polynomial can be defined in the Reshetikhin–Turaev way, using the vector
representation of the quantum algebra Uq.sl2/ and, since Khovanov’s seminal work
on categorifying the Jones polynomial, a program for categorification of quantum
groups has begun. Similarly to the Jones polynomial construction, one can see the
Alexander polynomial as a quantum invariant coming from the vector representation V

of Uq.gl.1j1//; see Sartori [26] and Viro [27]. However, the categorification bHFK of
the Alexander polynomial has not yet been understood on a representation theory level.
In a future paper we show that the decategorification of tangle Floer homology is a
tensor power of the vector representation of Uq.gl.1j1//. We believe that we can build
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on the structures from this paper to obtain a full categorification of the tensor powers
of the vector representation of Uq.gl.1j1//.

1.2 Further remarks

Knot Floer homology is defined by counting holomorphic curves in a symmetric product
of a Heegaard surface and, for different versions, the projection of those curves to
the Heegaard surface is allowed or not allowed to cross two special sets of basepoints
X and O . We develop a theory for tangles that counts curves which cross only O .
While it is hard to define invariants that count curves which cross both X and O , it is
straightforward to modify the definitions to count curves that cross X or O , but not
both. Further, the invariants defined in this paper can be extended over Z.

The structures defined in Section 3 are completely combinatorial, and an algorithm
could be programmed to compute the invariants for simple tangles and obtain the knot
Floer homology of some new knots. Knots with periodic behavior and knots with low
bridge number relative to their grid number are especially suitable.

1.3 Organization

After a brief introduction of the relevant algebraic structures in Section 2, we turn to
defining the invariants from a diagrammatic viewpoint in Section 3. In Section 4, we
describe the same invariants using a class of diagrams called bordered grid diagrams,
as this approach is more suited for some of the proofs and provides a bridge between
Section 4 and Sections 7–12. Finally, the definitions of the tangle invariants are given
in Section 5, and their relation to knot Floer homology is proved in Section 6.

Sections 7–12 are devoted to proving invariance by building up a complete holomorphic
theory for tangles in 3–manifolds. The geometric structures (marked spheres) associated
to the algebras are introduced in Section 7, then Section 8 describes the various Heegaard
diagrams corresponding to tangles in 3–manifolds. The moduli spaces corresponding
to these Heegaard diagrams are defined in Section 9. Then the definitions of the general
invariants are given in Section 10. The gradings from Section 3.4 are extended to the
general setting in Section 11. Section 12 contains the full statements and proofs of
Theorems 1.2 and 1.3.
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2 Preliminaries

2.1 Modules, bimodules, and tensor products

In this paper, we work with the same types of algebraic structures used in bordered
Floer homology; see [8; 9]. Below we recall the main definitions. For more detail, see
[9, Section 2].

Let A be a unital differential graded algebra with differential d and multiplication �
over a base ring k. In this paper, k will always be a direct sum of copies of F2DZ=2Z.
For the algebras we define in the later sections, the base ring for all modules and tensor
products is the ring of idempotents.

A (right) A1–module over A, or a type A structure over A is a graded module M

over k, equipped with maps

mi W M ˝AŒ1�˝.i�1/
!M Œ1�

for i � 1, satisfying the compatibility conditions

0D
X

iCjDnC1

mi.mj .x; a1; : : : ; aj�1/; : : : ; an�1/

C

n�1X
iD1

mn.x; a1; : : : ; ai�1; d.ai/; : : : ; an�1/

C

n�2X
iD1

mn�1.x; a1; : : : ; ai�1; .�.ai ; aiC1//; : : : ; an�1/:

A type A structure is strictly unital if m2.x; 1/ D x and mi.x; a1; : : : ; ai�1/ D 0

whenever i > 2 and some aj is in k. We assume all type A structures to be strictly
unital.

We say that M is bounded if mi D 0 for all sufficiently large i .

A (left) type D structure over A is a graded k–module N , equipped with a homoge-
neous map

ıW N ! .A˝N /Œ1�
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satisfying the compatibility condition

.d ˝ idN / ı ıC .�˝ idN / ı .idA˝ ı/ ı ı D 0:

We can define maps
ık W N ! .A˝k

˝N /Œk�

inductively by

ık D

�
idN for k D 0;

.idA˝ ık�1/ ı ı for k � 1:

A type D structure is bounded if, for any x 2N , ıi.x/D 0 for all sufficiently large i .

One can similarly define left type A structures and right type D structures.

If M is a right A1–module over A and N is a left type D structure, and at least one
of them is bounded, we can define the box tensor product M � N to be the vector
space M ˝N with differential

@W M ˝N ! .M ˝N /Œ1�

defined by

@D

1X
kD1

.mk ˝ idN / ı .idM ˝ ık�1/:

The boundedness condition guarantees that the above sum is finite. In that case, @2D 0

and M �N is a graded chain complex. In general (boundedness not required), one can
think of a type D structure as a left A1–module and take an A1 tensor product z̋ ;
see [8, Section 2.2].

Given unital differential graded algebras A and B over k and j with differential
and multiplication dA , dB , �A and �B , respectively, four types of bimodules can be
defined in a similar way: types DD, AA, DA and AD. See [9, Section 2.2.4].

An A1–bimodule or type AA bimodule over A and B is a graded .k; j /–bimodule M,
together with degree 0 maps

mi;1;j W AŒ1�
˝i
˝M ˝BŒ1�˝j

!M Œ1�;

subject to compatibility conditions analogous to those for A structures; see [9, Equation
2.2.38].

We assume all AA bimodules to be strictly unital, ie m1;1;0.1;x/D x Dm0;1;1.x; 1/

and mi;1;j .a1; : : : ; ai ;x; b1; : : : ; bj / D 0 if i C j > 1 and some ai or bj lies in k

or j .
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A type DA bimodule over A and B is a graded .k; j /–bimodule M, together with
degree 0, .k; j /–linear maps

ı1
1Cj W M ˝BŒ1�˝j

!A˝M Œ1�;

satisfying a compatibility condition combining those for A and D structures; see [9,
Definition 2.2.42].

A type AD structure can be defined similarly, with the roles of A and B interchanged.

A type DD structure over A and B is a type D structure over A˝F2
Bop . In other

words, it is a graded .k; j /–bimodule M and a degree 0 map ı1W M!A˝M˝BŒ1�,
again with an appropriate compatibility condition.

Note that when A or B is the trivial algebra f1g, we get a left or a right A or D

structure over the other algebra.

There are notions of boundedness for bimodules similar to those for one-sided modules.
There are various tensor products for the various compatible pairs of bimodules. We
assume that one of the factors is bounded and briefly lay out the general description.
For details, see [9, Section 2.3.2].

Let M and N be two structures such that M is a module or bimodule with a right
type A action by an algebra A, and N is a left type D structure over A, or a type
DA or type DD structure over A on the left and some algebra on the right, with M

right-bounded or N left-bounded. As a chain complex, define

M � N D F.M /�F.N /;

where F.M / forgets the left action on M, ie turns M into a right type A structure
over A, and F.N / forgets the right action on N , ie turns N into a left type D structure
over A. Endow M � N with the bimodule structure maps arising from the left action
on M and the right action on N . Note that this also makes sense when M is a right
type A structure, or N is a left type D structure.

In general (boundedness not required), one can think of N as a structure with a left A
action, by considering A� N (where A is viewed as a bimodule over itself), and take
an A1 tensor product M z̋ N WDM z̋ .A� N /. Whenever they are both defined,
the two tensor products yield equivalent structures; see [9, Proposition 2.3.18].

For definitions of morphisms of type A, D , AA, AD, DA and DD structures, and for
definitions of the respective types of homotopy equivalences, see [9, Section 2].
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2.2 Tangles

In this paper we only consider tangles in 3–manifolds with boundary S2 or S2qS2 ,
or in closed 3–manifolds.

Definition 2.1 An n–marked sphere S is a sphere S2 with n oriented points t1; : : : ; tn
on its equator S1 � S2 numbered respecting the orientation of S1 .

Definition 2.2 A marked 2n–tangle T in an oriented 3–manifold Y with @Y Š S2

is a properly embedded 1–manifold T with .@Y; @T / identified with a 2n–marked
sphere S .

A marked .m; n/–tangle T in an oriented 3–manifold Y with two boundary com-
ponents @0Y Š S2 and @1Y Š S2 is a properly embedded 1–manifold T with
.@0Y; @0Y \ @T / and .@1Y; @1Y \ @T / each identified with an m–marked sphere
and an n–marked sphere. We denote @T along with the ordering information by
@T D @0T q @1T .

We denote the number of connected components of a tangle T by jT j. Note that we
allow for a tangle to also have closed components.

Given a marked sphere S D .S2; t1; : : : ; tn/, we denote .�S2;�t1; : : : ;�tn/ by �S .
If T1 and T2 are two marked tangles in 3–manifolds Y1 and Y2 , where a component
of .@Y1; @T1/ is identified with a marked sphere S and a component of .@Y2; @T2/ is
identified with �S , we can form the union T1[S T2 by identifying Y1 and Y2 along
these two boundary components.

For a pair .Y; T /, if a component @iY of the boundary of Y is identified with S D
.S2; t1; : : : ; tn/, so that @iT is the ordered set of points .t1; : : : ; tn/, we use �@iT
to denote .�t1; : : : ;�tn/. So we can glue two tangles T1 and T2 along boundary
components @iT1 and @jT2 exactly when @iT1 D�@

jT2 .

In most of this paper, we only consider tangles in product spaces, where the identification
of the boundary with a marked sphere is implied, and the ordering in @T encodes all
the information.

Tangles in subsets of S3 DR3[f�g, for example in D3, I �S2 or S3 itself, can be
given by their projection to .�1; c��R or Œd;1/�R, Œc; d ��R or R2 . We can
always arrange a projection to be smooth and to have no triple points, and to have only
transverse intersections.

Definition 2.3 A tangle T is elementary if it contains at most one double point or
vertical tangency (a tangency of the form ff g �R).
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T T T

T T

S S

Figure 4: Relations of elementary tangles. In all diagrams there may be
additional horizontal straight strands running above and/or below what is
shown. Left column (top to bottom): Reidemeister I move, Reidemeister II
move, Reidemeister III move, “zig-zag” move. Middle column: crossing-
cap/cup slide moves. Right column (top to bottom): introducing straight
strands to either side of a tangle or removing them, and sliding two vertically
stacked tangles past each other.

Thus an elementary tangle can consist of straight strands (as in the first picture of
Figure 6), can have one crossing (as in the second pictures of Figures 6 and 13), can
be a cap (as in the third picture of Figure 6), or can be a cup (as in the last picture of
Figure 6). The above examples are tangles in Œc; d ��R. There is no elementary tangle
projection in R2 , an elementary tangle projection in .�1; c��R is a single cap, and
an elementary tangle projection in Œd;1/�R is a single cup.

The following two propositions are well known to tangle theorists, and we do not rely
on them in the paper, so we only include outlines of their proofs.

Proposition 2.4 Any tangle projection is the concatenation of elementary tangles.

Proof If necessary, one can isotope each tangency and/or double point slightly to the
left or right, so that no two have the same horizontal coordinate.

Further:

Proposition 2.5 The concatenations of two sequences of elementary tangles represent
isotopic tangles if and only if they are related by a finite sequence of the moves depicted
in Figure 4.

Proof The three Reidemeister moves are the standard moves that change the combi-
natorics of the diagram.
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Using elementary Morse theory one can see that the other four types of moves are
exactly the moves needed to move between two isotopic diagrams with the same
combinatorics. Look at the height function obtained by projecting the tangle to the
x–coordinate. The zig-zag move corresponds to canceling an index 0 critical point with
an index 1 critical point or introducing a pair of such critical points. The crossing-cup
slide moves are isotopies that do not change the Morse function, but slide a strand over
or under a critical point. Introducing straight strands simply means taking one extra
cut near one of the boundaries of a tangle. Sliding two vertically stacked tangles past
each other corresponds to moving through a one-parameter family of Morse functions
that changes the relative heights for the two disjoint tangles.

In this paper, we define a (bi)module for each elementary tangle explicitly, and then
define a (bi)module for any tangle by decomposing it into elementary pieces and
taking the tensor product of the associated (bi)modules. We prove invariance of the
decomposition using analytic techniques (the bordered Heegaard diagrams associated
to isotopic tangles are related by Heegaard moves). We hope to also find a completely
combinatorial proof, ie we wish to show directly that the moves from Figure 4 result in
homotopy equivalent tensor products. As a first step, in Section 5.3 we show invariance
under the Reidemeister II and III moves.

3 Generalized strand modules and algebras

The aim of this paper is to give a 0C 1 TQFT-like description of knot Floer homology.
The description is based on a special kind of Heegaard diagram associated to a knot
(or a link) disjoint union an unknot.

Given a tangle T , by cutting it into elementary tangles like the ones in Figure 6, we
can put it on a Heegaard diagram like the one depicted in Figure 2, where the genus of
the diagram is the number of elementary pieces. The parts of the Heegaard diagram
corresponding to the elementary pieces are depicted in Figures 18 and 24. Note that the
Heegaard diagram is obtained by gluing together a once punctured torus, some twice
punctured tori, and another once punctured torus. In the sequel, we will associate an
algebra to each cut of the tangle, a left type A module and a right type D structure to
the once punctured tori, and a type DA bimodule to each of the twice punctured tori.

In this section, we will describe the algebras, modules, and bimodules from a purely
combinatorial viewpoint, with no mention of Heegaard diagrams. In Section 4, we
relate these structures to bordered diagrams.

In the sequel, we define generalized strand algebras and modules whose structure
depends on the extra information, encoded in a structure we will refer to as shadow. We
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define the minus version of the theory, and the tilde version can be obtained by setting
all UO to 0. In this section we describe the modules and algebras via strand diagrams,
but some of the notions feel more natural in the bordered grid diagram reformulation
(see Section 4). The reader who is familiar with the strand algebras of [8] should be
able to understand the main idea of the definitions just by looking at the examples and
the figures.

Although in this paper the main theorem is only proved for the tilde version, we have
strong evidence that it holds for the minus version as well. This is why we develop
both versions, but at first reading one can ignore the U–powers (ie set UO D 0) and
work in the tilde version.

3.1 Type AA structures: shadows

The objects underlying all structures are shadows:

Definition 3.1 For n, m 2N , fix sets of integers aD f1; : : : ; ng and bD f1; : : : ;mg,
and sets of half-integers a1=2 D

˚
11

2
; : : : ; n� 1

2

	
and b1=2 D

˚
11

2
; : : : ;m� 1

2

	
. Let

.SX;TX; �/ and .SO;TO; !/ be triples such that SX , TO�a1=2 and TX , SO�b1=2 ,
jTXj D jSXj and jTOj D jSOj, and �WSX! TX and !WSO! TO are two bijections.
The quadruple P D .m; n; �; !/ is called a shadow.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1

2 2

3 3

4 4

5 5

1 1

2 2

3 3

4 4

5 5

1 1

2 2

3 3

4 4

5

1 1

2 2

3 3

4 4

5

Figure 5: Examples of shadows. On each diagram b and b1=2 are on the
left-hand side, while a and a1=2 are on the right-hand side. Double (orange)
lines connect f1g� fsX g with f0g� f�sX g (for sX 2 SX ) and dashed (green)
lines connect f0g � fsOg with f1g � f!sOg (for sO 2 SO ).

Note that TX , SX and TO , SO are suppressed from the notation. See Figure 5
for diagrams of shadows associated to elementary tangles (see Section 3.1.1). The
information in the subsets SX , TO � a1=2 and TX , SO � b1=2 can be encoded as
follows:

Definition 3.2 The boundaries of a shadow P are defined as

�0
D �0.P/D .�0

1 ; : : : ; �
0
m�1/ 2 .2

f˙1g/m�1;

�1
D �1.P/D .�1

1 ; : : : ; �
1
n�1/ 2 .2

f˙1g/n�1;
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as follows. For a point j C 1
2
2 b1=2 , the subset �0

j � f˙1g contains �1 if and only if
j C 1

2
2 SO , and C1 2 �0

j if and only if j 2 TX . Similarly, for j C 1
2
2 a1=2 define

the subset �1
j � f˙1g by C1 2 �1

j if and only if j C 1
2
2 TO , and �1 2 �0

j if and only
if j C 1

2
2 SX .

By reversing the above process, we can recover SX , TO � a1=2 and TX , SO � b1=2

from �0 and �1 by setting SXD
˚
jC1

2
2a1=2 W�12�1

j

	
, TXD

˚
jC1

2
2b1=2 WC12�0

j

	
,

SO D
˚
j C 1

2
2 b1=2 W �1 2 �0

j

	
and TO D

˚
j C 1

2
2 a1=2 W C1 2 �0

j

	
. The following

shadows will play an important role in our discussion.

Example 3.3 (straight lines) For �0 D .�0
j /

k
jD1
2 f˙1gk let �1 D ��0 and define

SX , TX , SO and TO as in the previous paragraph. Consider the shadow �0E�1 D

.k C 1; k C 1; idSX ; idSO /. See the first picture of Figure 5 for k D 4 and �0 D

.C1;�1;C1;�1/.

The next three examples correspond to elementary tangles.

Example 3.4 (crossing) For �0 D .�0
j /

k
jD1
2 f˙1gk and 1 < i � k , define �1 D

.�1
j /

k
jD1

, where

�1
j D

8̂<̂
:
��0

i�1
if j D i;

��0
i if j D i � 1;

��0
j otherwise.

Define SX , TX , SO and TO as before, and for sO 2 SO define

!sO D

8̂<̂
:

i C 1
2

if sO D i � 1
2
;

i � 1
2

if sO D i C 1
2
;

sO otherwise.

For sX 2 SX define

�sX D

8̂<̂
:

i C 1
2

if sX D i � 1
2
;

i � 1
2

if sX D i C 1
2
;

sX otherwise.

Consider the shadow �0X�1.i/D .kC1; kC1; �; !/. See the second picture of Figure 5
for k D 4, i D 2 and � D .C1;�1;C1;�1/.

Example 3.5 (cap) For �0 D .�0
i /

k
iD1
2 f˙1gk and 0 � i � k with �0

i�1
�0

i D �1,
define �1 D .�1

i /
k�1
iD1
2 f˙1; f˙1ggk�1 by

�1
j D

8̂<̂
:
��0

j if j < i;

��0
j�1

if j > i;

f˙1g if j D i:
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Define SX , TX , SO and TO as before, and for sO 2 SO define

!sO D

�
sO if sO < i;

sO � 1 if sO > i:

For tX 2 TX define

��1tX D

�
tX if tX < i;

tX � 1 if tX > i;

and consider the shadow �0D�1.i/D .kC1; k; �; !/. See the third picture of Figure 5
for k D 4, i D 3 and �0 D .C1;�1;C1;�1/.

Example 3.6 (cup) This is the mirror of a cap. For �1 D .�1
i /

k
iD1
2 f˙1gk and

0� i � k with �1
i�1
�1

i D�1, define �0 D .�0
i /

k�1
iD1
2 f˙1; f˙1ggk�1 by

�0
j D

8<:
��1

j if j < i;

��1
j�1

if j > i;

f˙1g if j D i:

Define SX , TX , SO and TO as before, and for tO 2 TO define

!�1tO D

�
tO if tO < i;

tO � 1 if tO > i:

For sX 2 SX define

�sX D

�
sX if sX < i;

sX � 1 if sX > i;

and consider the shadow �0C�1.i/D .k; kC1; �; !/. See the fourth picture of Figure 5
for k D 4, i D 3 and �1 D .�1;C1;�1;C1/.

Example 3.7 Given any shadow P , one can introduce a gap at either its left- or
right-hand side. We discuss the construction for the left-hand side. Given i 2 b ,
let m0 D mC 1 and n0 D n, and define Li.P/ D .n0;m0; � 0; !0/ by .�1/0 WD �1 and
.�0/0 D ..�o

j /
0/m
0

jD1
, where

.�0
j /
0
D

8<:
�0
j if j < i;

∅ if j D i;

�0
j�1

if j > i:

Define S 0X , T 0X , S 0O and T 0O as before, and for sO 2 SO define

!0sO D

�
!sO if sO < i;

!sO � 1 if sO > i;
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For tX 2 TX define

.� 0/�1tX D

�
��1tX if tX < i;

��1tX � 1 if tX > i:

Similarly, for i 2 a we can introduce a gap on the right-hand side to obtain the
shadow Ri.P/.

3.1.1 Diagrams and tangles associated to shadows Shadows can be best under-
stood through their diagrams:

Definition 3.8 A diagram of a shadow P is a quadruple

D.P/D .f0g �b1=2; f1g � a1=2;x; o/� I �R;

where x is a set of properly embedded arcs connecting .1; sX / to .0; �sX / (for sX 2SX )
and o is a set of properly embedded arcs connecting .0; sO/ to .1; !sO/ (for sO 2SO )
such that there are no triple points, and the number of intersection points of all arcs is
minimal within the isotopy class fixing the boundaries.

Any two diagrams of P are related by a sequence of Reidemeister III moves (see the
first picture of Figure 8) and isotopies relative to the boundaries. We do not distinguish
different diagrams of the same shadow and will refer to both the isotopy class (rel
boundary) or a representative of the isotopy class as the diagram of P .

Definition 3.9 To a shadow P we can associate a tangle T .P/ as follows. Start
from D.P/ � I �R. If j C 1

2
2 SX \ TO (that is �1

j D f˙1g) then there is one
arc starting and one arc ending at

�
1; j C 1

2

�
. Smooth the corner at

�
1; j C 1

2

�
by

pushing the union of the two arcs slightly in the interior of I � R, as shown in
Figure 6. Do the same at

�
0; j C 1

2

�
for j C 1

2
2 TX\SO . This process results in a

smooth properly immersed set of arcs. Remove the self-intersection of the union of
the above set of arcs by slightly lifting up the interior of arcs with bigger slope. After
this process we obtain a tangle projection in I �R or in .0; 1��R Š .�1; 1��R,
Œ0; 1/�RŠ Œ0;1/�R or .0; 1/�RŠR2 if the resulting projection does not intersect
f0g �R and/or f1g �R. Then the tangle T .P/ D T lives in I � S2 , D3 or in S3

with boundaries @0T D f0g �
˚
j C 1

2
W �0

j D C1
	
� f0g �

˚
j C 1

2
W �0

j D �1
	

and
@1T D f1g �

˚
j C 1

2
W �1

j DC1
	
�f0g �

˚
j C 1

2
W �1

j D�1
	

.

The elementary tangles corresponding to Examples 3.3–3.6 are depicted in Figure 6.
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Figure 6: Elementary tangles corresponding to the shadows of Figure 5

3.1.2 Generators Now we start describing the type AA structure associated to a
shadow P . The underlying set is generated by the following elements.

Definition 3.10 For a shadow P let S.P/ denote the set of triples f D .S;T; �/,
where S � b , T � a , with jS j D jT j and �WS ! T a bijection.

Note that we can also think of generators as partial matchings of the complete bipartite
graph on the vertex sets .a;b/. For any generator f D .S;T; �/ we can draw a set
of arcs on the diagram of P by connecting each .0; s/ to .1; �s/ with a monotone
properly embed arc. See Figure 7 for diagrams of the generators. Again, in these
diagrams we do not have triple points, the number of intersection points of all strands
is minimal, and we do not distinguish different diagrams of the same generator. Any
two diagrams with minimal intersections are related by a sequence of Reidemeister III
moves (See the first picture of Figure 8). Note that the generators naturally split into
subsets Si.P/D f.S;T; �/ W jS j D jT j D ig. Then S.P/D

Sminfn;mg
iD1

Si.P/.

Fix a variable UO for each pair O D .sO ; !sO/ 2 SO �TO .

Definition 3.11 Let C�.P/ be the module generated by S.P/ over kDF2ŒUO �sO2SO.

3.1.3 Inner differential Note that so far C�.P/ depends only on m and n, but not
on the particular structure of .SX;TX; �/ and .SO;TO; !/. The first dependence can
be seen in the differential, which is described by resolutions of intersections of the
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Figure 7: Diagrams of some generators .S;T; �/ 2S.P/ . Solid black lines
connect s with �s .
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D D 0

D 0 D U

Figure 8: Relations of diagrams. In the top-left relation the strands can
correspond to � , � or ! .

diagram, subject to some relations. (See Figure 8.) The intersections of the diagram of
a generator .S;T; �/ correspond to inversions of the partial permutation � .

Let �WS ! T be a bijection between subsets S and T of two ordered sets b and a .
Define

Inv.�/D f.s1; s2/ 2 S �S W s1 < s2 and �s1 > �s2g:

Given ordered sets b[b1=2 and a[a1=2 , and bijections �WS! T and !WSO! TO

for S � b , T � a , SO � b1=2 and TO � a1=2 , define

Inv.�; !/D f.s; sO/ 2 S �SO W s < sO and �s > !sO ; or s > sO and �s < !sOg:

Define the set Inv.�; ��1/ and for sO 2 SO the set Inv.�; !jsO
/ similarly. Denote the

sizes of these sets by inv.�/, inv.�; !/, inv.�; ��1/ and inv.�; !jsO
/, respectively.

The differential of a generator .S;T; �/ can be given by resolving intersections. For
� D .s1; s2/ 2 Inv.�/ define the new generator .S;T; �� /, where �� D � ı � is the
resolution of � at � (for simplicity, here and throughout the paper � denotes both the
pair .s1; s2/ and the 2–cycle permutation .s1s2/). A resolution of �D .s1; s2/2 Inv.�/
is allowed if inv.�� /D inv.�/� 1 (Compare with the top-right picture of Figure 8.)
and inv.�; ��1/D inv.�� ; ��1/ (Compare with the bottom-left picture of Figure 8.).
The set of inversions with allowed resolutions is denoted by Inv0.�/� Inv.�/.

Given a pair O D .sO ; !sO/ and a 2–cycle permutation � such that � ı � is defined,
define

nO.� I�/D
1
2
.inv.�; !jsO

/� inv.�� ; !jsO
//:

When � is clear from the context we will omit it from the notation and will write nO.�/

or nO.s1; s2/ for nO.� I�/. Note that nO.�/ is always an integer. The differential is
defined on generators by

@.S;T; �/D
X

�2Inv0.�/

� Y
sO2SO

U
nO.�/
O

�
.S;T; �� /:
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U1

U2

7!

U1

U2

C

U1

U2

D 0CU1

U1

U2

Figure 9: Example of the differential. Note that the second and the third
diagrams do not have minimal intersections, thus they do not represent gener-
ators. We get the differential by removing the extra intersections using the
relations of Figure 8.

Compare this equation with the bottom-right relation of Figure 8. Also see Figure 9
for an example. Extend @� linearly to the whole C�.P/.

Proposition 3.12 .C�.P/; @/ is a chain complex.

Proof The differential first resolves intersection points and then applies the relations of
Figure 8 to minimize the number of intersection points. When we apply the differential
twice, then we can equivalently first resolve two intersection points and then apply the
relations Figure 8 all at once. This proves that any term of

@2.S;T; �/D
X

�12Inv0.�/

X
�22Inv0.�

�
1
/

Y
sO2SO

U
nO.�1I�/CnO.�2I�

�1 /
O

.S;T; .��1/�2/

appears twice with exactly the same coefficient and thus cancels.

3.1.4 Composition of shadows: type A maps Let P1D .m1; n1; �1; !1/ and P2D

.m2; n2; �2; !2/ be two shadows. If n1 Dm2 , SX1
D TX2

and TO1
D SO2

, then we
can define the concatenation of the shadows as P1�P2D .m; n; �; !/, where mDm1 ,
nD n2 , .SX;TX; �/D .SX1

;TX2
; �1 ı �2/ and .TO;SO; !/D .SO2

;TO1
; !2 ı!1/.

Definition 3.13 We say that P1 and P2 as above are composable if the numbers of
intersection points add up, ie inv.�/D inv.�1/C inv.�2/, inv.!/D inv.!1/C inv.!2/

and inv.!; ��1/D inv.!1; �
�1
1
/C inv.!2; �

�1
2
/. In this case P1 and P2 have a well-

defined composition P1 ıP2 D P1 �P2 .

Note that on the diagram composable means that after the concatenation the resulting
shadow still has minimal intersection.

Example 3.14 In Figure 5 all shadows that can be concatenated are immediately
composable. However, the first two pictures of Figure 10 can be concatenated, but they
are not composable.
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�

Figure 10: Two shadows that are not composable (left) and two composable
shadows and their composition (right)

If P1 and P2 are composable, then there is a composition map

C�.P1/˝C�.P2/! C�.P1 ıP2/;

denoted by � and defined as follows: Let f1 D .S1;T1; �1/ and f2 D .S2;T2; �2/ be
generators of C�.P1/ and C�.P2/, respectively. If T1 D S2 , then the concatenation
.S;T; �/ D .S1;T2; �2 ı �1/ is well-defined. If inv.�/ D inv.�1/ C inv.�2/ and
inv.�; ��1/D inv.�1; �

�1
1
/C inv.�2; �

�1
2
/, then f1 �f2 is defined by

.S1;T1; �1/�.S2;T2; �2/D
Y

sO2TO

U
1
2
.inv.�1;!1jsO

/Cinv.�2;!2j!1sO
/�inv.�;!jsO

//

O
.S;T; �/

In all other cases f1 �f2 is defined to be 0. See Figures 11 and 22 for examples.

D 0 D� �

Figure 11: Composition of generators. The first composition is 0 by the third
relation of Figure 8.

Note that this composition is consistent with the differential and associative:

Proposition 3.15 Let P1 be composable with P2 . Then the following square com-
mutes:

C�.P1/˝C�.P2/

@˝idCid˝@
��

�
// C�.P1 ıP2/

@
��

C�.P1/˝C�.P2/
�
// C�.P1 ıP2/
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If in addition P2 is composable with the shadow P3 , then P1 ı P2 is composable
with P3 , P1 is composable with P2 ıP3 and the following square commutes:

C�.P1/˝C�.P2/˝C�.P3/

�˝id
��

id˝�
// C�.P1/˝C�.P2 ıP3/

�

��

C�.P1 ıP2/˝C�.P3/
�

// C�.P1 ıP2 ıP3/

Proof This statement again follows from the facts that one can first do all the operations
(resolving intersections and concatenating generators) and then reduce the intersection
points by the relations of Figure 8 and that both equations are obvious without the
relations.

Definition 3.16 For a shadow P , define the shadows ER D ER.P/ and EL D EL.P/
by the quadruples .m;m; idTX ; idSO / and .n; n; idSX ; idTO /, respectively. In general,
let E be the shadow given by the quadruple .n; n; idSX ; idSO /, where SX � b1=2 and
SO � a1=2 are any subsets. Then E ı E D E , so we call E an idempotent shadow.

Note that idempotent shadows are exactly shadows corresponding to straight lines
(Example 3.3). By Proposition 3.15, the induced multiplication

C�.E/�C�.E/ �!C�.E/

upgrades C�.E/ to a differential algebra:

Definition 3.17 For an idempotent shadow E , let A.E/ be the differential algebra
.C�.E/; � ; @/.

In Section 3.4 we will define a grading that turns A.E/ into a differential graded algebra.
Again by Proposition 3.15, .C�.P/; @; � ; � / is a left–right A.EL/–A.ER/ differential
module, which we can turn into a type AA structure:

Definition 3.18 With the above notation, let CATA�.P/ be the left–right AA structure
.C�.P/; fmi;1;j g/ over A.EL/ and A.ER/, where

mi;1;j WA.EL/
˝i
˝C�.P/˝A.ER/

˝j
! C�.P/

with mi;1;j D 0 for i > 1 or j > 1, and nonzero maps given by

m0;1;0.f /D @f; m1;1;0.aL˝f /D aL �f; m0;1;1.f ˝ aR/D f � aR:

The gradings of CATA�.P/ will only be defined in Section 3.4. Since CATA�.P/
comes from a two-sided differential module, we have:
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Proposition 3.19 For any shadow P the structure maps of CATA�.P/ satisfy the type
AA structure identities.

The idempotents of A.E/ are given by .S;S; idS /, where S � b . Let I.A.E// denote
the set of idempotent elements of A.E/. For a generator f D .S;T; �/, define

�L.f /D .S;S; idS / 2 I.A.EL//; �R.f /D .T;T; idT / 2 I.A.ER//:

These idempotents are defined so that we have �L.f / �f � �R.f /D f .

3.2 Type DD structures: mirror-shadows

To define type D structures we need to work with cochain complexes associated to
“mirrors” of shadows. For a shadow P D .m; n; �; !/, define its mirror P� to be the
same quadruple .m; n; �; !/. In the sequel we will always associate “dual-structures”
to P� , which is why we make the distinction in the notation. To a mirror-shadow P�

we associate the cochain complex .C�.P�/; @�/D .C�.P/; @/� . Thus the elements of
C�.P�/ are of the form .S;T; �/� and the codifferential @� introduces intersection
points

@�.S;T; �/� D
X

�2Inv�
0
.�/

Y
sO2TO

U
�nO.� I�/
O

.S;T; �� /�;

where the elements of Inv�0.�/ are elements of Inv.�/c such that inv.�� /D inv.�/C1

and inv.�; ��1/D inv.�� ; ��1/.

Let A.EL/ and A.ER/ be the algebras corresponding to the idempotent shadows
EL D EL.P�/D .n; n; idSc

X
; idT c

O
/ and ER D ER.P�/D .m;m; idT c

X
; idSc

O
/, where

�c denotes the complement of subsets in the appropriate set they are contained in (see
Definition 3.1). Then for f � D .S;T; �/� let

�L.f �/D .T c ;T c ; idT c / 2 I.A.EL//; �R.f �/D .Sc ;Sc ; idSc / 2 I.A.ER//:

This definition enables us to define a bimodule structure I.A.EL//C
�.P�/I.A.ER//

by extending the following multiplications to C�.P�/. For an idempotent generator
� 2 I.A.EL// let

� � .S;T; �/� D

�
.S;T; �/� if �L.S;T; �/� D �;
0 otherwise;

and for � 2 I.A.ER// let

.S;T; �/� � �D

�
.S;T; �/� if �R.S;T; �/� D �;
0 otherwise:
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3.2.1 Diagrams and tangles associated to mirror-shadows For a mirror-shadow P�

we use different conventions to associate diagrams and tangles:

Definition 3.20 Let D�.P�/ be the mirror of D.P/ with respect to the vertical axis˚
1
2

	
�R.

To indicate that we work with mirrors we put a gray background underneath D�.P�/.

Definition 3.21 Let T �.P�/ denote the mirror (with respect to the vertical axis) of
T .P/ with the over-crossings changed to under-crossings.

See Figures 12 and 13 for the elementary examples.

1 1

2 2

3 3

4 4

5 5

1 1

2 2

3 3

4 4

5 5

1 1

2 2

3 3

4 4

5

1 1

2 2

3 3

4 4

5

Figure 12: Examples of diagrams of mirror-shadows. On each figure, a

and a1=2 are on the left-hand side, while b and b1=2 are on the right-hand
side. Double (orange) lines connect f0g � fsX g with f1g � f�sX g and dashed
(green) lines connect f1g � fsOg with f0g � f!sOg .

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure 13: Elementary tangles corresponding to the mirror-shadows of Figure 12

3.2.2 Wedge product of shadows and mirror-shadows: type D maps The mirror-
shadow P�

1
and shadow P2 have a well-defined wedge product if m1Dm2 , TX1

DT c
X2

and SO1
D Sc

O2
. This means exactly that ER.P�

1
/ D EL.P2/. Denote the ordered

pair by P�
1
^ P2 . Diagrammatically, we indicate a wedge product by placing the

corresponding diagrams next to each other. See Figure 14 for an example. Similarly,
the shadow P1 and mirror-shadow P�

2
have a well-defined wedge product if n1 D n2 ,

SX1
D Sc

X2
and TO1

D T c
O2

. The pair is denoted by P1 ^P�
2

.
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��̂ D

Figure 14: Wedge product of a mirror-shadow and a shadow

Let I D I.A.ER.P�
1
///D I.A.EL.P2///. Define

C�.P�1 ^P2/D C�.P�1 /˝I C�.P2/;

a module over F2ŒUO �sO2SO1
[SO2

. For generators f �
1
D .S1;T1; �1/

� 2S.P�
1
/ and

f2 D .S2;T2; �2/ 2S.P2/ such that f D f �
1
˝f2 is nonzero, ie such that S1 D Sc

2
,

define a map

@^.f
�

1 ˝f2/D @
�.f �1 /˝f2Cf

�
1 ˝ @.f2/C @mix.f

�
1 ˝f2/;

where @� and @ are the differentials on C�.P�
1
/ and C�.P2/, respectively, and @mix

is defined below by looking at pairs of points in S1[S2 D b .

� For a pair .p; q/ 2 S1 � S2 define f pq D .f �
1
/pq ˝ f

pq
2

, where .f �
1
/pq D

.S
pq
1
;T

pq
1
; �

pq
1
/� , f pq

2
D .S

pq
2
;T

pq
2
; �

pq
2
/. Here S

pq
1
D S1 nfpg[fqg, T

pq
1
D T1

and, for s1 2 S
pq
1

,

�
pq
1

s1 D

�
�1p if s1 D q;

�1s1 otherwise:

Similarly, S
pq
2
D S2 n fqg[ fpg, T

pq
2
D T2 and, for s2 2 S

pq
2

,

�
pq
2

s2 D

�
�2q if s2 D p;

�2s2 otherwise:

Diagrammatically, f pq is obtained from f by exchanging the p and q endpoints of
the two strands ending at p and at q . The pair .p; q/ 2 S1 �S2 is exchangeable if

– Inv.�1/� Inv.�1
pq/,

– Inv.�2/� Inv.�pq
2
/,

– Inv.�1; �
�1
1
/� Inv.�1

pq; ��1
1
/, and

– Inv.�2; �
�1
2
/� Inv.�pq

2
; ��1

2
/.
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Diagrammatically, this means that while doing the exchange we cannot pick up crossings
with black or orange strands on the P�

1
–side and we cannot lose crossings with black

or orange strands on the P2 –side. Given such an exchangeable pair .p; q/, for O1 D

.sO1
; !1sO1

/ with sO1
2 SO1

, let

nO1
.pq/D

ˇ̌
Inv.�pq

1
; !1jsO1

/ n Inv.�1; !1jsO1
/
ˇ̌
;

and, for O2 D .sO2
; !sO2

/ with sO2
2 SO2

, let

nO2
.pq/D

ˇ̌
Inv.�2; !2jsO2

/ n Inv.�pq
2
; !2jsO2

/
ˇ̌
:

� For a pair .p; q/�S1 with p<q and .p; q/2 Inv.�1/, define f pqD .f �
1
/pq˝f2 ,

where .f �
1
/pq D .S1;T1; �

.p;q/
1

/. The pair .p; q/� S1 is exchangeable if

– each t 2 Œp; q�\b is in S1 and �1t 2 Œ�1q; �1p�, and

– each t 2 Œp; q�\b1=2 is in TX1
and ��1

1
t 2 Œ�1q; �1p�.

Diagrammatically, this means that in f each black or orange strand that ends between
p and q is on the P�

1
–side and crosses both black strands ending at p and at q . Given

such an exchangeable pair .p; q/, for O1 D .sO1
; !1sO1

/ with sO1
2 SO1

,

nO1
.pq/D

�
1 if sO1

2 Œp; q� and !sO1
62 Œ�1q; �1p�;

0 otherwise;

and for O2 D .sO2
; !sO2

/ with sO2
2 SO2

let

nO2
.pq/D

�
1 if sO2

2 Œp; q�;

0 otherwise:

� For a pair .p; q/� S2 with p < q and .p; q/ 62 Inv.�2/, define f pq D f �
1
˝f

pq
2

,
where f pq

2
WD .S2;T2; �

.p;q/
2

/. The pair .p; q/� S2 is exchangeable if

– each t 2 Œp; q�\b is in S2 and �2t 2 Œ�2p; �2p�, and

– each t 2 Œp; q�\b1=2 is in TX2
and ��1

2
t 2 Œ�2p; �2q�.

Diagrammatically, this means that in f all black and orange strands that end between
p and q are on the P2 –side, and they do not cross either of the two black strands
ending at p and at q . Given such an exchangeable pair .p; q/, for O1D .sO1

; !1sO1
/

with sO1
2 SO1

let

nO1
.pq/D

�
1 if sO1

2 Œp; q�;

0 otherwise;

and, for O2 D .sO2
; !sO2

/ with sO2
2 SO2

, let

nO2
.pq/D

�
1 if sO2

2 Œp; q� and !sO2
62 Œ�2p; �2q�;

0 otherwise:
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Denote the set of exchangeable pairs for f by Exch.f /.

Then
@mix.f /D

X
.p;q/2Exch.f /

Y
sO2SO1

[SO2

U
nO.pq/
O

f pq:

See Figure 15 for an example of the mixed differential.

U1

U2 U3

U4

7!

U3

CU2U3

CU3

CU3

CU2

C

Figure 15: The differential @^ . The last four terms on the right-hand side
correspond to @mix .

Extend @^ linearly to the whole module C�.P�
1
^P2/.

Proposition 3.22 .C�.P�
1
^P2/; @^/ is a chain complex.

The proof of Proposition 3.22 is straightforward after the reformulation of the algebra
to the language of bordered grid diagrams in Section 4.5 and thus it will be given there.

If P1 and P�
2

have a well-defined wedge product then @^ can be defined similarly on
C�.P1 ^P�

2
/D C�.P1/˝I.A.ER.P1/// C�.P�

2
/ by

@^.f1˝f
�

2 /D @1.f1/˝f
�

2 Cf1˝ @
�
2.f
�

2 /C @mix.f1˝f
�

2 /;

where the mixed differential @mix is defined by following the same shadow and mirror-
shadow rules as earlier. Specifically, we look at pairs of black strands, and exchange
their endpoints in T1[T2 if the following conditions are met:

� If one endpoint is in T1 and the other in T2 , then while doing the exchange we
cannot pick up crossings with black or orange strands on the P�

2
–side and we cannot

lose crossings with black or orange strands on the P1 –side. If we pick up crossings
with green strands on the P�

2
–side or lose crossings with green strands on the P1 –side,

we record it with UO –variables.

� If both endpoints are in T1 , then each black or orange strand that ends between
the two points must be on the P1 –side and cannot cross either of the given two black
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strands. A green strand that ends between the two points but is either on the P�
2

–side
or crosses one of the two black strands is recorded with a UO –variable.

� If both endpoints are in T2 , then each black or orange strand that ends between the
two points must be on the P�

2
–side, and crosses both of the given two black strands.

A green strand that ends between the two points but either doesn’t cross both black
strands or is on the P1 –side is recorded with a UO –variable.

Then we have:

Proposition 3.23 .C�.P1 ^P�
2
/; @^/ is a chain complex.

The proof of Proposition 3.23 will be given in Section 4.5 as well.

These propositions allow us to define left and right type D maps on generators f � D
.S;T; �/� by

ıR
WC�.P�/! C�.P�/˝A.ER/;

.S;T; �/� 7! @^..S;T; �/
�
˝ �R.S;T; �/�/;

and
ıL
WC�.P�/!A.EL/˝C�.P�/;

.S;T; �/� 7! @^.�
L.S;T; �/�˝ .S;T; �/�/:

The maps ıL and ıR extend to the whole module C�.P�/ and by merging them we
can define a type DD structure:

Definition 3.24 With the above notation let CDTD�.P�/ be the left–right type DD
structure .C�.P�/; ı1/ over A.EL/ and A.ER/, where

ı1
WC�.P�/!A.EL/˝C�.P�/˝A.ER/

is defined via

ı1.f �/D �L.f �/˝ @�.f �/˝ �R.f �/C �L.f �/˝ @mix.f
�
˝ �R.f �//

C @mix.�
L.f �/˝f �/˝ �R.f �/:

The type DD structure identities hold as a consequence of Propositions 3.22 and 3.23:

Proposition 3.25 Let P� be a mirror shadow. Then

(1) as defined above, .C�.P�/; ıL/ is a left type D structure over A.EL/;

(2) as defined above, .C�.P�/; ıR/ is a right type D structure over A.ER/;

(3) CDTD�.P�/ is a left–right type DD structure over A.EL/ and A.ER/.
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Proof As the proofs of all parts of the proposition are similar, we only prove (1).
Recall that the left type D identity that we need to show is

.m2˝ id/ ı .idA˝ ı
L/ ı ıL

C .@A˝ id/ ı ıL
D 0:

Let f � be a generator of C�.P�/ and let �D �L.f �/. Using @�D 0, we can rewrite
the first term on the left-hand side as

.@A˝ id/ ı ıL.f �/D .@A˝ id/ ı @mix.�˝f
�/;

and using also that .@�/2 D 0, we can rewrite the second term on the left-hand side as

.m2˝ id/ ı .idA˝ ı
L/ ı ıL.f �/

D @mix.�˝ @
�f �/C .idA˝ @

�/ ı @mix.�˝f
�/C @2

mix.�˝f
�/:

The resulting four terms are exactly the nonzero summands of @2
^.�˝ f

�/, which,
since @^ is a chain map, vanishes. This finishes the proof of (1).

This concept can be extended to multiple wedge products as follows. Let P D
.Pı

1
; : : : ;Pıp/ be an alternating sequence of shadows and mirror-shadows with well-

defined consecutive wedge products. (Here and throughout the paper Pı indicates P
or P� .) Then we can define a differential on

C�.P/D C�.Pı1/
ı
˝ � � �˝C�.Pıp/

ı

by defining it on f D f ı
1
˝ � � �˝f ıp as

@^f D

pX
jD1

f ı1 ˝� � �˝@
ı.f ıj /˝� � �˝f

ı
p C

p�1X
jD1

f ı1 ˝� � �˝@mix.f
ı

j ˝f
ı

jC1/˝� � �˝f
ı

p :

Observe that, depending on whether P starts (ends) with a shadow or mirror-shadow,
C�.P/ is equipped with a type AA, AA, DA or DD structure. Denote these structures
by CATA�.P/, CATD�.P/, CDTA�.P/ or CDTD�.P/. Or sometimes — as the type
is anyways specified by the sequence P — we will refer to any of the above structures
as CT�.P/.

3.2.3 Tangles associated to wedge products Let P D .Pı
1
; : : : ;Pıp/ be an alternat-

ing sequence of shadows and mirror-shadows with well-defined consecutive wedge
products. Having a well-defined wedge product exactly means that the associated
diagrams D.Pıj / and thus the associated tangles T .Pıj / match up. Thus let D.P/ and
T .P/ be their concatenations.
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3.3 One-sided modules

When a shadow or a mirror-shadow corresponds to a tangle with @0 D∅ or @1 D∅,
then the left or right map can be contracted to a differential giving a one-sided right
or left module. Thus, in this subsection we would like to “close up” one side of the
bimodule and incorporate one of the type A (or type D ) maps as a new component of
the differential. (Note that this “closing up” is easier to follow in the related Section 4.6).
Below we will describe in detail the closing up of the left type D map on a type DD
bimodule associated to a mirror-shadow. This way we obtain a right type D structure.

Suppose that for a mirror-shadow P� we have a1=2DSXDTO . Then we can define a
new component of the differential D@ that will correspond to resolving some crossings
(remember that originally the type D map corresponds to introducing crossings) so that
@�CD@ is a differential (ie has square 0) when restricted to Sn.P�/ (where Sn.P�/
consists of the generators .S;T; �/� with jS j D jT j D n).

Consider a generator f � D .S;T; �/� 2 Sn.P�/. Suppose that for s1 < s2 the
pair .s1; s2/ is in Inv.�/, ie �.s1/ > �.s2/. We say that the exchange .s1; s2/ is
allowable if for any t 2 Œ�.s2/; �.s1/� we have ��1.t/ 2 Œs1; s2� and similarly for any
sX 2 Œ�.s2/; �.s1/� we have �.sX / 2 Œs1; s2�. Denote the set of such allowable pairs
by DExch.�/� S �S . See Figure 16 for an example.
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2
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Figure 16: The differential D@

For O D .sO ; !sO/ define

DnO.s1; s2/D

�
1 if !sO 2 Œ�.s2/; �.s1/� and sO 62 Œs1; s2�;

0 otherwise:

Then define
D@f

�
D

X
.s1;s2/2D Exch.�/

U DnO.s1;s2/
O

.f .s1;s2//�:

The map @� CD@ can be extended to the module C�n .P�/ generated by Sn.P�/
over k. Although .D@/2 ¤ 0 we have:

Lemma 3.26 .C�n .P�/; @�CD@/ is a chain complex.
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The proof of Lemma 3.26 will be given using the grid diagram reformulation of @�CD@

as the differential of an annular bordered grid diagram in Section 4.6.

Definition 3.27 With the above notation let CTD�.P�/ be the right type D structure
.C�n .P�/; ı1/ over A.ER/, where

ı1
WC�n .P

�/�! C�n .P
�/�˝A.ER/

is given by
f � 7! ıR.f �/CD@f

�
˝ �R.f �/:

Aside from the gradings that will be defined later, Lemma 3.26 shows that CTD�.P�/
is indeed a right type D structure.

The contraction of the right type D map @D can be defined similarly for mirror-shadows
with TXD SO D b1=2 by exchanging pairs .s1; s2/ 2 Inv.�/ such that any s 2 Œs1; s2�

has �.s/ 2 Œ�.s2/; �.s1/� and any tX 2 Œs1; s2� has ��1.tX / 2 Œ�.s2/; �.s1/�. In this
way we obtain a left type D structure CDT�.P�/ over A.EL/ on C�m .P�/. In this
paper we do not need to contract the type A actions, but the definitions go similarly
with the only difference that A@ and @A introduce crossings.

Convention 3.28 Whenever the leftmost and/or rightmost shadow or mirror-shadow
in a given well-defined wedge product P is contractible, we will assume that the
corresponding differential @ or @� has been replaced with the appropriate map D@, @D ,
A@ or @A in the definition of @^ , to produce a one-sided module CTD�.P/, CDT�.P/
or CAT�.P/, or CTA�.P/, or a chain complex CT�.P/. In these cases again we
may use the notation CT�.P/ to refer to any of these structures, as the type is specified
by the sequence P .

3.4 Gradings

Unlike for other bordered theories, one can define surprisingly simple absolute gradings
on the structures here. For a shadow P , we define the Maslov and Alexander gradings
of a generator f D .S;T; �/ of the module as

M.f /D inv.�/� inv.�; !/C inv.!/;

2A.f /D inv.�; ��1/� inv.�; !/C inv.!/� inv.��1/� jTXj:

For O D .sO ; !sO/ define

M.UOf /DM.f /� 2; A.UOf /DA.f /� 1:

This defines a grading on C�.P/ and consequently on CATA�.P/.
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For a mirror-shadow P� the gradings on f � D .S ;T ; �/�are defined as

M.f �/D� inv.�/C inv.�; !/� inv.!/� jSOj;

2A.f �/D� inv.�; ��1/C inv.�; !/� inv.!/C inv.��1/� jSOj;

and again
M.UOf

�/DM.f �/� 2; A.UOf
�/DA.f �/� 1:

This defines a grading on C�.P�/ and consequently on CDTD�.P�/. For an alter-
nating sequence of shadows and mirror-shadows P D .Pı

1
; : : : ;Pıp/ with well-defined

consecutive wedge product, define the gradings on f D f ı
1
˝ � � �˝f ıp as the sums

M.f /D

pX
jD1

M.f ıj /; A.f /D

pX
jD1

A.f ıj /:

All the differentials, multiplications and wedge products behave well with the gradings.

Theorem 3.29 For a shadow P , horizontal shadow E and composable shadows P1

and P2 :

(1) .C�.P/; @/ is a graded chain complex with grading M. Moreover @ pre-
serves A.

(2) The multiplication �WC�.P1/˝C�.P2/!C�.P1 ıP2/ is a degree .0; 0/ map.

(3) A.E/ is a differential graded algebra with grading M. Moreover A is preserved
by both the multiplication and the differential.

(4) CATA�.P/ is a left–right differential graded bimodule over A.EL/ and A.ER/

(in particular a type AA structure) with grading M. Moreover A is preserved
both by the multiplication and the differential.

Theorem 3.30 For a mirror-shadow P� :

(1) .C�.P�/; @�/ is a graded chain complex with grading M. Moreover @� pre-
serves A.

(2) CDTD�.P�/ is a left–right type DD structure over A.EL/ and A.ER/ with
grading M. Moreover ı1 preserves A.

For tangles in I �S2 we have:

Theorem 3.31 Suppose that P D .Pı
1
; : : : ;Pıp/ is an alternating sequence of shadows

and mirror-shadows with well-defined consecutive wedge product. If in addition Pı
1

does not have contractible left-hand side and Pıp does not have contractible right-hand
side, then:
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(1) If P1 and Pp are both shadows then CATA�.P/ is a left–right type AA structure
over A.EL.P1// and A.ER.Pp// with grading M. Moreover A is preserved by
all multiplications m0;1;0;m1;1;0 and m0;1;1 .

(2) If P1 is a shadow and P�p is a mirror-shadow then CATD�.P/ is a left–right
type AD structure over A.EL.P1// and A.ER.P�p // with grading M. Moreover
A is preserved by the maps ı1

1
and ı1

2
.

(3) If P�
1

is a mirror-shadow and Pp is a shadow then CDTA�.P/ is a left–right
type DA structure over A.EL.P�

1
// and A.ER.Pp// with grading M. Moreover

A is preserved by the maps ı1
1

and ı1
2

.

(4) If P�
1

and P�p are both mirror-shadows then CDTD�.P/ is a left–right type DD
structure over A.EL.P�

1
// and A.ER.P�p // with grading M. Moreover A is

preserved by the map ı1 .

For tangles in D3 and S3 :

Theorem 3.32 Suppose that P D .Pı
1
; : : : ;Pıp/ is an alternating sequence of shadows

and mirror-shadows with well-defined consecutive wedge product. Then:

(1) If Pı
1

is left-contractible, and Pp is a non-right-contractible shadow, then
CTA�.P/ is a right type A structure over A.ER.Pp// with grading M. Moreover
A is preserved by all multiplications m0 and m1 .

(2) If Pı
1

is left-contractible, and P�p is a non-right-contractible mirror-shadow,
then CTD�.P/ is a right type D structure over A.ER.P�p // with grading M.
Moreover A is preserved by the map ı1 .

(3) If Pıp is right-contractible, and P1 is a non-left-contractible shadow, then
CAT�.P/ is a left type A structure over A.EL.P1// with grading M. Moreover
A is preserved by all multiplications m0 and m1 .

(4) If Pıp is right-contractible, and P�
1

is a non-left-contractible mirror-shadow,
then CDT�.P/ is a left type D structure over A.EL.P�

1
// with grading M.

Moreover A is preserved by the map ı1 .

(5) If Pı
1

is left-contractible and Pıp is right-contractible, then CT�.P/ is a graded
chain complex over k with grading M. Moreover @ preserves A.

Proof of Theorems 3.29, 3.30, 3.31 and 3.32 Theorem 3.29 and Theorem 3.30(1)
are consequences of Propositions 3.15, 3.22 and 3.23 and the definition of the grading.
Theorem 3.30(2) is a consequence of Theorem 3.31, and the ungraded version of each
item of Theorems 3.31 and 3.32 follows from Propositions 3.22 and 3.23. Thus, what is
left to check is that @^ is a degree .�1; 0/ map. To keep notation simple, we will give
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a proof in the case of .C�.P�
1
^P2/; @^/. Other cases follow the same way. Given a

generator f D f �
1
˝f2 D .S1;T1; �1/

�˝ .S2;T2; �2/,

@^.f
�

1 ˝f2/D @
�
1.f
�

1 /˝f2Cf
�

1 ˝ @2.f2/C @mix.f
�

1 ˝f2/:

For the first two terms the statement follows from Theorem 3.29 and Theorem 3.30(2).
Next note that

M.f /D� inv.�1/Cinv.�2/Cinv.�1; !1/�inv.�2; !2/�inv.!1/Cinv.!2/�jSO1
j;

2A.f /D� inv.�1; �
�1
1 /C inv.�2; �2/C inv.�1; !1/� inv.�2; !2/

� inv.!1/C inv.!2/C inv.��1
1 /� inv.��1

2 /� jSO1
j � jTX2

j:

For an exchangeable pair .p; q/ 2 S1 �S2 we can write the same two equations by
changing �1 and �2 to �pq

1
and �pq

2
, respectively.

Since SO1
tSO2

D f1; : : : ;m1g and the intersection points only change for strands
that end or start between p and q , we have

jp� qj D jInv.�pq
1
; !1/ n Inv.�1; !1/jC jInv.�1; !1/ n Inv.�pq

1
; !1/j

C jInv.�2; !2/ n Inv.�pq
2
; !2/jC jInv.�pq

2
; !2/ n Inv.�2; !2/j

D jInv.�pq
1
; !1/j � jInv.�1; !1/j � 2jInv.�pq

1
; !1/ n Inv.�1; !1/j

C jInv.�2; !2/j � jInv.�pq
2
; !2/j � 2jInv.�2; !2/ n Inv.�pq

2
; !2/j

D �2
X
sO

nO.pq/CjInv.�pq
1
; !1/j � jInv.�1; !1/j

C jInv.�2; !2/j � jInv.�pq
2
; !2/j:

Since the pair .p; q/ is exchangeable, we have Inv.�1/� Inv.�pq
1
/, so for the inversions

of �1 and �2 the analog of the above formula simplifies to

inv.�pq
1
/� inv.�1/C inv.�2/� inv.�pq

2
/D jp� qj � 1:

Similarly we get

inv.�pq
1
; ��1

1 /� inv.�1; �
�1
1 /C inv.�2; �

�1
2 /� inv.�pq

2
; ��1

2 /D jp� qj;

which gives

M.f /�M

� Y
sO2SO1

[SO2

U nO.pq/f pq

�
D 1;

A.f /�A

� Y
sO2SO1

[SO2

U nO.pq/f pq

�
D 0:

Similar counting arguments work for exchangeable pairs .p; q/ with .p; q/� S1 or
.p; q/� S2 .
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3.5 Pairing generalized strand modules

Taking a wedge product of a shadow and a mirror-shadow corresponds to taking the
box tensor product of their algebraic structures:

Theorem 3.33 Let P1 and P2 be shadows. Then:

(1) If the mirror-shadow P�
1

and shadow P2 have well-defined wedge products, then
the left–right type DA structures

CDTA�.P�1 ^P2/ and CDTD�.P�1 /� CATA�.P2/

over A.EL.P�
1
// and A.ER.P2// are isomorphic as type DA structures.

(2) If the shadow P1 and mirror-shadow P�
2

have well-defined wedge products, then
the left–right type AD structures

CATD�.P1 ^P�2 / and CATA�.P1/� CDTD�.P�2 /

over A.EL.P1// and A.ER.P�
2
// are isomorphic as type AD structures.

Proof This follows directly from the definition of ıL , ıR , and @mix .

Similar theorems hold for multiple wedge products of shadows and mirror-shadows.

3.6 Relations between the U–actions

Let P D .Pı
1
; : : : ;Pıp/ be an alternating sequence of shadows and mirror-shadows

with well-defined consecutive wedge products. For sO 2 SOi
and s0

O
2 SOi0

let
O D .sO ; !isO/ and O 0 D .s0

O
; !i0s

0
O
/.

Definition 3.34 The pairs O and O 0 are connected by a path of length k if there
is a sequence of elements sO D s0 , s1 , : : : , sk D s0

O
such that sl 2 SOjl

and
slC1 D �j 0

l
!jl

sl . Here, depending on whether Pıjl
is a shadow or a mirror-shadow,

!jl
sl is in SXjl

qSXjl�1
or SXjl

qSXjlC1
, thus j 0

l
equals jl � 1, jl or jl C 1.

An example of a path is pictured in Figure 17.

s0 D sO sO0

D

s3

s1

s2

Figure 17: A path of length three
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Lemma 3.35 Suppose that O and O 0 are connected by a path. Then the actions of
UO and UO 0 on CT�.P/ are equivalent.

Here and throughout the paper “equivalent” means equivalence for the appropriate
structures. Thus, it means type AA equivalence for CATA�.P/, type DA equivalence
for CDTA�.P/, type AD equivalence for CATD�.P/ and type DD equivalence for
CDTD�.P/.

The proof of Lemma 3.35 will be given in the next section, after introducing bordered
grid diagrams.

4 Bordered grid diagrams

In what follows we introduce bordered grid diagrams and structures corresponding to
bordered grid diagrams. As it will turn out, all of these notions are reformulations of
notions from Section 3.

Bordered grid diagrams are a relative version of the grid diagrams used in combinatorial
knot Floer homology [11; 12]. Many of the definitions below are parallel to the ones in
[11; 12].

Definition 4.1 A bordered grid diagram G in Œc1; c2��Œd1; d2� is given by a quadruple
.˛;ˇ;X;O/, where ˛D f˛aga2a is a set of horizontal arcs indexed by aD .d1; d2/\

Z with ˛a D Œc1; c2� � fag, and ˇ D fˇbgb2b is a set of vertical arcs indexed by
b D .c1; c2/\Z with ˇb D fbg � Œd1; d2�. The markings X and O are subsets of
Œc1; c2�� Œd1; d2�\

�
ZC 1

2

�
�
�
ZC 1

2

�
with the property thatˇ̌

Œc1; c2��
˚
j C 1

2

	
\X

ˇ̌
� 1;

ˇ̌˚
j C 1

2

	
� Œd1; d2�\X

ˇ̌
� 1;ˇ̌

Œc1; c2��
˚
j C 1

2

	
\O

ˇ̌
� 1;

ˇ̌˚
j C 1

2

	
� Œd1; d2�\O

ˇ̌
� 1;

ie each horizontal and vertical line contains at most one X and at most one O . By
identifying the edges Œc1; c2�� fd1g and Œc1; c2�� fd2g we get an annular bordered
grid diagram Gb D .˛; ž;X;O/, where ž now consists of closed curves žb D
fbg� Œd1; d2�=�. Similarly, by identifying the edges fc1g� Œd1; d2� and fc2g� Œd1; d2�

we get another annular bordered grid diagram Ga D . z̨;ˇ;X;O/.

A bordered grid diagram is an example of a multipointed bordered Heegaard diagram
for that tangle; for the general definition of such diagrams, we refer to Section 8. In
the sequel we will consider modules associated to bordered grid diagrams, annular
bordered grid diagrams, and plumbings of annular bordered grid diagrams. Since all of
these diagrams are “nice” in the sense of Definition 12.1, the structure maps have a
combinatorial description.
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4.1 Generators

For each O 2 O fix a variable UO , and let C�.G/ be the free module generated
over kD F2ŒUO �O2O by tuples of intersection points x � ˛\ˇ with the property
that j˛a \ xj � 1 and jˇb \ xj � 1. The set of generators is denoted by S.G/.
Note that the generators naturally split into subsets Si.G/ D fx W jxj D ig. Then
S.G/D

Sminfc2�c1;d2�d1g

iD1
Si.G/.

4.2 Inner differential

The differential can be defined by counting rectangles entirely contained in the open
rectangle .c1; c2/� .d1; d2/ and with boundaries on ˛[ ˇ . For c1 < b1 < b2 < c2

and d1 < a1 < a2 < d2 , the set RD Œb1; b2�� Œa1; a2� is a rectangle from x to y if
x \RD f.b1; a1/; .b2; a2/g, y \RD f.b1; a2/; .b2; a1/g and x nRD y nR. The
rectangle R is empty if X\R D ∅. The set of empty rectangles from x to y is
denoted by <0.x;y/. The differential on x 2S.G/ is defined by

@x D
X

y2S.G/

X
R2<0.x;y/

Y
O2O

U
jR\Oj
O

y :

Figure 20 gives an example of the inner differential. Extend @ for C�.G/ linearly. By
the usual arguments for grid diagrams (that every domain representing a term in @2

has an alternate decomposition) we have:

Proposition 4.2 .C�.G/; @/ is a chain complex.

4.3 Type AA structures: bordered grid diagrams associated to shadows

All the structures from Section 3 have equivalent formulations via bordered grid dia-
grams, which will be discussed in this and the following sections. To a shadow P given
by the quadruple .m; n; �; !/ we associate the following bordered grid diagram G.P/:

Definition 4.3 Define G DG.P/D .˛;ˇ;X;O/ in Œ�m� 1; 0�� Œ0; nC 1��R2 as
follows. For a 2 a let ˛aD Œ�m�1; 0��fag and for b 2 b let ˇb D f�bg� Œ0; nC1�,
then let ˛D f˛aga2a and ˇ D fˇbgb2b ; also let XD f.��sX ; sX /gsX2SX and O D
fO D .�sO ; !sO/gsO2SO .

In Figure 18 we depict the bordered grid diagrams corresponding to the shadows of
Figure 5.

An equivalent way to associate a bordered grid diagram G0.P/ to the shadow P is to
take the 180ı rotation of G.P/. Thus G0.P/ D .˛0;ˇ 0;X0;O0/ lies in the opposite
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Figure 18

quadrant Œ0;mC 1�� Œ�n� 1; 0� with ˛0 D f˛0aga2a , where ˛0a D Œ0;mC 1�� fa0g,
ˇ 0 D fˇ0

b
gb2b , where ˇ0

b
D f�bg � Œ�n� 1; 0�, X D f.�sX ;�sX /gsX2SX and O D

fO D .sO ;�!sO/gsO2SO . All that follows could be reformulated to G0.P/ by doing
a 180ı rotation to give isomorphic chain complexes and type AA structures to those
for G.P/.

4.3.1 Tangles associated to G.P/ Let us complete G.P/ with some extra base-
points

X@ D f.�s; 0/ W s 2 SO nTXg[ f.0; s/ W s 2 TO nSXg;

O@ D f.�s; 0/ W s 2 TX nSOg[ f.0; s/ W s 2 SX nTOg:

Then define the associated tangle T .G/ just like one would for a closed grid diagram:
connect the points X[X@ to O[O@ horizontally and O[O@ to X[X@ vertically
so that vertical strands cross over horizontal strands. Then, after smoothing, T .G/ is a
tangle projection in Œ�m� 1; 0�� Œ0; nC 1� with boundary

@0
D .X@ �O@/\ Œ�m� 1; 0�� f0g and @1

D .X@ �O@/\f1g � Œ0; nC 1�:

See Figure 19 for some examples. Note that this tangle can be easily identified (by,
for example, using polar coordinates and mapping .r; #/ 2 Œ�m� 1; 0�� Œ0; nC 1� to
.2.� �#/=�; r/ 2 I �R) with a tangle in I �R, which we will call T .G/ as well.
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Figure 19: The tangles associated to the bordered grid diagrams of Figure 18

Proposition 4.4 Let P be a shadow. Then for GDG.P/ the tangles T .P/ and T .G/
are isotopic relative to the boundary.
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1
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12345

Figure 20: The inner differential for bordered grid diagrams. The generator x

denoted by (green) dots corresponds to the first strand diagram of Figure 9.
The only empty rectangle (in yellow) starting from x connects it to the
generator y denoted by a (pink) square. The latter generator corresponds
to the last strand diagram in Figure 9. The rectangle passes through the O
marking O1 . Thus @x D U1y .

Proof Let T .G/ � I �R be the tangle (projection) associated to G D G.P/. If
p 2 T .G/ has a vertical tangency, then depending on whether T .G/ near p is to
the right (or left) from this tangency, it is coming from an X D .��sX ; sX / and an
O D .�sO ; !sO/ in the same horizontal (or vertical) line of the grid, thus sX D !sO

(or �sX D sO ). If for example sX D!sO , then there is no further X or O in the same
horizontal line of the grid, thus the point with the vertical tangency can be isotoped
to .0; sO/ 2 I �R without altering or crossing other parts of the tangle. Do this with
every point with vertical tangency and notice that the resulting tangle is T .P/.

4.3.2 Generators Recall that C�.G/ is the free module generated over k by the
tuples of intersection points x D .˛�s \ ˇs/s2S , where S � b and �WS ! a is an
injection with image T D �.S/. There is a one-to-one correspondence between S.P/
and S.G/ given by associating x D .˛�s \ˇs/s2S 2S.G/ to .S;T; �/ 2S.P/.

4.3.3 Inner differential The differential of Section 4.2 translates to the following.
If s1 < s2 and t1 < t2 , and x D .˛�s \ˇs/s2S and y D .˛�.s1;s2/s \ˇs/s2S , where
s1 , s2 2S and �WS!T satisfies �s1D t2 and �s2D t1 , then RD Œ�s2;�s1��Œt1; t2�

is a rectangle from x to y . Note that then automatically .s1; s2/ 2 Inv.�/.

Thus, with the above definition of the inner differential:

Proposition 4.5 The chain complexes .C�.G/; @/ and .C�.P/; @/ are isomorphic.

Moreover, if R is a rectangle from x D .˛�s \ ˇs/s2S to y D .˛�.s1;s2/s \ ˇs/s2S ,
then:

(1) A.S;T; �/�A.S;T; �.s1;s2//D jR\Xj � jR\Oj.

(2) If R 2 <0.x;y/ then M.S;T; �/�M.S;T; �.s1;s2//D 1� 2jR\Oj.
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Proof If .s1; s2/ 2 Inv.�/ then R D Œ�s2;�s1� � Œ�s2; �s1� defines a rectangle in
Œ�mC 1; 0�� Œ0; nC 1�. The statement follows from the following three equations:

jR\xj D
ˇ̌
f.�s; �s/ W s 2 S; �s2 < �s < �s1 and �s2 < �s < �s1g

ˇ̌
D
ˇ̌
Inv� n Inv�.s1;s2/[f.s1; s2/g

ˇ̌
;

jR\Xj D
ˇ̌
f.��sX ; sX / W sX 2 SX; �s2 < ��sX < �s1 and �s2 < sX < �s1g

ˇ̌
D
ˇ̌
Inv.�; ��1/ n Inv.�.s1;s2/; ��1/

ˇ̌
;

jR\Oj D
ˇ̌
f.�sO ; !sO/ W sO 2 SO; �s2 < �sO < �s1 and �s2 < !sO < �s1g

ˇ̌
D
ˇ̌
Inv.�; !jsO

/ n Inv.�.s1;s2/!jsO
/
ˇ̌
:

4.3.4 Type A structures The left and right algebra actions by A.EL/ and A.ER/

are defined by counting sets of partial rectangles as follows. First, we will describe the
right action. The left action, as will be spelled out later, is similar. For the action of
A.ER/ we consider sets of partial rectangles that intersect the left and right boundaries
f�m� 1; 0g � .0; nC 1/. We consider the following two types of partial rectangles
depending on whether the rectangle intersects the left or the right boundary edge:

� H D Œ�s1; 0�� Œt1; t2� with t1 < t2 , or

� H D Œ�m� 1;�s2�� Œt1; t2� with t1 < t2 ,

where si 2 b and ti 2 a .

Now fix S � b and generators x D .˛�s \ ˇs/s2S and y D .˛�0s \ ˇs/s2S . Let
r D .�.S/; �0.S/; �0 ı ��1/ 2 A.ER/. Suppose that H D fH1; : : : ;Hlg is a set of
partial rectangles of the above two types. We say that H connects x and r to y if
for the rectangles in H , all bottom-left and top-right corners that are in the interior of
G are distinct points and form the set x n .x\y/, and all bottom-right and top-left
corners that are in the interior of G are distinct points and form the set y n.x\y/. We
say that H is allowed if for each Hi 2H we have Hi\XD∅ and Hi\.x\y/D∅,
no partial rectangle in H is completely contained in another rectangle in H , and no
two partial rectangles touching opposite boundary edges have overlapping interiors.
See Figure 21. Note that when H consists of only one partial rectangle H , this is
equivalent to the condition Int H \XD Int H \x D∅.

Note that for a fixed generator x and algebra generator r , there is at most one y and
at most one H as above. Thus, we can define the action of r on x as follows. If there
is no set of empty partial rectangles from x and r to any y , then x � r D 0. Otherwise,
let H and y be the unique objects such that H is an allowed set of partial rectangles
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Figure 21: Forbidden pairs of partial rectangles. A set of rectangles H is
allowed if no partial rectangle in it contains points in X or x\y , and no two
partial rectangles in it are in relative configuration as depicted here.

connecting x and r to y . Then

x � r D
Y

sO2TO

U
jO\H j

O
y ;

where O \H D
S
.O \Hi/.
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Figure 22: Examples of the right type A action. Left: examples of allowed
sets of partial rectangles for the right action, starting at the generator formed
by the green dots. Right: the corresponding right multiplications, viewed as
concatenations of strand diagrams.
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Figure 23: Examples of the left type A action. Left: examples of allowed
sets of partial rectangles for the left action, starting at the generator formed
by the green dots. Right: the corresponding left multiplications, viewed as
concatenations of strand diagrams.

See Figure 22 for examples of the type A multiplication.

The left action can be similarly defined using partial rectangles touching the top or
bottom parts of the boundary .�m� 1; 0/� f0; nC 1g or by rotating the rectangles
by 90ı . See Figure 23.

Definition 4.6 With the above notation, let CATA�.G/ be the left–right type AA
bimodule .C�.P/; fmi;1;j g/ over A.EL/ and A.ER/, where

mi;1;j WA.EL/
˝i
˝C�.P/˝A.ER/

˝j
! C�.P/

with mi;1;j D 0 when i > 1 or j > 1, and the nonzero maps are given by

m0;1;0.f /D @f; m1;1;0.aL˝f /D aL �f; m0;1;1.f ˝ aR/D f � aR:
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It is not immediate to see that the above definition indeed gives a type AA bimodule, but
the next proposition says that it is isomorphic to CATA�.P/, which, by Theorem 3.29,
is a type AA structure.

Proposition 4.7 Let P be a shadow and let G D G.P/. Then the one-to-one cor-
respondence between the generators gives rise to an isomorphism of the structures
CATA�.P/ and CATA�.G.P//.

Proof Observe that H connects x and r to y exactly when the strand diagrams
corresponding to x and r can be concatenated. The result of the concatenation is the
strand diagram corresponding to y when H is allowed, and zero otherwise. Indeed, the
obstructions to H being allowed correspond to the Reidemeister II relations involving
black and orange strands. Similarly, the count O\H corresponds to the count nO .

4.4 Type DD structures: bordered grid diagrams associated to mirror-
shadows

The bordered grid diagram G�.P�/ associated to the mirror-shadow P� is the mirror
of G.P/ with respect to a vertical axis.

Definition 4.8 G� D G�.P�/ D .˛;ˇ;X;O/ � Œ0;m C 1� � Œ0; n C 1� � R2 as
follows. For a 2 a let ˛a D Œ0;mC 1�� fag and for b 2 b let ˇb D fbg � Œ0; nC 1�,
then let ˛ D f˛aga2a and ˇ D fˇbgb2b . Also let X D f.�sX ; sX /gsX2SX and O D
fO D .sO ; !sO/gsO2SO .

Figure 24 shows the bordered grid diagrams corresponding to the mirror-shadows of
Figure 12.
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Figure 24

By mirroring G.P/ with respect to the horizontal axis instead, we get a bordered grid
diagram .G�/0.P�/ equivalent to G�.P�/.

As in the case for G.P/, the generators S.G�/ are tuples of intersection points, and
similarly there is a one-to-one correspondence between S.G�/ and S.P�/ identifying
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.S;T; �/� with the set of intersection points x D .˛�s \ˇs/s2S . The differential @ is
again given by counting empty rectangles.

Proposition 4.9 The chain complexes .C�.P�/; @�/ and .C�.G�/; @/ are isomor-
phic. Moreover if R is a rectangle from xD .˛�.s1;s2/s\ˇs/s2S to y D .˛�s\ˇs/s2S

then

(1) A.S;T; �/�A.S;T; �.s1;s2//D jR\Xj � jR\Oj;

(2) if R 2 <0.x;y/ then M.S;T; �/�M.S;T; .�/.s1;s2//D 1� 2jR\Oj.

Proof This is essentially the same as the proof of Proposition 4.5.

Associate to the bordered grid diagram G� the tangle T �.G�/ that is the mirror
of T .G/, again with respect to the vertical axis.

4.4.1 Type D maps Define a bimodule structure I.A.EL//C
�.G�/I.A.ER// using

the one-to-one correspondence between S.G�/ and S.P�/. In other words, if the
correspondence maps x 2S.G�/ to f � 2S.P�/, then define � �x � �0 D � �f � � �0 . For
such a pair x and f � , define �L.x/D �L.f �/ and �R.x/D �R.f �/. Similar to the
type A maps, we define left and right type D maps

ıL
WC�.G�/!A.EL/˝C�.G�/; ıR

WC�.G�/! C�.G�/˝A.ER/;

also by counting partial rectangles. In the following we describe the left type D map
ıL in detail.

Let x D .˛�s \ ˇs/s2S be a generator. We define a map @L by counting partial
rectangles that intersect the left and/or right boundaries f0;mC 1g � Œ0; nC 1�. We
distinguish four types of partial rectangles as follows:

� H D Œ0; s1� � Œt1; t2�, where s1 2 S , t1 < t2 and t2 D �s1; t1 62 �.S/. Let
T1 D �.S/

c , T2 D �.S/
c n ft1g [ ft2g, and define �W T1 ! T2 by �t1 D t2

and �jT1nft1g
D idT1nft1g

. Let r D .T1;T2; �/ 2 A.EL/. Let y be the set of
intersection points x n f.s; t2/g[ f.s; t1/g.

� H D Œs2;mC 1�� Œt1; t2�, where s2 2 S , t1 < t2 and t1 D �s2; t2 62 �.S/. Let
T2D �.S/

c , T1D �.S/
c nft2g[ft1g, and define �W T2! T1 by �t2D t1 and

�jT2nft2g
D idT2nft2g

. Let rD.T2;T1; �/2A.EL/ and yDxnf.s; t1/g[f.s; t2/g.

� H D Œ0;mC1��Œt1; t2�, where t1; t2 62�.S/ and t1< t2 . Let �W �.S/c!�.S/c

be given by .t1t2/ı id�.S/c and let r D .�.S/c ; �.S/c ; �/2A.EL/. Let y Dx .

� H D .Œ0; s1�[Œs2;mC1�/�Œt1; t2�, where s1< s2 , t1< t2 and t1D�s2; t2D�s1 .
Let r D .Sc ;Sc ; idSc / and y D .˛..t1t2/ı�/s \ˇs/s2S .
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Figure 25: The four types of rectangles corresponding to the map @L . Left:
examples of the four types of rectangles for @L applied to the generator
formed by the green dots. Right: the respective terms of ıL applied to the
strand diagram corresponding to the green dots.
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We say that the partial rectangle H connects x and r to y , and for O D .sO ; tO/ 2O
set ntO

.H / D jO \H j. In the first three cases we say that H connects x and r

to y . H is empty if H \ X D H \ x D ∅. In the fourth case there is an extra
condition on H being empty: we require that for the projection �2W .s; t/ 7! t the
images �2.X\Œs1; s2��Œt1; t2�/ and �2.x\Œs1; s2��Œt1; t2�/ are precisely Œt1; t2�\a1=2

and Œt1; t2�\ a . For tc
O
2 .Œt1; t2�\ a1=2/ nTO , let ntc

O
.H /D 1.

Given x , y and r , let H0.x;y ; r/ denote the set of empty partial rectangles connecting
x and r to y (note that that set is either empty or consists of one partial rectangle).
Define

@Lx D
X

y2S.G�/

r2S.EL/

X
H2H0.x;y;r/

r ˝
Y

tO2a1=2

U
ntO

.H /

O
y :

See Figure 25 for an example of @L .

Then the left type D map is defined on generators by

ıLx D �L.x/˝ @xC @Lx:

In other words, ıL is defined by counting empty rectangles in the interior of the grid,
as well as empty rectangles that touch the left and/or right boundary of the grid.

The right type D map ıR can be defined in a similar way as the sum ıR D @˝ �RC@R

using a map @R that counts partial rectangles that intersect the top and bottom boundary
of Œ0; nC 1�� Œ0;mC 1�.

The left and the right type D maps can be merged together to define a type DD map
by counting all empty rectangles, interior and partial.

Definition 4.10 For G� D G�.P�/ define CDTD�.G�/ be the left–right type DD
structure .C�.G�/; ı1g/ over A.EL/ and A.ER/, where

ı1
WC�.G�/!A.EL/˝C�.G�/˝A.ER/

is defined via

ı1.x/D �L.x/˝ @R.x/C �L.x/˝ @.x/˝ �R.x/C @L.x/˝ �R.x/:

Proposition 4.11 For G� DG�.P�/ the one-to-one correspondence between genera-
tors gives rise to an isomorphism between CDTD�.G�/ and CDTD�.P�/.

While Proposition 4.11 and the fact that CDTD�.G�/ satisfies the type DD identities
could be proven directly, we will choose a longer way. First we understand how to glue
bordered grid diagrams. Then, as is explained later, both statements are consequences
of Propositions 4.12 and 4.13.
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4.5 Gluing bordered grid diagrams

Suppose that G1DG.P1/D .˛
1;ˇ1;X1;O1/ and G�

2
DG�.P�

2
/D .˛2;ˇ2;X2;O2/,

where P1 and P�
2

have a well-defined wedge product. This means that n1 D n2 , so
GDG1[G�

2
=�� Œ�m1�1;m2C1��Œ0; n1C1�=� is a bordered grid diagram where the

edges f�m1�1g�Œ0; n1C1� and fm2C1g�Œ0; n2C1� are identified. Here ˇDˇ1[ˇ2 ,
and the ˛–arcs are glued to form the new circles z̨a D Œ�m1 � 1;m2C 1�� fag=�.
Similarly, X D X1 [ X2 and O D O1 [O2 . Note that since P1 and P�

2
have a

well-defined wedge product every annulus between the alpha circles z̨a and z̨aC1

contains exactly one element of X and one element of O .

Informally, we glued G�
2

to the right of G1 and identified the left and right edges of
the resulting rectangle to obtain an annulus. Alternatively, one can shift coordinates
in R2 and view the annulus by placing G�

2
to the left of G1 and then identifying the

left and right edges of the resulting rectangle to obtain an annulus. Abstractly, the
annulus is simply the result of identifying each “˛–boundary edge” of one grid with
an ˛–boundary edge of the other grid, so that the labels on the ˛–curves match up,
and the gluing respects the orientation on the two surfaces of the grids.

We define C�.G/ to be the free module generated over F2ŒUO �O2O by tuples of
intersection points x � z̨ \ ˇ such that there is one point on each z̨–circle, and at
most one point on each ˇ –arc. Observe that the generating set is precisely

S.G/D
˚
xD .x1;x2/2S.G1/�S.G

�
2 / W jx1\˛

1
ajD 1 if and only if jx2\˛

2
ajD 0

	
:

Define a map @ on S.G/ by counting empty rectangles in the interior of G (note that
rectangles may cross the newly identified edges), and extend linearly to all of C�.G/.
By standard grid diagram arguments, @ is a differential. See Figure 26 for an example
of the identification where G1 is drawn to the right.

Now there is a one-to-one correspondence between generators of P1 ^P�2 and S.G/

given by mapping .S1;T1; �1/˝.S2;T2; �2/
� to .x1;x2/, where x1D .˛

1
�1s
\ˇ1

s /s2S1

and x2 D .˛2
�2s
\ ˇ2

s /s2S2
. We show below that under this correspondence the

differential @ on C�.G/ agrees with @^ on C�.P1 ^P�
2
/. In particular, it follows

that .C�.P1 ^P�
2
/; @^/ is a chain complex, as is stated in Proposition 3.23.

Proposition 4.12 The structures .C�.P1^P�2 /; @^/ and .C�.G/; @/ are isomorphic.

Proof Let .x1;x2/ be the generator of .C�.G/; @/ corresponding to the element
f D f1˝ f

�
2
D .S1;T1; �1/˝ .S2;T2; �2/

� in .C�.P1 ^P�
2
/; @^/. Recall that the

differential @^ of f1˝f
�

2
is given by the formula

@^.f1˝f
�

2 /D @.f1/˝f
�

2 Cf1˝ @
�.f �2 /C @mix.f1˝f

�
2 /;
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Figure 26: The differential on the annular grid diagram associated to the
example of Figure 15. The dashed lines on the right- and left-hand side are
glued together. The green dots corresponds to the strand diagram on the
left-hand side of Figure 15 and the six rectangles to the nonzero terms in the
differential of that diagram.

while the differential of .x1;x2/ in .C�.G/; @/ is given by counting rectangles. Sup-
pose that the rectangle R contributes to the differential @. Then, depending on the
position of R, the result corresponds to different components of the differential @^ as
follows:

� If R is entirely contained in G1 , then R corresponds to a term of @.f1/˝f
�

2
.

� If R is entirely contained in G�
2

, then R corresponds to a term of f1˝@
�.f �

2
/.

� If R intersects both G1 and G�
2

, each in a connected component, then R inter-
sects exactly one of the vertical lines f0g�Œ0; n1C1� or f�m1�1g�Œ0; n1C1��

fm2C1g�Œ0; n1C1�. In the first case R\f0g�Œ0; n1C1�Df0g�Œp; q� for some
p < q , and in the second case R\fm1�1g� Œ0; n1C1�D fm1�1g� Œq;p� for
some q <p . Then .p; q/2S1�S2 is an exchangeable pair, and R corresponds
to a term of @mix .

� If R intersects both G1 and G�
2

, and R\G1 has one component while R\G�
2

has two components, then let R\f0g� Œ0; n1C1�Df0g� Œp; q� for some p< q .
The pair .p; q/� S2 is exchangeable and R corresponds to a term of @mix .

� Similarly if R intersects both G1 and G�
2

and R\G1 has two components
while R\G�

2
has one component, then R\f0g � Œ0; n1C 1�D f0g � Œp; q� for

some p< q . The pair .p; q/�S1 is exchangeable and R corresponds to a term
of @mix .

Conversely, any term of @^.f1˝f
�

2
/ appears in the above list, thus the statement is

proved.

Note that the writeup of the above proof uses coordinates for the case when G1 is
viewed sitting to the left of G�

2
.
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Similarly, if G�
1
DG�.P�

1
/ and G0

2
DG0

2
.P2/, then we can glue .G�

1
/0 to G2 along

the x–axis, ie place G2 above G�
1

, and identify the resulting horizontal boundaries.
Alternatively, we can view the annulus by placing G2 below G�

1
and then identifying

the horizontal edges of the resulting rectangle. Abstractly, the annulus is the result of
identifying ˇ –boundary edges. For the resulting annular grid diagram, we define a
chain complex .C�.G/; @/, where again generators over F2ŒUO �O2O1[O2

are tuples
of intersection points with exactly one point on each ž–circle and at most one point
on each ˛–arc, and the differential counts empty rectangles. Once again we have:

Proposition 4.13 The structures .C�.P�
1
^P2/; @^/ and .C�.G/; @/ are isomorphic.

Proof The proof is analogous to that of Proposition 4.12.

As an immediate consequence we have:

Proof of Propositions 3.22 and 3.23 Both statements follow from Propositions 4.12
and 4.13 for C�.EL.P�/^P�/ and C�.P� ^ ER.P�//, along with the fact that @ is
a differential for the corresponding grid diagrams.

In general, suppose we have an alternating sequence of shadows and mirror-shadows
P D .Pı

1
; : : : ;Pıp/ with well-defined consecutive wedge products. We can glue

the grid diagrams Gı.Pı
1
/; : : : ;Gı.Pıp/ by alternating the gluing along horizontal

or vertical edges to obtain the nice bordered Heegaard diagram G on plumbings
of annuli. We can associate a tangle to G , which is simply the concatenation of
T ı.Gı.Pı

1
//; : : : ; T ı.Gı.Pıp//. See, for example, Figure 29.

Let C�.G/ be the free module over F2ŒUO �O2O1[���[Op
generated by tuples of inter-

section points, one point on each z̨–circle, at most one on each ˛–arc, one on each
ž–circle, and at most one on each ˇ –arc, and let @ be the differential on C�.G/

defined by counting empty rectangles. Then:

Proposition 4.14 The structures .C�.P/; @^/ and .C�.G/; @/ are isomorphic.

Proof The proof is analogous to that of Proposition 4.12 (here, any empty rectangle
is either fully contained in one grid or intersects two consecutive grids).

When the gluing maps between adjacent grids are clear from the context, we will
use the otherwise ambiguous notation Gı.Pı

1
/[ � � � [Gı.Pıp/ for G . We will also

sometimes write x1[ � � � [xp for .x1; : : : ;xp/.

We are now ready to prove Proposition 4.11.
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Proof of Proposition 4.11 By definition, the maps ıL , ıR and ı1 on a generator
f � of CDTD�.P�/ correspond to the map @^ on the generators �L.f �/ ˝ f � ,
f � ˝ �R.f �/ and �L.f �/ ˝ f � ˝ �R.f �/ of EL.P�/ ^ P� , P� ^ ER.P�/ and
EL.P�/^P� ^ ER.P�/, respectively.

One can also see that the maps ıL , ıR and ı1 on a generator x of CDTD�.G�/ corre-
spond to the map @ on the generators �L.x/[x , x[�R.x/ and �L.x/[x[�R.x/ of the
grid diagrams G.EL.P�//[G� , G�[G.ER.P�// and G.EL.P�//[G�[G.ER.P�//,
respectively. We outline the correspondence for ıL here. The other cases are analogous.
An empty rectangle starting at x that stays in G� contributes to @.x/, hence to
�L.x/˝ @.x/, as well as to @.�L.x/ [ @.x//. An empty partial rectangle starting
at x in G� of the form Œ0; t1�� Œs1; s2�, Œt2;mC 1�� Œs1; s2�, Œ0;mC 1�� Œs1; s2� or
.Œ0; t1� [ Œt2;mC 1�/ � Œs1; s2� contributes to @L.x/ and corresponds to the empty
rectangle

Œ�s1; t1�� Œs1; s2�;

.Œ�n� 1; s2�[ Œt2;mC 1�/� Œs1; s2�;

.Œ�n� 1;�s2�[ Œ�s1;mC 1�/� Œs1; s2�;

.Œ�n� 1; t1�[ Œt2;mC 1�/� Œs1; s2�;

respectively, in G.EL.P�//[G� , which contributes to @.�L.x/[x/.

By Propositions 4.12, 4.13 and 4.14, the correspondence between generators of
EL.P�/ ^ P� and G.EL.P�// [ G� , P� ^ ER.P�/ and G� [ G.ER.P�//, and
EL.P�/^P�^ER.P�/ and G.EL.P�//[G�[G.ER.P�//, respectively, carries the
map @^ to the map @. Therefore, the structures .C�.G�/; ıL/ and .C�.P�/; ıL/,
.C�.G�/; ıR/ and .C�.P�/; ıR/, and .C�.G�/; ı1/ and .C�.P�/; ı1/ are pairwise
isomorphic. In particular, CDTD�.G�/ and CDTD�.P�/ are isomorphic. Further, by
Proposition 3.25, .C�.G�/; ıL/ is a left type D structure, .C�.G�/; ıR/ is a right
type D structure and CDTD�.G�/ is a left–right type DD structure.

The above proof sums up to the following observation. For a mirror-shadow P� , the
maps ıL , ıR and ı1 on a generator f � correspond to gluing G�.P�/ to G.ER.P�//
along the ˇ –curves and/or to G.EL.P�// along the ˛–curves, and then taking the inner
differential of the generator of the resulting diagram corresponding to �L.f �/˝ f � ,
f �˝ �R.f �/ or �L.f �/˝f �˝ �R.f �/, respectively.

If G is the bordered Heegaard diagram corresponding to an alternating sequence
of shadows and mirror-shadows P D .Pı

1
; : : : ;Pıp/ with well-defined consecutive

wedge products, then C�.G/ has a left type A or D map depending on whether Pı
1

is shadow or a mirror-shadow, defined by counting partial rectangles in Gı.Pı
1
/ as
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usual, and similarly it has a right type A or D map depending on whether Pıp is a
shadow or a mirror shadow. Denote the resulting structures by CATA�.G/, CDTA�.G/,
CATD�.G/ or CDTD�.G/, or simply by CT�.G/.

4.6 Self-gluing of bordered grid diagrams

In this subsection we discuss annular bordered grid diagrams corresponding to one-
sided modules. Let G� DG�.P�/D .˛;ˇ;X;O/ correspond to a mirror-shadow P�

with a1=2 D SX D TO . This means that each row of G� contains both an X and
an O , thus the annular bordered grid diagram G�a D . z̨;ˇ;X;O/ will have an X and
an O in each of its annuli. See Figure 27.

Take the subset Sn.G
�
a / of generators that occupy each z̨–circle. Then the map @ that

also counts the rectangles which cross the line f0g � Œ0;mC 1�� fnC 1g � Œ0;mC 1�

endows C�n .G
�
a / with a chain complex structure, and under the usual identification of

Sn.P�/ with Sn.G
�
a / we have:

Proposition 4.15 .C�n .G
�
a /; @/ is a chain complex isomorphic to .C�n .P�/; @�CD@/.

Proof The proof is similar to the proof of Proposition 4.5. The terms in D@ correspond
to those empty rectangles that cross the gluing, as follows. For the generator f D
.S;T; �/ corresponding to the intersection point xD .˛s; ˇ�s/s2S , the pair .s1; s2/ is
allowable exactly when the glued up rectangle RD .Œ0; s1�[Œs2; nC1�/�Œ�.s2/; �.s1/�

is empty (ie x \R D X\R D ∅). Then R connects x to y D .˛s; ˇ�.s1;s2/s/s2S

and nO measures the multiplicity of O in R.

Lemma 3.26 now follows from Proposition 4.15.

As in Section 4.4.1, we can define a right type D map on C�n .G
�
a / by ı1x D

@x˝�R.x/C@Rx to obtain a right type D structure CTD�.G�a /, which, by arguments
analogous to those for Proposition 4.12, is isomorphic to CTD�.P�/. We can similarly
define structures CDT�.G�

b
/, CAT�.Gb/ and CTA�.Ga/ isomorphic to CDT�.P/,

CAT�.P/ and CTA�.P/.

�

�

�

� � � � �

1

2

3

1 2 3 4 5

Figure 27: Self-gluing of a bordered grid diagram. The dashed lines are identified.
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Convention 4.16 Similar to Convention 3.28, if Gı
1
[ � � � [Gıp corresponds to an

alternating sequence of shadows and mirror-shadows P D .Pı
1
; : : : ;Pıp/, and Gı

1

and/or Gıp can be self-glued, we will always self-glue it, to produce a nice diagram G

whose invariant is a one-sided module or a chain complex that agrees with CT�.P/.

4.7 Pairing for plumbings of bordered grid diagrams

Gluing bordered grid diagrams corresponds to taking a box tensor product of their
algebraic invariants:

Theorem 4.17 Given an alternating sequence of shadows and mirror-shadows P D
.Pı

1
; : : : ;Pıp/ with well-defined consecutive wedge products, define Gi and G0i to be

Gı.Pı
1
/ [ � � � [ Gı.Pıi / and Gı.Pı

iC1
/ [ � � � [ Gı.Pıp/, respectively. The obvious

identification of generators gives an isomorphism

CT�.Gi [G0i/Š CT�.Gi/� CT�.G0i/:

Proof This follows from the equivalences proven earlier in this section, along with
Theorem 3.33. Alternatively, one can notice that by definition of the type D and type
A actions for bordered grid diagrams, pairing them via � corresponds to matching
partial rectangles for the type D maps with sets of partial rectangles for the type A

maps along the boundary. The possible pairings correspond to empty rectangles in the
union of the two diagrams that cross the gluing.

4.8 Relations between the U–actions

Let P D .Pı
1
; : : : ;Pıp/ be an alternating sequence of shadows and mirror-shadows

with well-defined consecutive wedge products. Let G be the nice bordered Heegaard
diagram obtained by gluing Gı.Pı

1
/; : : : ;Gı.Pıp/ as before.

The pairs OD .sO ; !isO/ and O 0D .s0
O
; !i0s

0
O
/ are connected by a path exactly when

O and O 0 lie on the same component of the tangle T .G/ associated to P , or in other
words if there is a sequence of O DO1 , X1 , O2 , X2; : : : , Xk�1 , Ok DO 0 such that
Oj and Xj are in the same row, and Xj�1 and Oj are in the same column (note that
we also require that none of the Xj are in the first or last parts Gı.Pı

1
/ or Gı.Pıp/).

Now we are ready to prove Lemma 3.35:

Proof of Lemma 3.35 First let us assume that CT�.P/ is a type AA structure. Then
we need to prove that there is a type AA map H such that .U CU 0/ idCT�.P/ D @H .
It is enough to prove this statement in the case when O and O 0 are of distance 1 (the
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general case then can be obtained by adding up the homotopies for all j ). This means
that there is a point X which is in the row of O and in the column of O 0 . By definition,
X is not in Gı.Pı

1
/ or Gı.Pıp/, thus the horizontal and vertical rows containing it are

both closed up to annuli. This means that the map HX that counts rectangles that cross
X once consists of the single map CT�.P/!CT�.P/ with no nontrivial components
of the type A.EL.P1//

˝l ˝CT�.P/˝A.ER.Pp//
˝r ! CT�.P/ for l , r > 0. And,

as in [11], the map HX satisfies .U CU 0/ idCT�.P/ D @HX .

The argument goes exactly the same way for the other types of structures, with the
observation that if P starts or ends with a mirror-shadow, then we can complete it
by adding ER.P�

1
/ and/or EL.P�p / and denote the obtained sequence of shadows and

mirror-shadows by P 0 . Then chain homotopy in .C�.P 0/; @/ gives type DD (or DA,
or AD) equivalence of CT�.P/.

5 Modules associated to tangles

In this section we will associate a left type D structure or a right type A structure
to a tangle in D3 , a type DA structure to a tangle in I � S2 , and a bigraded chain
complex to a knot (or link) in S3 . The main idea is to cut T into elementary pieces
T D T1 ı � � � ı Tp , associate a type A structure to T1 if it is in D3 , a type D structure
to Tp if it is in D3 , and type DA structures to all the other Tj , and then take their
box-tensor product. The structures associated to elementary pieces are the structures
defined earlier for wedge products of appropriate shadows and mirror-shadows. The
hard part — of course — is to prove independence of the cut. Although we believe that
there is a completely combinatorial proof of the independence, in this paper we will
only provide a proof that uses holomorphic curve techniques; see Section 10. As a
consequence of that, we can only prove independence for the tilde version of the theory.

5.1 Algebras associated to @T

For a sequence of oriented points with signs � D .�1; : : : ; �k/, let n D k C 1, and
recall that the sequence � D �1 corresponds to two complementary subsets SX D˚
j C 1

2
W �j D �1

	
and TO D

˚
j C 1

2
W �j D C1

	
of the set

˚
11

2
; : : : ; n� 1

2

	
. Set

�0 D ��1 . This determines TX.D SX/ and SO.D TO/ in a similar vein. Take the
idempotent shadow �0E�1D .n; n; idSX ; idSO / of Example 3.3. This defines the algebra
A� DA.�0E�1/.

Given a tangle T with left boundary @0T and right boundary @1T (any of these sets
can be empty if the tangle is closed from that side), let �0D �.@0T / and �1D �.@1T /
be the sequences of signs of @0T and @1T , respectively. Let A.@0T / D A��0 and
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A.@1T / D A�1 . The minus sign in the second definition is there so that if we cut
T D T1 ı T2 , then �1.@1T1/D��

0.@0T2/, thus A.@1T1/DA.�@0T2/.

5.2 Invariants associated to a tangle

Given a sequence of shadows and mirror-shadows PD .Pı
1
; : : : ;Pıp/ with well-defined

consecutive wedge products, each Pıj has a tangle Tj D T ı.Pıj / associated to it. Note
that if Pj is a shadow then at all crossings the strand with the bigger slope goes over
the strand with the smaller slope, while if P�j is a mirror-shadow then at all crossings
the strand with the smaller slope goes over the strand with the bigger slope. Note Pıj
and Pı

jC1
have a well-defined wedge product — thus Pıj is not left-contractible and

Pı
jC1

is not right-contractible — so @1Tj ¤∅ and @0TjC1 ¤∅ for 1� j � p� 1. If
Pı

1
is left-contractible then @0T1 D ∅ and if Pıp is left-contractible then @1Tp D ∅.

This means that the composition-tangle T .P/D T1 ı � � � ı Tp can be in S3 , D3 or in
S2 � I . Moreover any tangle T can be constructed in the above way.

Lemma 5.1 Let T be a tangle in S3 , D3 or in S2 � I . Then there is a sequence of
shadows P D .Pı

1
; : : : ;Pıp/ such that T is isotopic to T .P/ (relative to the boundary),

and

� if @0T D∅ then P�
1

is a mirror-shadow;

� if @1T D∅ then P�p is a mirror-shadow;

� if @0T ¤∅ then P�
1

is a mirror-shadow and �0.P�
1
/D �0.T /;

� if @1T ¤∅ then Pp is a shadow and �1.Pp/D �
1.T /.

The first two assumptions are in the statement for cosmetic reasons (to match with the
assumptions of Sections 7–12), while, as we will see later, the last two assumptions
ensure that the associated invariant has the correct type and is defined over the correct
algebras.

Proof The statement is clearly true for elementary tangles T . Indeed, depending on
the type of crossing in T , or whether T is a cap or a cup we can always bisect T into
two pieces T� ı TC such that one of T� or TC consists of straight strands (possibly
with a gap) and the other one is isotopic to T , and at the (possible) crossing of T�
(or TC ) the strand with the smaller slope goes over (under) the strand with bigger slope,
or T� (or TC ) is a cup (or a cap). Let P�� and PC be the mirror shadow and shadow
corresponding to T� and TC (ie T� D T �.P��/ and TC D T .PC/). Note that in this
case the condition �0.P��/D �0.T / is equivalent to P�� not having a gap on its left
side. Similarly the condition �1.PC/D �1.T / to PC not having a gap on its right side.
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In the general case, put T in a not obviously split position. This means that when cutting
it up into elementary tangles T D T1 ı � � � ıTp , every cut intersects the tangle. Then, by
the previous paragraph, each Ti is isotopic to T �..Pi/

�
�/ıT ..Pi/C/. Thus if @1T ¤∅

then the decomposition T D T �..P1/
�
�/ ı T ..P1/C/ ı � � � ı T �..Pp/

�
�/ ı T ..Pp/C/

works. Otherwise Tp is a single cap, thus it can be written as Tp D T �.P�p /, where
P�p does not have a gap on its right. This means that the decomposition

T D T �..P1/
�
�/ ı T ..P1/C/ ı � � � ı T �..Pp�1/

�
�/ ı T ..Pp�1/C/ ı T �.P�p /

satisfies all criteria of the lemma.

Note that by construction, if @0T D∅, then T �
1

is left-contractible, and if @1T D∅,
then T �p is right-contractible.

Definition 5.2 Let T be a tangle given by a sequence of shadows P D .Pı
1
; : : : ;Pıp/

as in Lemma 5.1.

If @0T D∅ and @1T D∅, then define the chain complex by

CT�.P/D CTD�.P�1 /� � � �� CDT�.P�p /:

If @0T D∅ and @1T ¤∅, then define the right type A structure over A.@1T / by

CTA�.P/D CTD�.P�1 /� � � �� CATA�.Pp/:

If @0T ¤∅ and @1T D∅, then define the left type D structure over A.@0T / by

CTD�.P/D CDTD�.P�1 /� � � �� CDT�.P�p /:

If @0T ¤∅ and @1T ¤∅, then define the left–right type DA structure over A.@0T /
and A.@1T / by

CDTA�.P/D CDTD�.P�1 /� � � �� CATA�.Pp/:

Whenever the sequence P is clear from the context, we simplify the notation of the
above bimodules to C T �.T /. In this paper we will not prove that CT�.T / as defined
above is an invariant of T . We will only prove it for the weaker version �CT.T /. From
now on, we restrict ourselves to the tilde theory by setting all UO to 0. A consequence
of Theorems 12.4 and 11.15 is:

Theorem 5.3 Suppose that P D .Pı
1
; : : : ;Pıp/ and QD .Qı

1
; : : : ;Qıq/ give tangles

(in the sense of Lemma 5.1) isotopic to T . Then for some integers k.P/ and k.Q/, the
(bi)modules �CT.Pı

1
/�� � �� �CT.Pıp/�V ˝k.Q/ and �CT.Qı

1
/�� � �� �CT.Qıq/˝V ˝k.P/

are equivalent. Here V D F2˚ F2 , where one of the F2 components has bigrading
.M;A/D .�1;�1/ and the other one has bigrading .M;A/D .0; 0/.
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The integers k.P/ and k.Q/ in the above theorem can be computed explicitly. For
a shadow P (or mirror-shadow P� ), define k.P/ D jSXj (or k.P�/ D jSXj). For
a sequence of shadows and mirror-shadows P D .Pı

1
; : : : ;Pıp/ with a well-defined

wedge product, define k.P/D
Pp

jD1
k.Pj /.

The DA bimodule for the trivial tangle is equivalent to the identity bimodule, or more
precisely:

Theorem 5.4 If P D .E�
1
; E2/ is a sequence of an idempotent mirror-shadow and

shadow for a tangle T consisting of m straight strands, then

ACATA.E2/� ACDTA.P/' ACATA.E2/˝V ˝m:

Proof The proof follows from the results in Sections 7–12, but we outline it here
nevertheless. One can represent the sequence .E2; E�1 ; E1/ by a plumbing of bordered
grid diagrams. One can perform Heegaard moves to this plumbing to obtain the bordered
grid diagram for E2 . Every index zero/three destabilization results in an extra V factor.
Observe that ACATA.E2/ is just the tilde version of the algebra A.E2/.

5.3 Sample invariance proofs

Although the proof of Theorem 5.3 is proved entirely in Section 10, to give evidence
that the theory can be defined combinatorially we give sample proofs for statements
from Theorem 5.3. Most of the arguments rely on the generalization of the commutation
move for grid diagrams.

5.3.1 Generalized commutation In all the (bordered) Heegaard diagrams we have
been working with, all regions (connected components of † n .˛[ˇ/) are rectangles,
and each annulus between two neighboring ˛–circles or ˇ –circles contains exactly one
X and one O . In the following this will be our assumption on the Heegaard diagrams,
and we will call these diagrams rectangular. Note that for rectangular diagrams the
connected components of † n˛ (or † n ˇ ) are annuli or punctured spheres with at
most two boundary components intersecting ˛ (or ˇ ) and the rest of the boundary
components are subsets of @†. Thus rectangular diagrams are always constructed as a
plumbing of annuli.

So let HD .†; ˛D˛c[˛a; ˇ Dˇc[ˇa; X; O/ be a rectangular Heegaard diagram
such that every annulus contains an X . Then in the usual way we can define a
chain complex with underlying module C�.H/ generated over k D F ŒUO �O2O by
intersection points x 2S.H/ with one intersection point on each circle ˛c and each
circle ˇc and at most one intersection point on each arc ˛a and each arc ˇa . The
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R2 R1

A2

A1

Figure 28: Generalized commutation. The left- and right-hand side of each
diagram are identified.

differential is defined by counting empty rectangles: a rectangle from a generator x

to a generator y is an embedded rectangle R�† with boundary @R� ˛[ˇ such
that x\R is the two corners of R where .T˛;Tˇ/ form a positive basis of T† and
y \R is the two corners of R where .T˛;Tˇ/ form a negative basis of T† (here
the orientation on the tangent vectors comes from the orientation on @R). A rectangle
R is called empty if Int.R/\ .x[y/D∅ and R\XD∅. Denote the set of empty
rectangles from x to y by R0.x;y/. Then define

@x D
X

y2S.H/

X
R2R0.x;y/

Y
O2O

U jR\Ojy :

This can be extended to the whole C�.H/ and using the usual arguments we conclude:

Lemma 5.5 .C�.H/; @/ is a chain complex.

Take three consecutive alpha circles ˛1 , ˛2 and ˛3 , so that ˛1 and ˛2 bound the
annulus A1 and ˛2 and ˛3 bound the annulus A2 . All connected components of
ˇ \ .A1 [A2/ are intervals. Suppose that two of these intervals corresponding to
different ˇ –curves subdivide A1 [ A2 into two rectangles R1 and R2 such that
.X[O/\A1 �R1 and .X[O/\A2 �R2 . Then we can define a new Heegaard
diagram H0 by changing ˛2 to ˛0

2
, where ˛0

2
is the smoothing of .˛3n@R1/[.@R1n˛3/

isotoped in the complement of X[O so that it is disjoint from ˛ n f˛2g, transverse to
all ˇ–curves and intersects them only once. See Figure 28. Then:

Lemma 5.6 (generalized commutation) The complexes .C�.H/;@/ and .C�.H0/;@0/
are chain homotopy equivalent.

Proof The proof is literally the same as in the closed case (see [12, Section 3.1]):
the chain maps count pentagons, while the homotopy counts hexagons of the triple
Heegaard diagram.

For sequences of shadows and mirror-shadows, the proof goes the same way:
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Figure 29: Diagram for simplifying a Reidemeister II move. The first picture
corresponds to two canceling crossings, the arrow corresponds to a gener-
alized commutation, and the second picture corresponds to straight strands.
This image can have more straight strands that are not affected by the moves.

Lemma 5.7 Let P D .Pı
1
;Pı

2
; : : :Pıp/ and Q0 D .Qı

1
;Qı

2
; : : :Qıp/ be sequences of

shadows and mirror-shadows with well-defined wedge products. Assume that the
corresponding grid diagrams G.P/ and G.Q/ are related to each other by generalized
commutation. Then the associated structures CT�.P/ and CT�.Q/ are equivalent.

Using Lemma 5.7, we can prove the following:

Proposition 5.8 Let P D fPı
1
; : : : ;Pıpg and Q D fQı

1
; : : : ;Qıpg be sequences with

corresponding tangles (in the sense of Lemma 5.1) T .P/ and T .Q/, respectively.
Suppose that T .P/ and T .Q/ are related to each other by Reidemeister II and Reide-
meister III moves. Then the (bi)modules CT�.T .P// and CT�.T .Q// are equivalent.

Proof As is shown in Figure 29, a Reidemeister II move is simply a general commu-
tation on the associated grid diagram. A Reidemeister III move can be achieved with a
sequence of commutation moves; see Figure 30.

6 Relation to knot Floer homology

This section provides the connection between CT� and CFK� .

Let Pı
1
; : : : ;Pın be a sequence of shadows and mirror-shadows as in Lemma 5.1 such

that the associated tangle LD T ı.Pı
1
/ı : : :ıT ı.Pın/ is a closed link. After self-gluing
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Figure 30: Commutation moves corresponding to a Reidemeister III move.
Again, this image can have more straight strands that are not affected by the
moves.
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the first and last grid in Gı.Pı
1
/[� � �[Gı.Pın/, we obtain a diagram that is a plumbing

of annuli and has one boundary component. Close off the boundary by gluing on a disk
with one X and one O in it. The resulting closed Heegaard diagram H represents the
link L[U , where U is an unknot unlinked from L.

Theorem 6.1 We have a graded homotopy equivalence

CT�.Pı1/� � � �� CT�.Pın/' gCFK�.H/

that maps a homogeneous generator in Maslov grading m and Alexander grading a to a
homogeneous generator in Maslov grading mC 1

2
jLj and Alexander grading aC 1

2
jLj.

Before we prove Theorem 6.1, we review the basic construction for knot Floer homol-
ogy; see also [16; 23; 12; 21].

Let HL D .†;˛;ˇ;O;X/ be a Heegaard diagram for a knot or a link L with l

components, where O and X are sets of k� l basepoints. Let S be the set of generators
of HL . The knot Floer complex CFK�.HL/ is generated over F2ŒU1; : : : ;Uk � by S,
with differential

@�.x/D
X
y2S

X
B2z�2.x;y/

ind BD1

#MB.x;y/
Y

Oi2O

.U
nOi

.B/

i / �y ;

where z�2.x;y/ is the set of homology classes from x to y which may cross both O
and X. The complex has a differential grading called the Maslov grading. As a relative
grading, it is defined by

M 0.x/�M 0.y/D ind B � 2nO.B/;

M 0.Uix/DM 0.x/� 2;

for any x;y 2 S and B 2 z�2.x;y/. The complex also comes endowed with an
Alexander filtration, defined by

A0.x/�A0.y/D nX.B/� nO.B/;

A0.Uix/DA0.x/� 1;

and normalized so that

(1) #fx 2S jA0.x/D ag D #fx 2S jA0.x/D�ag mod 2:
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The associated graded object gCFK�.HL/ is also generated over F2ŒU1; : : : ;Uk �

by S, and its differential is given by

@�.x/D
X
y2S

X
B2z�2.x;y/

ind BD1
nX.B/D0

#MB.x;y/
Y

Oi2O

.U
nOi

.B/

i / �y :

The Alexander filtration descends to a grading on gCFK�.HL/. The bigraded homol-
ogy

HFK�.L/ WDH�.gCFK�.HL//

is an invariant of L.

The Maslov grading is normalized so that after setting each Ui to zero we get

H�.CFK�.HL/=.UiD0//ŠH�Ck�1�.l�1/=2.T
k�1/;

where � denotes the grading M 0 and we ignore the Alexander filtration on CFK�.HL/.

One can also set each Ui D 0 to obtain the filtered chain complex over F2 ,

bCFK .HL/ WD CFK�.HL/=.UiD0/:

The associated graded object to bCFK .HL/ is g bCFK .HL/, with differential

y@.x/D
X
y2S

X
B2z�2.x;y/

ind BD1
nX.B/D0DnO.B/

#MB.x;y/ �y :

We denote its homology, which is an invariant of L, by bHFK .L/ WDH�.g bCFK .HL//.

There is another grading, which we refer to as the X–normalized grading, defined by

N 0.x/�N 0.y/D ind B � 2nX.B/;

N 0.Uix/DN 0.x/;

and normalized so that

H�.gCFK�.L/=.UiD1//ŠH�Ck�1�.l�1/=2.T
k�1/;

where � denotes the grading N 0 .

It turns out that

(2) N 0 DM 0
� 2A0� .k � l/;

so instead of using (1) to normalize the Alexander grading, we can use (2).

Next, we put the grading from Section 3.4 in the context of grid diagrams.
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Figure 31: The generator fO on a grid diagram G (left) and the correspond-
ing generator on the shadow for G (right)

Let P be a shadow, let G D G.P/ be the corresponding grid and G� be the grid
corresponding to P� . We define a few special generators below.

Let fO be the generator of G formed by picking the top-right corner of each O — see
Figure 31 — and let f 0O be the generator formed by picking the bottom-left corner of
each O . Similarly, let f �O be the generator of G� formed by picking the bottom-left
corner of each O , together with the top-right corner of the grid G� — see Figure 32 —
and let f 0 �O be the generator formed by picking the top-right corner of each O , together
with the bottom-left corner of the grid G� .

Let fX and f 0X be the generators of G formed by picking the top-right (respectively
bottom-left) corner of each X . Similarly, let f �X and f 0�X be the generators of G�

formed by picking the bottom-left (respectively top-right) corner of each X , and the
top-right (respectively bottom-left) corner of the grid.

Lemma 6.2 For the generators defined above, we have

M.fO/DM.f 0O/DM.f �O/DM.f 0�O /D�jOj;

M.fX/DM.f 0X/D inv.��1/� inv.��1; !/C inv.!/;

M.f �X/DM.f �X/D� inv.��1/C inv.��1; !/� inv.!/� jOj;

A.fX/D
1
2
M.fX/DA.f 0X/;

A.f �X/D
1
2
M.f �X/DA.f 0�X /:

Proof Write out fO D .S;T; �/. Let t D jOj, let g1; : : : ;gt be the dashed (green)
strands in the graphical representation for the shadow P , and let f1; : : : ; ft be the
strands for f , where fi is the strand that starts immediately below and ends immediately
above gi .
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Figure 32: The generator f �O on a grid diagram G� (left) and the correspond-
ing generator on the mirror-shadow for G� (right)

Recall that inv.�/ counts intersections between pairs in ff1; : : : ; ftg, inv.!/ counts
intersections between pairs in fg1; : : : ;gtg, and inv.�; !/ counts the total number of
intersections between a strand in ff1; : : : ; ftg and a strand in fg1; : : : ;gtg.

Observe that inv.�/ D inv.!/, since each fi is just a perturbation of gi . Also, fi

intersects gj exactly when i ¤ j and gi intersects gj , or i D j , so inv.�; !/ D
2 inv.!/CjSOj. Thus,

M.fO/D inv.�/� inv.�; !/C inv.!/

D inv.!/� 2 inv.!/� jSOjC inv.!/

D�jSOj:

Similarly, write out f �O D .S ;T ; �/. Again let t D jOj, let g1; : : : ;gt be the dashed
(green) strands in the graphical representation for the shadow P� , and let f1; : : : ; ftC1

be the strands for f , where fi is the strand that starts and ends immediately below
gi for 1� i � t , and ftC1 connects the highest point to the left to the highest point
to the right. Clearly inv.�/D inv.!/ and inv.�; !/D 2 inv.!/, since this time, for a
fixed i , fi and gi do not intersect, so

M.f �O/D� inv.�/C inv.�; !/� inv.!/� jSOj D �jSOj:

The proof for f 0O and f 0�O is analogous.

Now write fX D .S;T; �/. With notation as above, it is clear that each fi is a
perturbation of the corresponding double (orange) strand for X. Reasoning as above,
we see that

M.fX/D inv.�/� inv.�; !/C inv.!/D inv.��1/� inv.��1; !/C inv.!/:
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Next,

A.fX/D
1
2

�
inv.�; ��1/� inv.�; !/C inv.!/� inv.��1/� jTXj

�
D

1
2

�
2 inv.��1/CjTXj � inv.��1; !/C inv.!/� inv.��1/� jTXj

�
D

1
2

�
inv.��1/� inv.��1; !/C inv.!/

�
D

1
2
M.fX/:

The proof for f �X , f 0X and f 0�X is analogous.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1 Each shadow Pıi has a corresponding grid diagram Gıi .
Both for grids and for shadows, we abbreviate the notation for the (bi)modules
CTA�;CDTD� , etc by CT� . For shadows and the corresponding grids we consider the
type A or type AA structures, and for mirror-shadows and the corresponding grids we
consider the type D or type DD structures. By Propositions 4.7 and 4.11, the modules
CT�.Pıi / and CT�.Gıi / are isomorphic. The type A or AA structures CT�.Gıi / are
defined by counting empty rectangles and certain sets of half-rectangles that do not
intersect X, whereas the type D or DD structures are defined by counting empty
rectangles and (individual) half-rectangles that do not intersect X. So the differential
on CT�.Gı

1
/� � � �� CT�.Gın/ counts empty rectangles in the diagram Gı

1
[ � � � [Gın

that do not intersect X, hence CT�.Gı
1
/� � � ��CT�.Gın/ is isomorphic to the complex

gCFK� associated to the closure of the nice diagram Gı
1
[ � � � [Gın , with an X and

an O added in the new region, which represents L[U . It remains to check that this
last isomorphism preserves the Maslov and Alexander gradings.

Let H be the Heegaard diagram obtained by closing up the plumbing of annuli
Gı

1
[� � �[Gın . We argue that the absolute Maslov grading on H (obtained by adding the

gradings on each Gıi ) is correct. Let ki be the number of O s in each grid Gıi , and let
k D

Pn
iD1 ki . Let xO D f

�
O1

�fO2
�f 0�O3

�f 0O4
�f �O5

� � � ��f ıOn
(the decoration

ı depends on n mod 4, as specified according to the first four factors). By Lemma 6.2,
M.xO/DM.f �O1

/CM.fO2
/C � � �CM.f ıOn

/D�jO1j � � � � � jOnj D �k .

Form a set of  –circles  by performing handleslides (which are allowed to cross X
but not O ) of ki of the ˇ–circles and a perturbation of one ˇ–circle for each Gi , as
in Figure 33. We look at the holomorphic triangle map (see [19; 17]) associated to
.†;˛;ˇ;;O/. Observe that .†;ˇ;;O/ is a diagram for .S1 �S2/#k , and let ‚
be the top-dimensional generator (on the diagram this is the set of intersection points at
which the small bigons start). Let y be the generator of .†;˛;;O/ nearest to xO .
There is a holomorphic triangle that maps xO˝‚ to y ; see Figure 33.
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Figure 33: The union H of three grid diagrams: G�
1

(top), G2 (bottom left)
and G�3 (bottom right). The black dots form the generator xO , the purple
squares form y and the cyan triangles form ‚ .

Observe that .†;˛;;O/ is a diagram for S3 with 2k generators, for which the
differential vanishes (each small bigon ending at an intersection point in y is canceled by
the corresponding horizontal annulus with the small region containing an O removed).
By looking at the small bigons, one sees that y is the bottom-most generator of
.†;˛;;O/, so its Maslov grading is �kC 1

2
l , where l D jLj D jL[U j � 1. Since

xO , ‚, and y are connected by a Maslov index zero triangle, the Maslov grading of
xO should be M 0.xO/D�kC 1

2
l too.

Next, we argue that the Alexander grading on H is correct. For that purpose, let
xX D f �X1

� fX2
� f 0�X3

� f 0X4
� � � � � f ıX . A priori, A0.xX/ D A.xX/ C s D

A.f �X1
/C � � � CA.f ıXn

/C s , where s is a constant. We show the shift s is zero. By
Lemma 6.2,

A.xX/DA.f �X1
/CA.fX2

/C � � �CA.f ıXn
/

D
1
2
M.f �X1

/C 1
2
M.fX2

/C � � �C 1
2
M.f ıXn

/D 1
2
M.xX/;

and we just showed that M �M 0�
1
2
l , so A.xX/D

1
2

�
M 0.xX/�

1
2
l
�
. On the other

hand, using the holomorphic triangles argument above, we see that the X–normalized
grading of xX is N 0.xX/D�kC 1

2
l . The closed diagram has one additional X and

one O in the outside region that we closed off, for a total of kC 1 basepoints of each
type, so, by (2),

A0.xX/D
1
2

�
M 0.xX/�N 0.xX/� ..kC 1/� .l C 1//

�
D

1
2

�
M 0.xX/C

1
2
l
�
;

so
A.xX/DA0.xX/�

1
2
l:
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7 Matched circles and their algebras

Just as closed 3–manifolds and knots or links in closed 3–manifolds can be represented
by Heegaard diagrams, and bordered 3–manifolds can be represented by bordered
Heegaard diagrams, tangles in 3–manifolds with boundary can be represented by
suitable Heegaard diagrams, which we will call bordered Heegaard diagrams for
tangles.

We define two types of (multipointed) bordered Heegaard diagrams for tangles in
3–manifolds with one boundary component. The reason we need two slightly different
diagrams is so the result after gluing is a valid closed Heegaard diagram for a link, with
the same number of ˛–curves as ˇ–curves, and with the correct number of basepoints
(this should become apparent once the reader goes through the relevant definitions and
examples). We also define Heegaard diagrams for tangles in 3–manifolds with two
boundary components. We restrict our work to the case where all boundary components
are spheres.

7.1 Matched circles

An n–marked sphere S D .S2; t1; : : : ; tn/ has a compatible handle decomposition as
follows:

� Start with nC 2 two-dimensional 0–handles h0
0
; : : : ; h0

nC1
, where the core of

h0
i is ti for 1� i � n.

� Attach 1–handles h1
1
; : : : ; h1

nC1
so that h1

i is attached to h0
i�1

and h0
i .

� Attach a 2–handle to the resulting boundary to obtain S2 .

As a first step towards building Heegaard diagrams for tangles, we represent marked
spheres by matched circles. First we define matched circles even more generally.

Definition 7.1 A marked matched circle Z is a sextuple .Z; a; �;X;O; z/ of

� an oriented circle Z ;
� 2nC 2 points a D fa1; : : : ; a2nC2g on Z labeled with order induced by the

orientation on Z ;
� a matching �W a! ŒnC 1� (where ŒnC 1� WD f1; : : : ; nC 1g) such that surgery

on Z along the matched pairs in a yields nC 2 circles;
� two sets of points, X D fX1; : : : ;Xkg and O D fO1; : : : ;Olg, and a pair of

points zD fz�; zCg in Z n a such that there is exactly one point in each circle
obtained after surgery on the matched pairs in a , and so that one of the points in
z is in the interval .a2nC2; a1/.
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O1O2
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!
Figure 34: A marked matched circle. Here n D 4 . The matching on a is
illustrated schematically with dotted lines.

See, for example, Figure 34.

Given a marked matched circle Z D .Z; a; �;X;O; z/, its negative, denoted �Z ,
is the marked matched circle Z� given by .Z0; a0; �0;X0;O0; z0/, where there is an
orientation-reversing homeomorphism f W Z!Z0 such that

� f .a/D a0 and �D �0 ıf ,

� f .zC/D .z0/� and f .z�/D .z0/C ,

� f .X/DO0 and f .O/DX0 .

In other words, �Z is obtained from Z by taking the mirror, swapping X and O and
swapping zC and z� . We will soon study Heegaard diagrams whose boundaries are
marked matched circles, and gluing two diagrams along boundary components Z1

and Z2 will be allowed exactly when Z1 D�Z2 .

A marked sphere S D .S2; t1; : : : ; tn/ is represented by the following marked matched
circle.

Definition 7.2 The marked matched circle Z.S/ associated to S is given by the
sextuple .Z; a; �;X;O; z/ with a D fa1; : : : ; a2nC2g and matching �.ai/ D i D

�.a2nC3�i/ for 1 � i � 2nC 1. The set X consists of one point in each interval
.ai ; aiC1/ on the circle Z , whenever ti has positive orientation, and the set O consists
of one point in each interval .ai ; aiC1/ on the circle Z , whenever ti has negative
orientation, for 1� i � n. The point z� is in the interval between a2nC2 and a1 , and
zC is in the interval .anC1; anC2/.

See, for example, Figure 35.

We can recover the sphere S from Z.S/ in the following way. We take a disk with
boundary Z , attach 2–dimensional 1–handles along the matched pairs in a , and fill
the resulting 2nC 2 boundary components with 2–handles. We take ft1; : : : ; tng to
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Figure 35: Examples of marked matched circles. Left: the marked matched
circle Z.S/ associated to S D .S2;�;�;C;C/ . Right: the marked matched
circle Z.S/� .

be the cores of the 2–handles that do not intersect .a2nC2; a1/ and .anC1; anC2/, and
we orient ti positively if the attaching circle for the corresponding 2–handle contains
an X marking, and negatively if the attaching circle contains an O marking. This is
the dual handle decomposition to the one described at the beginning of this section.

7.2 The algebra associated to a marked matched circle

Given a marked matched circle, we define an algebra similar to the algebras from [8; 28].
For marked matched circles associated to marked spheres, these algebras are precisely
the ones from Section 3.1.4. The reason we give another description is that the inter-
pretation in this section fits better with the geometric setup in the forthcoming sections.
Below, we use the same notation as [8, Chapter 3] for our analogous structures, and
caution the reader to remember that our matched circles are different from the ones in [8].

Definition 7.3 The strands algebra A.n; k; t/ is a free F2 –module generated by
partial permutations a D .S;T; �/, where S and T are k –element subsets of the
set Œ2nC 2� WD f1; : : : ; 2nC 2g and �W S ! T is a nondecreasing bijection such that
�.i/ � t if and only if i � t . Let Inv.�/ be the set of inversions of � , ie the set of
pairs i; j 2 S with i < j and �.j / < �.i/, and inv.�/D # Inv.�/. Multiplication on
A.n; k; t/ is given by

.S;T; �/�.U;V;  /D

�
.S;V;  ı�/ if T D U and inv.�/Cinv. /D inv. ı�/;
0 otherwise.

For an inversion c D .i; j / of � , define �c by �c.i/ D �.j /, �c.j / D �.i/, and
�c.l/D �.l/ for l ¤ i; j . The differential on A.n; k; t/ is given by

@.S;T; �/D
X

c2Inv.�/
inv.�c/Dinv.�/�1

.S;T; �c/:
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Compare with [8, Section 3.1.1]. We can represent a generator .S;T; �/ by a strands
diagram of horizontal and upward-veering strands. Compare with [8, Section 3.1.2]. In
this notation, the product becomes concatenation, where double crossings are set to
zero. The differential corresponds to resolving crossings, subject to the same double
crossing rule.

The ring of idempotents I.n; k; t/�A.n; k; t/ is generated by all elements of the form
I.S/ WD .S;S; idS / where S is a k –element subset of Œ2nC 2�.

Fix a marked matched circle Z D .Z; a; �;X;O; z/ with jaj D 2nC 2. Recall that
one of the points in z is on the interval .a2nC2; a1/, and let t be the number for which
the other point in z is on the interval .at ; atC1/.

If we forget the matching on the circle for a moment we can view A.n; t/D
L

i A.n; i; t/
as the algebra generated by certain sets of Reeb chords in .Z n z; a/: We can view
a set � of Reeb chords, no two of which share initial or final endpoints, as a strands
diagram of upward-veering strands. For such a set �, we define the strands algebra
element associated to � to be the sum of all ways of consistently adding horizontal
strands to the diagram for �, and we denote this element by a0.�/ 2 A.n; t/. The
basis over F2 from Definition 7.3 is in this terminology the nonzero elements of the
form I.S/a0.�/, where S � a .

For a subset s of ŒnC 1�, a section of s is a set S � ��1.s/ such that � maps S

bijectively to s . To each s � ŒnC 1� we associate an idempotent in A.n; t/ given by

I.s/D
X

S is a section of s

I.S/:

Let I.Z/ be the subalgebra generated by all I.s/, and let I D
P

s I.s/.

Definition 7.4 The algebra A.Z/ is the subalgebra of A.n; t/ generated (as an alge-
bra) by I.Z/ and by all a.�/ WD Ia0.�/I . We refer to a.�/ as the algebra element
associated to �.

Note that this definition, which is what we use for the tilde version of our invariants,
does not take into account the X and O labels on Z .

The nonzero elements I.s/a.�/ form a basis for A.Z/ over F2 . Note that for a
nonzero generator I.s/a.�/, there is a unique primitive idempotent I.t/ such that
I.s/a.�/D I.s/a.�/I.t/. We can represent a generator I.s/a.�/ by a strands diagram
by adding dashed horizontal strands to the strands diagram for �, one for each horizontal
strand that appears in the expansion of I.s/a.�/ as a sum of elements of A.n; t/.
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As a special case, let Z.S/ D .Z; a; �;X;O; z/ be a marked matched circle for a
marked sphere S , with jaj D 2nC2. Recall the definition of a shadow (Definition 3.1),
and let E be the idempotent shadow corresponding to the interval of Z.S/ containing
a1; : : : ; anC1 , ie .nC 1; nC 1; idSX ; idSO / where

SO D
˚
sC 1

2
j there is an X between as and asC1

	
and SX D

˚
11

2
; : : : ; n1

2

	
n SO . Recall the definition of the algebra A.E/ from

Section 3.1.4. Let yA.E/ WD A.E/=.UiD0/ be the algebra obtained from A.E/ after
setting all Ui to zero.

Proposition 7.5 For E and Z.S/ as above, the algebras yA.E/ and A.Z.S// are
isomorphic.

Proof As long as we do not need to keep track of the bigrading, we can think of
yA.E/ simply as the algebra A.yE/ for the shadow yE D .nC1; nC1; idSX ; idSO /, where
SX D

˚
11

2
; : : : ; n1

2

	
and SO D∅.

We first outline the correspondence of generators. Suppose .S;T; �/ is a generator
for yA.E/. The corresponding element I.s/a.�/ 2 A.Z.S// has starting idempotent
s D S and the following set of Reeb chords �: the Reeb chord from i to �.i/ if
�.i/ > i , and the Reeb chord from 2nC 3� i to 2nC 3��.i/ if �.i/ < i .

Figure 36: Example of a generator of A.Z/ , where Z is the circle in
Figure 35 (left), and the corresponding generator of A.E/ for the idempotent
shadow E associated to Z (right)

Note that since there is a double (orange) line at every half-integer height in the diagram
of yE , the concatenation of two strand diagrams is automatically zero whenever an
upward-veering and a downward-veering strand are concatenated. Thus, the concate-
nation of two strand diagrams in yA.E/ is nonzero exactly when it is nonzero for the
corresponding generators in A.Z.S//.
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The differential of yA.E/ is obtained by summing over all the ways of resolving a
crossing, where resulting double crossings are set to zero. Again having a double line
at every half-integer height means that resolving crossings between an upward-veering
strand and a downward-veering strand is no longer allowed. The allowed resolutions are
only those of crossings between two upward-veering strands, two downward-veering
strands, an upward-veering and a horizontal strand, or a downward-veering and a
horizontal strand. The first two kinds correspond to resolving a crossing between two
Reeb chords in the lower half or upper half of a strand diagram, respectively, and the
other two kinds correspond to resolving a crossing between a Reeb chord in the lower
half, respectively upper half, of a strand diagram and a horizontal strand in a section
of s .

8 Heegaard diagrams

We represent tangles by a type of Heegaard diagrams, which we call multipointed
bordered Heegaard diagrams for tangles, or just tangle Heegaard diagrams. In a sense,
our work in this section is a variation of the bordered Heegaard diagrams from [8; 9],
and many of the statements we make and their proofs are analogous to the ones in
[8; 9]. We have tried to provide detailed references, and we also encourage the reader
to compare our subsections with the corresponding ones in [8, Chapter 4; 9, Chapter 5].

8.1 3–manifolds with one boundary component

Definition 8.1 A type 1 multipointed bordered Heegaard diagram for a tangle, or
simply a type 1 tangle Heegaard diagram, is a sextuple HD .†;˛;ˇ;X;O; z/ where

� † is a compact surface of genus g with one boundary component;

� ˛D f˛a
1
; : : : ; ˛a

2nC1
; ˛c

1
; : : : ; ˛c

t g is a set of pairwise disjoint, embedded curves:
2nC1 arcs, each with boundary on @†, and t closed curves in the interior of †;

� ˇ is a set of t C n pairwise disjoint curves embedded in the interior of †;

� X and O are two .tC2n�g/–tuples of points in † n .˛[ˇ/;

� zD fz�; zCg is a set of two oppositely oriented points on @† n˛;

subject to the following conditions:

� ˇ spans a g–dimensional subspace of H1.†IZ/.

� f˛c
1
; : : : ; ˛c

t g span a g–dimensional subspace of H1.†IZ/, and along with the
arcs, ˛ span a gC1–dimensional subspace of H1.†; @†IZ/.

Geometry & Topology, Volume 20 (2016)



3288 Ina Petkova and Vera Vértesi

� f˛a
1
; : : : ; ˛a

2nC1
g induce a concentric matching on @†. Specifically, they are

labeled so that we can order the points on @˛ according to the orientation of @†
as a1; : : : ; a4nC2 so that @˛a

i D fai ; a4nC3�ig.

� z� lies in the interior of the segment with boundary a4nC2 and a1 of @† n˛,
and zC lies on the segment with boundary a2nC1 and a2nC2 .

� Each of the t�g components of †n˛ that do not meet @† contains one X 2X
and one O 2 O , and each of the 2n components of † n ˛ that contain two
segments of @†n˛ contains either an X in the interior and an O on the segment
of @† n˛ with the lower indexed endpoints, or an O in the interior and an X

on the segment of @† n˛ with the lower indexed endpoints.

� Each of the tCn�g components of †nˇ that do not meet @† contains exactly
one X and one O . The unique component of † nˇ that meets @† contains n

X s and n O s on @†.

Figure 37 is an example of a type 1 Heegaard diagram for a tangle.

a1

a2

a3

a4

a5

a6

z�

zC

Figure 37: A type 1 tangle Heegaard diagram

A type 1 tangle Heegaard diagram gives rise to a pair .Y; T /, where Y is a 3–manifold
with @Y ŠS2 and T is marked 2n–tangle in Y . We outline the topological construction
below.

Let S be the marked sphere associated to .Y; T /. Note that @H Š Z.S/, so we
begin by building S from Z.S/. Next, let Œ��; 0��Z be a collar neighborhood of
@†, so that f0g �Z is identified with @†. Choose a neighborhood Z � Œ1; 2� of
Z in S , so that Z � f2g is in the interior of the 0–handle from the decomposition
described right after Definition 7.2. Glue †� Œ1; 2� to Œ��; 0��S so that the respective
submanifolds .Œ��; 0��Z/� Œ1; 2� and Œ��; 0�� .Z � Œ1; 2�/ are identified. Call the
resulting 3-manifold Y0 .
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Now attach a 3–dimensional 2–handle to each ˇi�f2g�@Y0 and to each ˛c
i �f1g�@Y0

to obtain a manifold Y1 . Next, join each ˛a
i � f1g to the core of the corresponding

handle in f��g�S along their boundary to form a circle, and attach a 2–handle to each
such circle. The resulting manifold, call it Y2 , has the following boundary components:

� t C n�g spheres which meet †� f2g but do not meet f��g �S .

� A sphere which meets both †� f2g and f��g �S .

� t �g spheres which meet †� f1g but do not meet f��g �S .

� 2n spheres which meet both †�f1g and f��g�S but do not meet f��g� z�
f��g �S .

� A sphere which meets both † � f1g and .��; z�/ 2 f��g � S , and a sphere
which meets both †� f1g and .��; zC/ 2 f��g �S .

� The sphere f0g �S � Œ��; 0��S .

Glue 3–balls to all but the last sphere. Call the result Y .

Last, we construct a tangle T � Y . Draw arcs from the X s to the O s in .†nˇ/�
˚

3
2

	
,

and push the interiors of the arcs into .† n ˇ/�
�

3
2
; 2
�
. Draw arcs from O s to X s

in .† n˛/�
˚

3
2

	
. The union of all arcs is an oriented, marked 2n–tangle, where the

marking, ie the ordering on @T � @Y comes from the order in which those X s and O s
that are on @† appear along .a1; a2n/�Z �

˚
3
2

	
� S . Observe that drawing an arc

from z� to zC in .† nˇ/�
˚

3
2

	
produces a 1–component tangle which is unlinked

from T , and, together with an arc in the 3–handle that was glued to the sphere which
meets both †� f2g and f��g �S , it bounds a disk away from T that lies entirely in
that 3–handle. See, for example, Figure 38.

Definition 8.2 Given a marked sphere S D .S2; t1; : : : ; tn/, we say that a Morse
function f on S2 (with an implicit choice of a Riemannian metric g ) is compatible
with S if

(1) t1; : : : ; tn are index 0 critical points of f ;

(2) f has nC 2 index 0 critical points in total, t0 , t1; : : : ; tn , tnC1 ;

(3) f has nC 1 index 1 critical points p1; : : : ;pnC1 , with pi flowing down to
ti�1 and ti ;

(4) f has a unique index 2 critical point.

Definition 8.3 Given a tangle .Y; T /, we say that a self-indexing Morse function f
on Y (with an implicit choice of a Riemannian metric g ) is compatible with .Y; T / if
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Y @Y Š S2

T

Figure 38: Building a tangle .Y; T / from a Heegaard diagram

(1) @Y is totally geodesic, rf is parallel to @Y , f j@Y is a Morse function com-
patible with S , and f jT is a Morse function, where T � Y is the underlying
1–manifold for the marked tangle T ;

(2) the index 1 critical points for @Y are also index 1 critical points for Y ;

(3) the index 0 critical points for T , along with the two additional index 0 critical
points for @Y , are precisely the index 0 critical points for Y ;

(4) the index 1 critical points for T , along with the index 2 critical point for @Y ,
are precisely the index 3 critical points for Y .

Proposition 8.4 Every pair .Y; T / has a type 1 Heegaard diagram.

Proof We describe a compatible Morse function. Choose a Morse function f 0 and
metric g0 on T which takes value 0 on @T and is self-indexing except that it takes
value 3 on the index 1 critical points. Extend to a pair .f 00;g00/ on T [ @Y , so that
f 00 is also self-indexing on @Y , except that it takes value 3 on index 2 critical points
of @Y , and is compatible with S . Extend f 00 and g00 to f and g on a neighborhood
of T [ @Y satisfying the conditions of Definition 8.3, and extend f and g arbitrarily
to a Morse function and metric on the rest of Y .
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Since Y is connected, the graph formed by flows between the index 0 and index 1

critical points is connected. In fact, since the flows from the index 1 critical points
on @Y remain on @Y , it follows that every index 0 critical point of Y 0 WDY n�.T [@Y /

is connected by an edge in this graph to an index 1 critical point of Y 0 , so we modify f
in the interior of Y 0 to cancel every index 0 critical point of Y 0 with an index 1 critical
point of Y 0 . Similarly, we eliminate all index 3 critical points of Y 0 .

Finally, given these f and g , we construct a type 1 tangle Heegaard diagram. Start
with Heegaard surface †D f �1

�
3
2

�
, oriented as the boundary of f �1

��
0; 3

2

��
. Let ˛

be the set of points on † that flow down to the index 1 critical points, label the arcs ˛a

and their endpoints compatibly with S , and let ˇ be the set of points on † which flow
up to the index 2 critical points. Mark the positive intersections of T \† with O s,
and the negative intersections with X s. Also place an X in each region .ai ; aiC1/ of
@†n˛[ .a1; a2nC1/ if the points in that region flow down to a positive endpoint ti of
the tangle T , and an O if those points flow to a negative endpoint ti of T . Finally,
place a point labeled z� in .a4nC2; a1/, and a point zC in .a2nC1; a2nC2/.

The Morse theory construction implies the following proposition.

Proposition 8.5 Any two type 1 tangle Heegaard diagrams for a given tangle .Y; T /
are related by a sequence of Heegaard moves:

� Isotopies of the ˛–curves and ˇ–curves, not crossing @†[X[O .
� Handle slides of ˛–curves over ˛–circles and ˇ–circles over ˇ–circles.
� Index one/two stabilizations (and their inverses, destabilizations) in the interior of
†: forming the connected sum with a torus with one ˛–circle and one ˇ–circle
meeting transversely in a single point.

� Index zero/three stabilizations (and their inverses, destabilizations) in the interior
of †: replacing a neighborhood of an X with one ˛–circle and one ˇ–circle,
isotopic to each other and intersecting in two points, and adding an O in the
middle of the three new regions, and an X in each of the new side regions, or
replacing a neighborhood of an O with such ˛– and ˇ–curves, along with an X

in the middle new region, and an O in each side region (see Figure 39).

Proof The proof follows from the Morse calculus used in the proofs of [21, Proposi-
tion 3.3; 8, Proposition 4.10].

We also define type 2 tangle Heegaard diagrams. The definition is slightly different
from that of type 1 diagrams, so that when one glues a type 1 and a type 2 diagram
that agree along the boundary, the resulting closed diagram is a valid Heegaard diagram
for a link.
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! !

Figure 39: Index zero/three stabilization

Definition 8.6 A type 2 multipointed bordered Heegaard diagram for a tangle is a
sextuple HD .†;˛;ˇ;X;O; z/, where

� † is a compact surface of genus g with one boundary component;

� ˛D f˛a
1
; : : : ; ˛a

2nC1
; ˛c

1
; : : : ; ˛c

t g is a set of pairwise disjoint, embedded curves:
2nC1 arcs, each with boundary on @†, and t closed curves in the interior of †;

� ˇ is a set of t C nC 1 pairwise disjoint curves embedded in the interior of †;

� X and O are two .tC2n�gC1/–tuples of points in † n .˛[ˇ/;

� z is an oriented arc in † n .˛[ˇ/ with boundary on @† n˛;

subject to the following conditions:

� ˇ span a g–dimensional subspace of H1.†IZ/.

� f˛c
1
; : : : ; ˛c

t g span a .g�1/–dimensional subspace of H1.†IZ/, and along with
the arcs, ˛ span a g–dimensional subspace of H1.†; @†IZ/.

� f˛a
1
; : : : ; ˛a

2nC1
g induce a concentric matching on @†, and they are labeled

so that we can order the points on @˛ according to the orientation of �@† as
a1; : : : ; a4nC2 so that @˛a

i D fai ; a4nC3�ig.

� zC WD @C.z/ lies in the interior of the segment with boundary a4nC2 and a1 of
@† n˛, and z� WD @�.z/ lies on the segment with boundary a2nC1 and a2nC2 .

� Each of the t �gC 1 components of † n˛ that do not meet @† contains one
X 2X and one O 2O , and each of the 2n components of † n˛ that meet @†
but do not meet z contains either an X in the interior and an O on the segment
of @† n˛ with the lower indexed endpoints, or an O in the interior and an X

on the segment of @† n˛ with the lower indexed endpoints.

� Each of the t C n�gC 1 components of † nˇ that do not meet @† contains
exactly one X and one O . The unique component of † n ˇ that meets @†
contains n X s and n O s on @†.
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a1

a2

a3

a4

a5

a6

zC

z�

Figure 40: A type 2 tangle Heegaard diagram

Figure 40 is an example of a type 2 tangle Heegaard diagram.

A type 2 tangle Heegaard diagram gives rise to a pair .Y; T / of a 3–manifold Y with
@Y Š S2 and a marked tangle T . The topological construction is similar to the one
for a type 1 diagram.

We build the manifold Y2 by following the type 1 construction, except this time
@HŠ Z.�S/� , where S is the marked sphere associated to .Y; T /. The difference in
the types of boundary components of Y2 is that there are now t �gC 1 spheres which
meet †� f1g but do not meet f��g �S , and there is one single sphere which meets
both †� f1g and f��g � fzC; z�g � f��g �S . We again glue 3–balls to all spheres
except f0g �S to obtain Y .

The tangle T � Y is again constructed by connecting the X s and O s. This time its
marking comes from the order in which the X s and O s on @† appear along �@†.
The oriented arc z�

˚
3
2

	
is a 1–component boundary-parallel tangle which is unlinked

from T .

We cannot use Morse theory directly to prove the statements that follow. One way to
explain where the problem lies is that if we start with a Morse function for @Y , then
two index 0 critical points on @Y that would correspond to zC and z� belong to the
same 0–handle in the handle decomposition for Y specified by H .

Proposition 8.7 Every .Y; T / has a type 2 tangle Heegaard diagram.

Proof Let H be a type 1 diagram for .�Y;�T /. We perform the following series of
moves near the boundary of the diagram, as in Figure 41. Perform an index one/two
stabilization near zC (Figure 41(b)). Denote the new ˛–circle by ˛0 , and the new
ˇ–circle by ˇ0 . Slide all ˛–arcs over ˛0 so that now ˇ0 crosses them once each, near
a1; : : : ; a2nC1 (Figure 41(c)). Connect z� to zC by an arc z that goes once over the
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new handle parallel to ˇ0 (Figure 41(d)). Remove ˛0 (Figure 41(e)). Call the resulting
diagram H0 . Observe that z does not intersect any ˛– or ˇ–curves. The diagram �H0

is a type 2 tangle Heegaard diagram for .Y; T /.

..
.

..
.

..
.

..
.

..
.

(a) (b) (c) (d) (e)

Figure 41: Transforming a type 1 diagram to a type 2 diagram

We will say that a type 2 diagram like �H0 , obtained from a type 1 diagram as above,
is in type 1 position.

Proposition 8.8 Any two type 2 tangle Heegaard diagrams for a given tangle .Y; T /
are related by a sequence of Heegaard moves:

� isotopies of the ˛–curves and ˇ–curves, not crossing @†[X[O[ z;

� handle slides of ˛–curves over ˛–circles and ˇ–circles over ˇ–circles;

� index one/two stabilizations and destabilizations in the interior of †;

� index zero/three stabilizations and destabilizations in the interior of †.

To prove this proposition, we make use of the following lemma.

Lemma 8.9 Any type 2 diagram can be put in type 1 position.

Proof Let H D .†;˛;ˇ;X;O; z/ be a type 2 diagram for a pair .Y; T /. The idea
is to find a curve on † which is disjoint from ˛, bounds a disk in the ˛–handlebody,
and intersects z exactly once, and use it as a guide to modify the Heegaard diagram.
We exhibit one such curve below.

Let ˛0 � † be an embedded circle which is a push-off of the union of ˛a
2nC1

and
.a2nC1; a2nC2/ � @† into † and does not intersect ˛, see Figure 42 and the more
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schematic first diagram in Figure 43. We will use ˛0 as a guide while performing a
series of Heegaard moves.

Note that ˛0 bounds a disk in the ˛–handlebody. This disk is a push-off of the disk
D DD1[D2 , where D1 is the disk on @Y bounded by the interval .a2nC1; a2nC2/

and the core of the 1–handle of @Y attached at a2nC1 and a2nC2 , and D2 is the core of
the 2–handle for ˛a

2nC1
from the construction of Y2 . So H0D .†;˛[˛0;ˇ;X;O; z/

still specifies the same pair .Y; T /, or, to be more precise, �.†;˛[˛0;ˇ;X;O; @z/
is a type 1 diagram for .�Y;�T /.

Also note that ˛0 intersects z exactly once, near z� , so, since ˛\zD∅, no ˛–circle in
˛ is homologous to ˛0 in H1.†IZ/. This means that, after sliding ˛–curves over ˛0 if
necessary, we can draw H in the following way. Near the boundary we see @H� Œ0; �/,
where @H�f0g is the boundary of H . There is a 1–handle for † with feet attached at
.zC; �/ and .z�; �/, ˛0 is a meridian of that 1–handle, z goes once over the handle.
There may also be multiple ˇ–curves going over the 1–handle. See Figure 43(b). We
continue the proof with such more schematic pictures drawn in a plane.

We claim that, after an isotopy of ˇ if necessary, there is some ˇ0 � ˇ which inter-
sects ˛0 exactly once. Close z to a circle xz by connecting zC to z� along @†, going
through a1; : : : ; a2nC1 . Since ˛0 and xz are two circles on † intersecting transversely
in one point, the neighborhood of ˛0[xz in † is a punctured torus T ; see Figure 43(c).
Note ˇ spans a g–dimensional subspace of H1.†/, so † nˇ only contains genus 0

pieces, so there is at least one ˇ–circle; pick one and call it ˇ0 , cutting the punctured
torus into a genus 0 surface. No ˇ can intersect z or @†, so ˇ0 cannot intersect xz .
Thus ˇ0\T is homologous to xz in H1.T; @T /, so it can be isotoped to only intersect ˛0

once. If any other ˇ–curves intersect ˛0 , slide them over ˇ0 , so that ˇ0 is the only
curve intersecting ˛0 . Now the diagram near the boundary looks like what we described

˛0

Figure 42: The circle ˛0 and the disk it bounds
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..

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

...
...

...
...

..
.

(a) (b) (c) (d) (e) (f) (g)

Figure 43: Putting a type 2 diagram in type 1 position. The last diagram is
the mirror of the corresponding type 1 diagram.

in the previous paragraph, except there is exactly one ˇ–curve going over the 1–handle.
See Figure 43(d).

Since ˇ spans a g–dimensional subspace of H1.†/, all components of † n .ˇ [ z/
have genus zero. In particular, the region of † n .ˇ [ z/ that contains xz is planar,
with boundary components xz , ˇ0 and possibly some other ˇ–circles. See Figure 43(e)
(˛–curves omitted from the picture away from the boundary). Slide ˇ0 over each
ˇ–circle in that region to move it close to the boundary of the diagram, ie so that it is a
parallel push-off of xz into the interior of †; see Figure 43(f). Remove ˛0 , which only
served as a guide along the proof. See Figure 43(g). The resulting diagram is in type 1

position.

Proof of Proposition 8.8 Let H1 and H2 be two type 2 diagrams for the same pair
.Y; T /. By Lemma 8.9, both can be put in type 1 positions H0

1
and H0

2
by a sequence

of the moves described in Proposition 8.8. Let H00
1

and H00
2

be the corresponding type 1

diagrams, so that H0i D�H
00
i away from the boundary and the special 1–handle from

Proposition 8.7.

Since H00
1

and H00
2

are related by a sequence of moves away from the boundaries,
corresponding moves (the reflections of the original moves) can be performed between
H0

1
and H0

2
away from the “neighborhood” of the boundary containing z and the

special ˇ–circle from the proof of Lemma 8.9, ie the ˇ–circle shown in Figure 43(g).
Thus, H1 and H2 are related by a sequence of Heegaard moves.

8.2 3–manifolds with two boundary components

For a tangle in a manifold Y with @Y Š S2qS2 , we describe a Heegaard diagram
with two boundary components. We will also want to keep track of a framed arc
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connecting the two boundary components of Y , by means of two arcs z1 and z2 that
will connect the two boundary components of the Heegaard diagram.

Definition 8.10 A multipointed bordered Heegaard diagram with two boundary com-
ponents for a tangle is a sextuple HD .†;˛;ˇ;X;O; z/, where

� † is a compact surface of genus g with two boundary components;
� ˛ D f˛0

1
; : : : ; ˛0

mC1
; ˛1

1
; : : : ; ˛1

nC1
; ˛c

1
; : : : ; ˛c

t g is a set of pairwise disjoint,
embedded curves: mC nC 2 arcs (where m and n have the same parity),
each with boundary on @†, and t closed curves in the interior of †;

� ˇ is a set of tC 1
2
.mCn/C1 pairwise disjoint curves embedded in the interior

of †;
� X and O are two .tCmCn�gC1/–tuples of points in † n .˛[ˇ/
� z D fz1; z2g is a set of two oriented arcs in † n .˛ [ ˇ/ with boundary on
@† n˛;

subject to the following conditions:

� ˇ span a g–dimensional subspace of H1.†IZ/.
� f˛c

1
; : : : ; ˛c

t g span a .g�1/–dimensional subspace of H1.†IZ/, and along with
the arcs, ˛ span a .gC1/–dimensional subspace of H1.†; @†IZ/.

� f˛0
1
; : : : ; ˛0

mC1
g induce a concentric matching on one component of @†, and

they are labeled so that we can order their endpoints according to the orientation of
�@† as a0

1
; : : : ; a0

2mC2
so that @˛0

i Dfa
0
i ; a

0
2mC3�i

g; f˛1
1
; : : : ; ˛1

nC1
g induce a

concentric matching on the other component of @†, and they are labeled so that
we can order their endpoints according to the orientation of @† as a1

1
; : : : ; a1

2nC2

so that @˛1
i D fa

1
i ; a

1
2nC3�i

g.
� zC

1
WD @C.z1/ lies in the interior of the segment with boundary a0

2mC2
and a0

1

of @†n˛, and z�
1
WD @�.z1/ lies on the segment with boundary a1

2nC2
and a1

1
;

zC
2
WD @C.z2/ lies in the interior of the segment with boundary a0

mC1
and a0

mC2

of @†n˛, and z�
2
WD @�.z2/ lies on the segment with boundary a1

nC1
and a1

nC2
.

� Each of the t �gC 1 components of † n˛ that do not meet @† contains one
X 2X and one O 2O , and each of the mC n components of † n˛ that meet
@† but do not meet z contains either an X in the interior and an O on the
segment of @†n˛ with the lower indexed endpoints, or an O in the interior and
an X on the segment of @† n˛ with the lower indexed endpoints.

� Each of the t C 1
2
.mC n/� gC 1 components of † nˇ that do not meet @†

contains exactly one X and one O . The unique component of † nˇ that meets
@† contains 1

2
.mC n/ X s and 1

2
.mC n/ O s on @†.
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We denote the component of @H containing ˛0
i by @0H , and the component of @H

containing ˛1
i by @1H .

Figure 44 is an example of a tangle Heegaard diagram with two boundary components.

A tangle Heegaard diagram with two boundary components gives rise to a pair .Y; T / of
a 3–manifold Y with @Y Š S2

0
qS2

1
and a marked .m; n/–tangle T , with @0T � S2

0

and @1T � S2
1

. We describe the topological construction below.

Let Hdr be the Heegaard diagram obtained from H by deleting a neighborhood of z2

(this process, called drilling, was introduced in [9]). The boundary of this deleted
neighborhood consists of the neighborhood z0 of z�

2
on @0H , the neighborhood z1 of

zC
2

on @1H , and two disjoint push-offs of z2 . Denote the push-off closer to a0
mC1

by
zfront

2
, and the other one by zback

2
. The boundary of Hdr is

@Hdr D .@
0H n z0/[ .@1H n z1/[ zfront

2 [ zback
2 :

It inherits the decorations of .@0H n z0/ and .@1H n z1/. We also place a basepoint
zfront on zfront

2
and zback on zback

2
.

If we ignore zfront and zback , Hdr looks like a type 2 diagram for an .mCn/–tangle,
except that there is one extra ˛–arc.

We first build the pair .Ydr; Tdr/ for Hdr as we would for any type 2 diagram. We obtain
.Y; T / from .Ydr; Tdr/ by attaching a 3–dimensional 2–handle to the boundary sphere
along the connected sum annulus arising from the decomposition @Hdr D @

0H # @1H .
More precisely, the attaching circle is the union of the two gradient flow lines from the
index 2 critical point passing through zfront and zback .

a0
1

a0
2

a0
3

a0
4

a0
5

a0
6

a1
1

a1
2

a1
3

a1
4

a1
5

a1
6

a1
7

a1
8

a1
9

a1
10

zC
1

z�
2

z�
1

zC
2

Figure 44: A tangle Heegaard diagram with two boundary components
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Proposition 8.11 Every .Y; T / has a tangle Heegaard diagram with two boundary
components.

Proof The idea of the proof is the same as in the proof of [9, Proposition 5.8]. Choose
an arc connecting @0Y to @1Y away from T , and remove its neighborhood. Call the
result .Ydr; Tdr/, where the ordering on Tdr inherits the ordering on @0T concatenated
with the reversed ordering on @1T . Let H0 D .†;˛;ˇ;X;O; z/ be a type 2 diagram
for .Ydr; Tdr/. Add a parallel translate of ˛a

2mC1
by pushing it so that a2mC1 is pushed

in the negative direction along @H0 , and call this curve ˛0 . Call the resulting diagram
H00 . Add a 1–handle to the two intervals of @† n ˛ between ˛a

2mC1
and ˛0 . The

resulting surgery on @† splits it into two circles. Denote the circle containing a1 by
@0†, and the other circle by @1†. Let z2 be the cocore of the 1–handle, oriented
from @0† to @1†. Relabel z to z1 , ˛a

i to ˛0
i for i � 2mC 1, ˛a

i to ˛1
2mC2nC2�i

for i > 2mC 1, and ˛0 to ˛1
2nC1

. The resulting diagram H is a diagram for .Y; T /.
Note that H00 DHdr .

In the case of two boundary components, it is no longer true that any two diagrams for
a pair .Y; T / are related by Heegaard moves. However, if we keep better track of the
parametrization of the boundary, we can still make this statement.

Definition 8.12 A strongly marked .m; n/–tangle .Y; T ;  / is a marked .m; n/–tangle
.Y; T / along with a framed arc  connecting @0Y to @1Y in the complement of T such
that  and its framing � have ends on the equators of the two marked spheres, and
we see �@0T , �@0 , �@0� and @1T , @1 , @1� in this order along each equator.

We say that a diagram H is compatible with a strongly marked tangle .Y; T ;  / if H
describes .Y; T /, and after building .Y; T / from H , the arc z1 with the framing that
points into the ˇ–handlebody yields  .

Proposition 8.13 If H and H0 specify the same triple .Y; T ;  /, then they are related
by a sequence of Heegaard moves like the ones described in Proposition 8.8.

Proof Let Hdr and H0dr be the corresponding drilled diagrams. By Proposition 8.8,
they are related by a sequence of moves away from the boundary of the Heegaard
surface, hence away from the drilling region. Performing the inverse of the drilling
operation to each diagram along the way provides a sequence of moves between H
and H0 .
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8.3 Generators

Fix a tangle Heegaard diagram HD .†;˛;ˇ;X;O; z/ of some genus g for some pair
.Y; T /. Let k WD jˇj.

Definition 8.14 A generator of H is a k –element subset x D fx1; : : : ;xkg of points
in ˛\ˇ such that there is exactly one point on each ˇ–circle, exactly one point on
each ˛–circle and at most one point on each ˛–arc.

We denote the set of generators of H by S.H/, or simply by S when H is fixed.

If H is a diagram for a 2n–tangle, then let o.x/ WD fi j x \ ˛a
i ¤ ∅g and xo.x/ WD

Œ2nC 1� n o.x/ for a generator x 2S. Even though o.x/ and xo.x/ are really index
sets, we often refer to them as the set of ˛–arcs occupied by x , and the set of ˛–arcs
not occupied by x .

If H is a diagram for an .m; n/–tangle, then for x 2S we define

o0.x/ WD fi j x\˛0
i ¤∅g; xo0.x/ WD ŒmC 1� n o0.x/;

o1.x/ WD fi j x\˛1
i ¤∅g; xo1.x/ WD ŒnC 1� n o1.x/:

Remark If H is a type 1 or a type 2 diagram, then exactly n or nC1 of the ˛–arcs,
respectively, are occupied by each generator. If H is a diagram with two boundary
components, the total number of occupied ˛–arcs on the two sides is 1

2
.mC n/C 1,

but the number on each side may vary.

8.4 Homology classes

We will soon count pseudoholomorphic curves that connect generators. Each such
curve carries a homology class, defined as follows.

Definition 8.15 Fix generators x and y , and let I be the interval Œ0; 1�. Let �2.x;y/,
the homology classes from x to y , be the elements of

H2

�
†�I �I;

�
.˛�f1g[ˇ�f0g[ .@†nz/�I/�I

�
[ .x�I �f0g/[ .y �I �f1g/

�
which map to the relative fundamental class of x� I [y � I under the composition
of the boundary homomorphism and collapsing the rest of the boundary.

Definition 8.16 Given a homology class B2�2.x;y/, its domain ŒB� is the projection
of B to H2.†;˛[ˇ[@†/. We can interpret the domain of B as a linear combination
of the components of † n .˛[ˇ/, which we call regions.
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Note that a homology class is uniquely determined by its domain.

Definition 8.17 The coefficient of each region in a domain is called its multiplicity.
Given a point p 2†n.˛[ˇ/, we denote by np.B/ the multiplicity of ŒB� at the region
containing p . Alternatively, np.B/ is the intersection number of B and fpg � I � I .

By definition, the multiplicity of ŒB� at any region D that contains a point in z is zero.

Definition 8.18 We define the set of empty homology classes as

y�2.x;y/ WD fB 2�2.x;y/ jnX .B/D 0 and nO.B/D 0 for all X 2X and O 2Og:

To define our Floer invariants, we will only be interested in this smaller set y�2.x;y/.

Concatenation at y � I , which corresponds to addition of domains, gives products
�W �2.x;y/��2.y ;w/! �2.x;w/ and �W y�2.x;y/� y�2.y ;w/! y�2.x;w/. This
operation turns �2.x;x/ and y�2.x;x/ into groups, called the group of periodic
domains and the group of empty periodic domains, respectively.

We can split the boundary of a domain ŒB� into three pieces, @@B � @†, @˛B � ˛

and @ˇB � ˇ , oriented so that @@B C @˛B C @ˇB is the boundary of ŒB�. We can
think of @@B as an element of H1.@†; @˛/. For a Heegaard diagram H with two
boundary components, we can further split @@B into two pieces, @iB � @iH , such that
@@B D @0BC @1B .

Definition 8.19 A homology class B is called provincial if @@B D 0. For a diagram
with two boundary components, a homology class B is called left-provincial if @0BD0,
and right-provincial if @1B D 0. We denote the set of empty provincial homology
classes from x to y by y�@

2
.x;y/.

Observe that concatenation turns y�@
2
.x;x/ into a group.

8.5 Admissibility

In order to get well-defined Heegaard–Floer invariants, we need to impose some
additional conditions on the tangle Heegaard diagrams.

Definition 8.20 A tangle Heegaard diagram is called admissible if every nonzero
empty periodic domain has both positive and negative multiplicities.

A tangle Heegaard diagram is called provincially admissible if every nonzero empty
provincial periodic domain has both positive and negative multiplicities.
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A tangle Heegaard diagram with two boundary components is called left (respectively
right) admissible if every nonzero empty right-provincial (respectively left-provincial)
periodic domain has both positive and negative multiplicities.

Proposition 8.21 Any tangle Heegaard diagram can be made admissible by perform-
ing isotopy on ˇ . Further, any two admissible diagrams for a given 2n–tangle or a
strongly marked .m; n/–tangle are connected through a sequence of Heegaard moves,
so that every intermediate diagram is admissible too. The same is true if we replace

“admissible” by “provincially admissible”.

Proof This follows from a winding argument for the ˇ–curves, just as in the case for
closed manifolds [18, Section 5]. Alternatively, see [28, Proposition 4.11]

Corollary 8.22 Every tangle .Y; T / has an admissible tangle Heegaard diagram.
Similarly, Every tangle .Y; T / has a provincially admissible tangle Heegaard diagram.
The same statements hold for every strongly marked tangle.

8.6 Gluing

Any two multipointed bordered Heegaard diagrams can be glued along a matching
boundary component: if H1 and H2 are diagrams, and Zi are boundary components
of Hi with Z1 D Z�

2
, one can glue H1 to H2 by identifying Z1 with Z�

2
. In this

way, one can glue a type 1 diagram to the left, ie @0 , boundary of a diagram with two
boundary components, a type 1 diagram to a type 2 diagram, a type 2 diagram to the
@1 boundary of a diagram with two boundary components, or the @0 boundary of a
diagram with two boundary components to the @1 boundary of another diagram with
two boundary components.

By gluing a type 1 diagram, a sequence of diagrams with two boundary components,
and a type 2 diagram together, removing the union of the z markings, and placing an
X and an O in the corresponding region, one obtains a closed Heegaard diagram for
the knot/link that is union of the corresponding tangles, together with an additional
split unknot. See Figure 2 for a schematic example.

Below we describe in full detail how to glue Heegaard diagrams for tangles, and discuss
the basic properties of the resulting diagram.

For the rest of this section, we fix two Heegaard diagrams as follows. Let H1 D

.†1;˛1;ˇ1;X1;O1; z1/ be a Heegaard diagram (of type 1, or with two boundary
components) for some pair .Y1; T1/, and if H1 is of type 1, denote its boundary by
@1H1 . Let H2 D .†2;˛2;ˇ2;X2;O2; z2/ be a Heegaard diagram (of type 2 or with
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two boundary components) for another pair .Y2; T2/, and if H2 is of type 2, denote its
boundary by @0H2 . Suppose @1H1 D .@

0H2/
� , ie @1Y1 is identified with a marked

sphere S and @0Y2 is identified with �S .

Definition 8.23 The union of H1 and H2 , denoted H1[H2 is the Heegaard diagram
H obtained in the following way: We remove all X and O markings on the boundaries
of the two diagrams. We glue the two surfaces along their boundary, matching the ˛ and
z endpoints and respecting the identification @1H1D .@

0H2/
� , to obtain † WD†1[@†2 .

We take ˛ to be the set of circles ˛1[@ ˛2 , and we take ˇ to be ˇ1[ˇ2 . If †1[†2

is a closed surface, we remove z1 and z2 , place two points marked X 0 and O 0 in the
same region, and let XD X1 [X2 [X 0 and O DO1 [O2 [O 0 . We get a closed
Heegaard diagram .†;˛;ˇ;X;O/. If †1 [†2 has boundary, we let XD X1 [X2

and O DO1[O2 , and we take z to be the oriented arc(s) z1[@ z2 . We get a tangle
Heegaard diagram HD .†;˛;ˇ;X;O; z/.

Gluing Heegaard diagrams corresponds to gluing tangles. In the lemma below, all
unions are formed by following the identifications with S given by the tangles.

Lemma 8.24 When the union H1[H2 is a diagram with one boundary component,
it represents the pair .Y1[Y2; T1[ T2/.

When H1 [H2 is a diagram with two boundary components, it represents the triple
.Y1[Y2; T1[ T2; 1[ 2/.

When H1[H2 is a closed Heegaard diagram, it represents the link .T1[ T2/[U in
Y1[Y2 , where U is an unknot unlinked from T1[ T2 .

Proof This follows directly from the topological constructions of tangles from the
three types of Heegaard diagrams described in Sections 8.1 and 8.2, along with the
fact that adding an X and an O in one and the same region introduces an unlinked
unknot.

Generators and homology classes behave nicely under gluing. Let H1 and H2 be two
tangle Heegaard diagrams which agree along a boundary component. Note that given
x1 2 S.H1/ and x2 2 S.H2/ such that x1 and x2 occupy complementary sets of
the new ˛–circles obtained by gluing ˛–arcs, the union x1 [ x2 is a generator in
S.H1[H2/.

Lemma 8.25 Given x1;y12S.H1/ and x2;y22S.H2/, there is a natural identifica-
tion of �2.x1[x2;y1[y2/ with the set of pairs .B1;B2/ in �2.x1;y1/��2.x2;y2/

such that @1B1 D�@
0B2 . The same statement holds if we replace �2 with y�2 .

Proof The proof is straightforward.
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Following notation from [8], for B1 and B2 which agree along the boundary as above,
we denote the corresponding homology class in �2.x1;y1/��2.x2;y2/ by B1 \B2 .
Under this identification, the local multiplicity of Bi at a point p 2 †i n .˛i [ ˇi/

agrees with the local multiplicity of B1 \B2 at p thought of as a point in †1[†2 .

Lemma 8.26 Suppose H1 and H2 are of type 1 and type 2, respectively. If one
diagram is admissible, and the other one is provincially admissible, then H1[H2 is
admissible.

Proof The proof is identical to the proof of [8, Lemma 4.33], and we recall the
argument here. Let B1 \B2 be a positive periodic domain. If H1 is admissible, then
B1D 0, so @@B1D 0, and since H2 is provincially admissible, it follows that B2D 0.
Similarly, if B2 is admissible, it follows that B1 D 0 and B2 D 0.

Lemma 8.27 (compare to [9, Lemma 5.22]) Suppose H1 and H2 are provincially
admissible multipointed bordered Heegaard diagrams with two boundary components
with @1H1 D .@

0H2/
� , and let HDH1[H2 . If H1 is right admissible, or H2 is left

admissible, then H is provincially admissible. Furthermore:

(1) If H1 and H2 are both left admissible (respectively right admissible), then H is
left admissible (respectively right admissible).

(2) If H1 is admissible, then H is left admissible. If H2 is admissible, then H is
right admissible.

(3) If H1 is admissible and H2 is right admissible, or if H1 is left admissible and
H2 is admissible, then H is admissible.

Analogous statements hold when one of the two Heegaard diagrams has one boundary
component.

Proof The proof is analogous to that of [9, Lemma 5.22]

9 Moduli spaces

In this section, we describe the holomorphic curves that will be considered in the
definitions of the various invariants associated to tangle Heegaard diagrams.

Most of this discussion is a straightforward generalization of the one for bordered Floer
homology [8]. We count pseudoholomorphic curves in †� I �R. In the bordered
Floer setting, one counts curves that avoid a basepoint z 2 @†. Here, we avoid multiple
basepoints, both in the interior, and on the boundary of †, as well as the arcs (or points)
that we denote by z .
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9.1 Moduli spaces of holomorphic curves

Let HD .†;˛;ˇ;X;O; z/ be a tangle Heegaard diagram (with one boundary com-
ponent and of type 1 or type 2, or with two boundary components). We can think of
the open surface Int† as a surface with a set of punctures p (one puncture for each
boundary component of †). Choose a symplectic form !† such that the boundary
@† is a cylindrical end, and let j† be a compatible almost complex structure. We will
assume that ˛a is cylindrical near @†, in the following sense. There is a neighborhood
Up of the punctures symplectomorphic to @† � .0;1/ � T �.@†/, such that j†
and ˛a \Up are invariant with respect to the R–action on @†� .0;1/. We write
D D I �R, and let !D and jD be the standard symplectic form and almost complex
structure on D �C . Consider the projections

�†W †�D!†;

�DW †�D!D;

sW †�D! I;

t W †�D!R:

Definition 9.1 We say that an almost complex structure J on †�D is admissible if
the following conditions hold:

� �D is J –holomorphic.

� J.@s/D @t for the vector fields tangent to the fibers of �† .

� The R–action is J –holomorphic.

� J splits as J D j† � jD near p�D .

Definition 9.2 A decorated source SF consists of

� a topological type of smooth Riemann surface S with boundary, and a finite
number of punctures on the boundary;

� a labeling of each puncture of S by C, � or e ;

� a labeling of each e puncture by a Reeb chord � in .@†; @˛/.

Given a decorated source SF , we denote by Sxe the result of filling in the e punctures
of S .

We consider maps

uW .S; @S/!
�
†�D; .˛� f1g �R/[ .ˇ � f0g �R/

�
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such that:

(1) u is .j ;J / holomorphic for some almost complex structure j on S .

(2) uW S !†�D is proper.

(3) u extends to a proper map uxeW Sxe!†xe �D

(4) u has finite energy in the sense of Bourgeois, Eliashberg, Hofer, Wysocki and
Zehnder [1].

(5) �D ıu is a g–fold branched cover.

(6) At each C puncture q of S , limz!q t ıu.z/DC1.

(7) At each � puncture q of S , limz!q t ıu.z/D�1.

(8) At each e puncture q of S , limz!q �† ıu.z/ is the Reeb chord � labeling q .

(9) �†ıuW S! Int† does not cover any of the regions of †n.˛[ˇ/ that intersect
X[O[ z .

(10) For each t 2R and ˇi 2 ˇ , u�1.ˇi � f0g � ftg/ consists of exactly one point;
for each t 2R and ˛c

i 2 ˛, u�1.˛c
i � f1g � ftg/ consists of exactly one point;

for each t 2R and ˛a
i 2 ˛, u�1.˛a

i � f1g � ftg/ consists of at most one point.

(11) u is embedded.

Under these conditions, at �1, u is asymptotic to a g–tuple of arcs xi�I�f�1g, and
at C1, u is asymptotic to a g–tuple of arcs yi�I�fC1g, so that x WD fx1; : : : ;xgg

and y WD fy1; : : : ;ygg are generators of H . We call x the incoming generator, and
y the outgoing generator for u. Such a curve u has an associated homology class
B D Œu� 2 �2.x;y/.

Definition 9.3 Given a map u from a decorated source SF , the height of an e punc-
ture q is the evaluation ev.q/D t ıuxe.q/ 2R.

Definition 9.4 Let E.SF/ be the set of e punctures of S . Let EP D .P1; : : : ;Pm/ be
a partition of E.SF/ with Pi nonempty. We say a map u is EP–compatible if for any i ,
all the punctures in Pi have the same height, and ev.Pi/ < ev.Pj / whenever i < j .

To a partition EP D .P1; : : : ;Pm/ we associate a sequence of sets of Reeb chords
E�. EP /D .�1; : : : ;�m/, where �i WD f� j � labels q; q 2 Pig. To such a sequence E�
we can associate a homology class

Œ E��D Œ�1�C � � �C Œ�m� 2H1.@†; @˛/
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and an algebra element

a. E�/D a.�1/ � � � a.�m/ 2A.@H/:

Note that Œa. E�/�D Œ E��, and also if u is a EP–compatible map satisfying (1)–(10) with
homology class Œu�D B , then Œ E�. EP /�D @@B .

Definition 9.5 Given generators x and y , a homology class B 2 �2.x;y/, and a
decorated source SF , we let �MB

.x;y ;SF/

denote the moduli space of curves u with source SF satisfying (1)–(10), asymptotic to
x at �1 and to y at C1, and with homology class Œu�D B . Given also a partition
EP of E.SF/, we let �MB

.x;y ;SF; EP /

denote the space of EP–compatible maps in �MB
.x;y ISF/, and we let

�MB

emb.x;y ;S
F; EP /

denote the space of maps in �MB
.x;y ;SF; EP / that also satisfy (11).

Many results carry over directly from the ones in [8; 28].

Proposition 9.6 (compare to [8, Proposition 5.6]) There is a dense set of admissible J

for which the spaces �MB
.x;y ;SF; EP / are transversally cut out by the x@ equations.

Proposition 9.7 (compare to [8, Proposition 5.8]) The expected dimension of the
space �MB

.x;y ;SF; EP / is

ind.B;SF; EP /D g��.S/C 2e.B/Cj EP j:

(Here e.B/ is the Euler measure of the domain of B and j EP j is the number of parts in
the partition EP .)

Whether a curve in �MB
.x;y ;SF; EP / is embedded depends only on the topological

data of B , SF , and EP , ie there are entire components of embedded and of nonembedded
curves. For embedded curves, there is another index formula that only depends on B

and EP . Before we state this formula, we make a couple of definitions regarding Reeb
chords. Even though our matched circles are different, these definitions are identical to
the ones in [8, Sections 3.3.1 and 5.7.1].
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Let mW H1.@†nz; @˛IZ/�H0.@˛IZ/!
1
2
Z be the map that counts local multiplicities.

Specifically, for a 2H1.@†nz; @˛IZ/ and p 2 @˛, we define the multiplicity m.a;p/

of p in a as the average multiplicity with which a covers the regions on either side
of p , and extend bilinearly.

For a; b 2H1.@† n z; @˛IZ/, define

L.a; b/ WDm.b; @a/;

where @ is the connecting homomorphism from the homology long exact sequence.
Note that L.a; b/D�L.b; a/ for any a and b .

For a set of Reeb chords � in .@† n z; @˛/, define

�.�/ WD �
X

f�i ;�j g��

jL.Œ�i �; Œ�j �/j �
1
2
j�j:

For a sequence of sets of Reeb chords E�D .�1; : : : ;�m/, define

�. E�/ WD
X

i

�.�i/C
X
i<j

L.Œ�i �; Œ�j �/:

Finally, we come to the index formula.

Definition 9.8 Let B 2 �2.x;y/ and E� be a sequence of sets of Reeb chords. We
define

�emb.B; E�/ WD gC e.B/� nx.B/� ny.B/� �. E�/;

ind.B; E�/ WD e.B/C nx.B/C ny.B/Cj E�jC �. E�/:

Proposition 9.9 (compare to [8, Proposition 5.62; 28, Proposition 5.9]) For u 2�MB
.x;y ;SF; EP /, either u is embedded, and

�.SF/D �emb.B; E�. EP //;

ind.B;SF; EP /D ind.B; E�. EP //;�MB

emb.x;y ;S
F; EP /D �MB

.x;y ;SF; EP /;

or u is not embedded, and

�.SF/ > �emb.B; E�. EP //;

ind.B;SF; EP / < ind.B; E�. EP //;�MB

emb.x;y ;S
F; EP /D∅:
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Each of the moduli spaces has an R–action by translation in the t factor. For stable
curves, ie except when the moduli space consists of a single curve u with �D ı u a
trivial g–fold cover of D and B D 0, this action is free. For moduli spaces of stable
curves, we quotient by this action.

Definition 9.10 Given x , y , SF and EP , let

MB.x;y ;SF; EP / WD �MB
.x;y ;SF; EP /=R;

MB
emb.x;y ;S

F; EP / WD �MB

emb.x;y ;S
F; EP /=R:

9.2 Degenerations

The properties of moduli spaces that are needed in order to show that the invariants
are well-defined are the same as in [8]. To understand the compactifications of moduli
spaces, one studies holomorphic combs, ie trees of homomorphic curves in † �D
and in @†�R�D . In the tilde version (when one does not allow domains that cover
X[O ), most types of degenerations are the same as in [8], and most results carry over.

The only difference is in the homological assumptions on †, ˛, ˇ . Even though the ˛–
or the ˇ–circles are not linearly independent, there are no new boundary degenerations,
as every region of † n˛, as well as every region of † nˇ , contains an X or an O .

10 The modules associated to tangle Heegaard diagrams

In this section, we associate algebraic structures to tangle Heegaard diagrams. Before
we proceed, recall that for any pointed matched circle Z , the algebra A.Z/ does not
depend on the X and O markings on the circle.

For the remainder of this paper, we let V denote F2˝F2 .

10.1 The type D structure

We define type D structures for type 2 multipointed bordered Heegaard diagrams for
tangles. The construction and results for type 1 diagrams are identical.

Suppose H D .†;˛;ˇ;X;O; z/ is a provincially admissible Heegaard diagram of
type 2 for some 2n–tangle .Y; T /. Let J be an admissible almost complex structure.
We define a left type D structure ACFTD.H;J / over A.�@H/, as follows.
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Let X.H/ be the F2 vector space spanned by S.H/. Let ID.x/D I.xo.x//2 I.�@H/.
We define an action on X.H/ of I.�@H/ by

I.s/ �x D

�
x if I.s/D ID.x/;

0 otherwise.

Then ACFTD.H;J / is defined as an A.�@H/–module by

ACFTD.H;J /DA.�@H/˝I.�@H/X.H/:

Given x , y 2S.H/, we define

ax;y WD

X
B2y�2.x;y/
EP discrete

ind.B; E�. EP//D1

#MB
emb.x;y ;S

F; EP / � a.�P1/ � � � a.�Pm/:

Here all P are discrete partitions, ie partitions P D .P1; : : : ;Pm/ where jPi j D 1.

The map ıW ACFTD.H;J /!A.�@H/˝ ACFTD.H;J / is defined as

ı.x/D
X

y2S.H/

ax;y ˝y :

Theorem 10.1 Let H be a tangle Heegaard diagram of type 2 for a marked tangle T
in a 3–manifold Y , equipped with an admissible almost complex structure J . If H
is provincially admissible, then ACFTD.H;J / is a type D structure over A.�@H/.
Moreover, if H is admissible, then ACFTD.H;J / is bounded.

Proof The proof follows directly from the arguments for bCFD in [8, Chapter 6]. We
outline the main steps. To show that the counts of holomorphic curves are finite, we
observe that in a provincially admissible diagram there are only finitely many domains
that contribute to the counts, and for any diagram there are only finitely many sequences
EP with nonzero a. E�. EP // 2A.�@H/. To show that the compatibility condition for a

type D structure is satisfied, we count possible degenerations of holomorphic curves.

Theorem 10.2 Up to homotopy equivalence and tensoring with V , ACFTD.H;J / is
independent of the choice of sufficiently generic admissible almost complex structure,
and provincially admissible type 2 tangle Heegaard diagram for .Y; T /. Namely, if H1

and H2 are provincially admissible type 2 diagrams for .Y; T / with almost complex
structures J1 and J2 , and jX1j D jX2jC k , then

ACFTD.H1;J1/' ACFTD.H2;J2/˝V ˝k :
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Proof To show invariance, we construct chain maps corresponding to a change of
almost complex structure or the various Heegaard moves. We have two Heegaard
moves that do not occur in [8] — index zero/three stabilization and destabilization.
Those always occur in the interior of the diagram, and result in the extra V , by the
same argument as in the closed case (see [11], for example), ie if H0 is obtained from
H by an index zero/three stabilization, then ACFTD.H/' ACFTD.H0/˝V .

When we write 1CFTD.Y; T /, we mean the type D structure without the extra V s, ie
what we get from a tangle Heegaard diagram with the minimum number of basepoints,
which is jX\ Int†j D jT j D jO\ Int†j, or equivalently jXj D 2jT j D jOj.

10.2 The type A structure

We define type A structures for type 1 multipointed bordered Heegaard diagrams for
tangles. The construction and results for type 2 diagrams are identical.

Let HD .†;˛;ˇ;X;O; z/ be a provincially admissible type 1 Heegaard diagram for
a 2n–tangle .Y; T /, and let J be an admissible almost complex structure. We define a
type A structure ACFAT .H;J / over A.@H/.

Define IA.x/D I.o.x//. The module ACFAT .H;J / is generated over F2 by X.H/,
and the right action of I.@H/ on ACFAT .H;J / is defined on the generators by

x � I.s/D

�
x if I.s/D IA.x/;

0 otherwise.
For the A1 multiplication maps, we consider partitions P D .P1; : : : ;Pm/ that
are not necessarily discrete. When IA.x/ ˝ a.�1/ ˝ � � � ˝ a.�n/ ¤ 0, we define
mnC1W

ACFAT .H;J /˝A.@H/˝n! ACFAT .H;J / by

mnC1.x; a.�1/; : : : ; a.�n// WD
X

y2S.H/

X
B2y�2.x;y/

f EP j E�. EP/D.�1;:::;�n/g

ind.B; E�. EP//D1

#MB
emb.x;y ;S

F; EP / �y :

Theorem 10.3 Let H be a tangle Heegaard diagram of type 1 for a marked tangle T
in a 3–manifold Y , equipped with an admissible almost complex structure J . If H is
provincially admissible, then ACFAT .H;J / is an A1–module over A.@H/. Moreover,
if H is admissible, then ACFAT .H;J / is bounded.

Theorem 10.4 Up to A1 homotopy equivalence and tensoring with V , ACFAT .H;J /
is independent of the choice of sufficiently generic admissible almost complex structure,
and provincially admissible type 1 tangle Heegaard diagram for .Y; T /. Namely, if H1
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and H2 are provincially admissible type 1 diagrams for .Y; T / with almost complex
structures J1 and J2 , and jX1j D jX2jC k , then

ACFAT .H1;J1/' ACFAT .H2;J2/˝V ˝k :

Proof The proofs of the two theorems are analogous to those for 1CFTD , except that
we consider more degenerations, since we also consider sequences of sets of Reeb
chords.

When we write 1CFAT .Y; T /, we mean the A1–module that we get from a diagram
with jX\ Int†j D jT j.

10.3 The type DA bimodule

We define type DA structures for tangle Heegaard diagrams with two boundary compo-
nents. One can similarly define type AA, DD and AD structures.

Suppose HD .†;˛;ˇ;X;O; z/ is a provincially admissible diagram with two bound-
ary components @0H and @1H for a strongly marked .m; n/–tangle .Y; T ;  /. Let
J be an admissible almost complex structure. We will define a type DA bimodule
BCFDTA.H;J / over A.�@0H/ and A.@1H/.

As a left–right .I.�@0H/; I.@1H//–bimodule, BCFDTA.H;J / is freely generated over
F2 by S.H/, with actions of I.�@0H/ and I.@1H/ defined on the generators by

I.s0/ �x � I.s1/D

�
x if s0 D xo

0.x/ and s1 D o1.x/;

0 otherwise.

To define the type DA structure maps, we need to study slightly different moduli spaces
than before. Given a decorated source SF , let Ei be the set e punctures labeled by
Reeb chords in @iH . We need to forget the relative heights of the punctures in E0 to
those in E1 .

Definition 10.5 Define the moduli space

MB
emb.x;y ;S

F; EP0; EP1/D
[
EP jEi
D EPi

MB
emb.x;y ;S

F; EP /;

and define the index

ind.B; E�0; E�1/D e.B/C nx.B/C ny.B/Cj E�0jC j E�1jC �. E�0/C �. E�1/;

where E�i is a sequence of sets of Reeb chords in @iH .
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On the @0H side we will only allow discrete partitions. If EP0 is discrete, and labeled
by the sequence of Reeb chords E�. EP0/D .�1; : : : ; �i/, define

a0.x;y ; EP0/ WD I.xo0.x// � a.��1/ � � � � � a.��i/ � I.xo
0.y// 2A.�@0H/:

On the @1H side we allow arbitrary partitions, and define

a1.x;y ;P1/ WD I.o1.x// � a.�1/˝ � � �˝ a.�j / � I.o
1.y// 2A.@1H/˝j ;

where E�. EP1/D .�1; : : : ;�j /.

Finally, the structure maps are defined by

ı1
k.x; a1; : : : ; ak�1/

WD

X
y2S.H/

X
B2y�2.x;y/

ind.B; E�. EP0/; E�. EP1//D1
a1.x;y;P1/Da1˝���˝ak�1

#MB
emb.x;y ;S

F; EP1; EP2/ � a0.x;y ; EP0/˝y :

Theorem 10.6 Let H be a diagram with two boundary components for a strongly
marked .m; n/–tangle .Y; T ;  /, equipped with an admissible almost complex struc-
ture J . If H is provincially admissible, then BCFDTA.H;J / is a type DA bimodule
over A.�@0H/ and A.@1H/. Moreover, if H is admissible, then ACFAT .H;J / is
bounded.

Theorem 10.7 Up to homotopy equivalence and tensoring with V WD F2˚ F2 , the
bimodule BCFDTA.H;J / is independent of the choice of sufficiently generic admissible
almost complex structure, and provincially admissible tangle Heegaard diagram for
.Y; T ;  /. Namely, if H1 and H2 are provincially admissible diagrams for .Y; T ;  /
with almost complex structures J1 and J2 , and jX1j D jX2jC k , then

BCFDTA.H1;J1/' BCFDTA.H2;J2/˝V ˝k :

Proof The proofs are analogous to those for type D and type A structures.

When we write 2CFDTA.Y; T ;  /, we mean the bimodule that we get from a diagram
with jX \ Int†j D jT j. For a tangle T in S2 � I , there is a canonical framed
arc  determined by the product structure on the 3–manifold, With this framed arc,
T becomes a strongly marked tangle, and we simply write BCFDTA.T /.

For here on, we suppress the almost complex structure J from the notation, and write
ACFAT .H/, ACFTD.H/ and BCFDTA.H/.
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10.4 Other diagrams and modules.

Similarly, one can associate a type A structure to a type 2 diagram, a type D structure
to a type 1 diagram, or a type AA, DD or AD structure to a diagram with two boundary
components.

One can also define ˇ–bordered or ˛–ˇ–bordered multipointed Heegaard diagrams
for tangles, in the spirit of [6], and associate modules or bimodules, respectively. The
bordered grid diagrams of Section 4 are examples of such diagrams.

11 Gradings

For now, we only discuss gradings when the tangle lies in B3 or S2 � I . In those
cases, one can define a homological grading by Z, which we call the Maslov grading,
and a second (internal) grading by 1

2
Z, which we call the Alexander grading. In this

section, all domains are assumed to avoid z .

11.1 Algebra

Fix a marked matched circle Z for an n–marked sphere, and let E D .nC 1; nC 1;

idSX ; idTO / be the corresponding shadow, as in Section 7.2. Recall that the algebra
A.Z/ does not depend on the X and O markings on Z , and equivalently, as an
ungraded algebra, yA.E/D A.E/=.Ui D 0/ does not depend on the sets SX and TO .
However, X and O markings play an important role in the bigrading on A.E/ defined
in Section 3.4.

The Maslov and Alexander gradings on A.E/ defined in Section 3.4 descend to gradings
on yA.E/, and thus to gradings M and A on A.Z/ under the isomorphism from
Proposition 7.5. The Maslov grading turns A.Z/ into a differential graded algebra, and
the Alexander grading is preserved by the differential and multiplication. We caution
the reader that while the generators I.s/a.�/ are homogeneous with respect to the
gradings, a.�/ are not.

11.2 Domains

Let HD .†;˛;ˇ;X;O; z/ be a tangle diagram of any type. To define the Maslov and
Alexander grading of a domain B 2 �2.x;y/, we will make use of the multiplicity
map m WH1.@† n z; @˛IZ/�H0.@˛IZ/!

1
2
Z from Section 9.1 to record how @@B

interacts with x , y , O , and X.
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If H is a diagram with one boundary component (of type 1 or 2) for a 2n–tangle,
define the following sets. For 1� i � 2n, if there is an X on @† between ai and aiC1 ,
then we place an O marking in the interior of the segment .ai ; aiC1/� @† and another
O marking in the segment .a4nC2�i ; a4nC3�i/. In other words, there is a new O on
every component of @† n ˛ that is on the boundary of a component of † n ˛ with
an O in the interior. Denote the set of all new O markings by S@O . Define a set S@X
analogously. Given a generator x 2S.H/, define Sx to be the set of points in @˛ that
lie on ˛–arcs occupied by x , and define xSx WD @˛ nSx .

If H is a diagram with two boundary components @iH for i D 0; 1, define sets S i
O ,

S i
X , S i

x and xS i
x analogously.

When counting multiplicities below, we view a subset S � @˛ as the element of
H0.@˛IZ/ for which each point of S comes with coefficient C1, so that we can add
and subtract sets.

Note that even though S@O is not a subset of @˛, defining m.Œ@@B�;S@O/ makes sense
as a generalization of the multiplicity function m. Precisely, think of an interval
.ai ; aiC1/ as a generator of H1.@† n z; @˛IZ/, and define m.Œ@@B�;S@O/ as the sum
of the coefficients in Œ@@B� of all intervals .ai ; aiC1/ that contain an O 2 S@O . Define
multiplicity counts for S@X , S i

O and S i
X similarly.

Let B 2 �2.x;y/ be a domain for a diagram with two boundary components. Define

M.B/D�e.B/� nx.B/� ny.B/C
1
2
m.Œ@@B�;�xS0

x �
xS0

y CS1
xCS1

y/

Cm.Œ@@B�;S0
X�S1

O/C 2nO.B/;

A.B/D 1
2
m.Œ@@B�;S0

X�S0
OCS1

X�S1
O/C nO.B/� nX.B/:

For a domain B 2 �2.x;y/ on a type 1 diagram, define

M.B/D�e.B/�nx.B/�ny.B/C
1
2
m.Œ@@B�;SxCSy/�m.Œ@@B�;S@O/C2nO.B/;

A.B/D 1
2
m.Œ@@B�;S@X�S@O/CnO.B/�nX.B/:

For a domain B 2 �2.x;y/ on a type 2 diagram, define

M.B/D�e.B/�nx.B/�ny.B/�
1
2
m.Œ@@B�; xSxC

xSy/Cm.Œ@@B�;S@X/C2nO.B/;

A.B/D 1
2
m.Œ@@B�;S@X�S@O/CnO.B/�nX.B/:

Note that the bigrading is additive under union (when we continue to view the sum of
regions as a domain between the same two generators x and y ).

We will soon define the bigrading on the modules and bimodules. To show it is well-
defined, we need to show that the bigrading on domains is additive under composition,
and that it is zero on periodic domains.
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Proposition 11.1 For any periodic domain B 2 �2.x;x/, we have M.B/ D 0 and
A.B/D 0.

Proof Since the bigrading is additive under union, we only need to show it is zero on
provincial periodic domains, and on the regions of †n˛ that intersect the boundary @†.
The proofs for all three types of diagrams are identical. The write-up below is for a
type 1 diagram.

For a periodic domain, the bigrading simplifies to

M.B/D�e.B/� 2nx.B/Cm.Œ@@B�;Sx/�m.Œ@@B�;S@O/C 2nO.B/;

A.B/D 1
2
m.Œ@@B�;S@X�S@O/C nO.B/� nX.B/:

Let Di be the region of † n ˛ whose ˛–arcs boundary consists of ˛a
i and ˛a

iC1
.

Geometrically, Di is a rectangle with t � 0 disks removed from its interior, so
it has Euler measure e.Di/ D �t . Each of the t circle boundary components is
an ˛–circle, hence it contains a point of x on it, and contributes 1 to the count
of 2nx.Di/. Each of the arcs ˛i and ˛iC1 that is occupied by x contributes 1 to
nx.Di/ and 1 to m.Œ@@B�;Sx/. There are no other contributions to m.Œ@@Di �;Sx/, so
�e.Di/�2nx.Di/Cm.Œ@@Di �;Sx/D 0. Last, Di contains exactly one O or exactly
one X . In either case, m.Œ@@Di �;S

@
O/D 2nO.Di/, and m.Œ@@Di �;S

@
X/D 2nX.Di/.

It follows that M.Di/D 0 and A.Di/D 0.

For a provincial periodic domain B , the bigrading becomes

M.B/D�e.B/� 2nx.B/C 2nO.B/;

A.B/D nO.B/� nX.B/;

which agrees with the bigrading for knot Floer homology, and has been shown to be
zero in the case of knots and links in S3 (note that a bordered diagram for a tangle in
B3 or S2 � I can be completed to a diagram for a knot or a link in S3 , so we can
think of B as a domain in the closed diagram).

The proof of additivity under composition is a bit trickier, as there is linking information
we need to consider.

Proposition 11.2 If B1 2 �2.x;y/ and B2 2 �2.y ;w/, then

M.B1 �B2/DM.B1/CM.B2/ and A.B1 �B2/DA.B1/CA.B2/:

Proof Once again we write up the proof for a type 1 diagram, as the notation in this
case is the lightest. The other two cases are identical.
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First observe that m.Œ@@B�;S@O/, nO.B/, m.Œ@@B�;S@X/ and nX.B/ are all clearly
additive under composition, so the statement follows for the Alexander grading.

Let BDB1�B2 . Let R1 be a union of the regions Di as in Proposition 11.1 with multi-
plicity, so that B0

1
DB1CR12�2.x;y/ only covers @† inside the interval Œa1; a2nC1�.

Similarly, let R2 be a union of regions Di so that B0
2
D B2 C R2 2 �2.y ;w/

only covers @† inside the interval Œa1; a2nC1�. Let B0 D B0
1
� B0

2
, and note that

B0 D B C R1 C R2 . Since the Maslov grading is additive under union, and by
Proposition 11.1, we have that M.B0i/DM.Bi/ and M.B0/DM.B/. So it suffices
to show that M.B0/DM.B0

1
/CM.B0

2
/.

To simplify notation, write aD @@B0
1

and b D @@B0
2

, and note that @@B0 D aC b . By
[8, Lemma 10.4] and since m.Œ@@B�;S@O/ and nO.B/ are additive under composition,

M.B0/�M.B01/CM.B02/

DL.a; b/C 1
2

�
m.aC b;Sx/Cm.aC b;Sw/�m.a;Sx/�m.a;Sy/

�m.b;Sy/�m.b;Sw/
�

DL.a; b/C 1
2

�
m.b;Sx/Cm.a;Sw/�m.a;Sy/�m.b;Sy/

�
:

Recall that L.a; b/Dm.b; @a/D �m.a; @b/, so L.a; b/D 1
2
.m.b; @a/�m.a; @b//.

Thus, showing that M.B0/DM.B0
1
/CM.B0

2
/ is equivalent to showing that

m.b; @a/�m.a; @b/Cm.b;Sx/Cm.a;Sw/�m.a;Sy/�m.b;Sy/D 0:

Extend the matching

�W fa1; : : : ; a4nC2g ! Œ2nC 1�

linearly to a function �ZW H0.@˛IZ/!Z2nC1 . For a generator x , think of o.x/ as an
element of Z2nC1 where each occupied arc comes with coefficient C1. Since B1 is a
homology class in �2.x;y/, we have @aD o.y/�o.x/. Similarly, @bD o.w/�o.y/.

Let Sbottom
x DSx\fa1; : : : ; a2nC1g, and let S

top
x DSx\fa2nC2; : : : ; a4nC2g. Recall

that we view any subset S � @˛ as the element of H0.@˛IZ/ where each point of S

comes with coefficient C1.

Since Œa1; a2nC1�� @† only contains one endpoint of each ˛–arc, and since �Z.@a/D

o.y/�o.x/, it follows that @a can only be the section Sbottom
y �Sbottom

x of o.y/�o.x/.
Then m.b; @a/Dm.b;Sbottom

y �Sbottom
x /. Since b only covers the “bottom” of @†, ie

Œa1; : : : ; a2nC1�, the multiplicity of b at ai is zero whenever i � 2nC2, so m.b; @a/D

m.b;Sy �Sx/. Similarly, m.a; @b/Dm.a;Sw�Sy/. This completes the proof.
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11.3 Modules and bimodules

Let H be a diagram of type 1 or type 2 for some pair .B3; T /.

Proposition 11.3 Given x , y 2S.H/, �2.x;y/ is nonempty.

Proof The proof is identical to that of [8, Lemma 4.21]. Connect x to y by a
union of paths ˛ � ˛ [ .@† n z/ and ˇ � ˇ . Then x and y are connected by
a domain if and only if ˛ � ˇ can be made null-homologous in † by adding
or subtracting entire ˛–curves and ˇ–circles, if and only if the image of ˛ � ˇ in
H1

�
†�I;˛�f1g[ˇ�f0g[.@†nz/�I

�
ŠH1.B

3; @B3/ is zero. But H1.B
3; @3/D0,

so this is always the case.

Since any two generators x;y 2 S.H/ are connected by a domain, we can define
relative gradings

M.y/�M.x/DM.B/;

A.y/�A.x/DA.B/;

where B 2�2.x;y/. We can assume B does not cross z: if any domain B0 intersects z ,
we can add copies of the periodic domain(s) that are the region(s) of † n˛ containing
the points/arc z , to obtain a domain B 2 �2.x;y/ that avoids z .

When H is a diagram for .S2 � I; T /, it is no longer true that any two generators are
connected by a domain. However, the DA bimodule splits as

BCFDTA.H/Š
2mC1M
iD0

BCFDTAi.H/;

where BCFDTAi.H/ is generated by Si WD fx 2S W jo
0.x/j D ig.

Lemma 11.4 For a fixed i , and for any x , y 2 BCFDTAi.H/, we have �2.x;y/¤∅.

Proof Let xdr and ydr be the generators corresponding to x and y in Hdr . There is
some domain Bdr 2 �2.xdr;ydr/, since Hdr is a diagram for B3 . Add copies of the
two periodic regions of †dr n˛ containing z1 and fzfront; zbackg, to obtain a domain
B0dr 2 �2.x;y/ with zero multiplicity at z1 and zback , resulting in some multiplicity
p at zfront . Write ˛0 for the set f˛0

1
; : : : ; ˛0

mC1
g, and ˛1 for the set f˛1

1
; : : : ; ˛1

nC1
g.

Let S 2Zh@.˛0[˛1/i be the set of points (with sign and multiplicity) in the boundary
of @@B0dr . The matching � for the pointed matched circle @Hdr extends bilinearly to a
map ��W Zh@˛i ! ZhŒmC nC 2�i. Since ��.S/D o.ydr/� o.xdr/, and o0.x/ and
o0.y/ both have cardinality i , it follows that p D 0, so after attaching a 1–handle at
fzfront; zbackg, B0dr becomes a domain B0 on H .
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Define relative gradings on BCFDTAi.H/ by

M.y/�M.x/DM.B/;

A.y/�A.x/DA.B/;

where B 2 �2.x;y/ (again arrange for B to have zero multiplicities at z1 and z2 by
adding copies of the corresponding regions of † n˛, if necessary).

By Proposition 11.1, the relative bigrading on the modules and bimodules is well-
defined.

Proposition 11.5 The various structures defined in this section are graded (A, D

or DA) (bi)modules with respect to the grading M. Further, the internal grading A is
preserved by all structure maps.

The proof is based on understanding the relation between the bigrading on a domain
with a compatible sequence of sets of Reeb chords and the bigrading on the algebra
elements associated to the Reeb chords. We start by relating the Maslov grading of
algebra generators to �.

Lemma 11.6 Let aD I.s/a.�/I.t/ be a generator for A.Z/. Then

M.a/� �.�/D 1
2
m.Œ��;S CT /�m.Œ��;S@O/;

where S D ��1.s/ and T D ��1.t/.

Proof Let a0D .s; t; �/ be the element in yA.E/ corresponding to a under the isomor-
phism A.Z/Š yA.E/ discussed earlier. Recall that M.a0/D inv.�/�inv.�; !/Cinv.!/.
Decompose s as sC t s� t s0 , so that �C WD �jsC is increasing, �� WD �js� is
decreasing, and �0 WD �js0 is the identity. Then

M.a0/D inv.�/�inv.�; !/

D inv.�C/Cinv.��/Cinv.�C; �0/Cinv.��; �0/C inv.�C; ��/�inv.�; !/

D inv.�/Cinv.�C; �0/Cinv.��; �0/Cinv.�C; ��/�inv.�; !/:

By [8, Lemma 5.57], �.�/ can be written as

�.�/D inv.�/�m.Œ��;S.�//;

where S.�/ is the set of initial endpoints of �.

The upward-veering strands in � , ie the strands for �C , correspond to the set of Reeb
chords �C � � contained in Œa2nC2; a4nC2�, and the downward-veering strands in �
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correspond to the Reeb chords ���� contained in Œa1; a2nC1�. The horizontal strands
of � correspond to the projection under the matching � of the dashed horizontal strands
in the strands diagram for a. Let S.�C/ and S.��/ be the sets of initial endpoints
of �C and �� , respectively. Note that S.�C/ is the section of sC contained in
Œa1; a2nC1�, and S.��/ is the section of s� contained in Œa2nC2; a4nC2�. Equivalently,
S.�C/D ��1.sC/\ Œa1; a2nC1� and S.��/D ��1.s�/\ Œa2nC2; a4nC2�.

Decompose S as S D SC t S� t S0 , where SC D ��1.sC/, SC D ��1.s�/,
and S0 is the set of initial points for the dashed horizontal strands. Decompose
T similarly by the type of final endpoints as T D TC t T � t T 0 . Note that the
multiplicity of a Reeb chord in Œa1; a2nC1� is zero at any point in Œa2nC2; a4nC2�,
and similarly the multiplicity of a Reeb chord in Œa2nC2; a4nC2� is zero at any point
in Œa1; a2nC1�, so m.Œ�C�;S.�// D m.Œ�C�;S.�C// D m.Œ�C�;SC/, and similarly
m.Œ���;S.�//Dm.Œ���;S�/. Since Œ��D Œ�C�C Œ���,

�.�/D inv.�/�m.Œ�C�;SC/�m.Œ���;S�/:

Next,we express M.a0/ in terms of �. Observe that

inv.�C; �0/C inv.��; �0/Dm.Œ�C�;S0/Cm.Œ���;S0/

and
inv.�; !/Dm.Œ��;S@O/:

It remains to understand inv.�C; ��/. Let s� and sC be a downward-veering and an
upward-veering strand, and let �� and �C be the corresponding Reeb chords on Z .
The strands s� and sC cross exactly when one of the following happens:

� The initial endpoint of sC is between the initial and final endpoints of s� . This
happens exactly when

m
�
Œ���; ��1

�
�.S.�C//

��
D 1 and m

�
Œ�C�; ��1

�
�.S.��//

��
D 0:

� The initial endpoint of s� is between the initial and final endpoints of sC .
Equivalently, m

�
Œ�C�; ��1

�
�.S.��//

��
D1 and m

�
Œ���; ��1

�
�.S.�C//

��
D0.

� The initial endpoint of sC is the final endpoint of s� , ie

m
�
Œ�C�; ��1

�
�.S.��//

��
D

1
2

and m
�
Œ���; ��1

�
�.S.�C//

��
D

1
2
:

The strands do not cross if and only if

m
�
Œ�C�; ��1

�
�.S.��//

��
D 0Dm

�
Œ���; ��1

�
�.S.�C//

��
:
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By linearity then,

inv.�C; ��/D
X

��2��; �C2�C

m
�
Œ���; ��1

�
�.S.�C//

�
Cm

�
Œ�C�; ��1

�
�.S.��//

���
Dm.Œ���;SC/Cm.Œ�C�;S�/:

So,

M.a0/D inv.�/C inv.�C; �0/C inv.��; �0/C inv.�C; ��/� inv.�; !/

D inv.�/Cm.Œ�C�;S0/Cm.Œ���;S0/Cm.Œ���;SC/Cm.Œ�C�;S�/

�m.Œ��;S@O/

D inv.�/Cm.Œ�C�;S/Cm.Œ���;S/�m.Œ���;S�/�m.Œ�C�;SC/�m.Œ��;S@O/

D �.�/Cm.Œ�C�;S/Cm.Œ���;S/�m.Œ��;S@O/

D �.�/Cm.Œ��;S/�m.Œ��;S@O/:

It is not hard to see that m.Œ��;S/Dm.Œ��;T /, so

M.a0/� �.�/D 1
2
m.Œ��;S CT /�m.Œ��;S@O/:

Let B 2 �2.x;y/ be a domain for a diagram H with two boundary components, let
E�0 D .�1; : : : ; �i/ be a sequence of Reeb chords on @0H , and let E�1 D .�1; : : : ;�j /

be a sequence of sets of Reeb chords on @1H , both compatible with B . Recall that we
write

a0 WD a0.x;y ; EP0/D I.xo0.x// � a.��1/ � � � a.��i/ � I.xo
0.y// 2A.�@0H/

and

a1.x;y ;P1/D I.o1.x// � a.�1/˝ � � �˝ a.�j / � I.o
1.y// 2A.@1H/˝j ;

and observe that we can equivalently write a1.x;y ;P1/ as

a1.x;y ;P1/D I.o1.x//a.�1/I1˝ I1a.�2/I2 � � � ˝ Ij�1a.�j /I.o
1.y//:

Denote I.o1.x//a.�1/I1; : : : ; Ij�1a.�j /I.o
1.y// by a1; : : : ; aj .

Proposition 11.7 For the triple .B; E�0; E�1/ we have

M.B; E�0; E�1/D j E�1j � ind.B; E�0; E�1/C

jX
tD1

M.at /�M.a0/C 2nO.B/;

A.B; E�0; E�1/D

jX
tD1

A.at /�A.a0/C nO.B/� nX.B/:
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Proof The equality for the Alexander grading follows immediately from the definition.

For the Maslov grading, denote the right-hand side of the equation by R. Note that
while a1˝ � � � ˝ aj ¤ 0, it may be that a1� � � aj D 0. Resolve crossings in each at

if necessary to get a nonzero product a0 D a0
1
� � � a0j . Note that �.a0t /D �.at /� ct and

M.a0t /DM.at /� ct , where ct is the number of resolved crossings to get from at

to a0t , and L.Œas �; Œat �/DL.Œa0s �; Œa
0
t �/, since resolving crossings does not change the

homology class. Then

jX
tD1

M.aj /� �. E�1/D

jX
tD1

M.aj /�

jX
tD1

�.�t /�
X
s<t

L.Œ�s �; Œ�t �/

D

jX
tD1

M.aj /�

jX
tD1

�.at /�
X
s<t

L.Œas �; Œat �/

D

jX
tD1

M.a0j /�

jX
tD1

�.a0t /�
X
s<t

L.Œa0s �; Œa
0
t �/

DM.a0/� �.a0/:

By [22, Lemma 18], �.a0/D�j E�0j � �. E�0/.

Substituting the definition of ind in R, we get

RD�e.B/�nx.B/�ny.B/�j E�0j��. E�0/��. E�1/C

jX
tD1

M.at /�M.a0/C2nO.B/

D�e.B/�nx.B/�ny.B/�j E�0j��. E�0/CM.a0/��.a0/�M.a0/C2nO.B/

D�e.B/�nx.B/�ny.B/C�.a0/CM.a0/��.a0/�M.a0/C2nO.B/:

Applying Lemma 11.6 to a0 and a0 , and since Œa0�D Œ E�1�, we get RDM.B; E�0; E�1/.

The equalities below for a type 1 or type 2 diagram are a special case of Proposition 11.7,
and follow immediately.

Proposition 11.8 For a domain B 2 �2.x;y/ on a type 2 diagram, and a sequence
of Reeb chords E�,

M.B; E�/D� ind.B; E�/�M.�E�/C 2nO.B/;

A.B; E�/D�A.�E�/C nO.B/� nX.B/:
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Proposition 11.9 For a domain B 2 �2.x;y/ on a type 1 diagram, and a sequence
of sets of Reeb chords E�D .�1; : : : ;�l/,

M.B; E�/D j E�j � ind.B; E�/C
lX

iD1

M.�i/C 2nO.B/;

A.B; E�/D

lX
iD1

A.�i/C nO.B/� nX.B/:

Proposition 11.5 follows:

Proof of Proposition 11.5 All algebraic structures here are defined by counting curves
of index 1. The claim follows directly by substituting 1 for the index in the grading
formulas from Propositions 11.7, 11.8, and 11.9.

11.4 Tensor products

It is easy to see that the bigrading on domains is additive under gluing.

Proposition 11.10 If H1 and H2 are diagrams with @1H1 D �@
0H2 , and B is a

domain on HDH1[H2 that decomposes as B DB1�B2 , with Bi a domain on Hi ,
then M.B/DM.B1/CM.B2/ and A.B/DA.B1/CA.B2/.

Proof This follows directly from the definitions of M and A.

Thus, for a generator x D x1 [x2 2S.H/, where xi 2S.Hi/, the bigrading on x

agrees with the bigrading on x1 � x2 .

11.5 Absolute gradings

We finish this section by turning the relative grading into an absolute one.

First, for any type of diagram, it is straightforward to verify that the homotopy equiva-
lences from Theorems 10.2, 10.4, and 10.7 preserve the relative bigrading.

Next, recall that under the correspondence between bordered grid diagrams and shadows,
bordered grid diagrams inherit the bigrading defined in Section 3.4. A plumbing G of
a sequence of grid diagrams can be completed to a multipointed bordered Heegaard
diagram HG in a natural way, by embedding it on a smooth surface, as in Figure 2,
and adding the appropriate z decoration in the region(s) outside the image of the
embedding. Under the natural correspondence of generators and maps, the resulting
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diagram HG has an associated type A, D or DA structure, which we simply call
eCFT .HG/, identical to �CT.G/. The bigrading that eCFT .HG/ inherits from �CT.G/

agrees with the relative bigrading on eCFT .HG/ defined in this section. We turn the
bigrading from this section into an absolute one by requiring that it agrees with the one
on �CT for a chosen plumbing of grid diagrams.

Definition 11.11 Given a tangle Heegaard diagram H of any type for a tangle T ,
let HG be a Heegaard diagram of the same type arising from a plumbing G of
grid diagrams representing T , and let hW eCFT .HG/! eCFT .H/ be the homotopy
equivalence corresponding to a chosen sequence of Heegaard moves between HG

and H . Define the absolute bigrading on H by requiring that h preserves gradings.

We need to show that the absolute grading in Definition 11.11 is independent of the
choice of grid decomposition G , and also independent of the choice of sequence of
Heegaard moves, ie of h.

Lemma 11.12 Fix H and HG as in Definition 11.11, let s and s0 be two sequences
of Heegaard moves from HG to H , and let h0 , h00W eCFT .HG/ ! eCFT .H/ be the
homotopy equivalences corresponding to s0 and s00 . The two bigradings gr0 and gr00

induced by h0 and h00 according to Definition 11.11 agree.

Proof We simplify notation and denote the bigrading .M;A/ from Section 3.4 by gr.

We will complete HG to a closed Heegaard diagram HG for a link, by gluing to it
one (if H is of type 1 or 2) or two (if H had two boundary components) plumbings
of bordered grid diagrams. The proof in each case is analogous, so from here on
we assume that H is a type 1 diagram. Let H be some plumbing of grids so that
G [H represents a closed knot or link. Let HH be the type 2 Heegaard diagram
corresponding to H , and let HG DHG [HH .

Complete each diagram obtained along the sequences s0 and s00 to a closed one by
gluing to it HH . The sequences of moves s0 and s00 extend to sequences of moves xs0

and xs00 connecting HG to H WDH[HH , by fixing the HH area of each closed diagram
and performing the moves specified by s0 and s00 outside the HH area. Observe that
the resulting homotopy equivalences xh0; xh00W eCFT .HG/! eCFT .H/ are exactly the
maps h0� idHH

; h00� idHH
W eCFT .HG/� eCFT .HH /! eCFT .H/� eCFT .HH /. So

the gradings induced by xh0 and xh00 are exactly the gradings gr0� gr and gr00� gr.

By Theorem 6.1, the grading on eCFT .HG/Š �CT.G [H / from Section 3.4, which
is given by gr.xG [xH /D gr.xG/C gr.xH /, agrees with the grading on eCFK .HG/.
Since xh0 and xh00 are homotopy equivalences arising from sequences of Heegaard moves,
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it follows that the gradings they induce on eCFT .H/ agree with the grading on eCFK .H/
too. In particular, gr0� grD gr00� gr, so gr0 D gr00 .

Lemma 11.13 Let H be a Heegaard diagram for a tangle T . Let P D fPı
1
; : : : ;Pıpg

and Q D fQı
1
; : : : ;Qıqg be two sequences of shadows for T , let G0 and G00 be the

corresponding plumbings of bordered grid diagrams, and let h0W eCFT .HG0/! eCFT .H/
and h00W eCFT .HG00/! eCFT .H/ be the homotopy equivalences corresponding to some
two sequences of Heegaard moves s0 and s00 from HG0 and HG00 , respectively, to H .
The two bigradings gr0 and gr00 induced by h0 and h00 according to Definition 11.11
agree.

Proof Assume H is a type 1 diagram. The other cases are analogous.

Again denote the bigrading .M;A/ from Section 3.4 by gr.

Fix a plumbing H of bordered grid diagrams, as in the proof of Lemma 11.12, so
that G0 [H and G00 [H represent a closed knot or link. Let HG0 D HG0 [HH ,
HG00 DHG00 [HH , HDH[HH .

We now apply the same reasoning as in the proof of Lemma 11.12. We get homo-
topy equivalences xh0W eCFT .HG0/! eCFT .H/ and xh00W eCFT .HG00/! eCFT .H/. By
Theorem 6.1, the grading on eCFT .HG0/Š �CT.G0[H / from Section 3.4 agrees with
the grading on eCFK .HG0/, so the grading gr0� gr induced by xh0 on eCFT .H/ agrees
with the grading on eCFK .H/ too. Similarly, the grading gr00 � gr induced by xh00

on eCFT .H/ agrees with the grading on eCFK .H/. Thus, gr0 � gr D gr00 � gr, so
gr0 D gr00 .

Proposition 11.14 The bigrading from Definition 11.11 is well-defined.

Proof Lemmas 11.12 and 11.13 show that Definition 11.11 is independent of the
choices made. This completes the proof.

We can now conclude that for tangles in B3 or S2 � I , the homotopy equivalences
from Theorems 10.2, 10.4 and 10.7 are graded. In other words, ACFAT , ACFTD and
BCFDTA are graded tangle invariants. Below, V D F2˚ F2 , with one summand in

grading .0; 0/ and the other summand in grading .�1;�1/.

Theorem 11.15 Up to graded homotopy equivalence and tensoring with V , the mod-
ules defined in Section 10 are independent of the choices made in their definitions.
Namely:
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If H1 and H2 are provincially admissible type 2 diagrams for a 2n–tangle T in B3

with almost complex structures J1 and J2 , and jX1j D jX2jCk , then there is a graded
type D homotopy equivalence

ACFTD.H1;J1/' ACFTD.H2;J2/˝V ˝k :

If H1 and H2 are provincially admissible type 1 diagrams for a 2n–tangle T in B3

with almost complex structures J1 and J2 , and jX1j D jX2jCk , then there is a graded
type A homotopy equivalence

ACFAT .H1;J1/' ACFAT .H2;J2/˝V ˝k :

If H1 and H2 are provincially admissible diagrams for an .m; n/–tangle T in S2 � I

with almost complex structures J1 and J2 , and jX1j D jX2jCk , then there is a graded
type DA homotopy equivalence

BCFDTA.H1;J1/' BCFDTA.H2;J2/˝V ˝k :

Thus, given a marked 2n–tangle T in B3 , if H is a type 1 or a type 2 diagram for T
with jX\ Int†j D jT j, we get an invariant of the tangle

1CFAT .T / WD ACFAT .H/

up to type A homotopy equivalence, or

1CFTD.T / WD ACFTD.H/

up to type D homotopy equivalence, respectively.

Similarly, given an .m; n/–tangle T in S2 � I , if H is a diagram with two boundary
components for T , we get an invariant of the tangle

2CFDTA.T / WD BCFDTA.H/

up to type DA homotopy equivalence.

Similar results hold for the various other modules from Section 10.4.

12 Pairing (nice diagrams)

Sarkar and Wang [25] introduced a class of Heegaard diagrams for 3–manifolds called
nice. These were used in [7] to prove a pairing theorem in bordered Floer homology.
In a similar vein, here we define nice Heegaard diagrams for tangles, and use them to
prove a pairing theorem.
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Definition 12.1 A tangle Heegaard diagram is called nice if every region that does not
contain an interior X or O and does not intersect z is a disk with at most 4 corners.

Proposition 12.2 Any tangle Heegaard diagram can be turned into a nice diagram via
a sequence of isotopies and handleslides of the ˇ–curves in the interior of the Heegaard
surface.

Proof The proof uses “finger moves” and is analogous to the proof of [8, Proposition
8.2].

Lemma 12.3 If H is nice, then H is admissible.

Proof The proof is a straightforward generalization of the one for the closed case
[5, Corollary 3.2]. Suppose D is a nontrivial domain in † n .X[O [ z/ with only
nonnegative multiplicities, and its boundary is a linear combination of entire ˛– and
ˇ–curves. Consider a curve that appears in @D with nonzero multiplicity, and orient
it so that all regions directly to its left have positive multiplicity. If that curve is an
˛–circle or a ˇ–circle, then [5, Lemma 3.1] applies, ie one of these regions contains a
basepoint, which gives a contradiction. So suppose that curve is an ˛–arc, call it ˛i .
We verify that the argument in [5, Lemma 3.1] can be used again to show that one of
these regions contains a basepoint.

Suppose one of the regions directly to the left of ˛i is a bigon. Then the other edge of
that region is part of a ˇ–circle, call it ǰ . On the other side of ǰ there is a square (a
bigon would imply ˛i is a circle, not an arc) and the edge of that square across from ǰ

is either part of a ˇ–circle again, or part of @†. In the first case, there is yet another
square on the other side, and we look at that square. Eventually we reach a square with
an edge on @†. The union of all these regions forms a component of † n˛ (with two
corners), so we reach a contradiction, since every component of † n˛ contains a point
in X[O[ z .

Now suppose there are no bigon regions directly to the left of ˛i . Then all those regions
are squares, and they must form a chain that starts and ends at @†. The edges across
from ˛i on those squares form a complete ˛–arc, and the union of the squares is a
component of † n˛ (with four corners). This again is a contradiction.

Since nice diagrams are admissible, there are only a few types of holomorphic curves,
as one only counts domains that are squares or bigons. Specifically, for 1CFAT , all
multiplication maps mn for n> 2 are zero, and for 2CFDTA all structure maps ı1

1Cj

for j > 1 are zero.

We are now ready to state and prove a pairing theorem. By invariance (Theorem 11.15),
assume that all diagrams below are nice.
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Theorem 12.4 The following equivalences hold:

(1) If H1 [H2 is the union of a type 1 Heegaard diagram H1 and a Heegaard
diagram with two boundary components H2 along @H1 and �@0H2 , then

ACFAT .H1/� BCFDTA.H2/' ACFAT .H1[H2/:

(2) If H1[H2 is the union of Heegaard diagrams H1 and H2 with two boundary
components along @1H1 and �@0H2 , then

BCFDTA.H1/� BCFDTA.H2/' BCFDTA.H1[H2/:

(3) If H1[H2 is the union of a Heegaard diagram H1 with two boundary compo-
nents and a Heegaard diagram H2 of type 2 along @1H1 and �@H2 , then

BCFDTA.H1/� ACFTD.H2/' ACFTD.H1[H2/:

(4) If H1 [H2 is the union of a Heegaard diagram H1 of type 1 and a Heegaard
diagram H2 of type 2 along @H1 and �@H2 , then

ACFAT .H1/� ACFTD.H2/' eCFK .H1[H2/:

Moreover, when the underlying manifolds are B3 , S2 � I or S3 , the homotopy
equivalences respect the bigrading.

Proof The proof is analogous to that for bordered Heegaard Floer homology [9,
Theorem 11]. We outline it for the first case. First note that H1[H2 is automatically
a type 1 Heegaard diagram. Since H1 and H2 are nice diagrams, then both diagrams
are admissible, so the corresponding type A and type DA structures are bounded, and
their box tensor product is well-defined. There is a correspondence between generators
of ACFAT .H1/� BCFDTA.H2/ and ACFAT .H1[H2/.

The differential on ACFAT .H1/� BCFDTA.H2/ counts bigons and rectangles that are
provincial in H1 (corresponding to the differential m1 on ACFAT .H1/), provincial
in H2 (corresponding to the “differential” on BCFDTA.H2/, ie the part of ı1

1
that

outputs an idempotent algebra element), or provincial in H1 [H2 but crossing the
common boundary of H1 and H2 (for .m2 ˝ id/ ı .id ˝ ı1

1
/ when ı1

1
outputs a

nonidempotent algebra element). The third kind can only be a rectangle. These
are exactly all the provincial domains for ACFAT .H1 [H2/. So the differentials on
ACFAT .H1/� BCFDTA.H2/ and ACFAT .H1[H2/ agree.

Half-rectangles on H1 [H2 that cross @1H2 are entirely contained (left provincial)
in H2 , and the same sets of these half-rectangles are counted for the right multiplications
m2 on ACFAT .H1/� BCFDTA.H2/ and on ACFAT .H1[H2/.
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Thus, the type A structures ACFAT .H1/� BCFDTA.H2/ and ACFAT .H1 [ H2/ are
isomorphic.

The other cases are analogous.

In particular, tangle Floer homology recovers knot Floer homology. For tangles in B3

and S2 � I , this result is simply a restatement of Theorem 6.1.

If H1 or H2 is not a nice diagram, the corresponding structure may not be bounded. In
that case, the box tensor product is not defined, and we need to look at the A1 tensor
product eCFT .H1/ z̋

�
A.�@0H2/� eCFT .H2/

�
. So by [9, Proposition 2.3.18], invari-

ance, and the above theorem, eCFT .H1/ z̋
�
A.�@0H2/� eCFT .H2/

�
' eCFT .H1[H2/,

or using the shorter notation, eCFT .H1/ z̋ eCFT .H2/' eCFT .H1[H2/. Here eCFT
stands for any of the structures in Theorem 12.4.

Corollary 12.5 The following equivalences hold:

(1) If .Y1; T1/ is a 2m–tangle where @Y1 is identified with a marked sphere S ,
.Y2; T2;  / is a strongly marked .2m; 2n/–tangle with @0Y2 identified with �S ,
and .Y; T / is their union along S , then

1CFAT .Y1; T1/� 2CFDTA.Y2; T2;  /' 1CFAT .Y; T /˝V ˝.jT1jCjT2j�jT j/:

(2) If .Y1; T1; 1/ is a strongly marked .m; n/–tangle with @1Y1 identified with
a marked sphere S , .Y2; T2; 2/ is a strongly marked .n; l/–tangle with @0Y2

identified with �S , and .Y; T ;  / is their union along S , then

2CFDTA.Y1; T1; 1/� 2CFDTA.Y2; T2; 2/

' 2CFDTA.Y; T ;  /˝V ˝.jT1jCjT2j�jT j/:

(3) If .Y1; T1;  / is a strongly marked .2m; 2n/–tangle with @1Y1 identified with
a marked sphere S , .Y2; T2/ is a 2n–tangle with @Y2 identified with �S , and
.Y; T / is their union along S , then

2CFDTA.Y1; T1;  /� 1CFTD.Y2; T2/' 1CFTD.Y; T /˝V ˝.jT1jCjT2j�jT j/:

(4) If .Y1; T1/ is a 2n–tangle with @Y1 identified with a marked sphere S , .Y2; T2/

is a 2n–tangle with @Y2 identified with �S , and .Y; T / is their union along S ,
then

1CFAT .Y1; T1/� 1CFTD.Y2; T2/' bCFK .Y; T /˝V ˝.jT1jCjT2j�jT j/˝W;

where W D F2˚F2 .
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Moreover, when the underlying manifolds are B3 , S2 � I or S3 , the homotopy
equivalences respect the bigrading, where the two summands of V are in .M;A/

bigradings .0; 0/ and .�1;�1/, and the two summands of W are in bigradings .0; 0/
and .�1; 0/.

Proof In each case, for a choice of nice Heegaard diagrams, we have an equivalence
of tilde modules as in the proof of Theorem 12.4. To have precisely the “hat” modules
for T1 and T2 , pick nice Heegaard diagrams Hi with jXi \ Int†i j D jTi j. Note that
on HDH1[H2 we have jX\ Int.†1[†2/j D jT1jC jT2j, and we need a diagram
such that jX\ Int†j D jT j to obtain the “hat” module for T , so H produces a module
equivalent to the “hat” module tensored with jT1jC jT2j � jT j copies of V .

Note that in the fourth case H1[H2 is a Heegaard diagram for the link T D T1[ T2

union a split unknot U in Y (see Lemma 8.24), so

eCFK.H1[H2/' bCFK.Y; T [U /˝V ˝.jT1jCjT2j�jT j/

' bCFK.Y; T [U /˝V ˝.jT1jCjT2j�jT j/˝W:

The second equivalence is a known fact in Heegaard Floer theory.

Similar results hold for the various other modules from Section 10.4.

References
[1] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results

in symplectic field theory, Geom. Topol. 7 (2003) 799–888 MR2026549

[2] P Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130
(2008) 1151–1169 MR2450204

[3] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000)
359–426 MR1740682

[4] M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002)
665–741 MR1928174

[5] R Lipshitz, C Manolescu, J Wang, Combinatorial cobordism maps in hat Heegaard
Floer theory, Duke Math. J. 145 (2008) 207–247 MR2449946

[6] R Lipshitz, P Ozsváth, D Thurston, Heegaard Floer homology as morphism spaces,
II, in preparation

[7] R Lipshitz, P Ozsváth, D Thurston, Slicing planar grid diagrams: a gentle intro-
duction to bordered Heegaard Floer homology, from “Proceedings of Gökova geome-
try/topology conference 2008” (S Akbulut, T Önder, R J Stern, editors), GGT, Gökova,
Turkey (2009) 91–119 MR2500575

Geometry & Topology, Volume 20 (2016)

http://dx.doi.org/10.2140/gt.2003.7.799
http://dx.doi.org/10.2140/gt.2003.7.799
http://www.ams.org/mathscinet-getitem?mr=2026549
http://dx.doi.org/10.1353/ajm.0.0016
http://www.ams.org/mathscinet-getitem?mr=2450204
http://dx.doi.org/10.1215/S0012-7094-00-10131-7
http://www.ams.org/mathscinet-getitem?mr=1740682
http://dx.doi.org/10.2140/agt.2002.2.665
http://www.ams.org/mathscinet-getitem?mr=1928174
http://dx.doi.org/10.1215/00127094-2008-050
http://dx.doi.org/10.1215/00127094-2008-050
http://www.ams.org/mathscinet-getitem?mr=2449946
http://www.ams.org/mathscinet-getitem?mr=2500575


Combinatorial tangle Floer homology 3331

[8] R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard Floer homology: invariance
and pairing, preprint (2011) arXiv:0810.0687v4

[9] R Lipshitz, P S Ozsváth, D P Thurston, Bimodules in bordered Heegaard Floer
homology, Geom. Topol. 19 (2015) 525–724 MR3336273

[10] C Manolescu, An unoriented skein exact triangle for knot Floer homology, Math. Res.
Lett. 14 (2007) 839–852 MR2350128

[11] C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homol-
ogy, Ann. of Math. 169 (2009) 633–660 MR2480614

[12] C Manolescu, P Ozsváth, Z Szabó, D Thurston, On combinatorial link Floer homol-
ogy, Geom. Topol. 11 (2007) 2339–2412 MR2372850

[13] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577–608
MR2357503

[14] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7
(2003) 615–639 MR2026543

[15] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004)
311–334 MR2023281

[16] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004)
58–116 MR2065507

[17] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and
applications, Ann. of Math. 159 (2004) 1159–1245 MR2113020

[18] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-
manifolds, Ann. of Math. 159 (2004) 1027–1158 MR2113019

[19] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds,
Adv. Math. 202 (2006) 326–400 MR2222356

[20] P Ozsváth, Z Szabó, On the skein exact squence for knot Floer homology, preprint
(2007) arXiv:0707.1165

[21] P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexan-
der polynomial, Algebr. Geom. Topol. 8 (2008) 615–692 MR2443092

[22] I Petkova, An absolute Z=2 grading on bordered Heegaard Floer homology, preprint
(2014) arXiv:1401.2670

[23] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard Univer-
sity (2003) MR2704683 Available at http://search.proquest.com/docview/
305332635

[24] J Rasmussen, Knot polynomials and knot homologies, from “Geometry and topology
of manifolds” (H U Boden, I Hambleton, A J Nicas, B D Park, editors), Fields Inst.
Commun. 47, Amer. Math. Soc., Providence, RI (2005) 261–280 MR2189938

Geometry & Topology, Volume 20 (2016)

http://arxiv.org/abs/0810.0687v4
http://dx.doi.org/10.2140/gt.2015.19.525
http://dx.doi.org/10.2140/gt.2015.19.525
http://www.ams.org/mathscinet-getitem?mr=3336273
http://dx.doi.org/10.4310/MRL.2007.v14.n5.a11
http://www.ams.org/mathscinet-getitem?mr=2350128
http://dx.doi.org/10.4007/annals.2009.169.633
http://dx.doi.org/10.4007/annals.2009.169.633
http://www.ams.org/mathscinet-getitem?mr=2480614
http://dx.doi.org/10.2140/gt.2007.11.2339
http://dx.doi.org/10.2140/gt.2007.11.2339
http://www.ams.org/mathscinet-getitem?mr=2372850
http://dx.doi.org/10.1007/s00222-007-0075-9
http://www.ams.org/mathscinet-getitem?mr=2357503
http://dx.doi.org/10.2140/gt.2003.7.615
http://www.ams.org/mathscinet-getitem?mr=2026543
http://dx.doi.org/10.2140/gt.2004.8.311
http://www.ams.org/mathscinet-getitem?mr=2023281
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://www.ams.org/mathscinet-getitem?mr=2065507
http://dx.doi.org/10.4007/annals.2004.159.1159
http://dx.doi.org/10.4007/annals.2004.159.1159
http://www.ams.org/mathscinet-getitem?mr=2113020
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://www.ams.org/mathscinet-getitem?mr=2113019
http://dx.doi.org/10.1016/j.aim.2005.03.014
http://www.ams.org/mathscinet-getitem?mr=2222356
http://arxiv.org/abs/0707.1165
http://dx.doi.org/10.2140/agt.2008.8.615
http://dx.doi.org/10.2140/agt.2008.8.615
http://www.ams.org/mathscinet-getitem?mr=2443092
http://arxiv.org/abs/1401.2670
http://www.ams.org/mathscinet-getitem?mr=2704683
http://search.proquest.com/docview/305332635
http://search.proquest.com/docview/305332635
http://www.ams.org/mathscinet-getitem?mr=2189938


3332 Ina Petkova and Vera Vértesi

[25] S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies,
Ann. of Math. 171 (2010) 1213–1236 MR2630063

[26] A Sartori, The Alexander polynomial as quantum invariant of links, Ark. Mat. 53
(2015) 177–202 MR3319619

[27] O Y Viro, Quantum relatives of the Alexander polynomial, Algebra i Analiz 18 (2006)
63–157 MR2255851 In Russian; translated in St. Petersburg Math. J. 18 (2007)
391–457

[28] R Zarev, Bordered Floer homology for sutured manifolds, preprint (2009) arXiv:
0908.1106

Department of Mathematics, Dartmouth College
Hanover, NH 03755, United States

Institut de Recherche Mathématique Avancée, Université de Strasbourg
7 rue René Decartes, 67087 Strasbourg, France

ina.petkova@dartmouth.edu, vertesi@math.unistra.fr

http://www.math.dartmouth.edu/~ina/,
http://www-irma.u-strasbg.fr/~vertesi/

Proposed: Ciprian Manolescu Received: 20 November 2014
Seconded: Ronald Stern, Ian Agol Revised: 19 October 2015

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.4007/annals.2010.171.1213
http://www.ams.org/mathscinet-getitem?mr=2630063
http://dx.doi.org/10.1007/s11512-014-0196-5
http://www.ams.org/mathscinet-getitem?mr=3319619
http://mi.mathnet.ru/aa74
http://www.ams.org/mathscinet-getitem?mr=2255851
http://dx.doi.org/10.1090/S1061-0022-07-00956-9
http://dx.doi.org/10.1090/S1061-0022-07-00956-9
http://arxiv.org/abs/0908.1106
http://arxiv.org/abs/0908.1106
mailto:ina.petkova@dartmouth.edu
mailto:vertesi@math.unistra.fr
http://www.math.dartmouth.edu/~ina/
http://www-irma.u-strasbg.fr/~vertesi/
http://msp.org
http://msp.org


msp
Geometry & Topology 20 (2016) 3333–3430

Persistent homology and Floer–Novikov theory

MICHAEL USHER

JUN ZHANG

We construct “barcodes” for the chain complexes over Novikov rings that arise in
Novikov’s Morse theory for closed one-forms and in Floer theory on not-necessarily-
monotone symplectic manifolds. In the case of classical Morse theory these coincide
with the barcodes familiar from persistent homology. Our barcodes completely
characterize the filtered chain homotopy type of the chain complex; in particular
they subsume in a natural way previous filtered Floer-theoretic invariants such as
boundary depth and torsion exponents, and also reflect information about spectral
invariants. Moreover, we prove a continuity result which is a natural analogue both
of the classical bottleneck stability theorem in persistent homology and of standard
continuity results for spectral invariants, and we use this to prove a C 0–robustness
result for the fixed points of Hamiltonian diffeomorphisms. Our approach, which
is rather different from the standard methods of persistent homology, is based on a
nonarchimedean singular value decomposition for the boundary operator of the chain
complex.

53D40; 55U15

1 Introduction

Persistent homology is a well-established tool in the rapidly developing field of topolog-
ical data analysis. On an algebraic level, the subject studies “persistence modules”, ie
structures V consisting of a module Vt associated to each t 2R with homomorphisms
�st W Vs ! Vt whenever s � t satisfying the functoriality properties that �ss D IVs ,
the identity map on module Vs , and �su D �tu ı �st (more generally R could be
replaced by an arbitrary partially ordered set, but this generalization will not be relevant
to this paper). Persistence modules arise naturally in topology when one considers a
continuous function f W X !R on a topological space X ; for a field K one can then
let Vt DH�.ff � tgIK/ be the homology of the t–sublevel set, with the �st being
the inclusion-induced maps. For example if X D Rn and the function f W Rn! R
is given by the minimal distance to a finite collection of points sampled from some
subset S �Rn , then Vt is the homology of the union of balls of radius t around the
points of the sample; the structure of the associated persistence module has been used
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effectively to make inferences about the topological structure of the set S in some
real-world situations; see eg Carlsson [7].

Under finiteness hypotheses on the modules Vt (for instance finite-type as in Zomoro-
dian and Carlsson [46] or more generally pointwise finite-dimensionality as in Crawley-
Boevey [12]), provided that the coefficient ring for the modules Vt is a field K , it
can be shown that the persistence module V is isomorphic in the obvious sense to a
direct sum of “interval modules” KI , where I � R is an interval and by definition
.KI /t D K for t 2 I and f0g otherwise, and the morphisms �st are the identity on K
when s; t 2 I and 0 otherwise. The barcode of V is then defined to be the multiset of
intervals appearing in this direct sum decomposition. When V is obtained as the filtered
homology of a finite-dimensional chain complex, [46] gives a worst-case-cubic-time
algorithm that computes the barcode given the boundary operator on the chain complex.

If f W X ! R is a Morse function on a compact smooth manifold, a standard con-
struction (see eg Schwarz [39]) yields a “Morse chain complex” .CM�.f /; @/. The
degree-k part CMk.f / of the complex is formally spanned (say over the field K) by the
critical points of f having index k . The boundary operator @W CMkC1.f /!CMk.f /

counts (with appropriate signs) negative gradient flowlines of f which are asymptotic
as t ! �1 to an index-.kC1/ critical point and as t !1 to an index-k critical
point. For any t 2 R, if we consider the subspace CMt

�.f / � CM�.f / spanned
only by those critical points p of f with f .p/ � t , then the fact that f decreases
along its negative gradient flowlines readily implies that CMt

�.f / is a subcomplex
of CM�.f /. So taking homology gives filtered Morse homology groups HMt

�.f /,
with inclusion-induced maps HMs

�.f /! HMt
�.f / when s � t that satisfy the usual

functoriality properties. Thus the filtered Morse homology groups associated to a Morse
function yield a persistence module; given a formula for the Morse boundary operator
one could then apply the algorithm from [46] to compute its barcode. In fact, standard
results of Morse theory show that this persistence module is (up to isomorphism) simply
the persistence module comprising the sublevel homologies H�.ff � tgIK/ with the
inclusion-induced maps.

There are a variety of situations in which one can do some form of Morse theory
for a suitable function AW C!R on an appropriate infinite-dimensional manifold C .
Indeed, Morse himself [32] applied his theory to the energy functional on the loop
space of a Riemannian manifold in order to study its geodesics. Floer [15; 16; 17]
discovered some rather different manifestations of infinite-dimensional Morse theory
involving functions A which, unlike the energy functional, are unbounded above
and below and have critical points of infinite index. In these cases, one still obtains
a Floer chain complex analogous to the Morse complex of the previous paragraph
and can still speak of the filtered homologies HFt with their inclusion-induced maps
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HFs ! HFt ; however it is no longer true that these filtered homology groups relate
directly to classical topological invariants; rather, they are new objects. Thus Floer’s
construction gives (taking filtrations into account as above) a persistence module. If
the persistence module satisfies appropriate finiteness conditions one then obtains a
barcode by the procedure indicated earlier; however, as we will explain below the
finiteness conditions only hold in rather restricted circumstances. While the filtered
Floer groups have been studied since the early 1990s and have been a significant tool in
symplectic topology since that time (see eg Floer and Hofer [18], Schwarz [40], Entov
and Polterovich [13], Oh [34], Usher [45] and Humilière, Leclercq and Seyfaddini [26]),
it is only very recently that they have been considered from a persistent-homological
point of view. Namely, Polterovich and Shelukhin [36] apply ideas from persistent
homology to prove interesting results about autonomous Hamiltonian diffeomorphisms
of symplectic manifolds, subject to a topological restriction that is necessary to guarantee
the finiteness property that leads to a barcode. This paper will generalize the notion of
a barcode to more general Floer-theoretic situations. In particular, this opens up the
possibility of extending the results from [36] to manifolds other than those considered
therein; this is the subject of work in progress by the second author.

The difficulty with applying the theory of barcodes to general Floer complexes lies
in the fact that, typically, Floer theory is more properly viewed as an infinite dimen-
sional version of Novikov’s Morse theory for closed one-forms (see Novikov [33]
and Farber [14]) rather than of classical Morse theory. Here one considers a closed
1–form ˛ on some manifold M which vanishes transversely with finitely many zeros,
and takes a regular covering � W zM ! M on which we have ��˛ D d zf for some
function zf W zM !R. Then zf will be a Morse function whose critical locus consists
of the preimage of the (finite) zero locus of ˛ under � ; in particular, if the de Rham
cohomology class of ˛ is nontrivial then � W zM !M will necessarily have infinite
fibers and so zf will have infinitely many critical points.

One then attempts to construct a Morse-type complex CN�. zf / by setting CNk. zf /
equal to the span over K of the index-k critical points1 of zf , with boundary operator
@W CNkC1. zf /!CNk. zf / given by setting, for an index-.kC1/ critical point p of zf ,

@p D
X

ind zf .q/Dk

n.p; q/q;

where n.p; q/ is a count of negative gradient flowlines for zf (with respect to a suitably
generic Riemannian metric pulled back to zM from M ) asymptotic to p in negative time
and to q in positive time. However the above attempt does not quite work because the

1“Index” means Morse index in the finite-dimensional case (see eg Schwarz [39]), and typically some
version of the Maslov index in the Floer-theoretic case (see eg Robbin and Salamon [37]).
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sum on the right-hand side may have infinitely many nonzero terms; thus it is necessary
to enlarge CNk. zf / to accommodate certain formal infinite sums. The correct definition
is, denoting by Critk. zf / the set of critical points of zf with index k ,

(1) CNk. zf /D
� X
p2Critk. zf /

app
ˇ̌̌
ap 2 K and

#fp j ap ¤ 0; zf .p/ > C g<1 for all C 2R

�
:

Then under suitable hypotheses it can be shown that the definition of @ above gives a
well-defined map @W CNkC1. zf /! CNk. zf / such that @2 D 0. This construction can
be carried out in many contexts, including the classical Novikov complex where M
is compact and various Floer theories where M is infinite-dimensional. In the latter
case, the zeros of ˛ are typically some objects of interest, such as closed orbits of
a Hamiltonian flow, on some other finite-dimensional manifold. In these cases, just
as in Morse theory, @ preserves the R–filtration given by, for t 2R, letting CNtk.

zf /

consist of only those formal sums
P
p app where each zf .p/ is at most t . In this way

we obtain filtered Novikov homology groups HNt�. zf / with inclusion-induced maps
HNs. zf /! HNt . zf / satisfying the axioms of a persistence module over K .

However, when the cover zM !M is nontrivial, this persistence module over K does
not satisfy the hypotheses of many of the major theorems of persistent homology; the
maps HNs. zf /!HNt . zf / generally have infinite rank over K (due to a certain “lifting”
scenario which is described later in this paragraph) and so the persistence module is
not “q-tame” in the sense of Chazal, de Silva, Glisse and Oudot [9]. As is well-known,
to get a finite-dimensional object out of the Novikov complex one should work not
over K but over a suitable Novikov ring. From now on we will assume that the cover
� W zM ! M is minimal subject to the property that ��˛ is exact; in other words,
the covering group coincides with the kernel of the homomorphism I˛W �1.M/!R
induced by integrating ˛ over loops. This will lead to our Novikov ring being a field.
Given this assumption, let y� �R be the image of I˛ . Then by, for any g 2 y� , lifting
loops in M with integral equal to �g to paths in zM , we obtain an action of y� on the
critical locus of zf such that zf .p/� zf .gp/D g . In some Floer-theoretic situations this
action can shift the index by s.g/ for some homomorphism sW y�! Z. For instance,
in Hamiltonian Floer theory s is given by evaluating twice the first Chern class of the
symplectic manifold on spheres, whereas in the classical case of the Novikov chain
complex of a closed one-form on a finite-dimensional manifold, s is zero. Now let
� D ker s , so that � acts on the index-k critical points of zf , and this action then gives
rise to an action of the following Novikov field on CNk. zf /:

ƒK;�
D

�X
g2�

agT
g
ˇ̌̌
ag 2 K and #fg j ag ¤ 0; g < C g<1 for all C 2R

�
:
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It follows from the description that CNk. zf / is a vector space over ƒK;� of (finite!)
dimension equal to the number of zeros of our original ˛ 2�1.M/ that admit lifts to
index-k critical points for zf in zM . Indeed, if the set f zp1; : : : ; zpmi g � zM consists of
exactly one such lift of each of these zeros of ˛ then f zp1; : : : ; zpmi g is a ƒK;�–basis
for CNk. zf /.

Now since the action by an element g of � shifts the value of zf by �g , the fil-
tered groups CNtk.

zf / are not preserved by multiplication by scalars in ƒK;� , and
so the aforementioned persistence module fHFt . zf /g over K can not be viewed as a
persistence module over ƒK;� , unless of course � D f0g, in which case ƒK;� D K .
Our strategy in this paper is to understand filtered Novikov and Floer complexes not
through their induced persistence modules on homology (see Remark 1.1 below) but
rather through the nonarchimedean geometry that the filtration induces on the chain
complexes. This will lead to an alternative theory of barcodes which recovers the
standard theory in the case that � D f0g (see Zomorodian and Carlsson [46], Chazal,
de Silva, Glisse and Oudot [9] and, for a different perspective, Barannikov [2]) but
which also makes sense for arbitrary � , while continuing to enjoy various desirable
properties.

We should mention that, in the case of Morse–Novikov theory for a function f W X!S1 ,
a different approach to persistent homology is taken in Burghelea and Dey [5] and
Burghelea and Haller [6]. These works are based around the notion of the (zigzag)
persistent homology of level sets of the function; this is a rather different viewpoint
from ours, as in order to obtain insight into Floer theory we only use the algebraic
features of the Floer chain complex, and in a typical Floer theory there is nothing that
plays the role of the homology of a level set. Rather, we construct what could be called
an algebraic simulation of the more classical sublevel set persistence, even though (as
noted in [5]) from a geometric point of view it does not make sense to speak of the
sublevel sets of an S1–valued function. Also our theory, unlike that of [5] and [6],
applies to the Novikov complexes of closed one-forms that have dense period groups.
Notwithstanding these differences, there are some indications (see in particular the
remark after [6, Theorem 1.4]) that the constructions may be related on their common
domains of applicability; it would be interesting to understand this further.

1.1 Outline of the paper and summary of main results

With the exception of an application to Hamiltonian Floer theory in Section 12, the en-
tirety of this paper is written in a general algebraic context involving chain complexes of
certain kinds of nonarchimedean normed vector spaces over Novikov fields ƒDƒK;� .
(In particular, no knowledge of Floer theory is required to read the large majority of the
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paper, though it may be helpful as motivation.) The definitions necessary for our theory
are somewhat involved and so will not be included in detail in this introduction, but they
make use of the standard notion of orthogonality in nonarchimedean normed vector
spaces, a subject which is reviewed in Section 2. Our first key result is Theorem 3.4,
which shows that any linear map AW C !D between two finite-dimensional nonar-
chimedean normed vector spaces C and D over ƒ having orthogonal bases admits
a singular value decomposition: there are orthogonal bases BC for C and BD for D
such that A maps each member of BC either to zero or to one of the elements of BD .
In the case that C and D admit orthonormal bases and not just orthogonal ones this
was known (see Kedlaya [27, Section 4.3]); however, Floer complexes typically admit
orthogonal but not orthonormal bases (unless one extends coefficients, which leads to
a loss of information), and in this case Theorem 3.4 appears to be new.

In Definition 4.1 we introduce the notion of a “Floer-type complex” .C�; @; `/ over
a Novikov field ƒ; this is a chain complex of ƒ–vector spaces .C�; @/ with a nonar-
chimedean norm e` on each graded piece Ck that induces a filtration which is respected
by @. We later construct our versions of the barcode by consideration of singular value
decompositions of the various graded pieces of the boundary operator. Singular value
decompositions are rather nonunique, but we prove a variety of results reflecting that
data about filtrations of the elements involved in a singular value decomposition is
often independent of choices and so gives rise to invariants of the Floer-type com-
plex .C�; @; `/. The first instance of this appears in Theorem 4.11, which relates the
boundary depth of Usher [44; 45], as well as generalizations thereof, to singular value
decompositions. Theorem 4.13 shows that these generalized boundary depths are equal
to (an algebraic abstraction of) the torsion exponents from Fukaya, Oh, Ohta and
Ono [20]. Since the definition of the torsion exponents in [20] requires first extending
coefficients to the universal Novikov field (with � D R), whereas our definition in
terms of singular value decompositions does not require such an extension, this implies
new restrictions on the values that the torsion exponents can take: in particular, they all
must be equal to differences between filtration levels of chains in the original Floer
complex.

1.1.1 Barcodes Our fundamental invariants of a Floer-type complex, the “verbose
barcode” and the “concise barcode”, are defined in Definition 6.3. The verbose barcode
in any given degree is a finite multiset of elements .Œa�; L/ of the Cartesian product
.R=�/ � Œ0;1�, where � � R is the subgroup described above and involved in
the definition of the Novikov field ƒ D ƒK;� . The concise barcode is simply the
submultiset of the verbose barcode consisting of elements .Œa�; L/ with L> 0. Both
barcodes are constructed in an explicit way from singular value decompositions of the
graded pieces of the boundary operator on a Floer-type complex.
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To be a bit more specific, as is made explicit in Proposition 7.4, a singular value
decomposition can be thought of as expressing the Floer-type complex as an orthogonal
direct sum of very simple complexes2 having the form

(2) � � � ! 0! spanƒfyg ! spanƒf@yg ! 0! � � �

or � � � ! 0! spanƒfxg ! 0! � � � ;

and the verbose barcode consists of the elements .Œ`.@y/�; `.y/�`.@y// for summands
of the first type and .Œ`.x/�;1/ for summands of the second type. The concise barcode
discards those elements coming from summands with `.@y/D `.y/ (as these do not
affect any of the filtered homology groups).

To put these barcodes into context, suppose that � D f0g and that our Floer-type
complex .C�; @; `/ is given by the Morse complex CM�.f / of a Morse function f
on a compact manifold X (with ` recording the highest critical value attained by a
given chain in the Morse chain complex). Then standard persistent homology methods
associate to f a barcode, which is a collection of intervals Œa; b/ with a < b �1,
given the interpretation that each interval Œa; b/ in the collection corresponds to a
topological feature of X which is “born” at the level ff D ag and “dies” at the level
ff D bg (or never dies if b D1). Theorem 6.2 proves that, when � D f0g (so that
R=� D R), our concise barcode is equivalent to the classical persistent homology
barcode under the correspondence that sends a pair .a; L/ in the concise barcode to
an interval Œa; aCL/. (Thus the second coordinates L in our elements of the concise
barcode correspond to the lengths of bars in the persistent homology barcode.) To
relate this back to the persistence module fHMt

�.f /gt2R Š fH�.ff � tgIK/gt2R

discussed earlier in the introduction, each HMt
k
.f / has dimension equal to the number

of elements .a; L/ in the degree-k concise barcode such that a � t < aCL, and the
rank of the inclusion-induced map HMs

k
.f /! HMt

k
.f / is equal to the number of

such elements with a � s � t < aCL.

When � is a nontrivial subgroup of R, a Floer-type complex over ƒ is more akin to
the Morse–Novikov complex of a multivalued function f , where the ambiguity of
the values of f is given by the group � (for instance, identifying S1 D R=Z, for
an S1–valued function we would have � D Z). While this situation lies outside the
scope of classical persistent homology barcodes for reasons indicated earlier in the
introduction, on a naive level it should be clear that if a topological feature of X is born
where f D a and dies where f D b (corresponding to a bar Œa; b/ in a hypothetical

2The “Morse–Barannikov complex” described in Barannikov [2] and Le Peutrec, Nier and Viterbo [28,
Section 2] can be seen as a special case of this direct sum decomposition when � D f0g and the Floer-type
complex is the Morse complex of a Morse function whose critical values are all distinct; see Remark 5.6
for details.
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barcode), then it should equally be true that, for any g 2 � , a topological feature
of X is born where f D aC g and dies where f D bC g . So bars would come in
�–parametrized families with � acting on both endpoints of the interval; such families
in turn can be specified by the coset Œa� of the left endpoint a in R=� together with
the length LD b�a 2 Œ0;1�. This motivates our definition of the verbose and concise
barcodes as multisets of elements of .R=�/� Œ0;1�. In terms of the summands in (2),
the need to quotient by � simply comes from the fact that the elements y and x are
only specified up to the scalar multiplication action of ƒ n f0g, which can affect their
filtration levels by an arbitrary element of � . The following classification results are
two of the main theorems of this paper.

Theorem A Two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ are filtered
chain isomorphic to each other if and only if they have identical verbose barcodes in all
degrees.

Theorem B Two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ are filtered
chain homotopy equivalent to each other if and only if they have identical concise
barcodes in all degrees.

Theorem A includes the statement that the verbose (and hence also the concise) barcode
is independent of the singular value decomposition used to define it; indeed this
statement is probably the hardest part of Theorems A and B to prove. We prove these
theorems in Section 7.

As should already be clear from the above discussion, the only distinction between
the verbose and concise barcodes of a Floer-type complex .C�; @; `/ arises from
elements y 2 C� with `.@y/ D `.y/. While our definition of a Floer-type complex
only imposes the inequality `.@y/� `.y/, in many of the most important examples,
including the Morse complex of a Morse function or the Hamiltonian Floer complex of
a nondegenerate Hamiltonian, one in fact always has a strict inequality `.@y/ < `.y/
for all y 2 C� n f0g. For complexes satisfying this latter property the verbose and
concise barcodes are equal, and so Theorems A and B show that the filtered chain
isomorphism classification of such complexes is exactly the same as their filtered chain
homotopy equivalence classification. (This fact can also be proven in a more direct
way; see for instance the argument at the end of Usher [44, Proof of Lemma 3.8].)

In Remark 4.3 we mention some examples of naturally occurring Floer-type complexes
in which an equality `.@y/D `.y/ can sometimes hold. In these complexes the verbose
and concise barcodes are generally different, and thus the filtered chain homotopy
equivalence classification is coarser than the filtered chain isomorphism classification.
For many purposes the filtered chain isomorphism classification is likely too fine, in
that it may depend on auxiliary choices made in the construction of the complex (for
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instance, in the Morse–Bott complex as constructed in Frauenfelder [19], it would
depend on the choices of Morse functions on the critical submanifolds of the Morse–
Bott function under consideration). The filtered chain homotopy type (and thus, by
Theorem B, the concise barcode) is generally insensitive to such choices, and moreover
is robust in a sense made precise in Theorem 1.4.

When � D f0g, Theorem B may be seen as an analogue of standard results from
persistent homology theory (like [46, Corollary 3.1]) which imply that the degree-k
barcode of a Floer-type complex completely classifies the persistence module obtained
from its filtered homologies H t

k
.C�/. Of course, the filtered chain homotopy type of a

filtered chain complex is sufficient to determine its filtered homologies. Conversely,
still assuming that � D f0g, by using the description of finite-type persistence modules
as KŒt �–modules in Zomorodian and Carlsson [46], and taking advantage of the fact
that (because KŒt � is a PID) chain complexes of free KŒt �–modules are classified up
to chain homotopy equivalence by their homology, one can show that the filtered
chain homotopy type of a Floer-type complex is determined by its filtered homology
persistence module. Thus, although the persistent homology literature generally focuses
on homological invariants rather than classification of the underlying chain complexes
up to filtered isomorphism or filtered homotopy equivalence, when � Df0g Theorem B
can be deduced from [46] together with a little homological algebra and Theorem 6.2.

For any choice of the group � , the concise barcode contains information about various
numerical invariants of Floer-type complexes that have previously been used in filtered
Floer theory. In particular, by Theorems 4.11 and 4.13 and the definition of the concise
barcode, the torsion exponents from Fukaya, Oh, Ohta and Ono [20] are precisely the
second coordinates L of elements .Œa�; L/ of the concise barcode having L <1,
written in decreasing order; the boundary depth of [44] is just the largest of these.
In Section 6.1 we show that the concise barcode also carries information about the
spectral invariants as in Schwarz [40] and Oh [34]. In particular, a number a arises
as the spectral invariant of some class in the homology of the complex if and only if
there is an element of form .Œa�;1/ in the concise barcode. By contrast, the numbers
a appearing in elements .Œa�; L/ of the concise barcode with L <1 do not seem to
have standard analogues in Floer theory, and so could be considered as new invariants.
Whereas the spectral invariants and boundary depth have the notable feature of varying
in Lipschitz fashion with respect to the Hofer norm on the space of Hamiltonians,
these numbers a have somewhat more limited robustness properties, which can be
understood in terms of our stability results such as Corollary 1.5 below.

In Section 6.2 we show how the verbose (and hence also the concise) barcodes of a
Floer-type complex in various degrees are related to those of its dual complex, and
to those of the complex obtained by extending the coefficient field by enlarging the
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group � . The relationships are rather simple; in the case of the dual complex they
can be seen as extending results from Usher [43] on the Floer theory side and from
de Silva, Morozov and Vejdemo-Johansson [41] on the persistent homology side.

Remark 1.1 Our approach differs from the conventional approach in the persistent
homology literature in that we work almost entirely at the chain level; for the most part
our theorems do not directly discuss the homology persistence modules fH t

k
.C�/gt2R .

The primary reason for this is that, when � ¤ f0g, such homology persistence modules
are unlikely to fit into any reasonable classification scheme. The basic premise of the
original introduction of barcodes in [46] is that a finite-type persistence module over
a field K can be understood in terms of the classification of finitely generated KŒx�–
modules; however, when � ¤ f0g our persistence modules are infinitely generated
over K , leading to infinitely generated KŒx�–modules and suggesting that one should
work with a larger coefficient ring than K . Since the action of the Novikov field does
not preserve the filtration on the chain complex, the H t

k
.C�/ are not modules over the

full Novikov field ƒ. They are however modules over the subring ƒ�0 consisting of
elements

P
g agT

g with all g � 0, and if � is nontrivial and discrete (in which case
ƒ�0 is isomorphic to a formal power series ring KŒŒt ��) then each H t

k
.C�/ is a finitely

generated ƒ�0–module. But then the approach from [46] leads to the consideration of
finitely generated KŒŒt ��Œx�–modules, which again do not admit a simple description in
terms of barcode-type data since KŒŒt ��Œx� is not a PID.

Our chain-level approach exploits the fact that the chain groups Ck in a Floer-type
complex, unlike the filtered homologies, are finitely generated vector spaces over a field
(namely ƒ), which makes it more feasible to obtain a straightforward classification. It
does follow from our results that the filtered homology persistence module of a Floer-
type complex can be expressed as a finite direct sum of filtered homology persistence
modules of the building blocks E.a; L; k/ depicted in (2). However, since the filtered
homology persistence modules of the E.a; L; k/ are themselves somewhat complicated
(as the interested reader may verify by direct computation) it is not clear whether this
is a useful observation. For instance, we do not know whether the image on homology
of a filtered chain map between two Floer-type complexes can always likewise be
written as a direct sum of these basic persistence modules; if this is true then it might
be possible to adapt arguments from Bauer and Lesnick [3] or Chazal, de Silva, Glisse
and Oudot [9, Section 3.4] to remove the factor of 2 in Theorem 1.4.

1.1.2 Stability Among the most important theorems in persistent homology theory
is the bottleneck stability theorem, which in its original form (see Cohen-Steiner,
Edelsbrunner and Harer [10]) shows that the barcodes of the sublevel persistence
modules fH�.ff � tgIKgt2R associated to suitably tame functions f W X !R on a
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fixed topological space X depend in 1–Lipschitz fashion on f , where we use the C 0–
norm to measure the distance between functions and the bottleneck distance (recalled
below) to measure distances between barcodes. Since in applications there is inevitably
some imprecision in the function f , some sort of result along these lines is evidently
important in order to ensure that the barcode detects robust information. More recently, a
number of extensions and new proofs of the bottleneck stability theorem have appeared,
for instance in Chazal, Cohen-Steiner, Glisse, Guibas and Oudot [8], Chazal, de Silva,
Glisse and Oudot [9] and Bauer and Lesnick [3]; these have recast the theorem as an
essentially algebraic result about persistence modules satisfying a finiteness condition
such as q–tameness or pointwise finite-dimensionality (see [3, pages 163, 167] for
precise definitions). When recast in this fashion the stability theorem can be improved
to an isometry theorem, stating that two natural metrics on an appropriate class of
persistence modules are equal.

Hamiltonian Floer theory (see Floer [17], Hofer and Salamon [24], Liu and Tian [30],
Fukaya and Ono [22] and Pardon [35]) associates a Floer-type complex to any suitably
nondegenerate Hamiltonian H W S1 �M ! R on a compact symplectic manifold
.M;!/. A well-established and useful principle in Hamiltonian Floer theory is that
many aspects of the filtered Floer complex are robust under C 0–small perturbations
of the Hamiltonian; for instance, various R–valued quantities that can be extracted
from the Floer complex such as spectral invariants and boundary depth are Lipschitz
with respect to the C 0–norm on Hamiltonian functions (see Schwarz [40], Oh [34] and
Usher [44]). Naively this is rather surprising since C 0–perturbing a Hamiltonian can
dramatically alter its Hamiltonian flow. Our notion of the concise barcode — which by
Theorem B gives a complete invariant of the filtered chain homotopy type of a Floer-
type complex — allows us to obtain a more complete understanding of this C 0–rigidity
property, as an instance of a general algebraic result which extends the bottleneck
stability/isometry theorem to Floer-type complexes for general subgroups � �R.

In order to formulate our version of the stability theorem we must explain the notions
of distance that we use between Floer-type complexes on the one hand and concise
barcodes on the other. Beginning with the latter, consider two multisets S and T of
elements of .R=�/� Œ0;1�. For ı � 0, a ı -matching between S and T consists of
the following data:

(i) Submultisets Sshort and Tshort such that the second coordinate L of every element
.Œa�; L/ 2 Sshort[ Tshort obeys L� 2ı .

(ii) A bijection � W S n Sshort ! T n Tshort such that, for each .Œa�; L/ 2 S n Sshort

(where a 2R, L 2 Œ0;1�) we have �.Œa�; L/D .Œa0�; L0/, where for all � > 0
the representative a0 of the coset Œa0� 2 R=� can be chosen such that both
ja0� aj � ıC � and either LD L0 D1 or j.a0CL0/� .aCL/j � ıC � .
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Thus, viewing elements .Œa�; L/ as corresponding to intervals Œa; aC L/ (modulo
�–translation), a ı–matching is a matching which shifts both endpoints of each interval
by at most ı , with the proviso that we allow an interval I to be matched with a fictitious
zero-length interval at the center of I .

Definition 1.2 If S and T are two multisets of elements of .R=�/� Œ0;1� then the
bottleneck distance between S and T is

dB.S; T /D inffı � 0 j there exists a ı–matching between S and T g:

If S D fSkgk2Z and T D fTkgk2Z are two Z–parametrized families of multisets of
elements of .R=�/� Œ0;1� then we write

dB.S; T /D sup
k2Z

dB.Sk; Tk/:

It is easy to see that in the special case where � D f0g the above definition agrees with
the notion of bottleneck distance in Cohen-Steiner, Edelsbrunner and Harer [10]. Note
that the value dB can easily be infinity. For instance this occurs if S D f.Œa�;1/g and
T D f.Œa�; L/g, where L<1.

On the Floer complex side, we make the following definition, which is a slight mod-
ification of Usher [45, Definition 3.7]. As is explained in the appendix, this is very
closely related to the notion of interleaving of persistence modules from [8].

Definition 1.3 Let .C�; @C ; `C / and .D�; @D; `D/ be two Floer-type complexes, and
ı � 0. A ı–quasiequivalence between C� and D� is a quadruple .ˆ;‰;K1; K2/,
where:

� ˆW C�!D� and ‰W D�! C� are chain maps, with

`D.ˆc/� `C .c/C ı and `C .‰d/� `D.d/C ı

for all c 2 C� and d 2D� .

� KC W C�! C�C1 and KDW D�!D�C1 obey the homotopy equations

‰ ıˆ� IC� D @CKC CKC @C and ˆ ı‰� ID� D @DKDCKD@D;

and for all c 2 C� and d 2D� we have

`C .KC c/� `C .c/C 2ı and `D.KDd/� `D.d/C 2ı:
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The quasiequivalence distance between .C�; @C ; `C / and .D�; @D; `D/ is then defined
to be

dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
D inf

˚
ı � 0 j 9 ı–quasiequivalence between

.C�; @C ; `C / and .D�; @D; `D/
	
:

We will prove the following as Theorems 8.17 and 8.18 in Sections 9 and 10:

Theorem 1.4 Given a Floer-type complex .C�; @C ; `C /, denote its concise barcode by
B.C�; @C ; `C / and the degree-k part of its concise barcode by BC;k . Then the bottle-
neck and quasiequivalence distances obey, for any Floer-type complexes .C�; @C ; `C /
and .D�; @D; `D/, the following conditions:

(i) dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
� dB

�
B.C�; @C ; `C /;B.D�; @D; `D/

�
� 2dQ

�
.C�; @C ; `C /; .D�; @D; `D/

�
:

(ii) For k 2 Z let �D;k > 0 denote the smallest second coordinate L of all of the
elements of BD;k . If dQ

�
.C�; @C ; `C /; .D�; @D; `D/

�
< 1
4
�D;k , then

dB.BC;k;BD;k/� dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
:

Thus the map from filtered chain homotopy equivalence classes of Floer-type complexes
to concise barcodes is at least bi-Lipschitz, with Lipschitz constant 2. We expect that it
is always an isometry; in fact when �Df0g this can be inferred from [9, Theorem 4.11]
and Theorem 6.2, and as mentioned in Remark 9.15 it is also true in the opposite extreme
case when � is dense.

Our proof that the bottleneck distance dB obeys the upper bounds of Theorem 1.4
is roughly divided into two parts. First, in Proposition 9.3, we prove the sharp in-
equality dB � dQ in the special case that the Floer-type complexes .C�; @C ; `C / and
.D�; @D; `D/ have the same underlying chain complex, and differ only in their filtration
functions `C and `D . In the rest of Section 9 we approximately reduce the general
case to this special case, using a mapping cylinder construction to obtain two different
filtration functions on a single chain complex, one of which has concise barcode equal
to that of .D�; @D; `D/ (see Proposition 9.12), and the other of which has concise
barcode consisting of the concise barcode of .C�; `C ; @C / together with some “extra”
elements .Œa�; L/ 2 .R=�/� Œ0;1� all having L� 2dQ

�
.C�; @C ; `C /; .D�; @D; `D/

�
(see Proposition 9.13). These constructions are quickly seen in Section 9.5 to yield
the upper bounds on dB in the two parts of Theorem 1.4; the factor of 2 in part (i)
arises from the “extra” bars in the concise barcode of the Floer-type complex from
Proposition 9.13.
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In contrast, the proof of the other inequality dQ � dB in Theorem 1.4(i) is considerably
simpler, and is carried out by a direct construction in Section 10.

As mentioned earlier, it is likely that the factor of 2 in Theorem 1.4(i) is unnecessary,
ie that the map from Floer-type complexes to concise barcodes is an isometry with
respect to the quasiequivalence distance dQ on Floer-type complexes and the bottleneck
distance dB on concise barcodes. Although we do not prove this, by taking advantage
of Theorem 1.4(ii) we show in Section 11 that, if dQ is replaced by a somewhat more
complicated distance dP that we call the interpolating distance, then the map is indeed
an isometry (see Theorem 11.2). The expected isometry between dQ and dB is then
equivalent to the statement that dP D dQ . Consistently with this, our experience in
concrete situations has been that methods which lead to bounds on one of dP or dQ
often also produce identical bounds on the other.

The final section of the body of the paper applies our general algebraic results to
Hamiltonian Floer theory, the relevant features of which are reviewed at the beginning
of that section.3 Combining Theorem 11.2 with standard results from Hamiltonian
Floer theory proves the following:

Corollary 1.5 If H0 and H1 are two nondegenerate Hamiltonians on any com-
pact symplectic manifold .M;!/, then the bottleneck distance between the concise
barcodes of .CF�.H0/; @H0 ; `H0/ and .CF�.H1/; @H1 ; `H1/ is less than or equal toR 1
0 kH1.t; � /�H0.t; � /kL1 dt .

To summarize, we have shown how to associate to the Hamiltonian Floer complex
combinatorial data, in the form of the concise barcode, which completely classifies
the complex up to filtered chain homotopy equivalence, and which is continuous
with respect to variations in the Hamiltonian in a way made precise in Corollary 1.5.
Given the way in which torsion exponents, the boundary depth, and spectral invariants
are encoded in the concise barcode, this continuity can be seen as a simultaneous
extension of continuity results for those quantities; see Fukaya, Oh, Ohta and Ono [20,
Theorem 6.1.25], Usher [44, Theorem 1.1(ii)] and Schwarz [40, (12)].

We then apply Corollary 1.5 to prove our main application, Theorem 12.2, concerning
the robustness of the fixed points of a nondegenerate Hamiltonian diffeomorphism under
C 0–perturbations of the Hamiltonian: roughly speaking, as long as the perturbation
is small enough (as determined by the concise barcode of the original Hamiltonian),
the perturbed Hamiltonian, if it is still nondegenerate, will have at least as many fixed

3While we focus on Hamiltonian Floer theory in Section 12, very similar results would apply to the
Hamiltonian-perturbed Lagrangian Floer chain complexes or to the chain complexes underlying Novikov
homology.
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points as the original one, with actions that are close to the original actions. Moreover,
depending in a precise way on the concise barcode, fixed points with certain actions
may be identified as enjoying stronger robustness properties (in the sense that a larger
perturbation is required to eliminate them) than general fixed points of the same map.
While C 0–robustness of fixed points is a familiar idea in Hamiltonian Floer theory (see
eg Cornea and Ranicki [11, Theorem 2.1]), Theorem 12.2 goes farther than previous
results both in its control over the actions of the perturbed fixed points and in the way
that it gives stronger bounds for the robustness of unperturbed fixed points with certain
actions (see Remark 12.3).

Finally, the appendix identifies the quasiequivalence distance dQ that features in
Theorem 1.4 with a chain level version of the interleaving distance that is commonly
used (eg in [8]) in the persistent homology literature.
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2 Nonarchimedean orthogonality

2.1 Nonarchimedean normed vector spaces

Fixing a ground field K and an additive subgroup � � R as in the introduction, we
will consider vector spaces over the Novikov field defined as

ƒDƒK;�
D

�X
g2�

agT
g
ˇ̌̌
ag 2 K and # fg j ag ¤ 0; g < C g<1 for all C 2R

�
;

where T is a formal symbol and we use the obvious “power series” addition and
multiplication. This Novikov field adapts the ring used by Novikov in his version
of Morse theory for multivalued functions; see [24] both for some of its algebraic
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properties and for its use in Hamiltonian Floer homology. Note that when � is the
trivial group, ƒ reduces to the ground field K .

First, we need the following classical definition.

Definition 2.1 A valuation � on a field F is a function �W F !R[f1g such that

(V1) �.x/D1 if and only if x D 0;

(V2) �.xy/D �.x/C �.y/ for any x; y 2 F ;

(V3) �.xCy/�minf�.x/; �.y/g for any x; y 2 F .

Moreover, we call a valuation � trivial if �.x/D 0 for x ¤ 0 and �.x/D1 precisely
when x D 0.

For F Dƒ defined as above, we can associate a valuation simply by

�

�X
g2�

agT
g

�
Dminfg j ag ¤ 0g;

where we use the standard convention that the minimum of the empty set is 1. It is
easy to see that this � satisfies conditions (V1), (V2) and (V3). Note that the finiteness
condition in the definition of Novikov field ensures that the minimum exists. If �Df0g,
then the valuation � is trivial.

Definition 2.2 A nonarchimedean normed vector space over ƒ is a pair .C; `/, where
C is a vector space over ƒ endowed with a filtration function `W C ! R[ f�1g
satisfying the following axioms:

(F1) `.x/D�1 if and only if x D 0;

(F2) `.�x/D `.x/� �.�/ for any � 2ƒ and x 2 C ;

(F3) `.xCy/�maxf`.x/; `.y/g for any x; y 2 C .

In terms of Definition 2.2, the standard convention would be that the norm on a
nonarchimedean normed vector space .C; `/ is e` , not `. The phrasing of the above
definition reflects the fact that we will focus on the function `, not on the norm e` .

We record the following standard fact:

Proposition 2.3 If .C; `/ is a nonarchimedean normed vector space over ƒ and the
elements x; y 2 C satisfy `.x/¤ `.y/, then

(3) `.xCy/Dmaxf`.x/; `.y/g:
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Proof Of course the inequality “�” in (3) is just (F3). For “�” we assume without
loss of generality that `.x/ > `.y/, so we are to show that `.xCy/� `.x/. Now (F2)
implies that `.�y/D `.y/, so `.x/D `..xCy/C.�y//�maxf`.xCy/; `.y/g. Thus
since we have assumed that `.x/ > `.y/ we indeed must have `.x/� `.xCy/.

Example 2.4 (Rips complexes) Let X be a collection of points in euclidean space.
We will define a one-parameter family of “Rips complexes” associated to X as follows.
Let CR�.X/ be the simplicial chain complex over K of the complete simplicial complex
on the set X , so that CRk.X/ is the free K–vector space generated by the k–simplices
all of whose vertices lie in X . Define `W CR�.X/!R[f�1g by setting `.

P
i ai�i /

equal to the largest diameter of any of the simplices �i with ai ¤ 0 (and to �1 whenP
i ai�i D 0). Then .CR�.X/; `/ is a nonarchimedean vector space over ƒK;f0g DK .

For any � > 0 we define the Rips complex with parameter � , CR�.X I �/, to be the
subcomplex of C� with degree-k part given by

CRk.X I �/D fc 2 CRk.X/ j `.x/� �g:

Thus CR�.X I �/ is spanned by those simplices with diameter at most � . The stan-
dard simplicial boundary operator maps CRk.X I �/ to CRk�1.X I �/, yielding Rips
homology groups HRk.X I �/, and the dependence of these homology groups on � is
a standard object of study in applied persistent homology, as in [46].

Example 2.5 (Morse complex) Suppose we have a closed manifold X and f is a
Morse function on X . We may then consider its Morse chain complex CM�.X If /
over the field K D ƒK;f0g as in [39]. Let C D

L
k CMk.X If /. For any element

x 2 C , by the definition of the Morse chain complex, x D
P
i aipi , where each pi is

a critical point and ai 2 K . Then define `W C !R[f�1g by

`
�X

i
aipi

�
Dmaxff .pi / j ai ¤ 0g;

with the usual convention that the maximum of the empty set is �1. It is easy to
see that ` satisfies (F1), (F2) and (F3) above. Therefore,

�L
k CMk.X If /; `

�
is a

nonarchimedean normed vector space over KDƒK;f0g .

Example 2.6 Given a closed one-form ˛ on a closed manifold M , let � W zM !M

denote the regular covering space of M that is minimal subject to the property that
��˛ is exact, and choose zf W zM !R such that d zf D��˛ . The graded parts CNk. zf /
of the Novikov complex (see (1)) can likewise be seen as nonarchimedean vector spaces
over ƒDƒK;� , where the group � �R consists of all possible integrals of ˛ around
loops in M . Namely, just as in the previous two examples we put

`
�X

app
�
Dmaxf zf .p/ j ap ¤ 0g:
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We leave verification of axioms (F1), (F2), and (F3) to the reader.

2.2 Orthogonality

We use the standard notions of orthogonality in nonarchimedean normed vector spaces
(see [31]).

Definition 2.7 Let .C; `/ be a nonarchimedean normed vector space over a Novikov
field ƒ.

� Two subspaces V and W of C are said to be orthogonal if for all v 2 V and
w 2W , we have

`.vCw/Dmaxf`.v/; `.w/g:

� A finite ordered collection .w1; : : : ; wr/ of elements of C is said to be orthogo-
nal if, for all �1; : : : ; �r 2ƒ, we have

(4) `

� rX
iD1

�iwi

�
D max
1�i�r

`.�iwi /:

In particular a pair .v; w/ of elements of C is orthogonal if and only if the spans hviƒ
and hwiƒ are orthogonal as subspaces of C . Of course, by (F2), the criterion (4) can
equivalently be written as

(5) `

� rX
iD1

�iwi

�
D max
1�i�r

.`.wi /� �.�i //:

Example 2.8 Here is a simple example illustrating the notion of orthogonality. Let
� D f0g so that ƒD K has the trivial valuation defined in Definition 2.1. Let C be a
two-dimensional K–vector space, spanned by elements x; y . We may define a filtration
function ` on C by declaring .x; y/ to be an orthogonal basis with, say, `.x/D 1 and
`.y/D 0; then in accordance with (5) and the definition of the trivial valuation � we
will have

`.�xC �y/D

8<:
1 if �¤ 0;
0 if �D 0; �¤ 0;
�1 if �D �D 0:

The ordered basis .xCy; y/ will likewise be orthogonal: indeed for �; � 2K we have

`.�.xCy/C �y/D `.�xC .�C �/y/D

8<:
1 if �¤ 0;
0 if �D 0; �C �¤ 0;
�1 if �D �D 0;
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which is indeed equal to the maximum of `.�.xCy// and `.�y/ (the former being 1
if �¤ 0 and �1 otherwise, and the latter being 0 if �¤ 0 and �1 otherwise).

On the other hand the pair .x; xCy/ is not orthogonal: letting �D�1 and �D 1 we
see that `.�xC �.xCy//D `.y/D 0 whereas maxf`.�x/; `.�.xCy//g D 1.

Here are some simple but useful observations that follow directly from Definition 2.7.

Lemma 2.9 If .C; `/ is an nonarchimedean normed vector space over ƒ, then:

(i) If two subspaces U and V are orthogonal, then U intersects V trivially.

(ii) For subspaces U; V;W , if U and V are orthogonal, and U ˚ V and W are
orthogonal, then U and V ˚W are orthogonal.

(iii) If U and V are orthogonal subspaces of C , and if .u1; : : : ; ur/ is an orthog-
onal ordered collection of elements of U while .v1; : : : ; vs/ is an orthogonal
ordered collection of elements of V , then .u1; : : : ; ur ; v1; : : : ; vs/ is orthogonal
in U ˚V .

Proof For (i), if w 2 U \V , then noting that (F2) implies that `.�w/D `.w/, we
see that, since w 2 U and �w 2 V , where U and V are orthogonal,

�1D `.0/D `.wC .�w//Dmaxf`.w/; `.w/g D `.w/;

and so w D 0 by (F1). So indeed U intersects V trivially.

For (ii), first note that if U ˚V and W are orthogonal, then in particular, V and W
are orthogonal. For any elements u 2 U; v 2 V and w 2W , we have

`.uC .vCw//D `..uC v/Cw/

Dmaxf`.uC v/; `.w/g

Dmaxf`.u/; `.v/; `.w/g

Dmaxf`.u/; `.vCw/g:

The second equality comes from orthogonality between U ˚ V and W ; the third
equality comes from orthogonality between U and V ; and the last equality comes
from orthogonality between V and W .

Part (iii) is an immediate consequence of the definitions.

Definition 2.10 An orthogonalizable ƒ–space .C; `/ is a finite-dimensional nonar-
chimedean normed vector space over ƒ such that there exists an orthogonal basis for C .

Geometry & Topology, Volume 20 (2016)



3352 Michael Usher and Jun Zhang

Example 2.11 .ƒ;��/ is an orthogonalizable ƒ–space.

Example 2.12 .ƒn;�E�/ is an orthogonalizable ƒ–space, where E� is defined as
E�.�1; : : : ; �n/Dmin1�i�n�.�i /. Moreover, fixing some vector Et D .t1; : : : ; tn/ 2Rn ,
the shifted version .ƒn;�E�Et / is also an orthogonalizable ƒ–space, where E�Et is defined
as

E�Et .�1; : : : ; �n/D min
1�i�n

.�.�i /� ti /:

Specifically, an orthogonal ordered basis is given by the standard basis .e1; : : : ; en/
for ƒn : indeed, we have �E�Et .ei /D ti , and

�E�Et

� nX
iD1

�iei

�
D max
1�i�n

.ti � �.�i //D max
1�i�n

.�E�Et .ei /� �.�i //:

In Example 2.6 above, if we let f zpigniD1 � zM consist of one point in every fiber of the
covering space zM !M that contains an index-k critical point, then it is easy to see
that we have a vector space isomorphism CNk. zf /Šƒn , with the filtration function `
on CNk. zf / mapping to the shifted filtration function �E�Et , where ti D zf . zpi /.

Remark 2.13 In fact, using (F2) and the definition of orthogonality, it is easy to see
that any orthogonalizable ƒ–space .C; `/ is isomorphic in the obvious sense to some
.ƒn;�E�Et /: if .v1; : : : ; vn/ is an ordered orthogonal basis for .C; `/ then mapping vi
to the i th standard basis vector for ƒn gives an isomorphism of vector spaces which
sends ` to �E�Et , where ti D `.vi /.

2.3 Nonarchimedean Gram–Schmidt process

In classical linear algebra, the Gram–Schmidt process is applied to modify a set of
linearly independent elements into an orthogonal set. A similar procedure can be
developed in the nonarchimedean context. The key part of this process comes from the
following theorem, which we state using our notations in this paper (see Remark 2.13).

Theorem 2.14 [42, Theorem 2.5] Suppose .C; `/ is an orthogonalizable ƒ–space
and W � C is a ƒ–subspace. Then for any x 2 CnW there exists some w0 2W such
that

(6) `.x�w0/D inff`.x�w/ j w 2W g:

Thus w0 achieves the minimal distance to x among all elements of W . Note that (in
contrast to the situation with more familiar notions of distance such as the euclidean
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distance on Rn ) the element w0 is generally not unique. However, similarly to the
case of the euclidean distance, solutions to this distance-minimization problem are
closely related to orthogonality, as the following lemma shows.

Lemma 2.15 Let .C; `/ be a nonarchimedean normed vector space over ƒ, and let
W � C be a ƒ–subspace and x 2 CnW . Then W and hxiƒ are orthogonal if and
only if `.x/D inff`.x�w/ j w 2W g.

Proof Suppose W and hxiƒ are orthogonal. Then for any w 2W , by orthogonality,

`.x�w/Dmaxf`.x/; `.w/g � `.x/:

Therefore, taking an infimum, we get inff`.x � w/ j w 2 W g � `.x/. Moreover,
by taking w D 0, we have inff`.x � w/ j w 2 W g � `.x � 0/ D `.x/. Therefore,
`.x/D inff`.x�w/ j w 2W g.

Conversely, suppose that `.x/ D inff`.x �w/ j w 2 W g and let y D wC�x be a
general element of W ˚ hxiƒ . We must show that `.y/ D maxf`.w/; `.�x/g; in
fact, the inequality “�” automatically follows from (F3), so we just need to show that
`.y/�maxf`.w/; `.�x/g. If �D 0 this is obvious since then y Dw , so assume from
now on that �¤ 0. Then

`.y/D `
�
�.��1wC x/

�
D `.��1wC x/� �.�/� `.x/� �.�/D `.�x/;

where the inequality uses the assumed optimality property of x . If `.�x/� `.w/ this
proves that `.y/ � maxf`.w/; `.�x/g. On the other hand if `.�x/ < `.w/ then the
fact that `.y/�maxf`.w/; `.�x/g simply follows by Proposition 2.3.

Theorem 2.16 (nonarchimedean Gram–Schmidt process). Let .C; `/ be an orthogo-
nalizable ƒ–space and let fx1; : : : ; xrg be a basis for a subspace V � C . Then there
exists an orthogonal ordered basis .x01; : : : ; x

0
r/ for V whose members have the form

x01 D x1;

x02 D x2��2;1x1;
:::

x0r D xr ��r;r�1xr�1��r;r�2xr�2� � � � ��r;1x1;

where the �˛;ˇ are constants in ƒ. Moreover if the first i elements of the initial basis
are such that .x1; : : : ; xi / are orthogonal, then we can take x0j D xj for j D 1; : : : ; i .

Proof We proceed by induction on the dimension r of V . If V is one-dimensional
then we simply take x01 D x1 . Assuming the result to be proven for all k–dimensional
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subspaces, let .x1; : : : ; xkC1/ be an ordered basis for V , with .x1; : : : ; xi / orthogonal
for some i 2 f1; : : : ; kC 1g. If i D kC 1 then we can set x0j D xj for all j and we
are done. Otherwise apply the inductive hypothesis to the span W of fx1; : : : ; xkg
to obtain an orthogonal ordered basis .x01; : : : ; x

0
k
/ for W , with x0j D xj for all

j 2 f1; : : : ; ig. Now apply Theorem 2.14 to W and the element xkC1 to obtain some
w0 2W such that `.xkC1�w0/D inff`.xkC1�w/ jw 2W g. Let x0

kC1
D xkC1�w0 .

It then follows from Lemma 2.15 that W and hx0
kC1
iƒ are orthogonal, and so by

Lemma 2.9(iii) .x01; : : : ; x
0
k
; x0
kC1

/ is an orthogonal ordered basis for V . Moreover
since x0

kC1
D xkC1 �w0 , where w0 lies in the span of x1; : : : ; xk , it is clear that

xkC1 has the form required in the theorem. This completes the inductive step and
hence the proof.

Corollary 2.17 If .C; `/ is an orthogonalizable ƒ–space, then for every subspace
W � C , .W; `jW / is also an orthogonalizable ƒ–space.

Proof Apply Theorem 2.16 to an arbitrary basis for W to obtain an orthogonal ordered
basis for W .

Corollary 2.18 If .C; `/ is an orthogonalizable ƒ–space and V � W � C , any
orthogonal ordered basis of V may be extended to an orthogonal basis of W .

Proof By Corollary 2.17, we have an orthogonal ordered basis .v1; : : : ; vi / for V .
Extend it arbitrarily to a basis fv1; : : : ; vi ; viC1; : : : ; vrg for W , and then apply
Theorem 2.16 to obtain an orthogonal ordered basis for W whose first i elements are
v1; : : : ; vi .

Corollary 2.19 Suppose that .C; `/ is an orthogonalizable ƒ–space and U � C .
Then there exists a subspace V such that U ˚V D C and U and V are orthogonal.
(We call any such V an orthogonal complement of U ).

Proof By Corollary 2.17, we have an orthogonal ordered basis .u1; : : : ; uk/ for
subspace U . By Corollary 2.18, extend it to an orthogonal ordered basis for C , say
.u1; : : : ; uk; v1; : : : ; vl/ (so dim.C /D kC l ). Then V D spanƒfv1; : : : ; vlg satisfies
the desired properties.

Orthogonal complements are generally not unique, as is illustrated by Example 2.8, in
which hxC ayiK is an orthogonal complement to hyiK for any a 2 K .
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2.4 Duality

Given a nonarchimedean normed vector space .C; `/, the dual space C � (over ƒ)
becomes a nonarchimedean normed vector space if we associate a filtration function
`�W C �!R[f1g defined by

`�.�/D sup
0¤x2C

.�`.x/� �.�.x///:

Indeed, for � and  in C � and x 2 C , we have

�`.x/� �.�.x/C .x//� �`.x/�minf�.�.x//; �. .x//g

Dmaxf�`.x/� �.�.x//;�`.x/� �. .x//g

�maxf`�.�/; `�. /g

and so taking the supremum over x shows that `�.� C  / � maxf`�.�/; `�. /g,
and it is easy to check the other axioms (F1) and (F3) required of `� . The following
proposition demonstrates a relation between bases of the original space and its dual
space.

Proposition 2.20 If .C; `/ is an orthogonalizable ƒ–space with orthogonal ordered
basis .v1; : : : ; vn/, then .C �; `�/ is an orthogonalizable ƒ–space with an orthogonal
ordered basis given by the dual basis .v�1 ; : : : ; v

�
n/. Moreover, for each i , we have

(7) `�.v�i /D�`.vi /:

Proof For any x 2 C , written as
Pn
jD1 �ivi , we have v�i x D �i for each i , so if

�i D 0 then �`.x/� �.v�i x/D�1, while otherwise

�`.x/� �.v�i x/D� max
1�j�n

.`.vj /� �.�j //� �.�i /

� �.`.vi /� �.�i //� �.�i /D�`.vi /:

Equality holds in the above when x D vi , so `�.v�i /D�`.vi /.

To prove orthogonality, given any �1; : : : ; �n 2ƒ, choose i0 to maximize the quantity
�`.vi /� �.�i / over i 2 f1; : : : ; ng. Then

`�
� nX
iD1

�iv
�
i

�
� �`.vi0/� �

�� nX
iD1

�iv
�
i

�
vi0

�
D�`.vi0/� �.�i0/D max

1�i�n
.`�.v�i /� �.�i //:

The reverse direction immediately follows from the nonarchimedean triangle inequality
(F3) in Definition 2.2. Therefore, we have proven the orthogonality of the dual basis.
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2.5 Coefficient extension

This is a somewhat technical subsection which is not used for most of the main results —
mainly we are including it in order to relate our barcodes to the torsion exponents from
[20] — so it could reasonably be omitted on first reading.

Throughout most of this paper we consider a fixed subgroup � �R, with associated
Novikov field ƒDƒK;� , and we consider orthogonalizable ƒ–spaces over this fixed
Novikov field ƒ. Suppose now that we consider a larger subgroup � 0 � � (still
with � 0 � R). The inclusion � ,! � 0 induces in obvious fashion a field extension
ƒ ,!ƒK;� 0 , and so for any ƒ vector space C we obtain a ƒK;� 0–vector space

C 0 D C ˝ƒƒ
K;� 0 :

If .C; `/ is an orthogonalizable ƒ–space with orthogonal ordered basis .w1; : : : ; wn/
then fw1˝ 1; : : : ; wn˝ 1g is a basis for C 0 and so we can make C 0 into an orthogo-
nalizable ƒK;� 0–space .C 0; `0/ by putting

`0
� nX
iD1

�0iwi ˝ 1

�
Dmax

i
.`.wi /� �.�

0
i //

for all �01; : : : ; �
0
n 2 ƒ

K;� 0 ; in other words we are defining `0 by declaring .w1 ˝
1; : : : ; wn˝1/ to be an orthogonal ordered basis for .C 0; `0/. The following proposition
might be read as saying that this definition is independent of the choice of orthogonal
basis .w1; : : : ; wn/ for .C; `/.

Proposition 2.21 With the above definition, if .x1; : : : ; xn/ is any orthogonal ordered
basis for .C; `/ then .x1˝ 1; : : : ; xn˝ 1/ is an orthogonal ordered basis for .C 0; `0/.

Proof Let .w1; : : : ; wn/ denote the orthogonal basis that was used to define `0 . Let
N 2 GLn.ƒ/ be the basis change matrix from .w1; : : : ; wn/ to .x1; : : : ; xn/, ie the
matrix characterized by the fact that for j 2 f1; : : : ; ng we have xj D

P
i Nijwi . Then

for E�0 D .�01; : : : ; �
0
n/ 2 .ƒ

K;� 0/n we have

(8) `0
� nX
jD1

�0jxj ˝ 1

�
D `

� nX
iD1

.N E�0/iwi

�
Dmax

i
.`.wi /� �..N E�0/i //:

Now the vector E�0 2 .ƒK;� 0/n is a formal sum E�0D
P
g2� 0 EvgT

g where Evg 2Kn and
where the set of g with Evg ¤ 0 is discrete and bounded below. Let S E�0 � �

0 consist
of those g 2 � 0 such that g is the minimal element in its coset gC � � � 0 having
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Evg ¤ 0. We can then reorganize the above sum as

E�0 D
X
g2S E�0

E�gT
g ;

where now E�g 2ƒn , and where the set S E�0 is discrete and bounded below and has the
property that distinct elements of S E�0 belong to distinct cosets of � in � 0 .

Now since N has its coefficients in ƒ, we will have

N E�0 D
X
g2S E�0

N E�gT
g ;

where each N E�g 2 ƒ
n . For each i the various �..N E�g/iT g/ are equal to g C

�..N E�g/i / and so belong to distinct cosets of � in � 0 (in particular, they are distinct
from each other) and so we have for each i

�..N E�0/i /D min
g2S E�0

.gC �..N E�g/i //;

and similarly �.�0j /Dming.gC �..E�g/j // for each j . Combining this with (8) and
using the orthogonality of .w1; : : : ; wn/ and .x1; : : : ; xn/ with respect to ` and the
fact that the E�g belong to ƒn gives

`0
� nX
jD1

�0jxj ˝ 1

�
Dmax

i;g
.`.wi /�g� �..N E�g/i //

Dmax
g

�
�gCmax

i
.`.wi /� �..N E�g/i //

�
Dmax

g

�
�gC `

�X
i

.N E�g/iwi

��
Dmax

g

�
�gC `

�X
j

.E�g/jxj

��
Dmax

g

�
�gCmax

j
.`.xj /� �..E�g/j //

�
Dmax

j

�
`.xj /�min

g
.gC �..E�g/j //

�
Dmax

j
.`.xj /� �.�

0
j //;

proving the orthogonality of .x1˝ 1; : : : ; xn˝ 1/ since it follows directly from the
original definition of `0 in terms of .w1; : : : ; wn/ that `0.x ˝ 1/ D `.x/ whenever
x 2 C .
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3 (Nonarchimedean) singular value decompositions

Recall that in linear algebra over C with its standard inner product, a singular value
decomposition for a linear transformation AW Cn! Cm is typically defined to be a
factorization A D X†Y � where X 2 U.m/, Y 2 U.n/, and †ij D 0 when i ¤ j
while each †i i � 0. The “singular values” of A are by definition the diagonal entries
�i D†i i , and then we have an orthonormal basis .y1; : : : ; yn/ for Cn (given by the
columns of Y ) and an orthonormal basis .x1; : : : ; xm/ for Cm (given by the columns
of X ) with Ayi D �ixi for all i with �i ¤ 0, and Ayi D 0 otherwise.

An analogous construction for linear transformations between orthogonalizable ƒ–
spaces will play a central role in this paper. In the generality in which we are working, we
should not ask for the bases .y1; : : : ; yn/ to be orthonormal, since an orthogonalizable
ƒ–space may not even admit an orthonormal basis (for the examples .ƒn;�E�Et / of
Example 2.12, an orthonormal basis exists if and only if each ti belongs to the value
group � ). However in the classical case asking for a singular value decomposition is
equivalent to asking for orthogonal bases .y1; : : : ; yn/ for the domain and .x1; : : : ; xm/
for the codomain such that for all i either Ayi D xi or Ayi D 0; the singular values
could then be recovered as the numbers kAyik=kyik. This is precisely what we will
require in the nonarchimedean context. For the case in which the spaces in question do
admit orthonormal bases (and so are equivalent to .ƒn;�E�/) such a construction can
be found in [27, Section 4.3].

3.1 Existence of (nonarchimedean) singular value decomposition

Definition 3.1 Let .C; `C /, .D; `D/ be orthogonalizable ƒ–spaces and let AW C!D

be a linear map with rank r . A singular value decomposition of A is a choice of
orthogonal ordered bases .y1; : : : ; yn/ for C and .x1; : : : ; xm/ for D such that

(i) .yrC1; : : : ; yn/ is an orthogonal ordered basis for kerA;

(ii) .x1; : : : ; xr/ is an orthogonal ordered basis for ImA;

(iii) Ayi D xi for i 2 f1; : : : ; rg;

(iv) `C .y1/� `D.x1/� � � � � `C .yr/� `D.xr/.

Remark 3.2 Consistently with the remarks at the start of the section, the singular
values of A would then be the quantities e`D.xi /�`C .yi / for 1� i � r , as well as 0 if
r < n. So the quantities `C .yi /� `D.xi / from (iv) are the negative logarithms of the
singular values.
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Remark 3.3 Occasionally it will be useful to consider data ..y1; : : : ;yn/; .x1; : : : ;xm//
which satisfy all of the conditions of Definition 3.1 except condition (iv); such a pair
will be called an unsorted singular value decomposition. Of course passing from an
unsorted singular value decomposition to a genuine singular value decomposition is
just a matter of sorting by the quantity `C .yi /� `C .xi /.

The rest of this subsection will be devoted to proving the following existence theorem:

Theorem 3.4 If .C; `C / and .D; `D/ are orthogonalizable ƒ–spaces, then any ƒ–
linear map AW C !D has a singular value decomposition.

We will prove Theorem 3.4 by providing an algorithm (with proof) for producing a
singular value decomposition of linear map A between orthogonalizable ƒ–spaces.
The algorithm is essentially Gaussian elimination, but with a carefully designed rule
for pivot selection which allows us to achieve the desired orthogonality properties. In
this respect it is similar to the algorithm from [46] (that computes barcodes in classical
persistent homology); however [46] uses a pivot-selection rule which does not adapt
well to our context, where the value group � may be nontrivial, leading us to use a
different such rule. Like the algorithm from [46], our algorithm requires a number of
field operations that is at most cubic in the dimensions of the relevant vector spaces,
and can be expected to do better than this in common situations where the matrix
representing the linear map is sparse. Of course, when working over a Novikov field
there is an additional concern regarding how one can implement arithmetic operations
in this field on a computer; we do not attempt to address this here.

Theorem 3.5 (algorithmic version of Theorem 3.4) Let .C; `C / and .D; `D/ be
orthogonalizable ƒ–spaces, let AW C !D be a ƒ–linear map, and let .v1; : : : ; vn/
be an orthogonal ordered basis for C . Then one may algorithmically construct an
orthogonal ordered basis .v01; : : : ; v

0
n/ of C such that

(i) `C .v
0
i /D `C .vi / and `D.Av0i /� `D.Avi / for each i ;

(ii) Let U D
˚
i 2 f1; : : : ; ng j Av0i ¤ 0

	
. Then the ordered subset .Av0i j i 2 U/ is

orthogonal in D .

Remark 3.6 In particular, .v0i j i … U/ then gives an orthogonal ordered basis for
kerA.

Proof Fix throughout the algorithm an orthogonal ordered basis .w1; : : : ; wm/ for D .
Represent A by a matrix .Aij / with respect to these bases, so that Avj D

P
i Aijwi .

Note that vj changes as the algorithm proceeds (though the wi do not), so the elements
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Aij 2 ƒ will likewise change in a corresponding way. Initialize the set of “unused
column indices” to be J D f1; : : : ; ng, and the set of “pivot pairs” to be P D ¿; at
each step an element will be removed from J and an element will be added to P . Here
is the algorithm:

while .9j 2 J /.Avj ¤ 0/ do
Choose i0 2 f1; : : : ; mg and j0 2 J which maximize the quantity

`D.wi /� �.Aij /� `C .vj / over all .i; j / 2 f1 : : : ; mg �J .

Add .i0; j0/ to the set P .
Remove j0 from the set J .
For each j 2 J , replace vj by v0j WD vj �

Ai0j
Ai0j0

vj0 .

For each j 2 J and i 2 f1; : : : ; mg, replace Aij by A0ij WD Aij �
Ai0jAij0
Ai0j0

(thus
restoring the property that Avj D

Pm
iD1Aijwi ).

end

Note that the while loop predicate implies that in each iteration there is some .i; j / 2
f1; : : : ; mg �J such that Aij ¤ 0, so in particular Ai0j0 ¤ 0 (otherwise AD 0) and
so the divisions by Ai0j0 in the last two steps of the iteration are not problematic. The
ordered basis .v01; : : : ; v

0
n/ promised in the statement of this theorem is then simply

the tuple to which .v1; : : : ; vn/ has evolved upon the termination of the while loop. To
prove that this satisfies the required properties it suffices to prove that, in each iteration
of the while loop, the following assertions hold:

Claim 3.7 If the initial basis .v1; : : : ; vn/ is orthogonal, then so is the basis obtained
by replacing vj by

v0j D vj �
Ai0j

Ai0j0
vj0

for each j 2 J n fj0g. Moreover `C .v0j /D `C .vj / while `D.Av0j /� `D.Avj /.

Claim 3.8 After each iteration, the ordered set .Avj j j … J /�D is orthogonal.

Proof of Claim 3.7 For any j 2 J n fj0g, by the orthogonality of .v1; : : : ; vn/ and
the definition of v0j , we have

`C .v
0
j /Dmax

�
`C .vj /; `C

�
Ai0j

Ai0j0
vj0

��
:

Because .i0; j0/ is chosen to satisfy

`D.wi0/� �.Ai0j0/� `C .vj0/� `D.wi /� �.Aij /� `C .vj /
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for all i and j , it in particular holds that

`D.wi0/� �.Ai0j0/� `C .vj0/� `D.wi0/� �.Ai0j /� `C .vj /;

which can be rearranged to give

(9) `C

�
Ai0j

Ai0j0
vj0

�
� `C .vj /:

So we get

(10) `C .v
0
j /D `C .vj /:

As for the statement about `D.Av0j /, note that

`D.Avj0/D `D

� mX
iD1

Aij0wi

�
Dmax

i
.`D.wi /� �.Aij0//D `D.wi0/� �.Ai0j0/;

where the last equation follows from the optimality criterion satisfied by .i0; j0/.
Therefore,

`D

�
Ai0j

Ai0j0
Avj0

�
D `D.wi0/� �.Ai0j /� max

1�i�n
`D.Aijwi /

D `D

� nX
iD1

Aijwi

�
D `D.Avj /

and hence

`D.Av
0
j /�max

�
`D.Avj /; `D

�
Ai0j

Ai0j0
Avj0

��
D `D.Avj /:

It remains to prove orthogonality of the basis obtained by replacing the vj by v0j for
j 2J . Here and for the rest of the proof we use the variable values as they are after the
third step of the given iteration of the while loop — thus the vj have not been changed
but j0 has been removed from J . The new basis will be fv01; : : : ; v

0
ng, where v0j D vj

if j … J and v0j D vj � .Ai0j =Ai0j0/vj0 otherwise. Let �1; : : : ; �n 2ƒ and observe
that, by the orthogonality of fv1; : : : ; vng,

(11) `C

� nX
jD1

�j v
0
j

�
D `C

� nX
jD1

�j vj �
X
j2J

�j
Ai0j

Ai0j0
vj0

�

Dmax
�
`C

��
�j0 �

X
k2J

�k
Ai0k

Ai0j0

�
vj0

�
;max
j¤j0

`C .�j vj /

�
:
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If `.�j0v
0
j0
/ > `.�j v

0
j / for all j ¤ j0 , then of course

`C

� nX
jD1

�j v
0
j

�
D `C .�j0v

0
j0
/Dmax

j
f`C .�j v

0
j /g:

Otherwise, there is j1 ¤ j0 such that

(12) max
j
`C .�j v

0
j /D `C .�j1v

0
j1
/:

Now by (10) and the optimality condition (12), we have

(13) `C .�j1vj1/D `C .�j1v
0
j1
/� `C .�j0v

0
j0
/D `C .�j0vj0/:

Also, by (9) and (12), for all k 2 J ,

`C .�j1vj1/� `C

�
�k
Ai0k

Ai0j0
vj0

�
:

Thus

(14) `C .�j1vj1/� `C

��
�j0 �

X
k2J

�k
Ai0k

Ai0j0

�
vj0

�
:

So combining (11), (12), and (14), we have

`C

� nX
jD1

�j v
0
j

�
Dmax

j
`C .�j v

0
j /;

proving the orthogonality of .v01; : : : ; v
0
n/. This completes the proof of Claim 3.7.

Proof of Claim 3.8 For k � 1 let .ik; jk/ denote the pivot pair that is added to the
set P during the kth iteration of the while loop. In particular jk is removed from J
during the kth iteration, and after this removal we have J D f1; : : : ; ng n fj1; : : : ; jkg.
So the column operation in the last step of the kth iteration replaces the matrix entries
Aikj for j … fj1; : : : ; jkg by

Aikj �
AikjAikjk
Aikjk

D 0:

Moreover for j … fj1; : : : ; jkg and any i 2 f1; : : : ; mg such that after the prior iteration
we had Aijk DAij D 0 (for instance this applies, inductively, to any i 2 fi1; : : : ; ik�1g),
the fact that Aij D 0 will be preserved after the kth iteration. Thus,

(15) after the kth iteration, Ailj D 0 for l 2 f1; : : : ; kg and j … fj1; : : : ; jlg:

We now show that, after the kth iteration, the ordered set .Avj1 ; : : : ; Avjk / is orthogo-
nal; this is evidently equivalent to the statement of the claim. Note that, for 1� l � k ,
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neither the element vjl nor the j th
l

column of the matrix .Aij / changes during or after
the l th iteration of the while loop, due to the removal of jl from J during that iteration.
For l 2 f1; : : : ; kg, the optimality condition satisfied by the pair .il ; jl/ guarantees
that `D.wi /� �.Aijl /� `D.wil /� �.Ailjl / for all i and hence

(16) `D.Avjl /Dmax
i
.`D.Aijlwi //D `D.Ailjlwil /:

Given �1; : : : ; �k 2 ƒ we shall show that `D
�Pk

lD1 �lAvjl
�
D maxl `D.�lAvjl /.

Let l0 be the smallest element of f1; : : : ; kg with the property that

`D.�l0Ail0jl0wil0 /D max
1�l�k

`D.�lAiljlwil /:

For all i 2 f1; : : : ; mg and l 2 f1; : : : ; kg we have, by the choice of .il ; jl/,

`D.�lAijlwi /� `D.�lAiljlwil /� `D.�l0Ail0jl0wil0 /:

Using (15), Ail0jl ¤ 0 only for l � l0 , and soX
l

�lAil0jlwil0 D �l0Ail0jl0wil0 C
X
l<l0

�lAil0jlwil0 :

Each term �lAil0jlwil0 has filtration level bounded above by `D.�lAiljlwil / by the
second equality in (16), and this latter filtration level is, for l < l0 , strictly lower than
`D.�l0Ail0jl0wil0 / because we chose l0 as the smallest maximizer of `D.�lAiljlwil /.
So we in fact have

`D

�X
l

�lAil0jlwil0

�
D `D.�l0Ail0jl0wil0 /:

By the orthogonality of the ordered basis .w1; : : : ; wm/ we therefore have

`D

� kX
lD1

�lAvjl

�
D `D

� kX
lD1

mX
iD1

�lAijlwi

�

D max
1�i�m

`D

� kX
lD1

�lAijlwi

�
� `D.�l0Ail0jl0wil0 /

Dmax
l
`D.�lAiljlwil /Dmax

l
`D.�lAvjl /;

where in the first equality in the third line we use the defining property of l0 and in the
last equality we use (16). Since the reverse inequality

`D

�X
l

�lAvjl

�
�max

l
`D.�lAvjl /

is trivial this completes the proof of the orthogonality of .Avj1 ; : : : ; Avjk /.
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As noted earlier, Claims 3.7 and 3.8 directly imply that the basis for C obtained at
the termination of the while loop satisfies the required properties, thus completing the
proof of Theorem 3.5.

Proof of Theorem 3.4 First reorder the elements v0i produced by the Theorem 3.5 so
that Av0i ¤ 0 if and only if i 2 f1; : : : ; rg, where r is the rank of A, and such that

`C .v
0
1/� `D.Av

0
1/� � � � � `C .v

0
r/� `D.Av

0
r/:

If A is surjective, then ..v01; : : : ; v
0
n/; .Av

0
1; : : : ; Av

0
r// will immediately be a singular

value decomposition for A. More generally, we may use Corollary 2.19 to find
an orthogonal complement of Im.A/ in D , and by Corollary 2.17 this orthogonal
complement has some orthogonal ordered basis .xrC1; : : : ; xm/. We thus conclude
that ..v01; : : : ; v

0
n/; .Av

0
1; : : : ; Av

0
r ; xrC1; : : : ; xm// is a singular value decomposition

for A.

3.2 Duality and coefficient extension for singular value decompositions

Proposition 2.20 allows us to easily convert a singular value decomposition for a map
AW C !D to one for the adjoint map A�W D�! C � . Explicitly:

Proposition 3.9 Let .C; `C / and .D; `D/ be two orthogonalizable ƒ–spaces and
AW C !D be a ƒ–linear map with rank r . Suppose ..y1; : : : ; yn/; .x1; : : : ; xm// is a
singular value decomposition for A. Then ..x�1 ; : : : ; x

�
m/; .y

�
1 ; : : : ; y

�
n// is a singular

value decomposition for its adjoint map A�W D�! C � .

Proof By the first assertion of Proposition 2.20, .x�1 ; : : : ; x
�
m/ is an orthogonal or-

dered basis for D� and .y�1 ; : : : ; y
�
n/ is an orthogonal ordered basis for C � . By

the definition of a singular value decomposition, Ayi D xi for i 2 f1; : : : ; rg and
Ayi D 0 for i 2 fr C 1; : : : ; ng, so A�x�i D y�i for i 2 f1; : : : ; rg and A�x�i D 0

for i 2 fr C 1; : : : ; mg. Therefore .x�rC1; : : : ; x
�
m/ is an orthogonal ordered basis

for kerA� and fy1; : : : ; yrg D fA�x�1 ; : : : ; A
�x�r g is an orthogonal ordered basis for

ImA� . Finally, for i 2 f1; : : : ; rg, by the second assertion of Proposition 2.20, we have

`�D�.x
�
i /� `

�
C�.y

�
i /D�`D.xi /C `C .yi /D `C .yi /� `D.xi /:

So the ordering of `C .yi /�`D.xi / implies the desired ordering for `�D�.x
�
i /�`

�
C�.y

�
i /.

Similarly, Proposition 2.21 implies that singular value decompositions are well-behaved
under coefficient extension.
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Proposition 3.10 Consider two subgroups ��� 0�R, and write ƒDƒK;� and ƒ0D
ƒK;� 0 . Let .C; `C / and .D; `D/ be orthogonalizable ƒ–spaces and let AW C ! D

be a ƒ–linear map, with singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm//.
Then if C˝ƒƒ0 and D˝ƒƒ0 are endowed with the filtration functions `0C and `0D as
in Section 2.5, the map A˝1W C ˝ƒƒ0!D˝ƒƒ

0 has singular value decomposition
given by ..y1˝ 1; : : : ; yn˝ 1/; .x1˝ 1; : : : ; xm˝ 1//.

Proof The ordered sets .y1˝1; : : : ; yn˝1/ and .x1˝1; : : : ; xm˝1/ are orthogonal
by Proposition 2.21. Moreover by definition of the relevant filtration functions we have
`0C .yi ˝ 1/D `C .yi / and `0D.xi ˝ 1/D `D.xi / for all i such that these are defined.
Once these facts are known it is a trivial matter to check each of the conditions (i)-(iv)
in the definition of a singular value decomposition.

4 Boundary depth and torsion exponents
via singular value decompositions

The boundary depth as defined in [44] or [45] is a numerical invariant of a filtered chain
complex that, in the case of the Hamiltonian and Lagrangian Floer complexes, has been
effectively used to obtain applications in symplectic topology. A closely related notion
is that of the torsion threshold and more generally the torsion exponents that were
introduced in [20, Section 6.1] for the Lagrangian Floer complex over the universal
Novikov ring and were used in [21] to obtain lower bounds for the displacement energies
of polydisks. We will see in this section that, for complexes like those that arise in Floer
theory, both of these notions are naturally encoded in the (nonarchimedean) singular
value decomposition of the boundary operator of the chain complex. In particular our
discussion will show that the boundary depth coincides with the torsion threshold when
both are defined, and that certain natural generalizations of the boundary depth likewise
coincide with the rest of the torsion exponents. This implies new restrictions on the
values that the torsion exponents can take. Our generalized boundary depths will be
part of the data that comprise the concise barcode of a Floer-type complex, our main
invariant to be introduced in Section 6.

For the rest of the paper, we will always work with what we call a Floer-type complex
over a Novikov field ƒ, defined as follows:

Definition 4.1 A Floer-type complex .C�; @C ; `C / over a Novikov field ƒDƒK;�

is a chain complex
�
C� D

L
k2Z Ck; @C

�
over ƒ together with a function `C W C�!

R[ f�1g such that each .Ck; `jCk / is an orthogonalizable ƒ–space, and for each
x 2 Ck we have @Cx 2 Ck�1 with `C .@Cx/� `C .x/.
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Example 4.2 According to Example 2.12, the Morse, Novikov, and Hamiltonian Floer
chain complexes are all Floer-type complexes. In each case the boundary operator
is defined by counting connecting trajectories between two critical points for some
function, which satisfy a certain differential equation (see eg [38, Section 1.5] for the
Hamiltonian Floer case).

Remark 4.3 In fact in many Floer-type complexes including the Morse, Novikov,
and Hamiltonian Floer complexes one has the strict inequality `C .@Cx/ < `C .x/.
However it is also often useful in Morse and Floer theory to consider complexes
where the inequality is not necessarily strict; for instance the Biran–Cornea pearl
complex [4] with appropriate coefficients can be described in this way, as can the
Morse–Bott complex built from moduli spaces of “cascades” in [19, Appendix A]. Also
our definition allows other, non-Floer-theoretic, constructions such as the Rips complex
(see Example 2.4), and the mapping cylinders which play a crucial role in the proofs
of Theorem B and Theorem 1.4, to be described as Floer-type complexes, whereas
requiring `C .@Cx/ < `C .x/ would rule these out. In the case that one does have a
strict inequality for the effect of the boundary operator on the filtration, the verbose
and concise barcodes that we define later are easily seen to be equal to each other.

Definition 4.4 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/, a
filtered chain isomorphism between these two complexes is a chain isomorphism
ˆW C�!D� such that `D.ˆ.x//D `C .x/ for all x 2 C� .

Definition 4.5 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/, two
chain maps ˆ;‰W C�!D� are called filtered chain homotopic if there exists KW C�!
D�C1 such that ˆ�‰D@DKCK@D and K preserves filtration, ie `D.K.x//�`C .x/
for all x , and both ˆ and ‰ preserve filtration as well.

We say that .C�; @C ; `C / is filtered homotopy equivalent to .D�; @D; `D/ if there exist
chain maps ˆW C�!D� and ‰W D�! C� which both preserve filtration such that
‰ıˆ is filtered chain homotopic to identity IC while ˆı‰ is filtered chain homotopic
to the ID .

In order to cut down on the number of indices that appear in our formulas, we will
sometimes work in the following setting:

Definition 4.6 A two-term Floer-type complex .C1 @!C0/ is a Floer-type complex of
the form

� � � ! 0! C1
@
!C0! 0! � � � :
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Given any Floer-type complex .C�; @C ; `C /, fixing a degree k , we can consider the
two-term Floer-type complex

. zC
.k/
1

@jCk
���! zC

.k/
0 /;

where zC .k/1 D Ck and zC .k/0 D ker.@jCk�1/.� Ck�1/.

For the rest of this section, we will focus mainly on two-term Floer-type complexes;
consistently with the above discussion this roughly corresponds to focusing on a given
degree in one of the multiterm chain complexes that we are ultimately interested in.
For a two-term Floer-type complex .C1 @!C0/, by Theorem 3.4 we may fix a singular
value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm// for the boundary map @W C1! C0 .
Denote the rank of @ by r . We will see soon that the numbers f`.yi /� `.xi /g for
i 2 f1; : : : ; rg (which have earlier been described as the negative logarithms of the
singular values of @) can be characterized in terms of the following notion of robustness
of the boundary operator.

Definition 4.7 Let ı 2R. An element x 2 C0 is said to be ı–robust if for all y 2 C1
such that @y D x it holds that `.y/ > `.x/C ı . A subspace V � C0 is said to be
ı–robust if every x 2 V n f0g is ı–robust.

Example 4.8 When .C1 @
!C0/ is the two-term Floer-type complex eCM.k/

� .f / in-
duced by the degree-k and degree-.k�1/ parts of the Morse complex CM�.f / of a
Morse function on a compact manifold, the reader may verify that each nonzero element
of C0 is ı–robust for all ı < ık , where ık is the minimal positive difference between a
critical value of an index-k critical point and a critical value of an index-.k�1/ critical
point. Because a strict inequality is required in the definition of robustness, there may
be elements of C0 which are not ık–robust.

In the presence of our singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm//, the
following simple observation is useful for checking ı–robustness:

Lemma 4.9 Let x D
Pr
iD1 �ixi be any element of Im @, and suppose y 2 C1 obeys

@y D x . Then

`.y/� `

� rX
iD1

�iyi

�
Dmaxf`.yi /� �.�i / j 1� i � rg:

Proof Since @yi D xi for 1 � i � r and @yi D 0 for i > r , and since the xi are
linearly independent, the elements y 2 C1 such that @y D x are precisely those of the
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form
Pr
iD1 �iyi C

Pn
iDrC1 �iyi for arbitrary �rC1; : : : ; �n 2 ƒ. The proposition

then follows directly from the fact that .y1; : : : ; yn/ is an orthogonal ordered basis
for C1 .

Definition 4.10 Given a two-term chain complex .C1 @!C0/ and a positive integer k ,
let

ˇk.@/D sup
�
f0g[ fı � 0 j 9 ı–robust subspace V � Im @ with dim.V /D kg

�
:

Note that ˇk.@/D 0 if @ is the zero map or if k > dim.Im @/. It is easy to see that,
when k � dim.Im @/, ˇk.@/ can be rephrased as

ˇk.@/D sup
V�Im @

dim.V /Dk

inf
x2V nf0g

f`.y/� `.x/ j @y D xg:

When k D 1, this is exactly the definition of boundary depth in [45] (see [45, (24)]),
and so we can view the ˇk.@/ as generalizations of the boundary depth. Clearly one
has

ˇ1.@/� ˇ2.@/� � � � � ˇk.@/� 0

for all k . We will prove the following theorem which relates the ˇk.@/ to singular
value decompositions.

Theorem 4.11 Given a singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm//
for a two-term chain complex .C1 @!C0/, the numbers ˇk.@/ are given by

ˇk.@/D

�
`.yk/� `.xk/ if 1� k � r;
0 if k > r;

where r is the rank of @.

Proof For each k 2 f1; : : : ; rg, we will show that there exists a k–dimensional ı–
robust subspace of Im @ for any ı < `.yk/�`.xk/, but that no k–dimensional subspace
is .`.yk/� `.xk//–robust. This clearly implies the result by the definition of ˇk.@/.

Considering the subspace VkD spanƒfx1; : : : ; xkg, let xD
Pk
iD1 �ixi be any nonzero

element in Vk . Let i0 2 f1; : : : ; kg maximize the quantity `.xi / � �.�i / over all
i 2 f1; : : : ; kg, so that by the orthogonality of the xi we have `.x/D `.xi0/� �.�i0/.
Then, using the orthogonality of the yi ,

`

� kX
iD1

�iyi

�
� `.x/Dmax

i
.`.yi /� �.�i //� .`.xi0/� �.�i0//

� .`.yi0/� �.�i0//� .`.xi0/� �.�i0//D `.yi0/� `.xi0/

� `.yk/� `.xk/;
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where the last inequality follows from our ordering convention for the xi . But then by
Lemma 4.9, it follows that whenever @y D x we have `.y/� `.x/ � `.yk/� `.xk/.
Since this holds for an arbitrary element x 2 spanƒfx1; : : : ; xkg n f0g we obtain that
spanfx1; : : : ; xkg is ı–robust for all ı < `.yk/� `.xk/.

Next, for any k–dimensional subspace V � Im @, let W D spanƒfxk; xkC1; : : : ; xrg.
Since W has codimension k�1 in Im @, the intersection V \W contains some nonzero
element x . Since x 2 W we can write x D

Pr
iDk �ixi where not all �i are zero.

Choose i0 2 fk; : : : ; rg to maximize the quantity `.yi /� �.�i / over i 2 fk; : : : ; rg.
Let y D

Pr
iDk �iyi . Then we have @y D x , and

`.y/� `.x/D .`.yi0/� �.�i0//�maxi .`.xi /� �.�i //

� .`.yi0/� �.�i0//� .`.xi0/� �.�i0//

D `.yi0/� `.xi0/� `.yk/� `.xk/

by our ordering convention for the xi . So since x 2 V n f0g (and since the in-
equality required in the definition of ı–robustness is strict) this proves that V is not
.`.yk/�`.xk//–robust.

Finally, when k > r , there is no V � Im @ such that dim.V /Dk (since dim.Im @/D r ).
Then by definition of ˇk.@/, it is zero.

Note that Definition 4.10 makes clear that ˇk.@/ is independent of the choice of
singular value decomposition; thus we deduce the nonobvious fact that the difference
`.yk/� `.xk/ is likewise independent of the choice of singular value decomposition
for each k 2 f1; : : : ; rg. Note also that any filtration-preserving ƒ–linear map A

between two orthogonalizable ƒ–spaces C and D can just as well be viewed as a
two-term chain complex .C A

!D/, and so we obtain generalized boundary depths
ˇk.A/. Theorem 3.4 or Theorem 3.5 provides a systematic way to compute ˇk.A/.
It is also clear from the definition that if AW C ! D has image contained in some
subspace D0 �D then ˇk.A/ is the same regardless of whether we regard A as a map
C !D or as a map C !D0 . For instance if .C�; @C ; `C / is a Floer-type complex,
for any i we could consider either of the two-term complexes

.Ci
@jCi
���! Ci�1/ or .Ci

@jCi
���! ker.@C jCi�1//

and obtain the same values of ˇk .

We conclude this section by phrasing the torsion exponents of [20; 21] in our terms and
proving that these torsion exponents coincide with our generalized boundary depths ˇk .
We will explain this just for two-term Floer-type complexes .C1 @!C0/; this represents
no loss of generality, as for a general Floer-type complex .C�; @C ; `C / one may apply
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the discussion below to the various two-term Floer-type complexes

.CiC1
@jCiC1
�����! ker.@C jCi //

in order to relate the torsion exponents and generalized boundary depths in any degree
i 2 Z.

So let .C1 @!C0/ be a two-term Floer-type complex over ƒDƒK;� . We first define
the torsion exponents (in degree zero) in our language, leaving it to readers familiar
with [20] to verify that our definition is consistent with theirs. Write ƒuniv D ƒK;R

for the “universal” Novikov field, so named because regardless of the choice of � we
have a field extension ƒK;� ,!ƒuniv . Also define

ƒuniv
0 D f� 2ƒuniv

j �.�/� 0gI

thus ƒuniv
0 is the subring of ƒuniv consisting of formal sums

P
g agT

g with each
g � 0.

As in Section 2.5, for j D 0; 1 let C 0j D Cj ˝ƒ ƒ
univ , and endow C 0j with the

filtration function obtained by choosing an orthogonal ordered basis .w1; : : : ; wa/
for Cj and putting `0

�P
i �
0
iwi˝1

�
Dmaxi .`.wi /��.�0i // for any �01; : : : ; �

0
a 2ƒ

univ .
By Proposition 2.21 this definition is independent of the choice of orthogonal basis
.w1; : : : ; wa/.

Now, for j D 0; 1, define

xC 0j D fc 2 C
0
j j `

0.c/� 0g

and observe that xCj is a module over the subring ƒuniv
0 of ƒuniv . Moreover, again

taking Proposition 2.21 into account, it is easy to see that if .w1; : : : ; wa/ is any
orthogonal ordered basis for Cj , then the elements xwi Dwi ˝T `.wi / form a basis for
xC 0j as a ƒuniv

0 –module.

The fact that `.@c/�`.c/ implies that the coefficient extension @˝1W C 01!C 00 restricts
to xC 01 as a map to xC 00 . So we have a (two-term) chain complex of ƒuniv

0 –modules

. xC 01
@˝1
���! xC 00/:

Fukaya, Oh, Ohta, and Ono show [20, Theorem 6.1.20] that the zeroth homology of
this complex (ie the quotient xC 00=.@˝ 1/ xC

0
1 ) is isomorphic to

(17) .ƒuniv
0 /q˚

sM
kD1

.ƒuniv
0 =T �kƒuniv

0 /

for some natural numbers q; s and positive real numbers �i ; : : : ; �s .
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Definition 4.12 [20] Order the summands in the decomposition (17) of xC 00=.@˝1/ xC
0
1

so that �1� � � � ��s . For a positive integer k , the kth torsion exponent of the two-term
Floer-type complex .C1 @

! C0/ is �k if k � s and 0 otherwise. The first torsion
exponent is also called the torsion threshold.

Theorem 4.13 For each positive integer k the kth torsion exponent of .C1 @!C0/ is
equal to the generalized boundary depth ˇk.@/.

Proof Let ..y1; : : : ; yn/; .x1; : : : ; xm// be a singular value decomposition for the
map @W C1! C0 . By Proposition 3.10, ..y1˝ 1; : : : ; yn˝ 1/; .x1˝ 1; : : : ; xm˝ 1//
is a singular value decomposition for @˝ 1W C 01 ! C 00 . Let r denote the rank of @
(equivalently, that of @˝ 1).

Let us determine the image .@˝ 1/. xC 01/ � C
0
0 . A general element x of C 00 can be

written as x D
Pm
iD1 �ixi ˝1, where �i 2ƒuniv . By the definition of a singular value

decomposition, in order for x to be in the image of @˝ 1 we evidently must have
�i D 0 for i > r . Given that this holds, we will have .@˝ 1/

�Pr
iD1 �iyi ˝ 1

�
D x ,

and moreover by Lemma 4.9,
Pr
iD1 �iyi ˝ 1 has the lowest filtration level among all

preimages of x under @˝ 1. Now

`0
� rX
iD1

�iyi ˝ 1

�
Dmax

i
.`.yi /� �.�i //;

so we conclude that x D
Pm
iD1 �ixi ˝ 1 belongs to .@˝ 1/. xC 01/ if and only if both

�i D 0 for i > r and �.�i /� `.yi / for i D 1; : : : ; r .

Recall that the elements xxi D xi ˝ T `.xi / form a ƒuniv
0 –basis for xC 00 . Letting �i D

T �`.xi /�i , the conclusion of the above paragraph can be rephrased as saying that
.@˝1/. xC 01/ consists precisely of elements

Pm
iD1 �i xxi such that �i D 0 for i > r and

�.�i / � `.yi /� `.xi / for i D 1; : : : ; r . Now for any � 2 ƒuniv and c 2 R, one has
�.�/� c if and only if � 2 T cƒuniv

0 . So we conclude that

.@˝ 1/. xC 01/D spanƒuniv
0
fT `.y1/�`.x1/xx1; : : : ; T

`.yr /�`.xr /xxrg;

while as mentioned earlier

xC 00 D spanƒuniv
0
fxx1; : : : ; xxmg:

These facts immediately imply that

xC 00

.@˝ 1/. xC 01/
D .ƒuniv

0 /m�r ˚

rM
kD1

.ƒuniv
0 =T `.yk/�`.xk/ƒuniv

0 /:
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Comparing with (17) we see that the numbers that we have denoted by s and r are
equal to each other, and that the kth torsion exponent is equal to `.yk/� `.xk/ for
1� k � r and to zero otherwise. By Theorem 4.11 this is the same as ˇk.@/.

5 Filtration spectrum

The filtration spectrum of an orthogonalizable ƒ–space is an algebraic abstraction of
the set of critical values of a Morse function or the action spectrum of a Hamiltonian
diffeomorphism (see [40]).

In the definition below and elsewhere, our convention is that N is the set of nonnegative
integers (so includes zero).

Definition 5.1 A multiset M is a pair .S; �/, where S is a set and �W S!N[f1g
is a function, called the multiplicity function of M . If T is some other set, a multiset
of elements of T is a multiset .S; �/ such that S � T .

For s 2 S , the value �.s/ should be interpreted as “the number of times that s appears”
in the multiset M . By abuse of notation we will sometimes denote multisets in set-
theoretic notation with elements repeated: for instance f1; 3; 1; 2; 3g denotes a multiset
with �.1/ D �.3/ D 2 and �.2/ D 1. The cardinality of the multiset .S; �/ is by
definition

P
s2S �.S/. (For notational simplicity we are not distinguishing between

different infinite cardinalities in our definition; in fact, for nearly all of the multisets
that appear in this paper the multiplicity function will only take finite values.)

Also, if S � T and �W T !N [f1g is a function with �jT nS � 0 then we will not
distinguish between the multisets .T; �/ and .S; �jS /.

Definition 5.2 Let .C; `/ be an orthogonalizable ƒ–space with a fixed orthogonal
ordered basis .v1; : : : ; vn/. The filtration spectrum of .C; `/ is the multiset .R=�; �/,
where

�.s/D #fvi 2 fv1; : : : ; vng j `.vi /� s mod �g:

Remark 5.3 When � is trivial, the filtration spectrum is just the set f`.v1/; : : : ; `.vn/g
and multiplicity function is just defined by setting �.s/ equal to the number of i such
that `.vi /D s .

Example 5.4 Let � D Z and C D spanƒfv1; v2g, where v1; v2 are orthogonal with
`.v1/ D 2:5 and `.v2/ D 0:5. Then for Œ0:5� 2 R=� we have �.Œ0:5�/ D 2, while
for Œ0:7� 2 R=� we have �.Œ0:7�/ D 0. The filtration spectrum is then the multiset
fŒ0:5�; Œ0:5�g.
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While Definition 5.2 relies on a choice of an orthogonal basis for .C; `/, the following
proposition shows that the filtration spectrum can be reformulated in a way that is
manifestly independent of the choice of orthogonal basis, and so is in fact an invariant
of the orthogonalizable ƒ–space .C; `/.

Proposition 5.5 Let .C; `/ be an orthogonalizable ƒK;�–space and let .R=�; �/ be
the filtration spectrum of .C; `/ (as determined by an arbitrary orthogonal basis). Then
for any s 2R=� ,

�.s/Dmax
˚
k2N j9V �C with dim.V /Dk and `.v/�s mod � for all v2V nf0g

	
:

Proof Let .v1; : : : ; vn/ be an orthogonal ordered basis of C and let � be the multi-
plicity of some element s 2R=� in the filtration spectrum of C . So by definition there
are precisely � elements i1; : : : ; i� 2 f1; : : : ; ng such that each `.vij /� s mod � for
j D 1; : : : ; �. Any nonzero element u in the �–dimensional subspace spanned by
the vij can be written as u D

P
j �j vij , where �j 2 ƒ are not all zero, and then

`.u/ D maxj f`.vij /� �.�j /g � s mod � since �.�j / all belong to � . This proves
that � is less than or equal to right hand side in the statement of the proposition.

For the reverse inequality, suppose that V � C has dimension greater than �. For
i1; : : : ; i� as in the previous paragraph, let W D spanƒfvi j i … fi1; : : : ; i�gg. Since
W has codimension � and dimV > �, V and W intersect nontrivially. So there is
some nonzero element v D

P
i…fi1;:::;i�g

�ivi 2 V \W . Since the vi are orthogonal,
`.v/ has the same reduction modulo � as one of the vi with i … fi1; : : : ; i�g, and so
this reduction is not equal to s . Thus no subspace of dimension greater than � can
have the property indicated in the statement of the proposition.

Remark 5.6 Let us now relate our singular value decompositions to the Morse–
Barannikov complex C.f / of an excellent Morse function f W M!R on a Riemannian
manifold as described in [28, Section 2], where the term “excellent” means in particular
that the restriction of f to its set of critical points is injective.

This latter assumption means, in our language, that the filtration spectrum of the
orthogonalizable K–space .CM�.f /; `/ consists of the index-k critical values of f ,
each occurring with multiplicity one, since (essentially by definition) .CM�.f /; `/ has
an orthogonal basis given by the critical points of f , with filtrations given by their
corresponding critical values. So in view of Proposition 5.5, the filtration function `
will restrict to any other orthogonal basis of .CM�.f /; `/ as a bijection to the set of
critical values of f .

Denoting by @ the boundary operator on CM�.f /, Theorem 3.4 allows us to construct
an orthogonal ordered basis .x1; : : : ; xr ; y1; : : : ; yr ; z1; : : : ; zh/ for CM�.f / such
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that spanfx1; : : : ; xrg D Im.@/, spanfx1; : : : ; xr ; z1; : : : ; zhg D ker.@/, and @yi D xi .
By the previous paragraph, then, each critical value c of f can then be written in
exactly one way as c D `.xi / or c D `.yi / or c D `.zi /.

For � 2R, let C�� denote the subcomplex of CM�.f / spanned by the critical points
with critical value at most �. Observe that C�� is equal to the subcomplex of CM�.f /
spanned by the xi ; yi ; zi having `� � (indeed the latter is clearly a subspace of C�� ,
but Proposition 5.5 implies that their dimensions are the same). Now the treatment
of the Barannikov complex in [28] involves separating the critical values c of f into
three types, where � represents a small positive number:

� The lower critical values, for which the natural map

H�.C
cC�
� =C c��� /!H�.CM�.f /=C c��� /

vanishes;

� The upper critical values, for which the natural map

H�.C
cC�
� /!H�.C

cC�
� ; C c��� /

vanishes (equivalently, H�.C c��� /!H�.C
cC�
� / is surjective);

� All other critical values, called homological critical values.

If w is any of xi ; yi , or zi and if `.w/Dc , one has C cC�� DC c��� ˚hwi. Consequently
it is easy to see that c is a lower critical value if and only if c D `.xi / for some i ,
that c is an upper critical value if and only if c D `.yi / for some i , and that c is
a homological critical value if and only if c D `.zi / for some i . Moreover, in the
case that c is an upper critical value so that c D `.yi / for some i , the natural map
H�.C

cC�
� =C�� /!H�.C

cC�
� =C c��� / vanishes precisely for �� `.xi /.

In [28, Definition 2.9], the Morse–Barannikov complex .C.f /; @B/ is described as the
chain complex generated by the critical values of f , with boundary operator given by
@Bc D 0 if c is a lower critical value or a homological critical value, and

@Bc D sup
˚
� jH�.C

cC�
� =C�� /!H�.C

cC�
� =C c��� / is the zero map

	
if c is an upper critical value. The foregoing discussion shows that the unique linear map
.CM�.f /; @/! .C.f /; @B/ that sends the basis elements xi ; yi ; zi to their respective
filtration levels `.xi /; `.yi /; `.zi / defines an isomorphism of chain complexes. In
particular, the Morse–Barannikov complex can be recovered quite directly from a
singular value decomposition.
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6 Barcodes

Recall from the introduction that a persistence module V D fVtgt2R over the field K
is a system of K–vector spaces Vt with suitably compatible maps Vs! Vt whenever
s � t .

A special case of a persistence module is obtained by choosing an interval I �R and
defining

.KI /t D
�
K if t 2 I;
0 if t … I;

with the maps .KI /s! .KI /t defined to be the identity when s; t 2 I and to be zero
otherwise.

A persistence module V is called pointwise finite-dimensional if each Vt is finite-
dimensional. Such persistence modules obey the following structure theorem.

Theorem 6.1 [46; 12] Every pointwise finite-dimensional persistence module V can
be uniquely decomposed into the following normal form:

(18) V Š
M
˛

KI˛

for certain intervals I˛ �R

The (persistent homology) barcode of V is then by definition the multiset .S; �/,
where S is the set of intervals I for which KI appears in (18) and �.I / is the number
of times that KI appears. As follows from the discussion at the end of the introduction
in [12], the barcode is a complete invariant of a pointwise finite-dimensional persistence
module.

In classical persistent homology, where the persistence module is constructed from the
filtered homologies of the Čech or Rips complexes associated to a point cloud, [46]
provides an algorithm computing the resulting barcode (cf Theorem 3.5). In this case
the intervals in the barcode are all half-open intervals Œa; b/ (with possibly b D1).
See eg [23, Figure 4] and [7, page 278] for some nice illustrations of barcodes.

Returning to the context of the Floer-type complexes .C�; @; `/ considered in this paper,
for any t 2R, if we let C t

k
D fc 2 Ck j `.c/� tg the assumption on the effect of @ on

` shows that we have a subcomplex C t� ; just as discussed in the introduction for any k
the degree-k homologies H t

k
.C�/ of these complexes yield a persistence module over

the base field K . Typically H t
k
.C�/ can be infinite-dimensional (and also may not

satisfy the weaker descending chain condition which appears in [12]), so Theorem 6.1
usually does not apply to these persistence modules. The exception to this is when the
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subgroup � � R used in the Novikov field ƒDƒK;� is the trivial group, in which
case we just have ƒD K and the chain groups Ck (and so also the homologies) are
finite-dimensional over K . So when � D f0g, Theorem 6.1 does apply to show that the
persistence module fH t

k
.C�/gt2R decomposes as a direct sum of interval modules KI ;

by definition the degree-k part of the barcode of C� is then the multiset of intervals
appearing in this direct sum decomposition. We have:

Theorem 6.2 Assume that � D f0g and let .C�; @; `/ be a Floer-type complex over
ƒK;f0g D K . For each k 2 Z write @kC1W CkC1 ! Ck for the degree-.kC1/ part
of the boundary operator @, and write Zk D ker @k , so that @kC1 has image con-
tained in Zk . Let ..y1; : : : ; yn/; .x1; : : : ; xm// be a singular value decomposition for
@kC1W CkC1!Zk . Then if r D rank.@kC1/, the degree-k part of the barcode of C�
consists precisely of:

� an interval Œ`.xi /; `.yi // for each i 2 f1; : : : ; rg such that `.yi / > `.xi /; and
� an interval Œ`.xi /;1/ for each i 2 fr C 1; : : : ; mg.

Proof As explained earlier, fH t
k
.C�/gt2R is a pointwise finite-dimensional persis-

tence module. Therefore by Theorem 6.1, we have a normal form
L
˛ KI˛ . Given

a singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm// as in the hypothesis, we
first claim that, for all t 2R,

(19) H t
k.C�/D spanK

�
Œxi �

ˇ̌̌
`.xi /� t < `.yi / if i 2 f1; : : : ; rg
`.xi /� t if i 2 fr C 1; : : : ; mg

�
:

In fact, .x1; : : : ; xm/ is an orthogonal ordered basis for ker @k , so fxi j `.xi /� tg is
an orthogonal basis for ker.@kjC t

k
/. By Lemma 4.9, when � D f0g (so that � vanishes

on all nonzero elements of ƒ), an element x D
Pm
iD1 �ixi lies in @kC1.C tkC1/ if and

only if it holds both that �i D 0 for all i > r and that `
�Pr

iD1 �iyi
�
� t , ie if and

only if x 2 spanKfxi j 1 � i � r; `.yi / � tg. So we have bases fxi j `.xi / � tg for
Zk \C

t
k

and fxi j 1� i � r; `.yi /� tg for @kC1.C tkC1/, from which the expression
(19) for H t

k
.C�/ immediately follows.

Write Vt for the right hand side of (19). For s � t , the inclusion-induced map
�st W H

s
k
.C�/!H t

k
.C�/ is identified with the map �st W Vs! Vt defined as follows,

for any generator Œxi � of Vs :

(20) �st .Œxi �/D

�
Œxi � if `.yi / > t or i 2 fr C 1; : : : ; sg;
0 if `.yi /� t:

Clearly, this is a K–linear homomorphism. It is easy to check that �ss D IVs and for
s � t � u, �su D �tu ı �st . Therefore, V D fVtgt2R is a persistence module, which
is (tautologically) isomorphic, in the sense of persistence modules, to fH t

k
.C�/gt2R .

Geometry & Topology, Volume 20 (2016)



Persistent homology and Floer–Novikov theory 3377

On the other hand, the normal form of V can be explicitly written out as follows:

(21) V Š
M
1�i�r

KŒ`.xi /;`.yi //˚
M

rC1�j�m

KŒ`.xj /;1/:

Indeed the indicated isomorphism of persistence modules can be obtained by simply
mapping 1 2 .KŒ`.xi /;`.yi //�/t D K to the class Œxi � for t 2 Œ`.xi /; `.yi // and i D
1; : : : ; r , and similarly for the KŒ`.xi /;1/ for i > r .

Thus in the “classical” � D f0g case the barcode can be read off directly from the
filtration levels of the elements involved in a singular value decomposition; in particular,
these filtration levels are independent of the choice of singular value decomposi-
tion, consistently with Theorem 7.1 below. For nontrivial � there is clearly some
amount of arbitrariness of the filtration levels of the elements of a singular value
decomposition: if ..y1; : : : ; yn/; .x1; : : : ; xm// is a singular value decomposition, then
..T g1y1; : : : ; T

gryr ; yrC1; : : : ; yn/; .T
g1x1; : : : ; T

gmxm// is also a singular value
decomposition for any g1; : : : ; gm 2 � ; based on Theorem 6.2 one would expect this
to result in a change of the positions of each of the intervals in the barcode. Note that
this change moves the endpoints of the intervals but does not alter their lengths. This
suggests the following definition, related to the ideas of boundary depth and filtration
spectrum:

Definition 6.3 Let .C�; @; `/ be a Floer-type complex over ƒDƒK;� and for each
k 2 Z write @k D @jCk and Zk D ker @k . Given any k 2 Z choose a singular value
decomposition ..y1; : : : ; yn/; .x1; : : : ; xm// for the ƒ–linear map @kC1W CkC1!Zk
and let r denote the rank of @kC1 . Then the degree-k verbose barcode of .C�; @; `/
is the multiset of elements of .R=�/� Œ0;1� consisting of

(i) a pair .`.xi / mod �; `.yi /� `.xi // for i D 1; : : : ; r ;

(ii) a pair .`.xi / mod �;1/ for i D r C 1; : : : ; m.

The concise barcode is the submultiset of the verbose barcode consisting of those
elements whose second element is positive.

Thus in the case that � D f0g elements Œa; b/ of the persistent homology barcode
correspond according to Theorem 6.2 to elements .a; b� a/ of the concise barcode.
In general we think of an element .Œa�; L/ of the (verbose or concise) barcode as
corresponding to an interval with left endpoint a and length L, with the understanding
that the left endpoint is only specified up to the additive action of � .

Definition 6.3 appears to depend on a choice of singular value decomposition, but we
will see in Theorem 7.1 that different choices of singular value decompositions yield
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the same verbose (and hence also concise) barcodes. Of course in the case that � Df0g
this already follows from Theorem 6.2; in the opposite extreme case that � DR (in
which case the first coordinates of the pairs in the verbose and concise barcodes carry
no information) it can easily be inferred from Theorem 4.13.

Remark 6.4 Our reduction modulo � in Definition 6.3(i) and (ii) is easily seen to
be necessary if there is to be any hope of the verbose and concise barcodes being
independent of the choice of singular value decomposition, for the reason indicated in
the paragraph before Definition 6.3. Namely, acting on the elements involved in the
singular value decomposition by appropriate elements of ƒ could change the various
quantities `.xi / involved in the barcode by arbitrary elements of � .

Remark 6.5 In the spirit of Theorem 3.5, we outline the procedure for computing the
degree-k verbose barcode for a Floer-type complex .C�; @; `/:

� First, by applying the algorithm in Theorem 3.5 to @k W Ck!Ck�1 or otherwise,
obtain an orthogonal ordered basis .w1; : : : ; wm/ for ker @k .

� Express @kC1W CkC1! ker @k in terms of an orthogonal basis for CkC1 and
the basis .w1; : : : ; wm/ for ker @k , and apply Theorem 3.5 to obtain data
.v01; : : : ; v

0
n/ and U as in the statement of that theorem.

� The degree-k verbose barcode consists of one element .Œ`.Av0i /�; `.v
0
i /�`.Av

0
i //

for each i 2 U , and one element .Œa�;1/ for each Œa� lying in the multiset
complement fŒ`.w1/�; : : : ; Œ`.wm/�g n fŒ`.Av0i /� j i 2 Ug.

6.1 Relation to spectral invariants

Following a construction that is found in [40; 34] in the context of Hamiltonian Floer
theory (and which is closely related to classical minimax-type arguments in Morse
theory), we may describe the spectral invariants associated to a Floer-type complex
.C�; @; `/: letting Hk.C�/ denote the degree-k homology of C� , these invariants take
the form of a map �W Hk.C�/!R[f�1g defined by, for ˛ 2Hk.C�/,

�.˛/D inff`.c/ j c 2 Ck; Œc�D ˛g

(where Œc� denotes the homology class of c ). In a more general context the main result
of [42] shows that the infimum in the definition of �.˛/ is always attained.

The spectral invariants are reflected in the concise barcode in the following way.

Proposition 6.6 Let BC;k be the degree-k part of the concise barcode of a Floer-type
complex .C�; @; `/, obtained from a singular value decomposition of @kC1W CkC1!
ker @k . Then:
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(i) There is a basis f˛1; : : : ; ˛hg for Hk.C�/ over ƒ such that the submultiset
of BC;k consisting of elements with second coordinate equal to 1 is equal to
f.Œ�.˛1/�;1/; : : : ; .Œ�.˛h/�;1/g, where for each i , Œ�.˛i /� denotes the reduc-
tion of �.˛i / modulo � .

(ii) For any class ˛ 2 Hk.C�/, if we write ˛ D
Ph
iD1 �i˛i , where �i 2 ƒ and

f˛1; : : : ; ˛hg is the basis from (i), then �.˛/Dmaxi .�.˛i /� �.�i //. In partic-
ular, if ˛ ¤ 0, then the concise barcode BC;k contains an element of the form
.Œ�.˛/�;1/.

Proof Let ..y1; : : : ; ym/; .x1; : : : ; xn// be a singular value decomposition of the map
@kC1W CkC1 ! ker @k . In particular, if r D rank @kC1 , then spanƒfxrC1; : : : ; xmg
is an orthogonal complement to Im @kC1 . Hence the classes ˛i D ŒxrCi � (for 1 �
i � m� r ) form a basis for Hk.C�/, and the dimension of the Hk.C�/ over ƒ is
hDm� r . By definition, the submultiset of BC;k consisting of elements with second
coordinate equal to 1 is f.Œ`.xrC1/�;1/; : : : ; .Œ`.xm/�;1/g, so both part (i) and
the first sentence of part (ii) of the proposition will follow if we show that, for any
�1; : : : ; �m�r 2ƒ we have

(22) �

�m�rX
iD1

�i˛i

�
Dmax

i
.`.xrCi /� �.�i //

(indeed the special case of (22) in which �i D ıij implies that �. j̨ /D `.xrCj /).

To prove (22), simply note that any class ˛ D
P
i �i˛i 2 Hk.C�/ is represented

by the chain
P
i �ixrCi , and that the general representative of ˛ is given by x D

yC
P
i �ixrCi for y 2 Im @kC1 . So since fxrC1; : : : ; xmg is an orthogonal basis for

an orthogonal complement to Im @kC1 it follows that

`.x/Dmax
�
`.y/; `

�X
i

�ixrCi

��
� `

�X
i

�ixrCi

�
Dmax

i
.`.xrCi /� �.�i //;

with equality if y D 0. Thus the minimal value of ` on any representative x ofPm�r
iD1 �i˛i is equal to maxi .`.xrCi /� �.�i //, proving (22).

As noted earlier, (22) directly implies (i) and the first sentence of (ii). But then the
second sentence of (ii) also follows immediately, since each � 2ƒn f0g has �.�/ 2ƒ,
and so if ˛ D

P
i �i˛i ¤ 0 it follows from (22) that �.˛/ is congruent mod � to one

of the �.˛i /.

6.2 Duality and coefficient extension for barcodes

Given a Floer-type complex .C�; @; `/ over ƒ D ƒK;� one obtains a dual complex
.C_� ; ı; `

�/ by taking C_
k

to be the dual over ƒ of C�k , ıW C_
k
! C_

k�1
to be the
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adjoint of @W C�kC1! C�k and defining `� as in Section 2.4. The following can be
seen as a generalization both of [43, Corollary 1.6] and of [41, Proposition 2.4]

Proposition 6.7 For all k , denote by zBC;k the degree-k verbose barcode of .C�; @; `/.
Then the degree-k verbose barcode of .C_� ; ı; `

�/ is given by

(23) zBC_;k D
˚
.Œ�a�;1/ j .Œa�;1/ 2 zBC;�k

	
[
˚
.Œ�a�L�;L/ j L<1 and .Œa�; L/ 2 zBC;�k�1

	
:

Proof Suppose that

r D rank
�
@�k W C�k! C�k�1

�
;

s D rank
�
@�kC1W C�kC1! C�k

�
;

t D dim ker
�
@�k�1W C�k�1! C�k�2

�
;

and note that t � r . Using the Gram–Schmidt process in Theorem 2.16 if neces-
sary, we can modify a singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm// of
@�k W C�k! C�k�1 so that it has the following additional properties:

(i) .x1; : : : ; xt / is an orthogonal ordered basis for ker @�k�1 , so that in particular
..y1; : : : ; yn/; .x1; : : : ; xt // is a singular value decomposition for @�k W C�k!
ker @�k�1 .

(ii) .yn�sC1; : : : ; yn/ is an orthogonal ordered basis for Im@�kC1 , so that the
elements .Œa�; L/ of zBC;�k having LD1 are precisely the .Œ`.yi /�;1/ for
i 2 fr C 1; : : : ; n� sg.

By Proposition 2.20, a singular value decomposition for ıkC1W C_kC1! C_
k

is given
by ..x�1 ; : : : ; x

�
m/; .y

�
1 ; : : : ; y

�
n//, where the x�i and y�j form dual bases for the bases

.x1; : : : ; xm/ and .y1; : : : ; yn/, respectively. Moreover by (ii) above, the kernel of
ık W C

_
k
! C_

k�1
(ie the annihilator of the image of @�kC1 ) is precisely the span of

y�1 ; : : : ; y
�
n�s , and so ..x�1 ; : : : ; x

�
m/; .y

�
1 ; : : : ; y

�
n�s// is a singular value decomposition

for ıkC1W C_kC1!ker ık . Since by (7) we have `�.x�i /D�`.xi / and `�.y�i /D�`.yi /
it follows that

zBC_;kD
˚
.Œ�`.yi /�; `.yi /�`.xi // j iD1; : : : ; r

	
[
˚
.Œ�`.yi /�;1/ j iDrC1; : : : ;n�s

	
;

which precisely equals the right hand side of (23).

The effect on the verbose barcode of extending the coefficient field of a Floer-type
complex by enlarging the value group � is even easier to work out, given our earlier
results.

Geometry & Topology, Volume 20 (2016)



Persistent homology and Floer–Novikov theory 3381

Proposition 6.8 Let .C�; @; `/ be a Floer-type complex over ƒDƒK;� , let � 0 �R
be a subgroup containing � , and consider the Floer-type complex .C 0�; @˝ 1; `

0/ over
ƒK;� 0 given by letting C 0

k
D Ck ˝ƒ ƒ

K;� 0 and defining `0 as in Section 2.5. Let
zBC;k be the verbose barcode of .C�; @; `/ in degree k and let � W R=�!R=� 0 be the
projection. Then the verbose barcode of .C 0�; @˝ 1; `

0/ in degree k is

f.�.Œa�/; L/ j .Œa�; L/ 2 zBC;kg:

Proof This follows directly from Proposition 3.10 and the definitions.

7 Classification theorems

In the spirit of the structure theorem (Theorem 6.1) for pointwise finite-dimensional
persistence modules, we will use the verbose and concise barcodes to classify Floer-type
complexes up to filtered chain isomorphism and filtered homotopy equivalence. Specif-
ically, we will prove the following two key theorems, stated earlier in the introduction.

Theorem A Two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ are filtered
chain isomorphic to each other if and only if they have identical verbose barcodes in all
degrees.

Theorem B Two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ are filtered
homotopy equivalent to each other if and only if they have identical concise barcodes
in all degrees.

7.1 Classification up to filtered isomorphism

We will assume the following important theorem first, and then Theorem A will follow
quickly.

Theorem 7.1 For any k 2Z, the degree-k verbose barcode of any Floer-type complex
is independent of the choice of singular value decomposition for @kC1W CkC1!Zk .

Proof of Theorem A On the one hand, a filtered chain isomorphism C�!D� maps
a singular value decomposition for .@C /kC1W CkC1! ker.@C /k to a singular value
decomposition for .@D/kC1W DkC1 ! ker.@D/k , while keeping all filtration levels
the same. Therefore, the “only if” part of Theorem A is a direct consequence of
Theorem 7.1.

To prove the “if” part of Theorem A we begin by introducing some notation that will
also be useful to us later. Given a collection of Floer-type complexes C˛D .C˛�; @˛; `˛/
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we define
L
˛ C˛ to be the triple

�L
˛ C˛�;

L
˛ @˛;

z̀
�
, where z̀..c˛//Dmax˛ `˛.c˛/.

Provided that, for each k 2 Z, only finitely many of the C˛k are nontrivial,
L
˛ C˛ is

also a Floer-type complex.

Definition 7.2 Fix � � R and the associated Novikov field ƒDƒK;� . For a 2 R,
L 2 Œ0;1�, and k 2 Z define the elementary Floer-type complex E.a; L; k/ to be the
Floer-type complex .E�; @E ; `E / given as follows:

� If LD1 then

Em D

�
ƒ if mD k;
0 otherwise;

@E D 0, and `.�/D a� �.�/ for � 2Em Dƒ.

� If L 2 Œ0;1/, then Ek is the one-dimensional ƒ–vector space generated by
a symbol x , EkC1 is the one-dimensional ƒ–vector space generated by a
symbol y , and Em D f0g for m … fk; kC 1g. Also, @E W E�! E� is defined
by @E .�xC�y/D �x , and `E .�xC�y/Dmaxfa� �.�/; .aCL/� �.�/g.

Remark 7.3 If b � a 2 � , then there is a filtered chain isomorphism E.a; L; k/!
E.b; L; k/ given by scalar multiplication by the element T b�a 2ƒ.

Proposition 7.4 Let .C�; @; `/ be a Floer-type complex and denote by zBC;k the
degree-k verbose barcode of .C�; @; `/. Then there is a filtered chain isomorphism

.C�; @; `/Š
M
k2Z

M
.Œa�;L/2zBC;k

E.a; L; k/

(where for each .Œa�; L/ 2 zBC;k we choose an arbitrary representative a 2 R of the
coset Œa� 2R=� ).

Proof of Proposition 7.4 For each k let

..yk1 ; : : : ; y
k
rk
; : : : ; ykrkCmkC1/; .x

k
1 ; : : : ; x

k
mk
//

be an arbitrary singular value decomposition for .@C /kC1W CkC1! ker.@C /k , where
rk is the rank of .@C /kC1 and mk D dim.ker.@C /k/ for each degree k 2 Z. We will
first modify these singular value decompositions for various k to be related to each
other in a convenient way. Specifically, since .xkC11 ; : : : ; xkC1mkC1

/ is an orthogonal
ordered basis for ker.@C /kC1 , the tuple

..yk1 ; : : : ; y
k
rk
; xkC11 ; : : : ; xkC1mkC1

/; .xk1 ; : : : ; x
k
mk
//
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is also a singular value decomposition for .@C /kC1W CkC1! ker.@C /k . So letting

.aki ; L
k
i /D

�
.`.xki /; `.y

k
i /� `.x

k
i // if 1� i � rk;

.`.xki /;1/ if rkC 1� i �mk;

we have BC;k D f.Œaki �; L
k
i /j1� i �mkg and the proposition states that .C�; @; `/ is

filtered chain isomorphic to
L
k

Lmk
iD1 E.a

k
i ; L

k
i ; k/. Now for each i and k there is

an obvious embedding �i;k W E.aki ; L
k
i ; k/! C� defined by

� �i;k.�/D �x
k
i when Lki D1;

� �i;k.�xC�y/D �x
k
i C�y

k
i when Lki <1.

From the definition of the filtration and boundary operator on E.aki ; L
k
i ; k/ this em-

bedding is a chain map which exactly preserves filtration levels. ThenM
i;k

�i;k W
M
i;k

E.aki ; L
k
i ; k/! C�

is also a chain map. Finally, for each k , the fact that .yk1 ; : : : ; y
k
rk
; xkC11 ; : : : ; xkC1mkC1

/

is an orthogonal ordered basis for CkC1 readily implies that
L
i;k �i;k is in fact a

filtered chain isomorphism.

Since, by Remark 7.3, the filtered isomorphism type of E.a; L; k/ only depends on
Œa�; L; k , and since quite generally filtered chain isomorphisms ˆ˛W C˛!D˛ between
Floer-type complexes induce a filtered chain isomorphism

L
˛W
L
˛ C˛ !

L
˛ D˛ ,

Proposition 7.4 shows that the filtered chain isomorphism type of a Floer-type complex
is determined by its verbose barcode, proving the “if” part of Theorem A.

The remainder of this subsection is directed toward the proof of Theorem 7.1. We will
repeatedly apply the following criterion for testing whether a subspace is an orthogonal
complement of a given subspace.

Lemma 7.5 Let .C; `/ be an orthogonalizable ƒ–space, and let U;U 0; V � C be
subspaces such that U is an orthogonal complement to V and dimU 0 D dimU .
Consider the projection �U W C ! U associated to the direct sum decomposition
C DU ˚V . Then U 0 is an orthogonal complement of V if and only if `.�Ux/D `.x/
for all x 2 U 0 .

Proof Assume that U 0 is an orthogonal complement to V . Then for x 2 U 0 , we of
course have

x D �UxC .x��Ux/;
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where �Ux 2 U and x��Ux 2 V . Because U and V are orthogonal, it follows that
`.x/Dmaxf`.�Ux/; `.x��Ux/g. In particular,

(24) `.x/� `.�Ux/:

On the other hand, since
�Ux D x� .x��Ux/;

where x 2 U 0 , x � �Ux 2 V , and U 0 and V are orthogonal, we have `.�Ux/ D
maxf`.x/; `.x � �Ux/g. In particular, `.�Ux/ � `.x/. Combined with (24), this
shows `.x/D `.�Ux/.

Conversely, suppose that `.�Ux/ D `.x/ for all x 2 U 0 . To show that U 0 is an
orthogonal complement to V we just need to show that U 0 and V are orthogonal, that
is, for any x 2U 0 and v 2 V we have `.xCv/Dmaxf`.x/; `.v/g (indeed if we show
this, then by Lemma 2.9(i) U 0 and V will have trivial intersection and so dimensional
considerations will imply that C D U 0˚V ). Now write x 2 U 0 as

x D �UxC .x��Ux/;

where �Ux 2U and x��Ux 2 V . Because U and V are orthogonal, our assumption
shows that `.x/D `.�Ux/� `.x��Ux/. Now

xC v D �UxC .vC .x��Ux//;

where �Ux in U and vC .x ��Ux/ 2 V . Again, U and V are orthogonal, so we
have

`.xC v/Dmaxf`.�Ux/; `.vC .x��Ux//g

Dmaxf`.x/; `.vC .x��Ux//g:

Now if `.v/ > `.x/ then `.xCv/D `.v/Dmaxf`.x/; `.v/g, as desired. On the other
hand if `.v/ � `.x/ then `.vC .x � �Ux// � maxf`.v/; `.x � �Ux/g � `.x/, and
so `.xC v/ D `.x/ D maxf`.x/; `.v/g. So in any case we indeed have `.xC v/ D
maxf`.x/; `.v/g for any x 2 U 0; v 2 V , and so U 0 and V are orthogonal.

Notation 7.6 Let ..y1; : : : ; yn/; .x1; : : : ; xm// be a singular value decomposition
for a two-term Floer-type complex .C1 @

!C0/, and let r be the rank of @. Denote
k1; : : : ; kp 2 f1; : : : ; rg to be the increasing finite sequence of integers defined by the
property that k1 D 1 and, for i 2 f1; : : : ; pg, either ˇki .@/D ˇkiC1.@/D � � � D ˇr.@/
(in which case p D i ) or else ˇki .@/ D � � � D ˇkiC1�1.@/ > ˇkiC1.@/. Also let
kpC1 D r C 1. We emphasize that the numbers ki are independent of the choice of
singular value decomposition (since the ˇk.@/ are likewise independent thereof; see
Definition 4.10).
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The proof of Theorem 7.1 inductively uses the following lemma, which is an application
of Lemma 7.5.

Lemma 7.7 Let ..y1; : : : ; yn/; .x1; : : : ; xm// be a singular value decomposition for
.C1

@
!C0/ and r D rank.@/, and let k1; : : : ; kpC1 be the integers in Notation 7.6. Let

i 2 f1; : : : ; pg, and suppose that V;W � Im @� C0 satisfy the following conditions:

(i) dimV D ki � 1, V is ı–robust for all ı < ˇki�1.@/, and V is orthogonal to
spanƒfxki ; : : : ; xmg. (If i D 1 these conditions mean V D f0g.)

(ii) dimW D kiC1 � ki , W is orthogonal to V , and V ˚W is ı–robust for all
ı < ˇki .@/.

Now let XD spanƒfxki ; : : : ; xkiC1�1g and X 0D spanƒfxkiC1 ; : : : ; xmg. Then V˚W
is orthogonal to X 0 , and there is an isomorphism of filtered vector spaces W ŠX .

Proof Since V is orthogonal to X ˚X 0 and X is orthogonal to X 0 , by Lemma 2.9,
we have an orthogonal direct sum decomposition C0 DX ˚ .X 0˚V /. We will first
show that the projection �X W C0!X associated to this direct sum decomposition has
the property that �X jW exactly preserves filtration levels.

Let w 2W , and write wD vCxCx0 , where v 2 V , x 2X , and x0 2X 0 , so our goal
is to show that `.w/D `.x/. Of course this is trivial if wD 0, so assume w¤ 0. Now

`.w/Dmaxf`.xC x0/; `.v/g

since V is orthogonal to X˚X 0 . Since xCx0Dw�v and V and W are orthogonal we
have `.xCx0/Dmaxf`.v/; `.w/g � `.v/. So `.w/D `.xCx0/Dmaxf`.x/; `.x0/g.
(In particular x and x0 are not both zero.) Now expand w� v D xC x0 in terms of
the basis fxj g as

w� v D

rX
jDki

�jxj :

The fact that we can take the sum to start at ki follows from the definitions of X
and X 0 , and the sum terminates at r because w�v 2V ˚W � Im @. Then `.w�v/D
maxf`.�jxj / j j 2 fki ; : : : ; rgg. By Lemma 4.9, the infimal filtration level of any
zy 2 C1 such that @zy D xC x0 is attained by zy D yCy0 , where y D

PkiC1�1

jDki
�jyj

and y0D
Pr
jDkiC1

�jyj ; by the assumption that V ˚W is ı–robust for all ı <ˇki .@/,
we will have

`.yCy0/� `.w� v/Cˇki .@/D `.xC x
0/Cˇki .@/:
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Thus by the orthogonality of the bases fxj g and fyj g,

(25) ˇki .@/� `.yCy
0/� `.xC x0/Dmaxf`.y/; `.y0/g�maxf`.x/; `.x0/g:

Now if we choose j0 to maximize the quantity `.�jyj / over all j 2 fkiC1; : : : ; rg we
will have

`.y0/D `.�j0yj0/D `.�j0xj0/C ǰ0.@/� `.x
0/C ǰ0.@/:

So

`.y0/�maxf`.x/; `.x0/g � `.y0/� `.x0/� ǰ0.@/ < ˇki .@/

since j0 � kiC1 . Thus in view of (25) we must have `.y/ > `.y0/ and so by
Proposition 2.3 `.y C y0/ D `.y/. Similarly, choose i0 2 fki ; : : : ; kiC1 � 1g to
maximize the quantity `.�jxj /, so that `.x/D `.�i0xi0/. Then

`.y/� `.x/� `.�i0yi0/� `.�i0xi0/D ˇi0.@/:

Symmetrically, choose i1 2 fki ; : : : ; kiC1 � 1g to maximize the quantity `.y/ DPkiC1�1

ki
�iyi , that is `.y/D `.�i1yi1/. Then

`.y/� `.x/� `.�i1yi1/� `.�i1xi1/D ˇi1.@/:

Because ˇki .@/ D � � � D ˇkiC1�1.@/ and i0; i1 2 fki ; : : : ; kiC1 � 1g, the above in-
equalities imply that ˇi0.@/ D ˇii .@/ D ˇki .@/. Thus we necessarily have `.y/ �
`.x/ D ˇki .@/. So we cannot have `.x0/ > `.x/, since if this were the case then
`.yCy0/�`.xCx0/D `.y/�maxf`.x/; `.x0/g would be strictly smaller than ˇki .@/,
a contradiction to condition (ii). Thus `.x/ � `.x0/. So since we have seen that
`.w/Dmaxf`.x/; `.x0/g this proves that `.w/D `.x/.

Thus the projection �X W C0! X associated to the direct sum decomposition X ˚
.V ˚X 0/ has `.�Xw/D `.w/ for all w 2W , and in particular it is injective because 0
is the only element with filtration level �1. So dimensional considerations prove the
last statement of the lemma. By Lemma 7.5, this also implies that W is an orthogonal
complement to V ˚X 0 . Since X 0 is orthogonal to V and V ˚X 0 is orthogonal to W
it follows from Lemma 2.9(ii) that V ˚W is orthogonal to X 0 , which is precisely the
remaining conclusion of the lemma.

Corollary 7.8 Let ..z1; : : : ; zn/; .w1; : : : ; wm// and ..y1; : : : ; yn/; .x1; : : : ; xm///

be two singular value decompositions for .C1 @
!C0/. Then for each i 2 f1; : : : ; pg
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there is a commutative diagram

spanƒfzki ; : : : ; zkiC1�1g //

@

��

spanƒfyki ; : : : ; ykiC1�1g

@

��

spanƒfwki ; : : : ; wkiC1�1g // spanƒfxki ; : : : ; xkiC1�1g

where the horizontal arrows are isomorphisms of filtered vector spaces.

Proof Consider the ascending sequence

f0g D V0 � V1 � V2 � � � � � Vp D Im @

of subspaces of Im @, where Vi D spanfw1; : : : ; wkiC1�1g. Each Vi is ı–robust for
all ı < ˇki .@/ by Lemma 4.9. Also let Wi D spanƒfwki ; : : : ; wkiC1�1g, so we have
an orthogonal direct sum decomposition Vi D Vi�1˚Wi .

We claim by induction on i that Vi is orthogonal to spanƒfxkiC1 ; : : : ; xmg. Indeed
for i D 0 this is trivial, and assuming that it holds for the value i � 1 then applying
Lemma 7.7 with V D Vi�1 and W D Wi proves the claim for the value i . Given
this fact, for any i we may again apply Lemma 7.7 to obtain a filtered isomorphism
Wi ! spanƒfxki ; : : : ; xkiC1�1g, which serves as the bottom arrow in the diagram in
the statement of the Corollary.

Since the side arrows and the bottom arrow are all linear isomorphisms, there is a
unique top arrow that makes the diagram commute. Moreover the bottom arrow exactly
preserves filtration, and the side arrows both decrease the filtration levels of all nonzero
elements by exactly ˇki .@/, so it follows that the top arrow is an isomorphism of
filtered vector spaces as well.

Proof of Theorem 7.1 Let ..z1; : : : ; zn/; .w1; : : : ;wm//, ..y1; : : : ;yn/; .x1; : : : ;xm//
be two singular value decompositions. Both

spanƒfwrC1; : : : ; wmg and spanƒfxrC1; : : : ; xmg

are orthogonal complements to Im @, where r D rank.@/, so they are filtered isomor-
phic by Lemma 7.5 and so they have the same filtration spectra by Proposition 5.5.
The subspaces spanƒfwki ; : : : ; wkiC1�1g and spanƒfxki ; : : : ; xkiC1�1g are filtered
isomorphic for each i 2 f1; : : : ; pg by Corollary 7.8, so they likewise have the same
filtration spectra. The conclusion now follows immediately from the description of
verbose barcode, using Theorem 4.11.
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7.2 Classification up to filtered homotopy equivalence

Now we move on to the classification of the filtered chain homotopy equivalence class
of a Floer-type complex. First, we will prove the “if” part, which is the easier direction.

Proposition 7.9 For any Floer-type complex .C�; @C ; `C /, let BC;k be the degree-k
concise barcode of .C�; @C ; `C /. For each .Œa�; L/ 2 BC;k , choose a representative a
of the coset Œa� 2R=� . Then .C�; @C ; `C / is filtered homotopy equivalent toM

k2Z

M
.Œa�;L/2BC;k

E.a; L; k/:

Proof For each k let zBC;k denote the degree-k verbose barcode of .C�; @C ; `C / and
BC;k the degree-k concise barcode, so BC;k D f.Œa�; L/ 2 zBC;k j L> 0g.

By Proposition 7.4, if for each .Œa�; L/ 2 zBC;k we choose a representative a of the
coset Œa� 2R=� , .C�; @C ; `C / is filtered chain isomorphic to

(26)
�M

k

M
.Œa�;L/2BC;k

E.a; L; k/
�
˚

�M
k

M
.Œa�;0/2zBC;knBC;k

E.a; 0; k/
�
:

Recall the definition of E.a; 0; k/ as the triple .E�; @E ; `E /, where E� is spanned over
ƒ by elements y 2EkC1 and x 2Ek with @Ey D x and `E .y/D `E .x/D a . If we
define KW E�!E�C1 to be the ƒ–linear map defined by KxD�y and KjEmD0 for
m¤ k , we see that `E .Ke/� `E .e/ for all e 2E� , that .@EKCK@E /xD�@EyD
�x , and that .@EKCK@Ey/DKx D�y . So K defines a filtered chain homotopy
between 0 and the identity, in view of which E.a; 0; k/ is filtered homotopy equivalent
to the zero chain complex. Since a direct sum of filtered homotopy equivalences
is a filtered homotopy equivalence, the Floer-type complex in (26) (and hence also
.C�; @C ; `C /) is filtered homotopy equivalent to

L
k2Z

L
.Œa�;L/2BC;k E.a; L; k/.

Recall from Remark 7.3 that the filtered isomorphism type of E.a; L; k/ only depends
on .Œa�; L; k/, so that up to filtered chain isomorphism

L
k2Z

L
.Œa�;L/2BC;k E.a; L; k/

is independent of the choices a of representatives of the cosets Œa�. In light of this, the
“if” part of Theorem B follows directly from Proposition 7.9.

7.2.1 Mapping cylinders We review here the standard homological algebra con-
struction of the mapping cylinder of a chain map between two chain complexes; the
special case where the chain map is a homotopy equivalence will be used both in the
proof of the “only if” part of Theorem B and in the proof of the stability theorem.
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For a chain complex .C�; @C / we use .C Œ1��; @C / to denote the chain complex obtained
by shifting the degree of C� by 1: C Œ1�k D Ck�1 , with boundary operator given
tautologically by the boundary operator of C� .

Definition 7.10 Let .C�; @C / and .D�; @D/ be two chain complexes over an arbitrary
ring, and let ˆW C�!D� be a chain map. The mapping cylinder of ˆ is the chain
complex .Cyl.ˆ/�; @cyl/ defined by Cyl.ˆ/�D C�˚D�˚C Œ1�� and, for .c; d; e/ 2
Cyl.ˆ/� , @cyl.c; d; e/D .@C c � e; @Dd Cˆe;�@C e/. Thus, in block form,

@cyl D

0@@C 0 �IC�
0 @D ˆ

0 0 �@C

1A :
It is a routine matter to check that @2cyl D 0, so .Cyl.ˆ/�; @cyl/ as defined above is
indeed a chain complex.

For the moment we will work at the level of chain complexes, not of filtered chain
complexes, the reason being that we will later use Lemma 7.12 below under a variety
of different kinds of assumptions about filtration levels.

Definition 7.11 Given two chain complexes .C�; @C / and .D�; @D/, a homotopy
equivalence between .C�; @C / and .D�; @D/ is a quadruple .ˆ;‰;KC ; KD/ such
that KC W C�! C�C1 , KDW D�!D�C1 are linear maps shifting degree by C1 and
ˆW C�!D� , ‰W D�! C� are chain maps, obeying ‰ˆ� IC� D @CKC CKC @C
and ˆ‰� ID� D @DKDCKD@D .

(In particular our convention is to consider the homotopies part of the data of a homotopy
equivalence.)

Lemma 7.12 Let .ˆ;‰;KC ; KD/ be a homotopy equivalence between .C�; @C / and
.D�; @D/. Then:

(i) Suppose that iDW D� ! Cyl.ˆ/� is the inclusion, ˛W Cyl.ˆ/� ! D� is de-
fined by ˛.c; d; e/ D ˆc C d , and KW Cyl.ˆ/� ! Cyl.ˆ/�C1 is defined by
K.c; d; e/D .0; 0; c/. Then the quadruple .iD; ˛; 0;K/ is a homotopy equiva-
lence between .D�; @D/ and .Cyl.ˆ/�; @cyl/.

(ii) Suppose that iC W C�! Cyl.ˆ/� is the inclusion, ˇW Cyl.ˆ/�! C� is defined
by ˇ.c; d; e/D cC‰d CKC e , and LW Cyl.ˆ/�! Cyl.ˆ/�C1 is defined by

L.c; d; e/D .�KC c;KD.ˆcC d/; c �‰.ˆcC d//:

Then the quadruple .iC ; ˇ; 0; L/ is a homotopy equivalence between .C�; @C /
and .Cyl.ˆ/�; @cyl/.
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Proof The proof requires only a series of routine computations to show that iD; ˛; iC ; ˇ
are all chain maps and that the various chain homotopy equations hold. We will do
only the most nontrivial of these, namely the proof of the identity iCˇ� ICyl.ˆ/� D

@CylLCL@Cyl , leaving the rest to the reader. We see that, for .c; d; e/ 2 Cyl.ˆ/� ,

.iCˇ� ICyl.ˆ/�/.c; d; e/D .‰d CKC e;�d;�e/

while

@cylL.c; d; e/D @cyl
�
�KC c;KD.ˆcCd/; c�‰.ˆcCd/

�
D
�
�@CKC c� cC‰ˆcC‰d; @DKD.ˆcCd/Cˆc�ˆ‰.ˆcCd/;

�@C cC@C‰.ˆcCd/
�

D
�
KC @C cC‰d;�KD@DˆcC .@DKD �ˆ‰/d;

�@C cC@C‰.ˆcCd/
�
;

where we have used the facts that ‰ˆ� IC� D @CKC CKC @C and ˆ‰ � ID� D
@DKDCKD@D . Furthermore,

L@cyl.c; d; e/D L.@C c�e; @DdCˆe;�@C e/

D
�
�KC @C cCKC e;KD.ˆ@C cC@Dd/; @C c�e�‰.ˆ@C cC@Dd/

�
:

So

.@cylLCL@cyl/.c; d; e/D
�
‰d CKC e; .@DKD �ˆ‰CKD@D/d;�e

�
D .‰d CKC e;�d;�e/D .iCˇ� ICyl.ˆ/�/.c; d; e/;

where in the first equation we have used the fact that ˆ and ‰ are chain maps and
in the second equation we have again used that ˆ‰ � ID� D @DKD CKD@D . So
indeed iCˇ� ICyl.ˆ/� D @CylLCL@Cyl ; as mentioned earlier the remaining identities
are easier to prove and so are left to the reader.

We can now fill in the last part of our proofs of the main classification results.

Proof of Theorem B One implication has already been proven in Proposition 7.9. For
the other direction, let .C�; @C ; `C / and .D�; @D; `D/ be two filtered homotopy equiv-
alent Floer-type complexes. Thus there is a homotopy equivalence .ˆ;‰;KC ; KD/
satisfying the additional properties that, for all c 2 C� and d 2D� , we have

(27) `D.ˆc/�`C .c/; `C .‰d/�`D.d/; `C .KC c/�`C .c/; `D.KDd/�`D.d/:
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Now form the mapping cylinder .Cyl.ˆ/�; @cyl/ as described earlier, and define
`cylW Cyl.ˆ/�!R[f�1g by

`cyl.c; d; e/Dmaxf`C .c/; `D.d/; `C .e/g:

It is easy to see that .Cyl.ˆ/�; @cyl; `cyl/ is then a Floer-type complex.4 Moreover,
.Cyl.ˆ/�; @cyl; `cyl/ has a concise barcode in each degree; we will show that this concise
barcode is both the same as that of .C�; @C ; `C / and the same as that of .D�; @D; `D/,
which will suffice to prove the result.

Using the notation of Lemma 7.12, since ˛W Cyl.ˆ/� ! D� is a chain map with
˛iD D ID� , we have a direct sum decomposition of chain complexes Cyl.ˆ/� D
D�˚ ker˛ . We claim that D� and ker˛ are orthogonal (with respect to the filtration
function `cyl ). Now

ker˛ D
˚
.c; d; e/ 2 Cyl.ˆ/� j d D�ˆc

	
D
˚
.c;�ˆc; e/ j .c; e/ 2 C�˚C Œ1��

	
:

Since D� is an orthogonal complement to C� ˚ C Œ1�� in Cyl.ˆ/� , and since in
each grading k the dimensions of the degree-k part of ker˛ and of Ck ˚ C Œ1�k
are the same, by Lemma 7.5 in order to show that ker˛ is orthogonal to D� it
suffices to show that, writing � W Cyl.ˆ/�! C�˚C Œ1�� for the orthogonal projection
.c; d; e/ 7! .c; e/, one has `cyl.�x/ D `cyl.x/ for all x 2 ker˛ . But any x 2 ker˛
has x D .c;�ˆc; e/ for some .c; e/ 2 C�˚C Œ1�� , and `D.�ˆc/ � `C .c/, so we
indeed have `cyl.�x/D maxf`C .c/; `C .e/g D `cyl.x/. So indeed D� and ker˛ are
orthogonal.

In view of the orthogonal direct sum decomposition of chain complexes Cyl.ˆ/� D
D� ˚ ker˛ , for every degree k we can obtain a singular value decomposition for
.@cyl/kC1W Cyl.ˆ/kC1! ker.@cyl/k by simply combining singular value decomposi-
tions for the restrictions of .@cyl/kC1 to DkC1 and to .ker˛/kC1 . Then by Theorem 7.1,
the verbose barcode of Cyl.ˆ/� is the union of the verbose barcodes of D� and of
ker˛ .

To describe the latter of these, we will show presently that every element in ker.@cyljker˛/

is the boundary of an element having the same filtration level. In fact, for any x 2
ker.@cyljker˛/, the equation iD˛�ICyl.ˆ/�D @cylKCK@cyl shows that xD @cyl.�Kx/.
Moreover,

`cyl.x/D `cyl.@cyl.�Kx//� `cyl.�Kx/� `cyl.x/;

where the last inequality comes from the formula for K in Lemma 7.12. Therefore
`cyl.x/D `cyl.�Kx/.

4For comparison with what we do later it is worth noting that the fact that `cyl.@cylx/ � `cyl.x/ for
all x is crucially dependent on the first inequality of (27).

Geometry & Topology, Volume 20 (2016)



3392 Michael Usher and Jun Zhang

Consequently, every element .Œa�; s/ of the verbose barcode of ker˛ has sD 0 (or, said
differently, the concise barcode of ker˛ is empty in every degree). Thus the verbose
barcode of Cyl.ˆ/� may be obtained from the verbose barcode of D� by adding
elements with second coordinate equal to zero; consequently the concise barcodes of
Cyl.ˆ/� and of D� are equal.

The proof that the concise barcodes of Cyl.ˆ/� and C� are likewise equal is very similar.
We have a direct sum decomposition of chain complexes Cyl.ˆ/�DC�˚kerˇ , where
kerˇDf.�‰d�KC e; d; e/ j .d; e/2D�˚C Œ1��g. Let � 0W Cyl.ˆ/�!D�˚C Œ1�� be
the projection associated to the orthogonal direct sum decomposition Cyl.ˆ/�DC�˚
.D�˚C Œ1��/. The inequalities (27) imply that `cyl.�

0x/D `cyl.x/ for all x 2 kerˇ .
Hence by applying Lemma 7.5 degree-by-degree we see that Cyl.ˆ/� D C�˚ kerˇ
is an orthogonal direct sum decomposition of chain complexes, and hence that in
any degree k the verbose barcode of Cyl.ˆ/� is the union of the degree-k verbose
barcodes of C� and of kerˇ . Any cycle x in kerˇ obeys x D �@cylLx , where the
formula for L (together with (27)) shows that `cyl.�Lx/� `cyl.x/. While Lx might
not be an element of kerˇ , the orthogonality of C� and kerˇ together with Lemma 4.9
allow one to find y 2 kerˇ with @y D x and `cyl.y/ � `cyl.�Lx/ � `cyl.x/. Just
as above, this proves that all elements .Œa�; s/ of the verbose barcode of kerˇ have
second coordinate s equal to zero, and so once again the concise barcode of Cyl.ˆ/�
coincides with that of C� .

8 The stability theorem

The stability theorem (or a closely related statement sometimes called the isometry
theorem) is the one of the most important theorems in the theory of persistent homology.
It successfully transfers the problem of relating the filtered homology groups constructed
by different methods (eg different Morse functions on a given manifold) to a combinato-
rial problem based on the associated barcodes. The result was originally established for
the persistence modules associated to “tame” functions on topological spaces in [10];
since then a variety of different proofs and generalizations have appeared (see eg [8;
3]), and it now generally understood as an algebraic statement in the abstract context
of persistence modules. In this section, we will introduce some basic notations and
definitions in order to state our version of the stability theorem, which unlike previous
versions applies to Floer-type complexes over general Novikov fields ƒK;� . In the
special case that � D f0g the result follows from recent more algebraic formulations of
the stability theorem like that in [3], though we would say that our proof is conceptually
rather different.
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The following is an abstraction of the filtration-theoretic properties satisfied by the
“continuation maps” in Hamiltonian Floer theory that relate the Floer-type complexes
associated to different Hamiltonian functions; namely such maps are homotopy equiva-
lences which shift the filtration by a certain amount which is related to an appropriate
distance (the Hofer distance) between the Hamiltonians (see [45, Propositions 5.1, 5.3
and 6.1]).

Definition 8.1 Let .C�; @C ; `C / and .D�; @D; `D/ be two Floer-type complexes
over ƒ, and ı � 0. A ı -quasiequivalence between C� and D� is a quadruple
.ˆ;‰;KC ; KD/, where:

(i) .ˆ;‰;KC ; KD/ is a homotopy equivalence (see Definition 7.11).

(ii) For all c 2 C� and d 2D� we have

(28)
`D.ˆc/� `C .c/C ı; `C .‰d/� `D.d/C ı;

`C .KC c/� `C .c/C 2ı; `D.KDd/� `D.d/C 2ı:

The quasiequivalence distance between .C�; @C ; `C / and .D�; @D; `D/ is then defined
to be

dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
D inf

˚
ı � 0 j 9 ı–quasiequivalence between

.C�; @C ; `C / and .D�; @D; `D/
	
:

Of course, .C�; @C ; `C / and .D�; @D; `D/ are said to be ı–quasiequivalent provided
that there exists a ı–quasiequivalence between them. Note that a 0–quasiequivalence
is the same thing as a filtered homotopy equivalence.

Remark 8.2 It is easy to see that if .C�; @C ; `C / and .D�; @D; `D/ are ı0–quasi-
equivalent and .D�;@D;`D/ and .E�;@E ;`E / are ı1–quasiequivalent then .C�;@C ;`C /
and .E�; @E ; `E / are .ı0 C ı1/–quasiequivalent. Thus dQ satisfies the triangle
inequality. In particular, if .C�; @C ; `C / and .D�; @D; `D/ are ı–quasiequivalent
then .C�; @C ; `C / is also ı–quasiequivalent to any Floer-type complex that is filtered
homotopy equivalent to .D�; @D; `D/.

Example 8.3 Take .F1; g1/ and .F2; g2/ to be two Morse functions together with suit-
ably generic Riemannian metrics on a closed manifold X . Let ıDkF1�F2kL1 . Then
it is well-known (and can be deduced from constructions in [39], for instance) that the
associated Morse chain complexes, over the ground field KDƒK;f0g , CM�.X IF1; g1/
and CM�.X IF2; g2/ are ı–quasiequivalent.
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Example 8.4 Take .H1; J1/ and .H2; J2/ to be two generic Hamiltonian functions
together with compatible almost complex structures on a closed symplectic manifold
.M;!/. Then, as is recalled in greater detail at the start of Section 12, one has
Hamiltonian Floer complexes .CF�.M IH1; J1// and .CF�.M IH2; J2// over the
Novikov field ƒK;� where � �R is defined in (40). Define

EC.H/D

Z 1

0

max
M

H.t; � / dt and E�.H/D�

Z 1

0

min
M
H.t; � / dt

and let ıDmaxfEC.H2�H1/; E�.H2�H1/g. Then the Hamiltonian Floer complexes
.CF�.M IH1; J1// and .CF�.M IH2; J2// are ı–quasiequivalent. The maps in the
corresponding quadruple .ˆ;‰;K1; K2/ are constructed by counting solutions of
certain partial differential equations (see [1, Chapter 11]).

Remark 8.5 One could more generally define, for ı1; ı2 2 R, a .ı1; ı2/–quasi-
equivalence by replacing (28) by the conditions

`D.ˆc/� `C .c/C ı1; `C .‰d/� `D.d/C ı2;

`C .KC c/� `C .c/C ı1C ı2; `D.KDd/� `D.d/C ı1C ı2:

(So in this language a ı–quasiequivalence is the same as a .ı; ı/–quasiequivalence.)
Then in Example 8.4 one has the somewhat sharper statement that .CF�.M IH1; J1//
and .CF�.M IH2; J2// are .EC.H2�H1/; E�.H2�H1//–quasiequivalent. However
since adding a suitable constant to H1 has the effect of reducing to the case that
EC.H2�H1/ and E�.H2�H1/ are equal to each other while changing the filtration
on the Floer complex (and hence changing the barcode) by a simple uniform shift,
for ease of exposition we will restrict attention to the more symmetric case of a ı–
quasiequivalence.

Remark 8.6 We will explain in the appendix that quasiequivalence is closely related
with the notion of interleaving of persistent homology from [3]. In particular, the
quasiequivalence distance dQ is equal to a natural chain-level version of the interleaving
distance from [3].

Our first step toward the stability theorem will be a continuity result for the quantities ˇk
from Definition 4.10. Recall that for i 2Z the degree-i part of the (verbose or concise)
barcode of .C�; @C ; `C / is obtained from a singular value decomposition of the map
.@C /iC1W CiC1! ker.@C /i .

Lemma 8.7 Let .ˆ;‰;KC ; KD/ be a ı–quasiequivalence and let � � 2ı . If V �
ker.@C /i is �–robust then ˆjV is injective and ˆ.V / is .�� 2ı/–robust.
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Proof If v 2 V and ˆv D 0 then

v D v�‰ˆv D @C .�KCv/;

where `C .�KCv/� `C .v/C2ı ; by the definition of �–robustness (see Definition 4.7)
this implies that v D 0 since �� 2ı . So indeed ˆjV is injective.

Now suppose that 0¤ w Dˆv 2ˆ.V / with @Dy D w . Then

@C‰y D‰@Dy D‰ˆv D vC @CKCv

(where we’ve used the fact that V � ker @C ). So vD @C .‰y�KCv/. By the definition
of �–robustness we have `C .‰y�KCv/>`C .v/C�. Since `C .KCv/�`C .v/C2ı�
`C .v/C � this implies that

`C .‰y/ > `C .v/C �:

But `D.y/� `C .‰y/� ı , and `D.w/D `D.ˆv/� `C .v/C ı , which combined with
the displayed inequality above shows that `D.y/ > `D.w/C .�� 2ı/. Since w was
an arbitrary nonzero element of ˆ.V / this proves that ˆ.V / is .�� 2ı/–robust.

Corollary 8.8 Suppose that .C�; @C ; `C / and .D�; @D; `D/ are ı–quasiequivalent.
Then for all i 2 Z and k 2N , we have jˇk..@C /iC1/�ˇk..@D/iC1/j � 2ı .

Proof By definition ˇk..@C /iC1/ is the supremal � � 0 such that there exists a k–
dimensional �–robust subspace of Im..@D/iC1/, or is zero if no such subspace exists
for any �. If ˇk..@C /iC1/ > 2ı , then given � > 0 there is a k–dimensional subspace
V � Im.@C /iC1 which is .ˇk..@C /iC1/� �/–robust, and then (for small enough � )
Lemma 8.7 shows that ˆ.V /� Im..@D/iC1/ is k–dimensional and .ˇk..@C /iC1/�
��2ı/–robust. Since this construction applies for all sufficiently small � > 0 it follows
that

(29) ˇk..@D/iC1/� ˇk..@C /iC1/� 2ı

provided that ˇk..@C /iC1/ > 2ı . But of course if ˇk..@C /iC1/ � 2ı then (29) still
holds for the trivial reason that ˇk..@D/iC1/ is by definition nonnegative. So (29) holds
in any case. But this argument may equally well be applied with the roles of the com-
plexes .C�; @C ; `C / and .D�; @D; `D/ reversed (as the relation of ı–quasiequivalence
is symmetric), yielding ˇk..@C /iC1/� ˇk..@D/iC1/� 2ı , which together with (29)
directly implies the corollary.

In order to state our stability theorem we must explain the bottleneck distance, which
is a measurement of the distance between two barcodes in common use at least since
[10]. First we will define some notions related to matchings between multisets, similar
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to what can be found in eg [9]. We initially express this in rather general terms in order
to make clear that our notion of a partial matching can be identified with corresponding
notions found elsewhere in the literature. Recall below that a pseudometric space is a
generalization of a metric space in which two distinct points are allowed to be a distance
zero away from each other, and an extended pseudometric space is a generalization of
a pseudometric space in which the distance between two points is allowed to take the
value 1.

Definition 8.9 Let .X; d/ be an extended pseudometric space equipped with a “length
function” �W X ! Œ0;1�, and let S and T be two multisets of elements of X .

� A partial matching between S and T is a triple mD .Sshort; Tshort; �/ where Sshort

and Tshort are submultisets of S and T , respectively, and � W S nSshort! T nTshort is a
bijection. (The elements of Sshort and Tshort will sometimes be called “unmatched”.)

� For ı2 Œ0;1�, a ı–matching between S and T is a partial matching .Sshort; Tshort; �/

such that for all x 2 Sshort[Tshort we have �.x/� ı and for all x in S nSshort we have
d.�.x/; x/� ı .

� If m is a partial matching between S and T , the defect of m is

ı.m/D inffı � 0 jm is a ı–matchingg:

Example 8.10 Let HD f.x; y/ 2 .�1;1�2 j x < yg with extended metric

dH..a; b/; .c; d//Dmaxfjc � aj; jd � bjg

and �H..a; b//D 1
2
.b � a/. Then our notion of a ı–matching between multisets of

elements of H is readily verified to be the same as that used in [9, Section 4] or [3,
Section 3.2].

Example 8.11 Consider R� .0;1� with the extended metric

d..a; L/; .a0; L0//Dmaxfja� a0j; j.aCL/� .a0CL0/jg

and the length function �.a;L/DL=2. Then the bijection f W R�.0;1�!H defined
by f .a;L/D .a; aCL/ pulls back dH and �H from the previous example to d and �,
respectively, so giving a ı–matching m between multisets of elements of R� .0;1�
is equivalent to giving a ı–matching f�m between the corresponding multisets of
elements of H .

Example 8.12 Our main concern will be ı–matchings between concise barcodes of
Floer-type complexes, which are by definition multisets of elements of .R=�/�.0;1�
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for a subgroup ��R. For this purpose we use the length function �W .R=�/�.0;1�!R
defined by �.Œa�; L/D L=2 and the extended pseudometric

d..Œa�; L/; .Œa0�; L0//D inf
g2�

maxfjaCg� a0j; j.aCgCL/� .a0CL0/jg:

In the case that � D f0g this evidently reduces to Example 8.11.

For convenience, we rephrase the definition of a ı–matching between concise barcodes:

Definition 8.13 Consider two concise barcodes S and T (viewed as multisets of
elements of .R=�/�.0;1�). A ı–matching between S and T consists of the following
data:

(i) submultisets Sshort and Tshort such that the second coordinate L of every element
.Œa�; L/ 2 Sshort[ Tshort obeys L� 2ı .

(ii) A bijection � W S n Sshort ! T n Tshort such that, for each .Œa�; L/ 2 S n Sshort

(where a 2R, L 2 Œ0;1�) we have �.Œa�; L/D .Œa0�; L0/, where for all � > 0
the representative a0 of the coset Œa0� 2 R=� can be chosen such that both
ja0� aj � ıC � and either LD L0 D1 or j.a0CL0/� .aCL/j � ıC � .

It follows from the discussion in Example 8.11 that our definition agrees in the case
that � D f0g (via the map .a; L/ 7! .a; aCL/) to the definitions in, for example, [9]
or [3].

Definition 8.14 If S and T are two multisets of elements of .R=�/� .0;1� then
the bottleneck distance between S and T is

dB.S; T /D inffı � 0 j There exists a ı–matching between S and T g:

Our constructions associate to a Floer-type complex a concise barcode for every k 2Z,
so the appropriate notion of distance for this entire collection of data is:

Definition 8.15 Let S D fSkgk2Z and T D fTkgk2Z be two families of multisets of
elements of .R=�/� .0;1�. The bottleneck distance between S and T is then

dB.S; T /D sup
k2Z

dB.Sk; Tk/:

Remark 8.16 It is routine to check that dB is indeed an extended pseudometric. In
particular, it satisfies the triangle inequality.

We can now formulate another of this paper’s main results, the stability theorem.
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Theorem 8.17 (stability theorem) Given a Floer-type complex .C�; @C ; `C / and
k 2 Z, denote its degree-k concise barcode by BC;k ; moreover let BC D fBC;kgk2Z

denote the indexed family of concise barcodes for all gradings k . Then the bottleneck
and quasiequivalence distances obey, for any two Floer-type complexes .C�; @C ; `C /
and .D�; @D; `D/, the inequality

(30) dB.BC ;BD/� 2dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
:

Moreover, for any k 2 Z, if we let �D;k > 0 denote the smallest second coordinate L
of all of the elements of BD;k , and if dQ..C�; @C ; `C /; .D�; @D; `D// < 1

4
�D;k , then

(31) dB.BC;k;BD;k/� dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
:

We will also prove an inequality in the other direction, analogous to [9, (4.1100 )].

Theorem 8.18 (converse stability theorem) With the same notation as in Theorem 8.17,
we have an inequality

dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
� dB.BC ;BD/:

Thus, with respect to the quasiequivalence and bottleneck distances, the map from
Floer-type complexes to concise barcodes is globally at least bi-Lipschitz, and moreover
is a local isometry (at least among complexes having a uniform positive lower bound on
the parameters �D;k as k varies through Z; for instance this is true for the Hamiltonian
Floer complexes). We expect that the factor of two in (30) is unnecessary so that the
map is always a global isometry (as is the case when � in trivial by [9, Theorem 4.11]).
In Section 11, we will see this becomes true if the quasiequivalence distance dQ is
replaced by more complicated distance called the interpolating distance.

We prove the stability theorem in the following section, and the (easier) converse
stability theorem in Section 10.

9 Proof of the stability theorem

9.1 Varying the filtration

The proof of the stability theorem will involve first estimating the bottleneck distance
between two Floer-type complexes having the same underlying chain complex but
different filtration functions, and then using a mapping cylinder construction to reduce
the general case to this special case. We begin with a simple combinatorial lemma:
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Lemma 9.1 Suppose that A and B are finite sets and that �; � W A! B are bijections
and f W A ! R and gW B ! R are functions such that, for some ı � 0, we have
f .a/� g.�.a// � ı and g.�.a//� f .a/ � ı for all a 2 A. Then there is a bijection
�W A! B such that jf .a/�g.�.a//j � ı for all a 2 A.

Proof Denote the elements of A as a1; : : : ; an , ordered in such a way that f .a1/�
� � � � f .an/; likewise denote the elements of B as b1; : : : ; bn , ordered such that
g.b1/ � � � � � g.bn/. Our bijection �W A! B will then be given by �.ai /D bi for
i D 1; : : : ; n.

Given i 2 f1; : : : ; ng, write �.ai /D bm and suppose first that m� i . Then g.bm/�
g.bi /, so g.bi /� f .ai / � g.bm/� f .ai / � ı by the hypothesis on � . On the other
hand if m< i then there must be some j 2 f1; : : : ; i � 1g such that �.aj /D bk with
k � i (for otherwise � would give a bijection between fa1; : : : ; aig and a subset of
fb1; : : : ; bi�1g). In this case since j < i � k we have

g.bi /�f .ai /� g.bk/�f .aj /D g.�.aj //�f .aj /� ı:

So in any event g.bi /�f .ai /� ı for all i . A symmetric argument (using ��1 in place
of � ) shows that likewise f .ai /� g.bi / � ı for all i . So indeed our permutation �
defined by �.ai /D bi obeys jf .a/�g.�.a//j � ı for all a 2 A.

Lemma 9.2 Let .C; `C /, .D; `D/ be orthogonalizable ƒ–spaces and AW C!D a ƒ–
linear map with unsorted singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm//.
Let `0DW D!R[f�1g be another filtration function such that .D; `0D/ is an orthog-
onalizable ƒ–space, and let ı > 0 be such that j`D.d/� `0D.d/j � ı for all d 2 D .
Then there is an unsorted singular value decomposition ..y01; : : : ; y

0
n/; .x

0
1; : : : ; x

0
m//

for the map A with respect to `C and the new filtration function `0D , such that:

(i) `C .y
0
i /D `C .yi / for each i .

(ii) j`0D.x
0
i /� `D.xi /j � ı for each i � rank.A/.

Proof To simplify matters later, we shall assume the following:

(32) for all i; j , if `C .yi /� `C .yj / mod � , then `C .yi /D `C .yj /.

There is no loss of generality in this assumption, as it may be arranged to hold by multi-
plying the various yi ; xi by appropriate field elements T gi (and then correspondingly
multiplying the elements y0i ; x

0
i constructed in the proof of the lemma by T �gi ).

Let us first apply the algorithm described in Theorem 3.5 to A, viewed as a map between
the nonarchimedean normed vector spaces .C; `C / and .D; `0D/. That algorithm takes
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as input orthonormal bases for both the domain and the codomain of A; for the
domain .C; `C / we use the ordered basis .y1; : : : ; yn/ from the given singular value
decomposition (for A as a map from .C; `C / to .D; `D/), while we use an arbitrary
orthogonal basis for the codomain.

Denote the rank of A by r . Since Ayi D 0 for i D r C 1; : : : ; n, inspection of
the algorithm in the proof of Theorem 3.5 shows that, for i D r C 1; : : : ; m, the
element yi is unchanged throughout the running of the algorithm. Thus the ordered
basis .y01; : : : ; y

0
n/ for C that is output by the algorithm has y0iDyi for iDrC1; : : : ; m.

So since r is the rank of A and Ay0i D Ayi D 0 for i > r , it follows that Ay0i ¤ 0
for i 2 f1; : : : ; rg. In fact, setting x0i D Ay

0
i for i 2 f1; : : : ; rg, the tuple .x01; : : : ; x

0
r/

gives an orthogonal ordered basis for Im.A/. Moreover, according to Theorem 3.5, we
have `C .y0i /D `C .yi / for all i , while

(33) `0D.x
0
i /� `

0
D.xi / for i 2 f1; : : : ; rg:

Taking .x0rC1; : : : ; x
0
m/ to be an arbitrary `0D–orthogonal basis for an orthogonal

complement to Im.A/, it follows that ..y01; : : : ; y
0
n/; .x

0
1; : : : ; x

0
m// is an unsorted

singular value decomposition for A considered as a map from .C; `C / to .D; `0D/,
which moreover satisfies property (i) in the statement of the lemma.

We will show that, possibly after replacing y0i ; x
0
i by y0

�.i/
; x0
�.i/

for some permutation �
of f1; : : : ; rg having `C .yi /D `C .y�.i// for each i , this singular value decomposition
also satisfies property (ii). In this direction, symmetrically to the previous paragraph,
apply the algorithm from Theorem 3.5 to A as a map from .C; `C / to .D; `D/, using
as input the basis .y01; : : : ; y

0
n/ for C that we obtained above. This yields a new

unsorted singular value decomposition ..y001 ; : : : ; y
00
n/; .x

00
1 ; : : : ; x

00
m// for A as a map

from .C; `C / to .D; `D/, having

`C .y
00
i /D `C .y

0
i /D `C .yi / for all i

and

(34) `D.x
00
i /� `D.x

0
i / for i 2 f1; : : : ; rg:

Now by Theorem 7.1 and our assumption (32), there is an equality of multisets of
elements of R2 :

(35) f.`C .yi /; `D.xi // j i D 1; : : : ; rg D f.`C .y
00
i /; `D.x

00
i // j i D 1; : : : ; rg:

Indeed, each of these multisets corresponds to the finite-length bars in the verbose
barcode of the two-term Floer-type complex .C A

!D/, and the condition (32) and
the fact that `C .y00i / D `C .yi / ensure that an equality of some `C .yi / and `C .y00j /

Geometry & Topology, Volume 20 (2016)



Persistent homology and Floer–Novikov theory 3401

modulo � implies an equality in R. For any z 2 f`C .y1/; : : : ; `C .yr/g, let

Iz D fi 2 f1; : : : ; rg j `C .yi /D zg

and define functions f; gW Iz!R by f .i/D `0D.x
0
i / and g.i/D `D.xi /. Using (33),

for each i 2 Iz we then have

f .i/� `0D.xi /� `D.xi /C ı D g.i/C ı:

On the other hand, by (35) there is a permutation � of Iz such that `D.x�.i//D `D.x00i /
for all i 2 Iz , and so by (34) we have

g.�.i//D `D.x�.i//D `D.x
00
i /� `D.x

0
i /� `

0
D.x

0
i /C ı D f .i/C ı:

So we can apply Lemma 9.1 to obtain a permutation �z of Iz such that

j`0D.xi /� `D.x�z.i//j D jf .i/�g.�z.i//j � ı

for all i . Repeating this process for each z 2 f`C .y1/; : : : ; `C .yr/g, and reordering
the tuples .y01; : : : ; y

0
r/ and .x0i ; : : : ; x

0
r/ using the permutation � of f1; : : : ; rg that

restricts to each Iz as �z , we obtain a singular value decomposition for A as a map
.C; `C /! .D; `0D/ satisfying the desired properties.

We now prove a version of the stability theorem in the case that the Floer-type complexes
in question arise from the same underlying chain complex, with different filtration
functions.

Proposition 9.3 Let .C�; @/ be a chain complex of ƒ–vector spaces and let

`0; `1W C�!R[f�1g

be two filtration functions such that both .C�; @; `0/ and .C�; @; `1/ are Floer-type
complexes. Assume that ı � 0 is such that j`1.c/ � `0.c/j � ı for all c 2 C� .
Then denoting by B0C and B1C the concise barcodes of .C�; @; `0/ and .C�; @; `1/,
respectively, we have dB.B0C ;B

1
C /� ı .

Proof Fix a grading k , let r D rank @jCkC1 , and let ..y1; : : : ; yn/; .x1; : : : ; xm//
be a singular value decomposition for @jCkC1 , considered as a map .CkC1; `0/!
.Ck; `0/. In particular, the finite-length bars of the degree-k part of B0C are given by
.Œ`0.xi /�; `0.yi /� `0.xi // for 1 � i � r , and the infinite-length bars of the degree-
.kC1/ part of B0C are given by .Œ`0.yi /�;1/ for r C 1� i � n.

We may then apply Lemma 9.2 to obtain an unsorted singular value decomposition
..y01; : : : ; y

0
n/; .x

0
1; : : : ; x

0
m// for @jCkC1 , considered as a map .CkC1; `0/! .Ck; `1/,

such that `0.y0i /D `0.yi / for all i and j`1.x0i /� `0.xi /j � ı .
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Now consider the adjoint @�W .Ck/�! .CkC1/
� and the dual filtration functions `�0; `

�
1

as defined in Section 2.4. It follows immediately from the definitions of `�0; `
�
1 and the

assumption that j`1.c/�`0.c/j � ı for all c 2C� that, likewise, j`�1�`
�
0j is uniformly

bounded above by ı . Moreover by Proposition 3.9, the collection of dual basis elements
..x0�1 ; : : : ; x

0�
m /; .y

0�
1 ; : : : ; y

0�
n // gives an unsorted singular value decomposition for @�

considered as a map from ..Ck/
�; `�1/ to ..CkC1/�; `�0/. Thus Lemma 9.2 applies

to give an unsorted singular value decomposition ..�1; : : : ; �m/; .�1; : : : ; �n// for @�

considered as a map ..Ck/�; `�1/! ..CkC1/
�; `�1/, with `�1.�i / D `

�
1.x
0�
i / for all i

and j`�1.�i /� `
�
0.y
0�
i /j � ı for all i 2 f1; : : : ; rg. Again using Proposition 3.9 (and

using the canonical identification of .Ci /�� with Ci for i D k; k C 1), it follows
that ..��1; : : : ; �

�
n/; .�

�
1 ; : : : ; �

�
m// is a singular value decomposition for @ considered

as a map .CkC1; `��1 /! .Ck; `
��
1 /. It is easy to see (for instance by using (7) twice)

that `��1 D `1 . Thus the finite-length bars in the degree-k part of B1C are given by
.Œ`1.�

�
i /�; `1.�

�
i /� `1.�

�
i //.

Now using (7) we have

j`1.�
�
i /�`0.xi /j� j�`

�
1.�i /�`1.x

0
i /jCj`1.x

0
i /�`0.xi /j� j�`

�
1.�i /C`

�
1.x
0�
i /jCıD ı

and similarly

j`1.�
�
i /� `0.yi /j D j� `

�
1.�i /� `0.y

0
i /j D j� `

�
1.�i /C `

�
0.y
0�
i /j � ı:

Thus we obtain a ı–matching between the finite-length bars in the degree-k parts of B0C
and B1C by pairing each .Œ`0.xi /�; `0.yi /� `0.xi // with .Œ`1.��i /�; `1.�

�
i /� `1.�

�
i //

for i D 1; : : : ; r .

It now remains to similarly match the infinite-length bars in the degree-k parts of
the BiC . Let us write

ker.@jCk /D Im.@jCkC1/˚V0 D Im.@jCkC1/˚V1;

where Im.@jCkC1/ is orthogonal to V0 with respect to `0 and Im.@jCkC1/ is orthogonal
to V1 with respect to `1 . For i D 0; 1, the infinite-length bars in the degree-k parts
of BiC are then given by .c;1/ as c varies through the filtration spectrum of Vi .

For i D 0; 1, let �i W ker.@jCk /! Vi denote the projections associated to the above
direct sum decompositions. Note that �1jV0 W V0! V1 is a linear isomorphism, with
inverse given by �0jV1 . So for v0 2 V0 we obtain

`1.�V1v/� `1.v/� `0.v/C ı

while
`0.v/D `0.�V0�V1.v//� `0.�V1v/� `1.�V1v/C ı:
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So the linear isomorphism �V1 jV0 W V0!V1 obeys j`1.�V1v/�`0.v/j� ı for all v2V .
A singular value decomposition for the map �V1 jV0 W .V0; `0jV0/! .V1; `1jV1/ pre-
cisely gives orthogonal ordered bases .w1; : : : ; wm�r/ and .�V1w1; : : : �V1wm�r/ for
.V0; `0jV0/ and .V1; `1jV1/, respectively, and the matching which sends .Œ`0.wi /�;1/
to .Œ`1.�V1wi /�;1/ then has defect at most ı . Combining this matching of the infinite-
length bars in the degree-k parts of B0C and B1C with the matching of the finite-length
bars that we constructed earlier, and letting k vary through Z, we conclude that indeed
dB.B0C ;B

1
C /� ı .

9.2 Splittings

Our proof of Theorem 8.17 will involve, given a ı–quasiequivalence .ˆ;‰;KC ; KD/,
applying Proposition 9.3 to a certain pair of filtrations on the mapping cylinder Cyl.ˆ/� .
It turns out that our arguments can be made sharper if we assume that the quasiequiva-
lence .ˆ;‰;KC ; KD/ satisfies a certain condition; in this subsection we introduce this
condition and prove that there is no loss of generality in asking for it to be satisfied.

Definition 9.4 Let .C�; @; `/ be a Floer-type complex. A splitting of C� is a graded
vector space F C� D˚k2ZF

C
k

such that each F C
k

is an orthogonal complement in Ck
to ker @k.D ker @jCk /.

Clearly splittings always exist, as already follows from Corollary 2.19. One can
read off a splitting from singular value decompositions of the boundary operator
in various degrees: if ..yk�11 ; : : : ; yk�1n /; .xk�11 ; : : : ; xk�1m // is a singular value de-
composition for @k W Ck ! ker @k�1 and if rk is the rank of @k then we may take
F C
k
D spanƒfy

k�1
1 ; : : : ; yk�1rk

g.

Definition 9.5 If .C�; @C ; `C / and .D�; @D; `D/ are Floer-type complexes with split-
tings F C� and FD� , respectively, a chain map ˆW C�!D� is said to be split provided
that ˆ.F C� /� F

D
� .

Lemma 9.6 Let ˆW C� ! D� be a chain map between two Floer-type complexes
.C�; @C ; `C / and .D�; @D; `D/ having splittings F C� and FD� , and let �C W C�!F C�
and �DW D�! FD� be the projections associated to the direct sum decompositions
C� D F

C
� ˚ ker.@C /� and D� D FD� ˚ ker.@D/� . Define

ˆ� D �Dˆ�C Cˆ.IC ��C /:

Then this map satisfies following properties:
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(i) ˆ� is a chain map;

(ii) ˆ� is split, and ˆ� jker @C Dˆjker @C ;

(iii) If ı � 0 and `D.ˆ.x//� `C .x/Cı for all x 2C� , then likewise `D.ˆ�.x//�
`C .x/C ı for all x 2 C� .

Proof For (i), since @C .IC � �C / D 0, we see that @C�C D @C and similarly,
@D�D D @D . Then using that ˆ is a chain map, we get

@Dˆ
�
D @D�Dˆ�C C @Dˆ.IC ��C /Dˆ@C�C Cˆ@C .IC ��C /Dˆ@C :

Moreover, Im @C � ker @C , so �C @C D 0, and

ˆ�@C D �Dˆ�C @C Cˆ.IC ��C /@C Dˆ@C :

So ˆ� is a chain map.

For (ii), for x 2 F C
k

, �Cx D x and so .IC � �C /x D 0. So ˆ�x D �Dˆ�Cx D
�Dˆx 2 F

D
k

, proving that ˆ� is split. Furthermore, for x 2 ker.@C /k , we have
�Cx D 0 and so ˆ�x D �Dˆ�CxCˆ.IC ��C /x Dˆx .

For (iii), note first that since �D (being a projection) obeys �2D D �D , we have

�Dˆ
�
D �Dˆ�C C�Dˆ.IC ��C /D �Dˆ

while
.ID ��D/ˆ

�
D .ID ��D/ˆ.I ��C /:

So since FD
k

and ker.@D/k are orthogonal, for all x 2 Ck we have

`D.ˆ
�x/Dmaxf`D.�Dˆ�x/; `D..ID ��D/ˆ�xg

Dmaxf`D.�Dˆx/; `D..ID ��D/ˆ.IC ��C /xg

�maxf`D.ˆx/; `D.ˆ.IC ��C /x/g:

But, assuming that `D.ˆx/ � `C .x/C ı for any x 2 Ck , the orthogonality of F C
k

and ker.@C /k implies that

`D.ˆ.IC ��C /x/� `C .x��Cx/C ı � `C .x/C ı:

Thus `D.ˆ�x/� `C .x/C ı for all x 2 Ck .

Proposition 9.7 Let .C�; @; `/ be a Floer-type complex with a splitting F C� and let
� W C� ! F C� be the projection associated to the direct sum decomposition C� D
F C� ˚ ker @� . Suppose that A;A0W C�! C� are two chain maps such that:
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(i) A D @K C K@ for some KW C� ! C�C1 such that there is � � 0 with the
property that `.Kx/� `.x/C � for all x 2 C� .

(ii) A0 is split.

(iii) Ajker @ D A
0jker @ .

Then for K 0 D �K.IC ��/, we have A0 D @K 0CK 0@ and `.x/� `.K 0x/C � for all
x 2 C� .

Proof The statement that `.x/� `.K 0x/C � follows directly from the corresponding
assumption on K and the fact that � and IC �� are orthogonal projections. So we
just need to check that A0 D @K 0CK 0@; we will check this separately on elements of
ker @� and elements of F C� .

For the first of these, note that just as in the proof of the preceding lemma we have
@� D @, and if x 2 ker @� then .IC ��/x D x . Hence, by assumption (iii),

A0x D Ax D @KxCK@x D @Kx D @�Kx D @K 0x D @K 0xCK 0@x;

as desired.

On the other hand if x 2 F C� we first observe that

@A0x D A0@x D A@x D @Ax D @K@x;

where the second equality again follows from (iii). Now since @�D @ and since IC ��
is the identity on Im @ we have

@K@x D @�K.I ��/@x D @K 0@x:

Thus @A0x D @K 0@x . But both A0 and K 0 have image in F C� , on which @ is injective,
so A0x D K 0@x . Since we are assuming in this paragraph that x 2 F C� , we have
.IC ��/x D 0 and so K 0x D 0. So indeed A0x D .@K 0CK 0@/x .

Since A0 and @K 0CK 0@ coincide on both summands ker @C and F C� of C� we have
shown that they are equal.

Corollary 9.8 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ with
splittings F C� and FD� , the quasiequivalence distance dQ..C�; @C ; `C /; .D�; @D; `D//
is equal to

inf
˚
ı � 0 j 9 ı–quasiequivalence .ˆ;‰;KC ; KD/

between .C�; @C ; `C / and .D�; @D; `D/ such that ˆ and ‰ are split
	
:
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Proof It suffices to show that if .ˆ;‰;KC ; KD/ is a ı–quasiequivalence then there is
another ı–quasiequivalence .ˆ0; ‰0; K 0C ; K

0
D/ such that ˆ0 and ‰0 are split. For this

purpose we can take ˆ0 Dˆ� and ‰0 D‰� to be the maps provided by Lemma 9.6.
We can then apply Proposition 9.7 with AD‰ˆ� IC and A0 D‰0ˆ0� IC to obtain
K 0C W C�! C�C1 with ‰0ˆ0 � IC D @CK 0C CK

0
C @C and `C .K 0Cx/ � `C .x/C 2ı .

Similarly applying Proposition 9.7 with ADˆ‰� ID and A0 Dˆ0‰0� ID yields a
map K 0DW D�!D�C1 , and the conclusions of Lemma 9.6 and Proposition 9.7 readily
imply that .ˆ0; ‰0; K 0C ; K

0
D/ is, like .ˆ;‰;KC ; KD/, a ı–quasiequivalence.

Let us briefly describe the strategy of the rest of the proof of Theorem 8.17. In the
following two subsections we will introduce a filtration function `co on the mapping
cone Cone.ˆ/� of a ı–quasiequivalence ˆW C�!D� , and two filtration functions
`0; `1 on the mapping cylinder Cyl.ˆ/� , with `0 and `1 obeying a uniform bound
j`1�`0j � ı . Moreover .Cyl.ˆ/�; @cyl; `0/ will be filtered homotopy equivalent to D� ,
while .Cyl.ˆ/�; @cyl; `1/ will be filtered homotopy equivalent to C�˚Cone.ˆ/� . Com-
bined with Proposition 9.10 below which places bounds on the barcode of Cone.ˆ/�
when ˆ is split, these constructions will quickly yield Theorem 8.17 in Section 9.5.

9.3 Filtered mapping cones

Fix throughout this section a nonnegative real number ı . We will make use of the
following algebraic structure, related to the mapping cylinder introduced earlier.

Definition 9.9 Given two chain complexes .C�; @C / and .D�; @D/ and a chain map
ˆW C�!D� define the mapping cone of ˆ, .Cone.ˆ/�; @co/ by

Cone.ˆ/� DD�˚C Œ1��

with boundary operator @co.d; e/D .@Dd �ˆe;�@C e/, ie in block form

@co D

�
@D �ˆ

0 �@C

�
:

Assuming additionally that `D.ˆx/ � `C .x/C ı for all x 2 C� , define the filtered
mapping cone .Cone.ˆ/�; @co; `co/, where the filtration function `co is given by
`co.d; e/Dmaxf`D.d/C ı; `C .e/C 2ıg.5

5One could equally well define `co.d; e/Dmaxf`D.d/C t; `C .e/C t C ıg for any t 2R (the ı is
included to ensure that `co does not increase under @co ). Although t D 0 might seem to be the most natural
choice, we use t D ı here in order to make the proofs of Propositions 9.10 and 9.13 more reader-friendly.
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It is routine to check that @2co D 0 and that `co.@co.d; e// � `co.d; e/ for all .d; e/ 2
Cone�.ˆ/. In the case that ˆ is part of a ı–quasiequivalence .ˆ;‰;KC ; KD/, we
will require some information about the concise barcode of Cone.ˆ/� ; we will be able
to make an especially strong statement when ˆ is split in the sense of the previous
subsection. Specifically:

Proposition 9.10 Let .C�; @C ; `C / and .D�; @D; `D/ be Floer-type complexes with
splittings F C� and FD� , and let .ˆ;‰;KC ; KD/ be a ı–quasiequivalence such that ˆ
and ‰ are split. Then all elements .Œa�;L/ of the concise barcode of .Cone.ˆ/�;@co;`co/

have second coordinate obeying L� 2ı .

Proof The desired conclusion is an easy consequence of the following statement:

(36) 8x 2 ker.@co/; 9y 2 Cone.ˆ/� such that @coy D x and `co.y/� `co.x/C 2ı:

Indeed, by definition, the elements .Œa�; L/ of the concise barcode with L<1 each
correspond to pairs yi ; xi D @yi from a singular value decomposition for @co , with
aD `co.x/ and LD `co.yi /�`co.xi /, and by Lemma 4.9 any element y with @yD xi
has `.y/� `.yi /. Thus (36) implies that L� 2ı provided that L<1. There can be
no bars with LD1 since such bars arise from elements of an orthogonal complement
to Im.@co/ in ker.@co/ but (36) implies that Im.@co/D ker.@co/.

We now prove (36). Let xD .d; e/2ker.@co/� ; thus @co.d; e/D .@Dd�ˆe;�@C e/D0.
Therefore,

@Dd Dˆe and @C e D 0:

Split d according to the direct sum decomposition D� D FD� ˚ ker.@D/� as d D
dF CdK and let �D `co.x/. Then `D.d/� �� ı and `C .e/� ��2ı . So since FD�
and ker.@D/� are orthogonal, `D.dK/� �� ı and `D.dF /� �� ı . Moreover, since
@C eD 0, the equation ‰ˆ�IC D @CKC CKC @C implies that @.KC e/D‰ˆe�e ,
where `C .KC e/� `C .e/C 2ı � �.

Write KC eD aCa0 with a2F �C and a0 2 ker.@C /� . Then by the orthogonality of F �C
and ker.@C /� we have `C .a/� `C .KC e/� �, and @CaD @CKC e D .‰ˆ� ID/e .

We then find that

(37) @D.ˆ‰dF � dF �ˆa/Dˆ‰@DdF � @DdF �ˆ@Ca

D .ˆ‰� ID/ˆe�ˆ@CaD 0:

On the other hand, because ˆ and ‰ are split we have ˆ‰dF � dF �ˆa 2 FD� , so
since @DjFD� is injective (37) implies that

ˆaDˆ‰dF � dF :
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Since @DdK D 0, the element b DKDdK 2D�C1 obeys

@Db D .ˆ‰� ID/dK

and `D.b/ � `D.dK/C 2ı � �� ıC 2ı D �C ı . Let y D .�b; a�‰d/. We claim
that this y obeys the desired conditions stated at the start of the proof. In fact,

@co.y/D .@D.�b/�ˆ.a�‰d/;�@C .a�‰d//

D .�@Db�ˆaCˆ‰d;�@CaC @C‰d/

D .dK �ˆ‰dK �ˆaCˆ‰d; e�‰ˆeC‰@Dd/

D .dK �ˆ‰dK �ˆ‰dF C dF Cˆ‰d; e/

D .d; e/D x:

Moreover, the filtration level of y obeys

`co.y/D `co..�b; a�‰d//

Dmaxf`D.�b/C ı; `C .a�‰d/C 2ıg

�maxf�C 2ı;maxf`C .a/; `C .d/C ıgC 2ıg

D �C 2ı D `co.x/C 2ı:

So @coy D x and `co.y/� `co.x/C 2ı , as desired. Since x was an arbitrary element
of ker.@co/� this implies the result.

Remark 9.11 If one drops the hypothesis that ˆ and ‰ are split, then it is possible
to construct examples showing that the largest second coordinate in an element of the
concise barcode of Cone.ˆ/� can be as large as 4ı .

9.4 Filtered mapping cylinders

Recall the definition of the mapping cylinder Cyl.ˆ/� of a chain map ˆW C�!D�
from Section 7.2.1, and the homotopy equivalences .iD; ˛; 0;K/ between D� and
Cyl.ˆ/� and .iC ; ˇ; 0; L/ between C� and Cyl.ˆ/� from Lemma 7.12 (the first of
these exists for any chain map ˆ, while the second requires ˆ to be part of a homotopy
equivalence, as is indeed the case in our present context). The “only if” direction of
Theorem B was proven by, in the case that .ˆ;‰;KC ; KD/ is a filtered homotopy
equivalence, exploiting the behavior of a suitable filtration function on Cyl.ˆ/� with
respect to .iD; ˛; 0;K/ and .iC ; ˇ; 0; L/. In the case that .ˆ;‰;KC ; KD/ is instead
a ı–quasiequivalence, we will follow a similar strategy, but using different filtration
functions on Cyl.ˆ/� for the two homotopy equivalences.
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Proposition 9.12 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/
and a ı–quasiequivalence .ˆ;‰;KC ; KD/ between them, define a filtration function
`0W Cyl.ˆ/�!R[f�1g by

`0.c; d; e/Dmaxf`C .c/C ı; `D.d/; `C .e/C ıg:

Then:

(i) `0.@cylx/� `0.x/ for all x 2 Cyl.ˆ/� . Thus .Cyl.ˆ/�; @cyl; `0/ is a Floer-type
complex.

(ii) Let .iD; ˛; 0;K/ be as defined in Lemma 7.12. Then .iD; ˛; 0;K/ is a filtered
homotopy equivalence between .D�; @D; `D/ and .Cyl.ˆ/�; @cyl; `0/.

Proof For (i), if .c; d; e/ 2 Cyl.ˆ/� we have

`0.@cyl.c; d; e//Dmaxf`C .@C c � e/C ı; `D.@Dd Cˆe/; `C .@C e/C ıg

while `0.c; d; e/Dmaxf`C .c/C ı; `D.d/; `C .e/C ıg. So (i) follows from the facts
that:

� `C .@C c � e/C ı �maxf`C .c/C ı; `C .e/C ıg;

� `D.@Dd Cˆe/�maxf`D.d/; `D.ˆe/g �maxf`D.d/; `C .e/C ıg;

� `C .@C e/C ı � `C .e/C ı .

By Lemma 7.12, .iD; ˛; 0;K/ is a homotopy equivalence, so to prove (ii) we just need
to check that each of the maps preserves filtration. We see that:

� Clearly `0.iDd/D `D.d/ for all d 2D� , by definition of `0 .

� For .c; d; e/ 2 Cyl.ˆ/� ,

`D.˛.c; d; e//D `D.ˆcC d/�maxf`C .c/C ı; `D.d/g � `0.c; d; e/:

� For .c; d; e/2Cyl.ˆ/� , `0.K.c; d; e//D `0.0; 0; c/D `C .c/Cı� `0.c; d; e/.

Thus .iD; ˛; 0;K/ is indeed a filtered homotopy equivalence.

Proposition 9.13 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/
having splittings F C� and FD� and a ı–quasiequivalence .ˆ;‰;KC ; KD/ where ˆ
and ‰ are split, define a new filtration function `1 on Cyl.ˆ/� by

`1.c; d; e/Dmaxf`C .c/; `D.d/C ı; `C .e/C 2ıg:

Then, with ˇ as defined in Lemma 7.12:
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(i) `1.@cyl.c; d; e//� `1.c; d; e/ for all .c; d; e/ 2Cyl.ˆ/� , so .Cyl.ˆ/�; @cyl; `1/

is a Floer-type complex.

(ii) iC .C�/ and kerˇ are orthogonal complements with respect to `1 .

(iii) The second coordinates of all elements of the concise barcode of .kerˇ; @cyl; `1/

are at most 2ı .

Proof Part (i) follows just as in the proof of Proposition 9.12(i) (which only de-
pended on the fact that the shift `0.0; 0; e/� `C .e/ in the filtration level of `C .e/
in the definition of `0 was greater than or equal to both `0.c; 0; 0/ � `C .c/ and
ıC `0.0; d; 0/� `D.d/; this condition also holds with `1 in place of `0 ).

For part (ii), first note that kerˇ consists precisely of elements of the form .�‰d �

KC e; d; e/ for .d; e/ 2 D�˚C Œ1�� . We will apply Lemma 7.5 with V D iC .C�/,
U Df0g˚D�˚C Œ1�� , and U 0D kerˇ . Clearly U and V are orthogonal with respect
to `1 , and the projection �U W Cyl.ˆ/�! U is given by .c; d; e/ 7! .0; d; e/, so

`1.�‰d �KC e; d; e/Dmaxf`D.d/C ı; `C .e/C 2ıg D `1.0; d; e/

which shows that `1.�Ux/ D `1.x/ for all x 2 kerˇ . Thus kerˇ is indeed an
orthogonal complement to V D iC .C�/.

For part (iii), define a map f W kerˇ! Cone�.�ˆ/ by

f .�‰d �KC e; d; e/D .d; e/:

We claim that f is a filtered chain isomorphism. By definition, we have

.f ı @cyl/.�‰d �KC e; d; e/D .@Dd Cˆe;�@C e/:

Furthermore,

.@co ıf /.�‰d �KC e; d; e/D .@Dd Cˆe;�@C e/:

Therefore, f is a chain map. As for the filtrations,

`co.f .�‰d �KC e; d; e//D `co.d; e/

Dmaxf`D.d/C ı; `C .c/C 2ıg

D `1.�‰d �KC e; d; e/:

Thus f defines an isomorphism between .kerˇ; @cyl; `1/ and .Cone�.�ˆ/; @co; `co/ as
Floer-type complexes. Moreover, replacing .ˆ;‰;KC ; KD/ by .�ˆ;�‰;KC ; KD/
does not change the homotopy equations and also it has no effect on the filtration
relations. Therefore, the conclusion follows from Theorem A and Proposition 9.10.
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9.5 End of the proof of Theorem 8.17

Assume that ı � 0 and that .ˆ;‰;KC ; KD/ is a ı–quasiequivalence which is split
with respect to splittings F C� and FD� for the Floer-type complexes .C�; @C ; `C / and
.D�; @D; `D/. The preceding subsection gives filtration functions `0; `1W Cyl.ˆ/�!
R[f�1g which evidently satisfy the bound j`1.x/�`0.x/j � ı for all x 2 Cyl.ˆ/� .
Hence by Proposition 9.3, we have a bound

(38) dB.BCyl;`0 ;BCyl;`1/� ı

for the bottleneck distance between the concise barcodes of the Floer-type complexes
.Cyl.ˆ/�; @cyl; `0/ and .Cyl.ˆ/�; @cyl; `1/.

Corollary 9.14 If two Floer-type complexes .C�; @C ; `C /; .D�; @D; `D/, are ı–quasi-
equivalent, then we have dB.BC ;BD/� 2ı . Therefore, in particular,

dB.BC ;BD/� 2dQ..C�; @C ; `C /; .D�; @D; `D//:

Proof By Corollary 9.8, the assumption implies that there is a ı–quasiequivalence
.ˆ;‰;KC ; KD/ which moreover is split with respect to some splittings for .C�;@C ;`C /
and .D�; @D; `D/.

By Proposition 9.13(ii), .Cyl.ˆ/�; @cyl; `1/ decomposes as an orthogonal direct sum of
subcomplexes .iC .C�/; @cyl; `1/ and .kerˇ; @cyl; `1/, so in any degree a singular value
decomposition for .Cyl.ˆ/�; @cyl; `1/ may be obtained by combining singular value
decompositions for .iC .C�/; @cyl; `1/ and .kerˇ; @cyl; `1/. Thus the concise barcode
for .Cyl.ˆ/�; @cyl; `1/ is the union of the concise barcodes for these two subcomplexes.

Now iC embeds .C�; @C ; `C / filtered isomorphically as .iC .C�/; @cyl; `1/, so the
concise barcode of .Cyl.ˆ/�; @cyl; `1/ consists of the concise barcode of .C�; @C ; `C /
together with the concise barcode of .kerˇ; @cyl; `1/. By Proposition 9.13(iii), all
elements .Œa�; L/ in the second of these barcodes have L � 2ı . Thus by matching
the elements of the concise barcode of .C�; @C ; `C / with themselves and leaving
the elements of the concise barcode .kerˇ; @cyl; `1/ unmatched, we obtain, in each
degree, a partial matching between the concise barcodes of .Cyl.ˆ/�; @cyl; `1/ and of
.C�; @C ; `C / with defect at most ı . Thus, in obvious notation,

dB.BC ;BCyl;`1/� ı:

Finally, by Proposition 9.12(ii) and Theorem B, we know

BCyl;`0 D BD:
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Therefore, by the triangle inequality and (38), we get

dB.BC ;BD/� dB.BC ;BCyl;`1/C dB.BCyl;`1 ;BCyl;`0/C dB.BCyl;`0 ;BD/� 2ı:

We have thus proven the inequality (30).

For the last assertion in Theorem 8.17, let � D dQ..C�; @C ; `C /; .D�; @D; `D//, so
there are arbitrarily small � > 0 such that there exists a (split) .�C�/–quasiequivalence
.ˆ;‰;KC ; KD/ between .C�; @C ; `C / and .D�; @D; `D/. So by (38) with ıD �C� ,
there is a ı–matching m between the concise barcodes of .Cyl.ˆ/�; @cyl; `0/ and
.Cyl.ˆ/�; @cyl; `1/. Just as in the proof of Corollary 9.14, the first of these concise
barcodes is, in any given degree k , the same as that of .D�; @D; `D/, while the second
of these is the union of the concise barcode of .C�; @C ; `C / with a multiset S of
elements all having second coordinate at most 2.�C �/. For a grading k in which
�< 1

4
�D;k , let us take � so small that still ıD �C� < 1

4
�D;k . Now by definition, the

image of any element .Œa�; L/ which is not unmatched under a ı–matching must have
second coordinate at most LC 2ı . Since ı < 1

4
�D;k , the concise barcode BD;k has

no elements with second coordinate at most 4ı , all of the elements of our multiset S
(each of which have second coordinate less than or equal to 2ı ) must be unmatched
under m. But since all elements of S are unmatched, we can discard them from the
domain of m and so restrict m to a matching between the barcodes BC;k and BD;k ,
still having defect at most ı D �C � . So dB.BC;k;BD;k/ � �C � , and since � > 0
can be taken arbitrarily small this implies that

dB.BC;k;BD;k/� �D dQ..C�; @C ; `C /; .D�; @D; `D//:

Remark 9.15 In the case that � is dense, a simpler argument based on Corollary 8.8
suffices to prove the stability theorem, in fact with the stronger inequality dB � dQ .
Indeed, if � is dense then the extended pseudometric d from Example 8.12 is easily
seen to simplify to d..Œa�; L/; .Œa0�; L0// D 1

2
jL�L0j. If two Floer-type complexes

.C�; @C ; `C / and .D�; @C ; `C / are ı–quasiequivalent, then we can obtain a partial
matching of defect at most ı between the concise barcodes BC and BD by first sorting
the respective barcodes in descending order by the size of the second coordinate L and
then matching elements in corresponding positions on the two sorted lists. It follows
easily from Theorem 4.11 and Corollary 8.8 that, when � is dense, this partial matching
has defect at most ı .

10 Proof of converse stability

Recall the elementary Floer-type complexes E.a; L; k/ from Definition 7.2.
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Lemma 10.1 If ı 2 Œ0;1/, ja� a0j � ı , and either

LD L0 D1 or j.aCL/� .a0CL0/j � ı;

then E.a; L; k/ is ı–quasiequivalent to E.a0; L0; k/. Moreover, if L � 2ı , then
E.a; L; k/ is ı–quasiequivalent to the zero chain complex.

Proof In the case that L D L0 D 1, the chain complexes underlying E.a; L; k/
and E.a0; L0; k/ are just one-dimensional, consisting of a copy of ƒ in degree k ,
with filtrations given by `.�/ D a � �.�/ and `0.�/ D a0 � �.�/. Let I denote the
identity on ƒ. The fact that ja � a0j � ı then readily implies that .I; I; 0; 0/ is a
ı–quasiequivalence.

Similarly if L and hence (under the hypotheses of the lemma) L0 are both finite, the
underlying chain complexes of E.a; L; k/ and E.a0; L0; k/ are both ƒ–vector spaces
generated by an element x in degree k and an element y in degree k C 1, with
filtration functions ` and `0 given by saying that .x; y/ is an orthogonal ordered set
with `.x/ D a , `.y/ D aC L, `0.x/ D a0 , and `0.y/ D a0 C L0 . The hypotheses
imply that j`.x/� `0.x/j � ı and j`.y/� `0.y/j � ı , and if I now denotes the identity
on the two-dimensional vector space spanned by x and y , .I; I; 0; 0/ is again a ı–
quasiequivalence.

Finally, if similarly to the proof of Proposition 7.9 we define a linear transformation K
on spanƒfx; yg by Kx D �y and Ky D 0, then .0; 0;K; 0/ is readily seen to be a
ı–quasiequivalence between E.a; L; k/ and the zero chain complex for all ı � L=2,
proving the last sentence of the lemma.

Proof of Theorem 8.18 Let ıD dB.BC ;BD/; it suffices to prove the result under the
assumption that ı <1.

For any k 2 Z, dB.BC;k;BD;k/� ı . By the definition of the bottleneck distance (and
using the fact that there are only finitely many partial matchings between the finite
multisets BC;k and BD;k , so the infimum in the definition is attained), there exists
a partial matching mk D .BC;k;short;BD;k;short; �k/ between BC;k and BD;k having
defect ı.mk/� ı .

We claim that, for all � > 0,M
k

M
.Œa�;L/2BC;k

E.a; L; k/ and
M
k

M
.Œa0�;L0/2BD;k

E.a0; L0; k/

are .ıC�/–quasiequivalent, for some representatives a and a0 of the various cosets Œa�
and Œa0� in R=� . By Proposition 7.9 and Remark 8.2 this will imply that .C�; @C ; `C /
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and .D�; @D; `D/ are .ıC �/–quasiequivalent, which suffices to prove the theorem
since by the definition of the quasiequivalence distance, it will show that

dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
� ıC � D dB.BC ;BD/C � for all � > 0:

To prove our claim, note that by Lemma 10.1 and the fact that ı.mk/ � ı , each
E.a; L; k/ for .Œa�; L/ 2 BC;k;short[BD;k;short is .ıC �/–quasiequivalent to the zero
chain complex (as these E.a; L; k/ all have L � 2ı ). Also, for .Œa�; L/ 2 BC;k n
BC;k;short , if we write .Œa0�; L0/D �k.Œa�; L/, where �k is the bijection from the partial
matching mk , then there are representatives a and a0 of the cosets Œa� and Œa0� such
that ja � a0j � ı C � and j.aC L/ � .a0 C L0/j � ı C � . So by Lemma 10.1, the
associated summands E.a; L; k/ and E.a0; L0; k/ are .ıC �/–quasiequivalent.

Moreover, it is straightforward from the definitions that a direct sum of .ıC �/–quasi-
equivalences is a .ıC �/–quasiequivalence. So we obtain a .ıC �/–quasiequivalence
between

L
k

L
.Œa�;L/2BC;k E.a; L; k/ and

L
k

L
.Œa0�;L0/2BD;k E.a

0; L0; k/ by taking
a direct sum of:

� a .ıC�/–quasiequivalence between E.a;L;k/ and E.a0;L0;k/ for each .Œa�; L/2
BC;k nBC;k;short , where .Œa0�; L0/D �k.Œa�; L/;

� a .ıC �/–quasiequivalence between
L
k

L
.Œa�;L/2BC;k;short

E.a; L; k/ and the
zero chain complex;

� a .ıC �/–quasiequivalence between the zero chain complex andM
k

M
.Œa0�;L0/2BD;k;short

E.a0; L0; k/:

11 The interpolating distance

In this section we introduce a somewhat more complicated distance function on
Floer-type complexes, the interpolating distance dP , and prove the isometry result
Theorem 11.2 between this distance and the bottleneck distance between barcodes.
We think that it is likely that dP is always equal to the quasiequivalence distance dQ ,
and indeed in the case that � is dense this equality can be inferred from our results
(specifically, Theorem 11.2, Remark 9.15, and Theorem 8.18), while in the case that �
is trivial it can be inferred from Theorem 11.2 and [9, Theorem 4.11].

The definition of the distance dP will be based on a strengthening of the notion of
quasiequivalence, asking not only for a quasiequivalence between the two complexes
C� and D� but also for a one parameter family of complexes that interpolates between
C� and D� in a suitably “efficient” way. Our interest in dP is based on the facts that,
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on the one hand, we can prove Theorem 11.2 about it, and on the other hand standard
arguments in Hamiltonian Floer theory (and other Floer theories) that give bounds
for the quasiequivalence distance can be refined to give bounds on dP , as we use in
Section 12.

Definition 11.1 A ı–interpolation between two Floer-type complexes .C�; @C ; `C /
and .D�; @D; `D/ is a family of Floer-type complexes .C s� ; @

s; `s/ indexed by a pa-
rameter s that varies through Œ0; 1�nS for some finite subset S � .0; 1/, such that:

� .C 0� ; @
0; `0/D .C�; @C ; `C / and .C 1� ; @

1; `1/D .D�; @D; `D/; and
� for all s; t 2 Œ0; 1�nS , .C s� ; @

s; `s/ and .C t�; @
t ; `t / are ıjs� t j–quasiequivalent.

The interpolating distance dP between Floer-type complexes is then defined by

dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
D inf

˚
ı � 0 j 9 ı–interpolation between

.C�; @C ; `C / and .D�; @D; `D/
	
:

The following theorem gives a global isometry result between the bottleneck and
interpolating distances.

Theorem 11.2 For any two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ we
have

dB.BC ;BD/D dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
:

Proof First, we will prove that for any degree k 2 Z,

dB.BC;k;BD;k/� dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
;

which will imply that dB.BC ;BD/ � dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
by taking the

supremum over k . Let �D dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
, so by definition, given

any � > 0, there exists a ı–interpolation between .C�; @C ; `C / and .D�; @D; `D/ with
ı � �C � , denoted as .C 1� ; @

s; `s/ with a finite singular set S .

For any p 2 Œ0; 1�nS and any degree k 2Z, choose �p;k >0 such that �Cp
k
>4ı�p;k ,

where the meaning of �Cp
k

is as in the last statement of Theorem 8.17. By the
definition of a ı–interpolation, for any s 2 .p��p;k; p�, .C s� ; @

s; `s/ and .Cp� ; @p; `p/
are .ı.p� s//–quasiequivalent, which implies that

dQ
�
.C s� ; @

s; `s/; .C
p
� ; @

p; `p/
�
< 1
4
�Cp

k
:

Then, again assuming that s 2 .p � �p;k; p�, the last assertion from Theorem 8.17
implies that

dB.BC s ;k;BCp;k/D dQ
�
.C s� ; @

s; `s/; .C
p
� ; @

p; `p/
�
� ı.p� s/:
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Symmetrically, for any s0 2 Œp; pC �p;k/,

dB.BCp;k;BC s0 ;k/D dQ
�
.C

p
� ; @

p; `p/; .C s
0

� ; @
s0 ; `s

0

/
�
� ı.s0�p/:

Therefore, by the triangle inequality, for s; s0 such that p��p;k <s�p� s0<pC�p;k ,
we have dB.BC s ;k;BC s0 ;k/� ı.s

0� s/.

Now we claim that for any closed interval Œs; t �� Œ0; 1� with s; t … S , the following
estimate holds:

(39) dB.BC s ;k;BC t ;k/� .t � s/ı:

We will prove this by induction on the cardinality of S \ Œs; t �. First, when S \ Œs; t � is
empty, by considering a covering f.p� �p;k; pC �p;k/gp2Œs;t� of Œs; t � where the �p;k
are as above, we may take a finite subcover to obtain s D s0 < s1 < � � �< sN D t such
that dB.BC si�1 ;k;BC si ;k/� ı.si � si�1/. Therefore, by the triangle inequality again,

dB.BC s ;k;BC t ;k/�
NX
iD1

dB.BC si�1
k

;B
C
si
k

/� .t � s/ı:

Now inductively, we will assume that (39) holds when jS \ Œs; t �j �m. For the case
that jS \ Œs; t �j DmC 1, denote the smallest element of S \ Œs; t � by p� and consider
the intervals Œs; p�� �0� and Œp�C �0; t � for any sufficiently small �0 > 0. Applying
the inductive hypothesis on both intervals,

dB.BC s ;k;BCp���0 ;k/� .p
�
��0�s/ı and dB.BCp�C�0 ;k;BC t ;k/� .t�p

�
��0/ı:

By the first conclusion of Theorem 8.17,

dB.BCp���0 ;k;BCp�C�0 ;k/� 2dQ.BCp���0 ;k;BCp�C�0 ;k/� 4�
0ı:

Together, we get

dB.BC s ;k;BC t ;k/� .p�� �0� s/ıC .t �p�� �0/ıC 4�0ı D .t � s/ıC 2�0ı:

Since �0 is arbitrarily small, it follows that dB.BC s ;k;BC t ;k/ � .t � s/ı whenever
s � t and s; t 2 Œ0; 1� nS . So we have proven (39).

In particular, letting sD0 and tD1, we get dB.BC;k;BD;k/�ı��C� . Since � is arbi-
trarily small, this shows that dB.BC;k;BD;k/� �D dP

�
.C�; @C ; `C /; .D�; @D; `D/

�
.

Now we will prove the converse direction:

dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
� dB.BC ;BD/:

Let ıDdB.BC ;BD/. It is sufficient to prove the result under the assumption that ı<1.
For any k 2 Z, dB.BC;k;BD;k/ � ı . By definition, there exists a partial matching
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mk D .BC;k;short;BD;k;short; �k/ between BC;k and BD;k such that ı.mk/ � ı . We
will prove that, for all � > 0, there exists a .ıC�/–interpolation between .C�; @C ; `C /
and .D�; @D; `D/.

For each .Œa�; L/ 2 BC;k;short , choose a representative a of Œa�; also if .Œa�; L/ 2
BC;k n BC;k;short write �.Œa�; L/ D .Œa0�; L0/, where the representative a0 is chosen
so that both ja0 � aj � ıC � and j.aCL/� .a0CL0/j � ıC � . Now for t 2 .0; 1/
consider the Floer-type complex .C t�; @

t ; `t / given byM
k2Z

 � M
.Œa0�;L0/2BD;k;short

E.a0C .1� t /L0=2; tL0; k/
�

˚

� M
.Œa�;L/2BC;k;short

E.aC tL=2; .1� t /L; k/
�

˚

� M
.Œa�;L/2BC;knBC;k;short

E..1� t /aC ta0; .1� t /LC tL0; k/
�!
:

It is easy to see by Lemma 10.1 that, for t0; t1 2 .0; 1/, the t0–version of each of these
summands is .ıC �/jt0� t1j–quasiequivalent to its corresponding t1–version. So since
the direct sum of .ıC�/jt0�t1j–quasiequivalences is a .ıC�/jt0�t1j–quasiequivalence
this shows that .C t0� ; @t0 ; `t0/ and .C t1� ; @t1 ; `t1/ are .ıC�/jt0�t1j–quasiequivalent for
t0; t1 2 .0; 1/. Moreover E.a0C .1� t /L0=2; tL0; k/ is tı–quasiequivalent to the zero
chain complex for each .Œa0�; L0/ 2 BD;k;short , and likewise E.aC tL=2; .1� t /L; k/
is .1� t /ı–quasiequivalent to the zero chain complex for each .Œa�; L/ 2 BC;k;short .
In view of Proposition 7.9 it follows that .C�; `C ; @C / is t .ıC �/–quasiequivalent to
.C t�; @

t ; `t /, and that .D�; `D; @D/ is .1�t /.ıC�/–quasiequivalent to .C t�; @
t ; `t /. So

extending the family .C t�; @
t ; `t / to all t 2 Œ0; 1� by setting .C 0� ; @

0; `0/D .C�; @C ; `C /

and .C 1� ; @
1; `1/D .D�; @D; `D/, f.C t�; @

t ; `t /gt2Œ0;1� gives the desired .ıC �/–inter-
polation between .C�; @C ; `C / and .D�; @D; `D/.

12 Applications in Hamiltonian Floer theory

We now bring our general algebraic theory into contact with Hamiltonian Floer theory on
compact symplectic manifolds, leading to a rigidity result for fixed points of Hamiltonian
diffeomorphisms. First we quickly review the geometric content of the Hamiltonian
Floer complex; see eg [17; 24; 1] for more background, details, and proofs.

Let .M;!/ be a compact symplectic manifold. Identifying S1 D R=Z, a smooth
function H W S1�M !R induces a family of diffeomorphisms f�tH gt2R obtained as
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the flow of the time-dependent vector field XH.t; � / that is characterized by the property
that, for all t , !. � ; XH.t; � //D d.H.t; � //. Let

P.H/D
˚
 W S1!M j .t/D �tH ..0//;  is contractible

	
;

so that in particular P.H/ is in bijection with a subset of the fixed point set of �1H
via the map  7! .0/ 2M . The Hamiltonian H is called nondegenerate if for each
 2 P.H/ the linearized map .d�1H /.0/W T.0/M ! T.0/M has all eigenvalues
distinct from 1. Generic Hamiltonians H satisfy this property. We will assume in
what follows that H is nondegenerate, which guarantees in particular that P.H/ is a
finite set.

Viewing S1 as the boundary of the disk D2 in the usual way, given  2 P.H/ and a
map uW D2!M with ujS1 D  , one has a well-defined “action”Z 1

0

H.t; .t// dt �

Z
D2
u�!

and Conley–Zehnder index. Define zP.H/ to be the set of equivalence classes Œ; u�
of pairs .; u/ where  2 P.H/, uW D2!M has ujS1 D  , and .; u/ is equivalent
to . 0; v/ if and only if  D  0 and the map u # xvW S2 !M obtained by gluing u
and v along  has both vanishing !–area and vanishing first Chern number. Then
there are well-defined maps AH W zP.H/!R and �W zP.H/! Z defined by setting
AH .Œ; u�/D

R 1
0 H.t; .t// dt �

R
D2 u

�! and �.Œ; u�/ equal to the Conley–Zehnder
index of the path of symplectic matrices given by expressing f.d�tH /.0/gt2Œ0;1� in
terms of a symplectic trivialization of u�TM .

The degree-k part of the Floer chain complex CFk.H/ is then by definition (using the
ground field K)� X

Œ;u�2zP.H/
�.Œ;u�/Dk

aŒ;u�Œ; u�
ˇ̌̌
aŒ;u� 2 K and #‚C <1 for all C 2R

�
;

where
‚C D

˚
Œ; u� j aŒ;u� ¤ 0; AH .Œ; u�/ > C

	
:

Let

(40) � D

�Z
S2
w�!

ˇ̌̌
wW S2!M; hc1.TM/;w�ŒS

2�i D 0

�
:

Then CFk.H/ is a vector space over ƒDƒK;� , with the scalar multiplication obtained
from the action of � on P.H/ given by, for g 2 � and Œ; u� 2 zP.H/, gluing a sphere
of Chern number zero and area g to u.
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We make CFk.H/ into a nonarchimedean normed vector space over ƒ by setting

`H

�X
aŒ;u�Œ; u�

�
DmaxfAH .Œ; u�/ j aŒ;u� ¤ 0g:

Define

(41) Pk.H/D
˚
 2P.H/ j there exists uW D2!M with ujS1 D ; �.Œ; u�/D k

	
:

Then it is easy to see that an orthogonal ordered basis for CFk.H/ is given by
.Œ1; u1�; : : : ; Œnk ; unk �/, where 1; : : : ; nk are the elements of Pk.H/ and, for each
i , ui is an arbitrarily chosen map D2!M with ui j@D2 D i and �.Œi ; ui �/D k .
In particular .CFk.H/; `H / is an orthogonalizable ƒ–space.

The function AH introduced above could just as well have been defined on the cover
of the entire space of contractible loops of M obtained by dropping the condition
that  2 P.H/; then zP.H/ is the set of critical points of this extended functional.
The degree-k part of the Floer boundary operator .@H /k W CFk.H/! CFk�1.H/ is
constructed by counting isolated formal negative gradient flowlines of this extended
version of AH in the usual way indicated in the introduction. It is a deep but (at
least when .M;!/ is semipositive, but see [35] for the more general case) by now
standard fact that @H can indeed be defined in this way, so that the resulting triple
.CF�.H/; @H ; `H / obeys the axioms of a Floer-type complex; thus in every degree k
we obtain a concise barcode BCF�.H/;k . The construction of @H depends on some
auxiliary choices, but the filtered chain isomorphism type of .CF�.H/; @H ; `H / is
independent of these choices (see eg [44, Lemma 1.2]), so BCF�.H/;k is an invariant
of H .

Proposition 12.1 For nondegenerate Hamiltonians H0;H1W S1 �M !R on a com-
pact symplectic manifold, the associated Floer chain complexes .CF�.H0/; @H0 ; `H0/
and .CF�.H1/; @H1 ; `H1/ obey

dP
�
.CF�.H0/; @H0 ; `H0/; .CF�.H1/; @H1 ; `H1/

�
�

Z 1

0

kH1.t; � /�H0.t; � /kL1 dt:

Proof Write ıD
R 1
0 kH1.t; � /�H0.t; � /kL1 dt and let � >0; we will show that there

exists a .ıC�/–interpolation between .CF�.H0/; @H0 ; `H0/ and .CF�.H1/; @H1 ; `H1/.

Define yH 0W Œ0; 1� � S1 �M ! R by yH 0.s; t; m/ D sH1.t; m/C .1 � s/H0.t; m/.
A standard argument with the Sard–Smale theorem (see eg [29, Propositions 6.1.2
and 6.1.3]) shows that, arbitrarily close to yH 0 in the C 1–norm, there is a smooth map
yH W Œ0; 1��S1 �M !R such that
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� yH.0; t;m/DH0.t; m/ and yH.1; t;m/DH1.t; m/ for all .t; m/2S1�M , and

� there are only finitely many s2 Œ0; 1� with the property that H.s; � ; � /W S1�M!
R fails to be nondegenerate.

In particular we can take yH to be so C 1–close to yH 0 that k@ yH=@s�@ yH 0=@skL1 <� .

For s2 Œ0; 1� write yHs.t; m/D yH.s; t;m/. Then for 0�s0�s1�1 and .t; m/2S1�M
we have

j yHs1.t; m/�
yHs0.t; m/j D

ˇ̌̌̌Z s1

s0

@ yH

@s
.s; t; m/ ds

ˇ̌̌̌
� �.s1� s0/C

Z s1

s0

ˇ̌̌̌
@ yH 0

@s
.s; t; m/ds

ˇ̌̌̌
ds

D .�CjH1.t; m/�H0.t; m/j/.s1� s0/:

Thus, for any s0; s1 2 Œ0; 1�,

(42)
Z 1

0

k yHs1.t; � /�
yHs0.t; � /kL1 dt

�

�
�C

Z 1

0

kH1.t; � /�H0.t; � /kL1 dt

�
js1� s0j

D .ıC �/js1� s0j:

Let S D fs 2 Œ0; 1� j yHs is not nondegenerateg, so by construction S is a finite set, and
for s 2 Œ0; 1� nS we have a Floer-type complex .CF�. yHs/; @ yHs ; ` yHs /. Standard facts
from filtered Hamiltonian Floer theory (summarized for instance in [45, Proposition 5.1],
though note that the definition of quasiequivalence there is slightly different from ours)
show that, for s0; s1 2 Œ0; 1� n S , the Floer-type complexes .CF�. yHs0/; @ yHs0 ; ` yHs0 /
and .CF�. yHs1/; @ yHs1 ; ` yHs1 / are

�R 1
0 k
yHs1.t; � /�

yHs0.t; � /kL1 dt
�
–quasiequivalent,

and hence .ıC �/js1� s0j–quasiequivalent by (42).

Thus we see that the family .CF�. yHs/; @ yHs ; ` yHs / defines a .ı C �/–interpolation
between .CF�.H0/; @H0 ; `H0/ and .CF�.H1/; @H1 ; `H1/. Since this construction can
be carried out for all � > 0 the result immediately follows.

Combining this proposition with Theorem 11.2, we immediately get the following
result:

Corollary 1.5 If H0 and H1 are two nondegenerate Hamiltonians on any com-
pact symplectic manifold .M;!/, then the bottleneck distance between the concise
barcodes of .CF�.H0/; @H0 ; `H0/ and .CF�.H1/; @H1 ; `H1/ is less than or equal toR 1
0 kH1.t; � /�H0.t; � /kL1 dt .
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Similar results apply to the way in which the barcodes of Lagrangian Floer complexes
CF.L0; �1H .L1// depend on the Hamiltonian H , or for that matter to the dependence
of Novikov complexes CN�. zf / on the function zf W zM ! R. When � is nontrivial
these facts do not follow from previously known results. (When � is trivial they can
be inferred from [8] and standard Floer-theoretic results like [45, Proposition 5.1].)

We now give an application of Corollary 1.5 to fixed points of Hamiltonian diffeomor-
phisms. Apart from its intrinsic interest, we also intend this as an illustration of how to
use the methods developed in this paper.

It will be relevant that the Floer-type complex .CF�.H/; @H ; `H / of a nondegen-
erate Hamiltonian on a compact symplectic manifold obeys the additional property
that `H .@H c/ < `H .c/ for all c 2 CF�.H/, rather than the weaker inequality “�”
which is generally required in the definition of a Floer-type complex (this standard
fact follows because the boundary operator @H counts nonconstant formal negative
gradient flowlines of AH , and the function AH strictly decreases along such flowlines).
Consequently there can be no elements of the form .Œa�; 0/ in the verbose barcode of
.CF�.H/; @H ; `H / in any degree k , as such an element would correspond to elements
x 2CFk.H/ and y 2CFkC1.H/ with @HyD x and `H .y/D `H .x/. In other words,
for each degree k , the verbose barcode zBCF�.H/;k of .CF�.H/; @H ; `H / is equal to
its concise barcode BCF�.H/;k .

To state the promised result, recall the notation Pk.H/ from (41), and for any subset
E �R, define

PEk .H0/D
˚
 2Pk.H/ j9uWD2!M with ujS1D; AH0.Œ; u�/2E; �.Œ; u�/Dk

	
:

Theorem 12.2 Let H0W S1 �M !R be a nondegenerate Hamiltonian on a compact
symplectic manifold .M;!/, let k 2 Z, let E �R be any subset, and let �E > 0 be
the minimum of the following two quantities:

� The smallest second coordinate L of any element .Œa�; L/ of the degree-k part
BCF�.H0/;k of the concise barcode such that some representative a of the coset
Œa� belongs to E .

� The smallest second coordinate of any .Œa�; L/ 2 BCF�.H0/;k�1 such that some
a 2 Œa� has aCL 2E .

Let H W S1 �M !R be any nondegenerate Hamiltonian withZ 1

0

kH.t; � /�H0.t; � /kL1 dt <
1
2
�E :
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Then there is an injection f W PE
k
.H0/! Pk.H/ and, for each  2 Pk.H0/, maps

u; zuW D2!M with ujS1 D  and zujS1 D f ./ such that

jAH .Œf ./; zu�/�AH0.Œ; u�/j �
Z 1

0

kH.t; � /�H0.t; � /kL1 dt:

Proof As in the proof of Proposition 7.4, we can find singular value decompositions for
.@H0/kC1W CFkC1.H0/! ker.@H0/k and .@H0/k W CFk.H0/! ker.@H0/k�1 having
the forms

..yk1 ; : : : ; y
k
rk
; xkC11 ; : : : ; xkC1mkC1

/; .xk1 ; : : : ; x
k
mk
//

and
..yk�11 ; : : : ; yk�1rk�1

; xk1 ; : : : ; x
k
mk
/; .xk�11 ; : : : ; xk�1mk�1

//;

respectively. In particular .yk�11 ; : : : ; yk�1rk�1
; xk1 ; : : : ; x

k
mk
/ is an orthogonal ordered

basis for CFk.H0/. Write the elements of Pk.H0/ as 1; : : : ; n , ordered in such a
way that PE

k
.H0/D f1; : : : ; sg for some s � n. As discussed before the statement

of the theorem, if for each i 2 f1; : : : ; ng we choose an arbitrary ui W D
2 ! M

with ui jS1 D i and �.Œi ; ui �/ D k , and moreover AH0.Œi ; ui �/ 2 E for i D
1; : : : ; s , then .Œ1; u1�; : : : ; Œn; un�/ will be an orthogonal ordered basis for CFk.H0/.
So by Proposition 5.5 and the definition of `H0 , there is a bijection ˛W Pk.H0/!
fyk�11 ; : : : ; yk�1rk�1

; xk1 ; : : : ; x
k
mk
g such that `H0.˛.i //�AH0.Œi ; ui �/ .mod �/.

If ˛.i /D yk�1ji
for some ji 2 f1; : : : ; rk�1g, then the element

.Œai �; Li / WD .Œ`H0.x
k�1
ji

/�; `H0.y
k�1
ji

/� `H0.x
k�1
ji

//

of the degree-.k�1/ verbose barcode of .CF�.H0/; @H0 ; `H0/ corresponds to a capped
orbit Œi ; ui � having filtration AH .Œi ; ui �/�aiCLi .mod �/. Otherwise, ˛.i /Dxkji
for some ji 2 f1; : : : ; mkg, and then we have an element .Œai �; Li / of the degree-k
verbose barcode of .CF�.H0/; @H0 ; `H0/, where

ai D `H0.x
k
ji
/ and Li D

�
`H0.y

k
ji
/� `H0.x

k
ji
/ if 1� i �mk;

1 otherwiseI

in this case AH .Œi ; ui �/ � ai .mod �/. As noted before the theorem, the verbose
barcode of .CF�.H0/; @H0 ; `H0/ is the same in every degree as its concise barcode,
so in particular these elements .ai ; Li / of the verbose barcodes belong to the concise
barcodes BCF�.H0/;k or BCF�.H0/;k�1 .

Considering now our new Hamiltonian H , write

ı D

Z 1

0

kH.t; � /�H0.t; � /kL1 :
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Our hypothesis, along with the fact that AH0.Œi ; ui �/2E for iD1; : : : ; s , then guaran-
tees that, for iD1; : : : ; s , the elements .Œai �; Li / of the concise barcodes BCF�.H0/;k or
BCF�.H0/;k�1 described in the previous paragraph all have Li ��E >2ı . On the other
hand Corollary 1.5 implies that there is a partial matching mk between BCF�.H0/;k
and BCF�.H/;k , and likewise a partial matching mk�1 between BCF�.H0/;k�1 and
BCF�.H/;k�1 , with both mk and mk�1 having defects at most ı . So since each
Li > 2ı , none of the elements .Œai �; Li / for i D 1; : : : ; s can be unmatched under
these partial matchings. So each of them is matched to an element, say .Œzai �; zLi /,
of the degree-k or k� 1 concise barcode of .CF�.H/; @H ; `H /. We will denote the
multiset of all such “targets” by

(43) Tk;k�1 D f.Œzai �; zLi / j i D 1; : : : ; sg:

Since the defect of our partial matching is at most ı , we can each choose zai within its
�–coset so that jzai �ai j � ı and either zLi DLi D1 or j.zai C zLi /� .ai CLi /j � ı .

We now apply the reasoning that was used at the start of the proof to CF�.H/ in place
of CF�.H0/. We may consider singular value decompositions for the maps .@H /kC1
and .@H /k on CF�.H/ having the forms

..zk1 ; : : : ; z
k
r 0
k

; wkC11 ; : : : ; wkC1
m0
kC1

/; .wk1 ; : : : ; w
k
m0
k

//

and
..zk�11 ; : : : ; zk�1

r 0
k�1

; wk1 ; : : : ; w
k
m0
k

/; .wk�11 ; : : : ; wk�1
m0
k�1

//;

respectively. Then if the elements of Pk.H/ are written as f�1; : : : ; �pg, we may
choose vj W D2!M with vj jS1 D �j for each j 2 f1; : : : ; pg in such a way that the
multiset of real numbers AH .Œ�j ; vj �/ is equal to the multiset

f`H .z
k�1
j / j 1� j � r 0k�1g[ f`H .w

k
j / j 1� j �m

0
kg:

This equality of multisets gives an injection � from the submultiset Tk;k�1�BCF�.H/;k[

BCF�.H/;k�1 described in (43) to Pk.H/. Specifically:

� For i 2 f1; : : : ; sg such that ˛.i / D yk�1ji
, the element .Œzai �; zLi / belongs to

BCF�.H/;k�1 , and �.Œzai �; zLi �/ will be some �qi 2Pk.H/ with AH .Œ�qi ; vqi �/D
zai C zLi ;

� For i 2 f1; : : : ; sg such that ˛.i / D xkji , the element .Œzai �; zLi / belongs to
BCF�.H/;k , and �.Œzai �; zLi �/ will be some �qi with AH .Œ�qi ; vqi �/D zai .

The map f W PE
k
.H0/! Pk.H/ promised in the theorem is then the one which sends

each i to �qi ; the fact that this obeys the required properties follows directly from the
inequalities jzai � ai j � ı and j.zai C zLi /� .ai CLi /j � ı and the fact that the value
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of AH .Œqi ; vqi �/ can be varied within its �–coset, without changing the grading k ,
by using a different choice of capping disk vqi .

Remark 12.3 Theorem 12.2 may be applied with E D R, in which case it shows
that if

R 1
0 kH.t; � /�H0.t; � /kL1 dt is less than half of the minimal second coordinate

of the concise barcode of CF�.H0/ in any degree, then the time-one flow of the
perturbed Hamiltonian H will have at least as many fixed points6 as that of the original
Hamiltonian H0 . This may appear somewhat surprising, as a C 0–small perturbation of
the Hamiltonian function H can still rather dramatically alter the Hamiltonian vector
field XH , which depends on the derivative of H . However this basic phenomenon is
by now rather well-known in symplectic topology; see in particular [11, Theorem 2.1]
and [44, Corollary 2.3], though these other results do not give control over the values
of AH on zPk.H/ as in Theorem 12.2.

For a more general choice of E our result does not appear to have analogues in the
literature, particularly when � ¤ f0g; this generalization is of interest when �E ,
thought of as the minimal length of a barcode interval with endpoint lying in E , is
larger than the minimal length �R of all barcode intervals, in which case the Theorem
shows that fixed points of �1H0 with action lying in E enjoy a robustness that the other
fixed points of �1H0 may not. For instance in the case that E D fa0g is a singleton
and there is just one element Œ0; u0� of zPk having AH .Œ0; u0�/D a0 , then �E is
bounded below by the lowest energy of a Floer trajectory converging to 0 in positive
or negative time, whereas �R is bounded below by the lowest energy of all Floer
trajectories, which might be much smaller.

In the special case that both � D f0g and E D fa0g a version of Theorem 12.2 can be
obtained using a standard argument in terms of the “action window” Floer homologies
HFŒa;b�� .H/ of the quotient complexes

fc 2 CF�.H/ j `H .c/� bg
fc 2 CF�.H/ j `H .c/ < ag

:

Indeed, for any ı 2R such thatZ 1

0

kH.t; � /�H0.t; � /kL1 dt < ı <
1
2
�E ;

we will have a commutative diagram of continuation maps (induced by appropriate
monotone homotopies; see [25, Section 6.6])

6The fixed points have contractible orbit under �t
H

, though one can drop this restriction by using a
straightforward variant of the Floer complex built from noncontractible orbits.
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HFŒa0�ı;a0Cı�
k

.H0C ı/
ˆ

//

))

HFŒa0�ı;a0Cı�
k

.H0� ı/

HFŒa0�ı;a0Cı�
k

.H/

55

and the hypothesis on the barcode can be seen to imply that the above map ˆ has
rank at least equal to #PE

k
.H0/, whence HFŒa0�ı;a0Cı�

k
.H/ has dimension at least

equal to #PE
k
.H0/. When � D f0g this last statement implies that the number of fixed

points of the time-one flow of H with action in the interval Œa0� ı; a0C ı� is at least
#PE
k
.H0/. However for � ¤ f0g the implication in the previous sentence may not be

valid, since the above argument only estimates the dimension of HFŒa0�ı;a0Cı�k .H/

over K , and the contribution of a single fixed point to dimK HFŒa0�ı;a0Cı�
k

.H/ might
be greater than one due to recapping.

Thus Theorem 12.2 provides a way of avoiding difficulties with recapping that arise in
arguments with action window Floer homology when � ¤ f0g. Even when � D f0g,
if E consists of, say, of two or more real numbers that are a distance less than �E=2
away from each other, then Theorem 12.2 can be seen to give sharper results than
are obtained by action window arguments such as those described in the previous
paragraph.

Appendix: Interleaving distance

In this brief appendix, we will discuss the relation of our quasiequivalence distance dQ
to the notion of interleaving, which is often used (eg in [8]) as a measure of proximity
between persistence modules. Because the main objects of the paper are Floer-type
complexes, rather than the persistence modules given by their filtered homologies, we
will use the following definition; on passing to homology this gives (at least in principle)
a slightly different notion than that used in [8], as the maps on filtered homology in [8]
are not assumed to be induced by maps on the original chain complexes.

Definition A.1 For ı � 0, a chain level ı–interleaving of two Floer-type complexes
.C�; @C ; `C / and .D�; @D; `D/ is a pair .ˆ;‰/ of chain maps ˆW C� ! D� and
‰W D�! C� such that:

� `D.ˆc/� `C .c/C ı for all c 2 C� .

� `D.‰d/� `D.d/C ı for all d 2D� .

� For all � 2 R the compositions ‰ˆW C�� ! C�C2ı� and ˆ‰W D�� ! D�C2ı�

induce the same maps on homology as the respective inclusions.
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It is easy to see that a chain level ı–interleaving induces maps ˆ�W H�.C�/ !

H�Cı.D�/ and ‰�W H�.D�/ ! H�Cı.C�/ (as � varies through R) which give
a strong ı–interleaving between the persistence modules fH�.C�/g and fH�.D�/g in
the sense of [8]. It is also easy to see that if .ˆ;‰;KC ; KD/ is a ı–quasiequivalence
between .C�; @C ; `C / and .D�; @D; `D/, then .ˆ;‰/ is a chain level ı–interleaving.
We will see that the converse of this latter statement is true provided that ˆ and ‰ are
split in the sense of Section 9.2.

Lemma A.2 Let F C� be a splitting of a Floer-type complex .C�; @C ; `C /, and suppose
that AW C� ! C� is a chain map which is split with respect to this splitting, such
that there exists � > 0 such that `C .Ac/ � `C .c/C � for all c 2 C� and, for all
� 2R, the induced map A�W H�.C�� /!H�.C

�C�
� / is zero. Then there exists a map

KW C�! C�C1 such that `C .Kc/� `C .c/C � for all c 2 C� and AD @CKCK@C .

Proof Let B� D Im.@C /�C1 . Then the boundary operator @C restricts as an isomor-
phism .@C /�C1W F

C
�C1! B� . Let L� D˚kLk , where each Lk is a complement to

Bk in ker.@C /k , so that ker.@C /� D B�˚L� ,

Let sW C�!C�C1 be the linear map such that sjL�˚F� D 0 and sjB� D .@C jF�C1/
�1 .

Therefore, @C sjB� is the identity map on B� , and for any b 2 B� , s.b/ is the unique
element of F C� such that @C s.b/ D b . Moreover, because F C

�C1 is orthogonal to
ker.@C /�C1 we have

(44) `C .s.b//D inff`C .c/ j c 2 C�C1 ; @C c D bg:

Now let K D sA; we will check that AD @CKCK@C . Indeed:

(i) For x 2 ker.@C /� , we have .@CKCK@C /x D @CKx D @C sAx D Ax , since
Ax 2 B� by the hypothesis on A�W H�.C�� /!H�.C

�C�
� /.

(ii) For y 2 F C� , since A is split and so Ay 2 F C� , Ky D sAy D 0. Therefore,
.@CKCK@C /yD sA@CyD s@CAyDAy , where the last equality comes from
the fact that @C s@CAy D @CAy and that both s@CAy and Ay belong to F C� ,
together with the injectivity of @C jF C� .

Finally, by the hypothesis that each A�W H�.C
�
� / ! H�.C

�C�
� / is zero, for any

x 2 ker.@C /� , there exists some z 2C�C1 such that @C zDAx and `C .z/� `C .x/C� .
Since Kx D sAx also obeys @CKx D Ax , (44) implies that

`C .Kx/� `C .z/� `C .x/C �:
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More generally any c 2C� can be written cD xCf with x 2 ker.@C /� and f 2F C� ,
and by definition Kf D 0, so

`C .Kc/D `C .Kx/� `.x/C � � `C .c/C �;

where the final inequality follows from the orthogonality of ker.@C /� and F C� .

Corollary A.3 If there is a chain-level ı–interleaving between the Floer-type com-
plexes .C�; @C ; `C / and .D�; @D; `D/, then there exists a ı–quasiequivalence between
.C�; @C ; `C / and .D�; @D; `D/.

Proof By Lemma 9.6, we can replace both ˆ and ‰ by ˆ� and ‰� which are split
with respect to splittings F C� and FD� of our two complexes; then we will have

.‰� ıˆ� � IC /.F
C
� /� F

C
� and .ˆ� ı‰� � ID/.F

D
� /� F

D
� :

Note that, due to condition (ii) in Lemma 9.6, ˆ� and ‰� induce the same maps
on homology as do ˆ and ‰ , so the fact that .ˆ;‰/ is a chain level ı–interleaving
implies that the maps

‰��ˆ
�
��IC�W H

�.C�/!H�C2ı.C�/ and ˆ��‰
�
��ID�W H

�.D�/!H�C2ı.D�/

are all zero. Hence applying Lemma A.2 to ‰�ˆ� � IC and to ˆ�‰� � ID gives
maps KC and KD such that (ˆ� ; ‰� ; KC ; KD/ is a ı–quasiequivalence.

In other words, if we define the (chain-level) interleaving distance dI by, for any two
Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/,

dI
�
.C�; @C ; `C /; .D�; @D; `D/

�
D inf

˚
ı � 0 j 9 chain-level ı–interleaving

between .C�; @C ; `C / and .D�; @D; `D/
	
;

then we have an equality of distance functions dI D dQ , where dQ is the quasiequiva-
lence distance.
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Deformations of colored slN link homologies via foams

DAVID E V ROSE

PAUL WEDRICH

We prove a conjectured decomposition of deformed slN link homology, as well as an
extension to the case of colored links, generalizing results of Lee, Gornik, and Wu. To
this end, we use foam technology to give a completely combinatorial construction of
Wu’s deformed colored slN link homologies. By studying the underlying deformed
higher representation-theoretic structures and generalizing the Karoubi envelope
approach of Bar-Natan and Morrison, we explicitly compute the deformed invariants
in terms of undeformed type A link homologies of lower rank and color.

17B37, 57M25, 81R50

1 Introduction

1.1 Statement of results

Khovanov [16] introduced a homology theory categorifying the Jones polynomial. This
homology theory for links in S3 has proven to be a powerful topological invariant,
leading eg to Rasmussen’s combinatorial proof of the Milnor conjecture on the slice
genus of torus knots [37]. Rasmussen’s work built on earlier results of Lee [26],
who studied a deformed version of Khovanov’s link invariant. Khovanov’s theory is
controlled by the Frobenius algebra CŒX �=hX 2i, which appears as the invariant of the
unknot, and Lee showed that deforming this algebra to CŒX �=hX 2� 1i leads to a link
homology theory which at first glance seems trivial, assigning the direct sum of two
copies of the vector space C to any knot. However, this link invariant surprisingly
contains highly nontrivial topological information: Rasmussen shows how to define
a concordance invariant from a filtration on the deformed link homology, which in
particular gives a lower bound on the smooth slice genus of the knot.

Khovanov and Rozansky [22] used the theory of matrix factorizations to generalize
Khovanov homology to a link homology theory (now called Khovanov–Rozansky
homology) which categorifies the slN link polynomial. This was later extended by
Wu [43] and Yonezawa [44] to a categorified invariant of links whose components
are colored by fundamental representations

VkCN of slN for 0� k �N . In these
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3432 David E V Rose and Paul Wedrich

theories, the underlying Frobenius algebra is isomorphic to CŒX �=hX N i. Following
work of Gornik [12], Rasmussen [37] and Krasner [23], Wu defined deformed versions
of slN link homology [42], in which this algebra is deformed to CŒX �=hP .X /i, where
P .X / is an arbitrary degree-N polynomial. Gornik [12] and Wu [41] showed that if
P .X / has simple roots, this invariant assigns the direct sum of N copies of the vector
space C to any 1–colored knot. This result as well as Lee’s, and their generalizations
to the case of links, can be interpreted as saying that when P .X / has simple roots,
the 1–colored deformed homology of a link decomposes into the direct sum of sl1
homologies of various sublinks, which are always 1–dimensional. Other deformations
have been studied for N D 2 by Khovanov [17] and N D 3 by Mackaay and Vaz [34].

In this paper, we prove a vast generalization of these results, showing that the defor-
mation of colored slN link homology corresponding to a general degree-N monic
polynomial P .X / with root multiset † decomposes into type A link homologies of
lower rank and color. To this end, we use foam technology to define deformed colored
slN link homologies KhR†.�/ and compare them to the undeformed colored slM
link homologies KhRslM .�/ constructed by Queffelec and Rose [36]. Precisely, we
show:

Theorem 1.1 Let L.a1; : : : ; ak/ be a k–component oriented, framed link with the
i th component colored by the fundamental slN representations

Vai CN . Let † be an
N–element multiset of complex numbers consisting of l distinct numbers occurring
with multiplicities N1; : : : ;Nl . There is an isomorphism of vector spaces

(1-1) KhR†.L.a1; : : : ; ak//Š
M

Pl
jD1 bi;jDai

0�bi;j�Nj

lO
jD1

KhRslNj .L.b1;j ; : : : ; bk;j //

which preserves the homological grading.

Remark 1.2 An intended feature of the decomposition formulas and (1-2) is that there
are no homological grading shifts on the right-hand side. Lee’s, Gornik’s and Wu’s
deformation results, on the other hand, require such grading shifts due to a different
normalization arising since they work in the unframed setting.

Example Let K be a 1–colored knot. Then the †–deformed slN homology of K

splits into the direct sum of undeformed slM homologies of K , and there is one slM
summand for every root of multiplicity M in †:

(1-2) KhR†.K/Š
lM

jD1

KhRslNj .K/:

Geometry & Topology, Volume 20 (2016)
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This has been a widely believed conjecture in the link homology community — see eg
Gukov and Walcher [15] — however, to our knowledge, no proof has appeared until
now.

Example Let K be a knot and write K0, K1 and K2 for its 0–, 1– and 2–colored
variants, respectively. Let † D f�1; �1; �2; �2; �2g for complex numbers �1 ¤ �2 .
Then the †–deformed sl5 homology of K2 is

KhR†.K2/Š
�
KhRsl2.K2/˝KhRsl3.K0/

�
˚
�
KhRsl2.K1/˝KhRsl3.K1/

�
˚
�
KhRsl2.K0/˝KhRsl3.K2/

�
ŠC˚

�
KhRsl2.K1/˝KhRsl3.K1/

�
˚KhRsl3.K2/

up to shifts in homological degree on the first direct summand.

Our main tool is the slN foam 2–category N Foam constructed in Queffelec and
Rose [36], as well as its relation to the Khovanov–Lauda diagrammatic categorification
of quantum slm [19]; see also work of Rouquier [39]. The former can be viewed
as the universal framework for the definition of categorified slN Reshetikhin–Turaev
invariants of tangles � colored by the fundamental representations of slN . More
specifically, given any colored tangle � , there exists an invariant ŒŒ��� taking values in
the homotopy category of chain complexes over Hom–categories in N Foam, which
consist of trivalent graphs called webs and decorated, singular cobordisms between
them called foams. Passing to a quotient 2–category N Foam� obtained by introducing
an additional foam relation on decorated 1–labeled foam facets

(1-3) �N

1

D 0

it is shown in [36] that the resulting bigraded link invariant KhRslN .�/ essentially
agrees with Wu’s and Yonezawa’s colored generalization of slN Khovanov–Rozansky
link homology. Equation (1-3) corresponds to the fact that X N is the derivative of the
polynomial used to give the potentials for the matrix factorizations in their construction.

In this paper, we analogously define the deformed colored slN link invariants KhR†.�/
for an N–element multiset † of complex deformation parameters by working in a
deformed foam 2–category N Foam† . It is defined as the quotient 2–category of
N Foam by the additional relation

(1-4) �N

1

D

N�1X
iD0

.�1/N�i�1eN�i.†/ �i

1
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3434 David E V Rose and Paul Wedrich

where ei.†/ denotes the i th elementary symmetric polynomial in N variables, eval-
uated at the multiset †. This is motivated by the relation between N Foam and
categorified quantum groups and by Wu’s construction of deformed slN link homology,
which utilizes matrix factorizations whose potential is built from a polynomial with
derivative P .X /D

PN
iD0.�1/N�ieN�i.†/X

i with root multiset †.

We prove Theorem 1.1 for the invariants constructed via the †–deformed slN foam
2–categories N Foam† and undeformed slNj foam 2–categories Nj Foam�. To this
end, we adapt Bar-Natan and Morrison’s Karoubi envelope technology [2], originally
used to give a “local” proof of Lee’s deformation result, to the setting of foams; see
Section 2.5. The relation to Wu’s deformed Khovanov–Rozansky link homology is
then provided by the following generalization of [36, Theorem 4.11]:

Theorem 1.3 The invariant KhR†.L/ constructed from N Foam† is (up to grading
shifts) isomorphic to Wu’s colored, deformed Khovanov–Rozansky homology of the
mirror link L0 with respect to deformation parameters †.

In [36], the identification of the link invariants defined via foams and matrix factoriza-
tions is proven using results of Mackaay and Yonezawa [35], which imply the existence
of a 2–representation of N Foam on slN matrix factorizations. Rather than adapt their
results to the deformed case, we instead give a new, streamlined proof utilizing the
theory of stabilization of matrix factorizations to give a 2–representation of N Foam†

on a 2–category of deformed matrix factorizations. We believe this result might be of
independent interest; see Section 4.4.

1.2 Outlook

There are several possible applications of the results in this paper.

The first concerns the definition and study of concordance invariants in the spirit of
Rasmussen’s s–invariant [37]. Lobb [28; 29] has used Gornik’s generic deformation of
slN link homology to define concordance invariants that are analogous to Rasmussen’s
invariant. Lewark [27] has recently proved independence results for these concordance
invariants. It would be interesting to see whether deformations of colored slN link
homologies also give rise to concordance invariants and whether foam technology can
be used to prove (in)dependence properties between them.

The next application concerns relations between type A link homology theories of
different rank and color. Both experimental computations and physical reasons suggest
that the type A link homology package carries a very rigid structure, which is only
partially visible on the decategorified level of Reshetikhin–Turaev slN invariants; see

Geometry & Topology, Volume 20 (2016)
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Dunfield, Gukov and Rasmussen [10], Gukov and Walcher [15], Gukov and Stošić [14]
and Gorsky, Gukov and Stošić [13]. One feature of this structure is the stabilization of
slN link homologies as N!1 to a triply graded link homology theory that categorifies
the HOMFLY-PT polynomial. The flip-side of this feature provides specialization
spectral sequences from the triply graded homology to slN homology for every N .
Both of these features have been proven for the 1–colored case by Rasmussen [38].

Many other aspects of the conjectured structure have not been rigorously proven yet.
One, however, that seems to be in reach is the existence of spectral sequences, or
“differentials”, between slN and slM link homologies for N >M . In analogy to the
Lee–Rasmussen spectral sequence that links Khovanov homology to Lee’s deformation,
Wu [42] has defined spectral sequences connecting the ordinary slN link homology to
its deformations. Together with Theorems 1.1 and 1.3, which identify Wu’s deformed
invariants in terms of undeformed invariants, it should be possible to construct the
desired spectral sequences.

Wu [42] has further proved that the deformed slN link homologies inherit a quantum
filtration from the bigraded undeformed invariant. We have ignored this filtration in
this paper, but tracking it through the computation of the deformed invariants should
significantly improve our understanding of the Rasmussen-type concordance invariants
and the deformation spectral sequences.

We also note that there are bigraded equivariant versions of slN link homology, in which
the deformation parameters are not specialized to complex numbers but kept as graded
variables. The sl2 and sl3 equivariant theories have been studied by Khovanov [16]
and Mackaay and Vaz [34]. Krasner [23] has introduced a version for 1–colored slN
link homology for general N , which has been subsequently generalized by Wu [42] to
arbitrary colorings by fundamental representations. It is an interesting question whether
these equivariant theories also admit a definition via foam technology. This in turn
would help to understand the quantum filtration on the deformed invariants.

Daniel Tubbenhauer has informed us that the deformations studied in this paper could
be useful for writing down explicit isomorphisms between the centers of slN web
algebras and cohomology rings of certain generalizations of Springer fibers, whose
existence is guaranteed by Mackaay [32, Corollary 7.10]. This would generalize work
of Mackaay, Pan and Tubbenhauer [33] on the case of sl3 .

Structure of this paper We begin by introducing the necessary technology and graph-
ical calculi in Section 2. In particular, we discuss foams, categorified quantum groups,
and the Karoubi envelope technology of Bar-Natan and Morrison. In Section 3 we study
deformations of the higher representation-theoretic structures that control deformed link
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3436 David E V Rose and Paul Wedrich

invariants and prove a version of Theorem 1.1 for the unknot. Armed with this tool, we
prove splitting relations in the deformed foam 2–category N Foam† and introduce a
suitable idempotent completion .N Foam†/^ in Section 4. This section also establishes
a 2–representation of the deformed foam 2–category on matrix factorizations, which is
necessary for the proof of Theorem 1.3. Finally, Section 5 contains the definition of
the deformed link invariants KhR†.L/ and the proofs of Theorems 1.1 and 1.3.

Acknowledgements The authors would like to thank Hanno Becker, Sabin Cautis,
Eugene Gorsky, Aaron Lauda, Daniel Murfet, Jake Rasmussen and Ben Webster for
helpful conversations and email exchanges during the course of this work. Special
thanks go to Marko Stošić and Daniel Tubbenhauer for numerous useful comments
on a draft of this paper. Rose would like to especially thank Sabin Cautis and Aaron
Lauda, as preliminary work on this topic began in collaboration with them. Wedrich
would like to especially thank Jake Rasmussen for his support and guidance.1

2 Technology review

In this section, we recall the relevant machinery needed to prove Theorems 1.1 and 1.3.
Explicitly, we discuss slN foams, categorified quantum groups and their deformations,
as well as the Karoubi envelope technology used in [2].

2.1 Foams

Recall from [36] that a natural setting for a combinatorial formulation for Khovanov–
Rozansky’s slN link homology is the 2–category N Foam. In this 2–category, objects
are given by sequences aD .a1; : : : ; am/ for m>0 with ai 2f1; : : : ;N g, 1–morphisms
are formal direct sums of enhanced slN webs — leftward-oriented, labeled2 trivalent
graphs generated by

aC b
a

b
and aC b

a

b

which we view as mapping from the sequence determined by the labeled points on the
right boundary to the one determined by the left. The 2–morphisms are matrices of

1Wedrich’s PhD studies at the Department of Pure Mathematics and Mathematical Statistics, University
of Cambridge, have been supported by the ERC grant ERC-2007-StG-205349 held by Ivan Smith and an
EPSRC department doctoral training grant. The proof of Theorem 1.1 in this paper is part of Wedrich’s
thesis.

2These labels correspond to the “colorings” of tangle components by fundamental representations
of slN . We reserve the word “color” for certain idempotent decorations on foams and webs; see below.
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enhanced slN foams, singular cobordisms between such webs generated by

aCb

b

a
;

aCb

b

a

;
aCb

b

a

;
aCb

b

a

;

aCba

b

;

aCb

b

a

;

c

b

a

bCc

aCb

aCb

Cc

;

c

b

a
aCb

bCc

aCb

Cc

modulo isotopy and local relations.3 By convention, we view foams as mapping from
the web determined by the bottom boundary to that on the top. The facets of these
foams again carry labelings by elements in f1; : : : ;N g, and a k–labeled facet may also
be decorated by elements from the ring of symmetric functions in k variables. Note
that in [36] the authors utilize the fact that this 2–category admits a grading; however,
as we will eventually pass to quotients N Foam† where this grading is broken, we
won’t concern ourselves with these issues.

Rather than recall the complete list of local relations, we refer the reader to [36] for
full details, and list only a few that will play a substantial role in this paper:

(2-1) bCc

aCb

c

b

a
aCb

aCb
Cc

D

c

b

a
aCb

aCb
Cc

;

bCc

c

b

a

bCc

aCb

aCb
Cc

D

c

b

a

bCc
aCb
Cc

aCb
a

b

D

X
˛2P.a;b/

.�1/jy̨j

aCb

�˛

�y̨

(2-2)

3The colors red and blue in the foam graphics here and in [36] have no special significance. Later we
will use specific colorings of foam facets to indicate decorations by idempotents; see Convention 4.3.
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aCb

b

a

� D

X
˛;ˇ

c


˛;ˇ

aCb

b

a

�˛

�ˇ

(2-3)

aCb

b

a

c

b�c

aCb

aCb
�c

D

X
˛2P.a;c/

.�1/jy̨j

b

a

c
aCb

aCb
�c

�˛

�y̨

(2-4)

b�c

b

a

c
b�c

aCb

aCb
�c

D

X
˛2P.a;c/

.�1/jy̨j

b

a

c
b�c

aCb
�c

�˛

�y̨

(2-5)

Here P .a; b/ denotes the set of partitions of length � a with each part � b , �˛ denotes
the Schur function corresponding to the partition ˛ and the c



˛;ˇ
are the corresponding

Littlewood–Richardson coefficients.

A tangle diagram whose components are labeled by elements in f1; : : : ;N g determines
a complex in N Foam, which is, up to homotopy equivalence, an invariant of the
underlying framed tangle. In the case that the tangle is a link, passing to the quotient
N Foam� and applying a representable functor yields a complex of vector spaces
whose homology is isomorphic (up to shifts and grading conventions) to the slN link
homology defined by Khovanov and Rozansky and generalized to the colored case by
Wu and Yonezawa.

2.2 Higher representation theory

The construction of N Foam was motivated by a desired relation to higher representation
theory. The categorified quantum group UQ.slm/ is the 2–category whose objects are
given by slm weights �, and whose 1–morphisms are formal direct sums of (shifts fkg
of) compositions of

1�; 1�C˛i
Ei D 1�C˛i

Ei1� D Ei1� and 1��˛i
Fi D 1��˛i

Fi1� D Fi1�
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for i 2 f1; : : : ;m� 1g and where the ˛i are the simple slm roots. The 2–morphisms
are given by matrices of linear combinations of (degree zero) string diagrams — dotted,
immersed oriented curves colored by elements i 2 f1; : : : ;m�1g with top and bottom
boundary, eg

�

�
�

i

j
k

modulo local relations. The domain 1–morphism of such a diagram is given (up to
grading shifts) by considering the orientations and labelings of the strands incident
upon the bottom boundary, reading an upward strand as E and a downward strand
as F , and similarly for the codomain by considering the top boundary. For example,
the domain and codomain of the above string diagram are (up to shifts) EiFj 1� and
FjEkEiFk1� .

We refer the reader to the work of Lauda [24] and Khovanov and Lauda [18; 19; 20]
(see also independent work of Rouquier [39]) for a detailed discussion on categorified
quantum slm . The main result of [19] is that the 2–category PUQ.slm/, obtained
by passing to the Karoubi envelope in each Hom–category of UQ.slm/, categorifies
quantum slm . Explicitly, they show that the Lusztig idempotent form PUq.slm/ of the
quantum group is isomorphic to the category obtained by taking the Grothendieck
group K0 in each Hom–category of PUQ.slm/. We will assume some familiarity with
categorified quantum groups for the duration, and utilize the conventions and notation
from [36].

The 2–category N Foam is constructed to give a 2–representation of UQ.slm/ via
categorical skew Howe duality. Recall that work of Cautis, Kamnitzer and Licata [7]
and Cautis, Kamnitzer and Morrison [8] shows that the commuting (skew Howe dual)
actions of quantum glm and slN on the vector spaces

Vk
q.C

m
q ˝CN

q / induce a functor

'mW Uq.glm/! Rep.Uq.slN //

which sends a glm weight a D .a1; : : : ; am/ to the tensor product of fundamental
quantum slN representations

Va1

q CN
q ˝� � �˝

Vam

q CN
q . In fact, Cautis, Kamnitzer and

Morrison use this to give a completely combinatorial description for the full subcategory
of quantum slN representations generated by the fundamental representations. In
their description, objects are given as in N Foam and morphisms are given by linear
combinations of slN webs, modulo planar isotopy and relations.

By design, the 2–category N Foam gives a categorification of this result, ie it admits a
2–functor ˆmW UQ.glm/!N Foam so that the diagram
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UQ.glm/

K0

��

ˆm
// N Foam

K0

��

PUq.glm/
'm
// Rep.Uq.slN //

commutes, where UQ.glm/ is the direct sum of an infinite number of copies of UQ.slm/

and admits a similar description in which slm weights are replaced by glm weights.

2.3 Thick calculus

The 2–functor UQ.glm/!N Foam actually extends to a certain full 2–subcategory
LUQ.glm/ � PUQ.glm/. In the case m D 2, LUQ.gl2/ D PUQ.gl2/, and this category is
described4 graphically by Khovanov, Lauda, Mackaay and Stošić in [21]. Recall that
the objects in the Karoubi envelope of a category C are given by pairs .c; e/ where
c 2 Ob.C / and c

e
! c is an idempotent morphism. In the case of LUQ.gl2/, consider

the idempotent morphism Ea1�
ea
�! Ea1� where ea is given by decorating any string

diagram giving a reduced expression for the longest word in the symmetric group on a

elements with a specific pattern of dots, starting with a� 1 dots on the top left-most
strand, and placing one fewer dot on each strand as we head to the right.5 The following
depicts the case aD 4:

(2-6)

��
�

�
�
�

DW ea

where we use the box notation from [21] for the 2–morphism (here, we do not depict
the strand labels, as there is only one possible in the gl2 case). Khovanov, Lauda,
Mackaay and Stošić show that the 1–morphisms E.a/1� WD

�
Ea1�

˚
1
2
a.a � 1/

	
; ea

�
and their biadjoints 1�F .a/ generate PUQ.gl2/, and also introduce a “thick calculus”
to describe this 2–category. In the Karoubi envelope of a category C , a morphism
between two objects .c; e/ and .c0; e0/ is given by a 1–morphism f W c! c0 in C such
that e0f D f D fe . The map ea , which gives the identity 2–morphism on E.a/1� in
PUQ.gl2/, is depicted by a thick, colored upward strand

4Technically, they describe PUQ.sl2/ , but the only difference in passing to PUQ.gl2/ is that we use gl2
weights.

5We use the boldface notation ea for the nil-Hecke idempotents to distinguish them clearly from
elementary symmetric polynomials ei .
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(2-7)

a

WD ea

and the remainder of the 2–morphisms in PUQ.gl2/ are generated by splitter and merger
maps

(2-8)

aC b

a b

WD
ea eb

a b

b a

;

aC b

a b

WD eaCb

a b

aC b

;

where

a

WD

„ ƒ‚ …
a

and

a b

WD

„ ƒ‚ …
a

„ƒ‚…
b

;

which are maps E.aCb/1� ! E.a/E.b/1�f�abg and E.a/E.b/1� ! E.aCb/1�f�abg.
Thick strands also may carry decorations by elements of the ring of symmetric functions
in a variables (depicted by placing a box containing the function on such a strand).
Schur functions �˛ satisfy the relation

(2-9) �˛

a

D

a

� �� �˛1C
a�1

˛a˛a�1

C1
˛2C
a�2

in which the morphisms which split and merge thickness-a strands into thin (thickness-1)
strands are given by any of the possible compositions of the above mergers and splitters;
the relations for PUQ.gl2/ given in [21] guarantee that they are the same.

There is not currently a completely diagrammatic description for PUQ.glm/ for m� 3,
hence we instead work with LUQ.glm/, the full 2–subcategory generated by E.a/i 1� WD�
Ea

i 1�
˚

1
2
a.a� 1/

	
; ea

�
and their biadjoints, where here ea is as above, but with all

strands i–labeled. We refer the reader to [36, Section 3.2] for details about the 2–functor
ˆmW LUQ.glm/!N Foam, but note here that it acts on splitter/merger morphisms in

Geometry & Topology, Volume 20 (2016)



3442 David E V Rose and Paul Wedrich

LUQ.gl2/ via

(2-10)

aC b

a b

7!

a b

aCb

;

aC b

a b

7!

a

aCb

b

and on (thin) cap/cup morphisms by

.a; b/
7!

a

b
;

.a; b/
7! .�1/b

a

b
;(2-11)

.a; b/
7! .�1/bC1

a

b

;
.a; b/

7!

a

b

since these will be explicitly used later in our description of the link invariant.

The 2–representation ˆmW LUQ.glm/!N Foam necessarily maps glm weights whose
entries don’t lie in f0; : : : ;N g to zero, hence factors through the quotient LU0�N

Q
.glm/,

where we kill (the identity 2–morphism on the identity 1–morphism of) these weights.
As we will see in Section 3.1, it is exactly the procedure of taking this quotient which
gives rise to deformation parameters controlling the deformed link invariants.

2.4 Quantum Weyl group action and Rickard complexes

A crucial observation of Cautis, Kamnitzer and Licata [7] is that the braiding on the
category of quantum slN representations (which gives rise to slN link polynomials)
can be recovered from the functor �mW PUq.glm/! Rep.Uq.slN //. Indeed, Lusztig’s
“quantum Weyl group” elements

Ti1a D

8̂̂̂̂
<̂
ˆ̂̂:

P
j1;j2�0

j1�j2Dai�aiC1

.�q/j2F
.j1/
i E

.j2/
i 1a if ai � aiC1;

P
j1;j2�0

j1�j2Dai�aiC1

.�q/j1E
.j2/
i F

.j1/
i 1a if ai � aiC1;

generate a braid group action on any finite-dimensional representation of quantum slm ;
see [30, Section 5.1.1; 8]. Under 'm , these elements map to the braiding between
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fundamental slN representations; explicitly, the element T 1.a;b/ gives the braidingVa
qCN

q ˝
Vb

qCN
q !

Vb
qCN

q ˝
Va

qCN
q .

The Rickard complexes, introduced in the qD 1 case by Chuang and Rouquier [9], cat-
egorify these elements, and generate a categorical braid group action on any (integrable)
2–representation of LUQ.glm/. These complexes Ti1a take the form

(2-12) F .ai�aiC1/

i 1a
d1
�!F .ai�aiC1C1/

i Ei1af1g
d2
�!� � �

ds
�!F .ai�aiC1Cs/

i E.s/i 1afsg � � �

when ai � aiC1 and

(2-13) E.aiC1�ai /

i 1a
d1
�!E.aiC1�aiC1/

i Fi1af1g
d2
�!� � �

ds
�!E.aiC1�aiCs/

i F .s/i 1afsg � � �

when ai�aiC1 . Here and throughout, we’ve underlined in blue the term in homological
degree zero. The differential dk that appears in the second complex is conveniently
expressed in thick calculus as

dk D

��C k

1

k

a

where all strands are colored by the index i 2 I and �D ai �aiC1 . The differential in
the first complex is defined similarly, and in both cases the equality d2 D 0 follows
directly from thick calculus relations.

Recall that the images of the Rickard complexes under any integrable 2–representation
are invertible, up to homotopy, with inverses 1aT �1

i given by the images of the
complexes

(2-14) � � �1aF
.s/
i E.ai�aiC1Cs/

i f�sg
d�s
�!�� �

d�
2
�!1aFiE

.ai�aiC1C1/

i f�1g
d�

1
�!1aE

.ai�aiC1/

i

when ai � aiC1 and

(2-15) ���1aE
.s/
i F .aiC1�aiCs/

i f�sg
d�s
�!���

d�
2
�!1aEiF

.aiC1�aiC1/

i f�1g
d�

1
�!1aF

.aiC1�ai /

i

when ai � aiC1 . In both cases the differential is given by a composition of splitters
with a thickness-1 cap 2–morphisms, eg for (2-15):

d�k D

�C k

1

k

a

Geometry & Topology, Volume 20 (2016)



3444 David E V Rose and Paul Wedrich

In Section 5, we will use these complexes to define our tangle invariant.

2.5 Karoubi envelope technology

In his famous paper [1], Bar-Natan shows that Khovanov homology can be constructed
locally, by working in the homotopy category of chain complexes over a certain .1C1/–
dimensional cobordism category. Objects of this category are formal direct sums of
1–manifolds embedded in the plane (possibly with boundary) and equipped with a
formal Z–grading. Morphisms are matrices of linear combinations of cobordisms
between 1–manifolds, decorated with dots, modulo the following local relations:

D 0 ;
�

D 1 ; D

�

C

�

; �
�

D 0:

In [2] Bar-Natan and Morrison explain that Lee’s deformed sl2 link homology [26]
arises from the same kind of construction, after modifying the final “sheet” relation
above to

�
�

D

so that the operator given by adding a dot to a cobordism is no longer nilpotent.

To analyze the effects of this deformation, consider the algebra of endomorphisms
of a strand, denoting the identity by 1, a sheet decorated by a dot by X , and extend
linearly so that polynomials in X denote linear combinations of decorated sheets.
The undeformed sheet relation can then be expressed as X 2 D 0 and the deformed
relation is X 2� 1D 0. From this it is clear that in the deformed case the operator of
placing a dot on a sheet has eigenvalues 1 and �1 with corresponding eigenvectors
1C1 WD

1
2
.1CX / and 1�1 WD

1
2
.1�X /.

The decomposition into eigenspaces for the action of adding a dot splits the deformed
cobordism category: every connected component of a cobordism can be written as a
sum of the two decorations 1D 1C1C1�1 , which are orthogonal (ie 1C11�1 D 0),
idempotent (ie 1˙11˙1 D 1˙1 ), and obviously commute.

Next, Bar-Natan and Morrison enlarge the cobordism category by proceeding to its
Karoubi envelope.6 Practically, this means allowing objects, ie planar 1–manifolds, to

6See the explanation in Section 2.3.
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be “colored” by 1C1 and 1�1 as well. Any uncolored 1–manifold is isomorphic to
the direct sum of the 1C1 and 1�1 versions, and colored cobordisms between colored
1–manifolds are only nonzero if the corresponding idempotent decorations agree.

Using this splitting of the deformed cobordism category, Bar-Natan and Morrison
compute a decomposition for the chain complexes arising in the definition of the
deformed link invariant, whose objects are planar 1–manifolds that arise as resolutions
of the link diagram. The second result is that each such coloring contributes only one
generator to the link homology. This reproduces Lee’s result that the deformed sl2
homology of a l –component link is 2l–dimensional. Alternatively, we could say that it
is a direct sum of tensor products of sl1 homologies, where sl1 homology assigns the
1–dimensional vector space C to any link. More precisely, we have one summand for
each coloring of components of the link by 1C1 or 1�1 , and the tensorands are the
sl1 homologies of the 1C1 - and 1�1 –colored sublinks, respectively.

Gornik’s generalization [12] of the generic deformation result to slN can be understood
along very similar lines. Again, there is a Frobenius algebra CŒX �=hX N i of local
decorations which is being deformed to CŒX �=hX N �ˇN i ŠC˚ � � �˚C , with one
summand for each of the N roots of the polynomial X N �ˇN . The idempotents that
project onto the N summands then split the category underlying the chain complexes
in the construction of the link homology. The resulting invariant for a knot is a direct
sum of N copies of its sl1 homology. Similarly, for l –component links one gets a
N l–dimensional vector space which can be understood as a direct sum over possible
root-colorings of components of 1–dimensional tensor products of sl1 homologies of
sublinks, one for each different root.

In order to prove our decomposition result Theorem 1.1, we start by computing the
algebra of decorations on foam facets in the deformed foam 2–category N Foam† . In
fact, the algebra of decorations on a k–labeled facet is isomorphic to the deformed link
homology of the

VkCN–colored unknot. We compute it, and hence prove Theorem 1.1
in the special case of the unknot, in Section 3. In particular, the algebra of decorations
on a k–labeled foam facet decomposes into a direct sum of local pieces indexed by
k–element multisubsets of the set of roots †. This gives idempotent foam decorations
along which the link invariant splits into a direct sum, which is proved in Section 5.1.
Similarly as for the generic deformation in the 1–colored case, the only nonzero
contributions to the deformed link invariant come from idempotent colorings that are
consistent along link components. This is shown in Lemma 5.10. However, in the
case of general deformations of colored invariants there are two new features that have
not been rigorously addressed in the literature. One appears because we allow higher
colors, the other because we allow nongeneric deformations.
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Higher color Foam facets are not colored by roots, ie elements of †, anymore, but
by multisubsets of † of size corresponding to the label of the facet. Such a multisubset
can contain several different roots and in this case we need a new way to split this facet
into parts colored by single roots. This is where we use the full power of the foam
technology; see Section 4 for preparatory work and Section 5.2 for the actual tensor
product decomposition of the link invariant.

Nongeneric deformation A root � can occur in † with a multiplicity N� � 1. The
�–colored part of a direct summand of the deformed link invariants is essentially the
slN� homology of the �–colored sublink, ie in particular it is usually not trivially
1–dimensional. To see this we need to check that after all splitting procedures, the
�–colored foams behave like slN�–foams. This is done in Section 5.3.

3 Deforming nil-Hecke algebra quotients

The nil-Hecke algebra NHa plays a fundamental role in higher representation the-
ory. Indeed, this algebra is given by the algebra of (not necessarily degree zero)
2–endomorphisms of the a–fold composition of Ei with itself in the positive half
of UQ.slm/. In this section, we will review the nil-Hecke algebra, and then proceed
to study certain deformations of its cyclotomic quotients, which control the deformed
Khovanov–Rozansky homologies of colored unknots.

Definition 3.1 The nil-Hecke algebra on a strands, NHa admits an algebraic presen-
tation as the graded C–algebra of endomorphisms of the abelian group CŒX1; : : : ;Xa�

generated by operators

� �i of degree 2 for 1� i � a acting by multiplication by Xi ,
� @i of degree �2 for 1� i � a� 1 acting as divided difference,

ie for p.X1; : : : ;Xa/ 2CŒX1; : : : ;Xa�

@i.p.X1; : : : ;Xa//D
p. : : : ;Xi ;XiC1; : : : /�p. : : : ;XiC1;Xi ; : : : /

Xi �XiC1

;

which satisfy the complete set of relations

� �i�j D �j�i ,
� �i@j D @j�i if i 62 fj ; j C 1g,
� @i@i D 0,
� @i@iC1@i D @iC1@i@iC1 ,
� �i@i � @i�iC1 D 1D @i�i � �iC1@i .
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The following result is due to Lauda:

Proposition 3.2 [24, Proposition 3.5] (1) The center of NHa is Z.NHa/ Š

CŒ�1; : : : ; �a�
Sa DW Sym.�1; : : : ; �a/.

(2) NHa is graded isomorphic to the algebra of a!� a! matrices over its center:

NHa ŠMat.a!;Z.NHa//:

The homomorphism NHa!END.Ea
i 1�/ is given by identifying the generator �i with

the string diagram consisting of a upward strands with a dot on the i th strand and the
generator @i with a crossing between the i th and .iC1/st strands:

1 7! � � � ; �i 7! � � � � � � � ; @i 7! � � � � � � :

Multiplication is given by composition of 2–morphisms in UQ.slm/, ie by stacking
diagrams vertically. An arbitrary element of NHa can be written as a C–linear
combination of such stacked string diagrams.

We will also utilize the “thick calculus” for the nil-Hecke algebra, detailed in [21], which
corresponds to the algebra of upward strands in LUQ.slm/ having varying thickness. Set

Da WD .@1@2 � � � @a�1/.@1 � � � @a�2/ � � � .@1/

and let �X D
Q

1�i<j�a.Xi �Xj / be the Vandermonde determinant. The action of
Da on polynomials p 2CŒX1; : : : ;Xa� is given by

Da.p.X1; : : : ;Xa//D
1

�X

X
w2Sa

�.w/p.Xw.1/; : : : ;Xw.a//;

where �.w/ 2 f˙1g is the sign of the permutation w . In other words, Da antisym-
metrizes a polynomial and then divides by the Vandermonde determinant, resulting in a
symmetric polynomial. Divided differences not only act on elements of CŒX1; : : : ;Xa�,
but also on the subring CŒ�1; : : : ; �a� of NHa . In particular, if f 2CŒ�1; : : : ; �a�, we
denote by Da.f / the action of the product of divided differences on f . The following
compatibility relation holds:

Daf .�1; : : : ; �a/Da DDa.f /.�1; : : : ; �a/Da:

However, we point out that this is only true in the presence of the Da on the right.

Define ıa WD �a�1
1

�a�2
2
� � � �a�1 . It is easy to compute that

�� D
Y

1�i<j�a

.�i � �j /D
X
w2Sa

�.w/�a�1
w.1/�

a�2
w.2/ � � � �w.a�1/
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and hence Da.ıa/D��=�� D 1 and ea D ıaDa is idempotent in NHa :

e2
a D ıaDaıaDa D ıaDa.ıa/Da D ıaDa D ea:

In fact, this is exactly the idempotent ea defined in the introduction, and depicted
graphically (in the case aD 4) in (2-6).

One can use this idempotent to explicitly describe the isomorphism between the center
Z.NHa/ŠCŒ�1; : : : ; �a�

Sa and the direct summand eaNHaea �NHa via

Z.NHa/ŠZ.NHa/ea D eaNHaea; y 7! yea:

If ˛ D .˛1; : : : ; ˛a/ is a partition of length � a and �˛.�1; : : : ; �a/ is the Schur poly-
nomial associated to ˛ , then Da.�

a�1C˛1

1
�

a�2C˛2

2
� � � �

˛a
a /D �˛.�1; : : : ; �a/. Hence,

under the above isomorphism we have

(3-1) �˛.�1; : : : ; �a/ 7! �˛.�1; : : : ; �a/ea D ıaDa.�
a�1C˛1

1
�

a�2C˛2

2
� � � �˛a

a /Da

D ıaDa�
˛1

1
�
˛2

2
� � � �˛a

a ıaDa

D ea�
˛1

1
�
˛2

2
� � � �˛a

a ea:

Compare this with the thick calculus relation (2-9).

3.1 Quotients of the nil-Hecke algebra

A certain quotient of the nil-Hecke algebra will be relevant to our study of deformed
link homology. Recall that the 2–functor LUQ.glm/! N Foam factors through the
quotient LU0�N

Q
.glm/, where we kill the glm weights whose entries lie outside the set

f0; : : : ;N g. Consider h D .N; : : : ;N; 0; : : : ; 0/, which is a highest weight in this
quotient, and note that

0 D

h

D

NX
iD0

h
�
N � i

�

�N�1Ci

;

where the string diagrams are colored by the number of N ’s in h. The first equality
holds since the region inside the “left-curl” is zero in LU0�N

Q
.glm/. Note that the

individual summands on the right-hand side are not (necessarily) zero, since these
bubbles are fake, in the sense of [24]. The infinite Grassmannian relation [24] implies
that these bubbles generate the endomorphism algebra of the highest weight object h,
hence we can view the positive degree fake bubbles as (graded) parameters.
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Under the 2–functor LU0�N
Q

.glm/ ! N Foam, this highest weight endomorphism
algebra maps to the endomorphism algebra of an N–labeled facet, with the fake bubble
of degree i mapping to the decoration by a signed elementary symmetric polynomial
.�1/iei by [36, Equation 3.33]. This endomorphism algebra in turn determines the
ground ring over which the link homology theory is defined, ie the invariant of a link
will be a module over this algebra. In [36], it is shown that by setting the (images of)
the bubble deformation parameters to zero yields a link homology theory isomorphic
to Khovanov–Rozansky homology. Setting these parameters to other values should
thus correspond to a deformed version of Khovanov–Rozansky homology.

We thus arrive at the relation

(3-2)
NX

iD0

ci

h
�
N � i

D 0;

where the ci 2 C are the specializations of the fake bubbles. This corresponds to
a relation on 1–labeled foams facets which meet N–labeled foam facets (see [36,
Section 4.1] for a general discussion about N–labeled facets). Since we would like
foam relations to be local, this motivates studying this relation for all weights, not just
for aD h.

To this end, let † be a multiset of N complex numbers and

(3-3) P .X /D

NY
s2†

.X � s/DX N
C

N�1X
iD0

cN�iX
i

be the monic degree N polynomial with root multiset † and coefficients ci D

.�1/iei.†/.

Definition 3.3 The †–deformed quotient of the nil-Hecke algebra NH†a is the quo-
tient algebra of NHa modulo the ideal generated by P .�1/.

In the case where †D f0N g (ie P .X /DX N ), this algebra is known as the level N

cyclotomic quotient of NHa , which we denote by NHN
a . We aim to now generalize

the following result of Lauda:

Proposition 3.4 [25, Proposition 5.3] There are isomorphisms of graded algebras

(1) Z.NHN
a /Š H�.Gr.a;N //,

(2) NHN
a ŠMat.a!;Z.NHN

a //.
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(Here H�.Gr.a;N // denotes the cohomology ring with coefficients in C of the Grass-
mannian of complex a–planes in CN .)

To generalize this to arbitrary †, we will adapt Lauda’s method of proof to our setting.

Definition 3.5 Let XD f�1; : : : ; �ag and Y D fy1; : : :ybg be two alphabets of vari-
ables. We denote the ring of symmetric polynomials in X by Sym.X/ and the ring
of polynomials separately symmetric in X and Y by Sym.XjY /. For layout we
sometimes abbreviate Sym by S. The complete symmetric polynomials hi.X/ in X
can be defined via their generating function:

1X
iD0

hi.X/t
i
D

Y
�2X

.1� t�/�1:

The elementary symmetric polynomials ei.X/ in X are defined by
1X

iD0

ei.X/t
i
D

Y
�2X

.1C t�/;

and finally we define the complete symmetric functions in X�Y , denoted hi.X�Y /,
by

1X
iD0

hi.X�Y /t i
D

Q
y2Y .1� ty/Q
�2X.1� t�/

:

Note that this gives the explicit formula

hk.X�Y /D
kX

iD0

.�1/iei.Y /hk�i.X/:

Definition 3.6 Let XD f�1; : : : ; �ag be an alphabet of a variables (of degree 2) and
B D fb1; : : : ; bN g an alphabet of N variables (of degree 2). The following is an
explicit description of the GL.N /–equivariant cohomology (with C coefficients) of
the Grassmannian Gr.a;N / of complex a–planes in CN :

H�GL.N /.Gr.a;N //Š
Sym.XjB/

hhN�aC1.X�B/; : : : ; hN .X�B/i
:

This is a rank
�
N
a

�
graded free module over Sym.B/ŠH�GL.N /.�/; see [42, Section 2.3]

and references therein. If we quotient H�GL.N /.Gr.a;N // by the relations bi D 0 we
recover the well-known description of the ordinary cohomology ring of the Grassman-
nian

H�.Gr.a;N //Š
Sym.X/

hhN�aC1.X/; : : : ; hN .X/i
:
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We can also quotient H�GL.N /.Gr.a;N // by sending B to †, an arbitrary multisubset
of N complex numbers. The result is the C–algebra

H†
a WD

Sym.X/
hhN�aC1.X�†/; : : : ; hN .X�†/i

;

which we call the †–deformed cohomology ring of Gr.a;N /. It is a flat deformation
of H�.Gr.a;N //, in particular it has complex dimension

�
N
a

�
. We use the following

notation for its defining ideal:

I†a WD hhN�aC1.X�†/; : : : ; hN .X�†/i � Sym.X/:

Proposition 3.7 There are isomorphisms of algebras

(1) Z.NH†a /ŠH†
a ,

(2) NH†a ŠMat.a!;H†
a /.

Proof To explain the context we first go through a proof of Proposition 3.2, following
the exposition in [25, Section 5].

Let X WD f�1; : : : ; �ag be an alphabet of a variables and denote by Ha the abelian
subgroup of CŒX� WD CŒ�1; : : : ; �a� generated by all monomials �˛1

1
� � � �

˛a
a with

0� ˛i � a� i . Then Ha has rank a! and CŒX�ŠHa˝Sym.X/ as graded Sym.X/–
modules. In particular, the generators of Ha give a basis for CŒX� as a free graded
Sym.X/–module and EndSym.X/.CŒX�/ŠMat.a!;Sym.X//. It is easy to check that
the nil-Hecke generators �i and @i act as Sym.X/–module endomorphisms of CŒX�
and hence there is a homomorphism

� W NHa!Mat.a!;Sym.X//:

Lauda [24] has shown that this is an isomorphism of graded algebras, which proves
Proposition 3.2.

Let ˛ D .˛2; : : : ; ˛a/ be a sequence with 0� ˛i � a� i and write x�˛ WD �˛2

2
� � � �

˛a
a ,

then we can partition the above basis for Ha into .a � 1/! ordered subsets B˛ WD

f�a�1
1
x�˛; : : : ; �1x�

˛; x�˛g indexed by sequences ˛ as above. The orders on B˛ extend
to a total order on the basis of H˛ and with respect to this ordered basis the action of
�1 under the isomorphism � is given by a block diagonal matrix of .a� 1/! identical
blocks (the restriction to the span of the B˛ ) of the form

�.�1/D

0BBBBB@
e1 1 0 � � � 0

�e2 0 1
: : :

:::
:::

:::
: : :

: : : 0
:::

:::
: : : 0 1

.�1/a�1ea 0 � � � � � � 0

1CCCCCA ;
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where we write ei WD ei.X/ for the i th elementary symmetric polynomials in X.

The image of the ideal hP .�1/i under the isomorphism � is determined by the matrix
equation 0D �.P .�1//D P .�.�1//. To explicitly compute the right-hand side of this
matrix equation we first describe powers of �.�1/.

Lemma 3.8 If we write

�.�1/
k
D

0B@ bk
1;1

: : : bk
1;a

:::
:::

bk
a;1

: : : bk
a;a

1CA ;
then the bk

i;j satisfy (and are completely determined by) the relations

bk
i;j D

�
hkCi�j �

Pi�1
lD1 hi�lb

k
l;j

for j � k;

ıiCk;j for j > k:

(Here we use the shorthand hi WD hi.X/ for the i th complete symmetric polynomial
in X. In particular, the first row of �.�1/k has entries hk ; : : : ; hkC1�a .)

Proof Provided that the bk
i;j satisfy the above set of relations, it is clear that they

are completely determined by it. We prove the former by induction on k . For k D 1

the second relation is immediate, so we only have to check that the entries in the first
column of �.�1/ satisfy the first relation (with j D 1). This holds since

h1Ci�1�

i�1X
lD1

hi�l.�1/l�1el D

iX
lD0

hi�l.�1/lel„ ƒ‚ …
D0

� .�1/iei D .�1/i�1ei :

For the induction step, we assume the relations hold for bk
i;j and will deduce the relations

for bkC1
i;j . First note that since �.�1/ has the identity matrix as .a�1/�.a�1/–minor,

we get bkC1
i;jC1

D bk
i;j for all 0 � i � a and 0 � j < a. It is then immediate that the

bkC1
i;j for all 0� i � a and j � 2 satisfy the required relations, and we only have to

check the relations between the entries bkC1
i;1

in the first column by induction on i .
The case i D 1 is given by

bkC1
1;1
D

aX
lD1

.�1/l�1elb
k
1;l D

aX
lD1

.�1/l�1elhkC1�l D 0� .�1/�1e0hkC1 D hkC1
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and, assuming it holds for all smaller indices, the case for i C 1 is given by

bkC1
iC1;1

D

aX
lD1

.�1/l�1elb
k
iC1;l D

aX
lD1

.�1/l�1el

�
hkCiC1�l �

iX
rD1

hiC1�r bk
r;l

�

D

aX
lD1

.�1/l�1el.hkCiC1�l/�

iX
rD1

hiC1�r

� aX
lD1

.�1/l�1elb
k
r;l

�

D h.kC1/C.iC1/�1�

iX
rD1

hiC1�r bkC1
r;1

:

Lemma 3.9 Denoting

�.P .�1//D

0@ c1;1 � � � c1;a
:::

:::
ca;1 � � � ca;a

1A ;
we have c1;i D hNC1�i.X�†/, and all other ci;j lie in the ideal I†a generated by the
entries of the first row.

Proof Since � is an algebra isomorphism, we have

�.P .�1//D P .�.�1//D

NX
lD0

.�1/lel.†/�.�1/
N�l ;

and hence the entries are given by

ci;j D

NX
lD0

.�1/lel.†/b
N�l
i;j :

We then compute that the entries in the first row are

c1;j D

NX
lD0

.�1/lel.†/b
N�l
1;j D

NX
lD0

.�1/lel.†/hN�lC1�j D hN�jC1.X�†/:

All other entries ci;j are determined by the entries in the first row by a similar recursion
to the case of �.�1/k ; assume i > 1, then we have

ci;j D

NX
lD0

.�1/lel.†/b
N�l
i;j D

NX
lD0

.�1/lel.†/

�
hN�lCi�j �

i�1X
rD1

hi�r bN�l
r;j

�

D hNCi�j .X�†/�
i�1X
rD1

hi�r

NX
lD0

.�1/lel.†/b
N�l
r;j
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D hNCi�j .X�†/�
i�1X
rD1

hi�r cr;j :

The following (by induction on s ) shows that hNCs.X�†/ 2 I†a for every s > 0:

hNCs.X�†/D
NCsX
lD0

.�1/lel.†/hNCs�l D

NX
lD0

.�1/lel.†/hNCs�l

D

NX
lD0

.�1/lel.†/

�
�

NX
rD1

.�1/r er hNCs�l�r

�

D�

NX
rD1

.�1/r er hNCs�r .X�†/:

It then follows (again by induction on i ) that ci;j 2 I†a for all i > 1.

Since the (two-sided) ideal generated by a matrix A is equal to the ideal of matrices
with entries taking values in the ideal generated by the entries of A, Lemma 3.9 shows
that taking the quotient of Mat.a!;Sym.X// by the ideal �.hP .�1/i/ is equal to the
quotient of Mat.a!;Sym.X// by matrices with entries in the ideal I†a . This shows that
NH†a ŠMat.a!;H†

a /. Moreover Z.NH†a / is isomorphic via � to Z.Mat.a!;H†
a //D

H†
a ida! ŠH†

a .

Remark 3.10 Note that as far as the center Z.NH†a / D eaNH†a ea is concerned,
there is nothing special about �1 : in eaNH†a ea the relation eaP .�j /ea D 0 holds for
every 1� j � a.

3.2 Decomposing the †–deformed Grassmannian cohomology ring

The following is equivalent to Theorem 1.1 in the special case of the
VaCN–colored

unknot.

Theorem 3.11 Let �1; : : : ; �l be pairwise distinct complex numbers and N1; : : : ;Nl

natural numbers such that
Pl

iD1 Ni DN and let †D f�N1

1
; : : : ; �

Nl

l
g be the multiset

containing �i exactly Ni times. There is an isomorphism of C–algebras

H†
a Š

M
P

ajDa
0�aj�Nj

lO
jD1

H
Nj
aj :
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Definition 3.12 Let X D f�1; : : : ; �ag be an alphabet of a variables and H†
1
D

CŒ��=hP .�/i. Then we define T†
a WD hP .�1/; : : :P .�a/i and identify

aO
iD1

H†
1 Š

CŒX�

T†
a

DWR†
a :

The symmetric group Sa acts on this by permuting tensor factors or, in other words,
by permuting the �i . Denote by

Va
H†

1
the vector space of antisymmetric tensors inNa

iD1 H†
1

and by
VaCŒ�� the vector space of antisymmetric tensors in

Na
iD1 CŒ��.

The latter we identify with antisymmetric polynomials in CŒX�. In both cases, we
denote the antisymmetrization map by

Antisym.�/D 1

a!

X
w2Sa

�.w/w.�/:

Recall that �� D
Q

1�i<j�a.�j ��i/ denotes the Vandermonde determinant. Multiply-
ing by �� is a vector space isomorphism from Sym.X/ to

VaCŒ�� and equips the latter
with the pushforward algebra structure: if ��f;��g 2

VaCŒ�� for f;g 2 Sym.X/,
then

.��f /� .��g/ WD��.fg/:

Lemma 3.13 The pushforward algebra structure on
VaCŒ�� descends to the quotientVa

H†
1

, and multiplication by �� descends to an algebra isomorphism

H†
a
Š
�!

Va
H†

1 :

Proof It suffices to check that �� �I†a � T†
a . We then have the composition of linear

maps

H†
a D

Sym.X/
I†a

��
Š

VaCŒ��

�� � I
†
a

�
VaCŒ��VaCŒ��\T†

a

Š

VaCŒ��CT†
a

T†
a

D Antisym
� aO

iD1

H†
1

�
D
Va

H†
1 ;

which is surjective, and hence must be an isomorphism for dimensional reasons.

We now check that the generators of I†a are mapped into T†
a under multiplication

by �� . Let 1� j � a; then we have

��hN�aCj .X�†/D
NX

iD0

.�1/iei.†/��hN�aCj�i.X/
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D

NX
iD0

.�1/iei.†/
X
w2Sa

�.w/�
a�1CN�aCj�i

w.a/
�a�2
w.a�1/ � � � �

1
w.2/

D

X
w2Sa

�.w/.�
j�1

w.a/
P .�w.a///�

a�2
w.a�1/ � � � �

1
w.2/ 2 T†

a :

Here we have used the identity ��hk.X/ D
P
w2Sa

�.w/�a�1Ck
w.a/

�a�2
w.a�1/

� � � �1
w.2/

,
which is clear from the defining formula for the Schur polynomials

�˛.X/ WD
det1�i;j ;�m.�

j̨Ca�j

i /

det1�i;j ;�m.�
a�j
i /

D
det1�i;j ;�m.�

j̨Ca�j

i /

��

and the identity hk.X/D �.k/.X/.

Proof of Theorem 3.11 By the Chinese remainder theorem we know that

CŒ��

hP .�/i
Š

lM
iD1

CŒ��

h.� ��i/Ni i
;

so let 1�.�/ 2CŒ�� be a representative for the idempotent that picks out the summand
corresponding to the root � 2†. Thus we get the algebra isomorphism

H†
1 D

CŒ��

hP .�/i
Š

lM
iD1

1�i
.�/H†

1 :

In the following we make liberal use of the canonical isomorphism

aO
jD1

H†
1 Š

CŒX�

T†
a

DR†
a :

A set of minimal idempotents in R†
a is given by f1x� WD

Qa
jD1 1�j .�j /g, where

x�D .�1; : : : ; �a/ ranges over all a–tuples of roots appearing in †. The symmetric
group Sa acts on CŒX� and R†

a by permuting the indices of the variables �i and on
tuples x� by permuting roots. For w 2 Sa we have

w.1x�/D
aY

jD1

1�j .�w.j//D
aY

jD1

1�
w�1.j /

.�j /D 1w�1.x�/:

Given an a–element multiset ADf�
a1

1
; : : : ; �

al

l
g we write �A WD .�1; : : : ; �2; : : : ; �l/

for the corresponding tuple ordered by index. Every x� can be written as x�D ��1.�A/
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for a � 2 Sa and a multiset A, and this presentation is unique if we restrict the choice
of � to a set of coset representatives7 T of

Ql
iD1 Sai

in Sa .

With these conventions in place, we can decompose R†
a into Sa –invariant direct

summands:

(3-4) R†
a Š

M
a–element multisets A

of roots

M
�2T

�.1�A
/R†

a„ ƒ‚ …
Sa–invariant

:

Taking antisymmetric components respects the decomposition on the right-hand side
into Sa –invariant direct summands. Thus, our goal is to compute the antisymmetric
component of an (outer) summand on the right-hand side. Consider the projectionM

�2T

�.1�A
/R†

a ! 1�A
R†

a

which is given by multiplying by the idempotent 1�A
. An elementary computation

shows that this restricts to a vector space isomorphism

(3-5) � W X1 WDAntisymSa

�M
�2T

�.1�A
/R†

a

�
!AntisymQl

iD1 Sal

.1�A
R†

a /DWX2;

where the right-hand side denotes the vector space of tensors y in 1�A
R†

a which
are antisymmetric for the action of

Ql
iD1 Sal

� Sa ; that is, w.y/ D �.w/y for all
w 2

Ql
iD1 Sal

. The inverse for � is given by  .y/ WD
P
�2T �.�/�.1�A

y/.

Fix AD f�
a1

1
; : : : ; �

al

l
g as above; then for 1� i � l we denote

Xi WD

�
�

1C
Pi�1

kD1 ak
; : : : ; �Pi

kD1 ak

�
; T �i2†

a WD hP .�/ j � 2Xii;

Ri WD
CŒXi �

T
�i2†
a

and 1�i
WD

Y
�2Xi

1�i
.�/:

Under the canonical isomorphism R†
a Š

Nl
iD1 Ri we have 1�A

R†
a Š

Nl
iD1 1�i

Ri

and

(3-6) X2 D AntisymQl
iD1 Sal

.1�A
R†

a /Š

lO
iD1

AntisymSai
1�i

Ri DWX3:

7For convenience we choose T to be simultaneously a set of right and left coset representatives.
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Since 1A WD
P
�2T �.1�A

/ is Sa –invariant and 1�A
is
Ql

iD1 Sai
–invariant, we may

note for later use that we also have

X1 D AntisymSa

�M
�2T

�.1�A
/R†

a

�
D 1A AntisymSa

.R†
a /;

X2 D AntisymQl
iD1 Sal

.1�A
R†

a /D 1�A
AntisymQl

iD1 Sai

.R†
a /;

with respect to the multiplication in R†
a .

From the Chinese remainder theorem we know that � 7! w C �i gives an algebra
isomorphism

�W 1�i
.�/

CŒ��

hP .�/i
!

CŒ��

h.� ��i/Ni i
!

CŒw�

hwNi i

and this extends to an Sai
–equivariant algebra isomorphism

�W 1�i
Ri D 1�i

CŒXi �

T
�i2†
a

!
CŒXi �

h.� ��i/Ni j � 2Xii
!

CŒWi �

hwNi j w 2Wii
;

where Wi D fw1; : : : ; wai
g is an auxiliary alphabet. It follows from Lemma 3.13 that,

when restricted to the antisymmetric component, � gives the vector space isomorphism

(3-7) �W X3 D

lO
iD1

AntisymSai
1�i

Ri!

lO
iD1

H Ni
ai
:

The composition of the vector space isomorphisms in equations (3-5), (3-6) and (3-7)
thus gives a decomposition of the Sa –invariant direct summands of (3-4), as required
by the statement of the theorem. However, we further must check that the composition
is an algebra isomorphism. In fact it is not, but it is close and the discrepancy is not
hard to fix.

To see this, we compute the pushforward of the multiplication � on X1 under � . Let
x;y 2 X1 be represented by antisymmetric polynomials in CŒX� and denote by xy

their product in R†
a and by x �y their product in

Va
H†

1
. We compute

�.x/��.y/ WD �.x �y/D �

�
xy

��

�
D 1�A

xy

��
D c

.1�A
x/.1�A

y/Ql
iD1�i

;

where
�i WD

Y
1C

Pi�1
kD1 ak�r<s�

Pi
kD1 ak

.�r � �s/

is the Vandermonde determinant in the subalphabet Xi�X and cD1�A

�Ql
iD1�l

�
=�� .

We will see in Lemma 3.14 that c represents a unit in 1�A
R†

a and clearly it is
Ql

iD1 Sai
–

invariant. It follows that �=c is still a vector space isomorphism X1!X2 , and the
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pushforward of the multiplication � on X1 under it is given by

(3-8) .�=c/.x/� .�=c/.y/ WD .�=c/.x �y/D
.1�A

x/.1�A
y/Ql

iD1�i

:

We now equip each tensorand AntisymSai
1�i

Ri of X3 — see (3-6) — with the mul-
tiplication � given by multiplying representing antisymmetric polynomials and then
dividing by the appropriate Vandermonde determinant �i . Then (3-8) says that
�=cW X1! X2 composed with the canonical isomorphism X2! X3 is an algebra
isomorphism with respect to the tensor product algebra structure on X3 . Since � sends
�i to

Q
0�r<s�ai

.wr C�i �ws ��i/D�w , an easy check shows that � in (3-7) is
also an algebra isomorphism.

To summarize the proof, we assemble the algebra isomorphisms:

H†
a Š

Va
H†

1 Š

M
a–element multisets A

of roots

1A AntisymSa
.1AR†

a /

Š

M
P

ajDa

ADf�
a1
1
;:::;�

al
l
g

lO
iD1

AntisymSai
1�i

Ri Š

M
P

ajDa
0�aj�Nj

lO
iD1

H Ni
ai
:

The first isomorphism was introduced in Lemma 3.13, and the second one comes
from the direct sum decomposition of .H†

1
/˝a into Sa –invariant summands. The

third isomorphism is assembled from the isomorphisms �=c from (3-8) on summands
composed with the canonical isomorphism in (3-6), and the last one comes from the
Chinese remainder theorem and the inverse of the isomorphism from Lemma 3.13;
see (3-7). The last isomorphism also shows that a summand indexed by a multiset A

of roots is nonzero if and only if A is actually a multisubset of †.

In the proof we have claimed that cD 1�A

�Ql
iD1�l

�
=�� represents a unit in 1�A

R†
a .

This is clear from the following useful lemma:

Lemma 3.14 Let R be a finite-dimensional quotient of a polynomial ring R D

CŒx1; : : : ;xa�=I and let V .I/ � Ca be the vanishing set of I . Then we have the
decomposition

RŠ
M
v2V .I /

1vR;

where 1v are minimal idempotents and 1vR is isomorphic to Rpv , the localization
of R at the complement of the maximal ideal .x1� v1; : : : ;xa� va/=I . For elements
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xf 2 1vR we have

(3-9) xf is not a unit () xf is a zero divisor () f .v/D 0;

where f is any lift of xf to CŒx1; : : : ;xa�.

Proof Since R is a commutative Artinian ring, it decomposes uniquely into local
commutative Artinian rings, one for each maximal ideal of R. Maximal ideals of R are
in bijection with maximal ideals of CŒx1; : : : ;xa� that contain I . The maximal ideals
of CŒx1; : : : ;xa� are exactly Iv WD .x1 � v1; : : : ;xa � va/ for v 2 Ca and I � Iv if
and only if f .v/D 0 for all f 2 I , which holds if and only if v 2 V .I/. It follows that

RŠ
M
v2V .I /

Rpv Š

M
v2V .I /

1vR;

where pv WD Iv=I , Rpv denotes the localization of R at R npv and 1v 2 R is the
idempotent corresponding to the summand Rpv . The statement about nonunits is then
clear from the explicit description of the local ring Rpv .

Now, in the case of c 2 1�A
R†

a for �AD .�1; : : : ; �a/D .�1; : : : ; �1; �2; : : : ; �l/ we
have

c�1
ˇ̌
�i 7!�i

D 1�A

��Ql
iD1�l

ˇ̌̌̌
�i 7!�i

D 1�A

Y
�i¤�j; i<j

.�i ��j /¤ 0

and (3-9) shows that c�1 , hence also c , is a unit.

Remark 3.15 We have the isomorphism

H†
a D

Sym.X/
hhN�aC1.X�†/; : : : ; hN .X�†/i

Š
CŒe1.X/; : : : ; ea.X/�

hhN�aC1.X�†/; : : : ; hN .X�†/i

and it follows by considering the generating function of hj .X�†/ that the vanishing
set of this ideal is given by f.e1.A/; : : : ; ea.A// jA�†; jAj D ag �Ca . Applying
Lemma 3.14 reproves the fact that the minimal idempotents of H†

a are indexed by
a–element multisubsets A � †. However, we should check that the idempotent
corresponding to A identified in this remark — call it 10

A
— equals 1A as defined in

the proof of Theorem 3.11. For this it suffices to check that 1A.X/jX7!A ¤ 0 2 C .
Recall that, by definition, 1�i

.�/D 10
�i
.�/ in CŒ��=hP .�/i, and hence 1�i

.�j /D ı
j
i .

Further, �A D .�1; : : : ; �a/ was defined as the a–tuple consisting of elements �i
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of A, ordered by index i , so we compute

1A.X/jX 7!A D 1A.X/j.�1;:::;�a/7!�A
D

X
�2T

�.1�A
/.�A/

D

X
�2T

aY
jD1

1��.j/.�j /D

aY
jD1

1�j .�j /D 1:

Corollary 3.16 Let A be an a–element multisubset of † and f 2 Sym.X/; then f
represents a unit in 1AH†

a if and only if f .A/¤ 0.

Proof This is immediate from (3-9) and Remark 3.15.

3.3 Thick calculus for nil-Hecke quotients

We now deduce relations for the nil-Hecke quotients NH†a using the thick graphical
calculus introduced in [21] and detailed above in Section 2.3. Note that in the quotients
NH†a the element ea is still an idempotent and it projects onto a direct summand
isomorphic to Z.NH†a /ŠH†

a , but in general it is not a minimal idempotent due to
the decomposition of H†

a given in Theorem 3.11.

Corollary 3.17 The collection of symmetric polynomials

A

a

WD 1A D

X
�2T

�.1�A
/ 2 Sym.X/

for A�† and jAj D a, which were introduced in the proof of Theorem 3.11, give a
complete collection of minimal orthogonal idempotents of Z.NH†a /ŠH†

a . In other
words, in H†

a we have that for a–element multisubsets A and B of †,

(3-10)
A

B

a

D

8̂̂̂<̂
ˆ̂:

A

a

if AD B;

0 if A¤ B;

and the thick edge decomposes in H†
a into a sum of 1A –decorated thick edges:

(3-11)
a

D

X
a–element multisets

A � †

A

a
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Proof This is immediate.

Proposition 3.18 (nonadmissible colorings by multisubsets) Let A, B and C be
a–, b– and .aCb/–element multisubsets of †; then in NH†

aCb
we have

(3-12)
C

A B

aC b

a b

D

C

A B

aC b

a b

D 0 if A]B ¤ C

and we call such a coloring nonadmissible. (Here ] denotes the multiset sum, or
disjoint union, of multisets.)

Labelings by idempotents corresponding to multisubsets of † that “add up” at mergers
and splitters (ie A]B D C ) are called admissible.

Proof Denote by X1 , X2 and X the alphabets of operators �j on the strands of
thickness a, b and aC b , respectively, and by H†

a .X1/, H†
b
.X2/ and H†

aCb
.X/ the

algebras of decorations on these strands.

Equation (2.61) in [21] then implies that the algebras of decorations on the diagrams

aC b

a b

and

aC b

a b

are both given by
H†

aCb
.X/˝H†

a .X1/˝H†
b
.X2/

hei.X/� ei.X1 tX2/ j i > 0i
:

In the following we write hXDX1 tX2i for the ideal hei.X/� ei.X1 tX2/ j i > 0i.
Let A, B and C be a–, b– and .aCb/–element multisubsets of †, respectively. Then
the algebra of additional decorations on the idempotent-decorated diagrams in (3-12)
is

(3-13)
1C .X/H

†
aCb

.X/˝1A.X1/H
†
a .X1/˝1B.X2/H

†
b
.X2/

hXDX1tX2i\
�
1C .X/H

†
aCb

.X/˝1A.X1/H†
a .X1/˝1B.X2/H

†
b
.X2/

� :
The numerator here is a direct summand of H†

aCb
.X/˝H†

a .X1/˝H†
b
.X2/ that can

be picked out by localizing at the complement of the maximal ideal

hei.X/� ei.C /; ei.X1/� ei.A/; ei.X2/� ei.B/ j i > 0i:
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If C ¤A]B then there is a j 2N such that ej .C /� ej .A]B/¤ 0 2C ; thus, by
Corollary 3.16, ej .X/� ej .X1tX2/ is a unit in the numerator. Taking the quotient in
(3-13) then collapses the direct summand, and (3-12) then follows.

Corollary 3.19 (idempotent decoration migration) Let A be an .aCb/–element
multisubset of †; then in NH†

aCb
we have:

A

aC b

a b

D

X
A1]A2DA
jA1jDa

A

A1 A2

aC b

a b

D

X
A1]A2DA
jA1jDa

A1 A2

aC b

a b

(3-14)

A

aC b

a b

D

X
A1]A2DA
jA1jDa

A

A1 A2

aC b

a b

D

X
A1]A2DA
jA1jDa

A1 A2

aC b

a b

(3-15)

In particular, for multisubsets A, B �† with jAj D a and jBj D b , we have:

A B

aC b

a b

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

A]B

A B

aC b

a b

if A]B �†;

0 otherwise;

(3-16)

A B

aC b

a b

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

A]B

A B

aC b

a b

if A]B �†;

0 otherwise.

(3-17)

Proof For (3-14) we compute

A

aC b

a b

(3-11)
D

X
A1;A2�†

jA1jDa; jA2jDb

A

A1 A2

aC b

a b

(3-12)
D

X
A1]A2DA
jA1jDa

A

A1 A2

aC b

a b
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(3-12)
D

X
A1]A2DA
jA1jDa
B�†
jBjDaCb

B

A1 A2

aC b

a b

(3-11)
D

X
A1]A2DA
jA1jDa

A1 A2

aC b

a b

and the proof of (3-15) is analogous. Equations (3-16) and (3-17) follow similarly.

4 The †-deformed foam category N Foam†

We define the 2–category N Foam† of †–deformed slN –foams as the quotient of
the foam 2–category N Foam, described in Section 2.1, by the following additional
relation on 1–labeled foam facets:

(4-1) �N

1

D

N�1X
iD0

.�1/N�i�1eN�i.†/ �i

1

Since this equation is not degree-homogeneous, we hence ignore the grading on foams
(ie to be precise we first pass to the ungraded version of N Foam, then impose this
relation to pass to N Foam† ).

This quotient is motivated by the deformed nil-Hecke algebra quotient introduced in
the last section. Indeed, the 2–representation LUQ.glm/!N Foam gives an action of
the nil-Hecke algebra on the latter, and in order to obtain an action of the †–deformed
nil-Hecke quotient, we impose this local foam analog of (3-2).

Definition 4.1 We let ˆ†W LUQ.glm/!N Foam† be the composition of the foamation
2–functor ˆmW LUQ.glm/!N Foam and the quotient 2–functor N Foam!N Foam† .

It follows that the 2–functor ˆ†W LUQ.glm/!N Foam† factors through the quotient
of LUQ.glm/ in which we’ve imposed the relation that dots satisfy the equation

P
�
�

�
D 0I

hence, the thick calculus equations in Corollaries 3.17 and 3.19 and Proposition 3.18
correspond to analogous foam relations in N Foam† . In fact, the thick calculus
relations can be seen as intersections of foam relations with planes. More precisely, we
get:
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Lemma 4.2 The algebra of decorations of a k–labeled foam facet, or alternatively, the
endomorphism algebra of the k–labeled web edge, carries an action of H†

k
. In fact,

from the 2–representation on deformed matrix factorizations in Section 4.4 it follows
that there is an isomorphism

End
�

k
�
ŠH†

k :

Compare with [36, Remark 4.1]. Moreover, we have the following important conse-
quences:

� Every k–labeled foam facet in N Foam† splits into a sum over foam facets
colored by minimal idempotent decorations corresponding to k–element multi-
subsets of †.

� Equation (3-12) then implies that a foam is zero whenever it contains a seam
whose adjacent facets are nonadmissibly colored by idempotents. Here, similar
to the case of thick calculus diagrams, we say that a foam is admissibly colored
precisely when around any seam the sum of the multisets of the idempotents
coloring two of the facets equals the multiset coloring the third. Consequently,
foam relations analogous to those of Corollary 3.19 hold in a neighborhood of
any seam.

4.1 Foam splitting relations

Convention 4.3 Let A;B �† be disjoint multisubsets of roots:

� 2A D) � 62 B and � 2 B D) � 62A:

For the duration, unless otherwise stated, we use red and blue colored foam facets
to denote facets decorated by the orthogonal idempotents 1A and 1B , respectively.
We use green as a generic color for both undecorated foam facets and for decorations
by 1A]B .

Lemma 4.4 The following foams are invertible as 2–morphisms in N Foam† :

aCb

b

a ;

b

a
aCb
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Proof Decorating the b D c case of the foam relations in (2-4) by red and blue
idempotents, we get:

aCb

b

a
aCb

D

X
˛2P.a;b/

.�1/jy̨j

b

a

b
aCb

a

�˛

�y̨

(4-2)

b

a

aCb
D

X
˛2P.a;b/

.�1/jy̨j

b

a

�˛

�y̨

(4-3)

Let X and Y be the alphabets assigned to the red and blue foam facets where �˛
and �y̨ are placed. We check that

P
˛2P.a;b/.�1/jy̨j�˛.X/�y̨.Y / represents a unit in

1AH†
a .X/˝1BH†

b
.Y / by using the criterion in Corollary 3.16:X

˛2P.a;b/

.�1/jy̨j�˛.X/�y̨.Y /
ˇ̌
X 7!A
Y 7!B

D

X
˛2P.a;b/

.�1/jy̨j�˛.A/�y̨.B/

D

Y
�2A

Y
�2B

.���/¤ 0 2C:

A proof for the second equality can eg be found in [31, Example 5, page 65], and the
product is nonzero because A and B consist of distinct roots.

Let
P

r fr .X/gr .Y / be a representative of
�P

˛2P.a;b/.�1/jy̨j�˛.X/�y̨.Y /
��1 in the

ring H†
a .X/˝H†

b
.Y /; then the following are explicit inverses for the decorated unzip

and zip foams: 0B@
aCb

b

a

1CA
�1

D

X
r

b

a
aCb

fr

gr

;

0B@ b

a
aCb

1CA
�1

D

X
r aCb

b

a

fr

gr

:
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Lemma 4.5 Let p and q be symmetric polynomials in a and b variables, respectively.
Then the following relations hold:

b

a

b
aCb

a

p

q

D

b

a

b
aCb

a

q

p

;

b

a

a
aCb

b

p

q

D

b

a

a
aCb

b

p

q

;(4-4)

X
˛2P.a;b/

.�1/jy̨j

aCbaCb

b

a

a

b

�˛

�y̨

D

aCb

b

a

:(4-5)

Proof We again use
P

r fr .X/gr .Y /, which is a representative of the inverse ofP
˛2P.a;b/.�1/jy̨j�˛.X/�y̨.Y / in H†

a .X/˝H†
b
.Y /. For the first relation in (4-4)

we compute:

b

a

b
aCb

a

p

q

(4-2)
D

X
r

aCb

b

a
aCb

fr p

gr q

D

X
r

aCb

b

a
aCb

fr

gr q

p

(4-2)
D

b

a

b
aCb

a

q

p

Equation (4-5) then follows via:

X
˛2P.a;b/

.�1/jy̨j

aCbaCb

b

a

a

b

�˛

�y̨

D

X
˛2P.a;b/

.�1/jy̨j

aCbaCb

b

a

a

b�y̨

�˛

(4-2)
D

aCb

b

a

D

aCb

b

a
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For the second relation in (4-4) we now have:

b

a

a
aCb

b

p

q

D

X
˛2P.a;b/

.�1/jy̨j

b

a

a

aCb

b

a

b

�˛

�y̨

p

q

D

X
˛2P.a;b/

.�1/abCjy̨j

b

a

a

aCb

b

b

a

�y̨

�˛

q

p

D

X
˛2P.a;b/

.�1/abCjy̨j

b

a

a

aCb

b

b

a

�y̨

�˛

q

p

D

X
˛2P.a;b/

.�1/jy̨j

b

a

a

aCb

b

a

b

�˛

�y̨

q

p

D

b

a

a
aCb

b

p

q

Lemma 4.6 The following foams are invertible as 2–morphisms in N Foam† :

b

aCb

a

;
b

aCb

a

Proof Given the relations8

b
aCbaCb

a

D

X
˛2P.a;b/

.�1/jy̨j

b
aCb

a �˛

�y̨

;(4-6)

8In relation (4-7) the green shading is meant to indicate a decoration by the mixed idempotent 1A]B .
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aCb

D

X
˛2P.a;b/

.�1/jy̨j

aCb

b

aCb

a�˛

�y̨

;(4-7)

and the decoration migration relations (4-4), it follows immediately that

X
˛2P.a;b/

.�1/jy̨j
b

aCb

a �˛

�y̨

and
X

˛2P.a;b/

.�1/jy̨j b

aCb

a �˛

�y̨

are inverse to the digon removal and creation foams, respectively.

Equation (4-6) is just an idempotent decorated version of relation (2-2). Equation (4-7)
is a stronger, more local version of (4-5), but we cannot use the same trick to deduce
it. To de-clutter the pictures, we compute this relation in NH†

aCb
; the result can then

be transferred using the foamation functor ˆ† . Alternatively, one can interpret the
following nil-Hecke pictures as 2d –slices through the corresponding foams.

We begin by using (2-9) to explode a thick edge into thin edges, and then combine this
relation with Corollary 3.19 to slide the decoration by the multiset onto the thin edges.
In the simplest case, where the multiset contains only one root � , we have:

f�; : : : ; �g

a

D

a

� ��a�1 1a�2

� �� �

Now suppose that AD f�; : : : ; �g and B D f�; : : : ; �g with �¤�, then similarly we
have:

A]B

aC b

D

X
.�aCb;:::;�1/

is a reordering of
.�;:::;�;�;:::;�/ aC b

� �: : :

: : :

�aCb�1 b�1b

�bC1 �b�aCb �1

Next we reorder the decorations on the strands (at the expense of signs) so that all
� idempotents lie on the left, all � idempotents on the right, and in both groups of
strands the number of additional dots decreases from left to right, so the right-hand
side above becomes:
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X
l1>���>la

˙

aC b

� �� �l1 rbr1la

: : : : : :� �� �

Here the sum is taken over all strictly decreasing sequences aC b � 1 � l1 > � � � >

la � 0 and r1; : : : ; rb are the remaining b numbers between 0 and aC b � 1 in
decreasing order. Clearly the set of such sequences .l1; : : : ; la/ is in bijection with
partitions .l1 � .a� 1/; l2 � .a� 2/; : : : ; la/ whose Young diagrams fit into a a� b

box. If .l1; : : : ; la/ corresponds to a partition ˛ 2 P .a; b/, then it is easy to check
that .r1; : : : ; rb/ corresponds to y̨ 2 P .b; a/ and the sign introduced by reordering
decorations on strands is .�1/jy̨j . Finally, we use (2-9) to express the a strands on the
left and the b strands on the right in terms of strands of thickness a and b , respectively.
This expresses the decorations .l1; : : : ; la/ and .r1; : : : ; rb/ on the thin strands as Schur
polynomials �˛ and �y̨ , and using Corollary 3.19 we can slide the idempotents onto
the thick strands to obtain:

X
˛2P.a;b/

.�1/jy̨j

aC b

A B

�˛ �y̨

This gives the thick calculus version of (4-7) for this choice of A and B .

The case of general A and B is very similar. The main difference is that there are more
possible reorderings of the decoration by roots on thin strands. However, if we interpret
a nil-Hecke picture decorated by idempotents � and � as a sum over all possible ways
of replacing the instances of � by elements of A and of the � by elements of B , then
the proof of the special case immediately carries over to the general setting.

4.2 Karoubi envelope technology

Let W be a web, ie a 1–morphism in N Foam† ; then the foam versions of Proposition
3.18 and Corollary 3.19 show that the identity 2–morphism idW decomposes into a
sum of idempotent foams — one for each coloring of the edges of W by multisubsets
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of roots that is compatible at vertices. We now proceed to a 2–category .N Foam†/^

in which these idempotents split.

Definition 4.7 Let Kar.N Foam†/ denote the 2–category obtained by passing to the
Karoubi envelope in each Hom–category of N Foam† . We define .N Foam†/^ to be
a certain full 2–subcategory of Kar.N Foam†/ that contains as 1–morphisms all the
pairs .W;FW / where W is a web in N Foam† and FW is a decorated identity foam
on W in N Foam† such that each a–labeled facet is decorated by an idempotent 1A

corresponding to an a–element multisubset A�†. More precisely, .N Foam†/^ has
the same objects as N Foam† and has Hom–categories given by the full subcategories
of the corresponding Hom–categories of Kar.N Foam†/ that contain all formal direct
sums of pairs .W;FW /.

Note that, in particular, N Foam† embeds as a full 2–subcategory of .N Foam†/^ ,
since the identity foam over any web can be expressed as the sum over all possible
colorings of its facets. Practically speaking, .N Foam†/^ can be viewed as the 2–
category in which
� objects are sequences aD .a1; : : : ; am/ for m� 0 as in N Foam† ,
� 1–morphisms are formal direct sums of webs where, in addition to a labeling,

each a–labeled edge is colored by an idempotent 1A corresponding to an a–
element multisubset A�†, and

� 2–morphisms are matrices of linear combinations of foams as in N Foam† , but
with each facet incident upon a web edge decorated by the idempotent coloring
the edge.

As in the case of thick calculus diagrams and foams, we call a web admissibly colored
if at each trivalent vertex the union of the multisets coloring two of the edges equals
the third. Since nonadmissibly colored foams are zero, it follows that a nonadmissibly
colored web is isomorphic to the “zero web” (ie the zero object in the relevant Hom–
category).

We now point out that in .N Foam†/^ there are three9 ways of composing morphisms,
and establish our notation for them:
� Sequences, webs, and foams can be placed side by side (ie on objects this is

concatenation of sequences). We denote this operation by t.
� Webs and foams can be composed in the 1–morphism direction, ie glued hori-

zontally along their left and right boundaries, and we denote this by ˝.
� Foams can be composed in the 2–morphism direction by gluing vertically, and

we write ı for this operation.

9This is due to the fact that N Foam is secretly a 3–category.
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We will also utilize two notions of “equivalence” for colored webs in .N Foam†/^. A
1–morphism W W o1!o2 in .N Foam†/^ is isomorphic to a 1–morphism V W o1!o2

if there exist 2–morphisms F1W W ! V and F2W V !W in .N Foam†/^ such that

F2 ıF1 D idW and F1 ıF2 D idV :

In this case we write V Š W . Next, a 1–morphism W W o1 ! o2 in .N Foam†/^

is weakly equivalent to a 1–morphism V W u1 ! u2 if there exist 1–morphisms
LW o2! u2 , L�1W u2! o2 , RW u1! o1 and R�1W o1! u1 such that

L˝W˝RŠV; L�1
˝LŠ1o2

; L˝L�1
Š1u2

; R˝R�1
Š1o1

; R�1
˝RŠ1u1

:

We now aim to use these notions of equivalence to “split” the foam 2–category
.N Foam†/^ into pieces in which webs and foams are colored by multisubsets of
† containing only one root � 2 †. Although we do not prove a full decomposition
theorem (see Remark 4.28), we will see in Section 5.2 that the splitting results obtained
here suffice to decompose the link invariant as in Theorem 1.1.

Let F be a foam with an admissible coloring of facets by multisubsets of † and let
� 2† be a root. We want to define the foam F� that results from forgetting everything
in F that is not colored by �. More precisely, consider the underlying CW-complex
of F ; in it we erase all 2–cells that are colored with multisubsets not containing � and
smoothen out all seams that have become obsolete. We define a foam structure on the
resulting CW-complex by setting the label of each remaining 2–cell to be the (positive)
multiplicity of � in the corresponding color on F . This is again a foam by admissibility
of the original coloring. Finally we decorate each facet with the idempotent of the
multisubset containing only instances of �.

Definition 4.8 The �–component of an admissibly colored foam F , denoted by F� ,
is the foam in .N Foam†/^ constructed via the procedure just described.

Example 4.9 If �1 ¤ �2 are two roots in † and colors red, blue and green indicate
decorations with idempotents corresponding to multisets f�a

1
g, f�b

2
g and f�a

1
; �b

2
g,

respectively, then we have, for example:

F D

b

a

aCb ; F�2
tF�1

D

b

a
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In the following, we will use the shorthand
F
� F� WD F�l

t � � � tF�1
.

Definition 4.10 Let W be a colored web in .N Foam†/^ .

� The �–component W� of W is the (co)domain of .idW /� , the �–component
of the identity foam on W . As for foams, we define the shorthand

F
�W� WD

W�l
t � � � tW�1

.

� W is called split if W D
F
�W� . More generally, for any colored web W 0 , the

split web
F
�W 0

�
is called the split web associated to W 0 .

Example 4.11 With coloring conventions as in Example 4.9 we have, for example:

W D ; W�2
tW�1

D

Next, let oD .a1; : : : ; am/ be an object in .N Foam†/^ and suppose that for every
entry ai of o we are given an ai –element multisubset Ai D f�

ai;1

1
; : : : ; �

ai;l

l
g � †;

we call such a collection A D .A1; : : : ;Am/ an incidence condition for o . We then
consider the identity web on o with strands colored by multisubsets Ai , and use the
following notation for the (co)domain of the associated split web:

(4-8)
G
�

o� WD .a1;l ; : : : ; am;l ; : : : ; a1;1; : : : ; am;1/:

Definition 4.12 Let LW o!
F
� o� be the combinatorially simplest web from o toF

� o� that is colored with the multiset Ai on the strand starting at the entry ai of
o and colored with the multiset f�ai;j

j g on the strand terminating at the entry ai;j ofF
� o� . Analogously we define RW

F
� o�! o to be the combinatorially simplest web

from
F
� o� to o that is colored with f�ai;j

j g on the strand starting at the entry ai;j ofF
� o� and colored with Ai on the strand terminating at the entry ai of o .

We now explicitly describe L (and R) before giving illustrations in Examples 4.13
and 4.14. L is given as a composition L WD Ll�1˝ � � � ˝L1 with one component
Lj for each root �j , except the last one. Each Lj itself can be decomposed as
Lj D L1;j ˝ � � � ˝Lm;j , where Lm;1 splits off the �1–component from the strand
coming out of am and continues it below the remainder of the am strand. Lm�1;1

splits off the �1–component from the strand coming out of am�1 , merges it with the
remainder of the am strand, which contains no �1 any more, and splits it off on the
other side. In general Li;j splits the �j –component off the remainder of the ai –strand,
and passes it through the remainders of all ak–strands with k > i , which contain no �j

any more. The composite Lj thus is the combinatorially simplest web that splits the
�j –components off all ak strands and continues them as a bundle of parallel strands
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below the ai remainder strands and above the bundles of �j 0 –colored parallel strands
for j 0 < j that have been split off by Lj 0 . It is not hard to see that the composition
L is, up to planar isotopy, the combinatorially simplest web from o to

F
� o� with

the prescribed boundary colorings. The colored web R can be obtained similarly, or
simply by reflecting L horizontally.

Given a colored web W W o1! o2 , we will mostly be interested in the webs

LW o2!

G
�

o2;� and RW
G
�

o1;�! o1

constructed from the incidence conditions for o2 and o1 determined by the coloring
of left and right boundary edges of the colored web W . In particular, we can then
consider the colored web L˝W ˝R.

Example 4.13 In the case of the identity web 1o on oD .aCb/, which is colored by
the multisubset f�a

1
; �b

2
g �†, and using the coloring conventions from Example 4.9,

we have the following prototypical example:

LD ; RD

Example 4.14 For a slightly more generic example, let oD .2; 1; 3/ with the incidence
condition AD .f�1; �3g; f�2g; f�

2
2
; �3g/, then

F
� o�D .1; 1; 1; 2; 1/ and L takes the

following form:

L1 DL1;1L3;2L2;2

2

1

3

1

1

1

2

1

D

where we use Convention 4.19 below in the second diagram to write the first colored
web more succinctly. Here web strands colored by multisets containing multiple roots
are green, and those containing only one of �1 , �2 or �3 are red, blue, and orange
(respectively).

Lemma 4.15 Suppose o is an object in .N Foam†/^ and fix an incidence condition
for o . Let L and R be the corresponding webs constructed in Definition 4.12. Then
we have

R˝LŠ 1o and L˝RŠ 1F
� o� :
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Proof L and R are both compositions of mergers (and splitters) whose two incoming
(outgoing) strands are colored with disjoint multisubsets. Moreover, splitters and
mergers in R are paired up with mergers and splitters in L — in reverse order. Re-
peated application of Lemmas 4.4 and 4.6 allows the construction of foams giving the
isomorphism (see also (4-9) below).

Definition 4.16 Let W be a colored web in .N Foam†/^ . W is called boundary-split
if it is of the form L˝W 0˝R for some colored web W 0W o1! o2 in .N Foam†/^

and for LW o2!
F
� o2;� and RW

F
� o1;�! o1 as in Definition 4.12. L˝W 0˝R

is then called the boundary-split web associated to W 0 .

Remark 4.17 Lemma 4.15 shows that every web W 0 in .N Foam†/^ is weakly
equivalent to its associated boundary-split web L˝W 0˝R.

Our goal is now to show that a boundary-split web W is isomorphic to its associated
split web

F
�W� . Unless stated otherwise, we use red and blue colors to denote

colorings of web edges with disjoint multisubsets of †. Green denotes mixed or
arbitrary colorings.

Lemma 4.18 The following isomorphisms hold in .N Foam†/^ :

(4-9) Š ; Š ;

Š ;(4-10)

Š :(4-11)

The reflections of these relations across the horizontal axis in the plane also hold.

Proof Equation (4-9) follows from Lemmas 4.4 and 4.6. For (4-10) we have

LHS
(4-9)
Š

(2-1)
Š

(4-9)
Š

(2-1)
Š

(4-9)
Š

(2-1)
Š RHS;
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where we have used (the splitter version of) relation (2-1) three times. Equation (4-11)
follows similarly.

Convention 4.19 We define the following shorthand for “crossings” of web edges
colored by disjoint multisubsets:

(4-12) DW

Using this, (4-10) and (4-11) take the form

Š ;

Š :

Definition 4.20 We call a web semisplit if it is boundary-split and each edge is either
colored by a multisubset containing a single root or a multisubset containing exactly
two distinct roots, in which case the edge (green) is required to have a neighborhood
as on the left-hand side of (4-12).

Lemma 4.21 Every boundary-split web L˝W ˝R in .N Foam†/^ is isomorphic
to a semisplit web W 0 .

Proof We inductively split off roots, starting with �1 . For this we draw in red edges
colored with multisubsets of the single root �1 , in blue edges colored with multisubsets
not containing �1 , and in green edges colored by mixed multisubsets. By (4-9) we
can open a red–blue digon in every green edge of L˝W ˝R and get an isomorphic
web. Next we replace all vertices that are adjacent to at least two green edges with
isomorphic webs that only contain green edges of type (4-12), eg for an all-green
merger web:

Š Š

Š Š
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color roots occurring in multisubset (with some multiplicity)

red only �i

orange exactly one �k with k < i

magenta exactly two distinct �k with k � i

blue some roots �k with k > i

green �i and at least one �k with k > i

cyan exactly one �k with k < i and at least one with k > i

black �i , exactly one �k with k < i and at least one with k > i

Table 1

The case of an all-green splitter web is completely analogous, and vertices with only
two adjacent green edges are even easier to split. The local replacements of green
vertices as above patch together to give an isomorphism to a web in which green edges
are flanked by red–blue mergers and splitters in the crossing configuration from (4-12).

For the induction step i � 1 7! i we use the coloring on edges given in Table 1

We can assume that only these colorings are present. Moreover, orange strands can inter-
act with {other orange, red, blue, green} strands only in crossing configurations around
{magenta, magenta, cyan, black} edges, respectively. Furthermore, such crossing
configurations are the only occurrences of magenta, cyan and black edges.

The goal for the induction step is to split red edges off green and black edges. As before
we introduce red–blue digons in every green edge and locally replace green vertices.
Every remaining green edge is in red–blue crossing configuration or bounds red–blue
on one side and orange–black on the other side (and every black bounds orange-green
on both sides). We get rid of all black edges by splitting off their red component:

Š Š

Š Š

Note that now red and orange strands interact with each other and with strands that
contain higher-index roots (blue) only in crossing configurations (around magenta,
green and cyan edges), as required in the induction step. For the next step old {blue,
green, cyan} edges become {green, black, black} or {blue, cyan, cyan} depending
on whether they contain �iC1 or not. Orange stays orange, red becomes orange, and
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magenta stays magenta. This colored web satisfies the induction hypothesis for the next
step. After repeating this process for each root, it terminates in a semisplit web W 0 .

Proposition 4.22 Every boundary-split web L˝W ˝R is isomorphic to its associated
split web

F
�W� .

Proof The proof proceeds in two steps; first we use Lemma 4.21 to find an isomorphism
from L˝W ˝R to a semisplit web W 0 . Clearly W , L˝W ˝R and W 0 have equal
associated split webs. It remains to completely separate the �i –components in W 0 .
Again we proceed by induction and start by peeling off the �1–component W 0

�1
. For

this, consider a web-isotopy t 7!W 0
�1
.t/ for t 2 Œ0; 1�, ie an ambient isotopy of W 0

�1

in the plane which preserves the left-directedness of web edges and which moves W 0
�1

off the rest, W 0 nW 0
�1

. If we superimpose W 0
�1
.t/ and W 0 nW 0

�1
we get a homotopy

t 7!W 0.t/ of graphs of valence � 6. If the original web-isotopy is generic, the graphs
W 0.t/ actually are of valence � 5 and there are only finitely many t for which the
valence is 5 — these correspond to the moves in (4-10) and (4-11). In general, 4–valent
vertices in W .t/ should be understood as composition of a merge- and a split-3–valent
vertex, either in crossing configuration as in (4-12), or splittable as in (4-9). Thus,
t 7!W 0.t/ is a web-isotopy except in finitely many points t where the number and
valence of vertices changes locally. It is not hard to see that the possible local changes
are exactly the ones from Lemma 4.18 and hence can be realized by isomorphism
foams.

For example, the following illustrates how to move a single red web edge across a blue
vertex:

(4-11)
Š

(4-9)
Š

(4-9)
Š

A composition of the appropriate local isomorphism foams, thus, splits off W 0
�1

from W 0 . One then proceeds to split off, in exactly the same way, W 0
�2

and so
forth up to W 0

�l�1
. The result then follows since W 0

�i
DW�i

for 1� i � l .

Remark 4.23 Proposition 4.22 and Lemma 4.15 together show that every web W in
.N Foam†/^ is weakly equivalent to its associated split web

F
�W� .

4.3 A web splitting functor

We now extend Proposition 4.22 to the 2–categorical level. Ideally, we would like a
2–endofunctor of .N Foam†/^ which fully splits foams into pieces carrying colorings
of only one root, but the naïve splitting procedure does not give a well-defined 2–functor

Geometry & Topology, Volume 20 (2016)



Deformations of colored slN link homologies via foams 3479

(a counterexample can be constructed which sends the left- and right-hand sides of (4-3)
to unequal multiples of each other). Instead, we take a more direct approach and define
a family of functors between Hom–categories in .N Foam†/^ using compositions
with explicit webs and foams, which will suffice to split the complex assigned to a
tangle.

We begin by fixing, for each colored web, an isomorphism between its associated
boundary split and split webs. Precisely, let W W o1 ! o2 be a colored web in
.N Foam†/^ and suppose that LW o2 !

F
� o2;� and RW

F
� o1;� ! o1 are the

webs given in Definition 4.12. Proposition 4.22 guarantees that there is an isomorphism
TW W L˝W ˝R!

F
�W� , so fix one and denote its inverse by BW . We have some

freedom in choosing TW , and in Section 5.2 we will specify a convenient choice for
webs that arise as resolutions of tangle diagrams.

For the next definition, suppose F W W1 ! W2 is a foam between colored webs
W1;W2W o1! o2 in .N Foam†/^ with identical incident conditions on the boundary
sequences o1 and o2 , respectively. Further, consider the webs L and R and the
isomorphism foams TW2

and BW1
described above.

Definition 4.24 Let � WD �2 ı�1 be the composition of

�1W Hom.W1;W2/! Hom.L˝W1˝R;L˝W2˝R/;

F 7! idL˝F ˝ idR;

and

�2W Hom.L˝W1˝R;L˝W2˝R/! Hom
�G
�

W1;�;
G
�

W2;�

�
;

F 7! TW2
ıF ıBW1

:

Proposition 4.25 Fix objects o1 , o2 2 .N Foam†/^ . Then the maps

�W Hom.W1;W2/! Hom
�G
�

W1;�;
G
�

W2;�

�
for colored webs W1;W2W o1! o2 with identical incident conditions on o1 and o2 ,
respectively, are vector space isomorphisms that respect the composition ı of foams.

Proof It is clear that the maps �1 respect composition of foams and for �2 it follows
from the definition of BW as the inverse of TW .

Next, note that �2 is clearly a vector space isomorphism, since it is pre- and post-
composition with isomorphism foams. To see that �1 is as well, let L�1 and R�1 be
the webs obtained by reflecting L and R horizontally. We have isomorphism foams
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�LW L
�1˝L! 1o2

and �RW R˝R�1! 1o1
, and an inverse for �1 is then given

by  W G 7! .�L˝ idW2
˝�R/ ı .idL�1 ˝G˝ idR�1/ ı .��1

L
˝ idW1

˝��1
R
/.

Finally, suppose that A and B are incidence conditions for objects o1 and o2 in
.N Foam†/^ , respectively. By expressing each facet incident upon a left or right
boundary as a sum over colorings, we see that the Hom–categories in .N Foam†/^

split into direct sums

(4-13) Hom.o1; o2/Š
M
A;B

HomA!B .o1; o2/;

where the sum is over all incidence conditions A and B and HomA!B .o1; o2/

denotes the full subcategory of Hom.o1; o2/ generated by webs that are colored with
the multisets prescribed by A and B on the right and left boundary edges, respectively.

Definition 4.26 Let W be a web in HomA!B .o1; o2/ and suppose that
F
� o1;�

and
F
� o2;� are the objects given in (4-8); then we also denote by � the functor

HomA!B .o1; o2/! Hom
�G
�

o1;�;
G
�

o2;�

�
defined on webs W and foams F in HomA!B .o1; o2/ by

�.W / WD
G
�

W� and �.F / WD TW2
ı .idL˝F ˝ idR/ ıBW1

:

We call the functors � web splitting functors. Note that their definition depends on our
choice of isomorphism foam TW for every colored web W in HomA!B .o1; o2/. In
Section 5.2 we show that with a suitable choice of TW the functors � not only split
webs, but also certain foams between them. We give a prototypical example of this:

Example 4.27 With coloring conventions as in Example 4.9 we have

(4-14) �

0BBB@
aCb

1CCCA D

b

a

:

Indeed, this follows from Lemma 4.4 using
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idL WD

b
aCb

a

; idR WD

b

a
aCb

;

T WD
aCb

b

a ; B WD
X

r

b

a
aCb

fr

gr

:

Remark 4.28 For colored webs W1 and W2 in .N Foam†/^ we conjecture that the
map O

�

Hom.W1;�;W2;�/! Hom
�G
�

W1;�;
G
�

W2;�

�
;

given by placing foams colored by individual roots side by side, is an isomorphism of
vector spaces. In particular, this would mean that every foam between split webs can
be split into noninteracting colored components, possibly with additional decorations.
One could prove such a result by extending Proposition 4.22 to the 2–categorical level,
finding local foam moves which move the �i –colored component away from everything
colored by �j for j > i .

Having done this, we could compose the web splitting functor � with the inverse of the
above isomorphism to produce an honest foam splitting functor. However, in order to
extend this functor to a 2–endofunctor of .N Foam†/^ , we must verify compatibility
with horizontal composition, which will depend on our choice of the TW . Additionally,
decorations will arise while pulling the foams apart which are difficult to control. In
Section 5.2 we carry out this analysis in the limited case of foams arising as differentials
in the complex assigned to a tangle, and use this to prove Theorem 1.1.

4.4 A 2–representation of N Foam†

In this section, we prove that the deformed slN foam 2–category N Foam† is suf-
ficiently nondegenerate, by constructing a 2–representation onto a version of Wu’s
deformed matrix factorizations [42]. Indeed, let HMF denote the 2–category given as
follows:
� objects are pairs .R; w/ where R is a C–algebra and w 2R,
� 1–morphisms .R; w/! .S; v/ are matrix factorizations X over R˝C S with

potential v�w , and
� 2–morphisms X ! Y are morphisms in the homotopy category of matrix

factorizations.
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We will assume the basics concerning matrix factorizations, which can eg be found
in Khovanov and Rozansky [22]; see Carqueville and Murfet [5] for details about the
2–category of matrix factorizations.

Our result is the following:

Theorem 4.29 There is a 2–representation from the deformed foam 2–category
N Foam† to the 2–category of matrix factorizations. Moreover, this 2–representation
assigns to a web in N Foam† the same matrix factorization as in Wu’s construction of
deformed link homology.

Of course, it suffices to assign pairs .R; w/ to sequences, the same matrix factorizations
as in [42] to generating webs, and morphisms of matrix factorizations to generating
foams, and then check that the images of the foam relations hold in HMF. However,
we can simplify this check using an argument similar to that in [36]. Indeed, there
it is shown that the undeformed foam category N Foam is equivalent to a certain
2–subcategory of the quotient of PUQ.gl1/ by the N–bounded weights. Since the
2–category of matrix factorizations is idempotent complete, it suffices to construct a
2–representation of UQ.gl1/ sending non-N–bounded weights to zero and satisfying
(the preimage of) the additional foam relation in N Foam† , which then induces a
2–functor from N Foam† .

Practically speaking, this shows that we need only check the foam relations coming
from relations in UQ.gl1/ and not those coming from the thick calculus in PUQ.gl1/,
which are used to split certain idempotent foams in N Foam. This simplifies the
number of relations needed to be checked (more details below).

We hence begin by following Wu, assigning a pair .R; w/ to an object .a1; : : : ; ak/

in N Foam† . We set RD Sym.X1 j � � � jXk/, the C–algebra of partially symmetric
functions in the alphabets X1; : : : ;Xk , where Xi consists of ai variables. We let
wDQ.X1[� � �[Xk/, where Q0.X /D .NC1/P .X / with P .X / as in (3-3), Q.0/D0,
and for a polynomial T .X / D

Pk
iD0 ciX

i 2 CŒX � we set T .X/ D
Pk

iD0 cipi.X/,
where pi.X/ denotes the i th power sum symmetric polynomial in the alphabet X.

Given sequences a and b of elements of a C–algebra, we will follow Khovanov and
Rozansky [22] and denote by fa;bg the Koszul matrix factorization they determine.
We then assign the Koszul matrix factorizations

(4-15)
˚
.Ui/

kCl
iD1

; .ei.W [X/�ei.Y //
kCl
iD1

	
;

˚
.�Ui/

kCl
iD1

; .ei.Y /�ei.W [X//kCl
iD1
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over Sym.W jXjY / with potentials Q.W [ X/ �Q.Y / and Q.Y / �Q.W [ X/
(respectively) to the generating webs

kC l

k

l

; kC l

k

l

;

where jW j D k , jXj D l and jY j D kC l . Here the polynomials Ui are chosen so that

Q.W [X/�Q.Y /D
kClX
iD1

�
ei.W [X/� ei.Y /

�
Ui :

Note that these are the same matrix factorizations that Wu assigns to trivalent vertices.

We now assign a morphism of matrix factorizations to each generating foam. To do so,
we utilize the concept of stabilization of linear factorizations. Recall from Carqueville
and Murfet [4] that a linear factorization L over a ring R with potential w 2 R is
a Z=2Z–graded R–module, equipped with an odd degree differential d satisfying
d2 D w id. Informally, a linear factorization is a matrix factorization where we loosen
the requirement that the R–module be free. In particular, matrix factorizations give
examples of linear factorizations.

Following [4], define the stabilization of a linear factorization L over .R; w/ to be a
finite-rank matrix factorization ML over .R; w/ together with a morphism of linear
factorizations � W ML!L inducing a quasi-isomorphism of Z=2Z–graded complexes

(4-16) HomR.K;ML/
�ı
�!HomR.K;L/

for any finite-rank matrix factorization K over .R; w/.

We use stabilizations as follows: suppose that we are given linear factorizations L1

and L2 with corresponding stabilizations MLi
; then, the diagram

(4-17)

ML1

�1
// L1

��

ML2

�2
// L2

induces a map on homology

H�.HomR.L1;L2//! H�.HomR.ML1
;L2//! H�.HomR.ML1

;ML2
//:

Since H0 gives the morphisms in the homotopy category of matrix (or linear) factoriza-
tions, we can construct a morphism stab.'/ 2HomHMF.ML1

;ML2
/ from a morphism
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'W L1!L2 which is the unique (up to homotopy) morphism such that the diagram

ML1

�1
//

stab.'/
��

L1

'

��

ML2

�2
// L2

commutes. We will use this to define the morphisms of matrix factorizations assigned
to generating foams, and to check that the foam relations are satisfied.

In doing so, we utilize facts about the stabilization of Koszul matrix factorizations. Let
fa;bg be a Koszul factorization over a C–algebra R, then there exists a morphism of
linear factorizations fa;bg!R=.b/, where the latter is viewed as a linear factorization
concentrated in degree zero.

Proposition 4.30 [4, Corollary D.3] If b is a regular sequence in R, then the map
fa;bg !R=.b/ is a stabilization.

Convention 4.31 In the following we use a large number of quotient rings of the form

Sym.X1j � � � jXa jXaC1 j � � � jXaCb/

hei.X1[ � � � [Xa/� ei.XaC1[ � � � [XaCb/ j i > 0i

where Sym.X1j � � � jXa jXaC1 j � � � jXaCb/ denotes the subring of CŒX1[� � �[XaCb �

of polynomials symmetric in each of the alphabets X1; : : : ;XaCb separately. Since
the quotient has the effect of identifying symmetric polynomials in the alphabets
X1[ � � � [Xa and XaC1[ � � � [XaCb , we use the shorthand

Sym.X1j � � � jXa jXaC1j � � � jXaCb/

hX1[ � � � [Xa DXaC1[ � � � [XaCbi

for such a quotient ring. We further abbreviate by writing m for a 1–element alphabet
XD fmg in this notation.

Proposition 4.30 implies that the matrix factorizations appearing in (4-15) are stabiliza-
tions of the linear factorizations

Sym.W jXjY /=hW [XD Y i and Sym.W jXjY /=hY DW [Xi:

Moreover, denoting the matrix factorization associated to a web W by MF.W /, we
have that, for the maps
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MF. /
�
�!

Sym.V jY /
hV D Y i

;

MF. /
�
�!

�
Sym.V jLjM/

hV D L[Mi

�
˝Sym.LjM/

�
Sym.LjMjY /
hL[MD Y i

�
;(4-18)

MF. /
�
�!

�
Sym.V jW jL/
hV [W D Li

�
˝Sym.L/

�
Sym.LjXjY /
hLDX[Y i

�
;

MF. /
�
�!

Sym.V jX/
hV DXi

˝C
Sym.W jY /
hW D Y i

;(4-19)

MF
� �

�
�!

�
Sym.V jW jL/
hV [W D Li

�
˝Sym.L/

�
Sym.LjXjY /
hL[XD Y i

�
;

MF
� �

�
�!

�
Sym.W jXjM/

hW [XDMi

�
˝Sym.M/

�
Sym.V jMjY /
hV [MD Y i

�
;

the matrix factorizations are (homotopy equivalent to) stabilizations of the indicated
linear factorizations. The fact that these maps are stabilizations follows in each case,
except for the digon web in the second line, since the matrix factorizations are homotopy
equivalent to Koszul factorizations, and the indicated linear factorization is isomorphic
to the corresponding linear factorization which the Koszul factorization stabilizes.

The matrix factorization assigned to the digon web is a tensor product of Koszul
factorizations, and we must slightly generalize Proposition 4.30 to show that it sta-
bilizes the tensor product of the corresponding linear factorizations. Recall from [4,
Proposition D.1] that Proposition 4.30 can be proven as follows. One first considers the
Koszul complex fbg over R given by the regular sequence b . There exists a homotopy
equivalence (over C ) between fbg and R=.b/ which specifies a deformation retract
datum. Tensoring with the finite-rank matrix factorization K_ (the dual of the matrix
factorization K ) and applying perturbation gives a deformation retract datum over C
between K_˝R=.b/ and K_˝fa;bg which gives the quasi-isomorphism in (4-16).
Here we utilize the isomorphism of matrix factorizations K_˝R M ŠHomR.K;M /.

This same method (which is adapted from the results in Dyckerhoff and Murfet [11])
shows that the stabilization result for the digon web follows provided the tensor product
of Koszul complexes associated to the web only has homology in degree zero, and which
equals the corresponding tensor product of linear factorizations. We hence consider the
Koszul complexes C1 D fei.V /� ei.L[M/g and C2 D fei.L[M/� ei.Y /g over
the rings Sym.V jLjM/ and Sym.LjMjY /, respectively. Let S D Sym.LjM/, then
the homology of C1˝S C2 is computed using the Künneth spectral sequence to be

Hi.C1˝S C2/Š

�
Hi.C1/˝S

Sym.LjMjY /
hL[MD Y i

�
˚TorS

1

�
Hi�1.C1/;

Sym.LjMjY /
hL[MD Y i

�
;
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which is only nonzero when i D 0 (since Sym.V jLjM/=hV D L[Mi is a free
S –module) in which case it equals�

Sym.V jLjM/

hV D L[Mi

�
˝S

�
Sym.LjMjY /
hL[MD Y i

�
;

as desired.

We now use (4-17) to assign a morphism of matrix factorizations to each generating
foam, noting that the domain web of each generator is mapped to a matrix factorization
which is homotopy equivalent to a finite-rank matrix factorization. We send

(4-20)

aCb

b

a

7!

�
�L
�
˝x1 7!

�
x1 if �D ba;

0 all other � 2 P .a; b/;

�
;

aCba

b

7! .x1 7! x1˝x1/;
aCb

b

a

7! .x1˝x1 7! x1˝x1/;

aCb

b

a
7!

�
x1˝x1 7!

X
˛2P.a;b/

.�1/jy̨j�V
y̨
˝�Y

˛

�
;

c

b

a

bCc

aCb

7! .x1˝x1 7! x1˝x1/;

c

b

a
aCb

bCc

7! .x1˝x1 7! x1˝x1/;

where in each case the map on the right-hand side describes a morphism between the
linear factorizations from (4-19) corresponding to the top and bottom webs and xf
denotes the equivalence class of f in the quotient. In these formulae, �W

�
denotes

the Schur polynomial in the alphabet W corresponding to the partition �, and ba D

.b; : : : ; b/, the partition of ab given by a sequence of b ’s of length a. We can now
proceed with the proof of Theorem 4.29.

Proof It suffices to show that the foam relations hold in HMF. As we mentioned
above, rather than check them all by hand, we will instead adopt a method of proof
from [36]. By an argument similar to that in Section 4 of that paper, it suffices to
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construct a family of 2–functors ˆmW UQ.glm/!HMF which kill non-N–bounded
weights and the 2–morphism

P
�
�

�
;

and so that the triangles

UQ.glm/ //

�m ''

UQ.glmC1/

�mC1

��

HMF

commute. From the definition of the foamation 2–functor in [36] and our above
assignments to webs and foams, it is clear how such 2–functors should be defined.
To see that they are well-defined, we must check that all relations in UQ.glm/ are
satisfied. This in turn implies that we need only check the foam relations which are
the analogs of the relations in UQ.glm/. Since (4-20) implies that the image in HMF
of the “Matveev–Piergallini (M–P) foam relations” from (2-1) are satisfied, things
simplify even more, and we finally deduce that we need only check a subset of the
general foam relations, which we verify below.

To do so, we will again employ stabilization. The matrix factorizations through which
the (images of the) foam relations factor are all given as tensor products of Koszul
factorizations assigned to trivalent webs, and we can consider the corresponding tensor
product of the linear factorizations they stabilize. This gives a diagramN

i MLi;1

�1
//

stab.'1/
��

N
i Li;1

'1

��N
j MLj ;2

�2
//

stab.'2/ ��

N
j Lj ;2

'2��
:::

stab.'l�1/
��

:::

'l�1

��N
k MLk;l

�k
//
N

k Lk;l

which commutes up to homotopy. Each side of a foam relation gives rise to such a
diagram, and the morphism of matrix factorizations is uniquely determined by the
morphism of linear factorizations, provided the matrix factorizations assigned to the
bottom webs are homotopic to ones which are finite-rank, and provided that the matrix
factorizations assigned to the top webs (ie the bottom left in the above diagram)
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are homotopic to ones which stabilize the corresponding tensor product of linear
factorizations.

The finite-rank condition for the bottom webs follows similarly to results of Wu [43] in
the undeformed case. To see that the matrix factorizations corresponding to the top webs
(are homotopic to ones which) stabilize the corresponding linear factorizations, we note
that we’ve already shown this for [36, Equations (3.9)–(3.12)]. For the remainder of the
relations we argue as for the digon web above. It again suffices to show that the tensor
product of Koszul complexes associated to the top web has homology only in degree
zero, and equal to the corresponding tensor product of linear factorizations. In each
case, this follows from (possibly repeated) use of the Künneth spectral sequence, and
the fact that Sym.V jW jX/=hV [W DXi is a free module, over both Sym.V jW /

and Sym.X/. Note that this is essentially a version of results of Becker [3, Theorem 2]
and Webster [40, Theorem 2.5] for deformed potentials.

We now check the requisite foam relations (with numbering and notation from [36]
for the remainder of this section) by confirming that the corresponding maps of linear
factorizations agree.

[36, Equation (3.9)] By [36, Remark 3.2], this only needs to be checked when � Des ,
and then follows since multiplication by ei.X/ on Sym.V jW jX/=hV [W DXi is
equal to multiplication by ei.V [W /.

[36, Equation (3.10), first relation] Again by [36, Remark 3.2], it suffices to check
the case when �˛ D 1. Let V and Y be alphabets with kC 1 variables. It suffices to
show that the morphism corresponding to the right-hand side is the identity, hence we
compute

S.V jY /
hVDY i

//

x1

S.V jmjM/

hVDm[Mi
˝

S.mjMjY /
hm[MDY i

//

x1˝x1

S.V jmjM/

hVDm[Mi
˝

S.mjMjY /
hm[MDY i

//

mk˝x1

S.V jY /
hVDY i

;

x1;
� // � // � //

which verifies the relation. (Recall that S stands for Sym here.)

[36, Equation (3.10), second relation] It suffices to check the case when with aD

1D b , by the M–P relation, isotopy, and [36, (3.9)]. We compute the left-hand side:

S.W jX/
hWDXi

//

x1

S.W jmjn/
hWDfm; ngi

˝
S.mjnjX/
hfm; ngDXi

//

x1˝x1

S.W jmjn/
hWDfm; ngi

˝
S.mjnjX/
hfm; ngDXi

//

f .m/g.n/˝x1;

Sm˝x1
x1˝x1

S.W jX/
hWDXi

;

x1;

0;

� // � //

� //

� //
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while the right-hand side is the negative of the map which is the same as the above,
but with the second map given instead by x1˝x1 7! g.m/f .n/˝x1. Equivalently, this
is the negative of the map which is the same as the above, but instead with the third
map given by xn˝x1 7! x1 and x1˝x1 7! 0. Since xn˝x1 D e1.W /˝x1� Sm˝x1 and
e1.W /˝x1 7! 0 under the final map, this confirms the relation.

[36, Equation (3.11)] The aD 1D b case of this relation is used to deduce that the
image of the 3rd nil-Hecke relation is satisfied. A careful analysis of the proof of [36,
Lemma 3.7] shows that the only remaining version of this relation required are those
when aD 1, b D 2 and aD 2, b D 1, which are used to prove the 2nd Reidemeister
III-like nil-Hecke relation.

In the aD 1D b case, the right-hand side corresponds to the sum of the map

Sym.W jmjn/
hW D fm; ngi

˝
Sym.mjnjX/
hfm; ng DXi

//

x1˝x1

Sm˝x1

Sym.W jX/
hW DXi

//

x1

e1.W /

Sym.W jmjn/
hW D fm; ngi

˝
Sym.mjnjX/
hfm; ng DXi

;

x1˝x1;

mCn˝x1;

� //

� //

� //

� //

and the negative of the map

Sym.W jmjn/
hW D fm; ngi

˝
Sym.mjnjX/
hfm; ng DXi

//

x1˝x1

Sm˝x1

Sym.W jX/
hW DXi

//

0

x1

Sym.W jmjn/
hW D fm; ngi

˝
Sym.mjnjX/
hfm; ng DXi

;

0;

xn˝x1;

� //

� //

� //

� //

which confirms that this map equals the identity, as desired.

For the a D 1, b D 2 case, let jV j D 3 D jY j and jMj D 2. The right-hand side
corresponds to the sum of the map

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MD Y i

//

x1˝x1

Sm˝x1

m2˝x1

Sym.V jY /
hV D Y i

//

x1

e1.V /

e1.V /2�e2.V /

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MD Y i

;

x1;

mCe1.M/˝x1;

m2Cme1.M/Ce1.M/2�e2.M/˝x1;

� // � //

� // � //

� //

� //
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the negative of the map

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MDZi

//

x1˝x1

Sm˝x1

m2˝x1

Sym.V jY /
hV D Y i

//

0

x1

e1.V /

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MDZi

;

0;

e1.M/˝x1;

me1.M/Ce1.M/2˝x1;

� // � //

� // � //

� // � //

and the map

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MDZi

//

x1˝x1

Sm˝x1

m2˝x1

Sym.V jY /
hV D Y i

//

0

0

x1

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MDZi

;

0;

0;

e2.M/˝x1;

� // � //

� // � //

� // � //

which confirms that this map is the identity. The case aD 2, b D 1 follows similarly.

[36, Equation (3.12)] Both sides of this relation are given by

Sym.AjLjV /
hAD L[V i

˝
Sym.LjW jM/

hLDW [Mi
˝

Sym.MjXjY /
hMDX[Y i

��

x1˝x1˝x1_

��Sym.AjS jY /
hAD S[Y i

˝
Sym.S jT jX/
hSD T [Xi

˝
Sym.T jV jW /

hT D V [W i
; x1˝x1˝x1:

Hence, they are equal. In the above, the tensor products are each taken over symmetric
polynomials in the common alphabets between the tensor factors.

[36, Equations (3.13) and (3.14)] It suffices to prove these relations in the case when
aD 1D c ; however, it isn’t much more difficult to verify the general relation. To check
this, we first note that both of the possible ways to construct the crossing

b

a

c
b�c

aCb

aCb
�c
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correspond to the morphism of linear factorizations

Sym.V jW jL/
hV [W D Li

˝
Sym.LjXjY /
hLDX[Y i

//

x1˝x1

Sym.W jMjY /
hW DM[Y i

˝
Sym.V jMjX/
hV [MDXi

;

x1˝x1;
� //

and similarly both ways of constructing the crossing

b

a

c

b�c

aCb
aCb
�c

give the map

Sym.W jMjY /
hW DM[Y i

˝
Sym.V jMjX/
hV [MDXi

//

x1˝x1

Sym.V jW jL/
hV [W D Li

˝
Sym.LjXjY /
hLDX[Y i

;P
˛2P.a;c/

.�1/jy̨j �V
y̨
˝�Y

˛ :� //

The first is clear, and the second follows, for example, since one way of constructing
the sideways crossing is given by the composition:

�!
Š
�! �!

The corresponding morphism of linear factorizations is the composition

S.W jMjY /
hWDM[Y i

˝
S.V jMjX/
hV[MDXi

��

x1˝x1_

��

S.V jW jL/
hV[WDLi

˝
S.LjSjT /
hLDS[T i

˝
S.T jMjY /
hTDM[Y i

˝
S.SjMjX/
hS[MDXi

��

P̨
.�1/jy̨j�V

y̨
˝x1˝x1˝�M

˛_

��

S.V jW jL/
hV[WDLi

˝
S.LjP jY /
hLDP[Y i

˝
S.P jSjM/

hPDS[Mi
˝

S.SjMjX/
hS[MDXi

��

P
˛;ˇ;

.�1/jy̨jc˛
ˇ;
�V
y̨
˝�Y

 ˝�
M
ˇ
˝x1

_

��

S.V jW jL/
hV[WDLi

˝
S.LjXjY /
hLDX[Y i

;
P

2P.a;c/

.�1/jy j�V
y
˝�Y

 ;

where in the summations ˛ 2 P .aC b� c; c/, ˇ 2 P .b� c/ and  2 P .a/, and we
use the fact that �M

ˇ
˝x1 7! 0 under the last map if jˇj � c.b � c/. Given this, the

only time the Littlewood–Richardson coefficient c˛
ˇ;

is nonzero is when ˇ D cb�c
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(so  2 P .a; c/ and y̨ D y ), in which case it equals one. Both of the relations then
follow from the descriptions of these maps.

[36, Equations (3.15) and (3.16)] The linear factorization stabilized by the matrix
factorization corresponding to the top and bottom webs in [36, (3.15)] is�

Sym.P jl jw/
hP D fl; wgi

˝
Sym.w jW jL/
hw[W D Li

�
˝

�
Sym.LjMjz/
hLDM[ zi

˝
Sym.l jMjX/
hl [MDXi

�
;

where all of the tensor products are over polynomials partially symmetric in the common
variables. The map between linear factorizations corresponding to the first term on the
left-hand side of [36, (3.15)] is determined by the fact that

x1˝x1˝x1˝x1 7! x1˝x1˝x1˝x1 and Sw˝x1˝x1˝x1 7! x1˝x1˝xz˝x1

and the second term is determined by

x1˝x1˝x1˝x1 7! 0 and Sw˝x1˝x1˝x1 7! x1˝x1˝xz˝x1� Sw˝x1˝x1˝x1:

The difference between these two maps is thus the identity, confirming the relation.
The check of [36, (3.16)] is completely analogous.

[36, Equations (3.17)–(3.20)] The left-hand side of [36, (3.17)] corresponds to the
morphism of linear factorizations

Sym.V jLjM/

hV D L[Mi
˝

Sym.P jLjW /

hP [LDW i
˝

Sym.MjXjY /
hMDX[Y i

!
Sym.P jV jS/
hP [V D Si

˝
Sym.S jT jY /
hSD T [Y i

˝
Sym.T jW jX/
hT DW [Xi

given by

x1˝x1˝x1 7!
X

˛2P.b;d/; ˇ2P.a;d/

.�1/jy̨jCj
y̌j�P
y̨
�P
y̌
˝�Y

ˇ
˝�X

˛ ;

while the right-hand side is given by

x1˝x1˝x1 7!
X

2P.aCb;d/

c


˛;ˇ
.�1/jy j�P

y
˝�Y

ˇ
˝�X

˛ :

The relation then holds since

�P
y̨
�P
y̌
D

X
y

c
y

y̨ y̌
�P
y

and c
y

y̨ y̌
D c



˛;ˇ
:
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Relation [36, (3.18)] holds since both sides are given by the map

Sym.P jV jS/
hP [V D Si

˝
Sym.S jT jY /
hSD T [Y i

˝
Sym.T jW jX/
hT DW [Xi

!
Sym.V jLjM/

hV D L[Mi
˝

Sym.P jLjW /

hP [LDW i
˝

Sym.MjXjY /
hMDX[Y i

sending x1˝x1˝x1 7! x1˝x1˝x1. The final two relations follow via similar computations.

Isotopy relations All isotopy relations follow from the fact that both way to construct
the “sideways crossings” give the same map in HMF, and the fact that the foam relation

�

and its analogs are satisfied in HMF. Both are direct computations.

Dot relation Finally, the foam relation

P

0@ 1

�

1AD 0

holds via a direct computation that multiplication by P .X / is null-homotopic in
the endomorphism algebra of the Koszul factorization fQ.X /�Q.Y /;X �Y g over
CŒX;Y �.

5 The link invariant

In this section, we assign a complex ŒŒ���† of webs and foams to certain labeled10 tangle
diagrams � , which, up to homotopy equivalence, is an invariant of the corresponding
labeled tangle. We then show how to obtain a link homology isomorphic to that
defined by Wu [42] from this invariant, proving Theorem 1.3. Finally, we use the foam
technology to prove Theorem 1.1.

10In the study of quantum invariants, links and tangles are usually referred to as “colored” by repre-
sentations of a Lie algebra (or, more precisely, a quantum group). Since we reserve the word colored for
webs and foams colored by idempotents, recall that we instead use the nonstandard terminology “labeled”,
which agrees with our use of this word for webs.
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The most precise setting for this invariant is in a certain limiting version of N Foam† .
Note that N Foam† is the direct sum of foam categories N Foam†.K/, where K DPm

iD1 ai is the sum of the entries in an object .a1; : : : ; am/. We have a 2–functor
N Foam†.K/!N Foam†.KCN / given by taking disjoint union with an N–labeled
edge/facet. The natural setting for the tangle invariant11 is the direct limit

N Foam.kCN1/† WD lim
��!

s

N Foam†.kCN s/I

however, the invariant can be viewed in N Foam†.kCN s/ for s sufficiently large.

We begin by defining ŒŒ���† on generating tangles, and then explain how to define the
invariant for general tangles. Given a labeled, oriented tangle diagram � , let c1; : : : ; cr

be the labels of the right endpoints and d1; : : : ; dl be the labels of the left endpoints.
Set

OR.ci/D

�
ci if � is directed out from the i th endpoint,
N � ci if � is directed into the i th endpoint;

OL.di/D

�
di if � is directed into the i th endpoint,
N � di if � is directed out from the i th endpoint;

then ŒŒ� �� is defined to be a complex in the Hom–category

Hom
�
.N; : : : ;N;OR.c1/; : : : ;OR.cr //; .N; : : : ;N;OL.d1/; : : : ;OL.dl//

�
of N Foam

�Pr
iD1 OR.ci/CN s

�† .

For labeled cap and cup tangles we sethh
a

ii†
D

N�a

a
N ;

hh
a
ii†
D

N�a

a
N ;hh

a
ii†
D

N�a

a
N ;

hh
a
ii†
D

N�a

a
N ;

and for labeled, left-directed crossings we use homological shifts of the Rickard
complexes T 1.a;b/ from (2-12) and (2-13) to set

hh
b

aii†
Dˆ†.T 1.a;b//Œmin.a; b/�;

hh
b

aii†
Dˆ†.T �11.a;b//Œ�min.a; b/�;

11Here k depends on the boundary and labeling of the tangle.
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where here Œ�� here denotes a shift in homological degree. (In [36], the crossing also
involved a shift in the quantum grading; however, we omit it from this definition since
this grading is broken in N Foam† .)

Example 5.1 The complex assigned to a negative crossing with a � b — compare
with (2-15) — ishh

b

aii†
D

a

b
b

db
�!

a

b
b�1

db�1
��!�� �

d1
�!

a

b

where the underlined term is in homological degree zero and the differential is given
by:

dk WD

k

Every labeled tangle admits a diagram given as the horizontal composition ˝ of tangles
which are the disjoint union t of labeled, directed identity tangles with one of the
tangles on which we’ve already defined the invariant. We define ŒŒ���† on the disjoint
union of identity tangles and a crossing by first taking the disjoint union of ˆ†.zT 1.a;b//
or ˆ†.zT �11.a;b// with the identity webs (resp. foams) corresponding to the identity
tangle, then taking the disjoint union with N–labeled strands (resp. facets). Finally,
we define the invariant on the disjoint union of identity tangles with a cap or cup by
taking the disjoint union of the relevant webs with the corresponding identity webs
then repeatedly horizontally composing ˝ with webs

N

a
or

a

N

to obtain a web mapping between objects where the top-most label is N in both the
domain and codomain, and then taking the disjoint union with N–labeled strands. Note
that the action of t as well as ˝ on complexes is modeled on the tensor product of
chain complexes, exactly as in Bar-Natan’s canopolis formalism [1].

Example 5.2 For the Hopf link we use the ladder-type link diagram:

N

N

N

N

N�i

jj

i i

N�i
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Proposition 5.3 Given a oriented, framed, labeled tangle � , the complex ŒŒ���† is
independent, up to homotopy, of the diagram used.

Proof Exactly the same as in [36, Theorem 4.8].

In the case that the tangle is actually a labeled link L, all of the boundary points in the
complex ŒŒL��† are N–labeled and all webs in it are endomorphisms of a highest weight
object of the form otop WD .N; : : : ;N /. Hence we can apply the representable functor

taut.�/ WD Hom.1otop ;�/

to ŒŒL��† to obtain a complex of vector spaces. Moreover, we claim that each term in
this complex is finite-dimensional. Indeed, every web in End.otop/ is isomorphic to
a (finite) direct sum of identity webs 1otop . Foam facets with label N are additively
indecomposable, since the only admissible coloring by idempotents is given by the
full multiset †. It follows that endomorphisms of 1otop are all given by the images of
closed diagrams in LUQ.glm/, which act by scalars in N Foam† , confirming our claim.

Denote by KhR†.L/ the homology of this complex.

Theorem 5.4 Up to shifts in homological degree, KhR†.L/ is isomorphic to Wu’s
colored, deformed Khovanov–Rozansky homology of the mirror link L0 .

Proof This result follows in the spirit of the proof of [36, Theorem 4.12]. We cannot
directly apply the methods there, however, since the 2–functor LUQ.glm/!N Foam†

is not a 2–representation in the strict sense, as it doesn’t preserve the grading.

Nevertheless, we can consider the 2–category LU0�N
Q

.glm/
† where we’ve imposed

relation (3-2) for each weight. This implies the specifications of fake bubble parameters
in highest weight to elementary symmetric functions evaluated at †. Given a labeled
link L, we can pull the complex ŒŒL��† back to LU0�N

Q
.glm/

† and simplify until each
term the complex only consists of direct sums of the identity 1–morphism on the
highest weight .N; : : : ;N; 0; : : : ; 0/ in LU0�N

Q
.glm/

† (which maps to the object otop

under ˆ† ).

The homology of the link can be computed entirely in the context of LU0�N
Q

.glm/
† .

Moreover, similarly to the case discussed in [36], any link homologies defined using
the images of the Rickard complexes in a “skew Howe” 2–representation factoring
through LU0�N

Q
.glm/

† must agree (see the work of Cautis [6] for the first appearance
of this idea).

Deformed foams give such a 2–representation, as do deformed matrix factorizations,
via the 2–functors �m from the proof of Theorem 4.29. Note that the link homology
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theory defined using �m is not defined in exactly the same way as in Wu’s work.
Indeed, there are the following differences: Wu’s assignment of complexes to link
crossings is opposite to ours, he has shifts in homological degree for some crossings
in order to obtain invariance under the first Reidemeister move, and he does not use
matrix factorizations associated to N–labeled web edges.

Nevertheless it is easy to see the relation between our invariant and Wu’s. Given a
labeled braid, the 2–functor �m assigns a to it a complex of matrix factorizations which,
up to shifts in homological degree, agrees with the complex of matrix factorizations
Wu assigns to the mirror image of the braid. It hence suffices to show that the vector
spaces and differentials in this complex after closing the braid agrees with the those
obtained by closing using N–labeled edges and taking Hom from 1otop . This follows
exactly as in [36, Theorem 4.12].

Remark 5.5 As a variation of (2-14), where ai�aiC1 , let 1aT 0�1
i denote the complex

� � � 1aE
.ai�aiC1Cs/

i F .s/i f�sg
d 0s
�!� � �

d 0
2
�! 1aE

.ai�aiC1C1/

i Fif�1g
d 0

1
�! 1aE

.ai�aiC1/

i

with the underlined term (as usual) in homological degree zero and differentials given
by compositions of splitters and thickness-1 cap 2–morphisms.

It is easy to check that 1aT 0�1
i is isomorphic to 1aT �1

i via the chain map given on
objects by

˙

��C kk

�

for a suitable choice of signs. Analogously, the Rickard complexes (2-12) are isomorphic
to complexes with objects E.s/i F .ai�aiC1Cs/

i and in general we may assume that the
complexes ŒŒ���† associated to crossings consist of webs of shape:

We now proceed with the decomposition of the invariant. Consider an oriented, labeled
tangle diagram � or, more specifically, an oriented, labeled link diagram L. Our goal
is to understand the dependence of ŒŒ���† and KhR†.L/DH�.taut.ŒŒL��†// on †. This
is done in four steps:
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(1) In Section 5.1 we show that ŒŒ���† , regarded as a complex over .N Foam†/^ ,
decomposes into a direct sum of complexes ŒŒ�f ��† indexed by colorings f of
the tangle components by multisubsets of †.

(2) In Section 5.2 we show that the summands ŒŒ�f ��† from the first step correspond
under the splitting functor � from Section 4.3 to a tensor product with one
tensorand ŒŒ��2f ��† for every different root � 2†.

(3) In Section 5.3 we show that foams colored with only one root � behave like
slN� foams.

(4) In Section 5.4 we assemble the previous results for � DL and track them through
relatives of the functor taut to prove Theorem 1.1.

5.1 The direct sum decomposition of the invariant

We already know that if we work in .N Foam†/^ , all webs in the complex ŒŒ���† split
into direct sums under coloring web edges with multisubsets of †. The goal of this
section is to show in Lemma 5.10 that the colorings that contribute to ŒŒ���† are the
ones that are consistent along tangle components. This follows from the orthogonality
of idempotents coming from inconsistent colorings, see Corollary 5.8, after observing
in Proposition 5.7 that decorations “slide through crossings”.

Definition 5.6 Let p , q , r and s be symmetric polynomials of the appropriate number
of variables. Then we define endomorphisms of the chain complexes for negative
crossings

hh r

s

p

q

ii†
2 End

�hh
b

aii†�
given by

r

s

p

q

on the webs appearing in the complex. Here we have assumed a� b . For the cases of
a� b and for the positive crossings we make analogous definitions.

Proposition 5.7 Let p and q be symmetric polynomials in the appropriate number of
variables. Then the following chain maps are homotopic:

hh p ii†
�

hh
p

ii†
;

hh
q

ii†
�

hh q ii†
Analogous statements also hold for the positive crossing.
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Proof From the foam description of these chain maps, it is easy to see that composing
such chain maps is equivalent to multiplying decorations on the foam facets. Since
null-homotopic chain maps form an ideal in the ring of endomorphisms of the crossing
complex, it suffices to find homotopies in the cases where p (or q ) is a complete
symmetric polynomial hi . We will only prove the first homotopy, as the other case is
analogous. Denote hi acting on the left as hl

i and on the right as hr
i . Recall that the

differential for negative crossing complexes is given using 1–labeled cap foams. We
now prove by induction on i � 1 that the foams

�i WD i�1
�

constructed using .i�1/–dotted 1–labeled cup foams, assemble to a chain homotopy
from hl

i to hr
i . We start the computation with an equation from [21, Lemma 4.6.4],

which under the foamation functor ˆ† gives

.�1/b�aˆ†

0BBBBBB@

k

k a�bCk

�
i�1

a�bCk

.a; b/
C

k

k a�bCk

�
i�1

a�bCk

.a; b/

1CCCCCCAD
X

pCqCrDi

ˆ†

0BBBBBB@ hp hq

k

k a�bCk

�

�Cr

a�bCk

.a; b/

1CCCCCCA
which is a foam identity where the left-hand side is ˙.�id C d�i/. We continue
the computation but, since from the next step onwards all foams are identity foams
with decorations, we only draw the underlying webs and write decorations next to the
corresponding web edges. Using [36, Equation (3.32)] to resolve the “bubble” in the
previous step, we get that this equals:

X
pCqCrCsDi

hs

hqhp

.�1/r er

D

X
pCqCrDi

hp

hq

.�1/r er

D

hi

1

C

X
pCqCrDi

p<i

hp

hq

.�1/r er
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�

hi

.�1/r
C

X
pCqCrDi

p<i
.�1/r

.�1/r

hp

hq

.�1/r er

D

hi

.�1/r

.�1/r

„ ƒ‚ …
Dhl

i

�

hi.�1/r

.�1/r

„ ƒ‚ …
Dhr

i

C

iX
rD0 .�1/r

.�1/r

.�1/r er hi�r„ ƒ‚ …
D0

In the case where i D 1, the homotopy � at the beginning of the second line is an
equality. This constitutes the start of the induction. For the induction step we use the
homotopy of hl

p and hr
p for p < i to proceed to the second line. This is possible

because of the fact, which can easily be checked via the decoration migration relations
on foams (see (2-3)), that X

qCrDi�p

hq

.�1/r er

is a chain map.

Corollary 5.8 Let A, B , C and D be multisubsets of † of the appropriate size and,
by abuse of notation, we denote the associated idempotents with the same letter. Then

hh A

B

C

D

ii†
is an idempotent chain map. Furthermore, if A¤D or B¤C , then it is null-homotopic.
Analogous statements hold for positive crossings.

Proof We have already noted that composition of such chain maps corresponds to
multiplication of decorations. Thus, the chain map is clearly idempotent. Now suppose
that A¤D or B ¤ C . Then, using Proposition 5.7, we have

hh A

B

C

D

ii†
�

hh AD

BC

ii†
� 0

since A and D or B and C are orthogonal idempotents.

Lemma 5.9 There is a homotopy equivalence of complexes over .N Foam†/^

hh
b

aii†
�

M
A;B

hh A

B

B

A
b

aii†
;

Geometry & Topology, Volume 20 (2016)



Deformations of colored slN link homologies via foams 3501

where the summands on the right-hand side denote the subcomplexes of the complex
on the left-hand side obtained by coloring webs and foams by idempotents A and B at
the indicated positions. In the direct sum, A and B range over all multisubsets of † of
the correct size. The analogous statements hold for positive crossings.

Proof The objects of the complex on the left-hand side, which are webs, split into
direct sums according to the definition of .N Foam†/^ when one colors all boundary
edges by idempotents. The differential clearly respects this decomposition since it
locally looks like an identity foam around the decoration by idempotents. Finally,
Corollary 5.8 shows that summands are null-homotopic if they do not come from a
coloring that is consistent along the strands in the crossing, and working in the homotopy
category of such complexes we immediately cancel null-homotopic summands.

The following global version of this lemma follows directly:

Lemma 5.10 Let � be a labeled, oriented tangle diagram. The complex ŒŒ���† , regarded
over .N Foam†/^ , splits into a direct sum of complexes ŒŒ�f ��† , and there is one such
piece for every coloring f of tangle components by idempotents corresponding to
multisubsets of † of the appropriate size.

5.2 The tensor product decomposition of the summands

In this section we show that the functor � from Section 4.3 can be used to split
idempotent colored summands ŒŒ�f ��† of the chain complex associated to a tangle
diagram — as described at the end of the previous subsection — into the tensor product
complex

N
�ŒŒ��2f ��

† of their �–components. We now define these concepts:

Definition 5.11 Let ŒŒ��2f ��† , the �–component of ŒŒ�f ��† , be the sequence of colored
webs and foams between them obtained by taking the �–component of every web and
foam appearing in ŒŒ�f ��† . It is easy to check that ŒŒ��2f ��† is itself a chain complex
over .N Foam†/^ .

Let
N
�ŒŒ��2f ��

† be the tensor product complex of ŒŒ��2f ��† given on webs by taking
disjoint union t. In particular, the webs in this chain complex are exactly the associated
split webs

F
�W� of webs W in ŒŒ�f ��† . The foams giving the components of the

differential in
N
�ŒŒ��2f ��

† are (up to a sign) the disjoint union of the �–components
of the differential foams in ŒŒ�f ��† . The sign is the usual sign that is necessary to make
the differential in the tensor product complex square to zero.
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Applying the web splitting functor � from Section 4.3 to the chain complex ŒŒ�f ��†

results in a chain complex consisting of exactly the same split webs as
N
�ŒŒ��2f ��

† .
Furthermore, there exists a natural choice of homological grading on ŒŒ��2f ��† that
makes the bijection between webs in �.ŒŒ�f ��†/ and

N
�ŒŒ��2f ��

† grading-preserving.
This is explained for the local case of a single crossing in Remark 5.12 and immediately
generalizes to ŒŒ�f ��† .

The main task in this section is to prove Theorem 5.14, which states that the isomorphism
foams TW in the definition of � can be chosen so that the differential of �.ŒŒ�f ��†/
equals the differential of

N
�ŒŒ��2f ��

† , and we have

�.ŒŒ�f ��
†/D

O
�

ŒŒ��2f ��
†:

Remark 5.12 Consider the webs in the chain complex associated to a crossing, eg
with cap differentials for the sake of concreteness, where we have already placed
idempotents on all boundary edges of the webs:

Wk WD k

A

B

B

A

Without loss of generality, we assume that jAj � jBj. If such a web is not isomorphic
to the zero web, it decomposes into a direct sum by coloring the interior edges of the
web with various idempotents. The crossing complex starts with Wkmax D WjBj in
homological degree zero – which is isomorphic to the zero web if and only if A]B 6�†,
but which is indecomposable otherwise. Further, there exists a minimal kmin D jB nAj

such that Wkmin is nonzero and indecomposable:

WkmaxD

A

B

B

A

D

A

A]B B

B

A

; WkminD kmin

A

B

B

A

D

AA\B

A[B B

B

A

AnBBnA

Now consider the target Wkmax�1 of the differential on Wkmax :

Wkmax�1 D kmax�1

A

B

B

A

D

M
�

f�g

.A]B/nf�g

Anf�gBnf�g

More generally, any nonzero web Wk decomposes into a direct sum of webs which
differ in labels and colorings from Wkmax by a rerouting of a multisubset C of A\B

around the square:
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WC WD

C

.A]B/nC

AnCBnC

Such an indecomposable web is nonzero if and only if .A]B/ n C � †. Clearly
C DA\B satisfies this because we assume that A;B�†. Since this condition can be
checked for every root individually, there is a minimal Cmin such that WCmin and every
WC for Cmin�C �A\B is nonzero. We can think of the set of admissible C as lying
on the lattice Zl with the k th coordinate indicating the multiplicity of the k th root in C .
Then it is clear that the homological grading of a web is the sum of the coordinates
and the support of the nonzero WC is an l –dimensional box. Components of the
differential are caps colored by a single root �k and hence map between summands in
which the rerouting sets C differ by �k , ie map between lattice points which differ
by 1 in the k th coordinate only. The differentials in this complex already appear as
the ones coming from a tensor product of complexes — one for each root �k — with
homological grading the k th coordinate in the lattice and with differential corresponding
to the �k colored cap differential.

In the next lemma we collect commutation relations needed in the proof of Theorem 5.14.
Red facets are colored with a multisubset containing a single root �, blue facets are
colored with a multisubset not containing �, and the coloring of the green facets is
uniquely determined or arbitrary — generically, they contain both � and other roots.

Lemma 5.13 Splitting off or merging a red facet commutes with arbitrary M–P foams,
red–blue digon creation, digon removal, zip and unzip foams, up to certain units. (The
graphics in the following proof illustrate and make precise these statements.)

Proof Throughout the proof of this lemma, the displayed graphics are to be interpreted
as local foam pieces. First we consider the case of M–P foams, by which we mean the
elementary foams between the two possible two-splitter (two-merger) webs. They are
shown in green in the following graphics:

D ; D
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The first commutation relation follows from a version of the foam relation [36, (3.12)]
and repeated use of relation (2-1). The second commutation relation holds because
it is an isotoped version of the pitchfork relation [36, (3.19)]. There are analogous
versions of these relations where the seam attaching the red facet to the rest of the foam
is reoriented and inclined the other way, and another four relations hold for a red facet
split off on the back-side of the green foam. Clearly, red mergers and splitters then also
commute with the inverse M–P foams. These 16 commutation relations describe all
possible interactions of red splitters and mergers with a M–P foam between splitter
webs. The cases of M–P foams between merger webs is handled similarly.

While the commutation relations with M–P foams are independent of the coloring of
foam facets with idempotents, this is in general no longer the case for digon creation,
digon removal, zip and unzip foams. Instead, we get commutation up to unit decorations,
using the relations in Section 4.1. If we denote the foams that split off or merge a red
facet by d and the foam across which we want to commute it by X , then the relations
we get take the form

X ı d D u1 ı d ıu2 ıX 0;

where u1 and u2 are identity foams with decorations that are invertible under the
composition ı in the 2–morphism direction, and X 0 is a foam that is equal to X as a
CW-complex, but might have different labels on facets.12 Practically this means that
we can commute the red facet past the foams mentioned in the statement of the lemma
at the expense of invertible decorations. Furthermore, we will see that we can keep the
red facet clear of all such decorations.

First we look at the case of a digon creation. The following graphics represent the local
piece around the digon creation:

D ; D

�2

�1

ı1

ı2

We suppress the precise description of the unit decorations, since they are not immedi-
ately relevant for the following discussion and can easily be reconstructed from the
description here and the relations in Section 4.1. We do, however, keep track of where

12Facets which would have label 0 have to be erased in X 0 .
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the decorations are placed and of their type: we place a pair ı1 , ı2 on faces with alpha-
bets X and Y respectively for a decoration of the form

P
˛2P.�;�/.�1/jy̨j�˛.X/�y̨.Y /

and �1 , �2 for the corresponding inverse decoration.

The first commutation relation holds because it is a M–P foam with its inverse; see
relation (2-1). For the second one we first introduce a red–blue blister via relation (4-7)
below the seam of the red facet, next we slide this seam across the seam of the blister
using relation (2-1), and finally we use (4-6) (with inverse units �) to join the blister
and the digon creation in the upper region of the foam.13 Analogous identities hold for
sliding a facet past a digon creation on the other side.

Next we consider the case of an unzip:

D ; D

X
�;ı

�2

�1

ı1

ı2

The first commutation relation again holds because it is a M–P foam with its inverse.
For the second one, we first break the green strip in the lower half of the diagram
on the left-hand side of the relation using relation (4-2). The seam bounding the
upper green region can then be moved upward across the seam of the red facet using
relation (2-1), and finally the whole upper green region can be removed via relation
(4-3) at the expense of a unit ı acting on top. Similar commutation relations hold for
digon removal and zip foams.

Theorem 5.14 Let ŒŒ�f ��† be an idempotent colored summand of the chain complex
associated to a tangle diagram, then there exists a choice of isomorphism foams TW

used to define the functor � (see Definition 4.26) such that �.ŒŒ�f ��†/D
N
�ŒŒ��2f ��

† .

Proof Recall from Definition 4.24 and the proof of Proposition 4.25 that � is the
composition of functors �2 and �1 . The latter acts on complexes by replacing colored
webs W by L˝W ˝R and foams d by idL˝ d ˝ idR . We prove this theorem by
constructing splitter isomorphism foams

TW W �1.W /DL˝W ˝R!
G
�

W� D �.W /

13Here, we avoid the use of relation [36, (3.13)], which would put decorations on the split off red facet.
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for each colored web W in ŒŒ�f ��
† that give an isomorphism of chain complexes

�1.ŒŒ�f ��
†/ !

N
�ŒŒ��2f ��

† . That is, we have to check that the TW assemble to a
chain map with respect to the differential d1 WD idL˝ d ˝ idR on �1.ŒŒ�f ��

†/ and the
differential d2 on

N
�ŒŒ��2f ��

† . If d1W �1.W1/! �1.W2/, then we need

(5-1) TW2
ı d1 D d2 ıTW1

:

Actually, it suffices to construct isomorphism foams T 00
W
W �1.W / ! �.W / such

that, for every web W in ŒŒ�f ��
† , there is an identity foam with unit decoration

uW W �.W /! �.W / such that

(5-2) T 00W2
ı d1 D uW2

ı .˙d2/ ıu�1
W1
ıT 00W1

:

Then setting T 0
W
WD u�1

W
ıT 00

W
gives isomorphism foams that satisfy

T 0W2
ı d1 D .˙d2/ ıT 0W1

and with a suitable choice of signs TW WD ˙T 0
W

will satisfy (5-1). That such a sign
assignment always exists is well-known and can be proved along similar lines as the
fact that Khovanov homology is independent of the numbering of the crossings in a
link diagram.

It remains to construct web splitting isomorphism foams T 00
W

that satisfy (5-2). They
are systematically built in three steps:

(1) The resolutions of a crossing in the tangle diagram are ladder webs (see [8] or
[36] for this terminology) with two rungs. The first step splits the rungs in every
crossing ladder web and sorts them into groups according to their root coloring.

(2) The second step splits the uprights in every crossing ladder. The result is a
semisplit web.

(3) The third step is of a global nature; it completely separates the colored compo-
nents, as in the proof of Proposition 4.22.

Every step corresponds to a foam that splits the web further and T 00 is then defined
as their composition. In the following we show that the foams in every step satisfy
an equation of type (5-2). That is, the cap (or cup) differential can be moved through
the splitting foam at the expense of signs and unit decorations which only depend on
the identity foam on which they are placed. In this case we say that the differential
commutes with the splitting foam up to canonical units. If every step satisfies this
then so does the composite T 00 , since unit decorations slide through such isomorphism
foams via relations (4-4).
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In each of the three steps we only treat the case of colorings by two orthogonal
idempotents, which are indicated by red and blue colorings. The same argument
implies that we can split off one root at a time from the rest, and induction on the
number of distinct roots in † then proves the theorem. Furthermore, we only consider
the case of cap differentials, as the cup differential case is completely analogous.

Step 1 For every crossing, we consider the corresponding ladder web. First we split
the rungs of the ladder into components:

! !

We choose this foam to be the image under the foamation functor ˆ† of certain
categorified quantum group 2–morphisms in the quotient LU0�N

Q
.glm/

† . For this, we
use thick calculus, but we omit the weights and thicknesses of strands. Here, we use
colors blue and red to indicate decorations by idempotents corresponding to disjoint
multisubsets of †, whereas green is the generic color which is used for mixed colorings.
Let the reader be warned again that the following graphics show categorified quantum
group 2–morphisms and not webs. The foam above is given by:

ˆ†

0BB@
1CCA D ˆ†

0BB@
1CCA D ˆ†

0BB@
1CCA

Using the UQ.gl2/ relations, it is not hard to see that this 2–morphism is invertible
via the vertically flipped 2–morphism with some unit decorations. The only nontrivial
observation is that the oppositely oriented Reidemeister II-type move can be undone at
the expense of a sign, because all error terms are killed by orthogonal idempotents.

In the following we investigate how this 2–morphism commutes with red and blue
thickness-1 cap 2–morphisms respectively. This computation immediately transfers to
the corresponding foams via ˆ† :

ˆ†

0BBB@
1CCCADˆ†

0BBB@
1CCCADˆ†

0BBB@
ı1 ı2

1CCCA

Dˆ†

0BBB@
ı1 ı2

1CCCADˆ†
0BBB@
ı1 ı2

�2
�1

1CCCA
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Dˆ†

0BBB@
ı1 ı2

�2
�1

1CCCAD .�1/rˆ†

0BBB@
ı1
ı2

�2

�1

1CCCA

D .�1/rˆ†

0BBB@
ı1 ı2

�2�1
1CCCA

Here and in the following, r (resp. b ) is the thickness of the right red (resp. left blue)
component in the bottom green strands. An analogous computation shows:

ˆ†

0BBB@
1CCCAD .�1/bˆ†

0BBB@
ı2 ı1

�1�2
1CCCADˆ†

0BBB@
ı1 ı2

�2�1
1CCCA

The last equation holds because we can swap the positions ı1 and ı2 on strands of
thickness r and b at the expense of multiplying by .�1/rb . This is immediate fromX

˛2P.r;b/

.�1/jy̨j�˛.X/�y̨.Y /D
X

y̨2P.b;r/

.�1/jy̨j�y̨.Y /�yy̨.X/

D .�1/rb
X

ˇ2P.b;r/

.�1/j
y̌j�ˇ.Y /� y̌.X/

and the analogous statement holds for the inverse decorations on positions �1 and �2

similarly.

We conclude that the foams from the first step commute with the differential up to
canonical units.

Step 2 We further split the crossing resolutions into semisplit webs:

!

A foam that peels off the outer strands can be constructed from the building blocks
studied in Lemma 5.13. According to it, a differential with this target web commutes
with the peeling foam up to canonical unit decorations. All these local foams glue
together and can be further composed with unzips (if necessary) to have as target
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semisplit webs. These unzips are placed far away from crossing sites and thus don’t
change the commutation behavior.

Step 3 Finally, we construct a foam from the semisplit webs of Step 2 to the completely
split webs �.W /. This can be done as in the proof of Proposition 4.22, but we further
assume that the “squares” in which the differentials are supported only interact with
edges far away from other colored crossing sites during the homotopy. In other words,
we assume that the vertices and edges from other colored squares never cross each
other during the homotopy. We thus check that the local move of isotoping a red square
through a blue edge commutes with the red cap differential up to canonical units.

Each of the isomorphisms

Š Š(5-3)

Š Š

except the third is a composite of red–blue zip, unzip, digon creation, digon removal,
and M–P foams as in Lemma 5.13, and hence they commute with the differential
up to canonical units. The third isomorphism can be realized as a blue cap in thick
calculus, which commutes with a red cap on the same square, up to a sign. The red
cap differential then also commutes, up to sign and canonical units, with the inverse of
the above isomorphism, and with pulling a blue facet across the square in the opposite
direction:

Š Š

5.3 Identifying the tensorands

Definition 5.15 Let .N Foam�2†/^ be the 2–subcategory of .N Foam†/^ consisting
of only those 1–morphisms and 2–morphisms colored by idempotents 1� corresponding
to multisubsets of † which only contain the root �.

Lemma 5.16 .N Foam�2†/^ is generated as a 2–category by the same elementary
foams as N Foam, but with idempotent decorations 1� on each web edge and foam
facet. It satisfies the same relations as N Foam and additionally:

(5-4) �N�

1

1�
D �

N��1X
iD0

�
N�

i

�
.��/N��i

�i

1

1�
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Proof All relations except (5-4) are directly inherited from N Foam via its quotient
N Foam† . The decorations 1� are idempotent and can be moved around freely. For
relation (5-4), we write the action of a dot as � and will show the equivalent formulation
1�.� ��/

N� D 0. To see this, we consider the algebra of decorations of a 1–labeled
facet in N Foam† , which is given by CŒ��=hP .�/i. Under the algebra isomorphism

CŒ��=hP .�/i !
lM

kD1

CŒ��=h.� ��k/
N�k i;

p.�/ChP .�/i 7!
�
p.�/Ch.� ��1/

N�1 i; : : : ;p.�/Ch.� ��l/
N�l i

�
;

1� is sent to the vector having a single entry 1C h.� � �/N�i and zero everywhere
else, hence 1�.� ��/

N� is sent to zero.

Proposition 5.17 Let N� be the multiplicity of � in †, then there is an isomorphism
of 2–categories

(5-5) N�Foam� Š .N Foam�2†/^:

Proof Let ��W N�Foam�! .N Foam�2†/^ be the 2–functor which is defined on

� objects by sending a sequence a to itself,

� 1–morphisms by sending webs to the same webs, but with additional coloring
by multisets containing only � on the edges, and

� 2–morphisms by sending a foam to the foam which is topologically identical
but has a decoration by a �–idempotent 1� added on every facet:

(5-6)

k

7!

1�

k

A decoration on a foam facet, interpreted as a symmetric polynomial in an
alphabet x1; : : : ;xk , is sent to the same symmetric polynomial, but in the
alphabet x1��; : : : ;xk ��. Formally, it suffices to define:

(5-7) �

1

7! �

1�

1

� �
1�

1

We now check that �� exactly maps the defining relations of N�Foam� — see [36] —
to the set of relations that determine .N Foam�2†/^ , which was identified in (5-4).
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All relations that do not involve decorations are preserved by �� ; these are [36, (3.8),
(3.12), (3.15)–(3.20)]. We examine the remaining relations:

� A minimal version of [36, (3.9)] is

aCb

b

a

es D

sX
lD0

aCb

b

a

es�l

el

and the collection of all instances of this relation (for 1� s � aC b ) has the effect of
identifying symmetric polynomials in the alphabet fx1; : : :xaCbg on the aC b facet
with those in the alphabet fy1; : : : ;yaCbg, which is the union of the alphabets on
the other two facets. The 2–functor �� maps these relations to relations that identify
symmetric polynomials in fx1 � �; : : : ;xaCb � �g with symmetric polynomials in
fy1��; : : : ;yaCb ��g. They generate the same ideal, and hence are equivalent sets
of relations.

� A minimal version of [36, (3.10)] is

kC1

D

kC1

1

k

�k

and under �� it is sent to

kC1

1�

D

kX
iD0

�
k

i

�
.��/i

kC1

1

k

�k�i

1�

D

kC1

1

k

�k

1�

where the final equality holds since all terms in the middle except the one with k dots
is zero.

� Relations [36, (3.11)],

aCb
a

b

D

X
˛2P.a;b/

.�1/jy̨j

aCb

�˛

�y̨

;

are sent by �� to relations of the same form, where �˛ and �y̨ are now interpreted as
symmetric polynomials in the new alphabet which is shifted by �. Denote the alphabets
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on the facets in the original relation on which the decorations are placed by X and Y ,
then we can write the decoration on the right-hand side of the original relation asX

˛2P.a;b/

.�1/jy̨j�˛.X/�y̨.Y /D
Y
x2X

Y
y2Y

.y �x/:

Under �� this is sent toY
x2X

Y
y2Y

..y ��/� .x��//D
Y
x2X

Y
y2Y

.y �x/D
X

˛2P.a;b/

.�1/jy̨j�˛.X/�y̨.Y /;

so �� preserves the relation.

� Relations [36, (3.13) and (3.14)] are also preserved by �� ; the proofs are completely
analogous to the case of [36, (3.11)].

� The relation

�N�

1

D 0

is mapped by �� to

N�X
iD0

�
N�

i

�
.��/N��i

�i

1�

1

D 0;

which is precisely relation (5-4).

Furthermore, the functor �� is clearly invertible (forget idempotents, shift decorations
back) and similar arguments as above show that all relations in .N Foam�2†/^ are
sent by the inverse to relations of N�Foam� .

5.4 Proof of the decomposition theorem

For this section let L be an oriented, labeled link diagram. Recall that the complex
ŒŒL��† over N Foam† is, up to homotopy equivalence, an invariant of the corresponding
oriented, framed, labeled link and each web appearing in ŒŒL��† has endomorphisms
of otop WD .N; : : : ;N / as objects. We can view ŒŒL��† as a complex in .N Foam†/^

(since N Foam† embeds as a full 2–subcategory) where it splits into a direct sum of
complexes ŒŒLf ��† , one for each coloring f of link components with a multisubset of
† of the correct size. The objects of a summand ŒŒLf ��† are again endomorphisms of

Geometry & Topology, Volume 20 (2016)



Deformations of colored slN link homologies via foams 3513

otop in .N Foam†/^ , and there are natural isomorphisms of chain complexes of vector
spaces:

(5-8) taut.ŒŒL��†/DHom.1otop ; ŒŒL��†/„ ƒ‚ …
over N Foam†

Š

M
f

Hom.1otop ; ŒŒLf ��†/„ ƒ‚ …
over .N Foam†/^

D

M
f

taut.ŒŒLf ��†/:

It follows that taut.�/ respects the direct sum decomposition, and it remains to describe
the summands taut.ŒŒLf ��†/.

The only nonzero coloring of the identity web 1otop is the one where every N–labeled
strand is colored by the full multiset †. With respect to this coloring, we will use
the object

F
� o

top
�

, the (co)domain of the associated split web
F
�.1otop/� , and the

object o
top
�

, the (co)domain of the �–component .1otop/� of 1otop . For endomorphism
webs on these objects and foams between them, we define the representable functors
tautsplit.�/ WD Hom.

F
�.1otop/�;�/ and taut�.�/ WD Hom..1otop/�;�/, respectively.

Further, we now need the webs L and R for the object otop with the only possible
incidence condition, as given in Definition 4.12.

Recall that ŒŒLf ��† is a complex of colored webs W and foams d between them. Then
�1.ŒŒLf ��†/ is the complex consisting of webs L˝W ˝R and foams idL˝ d ˝ idR

between them and �.ŒŒLf ��†/ D �2�1.ŒŒLf ��†/ is the complex consisting of websF
�W� and foams T� ı .idL˝ d ˝ idR/ ıB� . We first show:

Lemma 5.18 There are isomorphisms of chain complexes of vector spaces

(5-9) taut.ŒŒLf ��†/Š tautsplit
�
�1.ŒŒLf ��†/

�
Š tautsplit

�
�.ŒŒLf ��†/

�
:

Proof Proposition 4.25 provides the following isomorphisms between the objects of
these chain complexes:

taut.W /D Hom.1otop ;W /

�1

Š Hom.L˝ 1otop ˝R;L˝W ˝R/

Š Hom
�G
�

.1otop/�;L˝W ˝R

�
D tautsplit.�1.W //

Š Hom
�G
�

.1otop/�;
G
�

W�

�
D tautsplit.�.W //;
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where the last two isomorphisms are given by composition with B1otop and TW . Under
these isomorphisms, the differentials transform as required for (5-9):

taut.d/

D .Hom.1otop ;W /
dı
�!Hom.1otop ;W 0//

7!
�
Hom.L˝1otop˝R;L˝W˝R/

.idL˝d˝idR/ı
����������! Hom.L˝1otop˝R;L˝W 0˝R/

�
7!

�
Hom

�G
�

.1otop/�;L˝W˝R

�
.idL˝d˝idR/ı
����������! Hom

�G
�

.1otop/�;L˝W 0˝R

��

7!

�
Hom

�G
�

.1otop/�;
G
�

W�

�
T�ı.idL˝d˝idR/ıB�ı
����������������! Hom

�G
�

.1otop/�;
G
�

W 0�

��
since the last two lines give tautsplit.�1.d// and tautsplit.�.d//, respectively.

Theorem 5.14 shows that there is a consistent choice of isomorphism foams T� and B�
in the definition of � such that �.ŒŒLf ��†/D

N
�ŒŒL�2f ��† . Now we have

(5-10) taut.ŒŒLf ��†/Š tautsplit
�
�.ŒŒLf ��†/

�
D tautsplit

�O
�

ŒŒL�2f ��†
�

Š

O
�

taut�.ŒŒL�2f ��†/:

The last isomorphism is clear from the definition of the two versions of taut and the
tensor product structure given by disjoint union of webs and foams.

It remains to identify the tensorands taut�.ŒŒL�2f ��†/. To this end, recall the notation
L.a1; : : : ; ak/ introduced in the statement of Theorem 1.1, which makes explicit that
we consider L with the i th component labeled by the fundamental slN representationVai CN . Let bi;j be the multiplicity of the root �j in the multisubset of † that the
coloring f assigns to the i th component of L. Further, recall that Nj denotes the
multiplicity of �j in †.

The complex ŒŒL�j2f ��
† is a complex over the 2–subcategory .N Foam�j2†/^ . Under

the isomorphism to the 2–category Nj Foam� , which Proposition 5.17 established,
this complex corresponds to the undeformed slNj complex ŒŒL.b1;j ; : : : ; bk;j /��

f0;:::;0g

of the relabeled sublink L.b1;j ; : : : ; bk;j /. As we have seen in Remark 5.12, this
correspondence preserves the homological grading. Clearly, taut�j .ŒŒL�j2f ��

†/ is iso-
morphic to the image of ŒŒL.b1;j ; : : : ; bk;j /��

f0;:::;0g under the appropriate representable
functor, and the homology of this complex is KhRslNj .L.b1;j ; : : : ; bk;j //. Finally, by
(5-10), taut.ŒŒLf ��†/ is isomorphic to the tensor product of these complexes, and since
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we are working over C , the Künneth theorem gives that the homology of this tensor
product complex is isomorphic to the tensor product of the respective homologies. This
completes the proof of Theorem 1.1.
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[14] S Gukov, M Stošić, Homological algebra of knots and BPS states, from “Proceedings
of the Freedman Fest” (R Kirby, V Krushkal, Z Wang, editors), Geom. Topol. Monogr.
18 (2012) 309–367 MR

[15] S Gukov, J Walcher, Matrix factorizations and Kauffman homology, preprint (2005)
arXiv

Geometry & Topology, Volume 20 (2016)

http://dx.doi.org/10.2140/gt.2005.9.1443
http://msp.org/idx/mr/2174270
http://msp.org/idx/arx/math/0606542
http://msp.org/idx/arx/1105.0702
http://dx.doi.org/10.2140/agt.2014.14.489
http://msp.org/idx/mr/3183384
http://dx.doi.org/10.1016/j.aim.2015.03.033
http://msp.org/idx/mr/3439694
http://dx.doi.org/10.1007/s00208-015-1196-x
http://msp.org/idx/mr/3412353
http://dx.doi.org/10.1007/s00222-009-0227-1
http://msp.org/idx/mr/2593278
http://dx.doi.org/10.1007/s00208-013-0984-4
http://msp.org/idx/mr/3263166
http://dx.doi.org/10.4007/annals.2008.167.245
http://dx.doi.org/10.4007/annals.2008.167.245
http://msp.org/idx/mr/2373155
http://projecteuclid.org/euclid.em/1175789736
http://msp.org/idx/mr/2253002
http://dx.doi.org/10.1215/00127094-2142641
http://msp.org/idx/mr/3079249
http://msp.org/idx/arx/math/0402266
http://msp.org/idx/arx/1304.3481
http://dx.doi.org/10.2140/gtm.2012.18.309
http://msp.org/idx/mr/3084243
http://msp.org/idx/arx/hep-th/0512298


3516 David E V Rose and Paul Wedrich

[16] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000)
359–426 MR

[17] M Khovanov, Link homology and Frobenius extensions, Fund. Math. 190 (2006)
179–190 MR

[18] M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum
groups, I, Represent. Theory 13 (2009) 309–347 MR

[19] M Khovanov, A D Lauda, A categorification of quantum sl.n/ , Quantum Topol. 1
(2010) 1–92 MR

[20] M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum
groups, II, Trans. Amer. Math. Soc. 363 (2011) 2685–2700 MR

[21] M Khovanov, A D Lauda, M Mackaay, M Stošić, Extended graphical calculus for
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Cylindrical contact homology and topological entropy

MARCELO R R ALVES

We establish a relation between the growth of the cylindrical contact homology of
a contact manifold and the topological entropy of Reeb flows on this manifold. We
show that if a contact manifold .M; �/ admits a hypertight contact form �0 for which
the cylindrical contact homology has exponential homotopical growth rate, then the
Reeb flow of every contact form on .M; �/ has positive topological entropy. Using
this result, we provide numerous new examples of contact 3–manifolds on which
every Reeb flow has positive topological entropy.

37B40, 53D35, 53D42, 37J05

1 Introduction

The aim of this paper is to establish a relation between the behaviour of cylindrical
contact homology and the topological entropy of Reeb flows. The topological entropy is
a nonnegative number associated to a dynamical system which measures the complexity
of the orbit structure of the system. Positivity of the topological entropy means
that the system possesses some type of exponential instability. We show that if the
cylindrical contact homology of a contact 3–manifold is “complicated enough” from
a homotopical viewpoint, then every Reeb flow on this contact manifold has positive
topological entropy.

1.1 Basic definitions and history of the problem

We first recall some basic definitions from contact geometry. A 1–form � on a .2nC1/–
dimensional manifold Y is called a contact form if �^ .d�/n is a volume form on Y .
The hyperplane � D ker� is called the contact structure. For us a contact manifold
will be a pair .Y; �/ such that � is the kernel of some contact form � on Y (these
are usually called co-oriented contact manifolds in the literature). When � satisfies
� D ker�, we will say that � is a contact form on .Y; �/. On any contact manifold
there always exist infinitely many different contact forms. Given a contact form �, its
Reeb vector field is the unique vector field X� satisfying �.X�/D 1 and iX�d�D 0.
The Reeb flow �X� of � is the flow generated by the vector field X� . We will refer
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to the periodic orbits of �X� as Reeb orbits of �. The action A./ of a Reeb orbit is
defined by A./ WD

R
 �.

We study the topological entropy of Reeb flows from the point of view of contact
topology. More precisely, we search for conditions on the topology of a contact
manifold .M; �/ that force all Reeb flows on .M; �/ to have positive topological
entropy. The condition we impose is on the behaviour of a contact topological invariant
called cylindrical contact homology. We show that if a contact manifold .M; �/

admits a contact form �0 for which the cylindrical contact homology has exponential
homotopical growth, then all Reeb flows on .M; �/ have positive topological entropy.

The notion of exponential homotopical growth of cylindrical contact homology, which is
introduced in this paper, differs from the notion of growth of contact homology studied
by Colin and Honda [12] and by Vaugon [40]. For reasons explained in Section 2, the
growth of contact homology is not well adapted to study the topological entropy of
Reeb flows, while the notion of homotopical growth rate is (as we show) well suited for
this purpose. We begin by explaining the results which were previously known relating
the behaviour of contact topological invariants to the topological entropy of Reeb flow.

The study of contact manifolds all of whose Reeb flows have positive topological
entropy was initiated by Macarini and Schlenk [36]. They showed that if Q is an energy
hyperbolic manifold and �geo is the contact structure on the unit tangent bundle T1Q
associated to the geodesic flows, then every Reeb flow on .T1Q; �geo/ has positive
topological entropy. Their work was based on previous ideas of Frauenfelder and
Schlenk [20; 21] which related the growth rate of Lagrangian Floer homology to
entropy invariants of symplectomorphisms. The strategy to estimate the topological
entropy used in [36] can be briefly sketched as follows:

Exponential growth of Lagrangian Floer homology of the tangent fibre .TQ/jp
+

Exponential volume growth of the unit tangent fibre .T1Q/jp
for all Reeb flows in .T1Q; �geo/

+

Positivity of the topological entropy for all Reeb flows in .T1Q; �geo/.

To obtain the first implication, Macarini and Schlenk use the fact that .T1Q; �geo/ has
the structure of a Legendrian fibration, and apply the geometric idea of [20; 21] to show
that the number of trajectories connecting a Legendrian fibre to another Legendrian
fibre can be used to obtain a volume growth estimate. The second implication in this
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scheme follows from Yomdin’s theorem, which states that exponential volume growth
of a submanifold implies positivity of topological entropy.1

In the author’s Ph D thesis [2; 3], this approach was extended to deal with 3–dimensional
contact manifolds which are not unit tangent bundles. This was done by designing a
localized version of the geometric idea of [20; 21]. Globally most contact 3–manifolds
are not Legendrian fibrations, but a sufficiently small neighbourhood of a given Legen-
drian knot in a contact 3–manifold can always be given the structure of a Legendrian
fibration. It turns out that this is enough to conclude that if the linearized Legendrian
contact homology of a pair of Legendrian knots in a contact 3–manifold .M 3; �/ grows
exponentially, then the length of these Legendrian knots grows exponentially for any
Reeb flow on .M 3; �/. We then apply Yomdin’s theorem to obtain that all Reeb flows
on .M 3; �/ have positive topological entropy.

One drawback of these approaches is that they only give lower entropy bounds for C1–
smooth Reeb flows. The reason is that Yomdin’s theorem holds only for C1–smooth
flows. The approach presented in the present paper does not use Yomdin’s theorem
and gives lower bounds for the topological entropy of C 1–smooth Reeb flows.

Another advantage is that the cylindrical contact homology is usually easier to compute
than the linearized Legendrian contact homology. In fact, to apply the strategy of [2; 3]
to a contact 3–manifold .M 3; �/, one must first find a pair of Legendrian curves which
“should” have exponential growth of linearized Legendrian contact homology. This is
highly nontrivial since on any contact 3–manifolds there exist many Legendrian links
for which the linearized Legendrian contact homology does not even exist. On the
other hand, the definition of cylindrical contact homology involves only the contact
manifold .M 3; �/, and no Legendrian submanifolds.

1.2 Main results

Our results are inspired by the philosophy that a “complicated” topological structure
should force chaotic behaviour for dynamical systems associated to this structure.
Two important examples of this phenomenon are: the fact that on manifolds with
complicated loop space the geodesic flow always has positive topological entropy (see
Paternain [38]), and the fact that every diffeomorphism of a surface which is isotopic to
a pseudo-Anosov diffeomorphism has positive topological entropy (see Fel’shtyn [16]).

To state our results we introduce some notation. Let M be a manifold and X be a C k

(k � 1) vector field. Our first result relates the topological entropy of the flow �X to

1The same scheme was used by Frauenfelder and Schlenk [22] and by Frauenfelder, Labrousse and
Schlenk [19] to obtain positive lower bounds for the intermediate and slow entropies of Reeb flows on unit
tangent bundles.
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the growth (relative to T ) of the number of distinct homotopy classes which contain
periodic orbits of �X with period at most T . More precisely, let ƒTX be the set of free
homotopy classes of M which contain a periodic orbit of �X with period at most T .
We denote by NX .T / the cardinality of ƒTX .

Theorem 1 If for real numbers a > 0 and b there is a sequence Tn!C1 such that

NX .Tn/� e
aTnCb

for all Tn , then htop.�X /� a .

Theorem 1 might be a folklore result in the theory of dynamical systems. However,
as we have not found it in the literature, we provide a complete proof in Section 2.
It contains as a special case Ivanov’s inequality for surface diffeomorphisms; see
Jiang [31]. Our motivation for proving this result is to apply it to Reeb flows. Contact
homology allows one to carry over information about the dynamical behaviour of one
special Reeb flow on a contact manifold to all other Reeb flows on the same contact
manifold. In Section 4, we introduce the notion of exponential homotopical growth of
cylindrical contact homology. As we already mentioned, this growth rate differs from
the ones previously considered in the literature and is specially designed to allow one
to use Theorem 1 to obtain results about the topological entropy of Reeb flows. Recall
that a contact form is called hypertight if its Reeb flow has no contractible closed orbits.
We prove the following result:

Theorem 8 Let �0 be a hypertight contact form on a contact manifold .M; �/, and
assume that the cylindrical contact homology of �0 has exponential homotopical growth
with exponential weight a > 0. Then for every C k (k � 2) contact form � on .M; �/,
the Reeb flow of X� has positive topological entropy. More precisely, if f� is the
function such that �D f��0 , then

(1-1) htop.�X�/�
a

maxf�
:

Notice that Theorem 8 allows us to conclude the positivity of the topological entropy
for all Reeb flows on a given contact manifold .M; �/, once we show that .M; �/
admits one special hypertight contact form for which the cylindrical contact homology
has exponential homotopical growth. It is worth remarking that our proof of Theorem 8
is carried out in full rigour, and does not make use of the polyfold technology which is
being developed by Hofer, Wysocki and Zehnder. The reason is that we do not use the
linearized contact homology considered by Bourgeois, Ekholm and Eliashberg [7] and
Vaugon [40], but resort to a topological idea used by Hryniewicz, Momin and Salomão
[30] to prove existence of Reeb orbits in prescribed homotopy classes.
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Theorem 8 allows one to obtain estimates for the topological entropy for C 1–smooth
Reeb flows. As previously observed, the strategy used in [36; 2; 3] produces estimates
for the topological entropy only for C1–smooth contact forms as they depend on
Yomdin’s theorem, which fails for finite regularity.

Our other results are concerned with the existence of examples of contact manifolds
which have a contact form with exponential homotopical growth rate of cylindrical
contact homology. We show that in dimension 3 they exist in abundance, and it follows
from Theorem 8 that every Reeb flow on these contact manifolds has positive topological
entropy. In Section 5, we use a construction of Colin and Honda [12] to obtain many
such examples of contact 3–manifolds. In these examples, the underlying differentiable
3–manifold has nontrivial JSJ decomposition and a hyperbolic component that fibres
over the circle.

Theorem 9 Let M be a closed connected oriented 3–manifold which can be cut along
a nonempty family of incompressible tori into a family fMi ; 0� i � qg of irreducible
manifolds with boundary such that

� M0 is the mapping torus of a diffeomorphism hW S ! S with pseudo-Anosov
monodromy on a surface S with nonempty boundary.

Then M can be given infinitely many nondiffeomorphic contact structures �k such that
for each �k , there exists a hypertight contact form �k on .M; �k/ which has exponential
homotopical growth of cylindrical contact homology. It follows that on each .M; �k/,
all Reeb flows have positive topological entropy.

The contact structures studied in Theorem 9 are among the tight contact structures con-
structed by Colin and Honda [12] in closed connected irreducible toroidal 3–manifolds.

In Section 6, we study the cylindrical contact homology of contact 3–manifolds
.M; �.q;r// obtained via a special integral Dehn surgery on the unit tangent bundle
.T1S; �geo/ of a hyperbolic surface .S; g/. This Dehn surgery is performed on a
neighbourhood of a Legendrian curve Lr which is the Legendrian lift of a simple
closed separating geodesic r. The surgery we consider is the contact version of Handel–
Thurston surgery, which was introduced by Foulon and Hasselblatt in [18] to produce
nonalgebraic Anosov Reeb flows on 3–manifolds. We call this contact surgery the
Foulon–Hasselblatt surgery. This surgery produces not only a contact 3–manifold
.M; �.q;r//, but also a special contact form, which we denote by �FH , on .M; �.q;r//.
In [18], the authors restrict their attention to integer surgeries with positive surgery
coefficient q and prove that, in this case, the Reeb flow of �FH is Anosov. Our methods
also work for negative coefficients as the Anosov condition on �FH does not play a
role in our results. We obtain:
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Theorem 16 Let .M; �.q;r// be the contact manifold obtained from performing the
Foulon–Hasselblat q–surgery on the Legendrian curve Lr � .T1S; �geo/, and denote
by �FH the contact form on .M; �.q;r// obtained from this surgery. Then �FH is
hypertight, and its cylindrical contact homology has exponential homotopical growth.
It follows that every Reeb flow on .M; �.q;r// has positive topological entropy.

Organization of the paper In Section 2, we recall one of the definitions of the
topological entropy and present the proof of Theorem 1. In Section 3, we recall the
definition of cylindrical contact homology and its basic properties. In Section 4, we
introduce the notion of exponential homotopical growth of cylindrical contact homology
and prove Theorem 8. Section 5 is devoted to the proof of Theorem 9. In Section 6, we
present the definition of the integral Foulon–Hasselblatt surgery and prove Theorem 16.
In Section 7, we discuss the results obtained in this paper and propose some questions
for future research.

Remark We again would like to point out that all the results above do not depend
on the polyfolds technology which is being developed Hofer, Wysocki and Zehnder.
This is the case because the versions of contact homology used for proving the results
above involve only somewhere injective pseudoholomorphic curves. In this situation,
transversality can be achieved by “classical” perturbation methods as in Dragnev [13].
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2 Homotopic growth of periodic orbits
and topological entropy

Throughout this section, M will denote a compact manifold. We endow M with an
auxiliary Riemannian metric g , which induces a distance function dg on M , whose
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injectivity radius we denote by �g . Let �M be the universal cover of M , zg be the
Riemannian metric that makes the covering map � W �M !M an isometry, and dzg be
the distance induced by the metric zg .

Let X be a vector field on M with no singularities and �tX the flow generated by X .
We call PX .T / the number of periodic orbits of �t with period in Œ0; T �. For us, a
periodic orbit of X is a pair .Œ�c ; T /, where Œ�c is the set of parametrizations of a
given immersed curve cW S1!M , and T is a positive real number (called the period
of the orbit), such that

�  2 Œ�c if and only if  W R!M parametrizes c and P.t/DX..t//,

� for all  2 Œ�c , we have .T C t /D .t/ and .Œ0; T �/D c .

We say that a periodic orbit .Œ�c ; T / is in a free homotopy class l of M if c 2 l .

By a parametrized periodic orbit .; T / we mean a periodic orbit .Œ�c ; T / with a fixed
choice of parametrization  2 Œ�c . A parametrized periodic orbit .; T / is said to be
in a free homotopy class l when the underlying periodic orbit .Œ�c ; T / is in l .

We now recall a definition of topological entropy due to Bowen [10] which will be
very useful for us. Let T and ı be positive real numbers. A set S is said to be
T; ı–separated if for all q1 ¤ q2 2 S , we have

(2-1) max
t2Œ0;T �

dg
�
�tX .q1/; �

t
X .q2/

�
> ı:

We denote by nT;ı the maximal cardinality of a T; ı–separated set for the flow �X .
Then we define the ı–entropy hı.�X / as

(2-2) hı.�X /D lim sup
T!C1

log.nT;ı/
T

:

The topological entropy htop is then defined by

htop.�X /D lim
ı!0

hı.�X /:

One can prove that the topological entropy does not depend on the metric dg but only
on the topology determined by the metric. For these and other structural results about
topological entropy, we refer the reader to any standard textbook in dynamics such as
[34] and [39].

From the work of Kaloshin and others it is well known that the exponential growth
rate of periodic orbits,

(2-3) lim sup
T!C1

log.PX .T //
T

;
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can be much bigger than the topological entropy. This implies that the growth rate (2-3)
does not give a lower bound for the topological entropy of an arbitrary flow. There is,
however, a different growth rate that measures how quickly periodic orbits appear in
different free homotopy classes, which can be used to give such a lower bound of the
topological entropy of a flow.

Let ƒ denote the set of free homotopy classes of loops in M , and ƒ0 �ƒ the subset
of primitive free homotopy classes. We define the set ƒTX �ƒ in the following way:
% 2ƒTX if and only if there exists a periodic orbit of �tX with period at most T that
belongs to %. We denote by NX .T / the cardinality of ƒTX .

Let f.i ; Ti / W 1 � i � ng be a finite set of parametrized periodic orbits of X . For a
number T satisfying T � Ti for all i 2 f1; : : : ; ng and a constant ı > 0 , we denote by
ƒ
T;ı
X ..1; T1/; : : : ; .n; Tn// the subset of ƒ such that

� l 2ƒ
T;ı
X ..1; T1/; : : : ; .n; Tn// if and only if there exist a parametrized periodic

orbit .y; yT / with period yT � T in the free homotopy class l and a number
il 2 f1; : : : ; ng for which maxt2Œ0;T �

�
dg.il .t/; y.t//

�
� ı .

Notice that

(2-4) ƒ
T;ı
X ..1; T1/; : : : ; .n; Tn//D

[
i2f1;:::;ng

ƒ
T;ı
X ..i ; Ti //:

We are ready to prove the main result in this section. Theorem 1 below is well known
to be true in the particular cases when �X is a geodesic flow, where it follows from
Manning’s inequality (see [33] and [38]), and when �X is the suspension of a surface
diffeomorphism with pseudo-Anosov monodromy, where it follows from Ivanov’s
theorem (see [31]). It can be seen as a generalization of these results in the sense that it
includes them as particular cases and that it applies to many other situations. Our argu-
ment is inspired by the remarkable proof of Ivanov’s inequality given by Jiang in [31].

Theorem 1 If for real numbers a > 0 and b there is a sequence Tn!C1 such that

NX .Tn/� e
aTnCb

for all Tn , then htop.�X /� a .

Proof The theorem will follow if we prove that for all 0 < ı < �g=32, we have
hı.�X /� a . From now on, fix 0 < ı < �g=32.

Step 1 For any point p 2 M , let V4ı.p/ be the 4ı–neighbourhood of ��1.p/.
Because ı < �g=32, it is clear that V4ı.p/ is the disjoint union

(2-5) V4ı.p/D
[

zp2��1.p/

B4ı. zp/;

where the ball B4ı. zp/ is taken with respect to the metric zg .
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z 0.0/

B1

z 0
B2

B3

BmT. 0/�1

z 0.T /

BmT. 0/

Figure 1: The set fBj W 1� j �mT . 0; T 0/g

Because of our choice of ı < �g=32, it is clear that there exists a constant k1>0, which
does not depend on p , such that if B and B 0 are two distinct connected components
of V4ı.p/, we have dzg.B;B 0/ > k1 .

Because of compactness of M , we know that the vector field zX WD ��X is bounded
in the norm given by the metric zg . Combining this with the inequality in the last
paragraph, one obtains the existence of a constant k2 >0, which again does not depend
on p , such that if z�W Œ0; R�! �M is a parametrized trajectory of � zX with z�.0/ 2 B
and z�.R/ 2 B 0 , then R > k2 .

From the last assertion, we deduce the existence of a constant zK , depending only g
and X , such that for every p 2M and every parametrized trajectory z�W Œ0; T �! �M
of � zX , the number LT .p; z�/ of distinct connected components of V4ı.p/ intersected
by the curve z�.Œ0; T �/ satisfies

(2-6) LT .p; z�/ < zKT C 1:

Step 2 We claim that for every parametrized periodic orbit . 0; T 0/ of X , we have

(2-7) #
�
ƒ
T;ı
X .. 0; T 0//

�
< zKT C 1

for all T > T 0 .

To see this, take a lift z 0 of  0 to �M , and let p0 D  0.0/ and zp0 D z 0.0/. We consider
(see Figure 1) the set fBj W 1� j �mT . 0; T 0/g of connected components of V4ı.p0/
satisfying:

� Bj ¤ Bk if j ¤ k ,

� if B is a connected component of V4ı.p0/ which intersects z 0.Œ0; T �/, then
B D Bj for some j 2 f1; : : : ;mT . 0; T 0/g,

� if j < i , then Bj is visited by the trajectory z 0W Œ0; T �! �M before Bi .
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From step 1, we know that mT . 0; T 0/ < zKT C 1.

For each l 2 ƒT;ıX .. 0; T 0//, pick a parametrized periodic orbit .�
l
; Tl/ in l which

satisfies dg.�l.t/; 
0.t// < ı for all t 2 Œ0; T �. There exists a lift z�

l
of �

l
satisfying

dzg.z�l.t/; z
0.t// < ı for all t 2 Œ0; T �.

From the triangle inequality, it is clear that the point ql D z�l.0/ is in the connected
component B1 which contains zp0 . We will show that z�

l
.Tl/ is contained in Bj for

some j 2 f1; : : : ;mT . 0/g. Because �.z�
l
.0//D �.z�

l
.Tl//, we have

(2-8) dzg
�
z�l.Tl/; �

�1.p0/
�
D dzg

�
z�l.0/; �

�1.p0/
�
< ı;

which already implies that z�
l
.Tl/ 2 V4ı.p

0/. We denote by zpl
0 the unique element

in ��1.p0/ for which we have dzg.z�l.Tl/; zpl
0/ < ı . Using the triangle inequality we

now obtain

dzg
�
z 0.Tl/; zpl

0
�
� dzg

�
z 0.Tl/; z�l.Tl/

�
C dzg

�
z�l.Tl/; zpl

0
�
< ıC ı:

From the inequalities above we conclude that z 0.Tl/ and z�
l
.Tl/ are in the connected

component of V4ı.p0/ that contains zpl
0. Because this connected component contains

z 0.Tl/, it is therefore one of the Bj for j 2 f1; : : : ;mT . 0; T 0/g as we wanted to show.
We can thus define a map

(2-9) ‡
T;ı
. 0;T 0/

W ƒ
T;ı
X .. 0; T 0//! f1; : : : ;mT .. 0; T 0//g

which associates to each l 2ƒT;ıX . 0/ the unique j 2 f1; : : : ;mT . 0; T 0/g for which
z�
l
.Tl/ 2 Bj .

We now claim that if l ¤ l 0 , then z�
l
.Tl/ and z�

l 0
.Tl 0/ are in different connected

components of V4ı.p0/. To see this, notice that both z�
l
.0/ and z�

l 0
.0/ are in the

component B1 . Therefore, it is clear, because ı<�g=32, that if z�
l
.Tl/ and z�

l 0
.Tl 0/ are

in the same component of V4ı.p0/, then the closed curves �
l
.Œ0; Tl �/ and �

l 0
.Œ0; Tl 0 �/

are freely homotopic. This contradicts our choice of .�
l
; Tl/ and .�

l 0
; Tl 0/ and the

fact that l ¤ l 0 .

We thus conclude that the map (2-9) is injective, which implies that #.ƒT;ıX .. 0; T 0///�

mT . 0; T 0/ < zKT C 1.

Step 3 (inductive step) As an immediate consequence of step 2, we have that if
f.i ; Ti / W 1� i �mg is a set of parametrized periodic orbits of X , we have

#.ƒT;ıX ..1; T1/; : : : ; .m; Tm///�m. zKT C 1/:
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Inductive claim Fix T > 0, and suppose that STm D f.i ; Ti / W 1� i �mg is a set of
parametrized periodic orbits such that T �Ti for every i 2f1; : : : ; mg, and that satisfies:

(a) The free homotopy classes li of .i ; Ti / and lj of .j ; Tj / are distinct if i ¤ j .

(b) For every i ¤ j we have maxt2Œ0;T � dg.i .t/; j .t// > ı .

Then, if

m<
NX .T /

zKT C 1
;

there exists a parametrized periodic orbit .mC1; TmC1 � T / such that its homotopy
class lmC1 does not belong to the set fli W 1� i �mg and such that

(2-10) max
t2Œ0;T �

dg.mC1.t/; i .t// > ı

for all i 2 1; : : : ; m.

Proof of claim First, recall that #.ƒT;ıX ..1; T1/; : : : ; .m; Tm/// � m. zKT C 1/.
Therefore, because m<NX .T /=. zKT C1/, there exists a free homotopy class lmC1 2
ƒTXnƒ

T;ı
X ..1;T1/; : : : ; .m;Tm//. Choose a parametrized periodic orbit .mC1;TmC1/

with TmC1 � T in the homotopy class lmC1 .

As lmC1 … ƒ
T;ı
X ..1; T1/; : : : ; .m; Tm//, we must have (2-10) for all i 2 1; : : : ; m,

thus completing the proof of the claim.

Step 4 Obtaining a T; ı–separated set.

As usual, we denote by bNX .T /=. zKT C 1/c the largest integer which is at most
NX .T /=. zKT C 1/. The strategy is now to use the inductive step to obtain a set
STX D f.i ; Ti / W 1 � i � bNX .T /=.

zKT C 1/cg, satisfying conditions (a) and (b)
above, with the maximum possible cardinality. We start with a set ST1 D f.1; T1/g,
which clearly satisfies conditions (a) and (b), and if 1 < bNX .T /=. zKT C 1/c we
apply the inductive step to obtain a parametrized periodic orbit .2; T2 � T / such
that ST2 D f.1; T1/; .2; T2 � T /g satisfies (a) and (b). We can go on applying the
inductive step to produce sets STm D f.i ; Ti / W 1 � i � mg satisfying the desired
conditions (a) and (b) as long as m� 1 is smaller than bNX .T /=. zKT C 1/c. By this
process, we can construct a set STX D f.i ; Ti / W 1 � i � bNX .T /=. zKT C 1/cg such
that for all i; j 2 f1; : : : ; bNX .T /=. zKT C 1/cg, (a) and (b) above hold true.

For each i 2 f1; : : : ; bNX .T /=. zKT C 1/cg, let qi D i .0/. We define the set P TX WD
fqi W 1� i � bNX .T /=. zKT /cC1g. The condition (b) satisfied by STX implies that P TX
is a T; ı–separated set. It then follows from the definition of the ı–entropy hı that

(2-11) hı.�X /� lim sup
T!C1

log
�
bNX .T /=. zKT C 1/c

�
T

:
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Step 5 From the hypothesis of the theorem, we know that for the real numbers a > 0
and b , there exists a sequence Tn!C1 such that NX .Tn/� eaTnCb for all Tn .

For every � > 0, we know that for Tn big enough we have e�Tn > zKTnC 1. This
implies that

(2-12) lim sup
Tn!C1

log
�
bNX .Tn/=. zKTnC 1/c

�
Tn

� lim sup
Tn!C1

log.beaTnCb=e�Tnc/
Tn

D lim sup
Tn!C1

log.be.a��/TnCbc/
Tn

:

It is clear that lim supTn!C1 log.be.a��/TnCbc/=Tn D a� � . Combining this with
(2-11), we conclude that under the hypothesis of the theorem, hı.�X /� a�� . Because
� can be taken arbitrarily small, we obtain

(2-13) hı.�X /� a:

Step 6 So far, we have shown that for all ı < �g=32, we have hı.�X / � a . It then
follows that

(2-14) htop.�X /D lim
ı!0

hı.�X /� a;

finishing the proof of the theorem.

Remark One could naively believe that there exists a constant ıg > 0 depending only
on the metric g such that if two parametrized closed curves �1W R!M of period T1
and �2W R!M of period T2 satisfy supt2Œ0;maxfT1;T2g�fdg.�1.t/; �2.t//g< ıg , then
.1; T1/ and .2; T2/ are freely homotopic to each other. This would make the proof of
Theorem 1 much shorter. However such a constant does not exist. One can easily find
for any ı > 0 two parametrized curves in the 3–torus which are in different primitive
free homotopy classes and satisfy supt2Œ0;maxfT1;T2g�fdg.�1.t/; �2.t//g<ı . We sketch
the construction below.

Consider coordinates .x; y; z/ 2 .R=Z/3 on the three-dimensional torus T3 . Figure 2
above represents the universal cover of the two-dimensional torus T2 � T3 obtained
by fixing the coordinate zD 0 in T3 . The dotted points p0 , yp , p1 and p2 in Figure 2
represent lifts of a point p 2T2 . It is then clear that the curve c represented in Figure 2
projects to a smooth immersed curve in T2 � T3 .

We consider a parametrization by arc length &1W Œ0; T1�!R2 of the piece of c connect-
ing p0 and p1 . We can extend &1 periodically to R by demanding that &1.t CT1/D
&1.t/C .1; 2/ for all t 2R. This extension is a lift to R2 of the closed immersed curve
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p0

yp

p1

p2

x

y

Figure 2: The universal cover of T2 � T3

obtained by projecting &1.Œ0; T1�/ to T2 . By a very small perturbation of the projection
of &1.Œ0; T1�/, we can produce a closed smooth embedded curve �1W Œ0; T1�! T3

which closes at the point .p; 0/D �1.0/D �1.T1/. We consider the natural extension
of �1 to R obtained by demanding that �1.t/D �1.t �T1/ for all t 2R.

Analogously, we consider a parametrization by arc length &2W Œ0; T1C 1�!R2 of the
piece of c connecting p0 and p2 . We can also extend &2 periodically to R, this time
demanding that &2.t CT1C 1/D &2.t/C .1; 3/. By making a very small perturbation
of &2 , we can produce a closed smooth embedded curve �2W Œ0; T1C 1�! T3 which
closes at the point .p; ı=K/ D �2.0/ D �2.T1 C 1/ and which is disjoint from the
image of �1 . We consider the natural extension of �2 to R obtained by demanding
that �2.t/D �2.t � .T1C 1// for all t 2R.

We point out that the extensions &1W R!R2 and &2W R!R2 coincide on the interval
Œ0; T1C 1�. To see this just notice that the piece of c connecting p0 and yp and the
piece of c connecting p1 and p2 project to the same circle in T2 .

Now let �0W Œ0; T1 C 1� ! T2 be the parametrized curve obtained by projecting
&1W Œ0; T1C1�!R2 , which equals &2W Œ0; T1C1�!R2 , to the torus T2 . The curves
�1jŒ0;T1C1� and �2jŒ0;T1C1� are both perturbations of the parametrized curve �0 . By
making the perturbations sufficiently small we can guarantee that �1jŒ0;T1C1� and
�2jŒ0;T1C1� are arbitrarily close. It is immediate to see that �1jŒ0;T1C1� and �2jŒ0;T1C1�
are in distinct homotopy classes.
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3 Contact homology

3.1 Pseudoholomorphic curves in symplectic cobordisms

To define the contact homologies used in this paper, we use pseudoholomorphic curves in
symplectizations of contact manifolds and symplectic cobordisms. Pseudoholomorphic
curves in symplectic manifolds were introduced by Gromov in [24] and adapted to
symplectizations and symplectic cobordisms by Hofer [26]; see also [8] as a general
reference for pseudoholomorphic curves in symplectic cobordisms.

3.1.1 Cylindrical almost complex structures Let .Y; �/ be a contact manifold
and � a contact form on .Y; �/. The symplectization of .Y; �/ is the product R�Y
with the symplectic form d.es�/ (where s denotes the R coordinate in R�Y ). The
2–form d� restricts to a symplectic form on the vector bundle � , and it is well known
that the set j.�/ of d�–compatible almost complex structures on the symplectic vector
bundle � is nonempty and contractible. Notice that if Y is 3–dimensional, the set j.�/
does not depend on the contact form � on .Y; �/.

For j 2 j.�/, we can define an R–invariant almost complex structure J on R�Y by
demanding that

(3-1) J@s DX� and J j� D j:

We will denote by J .�/ the set of almost complex structures in R � Y that are
R–invariant, d.es�/–compatible and satisfy (3-1) for some j 2 j.�/.

3.1.2 Exact symplectic cobordisms with cylindrical ends An exact symplectic
cobordism is, roughly, an exact symplectic manifold .W;$/ that, outside a compact
subset, is like the union of cylindrical ends of symplectizations. We restrict our attention
to exact symplectic cobordisms having only one positive end and one negative end.

Let .W;$ Dd�/ be an exact symplectic manifold without boundary, and let .Y C; �C/
and .Y �; ��/ be contact manifolds with contact forms �C and �� . We say that
.W;$ D d�/ is an exact symplectic cobordism from �C to �� if there exist sub-
sets W � , W C and �W of W and diffeomorphisms ‰CW W C! Œ0;C1/�Y C and
‰�W W �! .�1; 0��Y � , such that

(3-2)
�W is compact, W DW C[ �W [W �; W C\W � D∅;

.‰C/�.es�C/D � and .‰�/�.es��/D �:
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In such a cobordism, we say that an almost complex structure xJ is cylindrical if

xJ coincides with JC 2 J .CC�C/ in the region W C;(3-3)
xJ coincides with J� 2 J .C���/ in the region W �;(3-4)

xJ is compatible with $ in �W ;(3-5)

where CC > 0 and C� > 0 are constants.

For fixed JC 2 J .CC�C/ and J� 2 J .C���/, we denote by J .J�; JC/ the set
of cylindrical almost complex structures in .R�Y;$/ coinciding with JC on W C

and J� on W � . It is well known that J .J�; JC/ is nonempty and contractible. We
will write �C �ex �

� if there exists an exact symplectic cobordism from �C to ��

as above. We remind the reader that �C �ex � and � �ex �
� implies �C �ex �

� , or
in other words that the exact symplectic cobordism relation is transitive; see [8] for
a detailed discussion on symplectic cobordisms with cylindrical ends. Notice that a
symplectization is a particular case of an exact symplectic cobordism.

Remark We point out to the reader that in many references in the literature, a slightly
different definition of cylindrical almost complex structures is used: instead of de-
manding that xJ satisfies conditions (3-3) and (3-4), the stronger condition that xJ
coincides with J˙ 2 J .�˙/ in the region W ˙ is demanded. We need to consider this
more relaxed definition of cylindrical almost complex structures when we study the
cobordism maps of cylindrical contact homologies in Section 3.2.3.

3.1.3 Splitting symplectic cobordisms Let �C , � and �� be contact forms on
.Y; �/ such that �C �ex � and ��ex �

� . For � > 0 sufficiently small, it is easy to see
that one also has �C �ex .1C �/� and .1� �/��ex �

� . Then for each R > 0, we can
construct an exact symplectic form $R D d�R on W DR�Y , where

�R D e
s�R�2�C in ŒRC 2;C1/�Y;(3-6)

�R D f .s/� in Œ�R;R��Y;(3-7)

�R D e
sCRC2�� in .�1;�R� 2��Y;(3-8)

and f W Œ�R;R�! Œ1� �; 1C �� satisfies f .�R/D 1� � , f .R/D 1C � and f 0 > 0.
In .R�Y;$R/, we consider a compatible cylindrical almost complex structure zJR ,
but we demand an extra condition on zJR :

(3-9) zJR coincides with J 2 J .�/ in Œ�R;R��Y:

Again we divide W into regions: W CD ŒRC2;C1/�Y , W.�C; �/D ŒR;RC2��Y ,
W.�/D Œ�R;R��Y , W.�; ��/D Œ�R�2;�R��Y and W �D .�1;�R�2��Y .
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The family of exact symplectic cobordisms with cylindrical almost complex structures
.R�Y;$R; zJR/ is called a splitting family from �C to �� along �.

3.1.4 Pseudoholomorphic curves Let .S; i/ be a closed Riemann surface without
boundary and � � S a finite set. Let � be a contact form on .Y; �/, and let J 2 J .�/.
A finite energy pseudoholomorphic curve in the symplectization .R�Y; J / is a map
zw D .s; w/W S n�!R�Y that satisfies

N@J . zw/D d zw ı i �J ı d zw D 0(3-10)

and

(3-11) 0 < E. zw/D sup
q2E

Z
Sn�

zw�d.q�/;

where E D fqW R! Œ0; 1� W q0 � 0g. The quantity E. zw/ is called the Hofer energy and
was introduced in [26]. The operator N@J above is called the Cauchy–Riemann operator
for the almost complex structure J.

For an exact symplectic cobordism .W;$/ from �C to �� as considered above,
and for xJ 2 J .J�; JC/, a finite energy pseudoholomorphic curve is again a map
zwW S n�!W satisfying

(3-12) d zw ı i D xJ ı d zw

and

(3-13) 0 < E��. zw/CEc. zw/CE�C. zw/ <C1;

where

E��. zw/D sup
q2E

Z
zw�1.W �//

zw�d.q��/;

E�C. zw/D sup
q2E

Z
zw�1.WC/

zw�d.q�C/;

Ec. zw/D

Z
zw�1.W.�C;��//

zw�$:

These energies were also introduced in [26].

In splitting symplectic cobordisms, we use a slightly modified version of energy. Instead
of demanding 0 < E�. zw/CEc. zw/CEC. zw/ <C1, we demand that

(3-14) 0 < E��. zw/CE��;�. zw/CE�. zw/CE�;�C. zw/CE�C. zw/ <C1;
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where
E�. zw/D sup

q2E

Z
zw�1W.�/

zw�d.q�/;

E��;�. zw/D

Z
zw�1.W.�;��//

zw�$;

E�;�C. zw/D

Z
zw�1.W.�C;�//

zw�$;

and where E��. zw/ and E�C. zw/ are as above.

The elements of the set � � S are called punctures of the pseudoholomorphic curve zw .
According to [26; 27], punctures fall into two classes, positive and negative, according
to the behaviour of zw in the neighbourhood of the puncture. Before presenting this
classification, we introduce some notation. Let Bı.z/ be the ball of radius ı centred
at the puncture z , and denote by @.Bı.z// its boundary. We can describe the types of
punctures as follows:

� z 2 � is called a positive interior puncture if limz0!z s.z0/DC1 and there
exist a sequence ın! 0 and a Reeb orbit C of X�C such that w.@.Bın.z///
converges in C1 to C as n!C1,

� z 2 � is called a negative interior puncture if limz0!z s.z0/D�1, and there
exist a sequence ın! 0 and a Reeb orbit � of X�� such that w.@.Bın.z///
converges in C1 to � as n!C1.

The results in [26] and [27] imply that these are indeed the only possibilities we need
to consider for the behaviour of zw near punctures. Intuitively, we have that at the
punctures, the pseudoholomorphic curve zw detects Reeb orbits. When for a puncture z ,
there is a subsequence ın such that w.@.Bın.z/// converges to a Reeb orbit  , we
will say that zw is asymptotic to this Reeb orbit  at the puncture z .

If a pseudoholomorphic curve zw is asymptotic to a nondegenerate Reeb orbit at a
puncture z , more can be said about its asymptotic behaviour in neighbourhoods of
this puncture. Take a neighbourhood U � S of z that admits a holomorphic chart
 U W .U; z/! .D; 0/. Using polar coordinates .r; t/ 2 .0;C1/� S1, we can write
x 2 .D n 0/ as x D e�r t . With this notation, it is shown in [26; 27], that if z is a
positive interior puncture at which zw is asymptotic to a nondegenerate Reeb orbit C

of X�C , then zw ı �1U .r; t/D .s.r; t/; w.r; t// satisfies

� wr.t/D w.r; t/ converges in C1 to a Reeb orbit C of X�C , exponentially
in r and uniformly in t .

Similarly, if z is a negative interior puncture at which zw is asymptotic to a non-
degenerate Reeb orbit � of X�� , then zw ı  �1U .r; t/ D .s.r; t/; w.r; t// satisfies
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� wr.t/D w.r; t/ converges in C1 to a Reeb orbit � of �X�� as r !C1,
exponentially in r and uniformly in t .

Remark The fact that the convergence of pseudoholomorphic curves near punctures
to Reeb orbits is of exponential nature is a consequence of the asymptotic formula
obtained in [27]. Such formulas are necessary for the Fredholm theory developed in
[28] that gives the dimension of the space of pseudoholomorphic curves with fixed
asymptotic data.

The discussion above can be summarized by saying that, near punctures, the finite
energy pseudoholomorphic curves detect Reeb orbits. It is exactly this behaviour that
makes these objects useful for the study of dynamics of Reeb vector fields.

For us, it will be important to consider the moduli spaces M.;  01; : : : ; 
0
mIJ / of

genus-0 pseudoholomorphic curves, modulo biholomorphic reparametrization, with
one positive puncture asymptotic to a nondegenerate Reeb orbit  , and negative
punctures asymptotic to nondegenerate Reeb orbits  01; : : : ; 

0
m . It is well known that

the linearization D N@J of N@J at any element of M.;  01; : : : ; 
0
mIJ / is a Fredholm

map (we remark that this property is valid for more general moduli spaces of curves
with prescribed asymptotic behaviour). One would like to conclude that the dimension
of a connected component of M.;  01; : : : ; 

0
mIJ / is given by the Fredholm index of

an element of M.;  01; : : : ; 
0
mIJ /. However, this is not always the case if the moduli

space contains multiply covered pseudoholomorphic curves.

Fact As a consequence of the exactness of the symplectic cobordisms considered
above, we obtain that the energy E. zw/ of zw satisfies E. zw/� 5A. zw/, where A. zw/ is
the sum of the action of the Reeb orbits detected by the punctures of zw counted with
multiplicity; see [8; 29].

3.2 Contact homologies

Contact homologies were introduced in [14] as homology theories which are topological
invariants of contact manifolds. In Sections 3.2.1 and 3.2.2, we give an introduction to
the more basic and well-known versions of contact homologies. This serves mainly as
a motivation to Section 3.2.3, where we present the version of contact homology that
will be used in this paper.2

2We stress that while the versions of contact homology presented in Sections 3.2.1 and 3.2.2 do depend
on the polyfold technology currently being developed by Hofer, Wysocki and Zehnder, the version of
contact homology which we use in this paper and present in Section 3.2.3 does not depend on polyfold and
can be constructed in complete rigour with technology that is available in the literature. See the detailed
discussion in Section 3.2.3 below.
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3.2.1 Full contact homology Full contact homology was introduced in [14] as an
important invariant of contact structures. We refer the reader to [14] and [6] for detailed
presentations of the material contained in this subsection.

Let .Y 2nC1; �/ be a contact manifold with � a nondegenerate contact form. We denote
by P.�/ the set of good periodic orbits of the Reeb vector field X� . To each orbit
 2 P.�/, we define a Z2–degree j j D .�CZ./C .n� 2// mod 2. An orbit  is
called good if it is either simple, or if  D . 0/i for a simple orbit  0 with j j D j 0j.

A.Y; �/ is defined to be the supercommutative, Z2–graded Q–algebra with unit gener-
ated by P.�/ (an algebra with these properties is called a commutative superalgebra or
a super-ring). The Z2–grading on the elements of the algebra is obtained by considering
(on the generators) the grading mentioned above and extending it to A.Y; �/.

A.Y; �/ can be equipped with a differential dJ . Denote by Mk.;  01; : : : ; 
0
mIJ / the

moduli space of finite energy pseudoholomorphic curves of genus 0 and Fredholm
index k , modulo reparametrization, with one positive puncture asymptotic to  and
negative punctures asymptotic to  01; : : : ; 

0
m in the symplectization .R� Y; J /. As

the almost complex structure J is R–invariant in R� Y , we have an R–action on
Mk.;  01; : : : ; 

0
mIJ /, and we write

�Mk.;  01; : : : ; 
0
mIJ /DMk.;  01; : : : ; 

0
mIJ /=R:

Lastly, we denote by Mk.;  01; : : : ; 
0
mIJ /, as presented in [8], the compactification

of �Mk.;  01; : : : ; 
0
mIJ /. The compactified moduli space Mk.;  01; : : : ; 

0
mIJ / also

involves pseudoholomorphic buildings that appear as limits of a sequence of curves
in �Mk.;  01; : : : ; 

0
mIJ / that “breaks”; we refer the reader to [8] for a more detailed

description of these moduli spaces. To define our differential, we need the following
hypothesis:

Hypothesis H There exists an abstract perturbation of the Cauchy–Riemann oper-
ator @J such that the compactified moduli spaces M.;  01; : : : ; 

0
mIJ / of solutions

of the perturbed equation are unions of branched manifolds with corners and rational
weights whose dimension is given by the Conley–Zehnder index of the asymptotic
orbits and the relative homology class of the solution.

The proof that Hypothesis H is true is still not written. Establishing its validity is one
of the main reasons for the development of the polyfold technology by Hofer, Wysocki
and Zehnder. We define

(3-15) dJ  Dm./
X

 01;:::;
0
m

C.;  01; : : : ; 
0
m/

mŠ
 01
0
2 : : : 

0
m;
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where C.;  01; : : : ; 
0
m/ is the algebraic count of points in the 0–dimensional manifold

(3-16) �M1.;  01; : : : ; 
0
mIJ /;

and m./ is the multiplicity of  . The map dJ is extended to the whole algebra by the
Leibnitz rule. Under Hypothesis H, it was proved in [14] that .dJ /2D 0. We therefore
have that .A.Y; �/; dJ / is a differential Z2–graded supercommutative algebra.

Definition 2 The full contact homology CH.�; J / of � is the homology of the
complex .A; dJ /.

Under Hypothesis H, it was also proved in [14] that the full contact homology does not
depend on the contact form � on .Y; �/, nor on the choice of the cylindrical almost
complex structure J 2 J .�/.

3.2.2 Cylindrical contact homology Suppose now that .Y; �/ is a contact manifold,
and � is a nondegenerate hypertight contact form on .Y; �/. Fix a cylindrical almost
complex structure J 2 J .�/. For hypertight contact manifolds, we can define a
simpler version of contact homology called cylindrical contact homology. We denote
by CHcyl.�/ the Z2–graded Q–vector space generated by the elements of P.�/.
The differential d cyl

J W CHcyl.�/! CHcyl.�/ will count elements in the moduli space�M1.;  0IJ /. For the generators  2 P.�/, we define

(3-17) d cyl
J ./D cov./

X
 02P.�/

C.;  0IJ / 0;

where C.;  0IJ / is the algebraic count of elements in �M1.;  0IJ / and cov./ is
the covering number of  . For � hypertight, and assuming Hypothesis H is true,
Eliashberg, Givental and Hofer proved in [14] that .d cyl

J /2 D 0.

Definition 3 The cylindrical contact homology CHcyl.�/ of � is the homology of the
complex .CHcyl.�/; d

cyl
J /.

Under Hypothesis H, the cylindrical contact homology does not depend on the hypertight
contact form � on .Y; �/, nor on the cylindrical almost complex structure J 2 J .�/.

Denote by ƒ the set of free homotopy classes of Y . It is easy to see that for each
� 2ƒ, the subspace CH�cyl.�/�CHcyl.�/ generated by the set P�.�/ of good periodic
orbits in � is a subcomplex of .CHcyl.�/; d

cyl
J /. This follows from the fact that the

number C.;  0IJ / can only be nonzero for Reeb orbits  0 that are freely homotopic
to  , which implies that the restriction d cyl

J jCH�cyl has image in CH�cyl.�/. From now
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on, we will denote the restriction d cyl
J jCH�cyl W CH�cyl.�/! CH�cyl.�/ by d�J . Denoting

by CH�
cyl the homology of .CH�cyl.�/; d

�
J /, we thus have

(3-18) CHcyl.�/D
M
�2ƒ

CH�
cyl.�/:

The fact that we can define partial versions of cylindrical contact homology restricted
to certain free homotopy classes will be of crucial importance for us. It will allow us
to obtain our results without resorting to Hypothesis H. This is explained in the next
subsection.

3.2.3 Cylindrical contact homology in special homotopy classes Maintaining the
notation of the previous sections, we denote by .Y; �/ a contact manifold endowed
with a hypertight contact form �.

Let ƒ0 denote the set of primitive free homotopy classes of Y . Let � 2ƒ be either an
element of ƒ0 , or a free homotopy class which contains only simple Reeb orbits of �.
Assume that all Reeb orbits in P�.�/ are nondegenerate. By the work of Dragnev [13],
we know that there exists a generic subset J �reg.�/ of J .�/ such that for all J 2J �reg.�/

we have:

� For all Reeb orbits 1; 2 2 � , the moduli space of pseudoholomorphic cylinders
M.1; 2IJ / is transverse, ie the linearized Cauchy–Riemann operator D N@J . zw/
is surjective for all zw 2M.1; 2IJ /.

� For all Reeb orbits 1; 2 2 � , each connected component L of the moduli space
M.1; 2IJ / is a manifold whose dimension is given by the Fredholm index of
any element zw 2 L.

In this case, for J 2 J �reg.�/, we define

(3-19) d�J ./D cov./
X

 02P�.�/

C �.;  0IJ / 0 D
X

 02P�.�/

C �.;  0IJ / 0;

where C �.;  0IJ / is the number of points of the moduli space �M1.;  0IJ /. The
second equality follows from the fact that all Reeb orbits in � are simple, which implies
cov./D 1.

For � and � as above and J 2 J �reg.�/, the differential d�J W CH�cyl.�/! CH�cyl.�/

is well-defined and satisfies .d�J /
2 D 0. Thus, in this situation, we can define the

cylindrical contact homology CH�;J
cyl .�/ without imposing Hypothesis H. Once the

transversality for J has been achieved, and using coherent orientations constructed
in [9], the proof that d�J is well-defined and that .d�J /

2 D 0 is a combination of
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compactness and gluing, similar to the proof of the analogous result for Floer homology.
For the convenience of the reader, we sketch these arguments below:

Claim For � as above, d�J W CH�cyl.�/ ! CH�cyl.�/ is well-defined, and for every
 2 P�.�/, the differential d�J ./ is a finite sum.

Proof The moduli space �M1.;  0IJ / can be nonempty only if A. 0/�A./. It then
follows from the nondegeneracy of � that, for a fixed  , the numbers C cyl.;  0IJ /

can be nonzero for only finitely many  0 . To see that C cyl.;  0IJ / is finite for every
 0 2 � , suppose by contradiction that there is a sequence zwi of distinct elements of�M1.;  0IJ /. By the SFT compactness theorem [8], such a sequence has a convergent
subsequence that converges to a pseudoholomorphic building zw which has Fredholm
index 1. Because of the hypertightness of �, no bubbling can occur and all the
levels zw1; : : : ; zwk of the building zw are pseudoholomorphic cylinders. As all Reeb
orbits of � in � are simple, it follows that all these cylinders are somewhere injective
pseudoholomorphic curves, and the regularity of J implies that they must all have
Fredholm index at least 1. As a result, we have 1D IF . zw/D

P
.IF . zw

l//� k , which
implies k D 1. Thus zw 2 �M1.;  0IJ /, and it is the limit of a sequence of distinct
elements of �M1.;  0IJ /. This is absurd, because �M1.;  0IJ / is a 0–dimensional
manifold. We thus conclude that the numbers C cyl.;  0IJ / are all finite.

Claim For � as above, .d�J /
2 D 0.

Proof If we write

(3-20) d�J ı d
�
J ./D

X
 002P�.�/

m; 00
00;

we know that m; 00 is the number of two-level pseudoholomorphic buildings zw D
. zw1; zw2/ such that zw1 2 �M1.;  0IJ / and zw2 2 �M1. 0;  00IJ / for some  0 2P�.�/.
Because of transversality of zw1 and zw2 , we can perform gluing. This implies that zw
is in the boundary of the moduli space M2.;  00IJ /. Taking a sequence zwi of
elements in �M2.;  00IJ / converging to the boundary of M2.;  00IJ / and arguing
similarly as above, we have that this sequence converges to a pseudoholomorphic
building zw1 whose levels are somewhere injective pseudoholomorphic cylinders.
Using that IF . zw1/D 2, we obtain that zw1 can have at most 2 levels. As zw1 is in
the boundary of M2.;  00IJ /, it cannot have only one level, and is therefore a two-level
pseudoholomorphic building whose levels have Fredholm index 1. Summing up, zw1D
. zw11; zw

2
1/, where zw112 �M1.;  0IJ / and zw212 �M1. 0;  00IJ /, for some  02P�.�/.
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The discussion above implies that m; 00 is the count with signs of boundary components
of the compactified moduli space M2.;  00IJ / which is homeomorphic to a one-
dimensional manifold with boundary. Because the signs of this count are determined
by coherent orientations of M2.;  00IJ /, it follows that m; 00 D 0.

These claims give us the following:

Proposition 4 Let .Y; �/ be a contact manifold with a hypertight contact form �. Let
� 2ƒ be either an element of ƒ0 or a free homotopy class which contains only simple
Reeb orbits of �. Assume that all Reeb orbits in P�.�/ are nondegenerate and pick
J 2J �reg.�/. Then d�J is well defined and .d�J /

2D 0. Under these conditions we define
CH�

cyl.�/ as the homology of the pair .CH�cyl.�/; d
�
J /.

Exact symplectic cobordisms induce homology maps for the SFT-invariants. We
describe how this is done for the version of cylindrical contact homology considered in
this section. Let .Y C; �C/ and .Y �; ��/ be contact manifolds, with hypertight contact
forms �C and �� . Let .W; !/ be an exact symplectic cobordism from �C to �� .
Assume that � is either a primitive free homotopy class or that all the closed Reeb
orbits of both �C and �� which belong to � are simple. Assume moreover that all
Reeb orbits of both P�.�C/ and P�.��/ are nondegenerate. Choose almost complex
structures JC 2J �reg.�

C/ and J� 2J �reg.�
�/. From the work of Dragnev [13] (see also

Section 2.3 in [37]) we know that there is a generic subset J �reg.J
�; JC/2J .J�; JC/

such that for yJ 2 J �reg.J
�; JC/, C 2 P�.�C/ and � 2 P�.��/, we have that

� all the curves zw in the moduli spaces M.C; �I yJ / are Fredholm regular,

� the connected components V of M.C; �I yJ / have dimension equal to the
Fredholm index of any pseudoholomorphic curve in V .

In this case, we can define a map ˆ yJ W CH�cyl.�
C/! CH�cyl.�

�/, given on elements of
P�.�C/, by

(3-21) ˆ
yJ.C/D

X
�2P�.��/

nC;� 
�;

where nC;� is the number of pseudoholomorphic cylinders with Fredholm index 0,
positively asymptotic to C and negatively asymptotic to � . Using a combination of
compactness and gluing (see [6]) one proves that ˆ yJ ı d�JC D d

�
J� ıˆ

yJ . As a result
we obtain a map ˆ yJ W CH�;JC

cyl .�C/! CH�;J�

cyl .��/ on the homology level.

We study the cobordism map in the following situation: take .V DR�Y;$/ to be an
exact symplectic cobordism from C� to c�, where C > c > 0 and � is a hypertight
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contact form. Suppose that one can make an isotopy of exact symplectic cobordisms
.R� Y;$t / from C� to c�, with $t satisfying $0 D$ and $1 D d.es�0/. We
consider the space zJ .J; J / of smooth homotopies

(3-22) Jt 2 J .J; J /; t 2 Œ0; 1�;

such that J0 D JV , J1 2 Jreg.�/, and Jt is compatible with $t for every t 2 Œ0; 1�.
Here Jt is a deformation of J0 to J1 through asymptotically cylindrical almost complex
structures in the cobordisms .R�Y;$t /. For Reeb orbits ;  0 2 P�.�/, we consider
the moduli space

(3-23) �M1.;  0IJt /D
˚
.t; zw/ j t 2 Œ0; 1� and zw 2 �M1.;  0IJt /

	
:

By using the techniques of [13], we know that there is a generic subset zJreg.J; J /�
zJ .J; J / such that �M1.;  0IJt / is a 1–dimensional smooth manifold with boundary.

The crucial condition that makes this valid is again the fact that all the pseudoholomor-
phic curves that make part of this moduli space are somewhere injective.

The following proposition follows from combining the work of Eliashberg, Givental
and Hofer [14] and Dragnev [13].

Proposition 5 Let .Y; �/ be a contact manifold with a hypertight contact form �. Let
�CDC� and ��D c�, where C > c > 0 are constants, and let � be either a primitive
free homotopy class or a free homotopy class in which all Reeb orbits of � are simple.
Assume that all Reeb orbits in P�.�/ are nondegenerate. Choose an almost complex
structure J 2 J �reg.�/, and set JC D J� D J. Let .W D R � Y;$/ be an exact
symplectic cobordism from C� to c�, and choose a regular almost complex structure
yJ 2 J �reg.J

�; JC/. Then, if there is a homotopy .R � Y;$t / of exact symplectic
cobordisms from C� to c� with $0 D$ and $1 D d.es�/, it follows that the map

ˆ
yJ W CH�;Jcyl .�/! CH�;Jcyl .�/

is chain homotopic to the identity.

The proof is again a combination of compactness and gluing, and we sketch it below.
We refer the reader to [6] and [14] for the details.

Sketch of the proof We initially define the map

(3-24) KW CH�cyl.�/! CH�cyl.�/

that counts finite energy Fredholm index-.�1/ pseudoholomorphic cylinders in the
cobordisms .R � Y;$t / for t 2 Œ0; 1�. Because of the regularity of our homotopy,
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the moduli space of index �1 cylinders whose positive puncture detects a fixed Reeb
orbit  is finite, and therefore the map K is well defined.

Notice that for tD1, the cobordism map ˆ yJ1 is the identity, and the pseudoholomorphic
curves that define it are just trivial cylinders over Reeb orbits. For t D 0, the map
ˆ yJ0 Dˆ yJ counts index-0 cylinders in the cobordism .R�Y;$/. From the regularity
of J0 , J1 and the homotopy Jt , we have that the pseudoholomorphic cylinders involved
in these two maps belong to the 1–dimensional moduli spaces �M1.;  0IJt /.

By using a combination of compactness and gluing we can show that the boundary
of the moduli space �M1.;  0IJt / is exactly the set of pseudoholomorphic build-
ings zw with two levels, zwcob and zwsymp , such that zwcob is an index-.�1/ cylinder in
a cobordism .R� Y;$t /, and zwsymp is an index-1 pseudoholomorphic cylinder in
the symplectization of � above or below zwcob . Such two-level buildings are exactly
the ones counted in the map K ı d cyl

J C d
cyl
J ıK . As a consequence, one has that the

difference between the maps ˆ yJ1 D Id and ˆ yJ is equal to K ı d cyl
J C d

cyl
J ıK . This

implies that ˆ yJ is chain homotopic to the identity.

The result above can be used to show that CH�
cyl.�/ does not depend on the regular

almost complex structure J used to define the differential dJ .

4 Exponential homotopical growth rate
of cylindrical contact homology and estimates for htop

In this section, we define the exponential homotopical growth of contact homology
and relate it to the topological entropy of Reeb vector fields. The basic idea is to
use the fact that the cylindrical contact homology of .M; �/ in a free homotopy class
is nonvanishing to obtain existence of Reeb orbits in such a homotopy class for any
contact form on .M; �/; this idea is present in [30; 37]. It is straightforward to see that
the period and action of a Reeb orbit are equal, and in the sequel, we will use the same
notation to refer to period and action of Reeb orbits.

Definition 6 Let .M; �/ be a contact manifold and �0 a hypertight contact form on
.M; �/. We denote by ƒ.M/ the set of free homotopy classes of loops in M. For
T > 0, we define the subset zƒT .�0/�ƒ.M/ by the following condition:

� � 2 zƒT .�0/ if and only if all Reeb orbits of X�0 in � are simply covered,
nondegenerate, have action/period at most T , and CH�

cyl.�0/¤ 0.

We define N cyl
T .�0/ WD #zƒT .�0/.
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Definition 7 We say that the cylindrical contact homology of �0 has exponential
homotopical growth with exponential weight a > 0 if there exist a number b and a
sequence Tn!C1 such that N cyl

Tn
.�0/� e

aTnCb for all Tn .

Remark Notice that in Definition 7, we do not demand that �0 is nondegenerate. We
only demand the weaker condition that the Reeb orbits of �0 belonging to some free
homotopy classes are nondegenerate.

The main result of this section is the following:

Theorem 8 Let �0 be a hypertight contact form on a contact manifold .M; �/, and
assume that the cylindrical contact homology of �0 has exponential homotopical growth
with exponential weight a > 0. Then for every C k (k � 2) contact form � on .M; �/,
the Reeb flow of X� has positive topological entropy. More precisely, if f� is the
function such that �D f��0 , then

(4-1) htop.�X�/�
a

maxf�
:

Proof We write E Dmaxf� .

Step 1 We assume first that � is nondegenerate and C1 . For every � > 0 we can
construct an exact symplectic cobordism from .EC�/�0 to �. Analogously, for �0>0
small enough, it is possible to construct an exact symplectic cobordism from � to �0�0 .

Using these cobordisms, we can construct a splitting family .R�M;$R; JR/ from
.EC�/�0 to �0�0 , along �, such that for every R>0, we have that .R�M;$R; JR/
is homotopic to the symplectization of �0 . For a fixed � 2 zƒT .�0/, we pick a regular
almost complex structure J0 2 J

�
reg.�0/ and J 2 J .�/, and demand that JR coincides

with J0 in the positive and negative ends of the cobordism, and with J on Œ�R;R��M.

We claim that for every R , there exists a finite energy pseudoholomorphic cylinder zw
in .R�M;JR/ that is positively asymptotic to a Reeb orbit in P�.�0/ and negatively
asymptotic to an orbit in P�.�0/.

If this was not true for a certain R > 0, then because of the absence of pseudo-
holomorphic cylinders asymptotic to Reeb orbits in P�.�0/, we would have that
JR 2 J �reg.J0; J0/. Therefore, the map ˆJR W CH�

cyl.�0/! CH�
cyl.�0/ induced by

.R �M;$R; JR/ is well-defined. But because there are no pseudoholomorphic
cylinders asymptotic to Reeb orbits in P�.�0/, we have that ˆJR vanishes. On
the other hand, from Proposition 5 in Section 3.2.3, we know that ˆJR is the identity.
As ˆJR vanishes and is the identity, we conclude that CH�

cyl.�0/D 0, contradicting
that � 2 zƒT .�0/.
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Step 2 Let � 2 zƒT .�0/, let Rn!C1 be a strictly increasing sequence, and let
zwnW .S

1�R; i/! .R�M;JRn/ be a sequence of pseudoholomorphic cylinders with
one positive puncture asymptotic to an orbit in P�.�0/ and one negative puncture
asymptotic to an orbit in P�.�0/. Notice that because of the properties of � , the energy
of zwn is uniformly bounded.

Therefore, we can apply the SFT compactness theorem to obtain a subsequence of zwn
which converges to a pseudoholomorphic building zw . Notice that in order to apply the
SFT compactness theorem, we need to use the nondegeneracy of �. Moreover, we can
give a very precise description of the building.

Let zwk for k 2f1; : : : ; mg be the levels of the pseudoholomorphic building zw . Because
the topology of our curve zw does not change after breaking, we have the following
picture:

� The upper level zw1 is composed of one connected pseudoholomorphic curve,
which has one positive puncture asymptotic to an orbit 0 2 P�.�0/, and several
negative punctures. All of the negative punctures detect contractible orbits,
except one that detects a Reeb orbit 1 which is also in � .

� On every other level zwk , there is a special pseudoholomorphic curve which has
one positive puncture asymptotic to a Reeb orbit k�1 in � , and at least one, but
possibly several, negative punctures. Of the negative punctures, there is one that is
asymptotic to an orbit k in � , while all the others detect contractible Reeb orbits.

Because of the splitting behaviour of the cobordisms .R�M;JRn/, it is clear that
there exists a k0 such that the level zwk0 is in an exact symplectic cobordism from
.EC �/�0 to �. This implies that the special orbit k0 is a Reeb orbit of X� in the
homotopy class � .

Notice that A.0/ � .E C �/T . This implies that all the other orbits appearing as
punctures of the building zw have action smaller than .EC �/T and, in particular, that
k0 has action smaller than .EC �/T .

As we can do the construction above for any � > 0, we can obtain a sequence of Reeb
orbits �j which are all in � such that A.�j /� .EC 1=j /T . Using the Arzela–Ascoli
theorem, one can extract a convergent subsequence of �j . Its limit � is clearly a Reeb
orbit of � in the free homotopy class � , with action at most ET .

Step 3 (estimating NX�.T /)
3 From step 2, we know that if � 2 zƒT .�0/, then there

is a Reeb orbit � of the Reeb flow of X� with A.�/ � ET . Recalling that the

3Recall from Section 2 that NX�.T / is the number of free homotopy classes of M that contain
periodic orbits of X� with period at most T .
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period and the action of a Reeb orbit coincide, we obtain that NX�.T /� #zƒT=E .�0/.
Under the hypothesis of the theorem, there exists a sequence Tn !C1 such that
#zƒT=E .�0/� eaTn=ECb for all Tn . We then conclude that

(4-2) NX�.Tn/� e
aTn=ECb

for all elements of the sequence Tn . Applying Theorem 1, we obtain htop.�X�/� a=E .
This proves the theorem in the case that � is C1 and nondegenerate.

Step 4 Here we pass to the case of a general C k�2 contact form � (the case where �
is degenerate is included here).

Let �i be a sequence of nondegenerate smooth contact forms converging in the C k–
topology to a contact form � which is C k (k � 2) and possibly degenerate. For every
� > 0, there is i0 such that for i > i0 , there exists an exact symplectic cobordism from
.EC �/�0 to �i .

Fixing a homotopy class � 2 zƒT .�0/, we know, by the previous steps, that there exists
a Reeb orbit �.i/ of �i in the homotopy class � with action smaller than .EC �/T .
By applying the Arzela–Ascoli theorem to �.i/, we obtain a subsequence which
converges to a Reeb orbit �;� of X� with A.�;�/� .EC �/T . Notice that here we
use that � is at least C 2 (so that X� is at least C 1 ) in order to be able to use the
Arzela–Ascoli theorem.

Because � > 0 above can be taken arbitrarily close to 0, we can actually obtain a
sequence j;� of Reeb orbits of X� , whose homotopy class is � , such that the actions
A.j;�/ converges to a number at most ET . Again applying the Arzela–Ascoli theorem,
we obtain that the sequence j;� has a convergent subsequence which converges to an
orbit � satisfying A.�/�ET .

Reasoning as in step 3 above, we conclude that NX�.Tn/� e
aTn=ECb for all elements

of the sequence Tn!C1. Applying Theorem 1, we obtain the desired estimate for
the topological entropy. This finishes the proof of the theorem.

5 Contact 3–manifolds with a hyperbolic component

In this section, we prove the following theorem:

Theorem 9 Let M be a closed connected oriented 3–manifold which can be cut along
a nonempty family of incompressible tori into a family fMi ; 0� i � qg of irreducible
manifolds with boundary, such that
� M0 is the mapping torus of a diffeomorphism hW S ! S with pseudo-Anosov

monodromy on a surface S with nonempty boundary.
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Then M can be given infinitely many nondiffeomorphic contact structures �k such that
for each �k , there exists a hypertight contact form �k on .M; �k/ which has exponential
homotopical growth of cylindrical contact homology. It follows that on each .M; �k/,
all Reeb flows have positive topological entropy.

We denote by S a compact surface with nonempty boundary and by ! a symplectic
form on S . Let h be a symplectomorphism of .S; !/ to itself, with pseudo-Anosov
monodromy and which is the identity on a neighbourhood of @S . We follow a well-
known recipe to construct a suitable contact form on the mapping torus †.S; h/.

We choose a primitive ˇ for ! such that, for coordinates .r; �/ 2 Œ��; 0� � S1 in
a neighbourhood V of @S , we have ˇ D f .r/d� , where f > 0 and f 0 > 0. We
pick a smooth nondecreasing function F0W R! Œ0; 1� which satisfies F0.t/D 0 for
t 2
�
�1; 1

100

�
and F0.t/D 1 for t 2

�
1
100
;C1

�
. For i 2Z, define Fi .t/DF0.t� i/.

Fixing � > 0, we define a 1–form z̨ on R�S by

(5-1) z̨ D dt C �.1�Fi .t//.h
i /�ˇC �Fi .t/.h

iC1/�ˇ for t 2 Œi; i C 1/:

This defines a smooth 1–form on R�S , and a simple computation shows that if � is
small enough, the 1–form z̨ is a contact form. For t 2 Œ0; 1�, the Reeb vector field Xz̨
is equal to @t C v.p; t/, where v.p; t/ is the unique vector tangent to S that satisfies
!.v.p; t/; � /D F 00.t/.ˇ� h

�ˇ/.

Consider the diffeomorphism H W R�S !R�S defined by H.t; p/D .t � 1; h.p//.
The mapping torus †.S; h/ is defined by

(5-2) †.S; h/ WD .R�S/=.t; p/�H.t; p/;

and we denote by � W R�S !†.S; h/ the associated covering map.

Because H� z̨ D z̨ , there exists a unique contact form ˛ on †.S; h/ such that ��˛D z̨ .
Notice that in the neighbourhood S1 �V of @†.S; h/, we have ˛ D dt C �f .r/d� ,
which implies that X˛ is tangent to @†.S; h/.

The Reeb vector field X˛ on †.S; h/ is transverse to the surfaces ftg�S for t 2R=Z.
This implies that f0g �S is a global surface of section for the Reeb flow of ˛ , and by
our expression of Xz̨ , the first return map of the Reeb flow of ˛ is isotopic to h.

It follows from [1, Theorem 13] that we can make a perturbation of ˛ supported in
the interior M†.S; h/ of †.S; h/ to obtain a contact form y̨ on †.S; h/ (whose kernel
coincides with that of ˛ ) satisfying that all Reeb orbits of y̨ which are contained
in M†.S; h/ are nondegenerate. By doing the perturbation small enough, we can also
guarantee that f0g �S is still a global surface of section for the flow of Xy̨ . Since the
perturbation is supported in the interior of †.S; h/, the Reeb flow of y̨ is also tangent
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to the boundary of †.S; h/. It is clear that the first return map yhW f0g �S ! f0g �S
of �Xy̨ is a diffeomorphism isotopic to h.

5.1 Contact 3–manifolds containing .†.S; h/; y̨/ as a component

Let M be a closed connected oriented 3–manifold which can be cut along a nonempty
family of incompressible tori into a family fMi ; 0� i � qg of irreducible manifolds
with boundary, such that the component M0 is diffeomorphic to †.S; h/. Then it
is possible to construct hypertight contact forms on M which match with y̨ in the
component M0 . More precisely, we have the following result due to Colin and Honda,
and Vaugon:

Proposition 10 [12; 40] Let M be a closed connected oriented 3–manifold which
can be cut along a nonempty family of incompressible tori into a family fMi ; 0� i � qg

of irreducible manifolds with boundary, such that the component M0 is diffeomorphic
to †.S; h/. Then, there exists an infinite family f�k; k 2 Zg of nondiffeomorphic
contact structures on M such that

� for each k 2 Z, there exists a hypertight contact form �k on .M; �k/ which
coincides with y̨ on the component M0 .

We briefly recall the construction of the contact forms �k and refer the reader to
[12; 40] for the details. For i � 1, we apply [12, Theorem 1.3] to obtain a hypertight
contact form ˛i on Mi which is compatible with the orientation of Mi , and whose
Reeb vector field X˛i is tangent to the boundary of Mi . On the special piece M0 , we
consider the contact form ˛0 equal to y̨ constructed above.

Let fTj j 1� j �mg be the family of incompressible tori along which we cut M to
obtain the pieces Mi . Then the contact forms ˛i give a hypertight contact form on each
component of M n

Sm
j�1V .Tj /, where V .Tj / is a small open neighbourhood of Tj .

This gives a contact form y� on M n
Sm
j�1V .Tj /. Using an interpolation process (see

[40, Section 7]), one can construct contact forms on the neighbourhoods V .Tj / which
coincide with y� on @V .Tj /. The interpolation process is not unique and can be done
in ways so as to produce an infinite family of distinct contact forms f�k j k 2Zg on M
that extend y�, and which are associated to contact structures �k WD ker�k that are all
nondiffeomorphic. The contact topological invariant used to distinguish the contact
structures �k is the Giroux torsion; see [40, Section 7].

5.2 Proof of Theorem 9

It is clear that Theorem 9 will follow if we establish that the cylindrical contact homology
of �k has exponential homotopical growth. This is the content of the following:
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Proposition 11 The cylindrical contact homology of �k has exponential homotopical
growth.

Before proving the proposition, we introduce some necessary ideas and notation. The
first return map of Xy̨ is a diffeomorphism yhW S ! S which is homotopic to h and,
therefore, to a pseudo-Anosov map  W S!S . The Reeb orbits of Xy̨ are in one-to-one
correspondence with periodic orbits of yh. Moreover, we have that two Reeb orbits 1
and 2 of Xy̨ are freely homotopic if and only if their associated periodic orbits are
in the same Nielsen class. Thus there is an injective map „ from the set N of Nielsen
classes to the set ƒ.†.S; h// of free homotopy classes of Reeb orbits in †.S; h/.

We now recall some facts about Nielsen theory for pseudo-Anosov maps in surfaces
with boundary, which the reader can find in [11; 15; 16]. Let Pn be the set of periodic
orbits of  with period n which are contained in the interior of S . Because pseudo-
Anosov maps have Markov partitions [15; 16], we know that there exist numbers a > 0
and b such that

#Pn > eanCb

for every n 2N . It follows from [11, Lemma 1.1] that all periodic orbits in Pn belong
to distinct Nielsen classes, and that these Nielsen classes are unrelated to the boundary
of S . By this, we mean that for every periodic orbit in Pn , its suspension is a curve in
†.S; h/ which cannot be homotoped to a curve completely contained in the boundary
of †.S; h/.

We denote by Nn the set of Nielsen classes associated to the periodic orbits Pn of  .
Notice that N equals the disjoint union

S
n2N Nn . It follows from the discussion

above that
#Nn > eanCb

for all n 2N . It is immediate to see that the fixed points of yh belong to a finite number
of Nielsen classes, and we denote by c the number of elements in N1 . We write
N1 D f�1; : : : ; �cg. For each �i 2N1 we will denote by �ni the Nielsen class in Nn
which n–covers �i in the following sense: if xi is a fixed point in �i , then �ni is the
Nielsen class that contains the periodic orbit of period n that “covers” xi .

As observed previously, there exists an injective map „W N !ƒ.†.S; h//. Let p be
a prime number, and let � 2„.Np/. Then there are two possibilities:

(a) � contains only simple Reeb orbits,

(b) � contains a Reeb orbit  which is a p–cover of a simple orbit 0 that intersects
f0g �S once.
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The reason why these are the only two possibilities is that every Reeb orbit  2 �
intersects f0g � S exactly p times. If  is a multiple cover of a simple orbit 0 ,
then the number of intersections of 0 with f0g �S must be a divisor of p . As p is
prime, this number is either p , which implies that  is simple, or 1. It is clear that if
�2„.Np/ satisfies (b), then �D„.�pi / for some �i 2N1 . We denote by N simp

p the set
Np n f�

p
1 ; : : : ; �

p
i ; : : : ; �

p
q g. As a consequence we conclude that if ƒpsimp WD„.N simp

p /

is the set of elements in „.Np/ satisfying (a), then

#ƒpsimp D #Np � c

for every prime number p . Since #Np > eapCb for every prime p , we conclude that
there exists a prime number p0 such that for every prime p � p0 ,

#ƒpsimp � e
apCq:

Let x be a periodic orbit of yh of period n. Viewing yh as the first return map for a
global surface of section of the Reeb flow �Xy̨ we know that there is a Reeb orbit x
of y̨ (and also of �k ) which is the suspension of x. Because of the compactness of S ,
we know that there exists a number � > 0, depending only on yh and y̨ , such that
A.x/� �n.

We are now ready for the proof of Proposition 11. The main ideas of the argument are
due to Vaugon, who estimated in [40] a different growth rate of the cylindrical contact
homology �k .

Proof of Proposition 11 Step 1 Let i W †.S; h/! M be the injection we obtain
from viewing †.S; h/ as a component of M . Because of the incompressibility of
@†.S; h/ in M , the associated map i�W ƒ.†.S; h//!ƒ.M/ is injective (here ƒ.M/

denotes the free loop space of M ).

For each prime number p , we define Tp WD �p . Recall that if � 2ƒpsimp , then � does
not contain curves completely contained in the boundary of †.S; h/. It follows from
this and from the incompressibility of @†.S; h/ in M , that if %2 i�.ƒpsimp/, then every
loop in % must intersect the interior †.S; h/.

Using that the Reeb flow of �k is tangent to @†.S; h/, it follows that if % 2 i�.ƒpsimp/,
then all Reeb orbits of �X�k that belong to % are contained in the interior of †.S; h/.
This implies that % contains only nondegenerate4 Reeb orbits of �X�k . Combining
this with the injectivity of i� and „, we conclude that every Reeb orbit �k in % is the
suspension of a periodic orbit of yh in the Nielsen class � WD .i� ı„/�1% 2N simp

p . This
implies that

4Recall that because of our choice of y̨ , Reeb orbits contained in int.†.S; h// are nondegenerate.
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(c) all Reeb orbits of �k in the free homotopy class % are nondegenerate and simple,

(d) all Reeb orbits of �k in the free homotopy class % have action � Tp .

Hypertightness of �k and (c) imply that if % 2 i�.ƒpsimp/, then CH%
cyl.�k/ is well

defined.

Step 2 For every % 2 i�.ƒpsimp/, we have CH%
cyl.�k/¤ 0. Indeed, Vaugon showed

(see the proofs of Lemma 7.11 and Theorems 1.3 and 1.2 in [40]) that the number of
Reeb orbits in % of even and odd degree differ. For Euler characteristic reasons, this
implies that CH%

cyl.�k/¤ 0. Combining this with (d) from step 1, we conclude that
every % 2 i�.ƒpsimp/ belongs to the set zƒTp .�k/ as defined in Definition 6.

Step 3 Recall that in Definition 6 of Section 4, we defined N cyl
T .�k/ as the cardinality

of #zƒT .�k/. That is, N cyl
T .�k/ is the number of free homotopy classes % in ƒ.M/

which contain only nondegenerate simple Reeb orbits with action smaller than T and
that satisfy CH%

cyl.�k/¤ 0.

Because of the injectivity of i� , we know that #i�.ƒpsimp/D #ƒpsimp . Combining this
with steps 1 and 2, it follows that for every element of the sequence Tp!C1,

(5-3) N
cyl
Tp
.�k/� #i�.ƒpsimp/D #ƒpsimp � e

aTp=�Cb;

which establishes the proposition.

Proof of Theorem 9 As mentioned previously, Theorem 9 follows directly from
combining Proposition 11, Proposition 10 and Theorem 8.

It would be interesting to obtain an upper bound on the constant � above. This could
provide a more precise estimate for the homotopical growth rate of the cylindrical
contact homology of �k .

6 Graph manifolds and Handel–Thurston surgery

In [25], Handel and Thurston used Dehn surgery to obtain nonalgebraic Anosov flows
in 3–manifolds. Their surgery was adapted to the contact setting by Foulon and
Hasselblatt in [18], who interpreted it as a Legendrian surgery and used it to produce
nonalgebraic Anosov Reeb flows on 3–manifolds. In this section, we apply the Foulon–
Hasselblatt Legendrian surgery to obtain more examples of contact 3–manifolds which
are distinct from unit tangent bundles, and on which every Reeb flow has positive
topological entropy.
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Some clarifications regarding the surgeries we consider are in order. On one hand, we
restrict our attention to the Foulon–Hasselblatt surgery on Legendrian lifts of embedded
separating geodesics on hyperbolic surfaces. This is an important restriction, since
Foulon and Hasselblatt perform their surgery on the Legendrian lift of any immersed
closed geodesic on a hyperbolic surface. On the other hand, for this restricted class of
Legendrian knots, the surgery we consider is a bit more general than the one in [18].
They restrict their attention to Dehn surgeries with positive integer coefficients, while
we consider the case of any integer coefficient, as is explained in Section 6.1.

6.1 The surgery

We start by fixing some notation. Let .S; g/ be an oriented hyperbolic surface and
rW S1! S an embedded oriented separating geodesic of g . We let � W .D; g/! .S; g/

denote a locally isometric covering of .S; g/ by the hyperbolic disc .D; g/ with the
property that .�1; 1/� f0g � ��1.r.S1//. Such a covering always exists since the
segment .�1; 1/� f0g of the real axis is a geodesic in .D; g/. We denote by v.�/
the unique unitary vector field along r.�/ satisfying †.r0.�/; v.�// D ��=2. Our
orientation convention is chosen so that for coordinates z D xC iy 2 D , the lift of
v.�/ to .�1; 1/�f0g is a positive multiple of the vector field �@y along .�1; 1/�f0g.
Also, let …W T1S ! S denote the base point projection.

Because r is a separating geodesic, we can cut S along r to obtain two oriented
hyperbolic surfaces with boundary which we denote by S1 and S2 . Our labelling is
chosen so that the vector field v.�/ points into S2 and out of S1 . This decomposition
of S induces a decomposition of T1S into T1S1 and T1S2 . Both T1S1 and T1S2 are
3–manifolds whose boundary is the torus formed by the unit fibres over r.

Denote by Vr;ı the closed ı�neighbourhood of the geodesic r for the hyperbolic
metric g . For ı > 0 sufficiently small, we have that Vr;ı is an annulus such that the
only closed geodesics contained in Vr;ı are the covers of r, and such that Vr;ı satisfies
the following convexity property: if MV is the connected component of ��1.Vr;ı/
containing .�1; 1/� f0g, then every segment of a hyperbolic geodesic starting and
ending in MV is completely contained in MV . It also follows from the conventions adopted
above that, if we denote by UC the upper hemisphere of D composed of points with
positive imaginary part and by U� the lower hemisphere of the D composed of points
with negative imaginary part, we have

(6-1) MV \UC � ��1.S1/ and MV \U� � ��1.S2/:

This fact has the following important consequence: if �.Œ0;K�/ is a hyperbolic geodesic
segment starting and ending at Vr;ı and contained in one of the Si , then Œ�� is a
nontrivial homotopy class in the relative fundamental group �1.Si ; Vr;ı/.
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On the unit tangent bundle T1S , we consider the contact form �g whose Reeb vector
field is the geodesic vector field for the hyperbolic metric g . It is well known that
the lifted curve Lr.�/D .r.�/; v.�// in T1S is Legendrian on the contact manifold
.T1S; ker�g/. The geodesic vector field X�g along Lr coincides with the horizontal
lift of v (see [38, Section 1.3]), points into T1S2 and out of T1S1 , and is normal to
@T1S2 D @T1S1 for the Sasaki metric on T1S .

Moreover, if ı > 0 is small enough, we know that for every # 2Lr , there exist numbers
t1 < 0 and t2 > 0 such that

�
t1
�g
.#/ 2 T1S1 n…

�1.Vr;ı/;(6-2)

�
t2
�g
.#/ 2 T1S2 n…

�1.Vr;ı/:(6-3)

Following [18], we know that there exists a neighbourhood B3�2� of Lr on which we
can find coordinates .t; s; w/ 2 .�3�; 3�/�S1 � .�2�; 2�/ such that

�g D dt Cwds;(6-4)

Lr D f0g �S
1
� f0g;(6-5)

where f0g�f#g� .�2�; 2�/ is a local parametrization of the unitary fibre over # 2Lr ,
and � < �=.4jqj�/, with q being a fixed integer. Let W� D f�3�g �S1 � .�2�; 2�/
and WC D fC3�g�S1� .�2�; 2�/. It is clear that ….W�/� S1 and ….WC/� S2 .
Because on xB3�2� , the Reeb vector field X�g is given by @t , it is clear that for every point
p 2 B

3�
2� , there are p� 2W� , pC 2WC , t� 2 .�6�; 0/ and tC 2 .0; 6�/ for which

(6-6) �t
�

X�g
.p/D p� and �t

C

X�g
.p/D pC:

This means that trajectories of the flow of X�g that enter the box B3�2� enter through
W� and exit through WC . They cannot stay inside B3�2� for a very long positive or
negative interval of time. We can say even more about these trajectories.

For � D .p; Pp/ 2 S �TpS in WC[W� let z� D .zp; Pzp/ be a lift of � to the unit tangent
bundle T1D such that zp 2 MV . The geodesic vector field X�g at z� coincides with the
horizontal lift of Pp [38, Section 1.3]. For ı , � > 0 and � < �=.4jqj�/ sufficiently
small, we can guarantee that

� ….B
3�
2� / is contained in Vr;ı ,

� for the lifts z� D .zp; Pzp/ of points in WC[W� as above, the vector Pzp (which is
the projection of the geodesic vector field X�g.z�/) satisfies †. Pzp;�@y/ < ı .
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With such a choice of ı > 0, � > 0 and 0 < � < �=.4jqj�/, we obtain that for every
�C 2WC there exists t�C >0, and for every �� 2W� there exists t�� <0, such that

�
t�C
X�g

.�C/ 2 .T1S2/ n…
�1.Vr;ı/ and 8t 2 Œ0; t�C �; �

t
X�g

.�C/ … B
3�
2� ;(6-7)

�
t��
X�g

.��/ 2 .T1S1/ n…
�1.Vr;ı/ and 8t 2 Œt�� ; 0�; �

t
X�g

.�C/ … B
3�
2� :(6-8)

To prove the last condition above one uses the fact that †. Pzp;�@y/ < ı is small and
studies the behaviour of geodesics in .D; g/ starting at points close to the real axis and
with initial velocity close to �@y . It is easy to see that such geodesics have to intersect
the region Vr;ı and visit the interior of both S1 nVr;ı and S2 nVr;ı . From now on we
will assume that ı > 0, � > 0 and 0 < � < �=.8jqj�/ are such that all the properties
described above hold simultaneously.

Consider the map F W B2�2� n xB
�
� ! B

2�
2� n

xB
�
� defined by

(6-9) F.t; s; w/D .t; sCf .w/;w/ for .t; s; w/ 2 .�; 2�/�S1 � .�2�; 2�/;

where f .w/ D �qR.w=�/ (for our previously chosen integer q ) and RW Œ�1; 1�!
Œ0; 2�� satisfies RD 0 on a neighbourhood of �1, RD 2� on a neighbourhood of 1,
0�R0 � 4 and R0 is an even function.

Our new 3–manifold M is obtained by gluing T1S n xB
�
� and B2�2� using the map F :

(6-10) M D .T1S n xB
�
� /[B

2�
2�

ı
.x 2 B

2�
2� n

xB
�
� /� .F.x/ 2 T1S n xB

�
� /:

Notice that

T1S D .T1S n
xB
�
� /[B

2�
2�

ı
.x 2 B

2�
2� n

xB
�
� /� .x 2 T1S n xB

�
� /:

This clarifies our construction of M and shows that M is obtained from T1S via a
Dehn surgery on Lr . We follow [18] to endow M with a contact form which coincides
with �g outside B2�2� . As a preparation, we define the function ˇW .�3�; 3�/!R:

� ˇ is equal to 1 on an open neighbourhood of Œ�2�; 2��,

� jˇ0j � �=� and suppˇ is contained in Œ�3�; 3��.

Using ˇ we define

(6-11) r.t; w/D
ˇ.t/

2

Z w

�2�

xf 0.x/ dx:

We point out that supp.r/ is contained in B3�� , and therefore, so is supp.dr/. Notice
also that in B2�2� n xB

�
� , one has dr D 1

2
wf 0.w/dw .
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Again following [18], we define in T1S n xB
�
� the 1–form Ar :

Ar D dt CwdsC dr for t 2 .�3�;��/;(6-12)

Ar D dt Cwds� dr for t 2 .�; 3�/;(6-13)

Ar D �g otherwise:(6-14)

Notice that because supp.dr/ is contained in B3�� , the 1–form Ar is well defined.

On the box B2�2� , we define

(6-15) zAD dt CwdsC dr:

A direct computation shows that F �.Ar/D zA, which means that the gluing map F
allows us to glue the 1–forms Ar and zA. We denote by �FH the 1–form on M

obtained by gluing zA and Ar . We will denote by zB the following region:

(6-16) zB D ..B
3�
2� n

xB
�
� /�M/[B

2�
2�

ı
.x 2 B

2�
2� n

xB
�
� /� .F.x/ 2 .B

3�
2� n

xB
�
� //:

The importance of this region lies in the fact that in M n zB D T1S nB
3�
2� , the contact

form �FH coincides with �g .

Following [18], one shows by a direct computation that .dtCwds˙dr/^.dw^ds/D
.1˙@r=@t/dt^dw^ds . Using the fact that � < �=.8�jqj/, one gets that j@r=@t j<1,
thus obtaining that .dt Cwds˙ dr/ is a contact form. It follows from this that Ar
and zA are contact forms in their respective domains, and therefore, �FH is a contact
form on M . More strongly, Foulon and Hasselblatt proceed to show that if q is
nonnegative, the Reeb flow of �FH is Anosov.

6.2 Hypertightness and exponential homotopical growth
of contact homology of �FH

For q 2N , the hypertightness of �FH follows from the fact that its Reeb flow is Anosov
[17]. In this subsection, we give an independent and completely geometrical proof of
the hypertightness of �FH , which is valid for every q 2 Z.

To understand the topology of Reeb orbits of �FH , we will study trajectories that enter
the surgery region zB . We start by studying trajectories in B2�2� . In this region, we have

(6-17) X�FH D
@t

1C @tr
:

This implies, similarly to what happens for �g , that for points p 2 B2�2� , the trajectory
�tX�FH

.p/ leaves the box B2�2� in forward and backward times. More precisely, there
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exists a constant za > 0, depending only on �FH , such that for p 2 B2�2� , there are
Mp� 2 MW�Df�2�g�S1�Œ�2�; 2��, MpC 2 MWCDfC2�g�S1�Œ�2�; 2��, Mt� 2 .�za; 0�

and MtC 2 Œ0; za/ such that

(6-18)
�tX�FH

. Mp/ is in the interior of B2�2� for every t 2 .t�; tC/;

�t
�

X�FH
. Mp/D Mp� and �t

C

X�FH
. Mp/D MpC:

We now analyse the trajectories of points Mp� 2 MW� and MpC 2 MWC . For this, we first
notice that on zB nB�� , the contact form �FH is given by dtCwds˙dr , and therefore,
we have in this region

(6-19) X�FH D
@t

1˙ @tr
;

which is still a positive multiple of @t .

This implies that for every Mp� 2 MW� and MpC 2 MWC , there exist t Mp
�

< 0 and t Mp
C

> 0

such that

(6-20) �t
Mp�

X�FH
. Mp�/ 2W� and �t

MpC

X�FH
. MpC/ 2WC:

Again using that X�FH is a positive multiple of @t on zB nB2�2� , we have that for every
point p in zB nB2�2� whose t coordinate is in Œ2�; 3��, the trajectory of the flow �tX�FH

going through p is a straight line, with fixed coordinates s and w , that goes from
MWC to WC . Analogously, for every point p in zB nB2�2� whose t coordinate is in
Œ�3�;�2��, the trajectory of the backward flow of �tX�FH

going through p is a straight
line from MW� to W� .

Summing up, with all the cases considered above, we have showed that for every point
p 2 zB , the trajectory of the flow �tX�FH

going through p for t D 0 intersects W� for
nonpositive time and WC for nonnegative time. In other words, all trajectories that
intersect zB enter through W� and leave through WC , which means that for all Lp 2 zB ,
there exist times Lt� � 0 and LtC � 0 such that

�
LtC

X�FH
. Lp/ 2WC;(6-21)

�
Lt�

X�FH
. Lp/ 2W�;(6-22)

�tX�FH
. Lp/ 2 zB for all t 2 ŒLt�; LtC�:(6-23)

Now, because on M n zBDT1SnB
3�
2� , the contact form �FH coincides with �g , we have

that trajectories of X�FH starting at W� at time t D 0 have to leave M nN (with N
defined as in (6-26) below) as time diminishes before reentering on zB . Similarly, the
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trajectories starting at WC have to leave M nN for positive time before reentering
to zB . More precisely, one can use (6-7) and (6-8) to show that for p� 2 W� and
pC 2WC , there exist tp� < 0 and tpC > 0 such that

�
t
pC

X�FH
.pC/ 2M2 nN and 8t 2 Œ0; tpC �; �

t
X�FH

.pC/ … zB;(6-24)

�
tp�

X�FH
.p�/ 2M1 nN and 8t 2 Œtp� ; 0�; �

t
X�FH

.p�/ … zB;(6-25)

where, denoting

B
2�
2� .�/D Œ�2�; 0��S

1
� .�2�; 2�/ and B

2�
2� .C/D Œ0; 2���S

1
� .�2�; 2�/;

the submanifolds M1 , M2 and N of M are defined as follows:

M1 D .T1S1nB
�
� /[B

2�
2� .�/

ı�
x 2 B

2�
2� .�/ n

xB
�
�

�
�
�
F.x/ 2 ..B

2�
2� \T1S1/ n

xB
�
� /
�
;

M2 D .T1S2nB
�
� /[B

2�
2� .C/

ı�
x 2 B

2�
2� .C/ n

xB
�
�

�
�
�
F.x/ 2 ..B

2�
2� \T1S2/ n

xB
�
� /
�
;

and

N D .…
�1.Vr;ı/ nB

�
� /[B

2�
2� .�/

ı
x � F.x/;(6-26)

with x 2 B2�2� .�/ n xB
�
� and F.x/ 2 ..B2�2� \T1S1/ n xB

�
� /.

Remark It is not hard to see that

M D M1[M2
ı
.x 2 @M1/� . zF .x/ 2 @M2/:

Here zF is a Dehn twist which coincides with .sCf .w/;w/ for w2 Œ�2�; 2�� and is the
identity elsewhere. This picture of M is closer to the one in the paper [25] and shows
that M is a graph manifold (a graph manifold is one whose JSJ decomposition consists
of Seifert S1 bundles). By using this description of M and applying van Kampen’s
theorem to analyse the fundamental group of M , Handel and Thurston show that, for q
not belonging to a finite subset of Z, no finite cover of M is a Seifert manifold, thus
obtaining that M is an “exotic” graph manifold.

From their definition, one sees that as manifolds, M1 Š T1S1 and M2 Š T1S2 . This
implies that @M1 and @M2 are incompressible tori in M1 and M2 , respectively. If we
look at M1 and M2 as submanifolds of M , their boundary T coincides and is also
incompressible in M . We remark that Mi nN is diffeomorphic to T1Si n…�1.Vc;ı/,
which is diffeomorphic to T1Si for i D 1; 2.

In a similar way, we can describe the topology of N . Let Ni DMi \N . Reasoning
identically as one does to show that Mi is diffeomorphic to T1Si , one shows that Ni
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is diffeomorphic to a thickened two torus T 2 � Œ�1; 1�. As N is obtained from N1
and N2 by gluing them along T (which is a boundary component of both of them),
we have that N is also diffeomorphic to the product T 2 � Œ�1; 1�.

The discussion above proves the following:

Lemma 12 For all Mp 2 zB , the trajectory f�tX�FH
. Mp/ j t 2 Rg intersects M1 nN and

M2 nN .

Proof We have already established that for Mp 2 zB , its trajectory intersects WC for
some nonnegative time and W� for some nonpositive time, as shown in (6-21) and
(6-22). One now applies (6-24) and (6-25) to finish the proof of the lemma.

Notice that trajectories can only enter in zB through the wall W� , which is contained
in M1 , and can only exit zB through the wall WC , which is contained in M2 . We
also point out that all trajectories of the flow �tX�FH

are transversal to T , with the
exception of the two Reeb orbits which correspond to parametrizations of the hyperbolic
geodesic r (they continue to exist as periodic orbits after the surgery because they are
out of the surgery region).

We will deduce, from the previous discussion, the following important lemma.

Lemma 13 Let .Œ0; T 0�/ be a trajectory of X�FH such that .0/; .T 0/ 2 T and for
all t 2 .0; T 0/ we have .t/ … T (notice that in such a situation, .Œ0; T 0�/�Mi for
i D 1 or i D 2). Then .Œ0; T 0�/\ .Mi nN/ is nonempty.

Proof We divide the proof in 3 possible scenarios.

Case 1 Suppose that .Œ0; T 0�/\ zB is empty. In this case, .Œ0; T 0�/ is a hyperbolic
geodesic with endpoints on the closed geodesic r. It follows from the convexity of
the hyperbolic metric that Œ.Œ0; T 0�/� 2 �1.T1Si ;T / is nontrivial. This implies that
Œ.Œ0; T 0�/� 2 �1.Mi ;T / is nontrivial, which can be true only if .Œ0; T 0�/\ .Mi nN/

is nonempty since N is a tubular neighbourhood of T .

Case 2 Suppose that .Œ0; T 0�/\ zB is nonempty and .Œ0; T 0�/�M2 . Take Ot 2 Œ0; T 0�
such that .Ot /2 zB . We know from our previous discussion that there are Ot1� Ot� Ot2 such
that .ŒOt1; Ot2�/� zB , .Ot1/ 2 .T \ zB/ and .Ot2/ 2WC ; notice that in the coordinates
.t; s; w/ for zB considered previously, T\ zB is the annulus f0g�S1�.�2�; 2�/. From
this picture, it is clear that for t smaller that Ot1 , the trajectory enters M1 . Therefore,
we must have Ot1 D 0 and .Œ0; Ot2�/ � zB . Notice also that for all t slightly bigger
than Ot2 , the trajectory is outside zB . Because trajectories of X�FH can only enter zB
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in M1 , we obtain that .ŒOt2; T 0�/ does not intersect the interior of zB and, therefore,
is a hyperbolic geodesic in T1S2 . Now, using (6-7) and (6-8), we obtain that, because
.Ot2/ 2WC , the trajectory  W ŒOt2; T 0�!M2 has to intersect M2 nN before hitting T
at t D T 0 . Thus there is some t 2 .Ot2; T 0/ for which .t/ 2M2 nN .

Case 3 The proof in the case where .Œ0; T 0�/\ zB is nonempty and .Œ0; T 0�/�M1

is analogous to the one of case 2.

These three cases exhaust all possibilities and, therefore, prove the lemma.

Our reason for introducing the above decomposition of M into M1 and M2 , and for
proving the lemmas above, is to introduce the following representation of Reeb orbits
of �FH . Let .; T / be a Reeb orbit of �FH which intersects both M1 nN and M2 nN .
We can assume that the chosen parametrization of  is such that .0/ 2 @N , and that
there are tC > 0 and t� < 0 such that

.tC/ 2M1 nN and .Œ0; tC�/ 2M1[N;(6-27)

.t�/ 2M2 nN and .Œt�; 0�/ 2M2[N:(6-28)

This means that in an interval of the origin,  is coming from M2 nN and going to
M1 nN . It follows from Lemma 13 that there exists a unique sequence 0D t0 < t1=2 <
t1 < t3=2 < � � �< tn D T such that for all k 2 f0; : : : ; n� 1g,

� .Œtk; tkC.1=2/�/�Mi for i D 1 or i D 2,

� .ŒtkC.1=2/; tkC1�/ 2 N and there is a unique ztk 2 ŒtkC.1=2/; tkC1� such that
.ztk/ 2 T ,

� if .Œtk; tkC.1=2/�/�Mi , then .ŒtkC1; tkC.3=2/�/�Mj for j ¤ i .

Notice that .Œt0; t1=2�/ � M1 and .Œtn�1; tn�.1=2/�/ � M2 . This implies that n
is even, so we can write n D 2n0 , and that .Œtk; tkC.1=2/�/ � M1 for k even and
.Œtk; tkC.1=2/�/ � M2 for k odd. For each k 2 f0; : : : ; 2n0 � 1g, the existence of
the unique ztk in the interval ŒtkC.1=2/; tkC1� for which .ztk/ 2 T is guaranteed by
Lemma 13 and the fact that T is the hypersurface that separates M1 and M2 .

In order to obtain information on the free homotopy class of .; T /, we observe
that .Œtk; tkC.1=2/�/ coincides with a hyperbolic geodesic segment in T1Si start-
ing and ending in Vr;ı . Therefore, as we have previously seen, the homotopy class
Œ.Œtk; tkC.1=2/�/� in �1.T1Si ; Vr;ı/ is nontrivial, which implies that .Œtk; tkC.1=2/�/
is a nontrivial relative homotopy class in �1.Mi ; N /. We consider now the curve
.Œztk; ztkC1�/: it is the concatenation of 3 curves, the first and the third ones being
completely contained in N and the middle one being .Œtk; tkC.1=2/�/. From this
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description and the fact that .Œtk; tkC.1=2/�/ is a nontrivial relative homotopy class
in �1.Mi ; N / it is clear that .Œztk; ztkC1�/ is also nontrivial in �1.Mi ; N / (and also
nontrivial in �1.Mi ;T /).

We now denote by �M the universal cover of M and y� W �M !M the covering map.
From the incompressibility of T , it follows that every lift of T is an embedded plane
in �M . We denote by zN 0 a lift of N . Because N is a thickened neighbourhood of
an incompressible torus, it follows that zN 0 is diffeomorphic to R2 � Œ�1; 1�, ie it is
a thickened neighbourhood of an embedded plane in �M . Because N separates M
into two components, it follows that zN 0 separates �M into two connected components.
Now, @ zN 0 is the union of two embedded planes, P 0� and P 0

C
, which are characterized

by the fact that there are neighbourhoods V� and VC of P 0� and P 0
C

, respectively, such
that y�.V�/�M1 and y�.VC/�M2 . We will denote by C 0� the connected component
of �M n zN 0 which intersects V� , and by C 0

C
the connected component of �M n zN 0

which intersects VC .

As seen earlier, Œ.Œtk; tkC.1=2/�/� is a nontrivial relative homotopy class in �1.Mi ; N /.
We show that this class remains nontrivial when seen in �1.M;N /. Let Ti D @N \Mi .
Because N is obtained by attaching over each point of Ti a small compact interval
(ie it is a bundle over Ti whose fibres are intervals), it follows that Œ.Œtk; tkC.1=2/�/�
is trivial in �1.Mi ;Ti / if and only if it is trivial in �1.Mi ; N /, which is not the case.
As Ti is isotopic to T , it is also an incompressible torus that divides M into two
components. Now, Œ.Œtk; tkC.1=2/�/� is trivial in �1..Mi n int.N //;Ti / if and only
if there exists a curve c in Ti , with endpoints .tk/ and .tkC.1=2//, such that the
concatenation  � c is contractible in Mi n int.N /. Because of the incompressibility
of Ti , such a curve  � c is contractible in Mi n int.N / if and only if it is contractible
in M . This implies that Œ.Œtk; tkC.1=2/�/� is trivial in �1.M;Ti / if and only if it
is trivial in �1..Mi n int.N //;Ti /, which we know not to be the case. Lastly, again
because N is an interval bundle over Ti , it is clear that as Œ.Œtk; tkC.1=2/�/� is not
trivial in �1.M;Ti /, it cannot be trivial in �1.M;N /, as we wished to show.

Let z be a lift of  such that z.0/2 zN 0 . We know that z.Œt2n0�.1=2/�T; t1=2�/� zN 0 .
It will be useful to define the sequence

(6-29) zti D qiT C tri ;

where qi and ri < 2n0 are the unique integers such that i D qi .2n0/C ri . To zti we
associate the lift zN i of N which is determined by the property that z.zti / 2 zN i . It is
clear that the sequence zN i contains all lifts of N which are intersected by the curve
z.R/. For the lifts zN i , we define the connected components C i� and C i

C
of �M n zN i ,

and the planes P i� and P i
C

in the same way as for zN 0 . A priori it could be that, for
i ¤ j , we have zN i D zN j . We will show that this cannot happen.
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Firstly, zN 0 ¤ zN 1 because .Œzt0; zt1�/ is nontrivial in �1.M;N /. Also, we have that
zN 1 � C 0� because .Œt0; t1=2�/�M1 . The same reasoning shows that zN 2 ¤ zN 1 and

(6-30) zN 2
� C 1C:

On the other hand, we have that zN 0 � C 1� , because z.Œzt0; t1=2�/ is a path totally
contained in �M n zN 1 connecting zN 0 and P 1� . As zN 2 � C 1

C
and zN 0 � C 1� , we must

have zN 2 ¤ zN 0 . In the same way, one shows that zN 3 ¤ zN 1 and, more generally, that
zN iC2 ¤ zN i and zN iC1 ¤ zN i . Now for zN 3 , we have that zN 3 � C 2� . As z.Œzt0; t3=2�/

is a path completely contained in �M n zN 2 connecting zN 0 and P 2
C

, we obtain that
zN 0 � C 2

C
and, therefore, zN 3 ¤ zN 0 .

Proceeding inductively along this line, one obtains that zN i ¤ zN 0 for all i ¤ 0 and,
more generally, zN i ¤ zN j for all i ¤ j . As a consequence, we obtain that the curve
z.R/ cannot be homeomorphic to a circle, and therefore, .R/ cannot be contractible.
We are ready for the main result of this subsection.

Proposition 14 �FH is hypertight.

Proof There are two possibilities for Reeb orbits.

Possibility 1 The Reeb orbit  visits both M1 nN and M2 nN . In this case, we have
just showed that  is not contractible.

Possibility 2 The Reeb orbit  is completely contained in Mi for i D 1 or i D 2.
In this case,  does not visit the surgery region zB . Therefore, it also existed before
the surgery as a closed hyperbolic geodesic in Mi n zB D T1Si nB

3�
2� . Such a closed

geodesic is noncontractible in T1Si , which is diffeomorphic to Mi . Thus  �Mi is
noncontractible in Mi .

Now looking at Mi as a submanifold with boundary of M , we recall that @Mi is an
incompressible torus in M . This implies that every noncontractible closed curve in Mi

remains noncontractible in M . Therefore,  is also a noncontractible Reeb orbit in
this case.

6.2.1 Exponential homotopical growth of cylindrical contact homology for �FH
We now obtain more information on the properties of periodic orbits of X�FH .

Lemma 15 If a Reeb orbit .; T / of �f visits both M1 nN and M2 nN , then any
curve freely homotopic to .; T / must intersect T .

Proof As we saw earlier, the lift z intersects all the elements of the sequence zNi (of
lifts of N ), which satisfy zNi ¤ zNj for all i ¤ j .
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Introducing an auxiliary distance d on the compact manifold M (coming from a
Riemannian metric), we obtain an auxiliary distance zd on �M by pulling d back by
the covering map. It is clear that for i sufficiently large, the zd–distance between zN˙i
and zN0 becomes arbitrarily large. As a consequence, one obtains that for each K > 0,
there exists tK > 0 such that zd.z.˙tK/; zN0/ > K .

Now let �W Œ0; T �!M be a closed curve freely homotopic to .Œ0; T �/. A homotopy
H W Œ0; T �� Œ0; 1�!M generates a homotopy zH W R� Œ0; 1�! �M from a lift z to
a lift z� . Using the fact that H is uniformly continuous, one sees that there exists a
constant C> 0 such that zd. zH.ftg � Œ0; 1�/; z.t// < C for all t 2R.

Now take K > 2C. Using the inequalities

zd.. zH.ftg � Œ0; 1�//; z.t// < C; zd.z.˙tK/; zN0/ > K;

and the triangle inequality, we obtain that H.ftKg � Œ0; 1�/ is always in the connected
component of z.tK/. This implies that z�.R/ visits both connected components of�M n zN0 and must thus intersect zN0 . Even more, because z�.R/ intersects both compo-
nents of @ zN0 , we have that � visits both components of M nN and, therefore, has to
intersect T . This completes the proof of the lemma.

We are now ready for the main result of this section:

Theorem 16 Let .M; �.q;r// be the contact manifold obtained from performing the
Foulon–Hasselblat q–surgery on the Legendrian curve Lr � .T1S; �geo/, and denote
by �FH the contact form on .M; �.q;r// obtained from this surgery. Then �FH is
hypertight, and its cylindrical contact homology has exponential homotopical growth.
It follows that every Reeb flow on .M; �.q;r// has positive topological entropy.

Proof It suffices to show that the cylindrical contact homology of �FH has exponential
homotopical growth, since this combined with Theorem 1 establishes the last assertion
of the theorem.

Step 1 (a special class of Reeb orbits) We will obtain our estimate by looking at Reeb
orbits which are completely contained in the component M1 . As we saw previously,
such orbits never cross the surgery region zB . Thus they are in a region where �FH

coincides with �g , and such Reeb orbits are closed geodesics in .S1; g/. Conversely,
every closed geodesic in .S1; g/ does not cross the region B3�2� and thus is a Reeb orbit
of �FH . This gives a bijective correspondence between closed geodesics of .S1; g/
which are not homotopic to a multiple of @S1 and Reeb orbits of �FH which are
contained in M1 .
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Let ƒ.S1/ denote the set of free homotopy classes of curves in S1 which are not covers
of Œ@S1�. We know that each � 2ƒ.S1/ contains exactly one closed geodesic c� . The
canonical lift � of c� to T1S1 is a Reeb orbit of �g . As we saw above, each � can
also be seen as a Reeb orbit of �FH . Because of the negative curvature of g we know
that the geodesic c� is hyperbolic. This implies that � is a nondegenerate Reeb orbit
of �g , and as �FH coincides with �g on a neighbourhood of � , we conclude that �
is also nondegenerate when viewed as a Reeb orbit of �FH .

We will denote by ƒ.S1/�T the set of primitive of free homotopy classes in ƒ.S1/
whose unique closed geodesic has period smaller or equal to T . Because g is hyperbolic,
it is a well known fact that there exist constants a > 0 and b such that #.ƒ.S1/�T /�
eaTCb. The map ‚W ƒ.S1/! ƒ.T1S1/ (where ƒ.T1S1/ is the free loop space of
T1S1 ) associating with c� the Reeb orbit � in T1S1 is easily seen to be injective.
Because T1S1 is diffeomorphic to M1 , we can also view ‚.ƒ.S1// as a subset of the
free loop space ƒ.M1/ of M1 .

Step 2 Let i W M1!M be the injection. As seen before, the boundary @.i.M1//DT
is an incompressible torus in M . We consider the induced map of free loop spaces
i�W ƒ.M1/! ƒ.M/. As a consequence of the incompressibility of @.i.M1//, the
restriction of i� to ‚.ƒ.S1// is injective.

To see this, it suffices to show the following claim: if � and �0 are curves in M1

which cannot be isotoped to a curve in @M1 and which are in the same free homotopy
class in M , then � and �0 are freely homotopic in M1 . For � and �0 satisfying the
hypothesis of our claim, there is a cylinder cyl in M , whose boundary components
are � and �0 , which intersects @M1 transversely. Then cyl intersects @M1 in a finite
collection of curves fwng which are all contractible in M ; the contractibility of these
curves is due to the fact that both � and �0 cannot be isotoped to a curve contained
in @M1 . The incompressibility of @M1 implies that these fwng are all contractible
in @M1 . Now we cut the discs in cyl whose boundary are the curves wn and substitute
them by discs contained in @M1 . This produces a cylinder cyl0 completely contained
in M1 whose boundaries are � and �0 . This implies that � and �0 are already in the
same free homotopy class in M1 , as we wished to show.

From step 1, we know that for each � 2 i�.‚.ƒ.S1///, there is a Reeb orbit � in � .

Step 3 We will show that for each � 2 i�.‚.ƒ.S1///, the Reeb orbit � considered
in step 1 is the unique Reeb orbit of �FH in � .

Let  be a Reeb orbit in � . If it is contained in M1 , we know that  is a closed
geodesic in .S1; g/. Using an argument as in step 2, it is easy to show that  and �
are freely homotopic in M1 and, therefore, also in T1S1 . Projecting to S1 , we obtain
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that  and � are lifts of geodesics of .S1; g/ in the same free homotopy class of S1 .
But for each free homotopy class of S1 , there is a unique closed geodesic of .S1; g/;
this implies that  D � .

Step 3 will now follow if we prove the following:

Claim Every Reeb orbit of �FH in � is completely contained in M1 .

Proof of the claim If  was contained in M2 , then it would be possible to isotope
� to a curve contained in @M1 . This is impossible by the definition of ƒ.S1/.

The only remaining possibility is that  visits both M1 and M2 . In this case, it has
to visit both M1 nN and M2 nN (indeed, if  is completely contained in Mi [N ,
convexity of the hyperbolic metric implies that  is in Mi ). We then know from
Lemma 15 that every curve which is freely homotopic to  has to intersect the torus T .
But � , which is freely homotopic to  , does not intersect T . This contradiction rules
out the possibility that  visits both M1 and M2 , and establishes the claim.

Step 4 From the previous steps, we know that for each � 2 i�.‚.ƒ.S1///, there
exists a unique nondegenerate5 Reeb orbit � 2 � . Hence for such � , the cylindrical
contact homology CH�

cyl.�FH/ is well-defined, and for Euler characteristic reasons,
CH�

cyl.�FH/¤ 0.

Let � 2 i�.‚.ƒ.S1/�T //. Then as we showed in the previous steps, the unique Reeb
orbit of �FH in � has action at most T , and CH�

cyl.�FH/¤ 0. This implies that

(6-31) N
cyl
T .�FH/� #.i�.‚.ƒ.S1/�T ///:

As i� restricted to ‚.ƒ.S1/�T // is injective, and ‚ is injective, we conclude that

(6-32) #.i�.‚.ƒ.S1/�T ///D #.ƒ.S1/�T /� eaTCb:

Combining formulas (6-31) and (6-32), we obtain

(6-33) N
cyl
T .�FH/� e

aTCb:

7 Conclusion

The works of Katok [32; 33] and of Lima and Sarig [35] imply that if � is a smooth
flow on a 3–manifold, generated by a nonvanishing vector field, then � has positive
topological entropy if and only if there exists a Smale “horseshoe” as a subsystem of

5Recall that we established in step 1 that � is nondegenerate.
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the flow. For a flow, a “horseshoe” is a compact invariant set where the dynamics is
conjugate to that of the suspension of a shift map. In particular, the number of hyperbolic
periodic orbits on a “horseshoe” of a 3–dimensional flow � grows exponentially with
respect to the period. We remark that the result obtained in the recent work of Lima
and Sarig [35] is stronger: they show that there exists a compact invariant set K of �
where the dynamics is nonuniformly hyperbolic and such that htop.�K/D htop.�/.6

As a consequence, for the contact 3–manifolds .M; �/ considered in Theorems 9
and 16, we have that for every Reeb flow on .M; �/, the number of hyperbolic Reeb
orbits grows exponentially with the action. This can be summarized by saying that all
Reeb flows on these contact manifolds posses a “complicated” orbit structure which is
forced to exist by the “complicated” contact topology of these contact manifolds.

An interesting property of the entropy estimate used in this paper, and also in [3]
and [36], is that it gives estimates on the growth of the number of hyperbolic Reeb
orbits for degenerate contact forms as well. This kind of information is not obtainable
just by studying the growth rate of contact homology.

It is known that the consequences of positivity of topological entropy in higher di-
mensions are not as strong as in the low-dimensional case. In particular, positive
topological entropy for a flow in dimension greater than 3 does not imply the existence
of a “horseshoe” in the flow. It is, however, natural to ask the following question.

Question 1 In dimension greater than or equal to 5, does exponential homotopical
growth of periodic orbits for a Reeb flow imply the existence of a compact invariant
set where the dynamics is conjugate to a shift?

In another direction, one would like to know if it is possible to obtain more dynamical in-
formation about the Reeb flows on the contact manifolds covered by Theorems 9 and 16.

Question 2 Let .M; �/ be a manifold satisfying the hypothesis of Theorem 9 or 16,
and let � be a contact form on .M; �/. Is it true that for the Reeb flow �X� , there
exists an invariant region of positive measure (with respect to the measure �^ d�) on
which the dynamics of the Reeb flow is ergodic?

One important property of many of the contact 3–manifolds covered in Theorem 9
is that they have positive Giroux torsion. By a theorem of Gay [23] (see also [41]),

6We remark that in [32], Katok proves analogous results for diffeomorphisms on surfaces and only
states the results for flows on 3–manifolds in [33]. To the best of our knowledge, the complete proofs of
all the results mentioned above for 3–dimensional flows with positive topological entropy only appeared
in [35], which builds on the ideas of [32; 33].
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manifolds with positive Giroux torsion are not strongly fillable. This implies that many
of the contact manifolds satisfying the claims of Theorem 9 are not strongly fillable
and therefore different from the unit tangent bundles studied in [36], which are fillable.
It would be interesting to know if such examples also exist in higher dimensions.

Question 3 Are there examples of nonsymplectically fillable contact manifolds, with
dimension at least 5, on which every Reeb flow has positive topological entropy? Are
there examples, in dimension at least 5, of manifolds which admit infinitely many
different contact structures such that, on all of them, every Reeb flow has positive
topological entropy?

We remark also that in Theorem 9, we showed the existence of 3–manifolds with
hyperbolic components which can be given infinitely many different contact structures
whose Reeb flows always have positive topological entropy. From the perspective of
3–dimensional topology, it would be interesting to have examples of contact structures
on hyperbolic 3–manifolds on which every Reeb flow has positive topological entropy.

Question 4 Are there examples of contact structures on closed hyperbolic 3–manifolds
on which every Reeb flow has positive topological entropy?7 Are there hyperbolic
3–manifolds which admit multiple nondiffeomorphic contact structures, on which every
Reeb flow has positive topological entropy?

Lastly we mention that the techniques used in this paper, and in [3], can also be used
in combination with the ideas of Momin [37] to establish chaotic behaviour of Reeb
flows on .S3; �tight/ when these Reeb flows have a special link as a Reeb orbit. This
and similar results will appear in [5].
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A 1–parameter family of spherical CR uniformizations
of the figure eight knot complement

MARTIN DERAUX

We describe a simple fundamental domain for the holonomy group of the boundary
unipotent spherical CR uniformization of the figure eight knot complement, and
deduce that small deformations of that holonomy group (such that the boundary
holonomy remains parabolic) also give a uniformization of the figure eight knot
complement. Finally, we construct an explicit 1–parameter family of deformations
of the boundary unipotent holonomy group such that the boundary holonomy is twist-
parabolic. For small values of the twist of these parabolic elements, this produces a
1–parameter family of pairwise nonconjugate spherical CR uniformizations of the
figure eight knot complement.

22E40, 32V05, 57M50

1 Introduction

The existence of a complete hyperbolic structure on a 3–manifold has important
topological consequences. For instance, this gives a definition of the volume of a
knot (when a knot admits a complete hyperbolic structure, that structure is unique by
Mostow rigidity, so the volume of that metric is a well-defined invariant).

In this paper, we focus on another kind of geometric structures on 3–manifolds, namely
structures modeled on the boundary of a symmetric space X of negative curvature
(transition maps are required to be locally given by isometries of X ). The visual
boundary @1X is then a 3–dimensional sphere if X DH 4

R or H 2
C .

The first case gives rise to the theory of flat conformal structures, and the second one to
the theory spherical CR structures. In the first case, one considers the unit ball model
of H 4

R , so the visual boundary is S3 �R4 , and the group of isometries of H 4
R acts as

Möbius transformations (ie transformations that map spheres into spheres, of possibly
infinite radius). Alternatively, one can use stereographic projection and think of S3 as
R3[f1g; this would also correspond to using the upper half plane model for H 3

R .

In the second case, using the ball model B2 �C2 , one can identify @1H 2
C with the

unit sphere S3 �C2 . The action on the boundary is best understood in stereographic
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projection, and identifying S3 n fp1g ' R3 ' C �R with the Heisenberg group.
Isometries of H 2

C fixing p1 then act as automorphisms of the Heisenberg group.
Of course, the Heisenberg group acting on itself by left translations gives many
automorphisms (which correspond to the action of unipotent matrices in U.2; 1/),
and one gets the full automorphism group by adjoining a rotation in C �R around
the R factor, and a scaling of the form .z; t/ 7! .�z; �2t/ (which corresponds to a
loxodromic isometry); see Section 3B.

Even though a lot of partial results have been obtained (see Kamishima and Tsuboi
[18], and Goldman [13], for instance), the classification of 3–manifolds that admit a
spherical CR structure is far from understood. When a manifold admits a spherical CR
structure, the moduli space of such structures is also quite mysterious.

In this paper, we will be interested in a special kind of spherical CR structures, namely
spherical CR uniformizations (in the literature, these are sometimes called complete
spherical CR structures). These are characterized by the fact that the developing map
of the structure is a diffeomorphism onto its image, which is an open set in S3 . In that
case, the holonomy group is a discrete subgroup � � PU.2; 1/, and the image of the
developing map is the domain of discontinuity �� of � (ie the largest open set where
the action is proper). The quotient � n�� is called the manifold at infinity of � .

The classification of 3–manifolds that admit a spherical CR uniformization is also an
open problem. Recall that H 2

C is homogeneous under the action of PU.2; 1/, and the
isotropy group of a point is isomorphic to U.2/. In particular, finite subgroups of U.2/

such that nontrivial elements fix only the origin (in other words the groups should not
contain any complex reflection) yield spherical CR uniformizable 3–manifolds with
finite fundamental group.

In a similar vein, quotients of the Heisenberg group yield Nil manifolds that trivially
admit a spherical CR uniformization such that the holonomy group has a global fixed
point, which is now in @1H 2

C instead of H 2
C .

It is also natural to consider stabilizers of totally geodesic subspaces in H 2
C , namely

copies of H 2
R or H 1

C . In that setting, Fuchsian groups (ie discrete subgroups of
SO.2; 1/ or SU.1; 1/, seen as subgroups of SU.2; 1/) produce as their manifold at
infinity a circle bundle over a surface (or more generally over a 2–orbifold). This class
is more interesting than the previous one, because it is known that the corresponding
groups often admit deformations (but not always: see Toledo [29]). We will summarize
the results in this well developed line of research by saying simply that many Seifert
3–manifolds admit spherical CR uniformizations; see Goldman and Kapovich [15],
Anan’in, Grossi and Gusevskii [1], Parker and Platis [20], Will [30] and others.
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The class of hyperbolic manifolds that admit a spherical CR uniformization is also far
from being understood. In a number of beautiful results that appeared in the last decade,
Schwartz [25; 27; 28] discovered that many hyperbolic manifolds admit spherical
CR uniformizations. His starting point was to consider representations of triangle
groups into PU.2; 1/ (see Schwartz [26]), and to determine the manifold at infinity of
well-chosen such representations.

More recently, the figure eight knot complement was shown to admit a spherical CR
uniformization by the author and Falbel [7] through a somewhat different strategy,
namely, it was found as a byproduct of Falbel’s program for finding representations of
fundamental groups of triangulated 3–manifolds into PU.2; 1/ (see Falbel [9]), or in
PGL.3;C/ (see Bergeron, Falbel and Guilloux [3]).

Falbel’s construction turned out to produce lots of representations, and in fact, so many
that the geometric properties of the resulting representations are, in general, difficult to
analyze. In order to make the list more tractable (and also for other reasons related to
the study of Bloch groups), the search is often restricted to representations such that
peripheral subgroups are mapped to unipotent matrices (matrices with 1 as their only
eigenvalue). The boundary unipotent representations for noncompact 3–manifolds
with low complexity (ie those that can be built by gluing up to three ideal tetrahedra)
are listed in Falbel, Koseleff and Rouillier [11], and the geometry of some of these
representations are analyzed in [7] and by the author in [6]. It turns out very few
representations in that list are discrete.

It is quite clear, however, that the unipotent restriction is somewhat artificial. Part of
the point of the present paper is to show that, at least in some cases, there are many
boundary parabolic representations that are not unipotent, and that these representations
carry just as much interesting geometric information about the 3–manifold.

Let M denote the figure eight knot complement. The main goal of this paper is to
show that M admits a 1–parameter family of pairwise nonconjugate spherical CR
uniformizations.

We will build on the fact that M admits a unique spherical CR uniformization with
unipotent boundary holonomy, as was shown in [7]. For future reference, we will refer
to that structure simply as the boundary unipotent uniformization of M (see the precise
uniqueness statement in [7]), and we denote the corresponding holonomy representation
by � . In view of Schwartz’s spherical CR Dehn surgery theorem [28], one expects that
small deformations of the boundary unipotent holonomy representation should still be
discrete, and they should have a manifold at infinity given by some Dehn filling of the
figure eight knot complement.
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In order to turn this into a proof, one could try and prove that the boundary unipotent
representation satisfies the hypotheses of Schwartz’s theorem, ie that its image is a
horotube group (without exceptional parabolic elements), and that its limit set is porous.
If that works, then it is enough to show that the group admits deformations, and to
study the type of the deformed unipotent element; Schwartz’s surgery formula shows,
in particular, that (under some technical assumptions) if there are deformations where
the unipotent peripheral holonomy stays parabolic, then the manifold at infinity should
not change at all in small deformations.

Although a few examples of noncompact hyperbolic manifolds are known to admit
spherical CR uniformizations (see [25; 27; 7]), the deformation theory of the holonomy
representations of these examples is still quite mysterious. In particular, there are only
two examples where nontrivial deformations are known to exist such that peripheral
elements map to parabolic elements. These two examples are the figure eight knot
complement and the Whitehead link complement. The results announced by Parker and
Will [21] say that there are at least two different spherical CR uniformizations of the
Whitehead link complement, and that there is a 1–parameter family of representations
interpolating between their holonomy representations.

Our first result gives an explicit construction of twist-parabolic deformations.

Theorem 1.1 There is a continuous 1–parameter family of irreducible representations
�t W �1.M /!PU.2; 1/, such that �t , for each t , maps peripheral subgroups of M onto
a cyclic group generated by a single parabolic element with eigenvalues eit ; eit ; e�2it .

Given the eigenvalue condition, it should be clear that the representations �t are
pairwise nonconjugate. We will choose �t so that �0 is the holonomy of the boundary
unipotent spherical CR uniformization.

Note that the existence of such parabolic deformations was independently discovered by
Pierre–Vincent Koseleff, using a variant of the method devised by Falbel to parametrize
boundary unipotent representations of 3–manifolds; see [9; 3; 11], for instance. An
alternative parametrization of this family can also be obtained from the description of
the full character variety; see Falbel, Guilloux, Koseleff, Rouillier and Thistlethwaite
[10], and also Heusener, Muñoz and Porti [17].

We will use a more naïve construction, which is closer in spirit to the parametrization
of the character variety of the figure eight knot group (or more generally 2–bridge knot
groups) into PSL2.C/ by Riley [23].

Our main result is the following.
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Theorem 1.2 There exists a ı > 0 such that for jt j < ı , �t is the holonomy of a
spherical CR uniformization of the figure eight knot complement.

In order to show this, we will study the Ford domain for the image of �0 , and we
will show that it is generic enough for its combinatorics to be preserved under small
deformations of �0 . Note that this argument turns out to fail for the Ford domain of
the holonomy of the spherical CR uniformization of the Whitehead link complement
announced by Parker and Will in [21]. Indeed, their Ford domain has the same local
combinatorial structure as the Dirichlet domain described in [7], and in particular, it
has lots of tangent spinal spheres.

It will be clear to the reader familiar with the notion of horotubes [28] that the Ford
domain exhibits an explicit horotube structure for the group, but since our construction
of horotubes is actually very close to proving Theorem 1.2, we will give a detailed
argument that does not quote Schwartz’s result. Of course, in many places, our proof
parallels some of the intermediate results in [28].

We will not attempt to give an explicit allowable range of parameters t in Theorem 1.2,
although it would certainly be interesting to do so (and also to try and make this
range optimal).

The bulk of the work will be to describe the Ford domain for the holonomy group of
the unipotent uniformization of M , and to study in detail the generic character of the
intersection of its sides, along facets of all dimensions. The genericity that we will
prove is genericity at infinity, namely, we will show that each ideal vertex in the Ford
domain lies on precisely three sides that intersect transversely at that point. For finite
vertices, no genericity is to be expected, since the group is known to contain elliptic
elements of orders 3 and 4; see [7]. In fact, all the deformations we consider will
preserve the conjugacy classes of these elliptic elements, and we will show that they
do not affect the nongeneric character of the fundamental domains at these points:

Proposition 1.3 The image of �t is a triangle group. More specifically, for all t ,
we have

�t .g2/
4
D �t .g1g2/

3
D �t .g2g1g2/

3
D id :
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2 The real hyperbolic Ford domain

Throughout this section, we denote by M the figure eight knot complement. We review
the description of a cusp neighborhood for M . This is probably familiar to most
readers, but the details will be used in the identification of the manifold at infinity of our
complex hyperbolic groups. Moreover, quite remarkably, the local combinatorics of the
real hyperbolic Ford domain turn out to be exactly the same as the local combinatorics
of our fundamental domain for the action of the group on the domain of discontinuity.

Recall that the fundamental group �1.M / has a presentation of the form

hg1;g2;g3 j g2 D Œg3;g
�1
1 �; g1g2 D g2g3 i;

with peripheral subgroup generated by g�1
3

and g1.g1g2/
�1g3g2g�1

3
.

From this, one can find all type-preserving representations of �1.M / up to conjugation,
as in [22]. Indeed, the generators g1 and g3 should be parabolic elements in SL2.C/,
which we denote by G1 and G3 . We may assume G1 (resp. G3 ) fixes 0 (resp. 1),
and since all parabolic elements are conjugate, we may also assume

G1 D

�
1 0

�! 1

�
and G3 D

�
1 1

0 1

�
for some ! 2C . The relation G1ŒG3;G

�1
1
�D ŒG3;G

�1
1
�G3 in PSL2.C/ is easily seen

to imply !2C!C 1, so we may take

! D
�1Ci

p
3

2
:

The stabilizer of 1 in PSL2.ZŒ!�/ is clearly given by translations by Eisenstein
integers, but the stabilizer in the group generated by G1 and G3 is slightly smaller, it
can be checked to be generated by translations by 1 and 2i

p
3; see [22] for more details.

Recall that the Ford isometric sphere of an element�
a b

c d

�
is bounded by the circle jczCd j D 1. The Ford domain turns out to be the intersection
of the exteriors of all spheres of radius 1 centered at Eisenstein integers. A schematic
picture is shown in Figure 1, where the sides corresponding to G˙1

1
are shaded in the

same color, so the corresponding 2–faces get identified by the corresponding isometries,
and similarly for G˙1

2
D ŒG3;G

�1
1
�˙1 . The complete description of identifications

on bottom face of the prism is given in Figure 2, and there are also identifications on
the vertical sides of the prism, which are simply given by translations whenever these
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Figure 1: A fundamental domain for the action of � is an infinite chimney
over the union of four hexagons, each hexagon living in a unit hemisphere
around the appropriate Eisenstein integer.

Figure 2: Bottom of the prism (spine of the figure eight knot complement)

sides are parallel. Note that these identifications are described in [22]; using current
computer technology, they can also be found using the pictures produced by SnapPy.

3 Basic complex hyperbolic geometry

In this section, we review some basic material about the complex hyperbolic plane.
The reader can find more details in [14].

Recall that C2;1 denotes C3 equipped with a Hermitian form of signature .2; 1/. The
standard such form is given by hV;W i D V1

SW3CV2
SW2CV3

SW1 DW �JV , where

J D

0@0 0 1

0 1 0

1 0 0

1A :
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We denote by U.2; 1/ the subgroup of GL.3;C/ that preserves that Hermitian form,
and by PU.2; 1/ the same group modulo scalar matrices. It is sometimes convenient to
work with SU.2; 1/, which is a 3–fold cover of PU.2; 1/.

The complex hyperbolic plane H 2
C is the set of negative complex lines in C2;1, equipped

with a Kähler metric that is invariant under the action of PU.2; 1/. Such a metric is
unique up to scaling, and it turns out to have constant holomorphic sectional curvature
(which one can choose to be �1).

It is well known that the maximal totally geodesic submanifolds of H 2
C are copies

of H 1
C (with curvature �1) and copies of H 2

R (with curvature �1=4).

3A Bisectors

The corresponding distance function is given by

cosh2 1
2
d.z; w/D

jhZ;W ij2

hZ;ZihW;W i
;

where Z (resp. W ) denotes a representative of z (resp. w ). Given two distinct points
p; q 2 H 2

C , the locus B.p; q/ of points that are equidistant of p and q is called a
bisector. Beware that isometries switching p and q do not fix the corresponding
bisector pointwise, and in fact bisectors are not totally geodesic. The copies of H 1

C
(resp. H 2

R ) in B.p; q/ are called its complex (resp. real) slices. All real slices intersect
along the same real geodesic, called the real spine of the bisector; see [14].

Every bisector in H 2
C is diffeomorphic to the unit ball in R3 in such a way that the

vertical axis is the real spine, complex slices are horizontal disks, and real slices are
disks in vertical planes containing the vertical axis. One way to do this explicitly
for the bisector B.p; q/ is to scale q by a complex number of modulus one so that
hp; qi is real and negative. Then an orthogonal basis for C2;1 is given by v0 D pC q ,
v1Dp�q , v2D v0 �v1 (� denotes the Hermitian cross product; see page 43 of [14]).
Of course, this basis can be made Lorentz orthonormal by scaling its vectors so that
hv0; v0i D �1, hv1; v1i D 1 and hv2; v2i D 1. The bisector then can be parametrized
by .z; t/ 2C �R by taking vectors of the form

v0C i tv1C zv2:

Given a set S �H 2
C , we write B.S/ for the locus equidistant of all point in S , which

can be thought of as an intersection of bisectors.

The intersection of two bisectors is usually not totally geodesic, but it can be in some
rare instances. When p , q and r are not in a common complex line (ie when lifts of

Geometry & Topology, Volume 20 (2016)



Spherical CR uniformization 3579

these vectors are linearly independent), the locus B.p; q; r/ of points equidistant of
p , q and r is a smooth disk that is not totally geodesic, and is often called a Giraud
disk; see [12]. The following property is crucial when studying fundamental domains;
see [12; 14].

Theorem 3.1 If p , q and r are not in a common complex line, then B.p; q; r/ is
contained in precisely three bisectors, namely B.p; q/, B.q; r/ and B.q; r/.

Note that checking whether an isometry maps a Giraud disk to another is equivalent to
checking that the corresponding triple of points are mapped to each other.

In order to study Giraud disks, we will use spinal coordinates. The complex slices of
B.p; q/ are given explicitly by choosing a lift zp (resp. zq ) of p (resp. q ).

When p; q 2H 2
C , we simply choose lifts such that h zp; zp i D hzq; zq i. In this paper, we

will mainly use these parametrizations when p; q 2 @1H 2
C . In that case, the condition

h zp; zp i D hzq; zq i is vacuous, since all lifts are null vectors; we then choose some fixed
lift zp for the center of the Ford domain, and we take zq DG zp for some G 2 U.2; 1/.
If a different matrix G0 D SG , with S a scalar matrix, note that the diagonal element
of S is a unit complex number, so zq is well defined up to a unit complex number.

The complex slices of B.p; q/ are obtained as (the set of negative lines in) .xz zp�zq /? for
some arc of values of z2S1 , which is determined by requiring that hxz zp�zq;xz zp�zq i>0.

Since a point of the bisector is on precisely one complex slice, we can parametrize
B.p; q; r/ by .z1; z2/ 2 S1 �S1 via

(1) V .z1; z2/D .xz1p� q/� .xz2p� r/D q � r C z1r � pC z2p � q:

The Giraud disk corresponds to the .z1; z2/ 2 S1�S1 with hV .z1; z2/;V .z1; z2/i< 0

(it follows from the fact that the bisectors are covertical that this region is a topological
disk, but this is not obvious; see Chapters 8 and 9 in [14]).

The boundary at infinity @1B.p; q; r/ is a circle, given in spinal coordinates by
the equation

(2) hV .z1; z2/;V .z1; z2/i D 0:

Note that the choice of two lifts of q and r affects the spinal coordinates by rotation
on each of the S1 factors.

A defining equation for the trace of another bisector B.a; b/ on the Giraud disk
B.p; q; r/ can be written in the form

(3) jhV .z1; z2/; aij D jhV .z1; z2/; bij;
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provided that a and b are suitably chosen lifts. The expressions hV .z1; z2/; ai and
hV .z1; z2/; bi are affine in z1 , z2 .

These triple bisector intersections can be parametrized fairly explicitly, because one
can solve the equation jhV .z1; z2/; aij

2 D jhV .z1; z2/; bij
2 for one of the variables z1

or z2 simply by solving a quadratic equation. A detailed explanation of how this works
can be found in Section 2.3 of [7]; we will also review this in Section 5C3.

Note that our parameters also give a parametrization of the intersection in P2
C of the

extors extending the bisectors; see Chapter 8 of [14]. The Giraud disk is a disk in the
intersection of the extors, which is a torus.

3B The Siegel domain and the Heisenberg group

The complex analogue of the upper half space model for H n
R is the Siegel domain,

which is obtained by sending the line spanned by .1; 0; 0/ to infinity. We denote the
corresponding point of @1H 2

C by p1 .

More precisely, we take affine coordinates z1 D Z1=Z3 and z2 D Z2=Z3 , and a
negative complex line has a unique representative of the form z D .z1; z2; 1/ with

z�Jz D 2Re.z1/Cjz2j
2 < 0:

Since we are interested in geometric structures modeled on @1H 2
C , we will use mainly

the boundary of the Siegel domain, which is given by points z D .z1; z2; 1/ with
2Re.z1/C jz2j

2 D 0. It is best understood in terms of Heisenberg geometry, as we
now briefly recall.

A large part of the stabilizer of the point at infinity is given by unipotent upper triangular
matrices. One easily checks that such a matrix preserves the Hermitian form J if and
only if it can be written as 0@1 �xa

p
2 �jaj2Cis

0 1 a
p

2

0 0 1

1A
for some .a; s/ 2C �R. Since these upper triangular matrices form a group, we get a
group law on C �R, given by

(4) .a; s/� .a0; s0/D .aC a0; sC s0C 2 Im.axa0//:

This is the so-called Heisenberg group law.

The action of the unipotent stabilizer of p1 is simply transitive on @1H 2
C �fp1g,

so we will often identify the latter with C �R.
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The boundary at infinity of totally geodesic subspaces can be seen in somewhat simple
terms in C �R. The boundary of a copy of H 1

C (which is the intersection of an affine
line in C2 with the Siegel half space) is called a C–circle. These are ellipses that
project to circles in C (or possibly vertical lines, if they go through p1 ).

The boundary of copies of H 2
R (which are images under arbitrary isometries of the set

of real points in the Siegel half space) intersect the boundary at infinity in a so-called
R–circle. In the Heisenberg group, these are curves that project to lemniscates in C
(or possibly straight lines when they go through p1 ). For more on this, see Chapter 4
of [14], for instance.

The full stabilizer of p1 is generated by the above unipotent group, together with the
isometries of the forms 0@1 0 0

0 ei� 0

0 0 1

1A and

0@� 0 0

0 1 0

0 0 1=�

1A ;
where �; � 2R and �¤ 0. The first acts on Heisenberg as a rotation with vertical axis:

.a; s/ 7! .ei�a; s/;

whereas the second one acts as

.a; s/ 7! .�a; �2s/:

There is a natural invariant metric on the Heisenberg group, called the Cygan metric,
given by d.g;g0/D kg�1g0k, and the norm of an element of the Heisenberg group is
given by

(5) k.z; t/k D
ˇ̌
jzj2C i t

ˇ̌1=2
:

The Cygan sphere with center .z0; t0/ and radius r has equation

(6)
ˇ̌
jz� z0j

2
C i.t � t0C 2 Im.zxz0//

ˇ̌
D r2:

3C Ford domains and the Poincaré polyhedron theorem

Let � be a subgroup of PU.2; 1/, let q 2 @1H 2
C and let Q denote a lift of q in C2;1 .

Definition 3.2 The Ford domain for � centered at q is the set F�;q of points z 2H 2
C

such that
jhZ;Qij � jhZ;G.Q/ij;

where G is a matrix representative of some element g 2 � .
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The inequality is actually independent of the lift G 2 U.2; 1/ chosen for g 2 PU.2; 1/.
For a given g 2 � and lift G 2 U.2; 1/, we denote by Bg the bisector given in
homogeneous coordinates by

(7) jhZ;Qij D jhZ;G.Q/ij:

For concreteness, we mention that the boundary at infinity of Bg can be described as a
Cygan sphere in the Heisenberg group; see Section 3B. The Cygan sphere corresponding
to an element G has radius

p
2=jg31j (note that G fixes p1 if and only if g31 D 0)

and center .xg32=xg31; 2 Im.xg33=xg31/; see (6).

We let bg D Bg \F ; ie bg is the side of F that lies on the bisector Bg , and we refer
to it as the side corresponding to the group element g . For a general g 2 � , it may
be that bg has dimension smaller than 3 (in fact, it is often empty). A bisector of the
form Bg such that bg has dimension three will be called a bounding bisector.

The basic fact is that if q has trivial stabilizer in � , then F D F�;q is a fundamental
domain for its action. However, it is customary to take q to have a nontrivial stabilizer
H � � , in which case F is only a fundamental domain modulo the action of H . In
other words, in that case, F is a fundamental domain for the decomposition of � into
cosets of H .

It is usually very hard to determine F explicitly; in order to prove that a given polyhe-
dron is equal to F , the main tool is the Poincaré polyhedron theorem. The basic idea
is that the sides of F should be paired by isometries, and the images of F under these
so-called side-pairing maps should give a local tiling of H 2

C . If they do (and if the
quotient of F by the identifications given by the side-pairing maps is complete), then the
Poincaré polyhedron theorem implies that the images of F actually give a global tiling.

Once a fundamental domain is obtained, one gets an explicit presentation of � in terms
of the generators given by the side-pairing maps together with a generating set for the
stabilizer H , the relations corresponding to so-called ridge cycles (which correspond
to the local tiling near each codimension-two face).

For more details on this theorem, see [7; 8; 19].

4 A boundary parabolic family of representations

In this section, we parametrize a neighborhood of the unipotent solution in the character
variety �.�1.M /;PU.2; 1//. We will use the presentation

hg1;g2;g3 j g1g2 D g2g3; g2 D Œg3;g
�1
1 �i:

Geometry & Topology, Volume 20 (2016)



Spherical CR uniformization 3583

In order to describe representations, we seek to parametrize triples G1;G2;G3 of
matrices in SU.2; 1/ that satisfy the same relations as g1 , g2 , g3 (possibly up to
multiplication by a scalar matrix, since we are really after representations in PU.2; 1/).

If the fixed points of G1 and G3 are distinct, we may assume

(8) G1 D

0@� a b

0 x�2 c

0 0 �

1A and G3 D

0@� 0 0

f x�2 0

e d �

1A ;
where j�j D 1.

Note that the representation considered in [7] is obtained by taking

�D 1; aD d D 1; c D f D�1; b D xe D�
1Ci
p

7

2

in (8).

The fact that G1 and G3 are isometries of the form J implies

(9)
�

c D�xax�; jd j2Cxe�C ex�D 0;

f D�xd x�; jaj2C xb�C bx�D 0:

We then compute the commutator G2D ŒG3;G
�1
1
� and consider the system of equations

given by RD 0, where

(10) RDG1G2�G2G3:

Note that this already restricts the character variety, since we only consider representa-
tions into U.2; 1/ rather than PU.2; 1/, but this is fine if we are after a neighborhood
of the boundary unipotent solution, where the relation (10) holds in U.2; 1/.

The .1; 1/–entry of R is given by

(11) .jaj2e� jd j2b/.1Cxad ��3
�x�3/:

The first factor does not vanish for the boundary unipotent solution, so in its component
we must have

(12) 1Cxad D �3
Cx�3:

Note that by conjugation by a diagonal matrix with diagonal entries k1; k2; k3 , we
can assume that a 2R (and we can also impose that jbj is given by any positive real
number). Then (12) implies that d is real as well, so from this point on we assume

a; d 2R:

Geometry & Topology, Volume 20 (2016)



3584 Martin Deraux

The .2; 2/–entry of R can then be written as

�.jaj2e� jd j2b/.a2ex�4
C a2d2x�3

� ad C bex�5
� 1C bd2x�4/;

so we get the expression

(13) a2ex�4
C a2d2x�3

� ad C bex�5
� 1C bd2x�4:

Using the relations (9) and (12), we have that (13) can be rewritten as

(14) be�D �3
Cx�3:

As mentioned above, by conjugation by a diagonal matrix, we can adjust jbj, for
instance, so that

jbj2 D �3
Cx�3;

and in that case, (14) implies
jej2 D jbj2:

We will now show that, given �, the following system has precisely two solutions:

(15)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

a2
C xb�C bx�D 0;

d2
Cxe�C ex�D 0;

1C ad D �3
Cx�3;

eb�D �3
Cx�3;

jbj2 D �3
Cx�3:

In order to do that, note that the first four imply

bxeC xbe D 1� 2.�3
Cx�3/;

and the last two imply
e D xbx�:

Putting these two together, we get

(16) Re.b2�/D 1
2
� 2�;

where we have written

(17) � D .�3
Cx�3/=2:

The equation Re.z/D 1
2
� 2� has a solution with jzj D 2� if and only if

2� � 1
2
� 2�;

and in that case one gets a simple formula for the solutions (intersect a vertical line
with the circle of radius j2�j centered at the origin).
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We get that (16) has solutions if and only if � � 1
8

, and the solutions are given by

(18) b2�D 1
2
� 2�˙ i

q
1
2

�
4� � 1

2

�
:

This determines b up to its sign, opposite values clearly giving conjugate groups (they
differ by conjugation by a diagonal matrix). The two values also yield isomorphic
groups, obtained from each other by complex conjugation.

We will choose the solution to match the notation for the unipotent solution given in [7],
which corresponds to �D 1, aD d D 1, b D�1

2
.1C i

p
7/ and e D�1

2
.1� i

p
7/.

As a consequence, we take

b D�
1Ci
p

8��1

2
p
�

;

where we take the square root to vary continuously near �D 1.

The system (15) then gives values for the other parameters, namely

e D 2�=b�D�
1�i
p

8��1

2
p
�

;

and one easily writes explicit formulas for a and d (once again, these are determined
only up to sign, but changing a to �a can be effected by conjugation by a diagonal
matrix). The formulas are

aD

q
.4�2�3/�C

p
8��1.4�2�1/�; d D

q
.4�2�3/��

p
8��1.4�2�1/�;

where we have written
p
�D �C i� with �, � real. In terms of this new parameter,

the condition � > 1
8

translates into

� > cos
�

1
3

arctan
p

7
3

�
D 0:9711209254 : : : :

In fact, in order to get a and d to be real, we also need

.4�2
� 3/��

p
8� � 1.4�2

� 1/� � 0;

which translates into � � cos.�=18/. The value � D cos.�=18/ corresponds to a
situation where d D 0.
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4A Triangle group relations

The following matrices can be computed explicitly:

G2 D

0@ 1C�3 ax�� xbd .eC b/x�

ab� dx�2 ��3 0

.eC b/x� 0 0

1A ;
G1G2 D

0@ � a.1��3/� ed�2 .eC b/

�x�2.aeC dx�2/ �� 0

.eC b/ 0 0

1A ;
G2

1G2 D

0@ x� ��3.a�C ed/ .eC b/�

�2.abC d�/ �x� 0

.eC b/� 0 0

1A :
In particular,

tr.G2/D 1; tr.G1G2/D 0; tr.G2G1G2/D 0;

or in other words,

G4
2 D id; .G1G2/

3
D id; .G2

1G2/
3
D id :

The last two relations imply that

.G2G1G2/
3
D id :

Proposition 4.1 Throughout the twist parabolic deformation, we have G1G2DG2G3 ,
G2 D ŒG3;G

�1
1
�, G4

2
D id, .G1G2/

3 D id, .G2G1G2/
3 D id.

4B Fixed points of elliptic elements

Note also that for each of the three matrices G2 , G1G2 and G2
1
G2 , the negative

eigenvector is the one with eigenvalue 1 (indeed, this is true for the unipotent solution,
so it holds throughout the corresponding component of the character variety).

For future reference, we give explicit formulas for these fixed points:

p2 D
�
1C�3; ab� dx�2; .x�C�2/.eC b/

�
;

p12 D
�
1C�;�x�2.aeC dx�2/; .1Cx�/.eC b/

�
;

p112 D
�
1Cx�; �2.abC dx�/; .x�Cx�2/.eC b/

�
:

Lemma 4.2 Throughout the deformation, p2 is on six bounding bisectors, correspond-
ing to the following group elements (written in word notation; see Section 5 ):

2; 2; 3; 12; 12; 13:
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Proof The statement about G˙1
2

is obvious since p2 is fixed by G2 . The other four
statements all follow from

(19) d.p2;p0/D d.p2; .G2G1/
�1p0/:

Indeed,

d.p2; .G2G1/
�1p0/D d.p2;G

�1
2 G�1

1 G�1
2 p0/D d.p2;G1G2p0/;

where we have used G1p0 D p0 and .G1G2/
3 D id. Similarly, using G1G2 DG2G3 ,

we get

d.p2;G1G2p0/D d.p2;G
�1
2 G1G2p0/D d.p2;G3p0/:

Finally, using G2 D ŒG3;G
�1
1
� we get

d.p2;G3p0/D d.p2;G
�1
2 G3p0/D d.p2;G

�1
1 G3p0/:

In order to prove (19), we compute

G�1
1 G�1

2 p0 D .xbCxe /�.xb; a; x�/;

and we observe j.xbCxe /�j D 1, so we need only check

jhp2;p0ij D jhp2;X ij;

where X D .xb; a; x�/. Now

jhp2;p0ij
2
D j.�Cx�2/.xeC xb/j2 D j1C�3

j
2
D 2C�3

Cx�3;

and

hp2;X i D x�.2��
3
�x�3

� b2�/;

and so,

jhp2;X ij
2
D 2C�3

Cx�3:

Lemma 4.3 Through the deformation, p121DG�1
1

p2 stays on six bounding bisectors,
corresponding to the following group elements (using the word notation introduced in
the next section):

2; 12; 12; 13; 112; 113:

Proof The statement follows from Lemma 4.2 by conjugation by G�1
1

(which by
definition fixes p0 ).
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5 Combinatorics of the Ford domain in the unipotent case

In this section, we denote by � the image of �0 . It is generated by the matrices

G1 D

0@1 1 1
2
.�1�

p
7i/

0 1 �1

0 0 1

1A ; G3 D

0@ 1 0 0

�1 1 0
1
2
.�1C

p
7i/ 1 1

1A :
One then sets

G2 D ŒG3;G
�1
1 �:

We will often use word notation in the generating set G1 , G2 , G3 , using bars to denote
inverses. For instance, 2313 denotes G2G3G�1

1
G3 .

We consider the Ford domain centered at the fixed point of G1 , which is p1 in the
notation of Section 3C, and work in the Siegel half space. We let P denote hG1i,
and F the corresponding Ford domain. We wish to prove that F is a fundamental
domain for the action of the cosets of P in � .

We let S denote fG2;G
�1
2
;G3;G

�1
3
g, and SP the set of all conjugates of elements

of S by powers of G1 . We consider the partial Ford domain D defined in homogeneous
coordinates Z by the inequalities

jhZ;Qij � jhZ;G.Q/ij

for all G 2 SP . Clearly F �D , but we mean to prove:

Theorem 5.1 F DD .

The key steps in the proof of Theorem 5.1 will be the following:

� Determine the combinatorics of D .

� Show that the elements in SP define side-pairing maps for D .

� Verify the hypotheses of the Poincaré polyhedron theorem.

5A Statement of the combinatorics

Clearly D is G1 –invariant, so it is enough to describe the combinatorics of the sides
corresponding to g2S , ie gDG2;G3;G

�1
2
;G�1

3
. We will call the corresponding four

sides b1 , b2 , b3 and b4 , respectively, and refer to them as core sides; the corresponding
bisectors will be denoted by B1 , B2 , B3 and B4 . The spinal spheres at infinity of these
four bisectors will be denoted by S1 , S2 , S3 , S4 .
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3
p2

131

121

121

p121

p1212

12212

121

12312

p213

13313 131
p2

121

3

121

p323

p3232

12212

3

121

p233

131

Figure 3: The combinatorics of the face corresponding to G2 (left) and
G�1

2
(right); all 2–faces are labeled, except for the boundary at infinity,

which is a disk bounded by the most exterior curve (shown in red). We also
label the finite vertices, namely, for w 2 � , we let pw denote the isolated
fixed point of the group element corresponding to the word w (1 D G1 ,
2DG2 , 3DG3 , 1DG�1

1
, etc).

We will sometimes index other sides than the four basic sides just described, mostly
when describing computations that would unreasonable to perform by hand. We will
order them by concatenating sets of four conjugates of the base group elements 2; 2; 3; 3

by different powers of G1 , powers being arranged by increasing values of the absolute
values of the exponent (positive powers first). The words corresponding to the first 20

bisectors are given by

2; 2; 3; 3; 121; 121; 131; 131; 121; 121; 131; 131;

12212; 12212; 12312; 12312; 12212; 12212; 12312; 12312:

For example, B5DG1.B1/ is the bisector corresponding to G1G2G�1
1

(or equivalently
for G1G2 , since G1 fixes the center of our Ford domain), B10DG�1

1
.B2/ is the bisector

for G�1
1

G�1
2

G1 .

We describe their combinatorics in the form of pictures; see Figures 3 and 4. Each
picture is drawn in projection from a picture where the bisector is identified with the
unit ball in R3 ; see Section 3A. Concretely, we use spinal coordinates on 2–faces and
parametrize 1–faces by solving equations of the form (3) for one of the variables.
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p2

2

131

121

2

131

121

p121

p323

131

121

12212

2

13213

131

p132

Figure 4: The combinatorics of the face corresponding to G3 (left) and G�1
3 (right)

We also give a list of vertices on the core sides and a list of the bounding bisectors that
each vertex lies on; see Tables 1 and 2.

5B Effective local finiteness

The goal of this section is to show that a given face of the Ford domain intersects
only finitely many faces. Since the domain is G1 –invariant by construction, we start
by normalizing G1 in a convenient form. We will work in the Siegel half space; see
Section 3B.

A natural set of coordinates is obtained by arranging that G2
2

maps p1 to the origin
in the Heisenberg group. There is a unique Heisenberg translation that achieves this,
given by

QD

0@1 1
4
.3� i

p
7/ �

1
2

0 1 1
4
.�3� i

p
7/

0 0 1

1A :
One then gets

QG1Q�1
D

0@1 1 �1
2

0 1 �1

0 0 1

1A and QG2
2Q�1

D

0@ 0 0 �1
2

0 �1 0

�2 0 0

1A :
Of course, one could make the last matrix even simpler by composing with a loxo-
dromic element.
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Word Bounding bisectors Indices

2 2; 2; 3; 121; 121; 131 1; 2; 3; 5; 10; 11

121 2; 121; 121; 131; 12212; 12312 1; 9; 10; 11; 18; 19

213 2; 121; 12212; 12312; 13213; 13313 1; 9; 18; 20; 26; 28

1212 2; 121; 121; 131; 12212; 12312 1; 5; 10; 12; 18; 20

Table 1: Finite vertices on the face for G2 . For each vertex v , we give a
word w for an element that fixes precisely v , and we list the words for the
bounding bisectors that contain v .

Word Bounding bisectors Indices

2 2; 2; 3; 121; 121; 131 1; 2; 3; 5; 10; 11

323 2; 3; 121; 121; 131; 12212 2; 4; 5; 10; 12; 13

233 2; 3; 121; 131; 12212; 13213 2; 4; 6; 8; 13; 21

3232 2; 3; 121; 121; 131; 12212 2; 3; 5; 6; 7; 13

Table 2: Finite vertices on the face for G�1
2

We let Aj denote QGj Q�1 . We then have

A2.1/D .˛; 0/; A2
2.1/D .0; 0/; A�1

2 .1/D .�˛; 0/;

where ˛ D .3C i
p

7/=.4
p

2/. Also,

A3.1/D

�
�

1

2
p

2
;�

p
7

8

�
; A�1

3 .1/D

�
�

1
p

2
;

p
7

2

�
:

The spinal sphere with center .0; 0/ and radius r has equation

(20) .x2
Cy2/2C t2

D r4;

so we get a spinal sphere centered at .aC ib;u/ by translation:

(21)
�
.x� a/2C .y � b/2

�2
C .t �u� ay � bx/2 D r4:

By writing out (7), squaring both sides and identifying with (21), one checks that
the spheres S1 and S2 have radius 1, whereas S3 and S4 have radius 2�1=4 . We
summarize this information in Table 3.

The action of A1 on the Heisenberg group is given by

(22) .z; t/ 7! .z� 1; t C Im.z//;
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Sphere Center Radius

S1

�
3C i
p

7

4
p

2
; 0

�
1

S2

�
�

3C i
p

7

4
p

2
; 0

�
1

S3

�
�

1

2
p

2
;�

p
7

8

�
2�1=4

S4

�
�

1
p

2
;

p
7

2

�
2�1=4

Table 3: Centers and radii of core spinal spheres

and in particular, we get the following:

Proposition 5.2 The element A1 preserves every R–circle of the form .x; 0; t0/ with
x 2R.

Recall that R–circles are, by definition, given by the trace at infinity of totally geodesic
copies of H 2

R in H 2
C . The corresponding real planes in H 2

C are preserved by A1 , and
their union is the so-called invariant fan of A1 ; see [16].

Among all these R–circles, the x axis is somewhat special because of the following:

Proposition 5.3 The R–plane bounded by the x axis contains the fixed point of G2 .

Indeed, the fixed point of A2 is given by

V D
�
�

1
2
; 0; 1

�
;

and for W D .�x2C i t;x
p

2; 1/, we have

hV;p1ihp1;W ihW;V i D �1
2
.1Cx2/C i t;

which is real if and only if t D 0.

Note that (22) shows that for any two bisectors B1 and B2 not containing p1 , we have
Gk

1
B1\B2D∅ whenever k is large enough. Indeed, it follows from the detailed study

of bisector intersection in [14] that, if two bisectors intersect, then the corresponding
spinal spheres must intersect.

Moreover, this claim can easily be made effective; ie one can get explicit bounds on how
large k needs to be for the above intersection to be empty. If Sj D @1Bj is contained
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in a strip j̨ � x � ǰ , one can simply take k > ˇ2 � ˛1 or k < ˛2 �ˇ2 . Note that
bounds j̨ ; ǰ can be computed fairly easily from the equations of the relevant spinal
spheres (see the Table 3 giving the centers and radii). In particular, we get:

Proposition 5.4 The intersections of the spheres listed below are nonempty only if k

lies in the corresponding interval:

Intersection Interval Intersection Interval

S1\Gk
1
S1 �2� k � 2 S1\Gk

1
S2 �4� k � 1

S1\Gk
1
S3 �3� k � 1 S1\Gk

1
S4 �4� k � 0

S2\Gk
1
S2 �2� k � 2 S2\Gk

1
S3 �2� k � 2

S2\Gk
1
S4 �2� k � 2 S3\Gk

1
S3 �2� k � 2

S3\Gk
1
S4 �2� k � 1 S4\Gk

1
S4 �2� k � 2

This is not an optimal result, since it takes into account only the variable x and the
fact that G1 translates by one unit in the direction of the x axis. The optimal result is
not far from this though; the point of Proposition 5.4 is to get down to a finite list of
bounding bisectors intersecting a given one (so that we can use effective computational
tools). We will give much more precise information in the next section.

5C Proof of the combinatorics

The techniques we use in order to justify the combinatorics are very similar to the ones
explained in detail in [7; 8]. Note that one can think of justifying the combinatorics
as a special case of finding the connected components of (many) semialgebraic sets.
Indeed, F is clearly semialgebraic, defined by inequalities indexed by I DN :

F D fz 2C2
W fi.z/ < 0 for all i 2 Ig:

For convenience, we make the convention that f0.z/ < 0 is the defining inequality for
the unit ball; in other words,

f0.z/D hzz; zz i;

where zz D .z; 1/. In particular, we consider the boundary at infinity of complex
hyperbolic space as a bounding face. All other inequalities have the form fj < 0, where

fj .z/D jhzz; zp0ij
2
� jhzz; j zp0ij

2:

The facets are of F described by taking some subset J �I and replacing the inequalities
indexed by elements of J by the corresponding equality:

FJ D fz 2C2
W fj .z/D 0 for all j 2 J and fi.z/ < 0 for all i 2 I nJ g:
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The fact that I is infinite will not be a problem because of the results in Section 5B,
which imply that our polytope is locally finite.

More generally, we will consider sets of the form

FJ ;K D fz 2C2
W fj .z/D 0 for all j 2 J and fi.z/ < 0 for all i 2Kg;

where J and K are disjoint. In particular, FJ is the same as FJ ;InJ , and FJ ;∅ is the
jJ j–fold bisector intersection containing FJ .

5C1 Terminology and specification The facets of our polytopes that have dimen-
sion k will be called k –faces. Moreover, 3–faces will be simply called sides, 2–faces
will be called ridges, 1–faces will be called edges, and 0–faces will be called vertices.

In terms of computations, it will be important to encode vertices. These can be of two
kinds, namely, they can be of the form FA;∅ for some A with jAj D 4, or they can be
singular points of FB;∅ with jBj D 3. In both cases, they can be obtained by solving
a 0–dimensional system (this is the content of Assumption 5.5). For each of them, we
encode the vertex by storing a rational univariate representation for the corresponding
solution set, and an isolating interval specifying a root of the rational parameter; see
Section 5C3.

Note that in the above description, the set A is not unique since a vertex may, in
general, lie on more than four bisectors (see the discussion in Section 4B, where we saw
examples of vertices lying on at least six bounding bisectors). Moreover, in general,
one cannot take A to be just any 4–tuple of bisectors that contain that vertex, since
some intersections may not be generic.

We will also need to encode 1–faces. There are two kinds of 1–faces, namely, those
that lie in triple bisector intersections (we call these finite 1–faces), and those that lie
in the intersection of the sphere at infinity @1H 2

C with the closure in H 2
C of a bisector

intersection (we call these ideal 1–faces, or 1–faces at infinity). Computationally, we
make no distinction between these two kinds of 1–faces, since both kinds are given in
terms of spinal coordinates for a bisector intersection by an equation that is quadratic
in both variables.

We use the term arc to mean a subset in H 2
C of a triple bisector intersection (or a subset

of the trace at infinity of a double bisector intersection) such that

� it is homeomorphic to a closed interval,

� it is parametrized by one of the spinal coordinates, and

� its endpoints are vertices of the polytope, but its interior contains no vertex of
the polytope.
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Note that a 1–face can always be described as a union of finitely many arcs (but one
arc may not suffice: think of a polytope that has a whole Giraud disk as a facet, so that
the boundary of that Giraud disk is a 1–face homeomorphic to a circle).

We now expand a little on how to parametrize (pieces of) 1–faces by a single coordinate
(we discuss only parametrization by t1 , as the other one is entirely similar). Recall from
Section 3A that the relevant defining functions h.t1; t2/ for triple bisector intersections
(or trace at infinity of double bisector intersections) have degree at most two in each
variable, so we can write them as

a2.t1/t
2
2 C a1.t1/t2C a0.t1/;

with aj at most quadratic. With respect to projection onto the first coordinate axis, the
curve usually has two branches, given by

t2 D
�a1.t1/˙

p
�.t1/

2a2.t1/
;

where
�.t1/D a1.t1/

2
� 4a2.t1/a0.t1/:

Specifically, this occurs above intervals of t1 such that a2.t1/ does not vanish. Above
such an interval, the “top branch” is obtained by taking C

p
� when a2.t1/ > 0, and

�
p
� when a2.t1/ > 0. We call the other branch the “bottom branch”.

If a2 is identically zero, then the curve is either empty or consists of a single vertical
line (so branches above the t1 axes are undefined, and there is a single branch with
respect to the projection onto the t2 axis).

If a2 is not identically zero, it vanishes at one or two points, and above each of these
points, one can check whether the curve contains one, two or infinitely many points
(one needs to determine whether a1 , a0 also vanish at these points).

5C2 General procedure The pictures in Section 5A include the statement that each
facet is topologically (in fact, piecewise smoothly) a disk with piecewise smooth
boundary (with pieces of the boundary corresponding to facets of codimension one
higher). This is not at all obvious; one of the difficulties is the fact that the sets FJ

are not connected in general, in strong contrast with Dirichlet or Ford domains in the
context of constant curvature geometries; see the discussion in [5].

For given J and K , there is an algorithm to decide whether FJ ;K is empty or not, and
furthermore, one can list its connected components (and even produce triangulations).
One possible approach to this is the cylindrical algebraic decomposition of semialgebraic
sets; see [2], for instance.
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The main issue when using such algorithms is that the number of semialgebraic sets
to study is extremely large. If F has N faces, in principle, one has to deal with

�
N
k

�
potential facets of codimension k , where k D 1; 2; 3; 4, which is a fairly large number
of cylindrical decompositions. Rather, we will bypass the cylindrical decomposition and
use as much geometric information as we can in order to restrict the number of verifica-
tions. Also, rather than using affine coordinates in C2 , we use natural parametrizations
for bisector intersections, deduced from spinal coordinates; see Section 3A.

Going back to geometry, the inequality defining complex hyperbolic space in C2

(which corresponds to f0 ) is, of course, a bit different from the other inequalities. In
particular, when using the notation FJ ;K , we will always assume one of the index
sets J or K contains 0.

If K contains 0, then by definition, FJ ;K is contained in H 2
C ; we will denote by yFJ ;K

its extension to projective space, namely,

yFJ ;K D FJ ;Knf0g:

We will also refer to the following set as the trace at infinity of FJ ;K :

@1FJ ;K D FJ[f0g;Knf0g:

By xFJ ;K , we mean the set obtained from the definition of FJ ;K by replacing < by �:

xFJ ;K D fz 2C2
W fj .z/D 0 for all j 2 J and fi.z/� 0 for all i 2Kg;

which is also
xFJ ;K D

[
L�K

FJ[L;KnL:

Note that, in general, this is not the closure of FJ ;K in C2 .

We focus on an algorithm for determining the combinatorics of ridges, or in other
words, facets of the form FJ with jJ j D 2. In most cases, we will also assume 0 =2 J ;
ie we study finite facets rather than faces in @1H 2

C . The algorithm will produce a
description of the facets in @FJ , so we get a list of the 1– and 0–faces along the way.
The 3–faces are easily deduced from the 2–faces.

The basis for our analysis is the following, which follows from the theory of Gröbner
bases (see [4], for instance, and also Section 5C3 of the present paper). Let ` be a
number field.

� There is an algorithm to determine whether a system of n polynomial equations
defined over ` in n unknowns is 0–dimensional (ie whether there are only
finitely many solutions in Cn ).
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� If the system is indeed 0–dimensional, there is an algorithm to determine the list
of solutions; their entries lie in a finite extension k � `. One can also determine
the list of rational/real solutions.

� Polynomials with coefficients in ` can be evaluated at the solutions of a point
with coordinates in k , and one can determine whether the value is positive (or
negative or zero).

When such systems have solution sets with unexpectedly high dimension, there is
usually a geometric explanation (typically some of the intersecting bisectors share a
slice; see [8], for instance). We will not address this issue since it never occurs in the
situation of the present paper.

In all situations we will consider here, the field ` will be a quadratic number field, and
the extension k will have degree at most four over `. This makes all computations
very quick (using capabilities of recent computers, and standard implementations of
Gröbner bases).

For the rest of the discussion, we make the following assumptions.

Assumption 5.5 (1) For every L� I with jLj D 4, the dimension of FL is zero.

(2) For every J � I with jJ j D 2, and every x 2 I with x =2 J , the restriction gx

of fx to FJ ;∅ has nondegenerate critical points.

These assumptions are by no means necessary in order to determine the combinatorial
structure of FJ ;K , but they will simplify the discussion in several places. Note also
that they can be checked efficiently using a computer; in particular, we state

Proposition 5.6 Let M be the figure eight knot complement. Then the Ford domain
of the irreducible boundary unipotent representation �W �1.M /! PU.2; 1/, centered
at the fixed point of the holonomy of any peripheral subgroup, satisfies Assumption 5.5.

In contrast, the domains that appear in [8] do not satisfy these hypotheses.

The combinatorial description of FJ (ie its connected components and the list of facets
adjacent to it) can be obtained by starting from a description of FJ ;∅ and repeatedly
studying FJ ;K[fxg from FJ ;K , where x 2 I is not in J [K . The latter inductive
step is done as follows.

The boundary @FJ ;K can be described as a union of arcs contained in FJ[fkg;Knfkg

for some k 2 K . For computational purposes, we will always assume that an arc
is homeomorphic to a closed interval, that its endpoints are vertices, but none of its
interior points are vertices.
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Note also that the arcs may not be equal to FJ[fkg;Knfkg , since FJ[fxg;∅ may have a
double point.

For each arc a in @FJ ;K as above, we study the set

FJ[fk;xg;

which, by Assumption 5.5(1), is obtained by solving a 0–dimensional system. Keeping
only solutions that lie in a, we get a subdivision of a into connected components of
anFJ[fk;xg , and for each such component, we check whether or not it is in FJ[fkg;fxg .
If so, it is a component of the boundary of FJ ;K[fxg .

We then compute the critical points of the restriction to FJ of fx (this can be done
because of Assumption 5.5(2)) and determine whether any such critical point is in-
side FJ ;K .

Suppose c is in a component CJ ;K of FJ ;K .

� If gx.c/D0 and c is a saddle point for the restriction gx of fx , then a neighborhood
of c in xFJ ;K[fxg is the union of two sectors meeting in their apex. FJ ;K[fxg will
have four boundary arcs in a neighborhood of c . Each such arc will either connect c

to another saddle point of gx , or it will connect it to a vertex in the boundary of CJ ;K .
For each such arc, we take a sample point to check whether it is contained in FJ[fxg;K .

� If gx.c/ ¤ 0, there could be an isolated component of FJ[fxg;K that winds
around c . In order to determine whether this happens or not, we consider the slice
t1 D ˛1 , and intersect it with gx D 0. Recall that this intersection contains either 0, 1

or 2 points (because it is obtained by solving an equation that has degree at most two,
which is not identically zero because gx.c/¤ 0). Then there is an isolated component
if and only if the intersection consists of precisely two points, and the two intersection
points lie in the same connected component of FJ ;K .

Now collecting the boundary arcs with the inside arcs (joining two points that are
either saddle or boundary vertices in FJ\fk;xg ), we get a stratum decomposition
for FJ ;K[fxg .

Moreover, if we make the following assumption, then all components of FJ ;K[fxg are
topological disks, since their boundary consists of a single component.

Assumption 5.7 (3) The curves FJ[fxg;K have no isolated components in FJ ;K .

Once again, in the special case of the Ford domain relevant to the irreducible boundary
unipotent rank one, it turns out this hypothesis is satisfied.
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5C3 Rational univariate representation We briefly recall what we need about
rational univariate representations; for details on this technique, see [24]. Recall that
given a 0–dimensional polynomial system

(23)
�
f .t1; t2/D 0;

g.t1; t2/D 0;

with coefficients in the number field `, we can write it as a polynomial system with
rational coefficients by using a primitive element for `; the corresponding system
has one more variable (which we denote by s ), and one more equation (which is the
minimal polynomial of a primitive generator for `). We write it in the form

(24)

8<:
zf .t1; t2; s/D 0;

zg.t1; t2; s/D 0;

m.s/D 0;

where zf is obtained from f by expressing its coefficients as polynomials in the
primitive element for `. In the cases that interest us, ` will be a totally real number
field, which we assume from now on.

In this discussion, we consider systems of two equations in two variables (so we get
three equations in three variables, counting the extra variable corresponding to the
primitive element of the number field), but we could also allow systems that have more
equations than the number of variables (the important point is that the ideal generated
by the equations should be 0–dimensional).

Now the key point is that there exists a 1–variable polynomial r such that the solutions
are parametrized as rational functions of the roots of r . More specifically, there exist
polynomials r , p0 , p1 , p2 and q with integer coefficients such that the solutions of
the system can be written in the form

(25) s D p0.u/=q.u/; t1 D p1.u/=q.u/; t2 D p2.u/=q.u/;

and the latter formula gives a solution of (24) if and only if u is a root of r . Of
course, since the minimal polynomial m has several roots in general, this produces
more solutions of system (23) than we would like. The solutions of (23) can easily be
obtained by sifting the solutions of (24) once we know isolating intervals for the roots
of m.

Note that even though all the equations relevant to this paper have coefficients in a
fixed number field (namely `DQ.

p
7/), the vertices usually have entries in a larger

number field (namely the field generated by a given root of the rational parametrizing
polynomial r ).

Geometry & Topology, Volume 20 (2016)



3600 Martin Deraux

Note also that the solutions lie in a subfield L� C if and only if the corresponding
root u of r lies in L. In particular, if we want to find real solutions of the system, we
can restrict to studying real roots of r , which can be specified by isolating intervals.

Using a rational univariate representation for the vertices provides a convenient set of
methods that allow us to

(i) find the list of faces that contain a given vertex;

(ii) for each bounding bisector not containing a vertex, check which side the vertex
is in;

(iii) check if two vertices are the same;

(iv) check whether a given vertex is inside a given arc;

(v) if two vertices in FJ[fxg;∅ are given, check whether these two vertices are
joined by an arc in FJ[fxg;∅ .

Items (i) and (ii) are very simple because all our equations are defined over a given `.
Given a polynomial h.t1; t2/D zh.t1; t2; s/, we start by substituting the parametriza-
tion (25) in zh, replacing u by the appropriate interval of values of the rational parameter.
If the corresponding interval does not contain 0, we know the sign of h at that vertex.

Otherwise, we keep the exact parametrization (25) and get a rational function in u

that represents h at the solutions of (24), and we check whether it vanishes at the
appropriate root of r . This corresponds to checking whether our favorite root of the
rational parametrizing polynomial r is also a root of another given polynomial with
integer coefficients (namely the numerator of the above rational function); this can be
done by computing their greatest common divisor, and isolating its real roots.

If the rational function does not vanish, we compute a more precise interval for the
value of zh, and refine precision until the interval does not contain 0. Of course, in
all generality, this may require such high precision that it would exhaust the system
memory, but this does not seem to happen for the verifications that appear in this paper,
at least for our implementation on standard modern computers.

We now sketch how to implement item (iii). Suppose we are given two rational
parametrizations

s D p0.u/=q.u/; t1 D p1.u/=q.u/; t2 D p2.u/=q.u/;

s D a0.v/=b.v/; t1 D a1.v/=b.v/; t2 D a2.v/=b.v/;

where u (resp. v ) is to be taken to be a specific root of r.u/ (resp. c.v/). Equality
corresponds to verifying whether p1.u/b.v/�q.u/a1.v/ (resp. p2.u/b.v/�q.u/a2.v/)
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vanishes at the corresponding roots. If the rational parameters were the same, this
would simply amount to computing a greatest common divisor, but in general, the
parameters from both rational representations are different.

One way to handle this is to solve the system8<:
p1.u/b.v/� q.u/a1.v/D 0;

r.u/D 0;

c.v/D 0;

which can be done using a rational univariate representation once again. The result
then follows from sifting solutions and keeping only those that give the right root for u

and v , and checking whether the sift gives a solution of not.

In order to explain how to check (iv), we need to describe in more detail how we encode
arcs. We will assume

� that every arc is parametrized by one of the spinal coordinates (this can always
be achieved, perhaps after subdividing certain arcs if necessary),

� that the endpoints of every arc are vertices (parametrized by a rational univariate
representation, as discussed above), and

� that there are no vertices strictly inside any arc.

Then, in order to check whether a given vertex is inside an arc parametrized by t1 ,
we need to compare its t1 value with the t1 values of the endpoints of the arc. This
amounts to checking the sign of an expression of the form

p1.u/=q.u/� a1.v/=b.v/;

where u (resp. v ) is a specific root of r (resp. c ). This is the same as the test that
occurs in item (iii).

If the vertex t1 value is between the t1 –values of the endpoints of the arc, we still need
to check whether it is in the correct arc.

5C4 Sample computations We explicitly determine some sets FJ with jJ j D 2, in
order to illustrate the phenomena that can occur when applying the algorithm from
the previous section. The general scheme to parametrize FJ ;∅ is explained in [7],
for instance.

When 0 =2 J D fj ; kg, we distinguish two basic cases, depending on whether p0 , pj

and pk are in a common complex line. This happens if and only if some/any lifts
zpj 2 C3 are linearly dependent. In that case, the bisectors Ffjg and Ffkg have the
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same complex spine, and their intersection is either empty or a complex line (this never
happens in the Ford domains studied in this paper).

Otherwise, FJ ;∅ can be parametrized by vectors of the form

.xz1p0�pj /� .xz2p0�pk/D z1pk0C z2p0j Cpjk ;

with jz1j D jz2j D 1, and where pmn denotes pm � pn ; see Section 3A.

Valid pairs .z1; z2/ in the Clifford torus jz1j D jz2j D 1 are given by pairs with

hz1pk0C z2p0j Cpjk ; z1pk0C z2p0j Cpjki< 0;

which can be rewritten as

Re.�0.z1/z2/D �0.z1/;

for �0 and �0 affine in z1;xz1 .

In terms of the notations of Section 5C2, the restriction g0 of f0 to FJ ;∅ is given by

g0.z1; z2/DRe.�0.z1/z2/� �0.z1//:

In order to draw pictures, we will sometimes use log-coordinates .t1; t2/ for FJ ;∅ , and
we write, for j D 1; 2,

zj D exp.2� i tj /:

Given l =2 J , we already mentioned in Section 3A how to write the restriction gl of fl

to FJ . Note that hpk0;p0i D hp0j ;p0i D 0, so the equation fx D 0 reads

jhpjk ;p0ij D jhz1pk0C z2p0j Cpjk ;plij;

which again can be written in the form

Re.�l.z1/z2/D �l.z1/:

In order to compute the critical points of the restriction to jz1j D jz2j D 1 of a function
h.z1;xz1; z2;xz2/, we search for points where

@h

@z1

z1�
@h

@xz1

xz1 D 0 and
@h

@z2

z2�
@h

@xz2

xz2 D 0:

Gröbner bases for the corresponding systems tell us whether these critical points are
nondegenerate (see Assumption 5.7), and if so, we can compute them fairly explicitly,
ie describe their coordinates as roots of explicit polynomials (in particular, they can be
computed to arbitrary precision).

Proposition 5.8 Let J D f1; 2g. Then FJ is empty, and xFJ is a singleton, given by
Ff1;2;3;5;10;11g .

Geometry & Topology, Volume 20 (2016)



Spherical CR uniformization 3603

The singleton in the proposition is fp2g, for p2 as in Lemma 4.2. It follows from the
proposition that p2 lies precisely on six bounding bisectors (Lemma 4.2 only showed
that it was on at least six, listed in Tables 1 and 2).

Proof For J D f1; 2g, we get

�0.z1/D�2�xz1; �0.z1/D�3C z1Cxz1:

The discriminant
j�j2� �2

D�6C 16Re z1� 2Re z2
1

vanishes for precisely four complex values of z1 , which are the roots of

(26) z4
1 � 8z3

1 C 6z2
1 � 8z1C 1:

Since we know FJ ;f0g is connected [14, Theorem 9.2.6], we know that at most two of
these roots lie on the unit circle. In fact, z1D z2D 1 gives a point in FJ ;f0g , so FJ ;f0g

is nonempty; hence there must be two (complex conjugate) roots on the unit circle.
Indeed, these roots have argument 2� t with t D˙0:20682703 : : : .

A more satisfactory way to check that the polynomial (26) has precisely two roots on
the unit circle is to split z1 D x1C iy1 into its real and imaginary parts (this gives a
general method that does not rely on geometric arguments).

Indeed, z1 is a root of (26) if and only if .x1;y1/ is a solution of the system
�6C 16x1� 2x2

1
C 2y2

1
D 0, x2

1
Cy2

1
D 1. These equations imply that x1D 2˙

p
3,

and then
y2

1 D 2� 4x1;

which is positive only for x1 D 2�
p

3, and then we get y1 D˙

p
4
p

3� 6.

In order to run the algorithm from the preceding section, we write the restriction g3

of f3 to FJ ;∅ , which is given by

�3C 2Re
�

1�i
p

7

2
z1C

5�i
p

7

2
z2C

�3Ci
p

7

2
z1xz2

�
:

Gröbner basis calculations show the system g0.z/D g3.z/D jz1j
2�1D jz2j

2�1D 0

has precisely two solutions, given in log-coordinates by

.�0:20418699 : : : ;�0:03294828 : : : /; .0:15576880 : : : ;�0:07655953 : : : /:

Once again, the most convenient way to use Gröbner bases is to work with four variables
x1;y1;x2;y2 given by real and imaginary parts of z1 and z2 (with extra equations
x2

j Cy2
j D 1).
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Ff1;2g;f0g Ff1;2g;f0;3g Ff1;2g;f0;3;5g Ff1;2g

Figure 5: Steps of the algorithm to determine Ff1;2g

The combinatorics of FJ ;K for K D f0; 3g are illustrated in Figure 5 (middle left). It
is a disk with two boundary arcs, given by Ff1;2;0g;f3g and Ff1;2;3g;f0g .

As the next element to include in K , we choose 5 rather than 4, in order to shorten
the discussion slightly. The curve Ff1;2;5g;∅ intersects Ff1;2;0g;∅ two points, given in
log-coordinates by

.0:04600543 : : : ; 0:20593006 : : : /; .0:05483483 : : : ;�0:17019919 : : : /:

Only the second one is inside the arc Ff1;2;0g;f3g .

The curve Ff1;2;5g;∅ intersects Ff1;2;3g;∅ in five points .z1; z2/, given by

.1; 1/; .i;�i/; .�i; i/;
�

9C5i
p

7

16
;
�3Ci

p
7

4

�
;

�
�3Ci

p
7

4
;

1�3i
p

7

8

�
;

only one of which is in Ff1;2;3g;f0g , namely .1; 1/.

Now Ff1;2g;f0;3;5g has three boundary arcs, given by Ff1;2;0g;f3;5g , Ff1;2;3g;f0;5g and
Ff1;2;5g;f0;3g ; see Figure 5 (middle right).

Next, we include 10 in K . The curve Ff1;2;10g;∅ intersects Ff1;2;0g;∅ in two points,
none of which is in Ff1;2;0g;f3;5g . Hence the arc Ff1;2;0g;f3;5g is either completely
inside or completely outside Ff1;2;0g;f3;5;10g . One easily checks that it is outside, by
taking a sample point.

The curve Ff1;2;10g;∅ intersects Ff1;2;3g;∅ in five points, and none of these is in
Ff1;2;3g;f0;5g . The arc Ff1;2;3g;f0;5g is either completely inside or completely outside
Ff1;2;3g;f0;5;10g , and a sample point shows it is outside.

Similarly, the curve Ff1;2;10g;∅ intersects Ff1;2;5g;∅ in six points, none of which is in
Ff1;2;5g;f0;3g , and the arc Ff1;2;5g;f0;3g is completely outside Ff1;2;3g;f0;5;10g .

This implies that Ff1;2g is empty; see Figure 5 (far right).

Finally, consider the intersection of Ff1;2;10g;∅ with the three vertices of Ff1;2g;f0;3;5g .
One easily checks that the only intersection is the point with complex spinal coordinates
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given by .1; 1/, and this point is indeed a vertex of F . It is in homogeneous coordinates
in C3 given by �

3�i
p

7

2
;�2;�

3�i
p

7

2

�
;

and it is on precisely six bounding bisectors (by construction it is on B1 and B2 , and it
is also in B3 , B5 , B10 and B11 ). In terms of the notation of Section 5C2, this point is

Ff1;2;3;5;10;11g:

In fact one easily checks that this point is the fixed point of G2 (which, by definition
of the bounding bisectors, is obviously in B1\B2 ).

Remark 5.9 (1) Throughout the proof of Proposition 5.8, we have ignored the
issue of critical points. In principle, at each stage, we may have missed some
isolated components of the curves Ff1;2;kg;∅ ; if this were the case, the set Ff1;2g
would still be contained in the set which we just described. Hence it must be
empty anyway.

(2) The curves Ff1;2;10g;∅ and Ff1;2;3g;∅ are, in fact, tangent at .1; 1/, which is a
vertex of F . We shall come back to this point later, when discussing stability of
the combinatorics of F under deformations.

Proposition 5.10 Ff1;3g is combinatorially a triangle, with three boundary arcs given
by Ff1;3;0g , Ff1;3;5g and Ff1;3;11g , and three vertices given by Ff0;1;3;5g , Ff0;1;3;11g

and Ff1;2;3;5;10;11g .

Note that this triangle appears in Figure 3 (left) and 4 (left), it is the intersection of the
bounding bisectors B1 and B3 corresponding to G2 and G3 , respectively. The edges
in H 2

C are on B5 , which corresponds to G1G2G�1
1

, and B11 , which corresponds to
G�1

1
G3G1 .

Proof As in the argument for Ff1;2g , we study FJ ;K for increasing sets K , freely
choosing the order we use to increase K . We describe an efficient way to get down
to Ff1;3g in the form of a picture; see Figure 6.

We start by studying Ff1;3g;f5g . Note that the curve Ff1;3;5g;∅ has two double points.
These points can be obtained by writing the equation g5 D 0 as

Re.�.z1/z2/D �.z1/;

where

�.z1/D
3Ci
p

7

2
�xz1; �.z1/D 1�Re

�
3Ci
p

7

2
z1

�
:
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Ff1;3g;f0;5g Ff1;3g;f0;5;11g Ff1;3g;f0;5;11;2;10g

10

2 10

2

2

10

Figure 6: Steps of the algorithm to determine Ff1;3g

The discriminant j�.z1/j
2� �.z1/

2 is given by

2CRe
�
�1�3i

p
7

4
z2

1

�
;

which vanishes for z1 D˙
1
4
.3� i

p
7/. Plugging this back into the equation g5 D 0

gives z2 D�
1
4
.3� i

p
7/. One easily checks that g0.z1; z2/ > 0 for these two double

points, ie they lie outside complex hyperbolic space.

One checks that Ff1;3;5g;∅ intersects Ff1;3;0g;∅ in precisely two points (and these
intersections are transverse), so we get two arcs in the boundary of Ff1;3g;f0;5g , namely
Ff1;3;5g;f0g and Ff1;3;0g;f5g ; see Figure 6 (left).

In principle, there could be an extra arc in Ff1;3;5g;f0g , not intersecting Ff1;3;0g;∅ , so
we compute critical points of g5 . They are given by the solutions of the system8̂<̂

:
Im
��
xz2C

3Ci
p

7

2

�
z1

�
D 0;

Im
��
xz1C

3Ci
p

7

2

�
z2

�
D 0;

that satisfy jz1j D jz2j D 1.

There are four such critical points, and they have the form .˙˛;˙˛/, where ˛ D
1
4
.3 � i

p
7/ (of course this list includes the double points computed before). The

corresponding points are outside F ; in fact, g0.˙˛;˙˛/ > 0.

A similar analysis justifies the middle part of Figure 6, ie that xFf1;3g;f0;5;11g is combi-
natorially a triangle (with one side on @1H 2

C ).

We sketch how to justify that Ff1;3g D Ff1;3g;f0;5;11g . For k D 2 and k D 10,
the curve Ff1;3;kg;∅ actually goes through a vertex of Ff1;3g D Ff1;3g;f0;5;11g ; if
k ¤ 0; 2; 5; 10; 11, then Ff1;3;kg;∅ does not intersect even xF f1;3g;f0;5;11g .
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We start by studying Ff1;3;0g;∅ \Ff1;3;2g;∅ . In order to use standard root isolation
methods, we use real equations in x1;y1;x2;y2 . Computing a Gröbner basis for the
ideal generated by g0 , g3 , x2

1
Cy2

1
� 1 and x2

2
Cy2

2
� 1, we see that it contains

39� 840
p

7y2C 4088y2
2 C 608y3

2

p
7� 9152y4

2 C 1024y5
2

p
7C 7168y6

2 ;

which has precisely two real roots, given approximately by y .1/

2 D 0:01815877 : : :

and y .2/

2 D 0:65602473 : : : .

The Gröbner basis also gives an expression for x1 , y1 and x2 in terms of y2 , namely

x1 D
1

14725

�
�4943C 16836

p
7y2� 142640y2

2

C 53184y3
2

p
7C 72128y4

2 � 75264y5
2

p
7
�
;

y1 D
1

14725

�
5058
p

7C 45888y2� 112560y2
2

p
7

C 309472y3
2 C 74432y4

2

p
7� 422912y5

2

�
;

x2 D
1

19

�
20� 21

p
7y2C 16y2

2 C 32y3
2

p
7
�
:

Substituting either value y .j /

2 gives two points a.j /
D .x .j /

1 ;y .j /

1 ;x .j /

2 ;y .j /

2 / for
j D 1; 2, and we claim that g5.a

.1/ / > 0 and g11.a
.2/ / > 0. Clearly this can be

checked by simple interval arithmetic, in fact

g5.a
.1/
/D 3:80716606 : : : ; g11.a

.2/
/D 3:94518313 : : : :

The analysis of Ff1;3;5g;∅\Ff1;3;2g;∅ is in a sense simpler, because all the solutions
to the corresponding system are defined over Q.i;

p
7/. The system has precisely five

solutions, given by�
i;

1C
p

7

4
C i

1�
p

7

4

�
;

�
�i;

1�
p

7

4
� i

1C
p

7

4

�
;�

�3Ci
p

7

4
;
3�i
p

7

4

�
;

�
9C5i

p
7

16
;�

9C5i
p

7

16

�
;

�
1;

3Ci
p

7

4

�
:

Only one of these solutions satisfies g0 � 0, namely the last one (in other words, only
one intersection point lies H 2

C ).

Note that we already found one point in Ff1;3;2g;∅\Ff1;3;5g;∅ , namely the fixed point
of G2 ; see the proof of Proposition 5.8.

Similarly, one verifies that Ff1;3;2g;∅\Ff1;3;11g;∅ contains precisely six points, only
one of which gives a point in (the closure of) complex hyperbolic space.

Once again, since we already know one point in this intersection (namely the fixed
point of G2 ), we get that the intersection of Ff1;3;2g;∅ with @Ff0;1;3;5;11g;∅ consists
of precisely one point. This implies that @Ff0;1;3;5;11g;∅ is either completely inside or
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completely outside @Ff0;1;3;5;11;2g;∅ . It is easy to check that it is inside by testing a
sample point (for instance one of the other vertices of the triangle @Ff0;1;3;5;11g;∅ ).

We now show that Ff1;3;2g;∅ does not intersect Ff0;1;3;5;11g;∅ by computing the critical
points of g2 . There are six critical points, given by�

�1;�
1C3i

p
7

8

�
;

�
3�i
p

7

4
;

3�i
p

7

4

�
;

�
˙

1Ci
p

7
p

8
;˙

1�i
p

7
p

8

�
;

and one easily checks that none of them is inside Ff0;1;3;5;11g;∅ . In particular, we get
that the minimum value of g3 on xFf0;1;3;5;11g;∅ is 0, and it is realized precisely at
one vertex (namely the fixed point of G2 ).

In other words, we get Ff0;1;3;5;11g;∅ D Ff0;1;2;3;5;11g;∅ ; ie including the inequal-
ity g2 < 0 at this stage has no effect. An entirely similar computation shows that
Ff0;1;2;3;5;11g;∅ D Ff0;1;2;3;5;10;11g;∅ .

For all k ¤ 0; 1; 2; 3; 5; 10; 11, we have that Ff0;1;3;kg;∅ does not intersect even the
closure xF f0;1;2;3;5;11g;∅ ; one can use arguments as above using interval arithmetic.

Similar arguments allow us to handle the detailed study of all the polygons that appear
on Figures 3 and 4.

Proposition 5.11 Ff1;4g;∅ is a Giraud disk, which is entirely contained in the exterior
of B5 . In particular, Ff1;4g is empty.

Proof We will prove that Ff5g;∅ does not intersect the Giraud torus yFf1;4g;∅ . In order
to see this, we use complex spinal coordinates and write g5.z1; z2/ for the restriction
of f5 to the Clifford torus jz1j D jz2j D 1.

One computes explicitly that

g5.z1; z2/D 4C 2Re
�

1Ci
p

7

2
z1xz2

�
:

This is clearly always positive when jz1j D jz2j D 1.

In other words, the Giraud torus yFf1;4g;∅ is entirely outside F .

Proposition 5.12 Ff1;6g;∅ is empty. The Giraud torus yFf1;6g;∅ is completely outside
complex hyperbolic space; in other words, the bisectors B1 and B6 are disjoint.

Proof We write the equation of Ff0;1;6g;∅ in spinal coordinates for the Giraud torus
Ff1;6g;∅ , which reads

g0.z1; z2/D 18� 2Re.4.z1C z2/C z1xz2/:

Geometry & Topology, Volume 20 (2016)



Spherical CR uniformization 3609

Clearly this is nonnegative when jz1j D jz2j D 1, and in that case, it is zero if and only
if z1 D z2 D 1.

In other words, yB1 and yB2 intersect in a point in H 2
C . Note that this point is not in the

closure of F ; in fact, it is strictly outside the half spaces bounded by B2 , B3 , B5 , B7

and B11 .

Proposition 5.13 Ff3;8g is empty. The Giraud torus Ff3;8g;∅ contains a disk in H 2
C ,

but xFf3;8g;f2;6g is empty.

Proof The proof is actually very similar to that of Proposition 5.10, but since the
corresponding set is empty, we go through some of the details.

The curve Ff3;8;2g;∅ intersects Ff3;8;0g;∅ in precisely two points, and cuts out a disk
in the Giraud disk Ff3;8g;∅ , so that Ff3;8g;f0;2g is a disk with only two boundary arcs.

One then easily verifies that Ff3;8;6g;∅ does not intersect xFf3;8g;f0;2g , so Ff3;8g;f0;2;6g
is either equal to Ff3;8g;f0;2g or is empty (one needs to check critical points in order to
verify this).

By taking a sample point z and checking f6.z/ > 0, one gets that Ff3;8g;f0;2;6g
is empty.

The study of B1 \ Bk for various values of k is similar to one of the previous few
propositions; we list the relevant arguments in Table 4. When the proof is similar
to Proposition 5.11, the indices l listed in brackets indicate that B1 \Bk is entirely
outside the half space bounded by Bl .

The corresponding list of arguments used to study of B3\Bk for various values of k

in Table 5.

Note that the arguments for B2 (resp. B4 ) are, of course, almost the same as those
for B1 (resp. B3 ), since the corresponding faces are actually paired by G2 (resp. G3 ).

5C5 Genericity In order to study deformations �t of the boundary unipotent rep-
resentation �0W �1.M / ! PU.2; 1/, we will need more information that just the
combinatorics.

We will determine the nontransverse bisector intersections and prove that they remain
nontransverse in the family of Ford domains for groups in the 1–parameter family
where the unipotent generator becomes twist parabolic.

The next proposition follows from the restrictive character of bounding bisectors,
namely that they are all covertical (because they define faces of a Ford domain).
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Proposition Indices

5.4 8, 14–16, 21–25, 29–33, 35
5.8 2, 12, 19, 26
5.10 3, 5, 9, 10, 11, 18, 20, 28
5.11 4[5, 10], 7[3], 13[2, 5, 10], 17[9], 27[9, 18], 36[17, 28, 34]
5.12 6, 34

Table 4: Indices where the arguments of each proposition apply to study B1\Bk

Proposition Indices

5.4 16, 17, 22–36
5.8 10, 13
5.10 1, 2, 5, 6, 7, 11
5.11 9[11], 14[7], 15[7], 18[1,10], 19[11], 20[7], 21[6,13]
5.12 4, 12
5.13 8

Table 5: Indices where the arguments of each proposition apply to study B3\Bk

Proposition 5.14 Let J Dfj ; kg with j ¤k . Then the intersection Ffjg;∅\Ffkg;∅D

FJ ;∅ is transverse at every point of FJ ;∅ .

The analogous statement is not true when jJ j � 3, since FJ ;∅ can have singular
points; see Figure 5, for instance. This will not be bothersome in the context of our
polyhedron F because of the following:

Proposition 5.15 Suppose jJ j D 3 and FJ is nonempty. Then the corresponding
intersection of three bisectors (or two bisectors and @1H 2

C ) is transverse at every point
of FJ .

Proof This follows from the fact that double points of FJ ;∅ occur only away from the
face FJ . Indeed, one can easily locate these double points by the techniques explained
in Section 5C4, and check that they are outside F by using interval arithmetic.

The situation near vertices is slightly more subtle, mainly because our group contains
some torsion elements; hence one expects the intersections to be nongeneric near the
fixed points of those torsion elements.

We will check possible tangencies between 1–faces intersecting at each vertex. More
generally, for each j ¤ k , we will study tangencies between all the curves of the form
Ffj ;k;lg;∅ for l ¤ j ; k that occur at a vertex of F .
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Proposition 5.16 Let p be an ideal vertex of F , ie a vertex in @1H 2
C . Then there

are precisely three bounding bisectors Bi , Bj and Bk meeting at p (where i; j ; k > 0).
The intersection of the four hypersurfaces in C2 given by the three extors, yBi , yBj

and yBk , and @1H 2
C is transverse; in particular, none of the four incident 1–faces are

tangent at p .

Note that the ideal 1–faces are drawn in red on Figures 3 and 4, so the vertices on the
red curves are the ideal ones. The indices .i; j ; k/ that appear in the proposition, ie
the bounding bisectors that contain a given ideal vertex, can be read off Figure 7. For
example, .1; 3; 5/; .1; 3; 11/; .1; 9; 11/; : : : are triples of indices that correspond to
ideal vertices.

Proof We treat the example of Ff0;1;3;5g , the other ones being entirely similar. The
parametrization of the Giraud disk Ff1;3g;f0g was already explained in Section 5C4.

The relevant vertex satisfies

(27)
x1 D 0:80979557 : : : ; y1 D�0:58671213 : : : ;

x2 D�0:53336432 : : : ; y2 D 0:84588562 : : : :

We write the equations of the bisectors in affine coordinates for complex hyperbolic
space corresponding to the spinal coordinates, ie such that .z1; z2/ corresponds to

p13C z1p30C z2p01;

where pjk denotes, as before, the box product pj � pk .

In these coordinates, B1 is given by jz1j D x2
1
C y2

1
D 1 and B3 is given by jz2j D

x2
2
Cy2

2
D 1; of course, other bisectors have more complicated equations.

The equation of the boundary of the ball is

2�
p

7y2�4x1�x2�y2

p
7x1Cx2

p
7y1C2x2

1C2y2
1Cx2

2Cy2
2�x2x1�y2y1D 0;

and the equation for B5 is given by

3.x1Cx2/�
p

7.y1Cy2/� 2x2x1� 2y2y1�x2
1 �y2

1 �x2
2 �y2

2 D 0:

One then computes the gradient of the left hand side of each of these four equations,
and checks that they are linearly independent at the point from (27) (this is readily
done using interval arithmetic).

Proposition 5.17 There are precisely six bounding bisectors containing p2 , indexed
by 1, 2, 3, 5, 10, 11. The pairwise and 3–fold intersections of these six bisectors
are all transverse, but some 4–fold are not, namely f1; 2; 3; 10g, f1; 2; 5; 11g and
f3; 5; 10; 11g.
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G�2
1
.S4/DS20 G�3

1
.S4/DS28

G1.S1/D S5 S1 G�1
1
.S1/D S9

G1.S3/D S7 S3 G�1
1 .S3/DS11

G1.S2/D S6 S2 G�1
1 .S2/DS10

G1.S4/D S8 S4 G�1
1 .S4/DS12

G3
1.S1/D S21 G2

1.S1/D S13

Figure 7: The combinatorics at infinity of the fundamental domain, near the
faces for G˙

2
and G˙

3
, which are representatives of all faces modulo the

action of G1

The precise list of bisectors that contain this vertex were already justified in Section 4B;
see Lemma 4.2 and Proposition 5.8. The point of Proposition 5.17 is to give precise
information about transversality. Recall from Section 4B that p2 is, by definition,
the isolated fixed point of G2 , and the bisectors B1 , B2 , B3 , B5 , B10 and B11 are
the bounding bisectors corresponding to the group elements G2 , G�1

2
, G3 , G1G2 ,

G�1
1

G�1
2

and G�1
1

G3 , respectively; see Section 5A.

Proof We work in spinal coordinates for B1\B3 , and as in the preceding proof, we
use zj D xj C iyj , j D 1; 2 as global coordinates on H 2

C . The point p2 is given by
z1 D 1, z2 D

1
4
.3C i

p
7/.
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Vector Tangent to Exit in C direction Exit in � direction

u1 1; 2; 3; 10 11 5

u2 1; 2; 5; 11 3 10

u3 3; 5; 10; 11 1 2

Table 6: Each direction tangent vector uk to a nontranverse quadruple inter-
section at p2 exits the polyhedron; in the last two columns we list the two
half spaces it exits (transversely) in the ˙uk direction.

The equations of the six bisectors are as follows:

1 W 4� 4.x2
1 Cy2

1/D 0;

2 W 2Cx1C 2x2C .y1� 2y2/
p

7C .x1y2�x2y1/
p

7

C 3.x1x2Cy1y2/� .x
2
1 Cy2

1/� 4.x2
2 Cy2

2/D 0;

3 W 4� 4.x2
2 Cy2

2/D 0;

5 W 3.x1Cx2/�
p

7.y1Cy2/� 2.x2x1Cy2y1/� .x
2
1 Cy2

1/� .x
2
2 Cy2

2/D 0;

10 W 2� 4.x1�x2/C 4.x2x1Cy2y1/� 2.x2
1 Cy2

1/� 2.x2
2 Cy2

2/D 0;

11 W 3� 2x2C 3x1C
p

7y1C 3.x1x2Cy1y2/C .x2y1�y2x1/
p

7

� 4.x2
1 Cy2

1/� .x
2
2 Cy2

2/D 0:

One computes the gradients at the point x1 D 1, y1 D 0, x2 D 3=4, y2 D
p

7=4,
which are given by

v1 D .�8; 0; 0; 0/; v5 D .�1=2;�3
p

7=2;�1=2;�3
p

7=2/;

v2 D .3;
p

7;�1;�3
p

7/; v10 D .�5;
p

7; 5;�
p

7/;

v3 D .0; 0;�6;�2
p

7/; v11 D .�9=2; 5
p

7=2;�1=2;�3
p

7=2/;

and the claim of the proposition follows from explicit rank computations.

The tangent vectors to the intersection are given by

u1 D .0; 8=3;�
p

7=3; 1/;

u2 D .0; 0;�3
p

7; 1/;

u3 D .�2
p

7=3;�2=3;�
p

7=3; 1/;

and one easily checks that any curve tangent to these vectors must exit the polyhedron
in a transverse fashion, more specifically, the exited bisectors are given in Table 6.
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6 Side pairings

6A Faces paired by G2

We now justify the fact that G�1
2

defines an isometry between the faces for G2 and G�1
2

.
On the level of 2–faces, this follows from the proposition below.

Proposition 6.1 The isometry G�1
2

maps

(1) G3p0 to G�1
1

G3p0 ;

(2) G�3
1

G�1
3

p0 to G1G�1
3

p0 ;

(3) G�1
1

G3p0 to G�1
1

G�1
2

p0 ;

(4) G�1
1

G2p0 to G�1
3

p0 ;

(5) G�2
1

G�1
3

p0 to G1G�1
2

p0 ;

(6) G1G2p0 to G3p0 ;

(7) G�1
1

G�1
2

p0 to G1G2p0 ;

(8) G�2
1

G�1
2

p0 to G2
1
G2p0 .

Proof We show a slightly stronger statement; namely, in order to show G�1
2

gp0Dhp0 ,
we will exhibit h�1G�1

2
g as an explicit power of G1 .

The result follows from the presentation of the group (strictly speaking, they only
depend on the relations we know to hold, not on the fact that this really gives a
presentation). For the sake of brevity, we use word notation.

(1) 3123D 21212212D 21212D 1;

(2) 312133D 212 � 121121 � 1 � 121121 � 2D 2.12121/.12121/1212D 241D 1;

(3) 21213D 2121212D 1;

(4) 3212D id;

(5) 212123D 2.121/22D 2.121/2D 1;

(6) 3212D id;

(7) 21212D 1;

(8) 2122122D 12 .
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On the level of vertices, we have

� G�1
2

p2 D p2 ;

� G�1
2

p121 D p323 ;

� G�1
2

p213 D p233 ;

� G�1
2

p1212 D p3232 D p121 .

6B Faces paired by G3

The corresponding statement about the side-pairing map for the other two base faces is
the following.

Proposition 6.2 The isometry G�1
3

maps

(1) G2p0 to G�1
1

G�1
3

p0 ;

(2) G�1
2

p0 to G�1
2

p0 ;

(3) G1G2p0 to G2
1
G2p0 ;

(4) G1G�1
2

p0 to G1G�1
3

p0 ;

(5) G1G3p0 to G3
1
G2p0 ;

(6) G�1
1

G3p0 to G�1
1

G�1
2

p0 .

Proof The method of proof is identical to that of Proposition 6.1.

(1) 3132D 21212122D 2.212/22D 1;

(2) 232D 221D 1;

(3) 212312D 21.212/2 D 21212D 1;

(4) 31312D id;

(5) 213313D 211 � 121 � 212 � 2212D 21.212/2 D 21212D 1;

(6) 21313D 212121212D 21212221212D .21212/3 D 12 .

On the level of vertices, we have

� G�1
3

p2 D p323 ;

� G�1
3

p121 D p132 .

The last equality holds because

31213D 212121212D 1.212/3112D 132:
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Ridge cycle Relation

2\ 3
2
��! 131\ 2

131
���! 3\ 131

3
��! 2\ 3 2D Œ3; 1�

2\ 13313 2
��! 131\ 2

131
���! 3\ 131

3
��! 13213\ 3 1331312D id

2\ 131
2
��! 121\ 2

121
���! 13313\ 121

13313

�����! 12212\ 13313 1312212D id

2\ 121
2
��! 3\ 2

3
��! 2\ 3

2
��! 121\ 2 12D 23

2\ 121
2
��! 121\ 2 .12/3

2\ 12212 2
��! 12212\ 2 .121/3

Table 7: Ridge cycles and the corresponding relations in the group

7 Ridge cycles

Because of Giraud’s theorem, the ridge cycles automatically satisfy the hypotheses of
the Poincaré polyhedron theorem. In particular, we get the following:

Theorem 7.1 D is a fundamental domain for the action of cosets of hG1i in � . In
particular, D D F (see Theorem 5.1).

Every ridge cycle is equivalent to one of the cycles listed in Table 7 (equivalent means
that we allow shifting within the cycle, and also conjugation by a power of G1 ). We
list the cycle until we come back to the image of the initial ridge under a power Gk

1

(in that case, we close up the cycle by G�k
1

).

Using the relations
12D 23; .12/3 D .121/3 D id;

the other relations give 24 D id. Indeed, 1331312D id gives

idD 12313121D 12212 � 1212 � 121D 1.121/221212.121/2 D 2123121D 21.24/12:

It is easy to check that the above set of relations is actually equivalent to

12D 23; .12/3 D .121/3 D 24
D id :

We summarize the above discussion in the following:

Theorem 7.2 The group � has a presentation given by˝
G1;G2;G3 j

G2 D ŒG3;G
�1
1 �; G1G2 DG2G3; G4

2 D id; .G1G2/3D id; .G2G1G2/
3
D id

˛
:
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8 Topology of the manifold at infinity

In this section, we prove that � n� is indeed homeomorphic to the figure eight knot
complement. This was already proved in [7] using a very different fundamental domain
for the action of the group.

We write F for the Ford domain for � , E for @1F , and C for @E . By construction,
F , E and C are all G1 –invariant.

We will use Heisenberg coordinates .z; t/ for @H 2
C n fp1g; see Section 5B. In these

coordinates, the action of G1 is given by

(28) G1.z; t/D .z� 1; t C Im.z//:

It follows from the results in Section 5A that C is tiled by hexagons, and that there are
four orbits of these hexagons under the action of G1 . We need a bit more information
about the identifications on these hexagons, namely, we need

� the incidence relations between various hexagons, and

� the identifications on C given by side-pairing maps.

The incidence relations follow immediately from the results in Section 5A, which are
summarized in Figure 7.

The union U of the four hexagons labeled 1, 2, 3, 4 is embedded in C , and the action
of G1 induces identifications on @U . We denote by � the corresponding equivalence
relation on U ; it is easy to check that U=� is a torus.

We get the following result.

Proposition 8.1 C is an unknotted topological cylinder, and E is the region exterior
to C .

Proof It follows from the fact that C is invariant under the action of G1 that it is an
unknotted cylinder in C �R (it is a Z–covering of C=hG1i). In fact, the real axis
gives a core curve for the solid cylinder bounded by C . In view of G1 –invariance, it
is enough to check that the interval Œ0; 1� on the x axis is outside E . This is readily
checked; in fact, this interval is actually completely inside the spinal sphere S1 .

The identifications in C come from side pairings, which are described in Section 6.
Figures 3 and 4 contain a list of vertices, which are uniquely determined by the list of
faces they are on (in fact they are on precisely three bisectors).
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For instance, there is a vertex on b1\b3\G1.b1/. By Proposition 6.1, G�1
2

maps this
to the vertex on b2\ b3\G�1

1
b3 . The vertex on b1\ b3\G�1

1
.b3/ is mapped to the

vertex on b2\G�1
1
.b2/\G�1

1
b3 . The image of these two points determine the image

of the entire hexagon on b1 (in Figure 7, the map flips the orientation of the hexagon).

By doing similar verifications, one checks that the identification pattern on the hexagons
on S1; : : : ;S4 is the same as the one for the Ford domain of the holonomy of the real
hyperbolic structure on the figure eight knot complement, see Figure 2.

Now since the exterior of C is homeomorphic to C � Œ0;C1Œ (in a G1 –equivariant
way), we get:

Corollary 8.2 � nE is homeomorphic to the figure eight knot complement.

9 Stability of the combinatorics

The first remark is that distinct bounding bisectors for the Ford domain for the unipotent
solution are never cospinal, and as a consequence, the intersections y1\y2 are uniquely
determined by the triple p0 , 1p0 , 2p0 . Of course, this property will hold for all
values of the twist parameter of G1 .

Now every point of an open 2–face is on precisely two bounding bisectors, and that
intersection is transverse. In other words, every open 2–face will survive in small
perturbations.

A similar remark holds for 1–faces, namely, no 1–face of the Ford domain for the
boundary unipotent case is contained in a geodesic. In fact, every point on an open
1–face is on precisely three bounding bisectors, and these intersect transversely as well.

The only issue is to analyze vertices. There is nothing to check for the ideal vertices
since they are defined as the intersection of four hypersurfaces (three bounding bisectors
and the boundary of the ball) that intersect transversely.

The finite vertices are on more than four bounding bisectors, but they are also fixed
by elliptic elements in the group. In fact, we already justified that they stayed on the
same bisectors for small deformations; see Section 4B, more specifically, Lemmas 4.2
and 4.3. The transversality statement of Proposition 5.17 will remain true for small
perturbations as well.

This implies that the combinatorics stay stable in small deformations.
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10 Stability of the side pairing

Let F .0/ be the Ford domain for the boundary unipotent group, and F .t / the one for
the twist parabolic group corresponding to parameter t .

The proof that F .0/ has side-pairings relies on the determination of the precise combi-
natorics, and also of the group relations. By the previous section, the combinatorics
are stable, and by Proposition 4.1, the relations hold throughout the deformation. The
proof of Propositions 6.1 and 6.2 then shows that F .t / has side-pairings, at least for
small values of t .

The verification that the Ford domain for the boundary unipotent group satisfies the
hypotheses of the Poincaré polyhedron theorem is given in Section 7. Since all intersec-
tions of bounding bisectors are Giraud disks, the cycle condition is a direct consequence
of the existence of pairings.

Let �t denote the image of �t . We now get:

Theorem 10.1 There exists a ı > 0 such that whenever jt j < ı , �t is discrete with
nonempty domain of discontinuity, its manifold at infinity is homeomorphic to the
figure eight knot complement, and it has the presentation˝
G1;G2;G3 j

G2 D ŒG3;G
�1
1 �; G1G2 DG2G3; G4

2 D id; .G1G2/
3
D id; .G2G1G2/

3
D id

˛
:
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Concordance maps in knot Floer homology

ANDRÁS JUHÁSZ

MARCO MARENGON

We show that a decorated knot concordance C from K to K0 induces a homomor-
phism FC on knot Floer homology that preserves the Alexander and Maslov gradings.
Furthermore, it induces a morphism of the spectral sequences to cHF.S3/Š Z2 that
agrees with FC on the E1 page and is the identity on the E1 page. It follows that
FC is nonvanishing on bHFK0.K; �.K// . We also obtain an invariant of slice disks
in homology 4–balls bounding S3 .

If C is invertible, then FC is injective, hence

dim bHFKj .K; i/� dim bHFKj .K
0; i/

for every i; j 2 Z . This implies an unpublished result of Ruberman that if there is an
invertible concordance from the knot K to K0 , then g.K/�g.K0/ , where g denotes
the Seifert genus. Furthermore, if g.K/D g.K0/ and K0 is fibred, then so is K .

57M27, 57R58

1 Introduction

Knot Floer homology was introduced independently by Ozsváth and Szabó [28] and
Rasmussen [31], and the first author [16] defined maps induced on it by decorated knot
cobordisms. Given a knot K in S3, its knot Floer homology with Z2 coefficients is a
finite dimensional bigraded Z2 –vector spaceM

i;j2Z

bHFKj .K; i/;

well-defined up to isomorphism, where i is called the Alexander grading and j is the
homological grading. The Euler characteristic of bHFK�.K; i/ is the i th coefficient
of the symmetrized Alexander polynomial of K , and hence knot Floer homology can
be viewed as a categorification of the Alexander polynomial. First, we recall [16,
Definition 4.1].

Definition 1.1 For i 2 f0; 1g, let Yi be a connected, oriented 3–manifold, and let Li

be a nonempty link in Yi . Then a link cobordism from .Y0;L0/ to .Y1;L1/ is a
pair .X;F /, where
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(1) X is a connected, oriented cobordism from Y0 to Y1 ,

(2) F is a properly embedded, compact, orientable surface in X , and

(3) @F DL0[L1 .

Knots K0 and K1 in S3 are said to be concordant if there is a cobordism .X;F /

from .S3;K0/ to .S3;K1/ such that X D S3 � I and F is diffeomorphic to S1 � I.
In this case, we call .X;F / a concordance from K0 to K1 . In this paper, we also
allow more general concordances where X is a cobordism from S3 to S3 such that
H1.X /DH2.X /D 0.

In this paper, a decorated knot is a pair .K;P / such that K is a knot, P is a pair of
points in K , and we are given a decomposition of K into compact 1–manifolds RC.P /

and R�.P / such that RC.P / \ R�.P / D P. Given decorated knots .K0;P0/

and .K1;P1/ in S3 , a decorated concordance from .K0;P0/ to .K1;P1/ is a
triple .X;F; �/ such that .X;F / is a concordance from K0 to K1 , and � consists
of two disjoint, properly embedded arcs in F , one connecting RC.K0/ and RC.K1/,
the other R�.K0/ and R�.K1/.

Dylan Thurston and the first author [17] showed that knot Floer homology is natural for
decorated knots, and Sarkar [35] proved that moving the basepoints P around the knot
induces a nontrivial automorphism in many cases. Hence only decorated concordances
induce maps on knot Floer homology.

Recall from [28, Lemma 3.6] that for every decorated knot .K;P / in S3, there is a
corresponding spectral sequence

bHFK.K;P / D) bHF.S3/Š Z2:

Given an admissible doubly pointed Heegaard diagram .†;˛;ˇ; w; z/ for .K;P /,
the singly pointed diagram .†;˛;ˇ; w/ represents .S3; w/, and z gives rise to the
knot filtration on cCF.†;˛;ˇ; w/. The spectral sequence arises from this filtered
complex. The E0 page is the associated graded complex bCFK.†;˛;ˇ; w; z/, whose
homology is bHFK.K;P /, the E1 page. The spectral sequence limits to the homology
of cCF.†;˛;ˇ; w/, which is bHF.S3/ŠZ2 . The filtration level of the generator of Z2

in the E1 page is the Ozsváth–Szabó � invariant [26], denoted by �.K/.

The main result of this paper is that a decorated concordance C induces a nonvanishing
homomorphism FC on knot Floer homology that preserves the Alexander and homo-
logical gradings, and also induces a morphism of the corresponding spectral sequences.
The map FC is functorial and depends only on the decorated concordance C , while the
chain map fC (or even its filtered homotopy type) need not be functorial, and it can
depend on auxiliary data other than C .

Geometry & Topology, Volume 20 (2016)
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Theorem 1.2 Let .K0;P0/ and .K1;P1/ be decorated knots in S3. Let CD .X;F; �/
be a decorated concordance between them such that H1.X /DH2.X /D 0. Then

FC. bHFKj .K0;P0; i//� bHFKj .K1;P1; i/

for every i; j 2 Z.

Furthermore, given an admissible diagram .†r ;˛r ;ˇr ; wr ; zr / of .Kr ;Pr / for r

in f0; 1g, there is a filtered chain map

fC W cCF.†0;˛0;ˇ0; w0/! cCF.†1;˛1;ˇ1; w1/

of homological degree zero such that the induced morphism of spectral sequences agrees
with FC on the E1 page and with IdZ2

on the total homology and on the E1 page.

Note that the fact that the map induced by a filtered map f on the total homology
is an isomorphism in general does not imply that the map f1 induced between
the E1 pages is also an isomorphism. As an example, consider a complex C Š Z2

in filtration level one, and a complex C Š Z2 in filtration level zero. If f W C ! C is
an isomorphism, then H.f / is an isomorphism but f1 is not.

In the case of the filtered map fC induced by a decorated concordance C , the fact that
f1C is an isomorphism follows from the fact that �.K0/D �.K1/, which was shown
by Ozsváth and Szabó [26, Theorem 1.1]. An alternative proof of this can be given
by observing that a decorated concordance gives filtered maps both ways that induce
isomorphisms on the total homology, as in the proofs of Theorem 1 in Rasmussen [32]
and Theorem 3.4 in Sarkar [34].

The invariant �.K/ can also be defined as the smallest Alexander grading of an element
of bHFK.K;P / that represents a cycle on each page of the spectral sequence, and
whose homology class in the E1 page is 1. We denote the set of such elements
by A1.K/. Then we have the following nonvanishing result for the knot concordance
maps:

Corollary 1.3 Let .K0;P0/ and .K1;P1/ be decorated knots in S3, and suppose that
C D .X;F; �/ is a decorated concordance between them. Let � D �.K0/ D �.K1/.
Then, the map

FC W bHFK0.K0;P0; �/! bHFK0.K1;P1; �/

is nonzero, and FC.A1.K0//�A1.K1/.

In fact, for any decorated knot .K;P / in S3, we shall see that

A01.K/ WDA1.K/\ bHFK0.K;P; �.K//¤∅;

Geometry & Topology, Volume 20 (2016)
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and the map FC W A
0
1
.K0/!A0

1
.K1/ is nonzero.

Let B be an integral homology 4–ball with boundary S3. Suppose that S � B is a
slice disk for the decorated knot .K;P / in S3. If we remove a ball from B about a
point of S , we obtain a concordance C.S/ from the unknot U to K . By Lemma 3.11,
the element

tS;P WD FC.S/.1/ 2 bHFK0.K;P; 0/

is independent of what decoration we choose on C.S/. It is nonzero by Corollary 1.3,
and is an invariant of the surface S up to isotopy in B fixing K .

Question 1.4 Can tS;P distinguish different slice disks? More precisely, is there a
decorated knot .K;P / in S3 that has two different slice disks S and S 0 in D4 such
that tS;P ¤ tS 0;P ?

Note that, given different decorations P and P 0 on K , the basepoint moving map
of Sarkar [35] takes tS;P to tS;P 0 , so the answer is independent of the choice of
basepoints.

We can use the above viewpoint to refine the approach of Freedman, Gompf, Morrison
and Walker [6] for disproving the smooth 4–dimensional Poincaré conjecture (SPC4).
Suppose that we are given a counterexample to SPC4 with no 3–handles and a single
4–handle. Removing the 4–handle, we obtain an exotic 4–ball B with boundary
homeomorphic to S3. The belt circles of the 2–handles give a link L� @B , and the
cocores of the 2–handles give a collection of disks C � B with boundary L. If we
band sum the components of L in some way, we obtain a knot K � @B , together with
a disk D �B obtained from C . Hence D induces an element tD;P 2 bHFK.K;P / for
any decoration P . If tD;P ¤ tS;P for S an arbitrary slice disk of K , then this implies
that B is indeed exotic.

The approach of Freedman et al only works if K is not slice in the standard 4–ball, but
it is in the homotopy 4–ball B . By the work of Ozsváth and Szabó [26, Theorem 1.1],
the � invariant vanishes if K bounds a disk in a homotopy ball, and so does Rasmussen’s
s invariant according to Kronheimer and Mrowka [19], so neither can be used for the
above purpose. We could use any other theory equipped with knot concordance maps
in manifolds homeomorphic to S3 � I. However, note that the Khovanov homology
concordance maps of Jacobsson [12] are only defined when the ambient manifold is
diffeomorphic to S3 � I.

A knot is called doubly slice if it is a hyperplane cross-section of an unknotted S2 in S4.
Motivated by a question of Fox [5] asking which knots are doubly slice, Sumners [38]
introduced the notion of invertible knot cobordisms. In his terminology, cobordism
stands for concordance; we use the latter for clarity.
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Definition 1.5 Let K0 and K1 be knots in S3. We say that a concordance .S3�I;F /

from K0 to K1 is invertible if there is a concordance .S3�I;F 0/ from K1 to K0 such
that the composition of .S3�I;F / and .S3�I;F 0/ from K0 to K0 is equivalent to the
trivial cobordism. We write K0�K1 if there is an invertible cobordism from K0 to K1 .

In other words, F is invertible if and only if .S3 � I;F / has a left inverse in the
cobordism category of links. A knot K is doubly slice if and only if U � K . The
relation � is a partial order on the set of knots in S3, which follows from Silver and
Whitten [36], as we shall explain later.

Theorem 1.6 If there is an invertible concordance from K0 to K1 , then

dim bHFKj .K0; i/� dim bHFKj .K1; i/

for every i; j 2 Z.

This provides an obstruction to the existence of an invertible concordance from K0

to K1 . According to the work of Manolescu, Ozsváth and Sarkar [23], knot Floer ho-
mology is algorithmically computable, and Baldwin and Gillam [3] used this algorithm
to compute it for knots with at most 12 crossings.

For a knot K in S3, we denote its Seifert genus by g.K/. Ozsváth and Szabó [27]
proved that knot Floer homology detects the genus of a knot, in the sense that

g.K/Dmaxfi 2 Z W bHFK�.K; i/¤ 0g:

For a simpler proof of this fact, see Ni [25]. Furthermore, knot Floer homology also
detects fibredness of knots, as dim bHFK�.K;g.K// D 1 if and only if K is fibred.
This was shown by Ghiggini [8] in the genus one case, and by Ni [25] and the first
author [14; 15] in the general case. These two results, together with Theorem 1.6,
immediately imply the following unpublished result of Ruberman.

Corollary 1.7 The function g is monotonic with respect to the partial order � induced
by invertible concordance. More concretely, if there is an invertible concordance
from K0 to K1 , then g.K0/ � g.K1/. Furthermore, if K1 is fibred and g.K0/ is
equal to g.K1/, then K0 is also fibred.

We now outline a more elementary proof of these results communicated to us by
Ruberman, and which does not use the assumption g.K0/ D g.K1/ for the second
statement. Also see the proof of Silver and Whitten [36, Proposition 3.7] and the
paragraph following it.
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Proof Let F be an invertible concordance from K0 to K1 with inverse F 0. Then
there is a diffeomorphism d W S3 � I ! S3 � I such that d.F 0 ı F / D K0 � I

and d jS3�@I is the identity. Let i W S3! S3 � I be the embedding i.x/ D
�
x; 1

2

�
,

and let pW S3 � I ! S3 be the projection. Then the composition

f D p ı d ı i W S3
! S3

maps K1 to K0 such that f �1.K0/DK1 . We can isotope d such that d
�
K1�

˚
1
2

	�
becomes transverse to the I–fibration of K0 � I, and hence f jK1

is an embedding
with image K0 . If S is a minimal genus Seifert surface for K1 , then f jS satisfies the
conditions of [7, Corollary 6.23], hence there exists a Seifert surface T of K0Df .K1/

such that g.T /�g.S/. It follows that g.K0/�g.K1/. Recall that [7, Corollary 6.23]
is a deep generalization of Dehn’s lemma to higher genus surfaces due to Gabai. It
states that if M is a compact oriented 3–manifold, S a compact oriented surface
with connected boundary, and f W S !M a map such that f j@S is an embedding
and f �1.f .@S// D @S , then there exists an embedded surface T in M such that
@T D f .@S/ and g.T /� g.S/.

Let E.Ki/ denote the exterior of the knot Ki for i 2 f0; 1g. Then

f jE.K1/W E.K1/!E.K0/

is a degree-one map as it is an orientation-preserving diffeomorphism between the
boundary tori. Hence, by Rong [33, Lemma 1.2], it induces a surjection on the
fundamental groups, and also on the commutator subgroups. If K1 is fibred, then the
commutator subgroup �1.E.K1//

0 is finitely generated, hence �1.E.K0//
0 is also

finitely generated, so K0 is fibred by a result of Stallings [37].

Let K and K0 be knots in S3 such that there is an epimorphism �1.E.K//!�1.E.K
0//

preserving peripheral structure. By Silver and Whitten [36], this induces a partial
order � on the set of knots. For example, if there is a degree-one map

.E.K/; @E.K//! .E.K0/; @E.K0//;

in particular if K �K0, then K �K0. Notice that this implies that � is also a partial
order. Based on the above proof and Theorem 1.6, it is natural to ask whether K �K0

also implies that

(1-1) dim bHFK�.K; i/� dim bHFK�.K0; i/

for every i 2Z. Note that this would imply [36, Conjecture 3.6] claiming that, if K�K0,
then g.K/ � g.K0/. Compare this with Karakurt and Lidman [18, Conjecture 9.4],
which claims that if f W Y ! Y 0 is a nonzero-degree map between integer homology
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spheres, then dimbHF.Y / � dimbHF.Y 0/. However, inequality (1-1) turns out to be
false due to the following example constructed by Jennifer Hom.

Example 1.8 Let K D .T2;3/2;3 be the .2; 3/–cable of the right-handed trefoil T2;3 ,
and let K0 D T2;3 . Then K �K0. In fact, there is a degree-one map

.E.K/; @E.K//! .E.K0/; @E.K0//:

Indeed, let T �E.K/ be the boundary of the solid torus used in the satellite construction
for K . Then the exterior of T is E.K0/, hence fibred over S1. If we collapse the fibres
to disks, we obtain a degree-one map from the exterior of T to D2�S1, and hence
from E.K/ to E.K0/. But both K and K0 are determined by their Alexander polyno-
mials, K0 because it is alternating, and K by the work of Hedden [9, Theorem 1.0.6].
The symmetrized Alexander polynomial of K is

t3
� t2
C 1� t�2

C t�3;

while the symmetrized Alexander polynomial of K0 is t�1C t�1. So bHFK.K; 1/D 0

and bHFK.K0; 1/D Z2 , violating inequality (1-1).

In light of this, we propose the following weaker question.

Question 1.9 Suppose that K �K0. Then is it true that

dim bHFK.K/� dim bHFK.K0/?

The paper is organized as follows: In Section 2, we review sutured manifold cobor-
disms and the maps induced by them on sutured Floer homology. In Section 3, we
define the knot concordance maps, show that they preserve the Alexander grading
(Proposition 3.10), and prove Theorem 1.6. Section 4 gives a brief overview of spectral
sequences arising from a filtered complex. In Section 5, we show that, on the chain
level, a knot concordance map can be represented by a chain map that preserves
the Alexander filtration (Theorem 5.4) and therefore induces a morphism of spectral
sequences (Theorem 5.5); this is precisely the second part of Theorem 1.2. Corollary 1.3
follows from Corollary 5.7. Finally, we prove in Section 6 that the knot concordance
maps preserve the homological grading, which concludes the proof of Theorem 1.2.
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2 Cobordisms of sutured manifolds

In this section, we briefly review sutured manifold cobordisms, and the maps they
induce on sutured Floer homology, as defined by the first author [16].

2A Sutured manifolds and sutured cobordisms

Definition 2.1 [7, Definition 2.6] A sutured manifold is a compact oriented 3–
manifold M with boundary together with a set  �@M of pairwise disjoint annuli A. /

and tori T . /. Furthermore, the interior of each component of A. / contains a
homologically nontrivial oriented simple closed curve, called a suture. We denote the
set of sutures by s. /.

Finally, every component of R. / D @M n Int. / is oriented such that @R. / is
coherent with the sutures. Let RC. / (or R�. /) denote the components of R. /

whose normal vectors points out of (into) M .

Definition 2.2 [13, Definition 2.2] We say that a sutured manifold .M;  / is balanced
if M has no closed components, �.RC. // is equal to �.R�. //, and the map
�0.A. //! �0.@M / is surjective.

From now on, we only consider sutured manifolds where T . /D∅, and view  as a
“thickened” oriented 1–manifold. So we often do not distinguish between  and s. /;
it shall be clear from the context which one we mean.

Definition 2.3 [16, Definition 2.3] Let .M;  / be a sutured manifold, and suppose
that �0 and �1 are contact structures on M such that @M is a convex surface with
dividing set  with respect to both �0 and �1 . Then we say that �0 and �1 are equivalent
if there is a 1–parameter family f�t W t 2 Ig of contact structures such that @M is
convex with dividing set  with respect to �t for every t 2 I. In this case, we write
�0 � �1 , and we denote by Œ�� the equivalence class of the contact structure � .

Definition 2.4 [16, Definitions 2.4 and 2.14] Let .M0; 0/ and .M1; 1/ be sutured
manifolds. A cobordism from .M0; 0/ to .M1; 1/ is a triple WD .W;Z; Œ��/, where

� W is a compact oriented 4–manifold with boundary,
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� Z � @W is a compact, codimension-0 submanifold with boundary (viewed
within @W ), such that @W n Int.Z/D�M0tM1 , and we view Z as a sutured
manifold with sutures 0[ 1 ,

� � is a positive contact structure on Z such that @Z is a convex surface with
dividing set i on @Mi for i 2 f0; 1g.

Finally, a cobordism is called balanced if both .M0; 0/ and .M1; 1/ are balanced.

In this paper, we will only consider balanced sutured manifolds and balanced cobor-
disms.

Definition 2.5 [16, Definition 2.7] We call two cobordisms W D .W;Z; Œ��/ and
W 0 D .W 0;Z0; Œ� 0�/ from .M0; 0/ to .M1; 1/ equivalent if there is an orientation-
preserving diffeomorphism 'W W ! W 0 such that d.Z/ D Z0, d�.�/ D � 0 and
d jM0[M1

D Id.

Definition 2.6 [16, Definition 10.4] A cobordism W D .W;Z; Œ��/ from .M0; 0/

to .N; 1/ is a boundary cobordism if W is balanced, N is parallel to M0[ .�Z/,
and we are also given a deformation retraction r W W � Œ0; 1� ! M0 [ .�Z/ such
that r0jW D IdW and r1jN is an orientation-preserving diffeomorphism from N

to M0[ .�Z/.

Definition 2.7 [16, Definition 5.1] We say that a cobordism W D .W;Z; Œ��/

from .M0; 0/ to .M1; 1/ is special if

(1) W is balanced,

(2) @M0 D @M1 , and Z D @M0 � I is the trivial cobordism between them,

(3) � is an I–invariant contact structure on Z such that each @M0�ftg is a convex
surface with dividing set 0 � ftg for every t 2 I with respect to the contact
vector field @=@t .

In particular, it follows from (3) that 0 D 1 .

Remark 2.8 Every sutured cobordism can be seen as the composition of a boundary
cobordism and a special cobordism; see [16, Definition 10.1]. Let W D .W;Z; Œ��/ be
a balanced cobordism from .M0; 0/ to .M1; 1/. Let .N; 1/ be the sutured manifold
.M0[ .�Z/; 1/. Then we can think of the cobordism W as a composition Ws ıWb ,
where Wb is a boundary cobordism from .M0; 0/ to .N; 1/ and Ws is a special
cobordism from .N; 1/ to .M1; 1/.
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2B Relative Spinc structures

Definition 2.9 [16, Definition 3.1] Given a sutured manifold .M;  /, we say that a
vector field v defined on a subset of M containing @M is admissible if it is nowhere
vanishing, it points into M along R�. /, it points out of M along RC. /, and vj is
tangent to @M and either points into RC. / or is positively tangent to  (we think
of @M as a smooth surface, and of  as a 1–manifold).

Let v and w be admissible vector fields on M . We say that v and w are homologous,
and we write v � w , if there is a collection of balls B �M , one in each component
of M , such that v and w are homotopic on M nB through admissible vector fields.
Then Spinc.M;  / is the set of homology classes of admissible vector fields on M .

If .M;  / is balanced, Spinc.M;  / is an affine space over H 2.M; @M /. Throughout
this paper, we will denote relative Spinc structures by sı , to distinguish them from
ordinary Spinc structures on oriented 3–manifolds, usually denoted by s.

Remark 2.10 Let v0 be a fixed vector field on @M arising as vj@M for some admissi-
ble vector field v on M . We define Spinc

v0
.M;  / as the set of nowhere vanishing vector

fields on M that restrict to v0 on @M , up to isotopy through such vector fields relative
to @M in the complement of a collection of balls. Since the space of all possible v0 is
contractible, Spinc

v0
.M;  / can be canonically identified with Spinc.M;  /. This was

the approach taken in [13].

Definition 2.11 [16, Definition 3.2] Let .M;  / be a sutured manifold. We say that
an oriented 2–plane field � defined on a subset of M containing @M is admissible if
there exists a Riemannian metric g on M such that �?g is an admissible vector field.
If � is defined on the whole manifold M , we write

sı� D Œ�
?g � 2 Spinc.M;  /:

This is independent of the choice of g since the space of metrics g for which �?g is
an admissible vector field is convex.

We now recall the notion of relative Spinc structures on sutured cobordisms. If J is an
almost complex structure on a 4–manifold W and H is a 3–dimensional submanifold,
then there is a 2–plane field induced on H called the field of complex tangencies
along H ; see [16, Lemma 3.4].

Definition 2.12 [16, Definition 3.5] Suppose that W D .W;Z; Œ��/ is a cobordism
from the sutured manifold .M0; 0/ to .M1; 1/. We say that an almost complex
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structure J defined on a subset of W containing @Z is admissible if the field of
complex tangencies on Mi (defined on a subset of Mi containing @Mi ) is admissible
in .Mi ; i/ for i 2 f0; 1g, and the field �J of complex tangencies on Z (defined on a
subset of Z containing @Z ) is admissible in .Z; 0[ 1/.

A relative Spinc structure on W is a homology class of pairs .J;P /, where

� P � Int.W / is a finite collection of points,

� J is an admissible almost complex structure defined over W nP ,

� if �J is the field of complex tangencies along Z , then sı
�
D sı

�J
.

We say that .J;P / and .J 0;P 0/ are homologous if there exists a compact 1–manifold
C � W n @Z such that P;P 0 � C ; furthermore, J jW nC and J 0jW nC are isotopic
through admissible almost complex structures. We denote by Spinc.W/ the set of
relative Spinc structures over W .

Remark 2.13 As in the case of sutured manifolds, we will denote relative Spinc

structures on sutured cobordisms by sı , in order to distinguish them from ordinary
Spinc structures on oriented 4–manifolds, which we denote by s, in analogy with the
case of oriented 3–manifolds.

Remark 2.14 Spinc.W/ is an affine space over

ker
�
H 2.W; @Z/!H 2.Z; @Z/

�
:

There are restriction maps

Spinc.W /! Spinc.Mi ; i/

for i 2 f0; 1g.

2C Sutured Floer homology

The first author [13] associated an F2 –vector space SFH.M;  / to each balanced
sutured manifold .M;  /, called the sutured Floer homology of .M;  /. It splits along
the relative Spinc structures on .M;  /:

SFH.M;  /D
M

sı2Spinc.M; /

SFH.M; ; sı/:

Each vector space SFH.M; ; sı/ is an invariant of the sutured manifold together with
the relative Spinc structure. Sutured Floer homology is a common generalization
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of Heegaard Floer homology of closed oriented 3–manifolds [29] and knot Floer
homology [28; 31].

The first author proved [16] that a balanced cobordism W from .M0; 0/ to .M1; 1/

induces a homomorphism

FW W SFH.M0; 0/! SFH.M1; 1/:

If W is endowed with a relative Spinc structure sı , then we also have a map

FW; sı W SFH.M0; 0; s
ı
jM0

/! SFH.M1; 1; s
ı
jM1

/:

Let BSut denote the category of balanced sutured manifolds and equivalence classes
of cobordisms, whereas VectF2

denotes the category of vector spaces over F2 .

Theorem 2.15 [16, Theorem 11.12] SFH defines a functor BSut! VectF2
, which

is a .3C1/–dimensional TQFT in the sense of [2] and [4].

We conclude this section by outlining the construction of the cobordism map associated
to a balanced cobordism. Let WD .W;Z; Œ��/ be a balanced cobordism from .M0; 0/

to .M1; 1/, and suppose that every component Z0 of Z intersects M1 (this last
hypothesis can actually be dropped; see [16, Section 10]). According to Remark 2.8,
we can view W as the composition of a boundary cobordism Wb from .M0; 0/

to .N; 1/ and a special cobordism Ws from .N; 1/ to .M1; 1/. Using the contact
gluing map defined by Honda, Kazez and Matić [11], the first author [16, Section 9]
constructed a map

FWb W SFH.M0; 0/! SFH.N; 1/

associated to the special cobordism Wb .

The special cobordism Ws also induces a map: Choose a decomposition of Ws

as W3 ıW2 ıW1 , where Wi is the trace of i–handle attachments. The first author [16]
defined a map FWi

associated to each cobordism Wi , and the map associated to Ws

is defined as

FWs D FW3
ıFW2

ıFW1
W SFH.N; 1/! SFH.M1; 1/:

Finally, the cobordism map FW is the composition FWs ıFWb , which is independent
of all the choices made.

All cobordism maps above admit refinements FW; sı along relative Spinc structures.
The map FW can be recovered from the maps FW; sı for all Spinc structures [16,
Definition 10.9 and Proposition 10.11], and the Spinc cobordism maps satisfy a type
of composition law [16, Theorem 11.3].
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3 Knot concordance maps

In [16], the first author constructed maps induced on knot Floer homology by decorated
link cobordisms. We recall the necessary definitions, starting with reviewing the real
blowup procedure.

Definition 3.1 Suppose that M is a smooth manifold, and let L�M be a properly
embedded submanifold. For every p 2 L, let NpL D TpM=TpL be the fibre of
the normal bundle of L over p , and let UNpL D .NpL n f0g/=RC be the fibre of
the unit normal bundle of L over p . Then the (spherical) blowup of M along L,
denoted by BlL.M /, is a manifold with boundary obtained from M by replacing each
point p 2 L by UNpL. There is a natural projection BlL.M /! M . For further
details, see Arone and Kankaanrinta [1].

We now review decorated links, required to define knot Floer homology functorially.
The following is [16, Definition 4.4].

Definition 3.2 A decorated link is a triple .Y;L;P /, where L is a nonempty link
in the connected oriented 3–manifold Y , and P � L is a finite set of points. We
require that for every component L0 of L, the number jL0\P j is positive and even.
Furthermore, we are given a decomposition of L into compact 1–manifolds RC.P /

and R�.P / such that RC.P /\R�.P /D P .

We can canonically assign a balanced sutured manifold Y .L;P /D .M;  / to every
decorated link .Y;L;P /, as follows. Let M D BlL.Y / and  D

S
p2P UNpL.

Furthermore,
R˙. / WD

[
x2R˙.P/

UNxL;

oriented as ˙@M , and we orient  as @RC. /.

The following is [16, Definiton 4.2].

Definition 3.3 A surface with divides .S; �/ is a compact orientable surface S , pos-
sibly with boundary, together with a properly embedded 1–manifold � that divides S

into two compact subsurfaces that meet along � .

We are now ready to define decorated link cobordisms. The following is [16, Defini-
tion 4.5].

Definition 3.4 We say that the triple X D .X;F; �/ is a decorated link cobordism
from .Y0;L0;P0/ to .Y1;L1;P1/ if
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(1) .X;F / is a link cobordism from .Y0;L0/ to .Y1;L1/,

(2) .F; �/ is a surface with divides such that the map

�0.@�/! �0..L0 nP0/[ .L1 nP1//

is a bijection,

(3) we can orient each component R of F n � such that whenever @R crosses a
point of P0 , it goes from RC.P0/ to R�.P0/, and whenever it crosses a point
of P1 , it goes from R�.P1/ to RC.P1/,

(4) if F0 is a closed component of F, then � \F0 ¤∅.

Finally, we recall how to associate a sutured manifold cobordism complementary to
a decorated link cobordism. For this purpose, we first discuss S1–invariant contact
structures on circle bundles; see also [16, Section 4]. Let � W M ! F be a principal
circle bundle over a compact oriented surface F . An S1–invariant contact structure �
on M determines a diving set � on the base F , by requiring that x 2 � if and only if
� is tangent to ��1.x/, and a splitting of F as RC.�/[R�.�/. The image of any
local section of � is a convex surface with dividing set projecting onto � . According
to Lutz [21] and Honda [10, Theorem 2.11 and Section 4], given a dividing set �
on F that intersects each component of F nontrivially and divides F into subsurfaces
RC.�/ and R�.�/, there is a unique S1–invariant contact structure �� on M , up to
isotopy, such that the dividing set associated to �� is exactly � , the coorientation of ��
induces the splitting R˙.�/, and the boundary @M is a convex.

The following is [16, Definition 4.9].

Definition 3.5 Let .X;F; �/ be a decorated link cobordism from the decorated
link .Y0;L0;P0/ to .Y1;L1;P1/. We define the sutured cobordism W DW.X;F; �/

as follows. Choose an arbitrary splitting of F into RC.�/ and R�.�/ such that
RC.�/ \ R�.�/ D � , and orient F such that @RC.�/ (with RC.�/ oriented as
a subsurface of F ) crosses P0 from RC.P0/ to R�.P0/ and P1 from R�.P1/

to RC.P1/. Then W is defined to be the triple .W;Z; Œ��/, where W D BlF .X /
and Z D UNF , oriented as a submanifold of @W , finally � D �� is an S1–invariant
contact structure with dividing set � on F and convex boundary @Z with dividing set
projecting to P0[P1 .

The contact vector fields with respect to which a local section of UNF!F and @Z are
transverse are different, so they can project to different subsets of L0[L1 . Specifically,
the dividing set for @Z projects to P0[P1 , while @� is disjoint from P0[P1 .
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Notice that if F does not have any closed component, then it deformation retracts onto
a 1–dimensional CW complex, and therefore any S1–bundle on it has a section, hence
is trivial if the bundle is orientable. In particular, UNF � F �S1.

In the present paper, we only consider decorated links .Y;L;P / where Y D S3, the
link L has a single component, and jP j D 2. Hence, we drop Y from the notation
and only write .K;P / for such a decorated knot.

Definition 3.6 A decorated concordance is a decorated link cobordism .X;F; �/

such that

(1) X is an integer homology S3 � I with boundary .�S3/tS3,

(2) the surface F is an annulus, and

(3) � consists of two arcs connecting the two components of @F.

If X D S3 � I, we drop X from the notation and only write .F; �/.

Lemma 3.7 Let X be an oriented cobordism from S3 to S3. Then X has the same
homology and cohomology as S3 � I if and only if H1.X /DH2.X /D 0.

Proof The “only if” part is obvious. So suppose that H1.X /DH2.X /D 0. Then
let X be the closed 4–manifold obtained by gluing two 4–balls to @X . We denote
by B �X the union of these 4–balls. Then, for i 2 f1; 2g, we have

0DHi.X /ŠH 4�i.X; @X /ŠH 4�i.X ;B/ŠH 4�i.X /:

Here, the first isomorphism follows from Poincaré–Lefschetz duality, the second from
excision, and the third from the cohomological long exact sequence of the pair .X ;B/.
So H 2.X /DH 3.X /D 0, hence

H1.X /ŠH 3.X /D 0 and H 1.X /D Hom.H1.X /;Z/D 0:

As X has the same integral cohomology is S4, after removing two balls, X has the
same integral homology and cohomology as S3 � I.

It follows from [16, Proposition 4.10] that a decorated concordance C D .X;F; �/
from .K0;P0/ to .K1;P1/ induces a homomorphism

FC W bHFK.K0;P0/! bHFK.K1;P1/;

where bHFK.Ki ;Pi/ are the natural knot Floer homology groups defined in [17].
Indeed, W D W.X;F; �/ is a cobordism from the sutured manifold S3.K0;P0/

to S3.K1;P1/, and hence induces a homomorphism

FW W SFH.S3.K0;P0//! SFH.S3.K1;P1//:
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But SFH.S3.K0;P0//Š bHFK.K0;P0/ and SFH.S3.K1;P1//Š bHFK.K1;P1/ tau-
tologically. This assignment is functorial under composition of link cobordisms.

3A Relative Spinc structures and knot concordances

In the case of knot concordances, the relative Spinc structures behave nicely, as
explained in this section.

Lemma 3.8 Suppose C D .X;F; �/ is a decorated concordance from .K0;P0/

to .K1;P1/. If .Mi ; i/D S3.Ki ;Pi/ is the balanced sutured manifold complemen-
tary to .Ki ;Pi/ for i 2 f0; 1g, and W DW.C/D .W;Z; Œ��/ is the sutured manifold
cobordism from .M0; 0/ to .M1; 1/ complementary to C , then

(3-1) FW D
M

sı2Spinc.W/

FW; sı :

Furthermore, Spinc.W/ is an affine space over H 2.W;Z/ Š Z, and the restriction
maps

ri W Spinc.W/! Spinc.Mi ; i/

are isomorphisms for i 2 f0; 1g.

Proof As in Remark 2.8, we write WDWsıWb , where Wb is a boundary cobordism
from .M0; 0/ to .N; 1/, where N DM0[ .�Z/, and Ws is a special cobordism
from .N; 1/ to .M1; 1/. As Z is a product, N is diffeomorphic to the knot comple-
ment M0 � S3 nN.K0/, and hence H2.N /D 0. So, by [16, Remark 10.10] and [16,
Proposition 10.11],

FW D
M

sı2Spinc.W/

FW; sı :

As H k.Z; @M1/D 0 for k 2 f1; 2g, we can apply [16, Lemma 3.7] to conclude that

Spinc.W/ŠH 2.W; @M1/:

Of course, H 2.W; @M1/ Š H 2.W; @M0/ Š H 2.W;Z/. By excision, we have that
H 2.W;Z/ŠH 2.X;N.F //, where N.F / is a regular neighbourhood of F . From the
long exact sequence of the pair .X;N.F // and the fact that H 1.X /DH 2.X /D 0,
and since H 1.N.F //ŠH 1.S1/Š Z, we obtain that H 2.X;N.F //Š Z.

The restriction maps
ri W Spinc.W/! Spinc.Mi ; i/
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for i 2 f0; 1g are modelled on the restriction maps H 2.W; @Mi/! H 2.Mi ; @Mi/

for i 2 f0; 1g. From the long exact sequence of the triple .W;Mi ; @Mi/, the sequence

(3-2) H 2.W;Mi/!H 2.W; @Mi/!H 2.Mi ; @Mi/!H 3.W;Mi/

is exact. Now consider the relative Mayer–Vietoris sequence of the pairs .W;Mi/

and .N.F /;N.Ki//, whose union is .X; @iX /, where @iX � S3 is the ingoing
boundary component of X when i D 0 and is the outgoing boundary component
when i D 1:

H k.X; @iX /!H k.W;Mi/˚H k.N.F /;N.Ki//!H k.Z; @Mi/:

Here, H k.X; @iX / Š H k.S3 � I;S3 � f0g/ D 0, and the last term is zero as Z

deformation retracts onto @Mi . Consequently, H k.W;Mi/D 0 for every k , and by
the exact sequence (3-2), this means that the restriction maps ri are isomorphisms
for i 2 f0; 1g.

In the following lemma, v0 denotes any fixed vector field on a balanced sutured mani-
fold .M;  / obtained by restricting an admissible vector field to @M ; see Definition 2.9
and Remark 2.10.

Lemma 3.9 Let C D .X;F; �/ be a knot concordance from .K0;P0/ to .K1;P1/.
As in Lemma 3.8, let .Mi ; i/D S3.Ki ;Pi/ for i 2 f0; 1g, and let

W DW.C/D .W;Z; Œ��/:

For i 2 f0; 1g, let Si be a Seifert surface for Ki , and let ti be the trivialization of v?
0

given by a vector field tangent to @Mi in the meridional direction. Then, for any relative
Spinc structure sı 2 Spinc.W/,

(3-3) hc1.r0.s
ı/; t0/; ŒS0�i D hc1.r1.s

ı/; t1/; ŒS1�i;

where r0 and r1 are the restriction maps in Lemma 3.8.

From Lemma 3.9, we can already deduce the following proposition, which can be seen
as a first step towards the proof of Theorem 1.2.

Proposition 3.10 If C is a decorated concordance between two knots .K0;P0/

and .K1;P1/, then the map induced between the knot Floer homologies preserves the
Alexander grading; that is,

FC. bHFK.K0;P0; i//� bHFK.K1;P1; i/

for every i 2 Z.
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Proof We use the same notation as in Lemmas 3.8 and 3.9. It follows from Lemma 3.8
that the map FCDFW splits as the sum of the maps FW; sı for sı2Spinc.W/; see (3-1).
It is therefore sufficient to check that, for every relative Spinc structure sı 2 Spinc.W/,
the map

FW; sı W SFH.M0; 0; s
ı
jM0

/! SFH.M1; 1; s
ı
jM1

/

preserves the Alexander grading.

According to the proof of [14, Theorem 1.5] on page 333, if ti is the trivialization
of v?

0
given by a vector field tangent to @Mi in the meridional direction, then

SFH.Mi ; i ; s
ı/D bHFK

�
Ki ;Pi ;�

1
2
hc1.s

ı; ti/; ŒSi �i
�
;

where Si is a Seifert surface of Ki for i 2 f0; 1g. The result now follows from
Lemma 3.9, which states that

hc1.s
ı
jM0

; t0/; ŒS0�i D hc1.s
ı
jM1

; t1/; ŒS1�i:

Proof of Lemma 3.9 Choose an admissible almost complex structure J on W nP

whose homology class is sı , where P � Int.W / is a finite set of points, as in
Definition 2.12. Let �J be the field of complex tangencies of J along Z . Then,
by definition, sı

�
D sı

�J
. In fact, we can choose J such that �J D � . Choose a

trivialization of the normal S1–bundle of F whose total space is Z . If we identify F

with S1 � I such that � maps to P0 � I for P0 D � \K0 , then this identification,
together with the above trivialization, induces a diffeomorphism d W Z! S1�S1� I,
where the first factor is the fibre direction, and such that � is mapped to an I–invariant
contact structure with dividing set S1 �P0 � fag on S1 �S1 � fag for every a 2 I,
and f�g �P0 � I on f�g � S1 � I for every � 2 S1. Hence, we can perturb the 2–
plane field � such that it is always tangent to the second S1 factor, ie the longitudinal
direction. So we can choose J such that �J is also invariant in the � direction, and it
contains the longitude direction. If v is a nowhere zero section of �J tangent to the
longitude direction, then — under a homotopy of �J j@Mi

to v?
0

through admissible
2–plane fields — the vector field vj@M0

represents a trivialization �0 that corresponds
to t0 and vj@M1

represents a trivialization �1 that corresponds to t1 .

The 2–plane field �J , together with the trivialization given by v , gives a complex 1–
dimensional subbundle of .TW jZ ;J / together with a trivialization. The complement
of �J is also trivial, canonically trivialized by its intersection with TZ , which then
gives rise to a trivialization � of TW jZ . As J is defined over the 3–skeleton of W ,
it makes sense to talk about the relative Chern class c1.TW;J; �/ 2H 2.W;Z/. If �i

J

denotes the field of complex tangencies of J along Mi , then the complement of �i
J

is
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a trivial bundle (trivialized by its intersection with TMi ), so

c1.�
i
J ; �i/D c1.TW jMi

;J; �/D c1.TW;J; �/jMi
;

where the second equality follows from the naturality of Chern classes. By construction,
�i

J
represents sıi .

Recall that Si is a Seifert surface of Ki for i 2 f0; 1g. Note that H2.W;Z/ŠZ, and
that there is a bilinear intersection pairing

H2.W;Z/˝H2.W;M0[M1/! Z:

Consider the cycle m D S1 � fptg � I in C2.W;M0 [M1/. As both S0 and S1

intersect m once positively, they both represent the generator of H2.W;Z/ Š Z.
Hence

hc1.s
ı
0; �0/; ŒS0�i D hc1.W;J; �/; ŒS0�i D hc1.TW;J; �/; ŒS1�i D hc1.s

ı
1; �1/; ŒS1�i;

and (3-3) follows as we saw that �0 corresponds to t0 and �1 corresponds to t1 .

As a consequence of Proposition 3.10, we can prove Theorem 1.6.

Proof of Theorem 1.6 Suppose that F is an invertible concordance from K0 to K1 .
Choose an arbitrary pair of points P0 on K0 and P1 on K1 , making them into decorated
knots, and an arbitrary pair of arcs � on F making F into a decorated concordance
from .K0;P0/ to .K1;P1/. Let F 0 be the inverse of F , and choose a decoration � 0

on it such that .F 0; � 0/ is a decorated concordance from .K1;P1/ to .K0;P0/. As
the composition of F and F 0 is equivalent to the trivial cobordism K0 � I from K0

to K0 , we can choose � 0 such that the composition of C D .F; �/ and C0 D .F 0; � 0/
is equivalent to the product decorated cobordism .K0� I;P � I/, where P D � \K0

is a pair of points. By the functoriality of FC and the fact that a product cobordism
induces the identity map,

FC0 ıFC D IdbHFK.K0;P0/
;

and so FC is injective. We shall see in Section 6 that FC preserves the homological
grading. Hence Proposition 3.10 implies that

dim bHFKj .K0;P0; i/� dim bHFKj .K1;P1; i/

for every i; j 2 Z. Up to isomorphism, bHFKj .Ki ;Pi/ is independent of the choice
of Pi , and the result follows.

We shall see in Section 6 that the concordance maps also preserve the homological
grading. Then we have the following.
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Lemma 3.11 Suppose C D .X;F; �/ is a decorated concordance from .K0;P0/

to .K1;P1/. If K0 is the unknot U , then the element

FC.1/ 2 bHFK0.K1;P1; 0/

is independent of the decorations � and P0 , where 1 2 bHFK.K0;P0/Š Z2 .

Proof Suppose that � 0 is another decoration with the same endpoints as � , let
C0 D .X;F; � 0/, and define

k D Œ� 0� �� 2H1.F /Š Z:

Consider the decorated concordance Ck D .S3 � I; U � I; �k/, where �k spirals
around k times. Then C0 D C ı Ck . As bHFK.U / Š Z2 , we have FCk

D IdZ2
. By

the functoriality of the knot concordance maps, we obtain that FC0 D FC . Since
bHFK.U /Š Z2 has no nontrivial automorphisms, it does not matter how we choose

the markings P0 .

4 Filtered complexes and spectral sequences

In this section, we briefly recall the definitions and properties of spectral sequences
that we need. We mainly refer to the book of McCleary [24]. The spectral sequences
we are interested in arise from filtered chain complexes, so we focus on this case only.

Definition 4.1 A filtered chain complex is a chain complex
�
C D

L
k2Z Ck ; @

�
, such

that @Ck � Ck�1 , with a nested sequence of subcomplexes

� � � � Fp�1C � FpC � FpC1C � � � �

such that
S

p2Z FpC D C and @.FpC /� FpC .

We say that the filtered chain complex is bounded if there are integers a� b such that

f0g D FaC � � � � � FbC D C:

We obtain a spectral sequence from a filtered chain complex as follows; see [24, Proof
of Theorem 2.6].

Definition 4.2 For p; q; r 2 Z, we define

Zr
p;q D FpCpCq \ @

�1.Fp�r CpCq�1/;

Br
p;q D FpCpCq \ @.FpCr CpCqC1/;

Z1p;q D FpCpCq \ ker @;

B1p;q D FpCpCq \ im @:

Geometry & Topology, Volume 20 (2016)



Concordance maps in knot Floer homology 3643

For 0 � r � 1, the r–page (or r–term) is the complex
�
Er D

L
p;q2Z Er

p;q; @
r
�
,

where

Er
p;q D

Zr
p;q

Zr�1
p�1;qC1

CBr�1
p;q

;

and the differential
@r
W Er

p;q!Er
p�r;qCr�1

is induced by the differential @ on the complex C .

Sometimes we only focus on the p grading. In such cases, we drop q from the notation,
and write Er

p D
L

q2Z Er
p;q . For the following, see [24, Proof of Theorem 2.6].

Theorem 4.3 The pages f.Er ; @r /g induced by a filtered chain complex form a
spectral sequence in the sense of [24, Definition 2.2]; ie

ErC1
p;q DHp;q.E

r
�;�; @

r / WD
ker.@r jEr

p;q
/

im.@r jEr
pCr;q�rC1

/
:

If the filtration is bounded, then there is a canonical isomorphism

E1p;q Š
Fp.HpCq.C //

Fp�1.HpCq.C //
;

where the filtration on the total homology H.C /D
L

k2Z Hk.C / is the one induced
from C :

Fp.H.C // WD im
�
H.FpC; @jFpC /!H.C; @/

�
:

Remark 4.4 Notice that E0
p;q is the graded module

FpCpCq

Fp�1CpCq

associated with the filtration. The page E1
p;q is the homology Hq.E

0
p;�; @

0/ of the
associated graded module with the induced differential.

4A Morphisms of spectral sequences

According to McCleary [24], we have the following.

Definition 4.5 Let .Er ; @r / and .Er ; x@r / be spectral sequences. A morphism of
spectral sequences is a sequence of module homomorphisms f r W Er

�;� ! Er
�;�

for r 2N , of bidegree .0; 0/, such that f r commutes with the differentials; that
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is, f r ı @r D x@r ıf r, and each f rC1 is induced by f r on homology; ie f rC1 is the
composite

f rC1
W ErC1
�;� ŠH.Er

�;�; @
r /

H .f r /
����!H.Er

�;�;
x@r /ŠErC1

�;� :

Remark 4.6 Let f W C ! C be a map of filtered complexes of homological degree
zero; ie

� f .Ck/� C k ,

� f ı @D x@ ıf ,

� f .FpC /� FpC .

Then f induces a morphism between the spectral sequences associated to C and C .

Remark 4.7 If .Er; @r / and .Er; x@r / are bounded spectral sequences, ff r W Er!Er g

is a morphism of spectral sequences, and f1 is nonzero on E1p;q , then f r is nonzero
on Er

p;q for all r 2N .

4B The � invariant

In this subsection, we recall the definition and few properties of the Ozsváth–Szabó �
invariant, and we discuss it in a slightly more general setting.

Definition 4.8 If C is a nonacyclic bounded filtered complex over F2 , we define

�.C / WDminfp 2 Z WH.FpC /!H.C / is nontrivialg:

Definition 4.8 generalizes the Ozsváth–Szabó � invariant in the sense that, if CDcCF.H/
for some Heegaard diagram for a decorated knot .K;P /, then �.C /D�.K/.

Remark 4.9 An alternative definition of �.C / is given by the following property:

E1p .C /

�
D 0 if p < �.C /;

6D 0 if p D �.C /:

Furthermore, if the total homology H.C /D F2 , then

E1p .C /

�
D 0 if p 6D �.C /;

6D 0 if p D �.C /:

We conclude the section with a technical lemma that we will use to prove that a
decorated concordance induces a nontrivial map between the E1 pages of the spectral
sequences arising from the knot filtrations.
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Lemma 4.10 Let f W C ! C be a filtered map of degree zero between nonacyclic
bounded filtered complexes over F2 such that

(1) H.C /Š F2 and H.C /Š F2 ,

(2) �.C /D �.C /, and

(3) H.f /W H.C /!H.C / is an isomorphism.

Then E1� .C /Š F2 and E1� .C /Š F2 , and the map f1W E1� .C /!E1� .C / is also
an isomorphism.

Proof Since (1) and (2) hold, by Theorem 4.3 and Definition 4.8, there are canonical
isomorphisms

E1� .C /ŠH.C /Š F2 and E1� .C /ŠH.C /Š F2:

The commutativity of the following diagram concludes the proof:

E1� .C /
f1
//

w

��

E1� .C /

w

��

H.C /
'

H .f /

// H.C /

5 Concordance maps preserve the knot filtration

5A The knot filtration

Let K be a null-homologous knot in a closed oriented 3–manifold Y . Ozsváth and
Szabó [28], and independently Rasmussen [31], proved that K gives rise to a filtration of
the Heegaard Floer chain complex cCF.Y /, well-defined up to filtered chain homotopy
equivalence, called the knot filtration. Such a filtration can be defined in terms of the
Alexander grading; see also [28, Section 2.3].

Definition 5.1 Let S be a Seifert surface for the knot K , and let .†;˛;ˇ; w; z/ be a
doubly pointed Heegaard diagram for K , as defined by Ozsváth and Szabó [28]. Given
a generator x 2 T˛ \Tˇ , its S–Alexander grading is

AS .x/D
1
2
hc1.s.x//; ŒS �i;

where s.x/ is the Spinc structure on Y0.K/ extending s.x/ 2 Spinc.Y /. We denote
the corresponding filtration by FS .
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Remark 5.2 Consider the sutured manifold Y .K/D .M;  / complementary to K .
As in the proof of [14, Theorem 1.5] on page 333, let t be the trivialization of v?

0

given by a vector field tangent to @M in the meridional direction. Then

AS .x/D
1
2
hc1.s

ı.x/; t/; ŒS �i;

where sı.x/ now denotes an element of Spinc.M;  /.

If Y is a rational homology 3–sphere, all Seifert surfaces of K are homologous in the
knot exterior, so the Alexander grading does not depend on S , and we simply denote
it by A.x/, and the filtration by F.x/.

The following lemma describes how the relative Alexander grading can be read off the
Heegaard diagram; see [28, Lemma 2.5] and [31, page 25].

Lemma 5.3 Let .†;˛;ˇ; w; z/ be a Heegaard diagram for a null-homologous knot K

in a 3–manifold Y , and let S be a Seifert surface for K . If � 2 �2.x;y/, then

nz.�/� nw.�/DAS .x/�AS .y/:

5B Knot filtration and concordances

Our aim is to prove that the knot filtration is preserved by the chain maps induced by
concordances.

Theorem 5.4 Let C be a decorated concordance from .K0;P0/ to .K1;P1/, and let
.†i ;˛i ;ˇ i ; wi ; zi/ be a doubly pointed diagram representing .Ki ;Pi/ for i 2 f0; 1g.
Then there is a chain map

fC W cCF.†0;˛0;ˇ0; w0; z0/! cCF.†1;˛1;ˇ1; w1; z1/

preserving the knot filtration; ie for every generator x 2 T˛0
\Tˇ0

,

A.fC.x//�A.x/;

such that fC induces the identity of bHF.S3/ on the total homology, and FC on the
homology of the associated graded complexes.

Theorem 5.4 yields a morphism of spectral sequences in the sense of Definition 4.5,
hence we have the following corollary.

Theorem 5.5 Suppose that C is a decorated concordance from .K0;P0/ to .K1;P1/.
Then there is a morphism of spectral sequences from bHFK.K0;P0/ D) bHF.S3/

to bHFK.K1;P1/ D)bHF.S3/ such that the map induced on the E1 page is FC , and
the map induced on the E1 page is IdbHF.S3/

.
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Proof Suppose that C D .X;F; �/. Since H1.X / D H2.X / D 0, it follows from
the work of Ozsváth and Szabó [26, Theorem 1.1] that �.K0/D �.K1/. Indeed, the
knot K DK0 # K1 bounds a disk in a homology 4–ball W with boundary S3, and
hence �.K/D �.K0/� �.K1/D 0 by [26, Theorem 1.1]. By Theorem 5.4, we have a
filtered map fC that induces an isomorphism on the total homology. We can therefore
apply Lemma 4.10 to conclude that the map induced on the E1 page is also an
isomorphism.

Definition 5.6 We say that an element x 2 bHFK.K;P / survives the spectral sequence
to bHF.S3/Š Z2 if there is a sequence of cycles xi 2Ei for i � 1 such that x1 D x

and xiC1 D Œxi �; we denote the set of such elements by A.K/. Furthermore, we have
a partition A.K/ D A0.K/[A1.K/, where Aj .K/ consists of those elements for
which xi D j 2Z2 for i sufficiently large (note that the spectral sequence is bounded).

The subset A0.K/ is a linear subspace of A.K/, and A1.K/ is an affine translate
of A0.K/. Each of the sets A.K/, A0.K/ and A1.K/ is a knot invariant.

It follows from the definition of the Ozsváth–Szabó � invariant [26] that

(5-1) A1.K/\ bHFK.K; i/
�
D∅ if i 6D �.K/;

6D∅ if i D �.K/:

If a 2A1.K/, let a0 denote the homogeneous component of a in homological grading
zero. It is straightforward to check that a0 survives the spectral sequence. Since
the homological grading on bCFK is inherited from the one on cCF , and since the
homological grading of 1 2bHF.S3/ is zero, it follows that a0 2A1.K/. Combined
with (5-1), this implies that

(5-2) A01.K/ WDA1.K/\ bHFK0.K; �.K// 6D∅:

Notice that A0
1
.K/ is also a knot invariant.

The following result is a straightforward consequence of Theorem 5.5, Proposition 3.10
and (5-2), and implies Corollary 1.3 of the introduction.

Corollary 5.7 Suppose C D .X;F; �/ is a decorated concordance from .K0;P0/

to .K1;P1/, and let � D �.K0/D �.K1/. Then, for j 2 f0; 1g,

FC.Aj .K0//�Aj .K1/

and hence it is nonzero from bHFK0.K0;P0; �/ to bHFK0.K1;P1; �/.
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Proof The fact that FC.Aj .K0//�Aj .K1/ follows from Theorem 5.5. In Section 6,
we shall see that FC preserves the homological grading. Then, by Proposition 3.10,
FC maps bHFK0.K0;P0; �/ to bHFK0.K1;P1; �/. So we only need to prove that this
map is nonzero.

By (5-2), we have A0
1
.K0/¤∅; let x 2A0

1
.K0/. Then, by the previous paragraph,

FC.x/ 2A1.K1/\ bHFK0.K1; �/DA01.K1/;

hence FC.x/¤ 0.

We now turn to the proof of Theorem 5.4, which will take the rest of this section.

5C Triviality of the gluing map

Given a sutured manifold cobordism W D .W;Z; Œ��/ from .M0; 0/ to .M1; 1/, the
map

FW W SFH.M0; 0/! SFH.M1; 1/

is the composition FWs ıˆ�� , where

ˆ�� W SFH.M0; 0/! SFH.N; 1/

is the gluing map given by Honda, Kazez and Matić [11] for the sutured submanifold
.�M0;�0/ of .�N;�1/ with N D M0 [ .�Z/, and FWs is a “surgery map”
corresponding to handles attached along the interior of the sutured manifold N . The
cobordism Ws is a special cobordism, meaning its vertical part is a product and the
contact structure on it is I–invariant.

If CD .X;F; �/ is a decorated concordance from .K0;P0/ to .K1;P1/, let WDW.C/
be the complementary sutured manifold cobordism from S3.K0;P0/ D .M0; 0/

to S3.K1;P1/ D .M1; 1/. Let T 2�I be a collar neighbourhood of @M0 such
that T 2�f1g is identified with @M0 . Since the dividing set on F consists of two
arcs connecting the two components of @F , there is a diffeomorphism d W T 2�I !

Z such that � 0 D d�.�/ is an I–invariant contact structure on T 2�I, and hence
induces the trivial gluing map by [11, Theorem 6.1]. More precisely, if we write
M 0

0
D M0n.T 2�I/ and  0

0
for the projection of 0 to T 2�f0g, then there is a

diffeomorphism 'W .M 0
0
;  0

0
/! .M0; 0/ supported in a neighbourhood of T 2�f0g

such that

ˆ��0 D '�W SFH.M 0
0; 
0
0/! SFH.M0; 0/:
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Let DW M0 ! N be the diffeomorphism that agrees with ' on M 0
0

and with d

on T 2� I, smoothed along T 2�f0g. By the diffeomorphism invariance of the gluing
construction, the diagram

SFH.M 0
0
;  0

0
/

'�
//

ˆ��0

��

SFH.M0; 0/

ˆ��
��

SFH.M0; 0/
D�

// SFH.N;  /

is commutative, hence ˆ�� DD� .

We now show that D� preserves the Alexander grading on the chain level. If we glue
D2 � S1 to N along @N such that the meridian is glued to a suture in s.1/, we
obtain a 3–manifold Y diffeomorphic to S3, and the image of f0g �S1 is a knot K0

in Y . We can canonically extend D to a diffeomorphism from .S3;K0/ to .Y;K0/.
Given a knot diagram H0 D .†0;˛0;ˇ0; w0; z0/ for .S3;K0/, its image D.H0/ is a
diagram of .Y;K0/. Given a Seifert surface S of K0 and a generator x 2 T˛0

\Tˇ0
,

the image D.S/ is a Seifert surface of K0, and D.x/ satisfies

hc1.s
ı.x/; t/; ŒS �i D

˝
c1

�
sı.D.x//;D�.t/

�
; ŒD.S/�

˛
:

As D.0/D 1 , the trivialization D�.t/ points in the meridional direction for K0, and
it follows that A.x/DA.D.x//. It is apparent from the above discussion that we can
identify .S3;K0/ and .Y;K0/ via D , so from now on we will think of W as a special
cobordism from .S3;K0/ to .S3;K1/.

5D Notation

In this subsection, we fix the notation for the rest of the paper. Recall that .K0;P0/

and .K1;P1/ denote two decorated knots in S3, and that we have a decorated concor-
dance C D .X;F; �/ from .K0;P0/ to .K1;P1/.

We denote by W D .W;Z; Œ��/ the sutured cobordism W.C/ associated to the knot
concordance C . It follows from the discussion in Section 5C that W can be thought of
as a special cobordism. The 4–manifold W can be obtained by attaching to M0 � I

along the interior of M0 � f1g a sequence of 4–dimensional 1–handles, followed
by 2–handles, and finally 3–handles. We denote the number of i–handles by ci

for i 2 f1; 2; 3g, and often write p for c1 and ` for c2 . We split the cobordism W into
three parts W1 , W2 and W3 , in such a way that Wi D .Wi ;Zi ; Œ�i �/ is a cobordism
from .Mi�1; i�1/ to .Mi ; i/, and is the trace of the i–handle attachments; see the left-
hand side of Figure 1. Notice that .M0; 0/DS3.K0;P0/ and .M3; 3/DS3.K1;P1/

by construction.
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M3

W3

Mˇ;ı
M2 DM˛;ı�W W� W2

M1 DM˛;ˇ

W1

M0

Y3 D S3

X3

Yˇ;ı �X
Y2 D Y˛;ı

X� X2

Y1 D Y˛;ˇ

X1

Y0 D S3

Figure 1: The left-hand side shows the sutured cobordism W D .W;Z; Œ��/ ,
and how we split it into different pieces. The picture on the right-hand side
shows the cobordism of 3–manifolds X , and the corresponding decomposi-
tion into smaller cobordisms.

In order to represent sutured manifolds, we use Heegaard diagrams with basepoints.
If w; z 2 † n .˛ [ ˇ/, the Heegaard diagram H D .†;˛;ˇ; w; z/ represents the
complement of a knot in a 3–manifold. In order to recover the sutured Heegaard
diagram as originally defined by the first author [13], one should remove a small disk
around each basepoint.

Let T D .†;˛;ˇ; ı; w; z/ be a doubly pointed triple diagram for the cobordism W2

(see Section 5H), where d D j˛j D jˇj D jıj. Furthermore, suppose that the 2–handles
are attached along an `–component framed link L. We further split the manifold W2

into two pieces according to [16, Proposition 6.6]: The piece W˛;ˇ;ı D .W4;Z4; �4/

denotes the sutured manifold cobordism obtained from the triangle construction in [16,
Sections 5 and 6], while Wˇ.L/D . �W ; �Z; y�/ is a sutured manifold cobordism from

.RC.1/; @RC.1/� I/ #
�d�`

#
iD1

.S2
�S1/

�
to ∅. The horizontal boundary of �W is the sutured manifold Mˇ;ı , defined by the
diagram .†;ˇ; ı; w; z/. By analogy, we also use the notation M˛;ˇ Š .M1; 1/ and
M˛;ı Š .M2; 2/.

We can fill in the vertical boundary of the sutured cobordism W by gluing D2�S1�I

along S1 � S1 � I to Z such that S1 � f.1; 0/g is glued to a meridian of K0 to
obtain cobordisms of closed 3–manifolds rather than knot complements. In terms of
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Heegaard diagrams, this amounts to forgetting the z basepoints. We denote the closed
3–manifolds by the letter Y rather than M . As for the cobordisms, we use the letter X

instead of the letter W . See the right-hand side of Figure 1.

Lastly, let S0 �M0 and S3 �M3 be Seifert surfaces for K0 and K1 , respectively.
Since .M1; 1/ is obtained from .M0; 0/ by taking connected sums with copies
of S1 � S2, the surface S0 also defines a surface S1 � M1 , which is contained
in the M0 summand of M1 . Analogously, the Seifert surface S3 induces a Seifert
surface S2 �M2 .

5E Definition of the chain map fC

We now define the chain map fC . Given an admissible doubly pointed diagram
H D .†;˛;ˇ; w; z/ for a decorated knot .Y;K;P /, we denote by cCF.H/ the Hee-
gaard Floer chain complex that counts disks avoiding w and filtered by z . Its homol-
ogy is bHF.Y; w/, while the homology of the associated graded complex bCFK.H/
is bHFK.Y;K;P /.

Suppose that the 1–handles are attached along p framed pairs of points P �M0 . Pick
an admissible diagram H0 of .M0;  / subordinate to P , and let

fH0;P W
cCF.H0/! cCF.H0

P /

be the 1–handle map defined in [16, Definition 7.5]. The 2–handles are attached along
an `–component framed link L�M1 . Choose an admissible diagram H1 subordinate
to L, and let

fH1;LW
cCF.H1/! cCF.H1

L/

be the 2–handle map defined in [16, Definition 6.8], on the chain level. This map counts
triangles that avoid w but might pass through z . Finally, let H2 be an admissible
diagram of .M2;  / subordinate to framed spheres S � M2 corresponding to the
3–handles. The corresponding 3–handle map

fH2;SW
cCF.H2/! cCF.H2

S/

was introduced in [16, Definition 7.8].

Given admissible diagrams H and H0 of a sutured manifold .M;  /, we refer the
reader to [16, Section 5.2] for the definition of the canonical isomorphism

FH;H0 W SFH.H/! SFH.H0/:

We can obtain a chain level representative by connecting H and H0 through a sequence
of ambient isotopies, (de)stabilizations, and equivalences of the attaching sets. If .M;  /
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is complementary to a knot .Y;K/, we can view this as a sequence of moves on knot
diagrams. Each induces a chain homotopy equivalence on cCF preserving the knot
filtration according to [28; 31], and induces an isomorphism both on the homology of
the whole complex (isomorphic to bHF.Y /), and the homology of the associated graded
complex (isomorphic to bHFK.Y;K/). Note that the triangle maps corresponding to
changing the attaching curves do not pass over w but might cross z , so they are in fact
naturality maps for the closed 3–manifold and not the knot. We proved in [17] that
the maps on the homology are independent of the sequence of moves connecting H
and H0. We write fH;H0 for the chain level representative of FH;H0 described above.
With the above notation in place, we set

fC WD fH2;S ıfH1
L;H2 ıfH1;L ıfH0

P ;H1 ıfH0;P ;

from cCF.H0/ to cCF.H2
S/. Note that each of the diagrams involved in the above

formula can be viewed as a knot diagram after gluing disks along s. / that do not
change during the cobordism, so we can distinguish z and w throughout. If we
are given diagrams H of .M0; 0/ and H0 of .M3; 3/, then we have to pre- and
postcompose the above map fC with fH2

S;H0
and fH;H0 .

We split the proof of Theorem 5.4 into a number of steps, and we prove that for each Wi

the knot filtration is preserved.

5F 1– and 3–handles

First, consider the case of the 1–handle attachments along the framed pairs of points
P � Int.M0/. As in Section 5D, we write W1 WDW.P / for the trace of the surgery
along P ; this is a cobordism from .M0; 0/ to .M1; 1/. Recall [16, Section 7] that
there is an isomorphism Spinc.W1/Š Spinc.M0; 0/. Furthermore, a Spinc structure
sı 2 Spinc.M1; 1/ extends to W1 if and only if c1.s

ı/ vanishes on the belt spheres
of all the 1–handles. Given sı 2 Spinc.W/, we write sı

0
for its restriction to .M0; 0/,

and sı
1

for its restriction to .M1; 1/.

Lemma 5.8 Let sı
0
2 Spinc.M0; 0/, and let sı

1
2 Spinc.M1; 1/ denote the corre-

sponding Spinc structure. Then

hc1.s
ı
0; t/; ŒS0�i D hc1.s

ı
1; t/; ŒS1�i:

Proof This is a consequence of the naturality of the first Chern class and the fact
that both S0 and S1 are actually contained in M0 n N.P /. We can suppose that
S0 is properly embedded in M0 nN.P /. By definition, S1 is a surface contained
in M0 nN.P /�M1 that is isotopic to S0 in M0 nN.P /.
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Since S0 and S1 are isotopic in M0 nN.P / and sı
1
jM0nN.P/ D sı

0
jM0nN.P/ , by the

naturality of the first Chern class

hc1.s
ı
1; t/; ŒS1�i D hc1.s

ı
1jM0nN.P/; t/; ŒS1�i

D hc1.s
ı
0jM0nN.P/; t/; ŒS0�i

D hc1.s
ı
0; t/; ŒS0�i:

Notice that the trivialization t of the vector field v0 on @M0 D @M1 does not change
because the boundary is left unaffected by the surgery.

Remark 5.9 Since c1.s
ı
1
; t/ vanishes on the belt spheres of the 1–handles, the above

result also holds for an arbitrary Seifert surface S1 .

Corollary 5.10 The map fH0;P W
cCF.H0/! cCF.H0

P / preserves the Alexander grad-
ing (see Definition 5.1) with respect to arbitrary Seifert surfaces S0 and S1 ; ie

AS1
.fH0;P .x//DAS0

.x/

for any x 2 T˛0 \Tˇ0 , where H0 D .†0;˛0;ˇ0; w0; z0/.

Proof This is a straightforward consequence of Lemma 5.8, Remark 5.9, and the fact
that the relative Spinc structure induced by sı.x/ on .M1;  / is exactly sı.fH0;P .x//.

A dual reasoning gives the following results for the map fH2;S , which are analogous
to Lemma 5.8 and Corollary 5.10.

Lemma 5.11 Let sı
3
2 Spinc.M3; 3/, and let sı

2
2 Spinc.M2; 2/ denote the corre-

sponding Spinc structure. Then

hc1.s
ı
2; t/; ŒS2�i D hc1.s

ı
3; t/; ŒS3�i:

Corollary 5.12 The map fH2;SW
cCF.H2/! cCF.H2

S/ preserves the Alexander grad-
ing with respect to arbitrary Seifert surfaces S2 and S3 ; ie

AS3
.fH2;S.x//DAS2

.x/

for any x 2 T˛2 \Tˇ2 such that fH2;S.x/¤ 0, where H2 D .†2;˛2;ˇ2; w2; z2/.
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5G 2–handles

The proof that the Alexander grading is preserved under the attachment of the 2–handles
is less straightforward than in the case of 1–handles and 3–handles.

Lemma 5.13 Let C be a decorated concordance from .K0;P0/ to .K1;P1/. With
the notation of Section 5D, let W2 denote the 2–handle cobordism from .M1; 1/

to .M2; 2/ obtained by surgery along a framed link L, and let S1 and S2 be
corresponding Seifert surfaces. Then there is an admissible doubly pointed triple
diagram .†;˛;ˇ; ı; w; z/ subordinate to a bouquet for L as follows: If x 2 T˛ \Tˇ
is such that s.x/ 2 Spinc.Y˛;ˇ/ extends to X1 , then for any y 2 T˛ \Tı that appears
with nonzero coefficient in fH1;L.x/, and such that s.y/ 2 Spinc.Y˛;ı/ extends to X3 ,
we have

FS2
.y/� FS1

.x/:

Moreover, if  is a holomorphic triangle connecting x , � (the top-graded generator
of cCF.†;ˇ; ı; w; z/), and y that does not cross w , then

(5-3) FS2
.y/D FS1

.x/� nz. /:

Notice that, in Lemma 5.13, we consider ordinary Spinc structures rather than relative
ones. Recall that relative Spinc structures are defined for sutured cobordisms, which
we denote by the letter W , while ordinary Spinc structures are defined for cobordisms
of 3–manifolds, which we denote by the letter X ; see Figure 1.

Idea of the proof Consider an admissible Heegaard triple diagram .†;˛;ˇ; ı/ sub-
ordinate to a bouquet for a framed link L, as explained in [16, Section 6]. Suppose that
x2T˛\Tˇ is such that s.x/2Spinc.Y˛;ˇ/ extends to X1 . Let � 2Tˇ\Tı be the top-
graded generator of cCF.†;ˇ; ı/, and let y 2T˛\Tı be such that s.y/2 Spinc.Y˛;ı/

extends to X3 . Given a holomorphic triangle  2 �2.x; �;y/, let

c DAS2
.y/�AS1

.x/C nz. /� nw. /:

First, we prove that c is independent of  , x and y . If  1;  2 2 �2.x; �;y/, then
the domain D. 1/�D. 2/ is triply periodic. If we prove that, for every triply periodic
domain D , we have

nz.D/� nw.D/D 0;

then c is independent of  . For this reason, the next subsection is devoted to the study
of triply periodic domains in the setting of Lemma 5.13.

Given two different intersection points x0 2 T˛ \ Tˇ and y 0 2 T˛ \ Tı such that
s.x0/ 2 Spinc.Y˛;ˇ/ extends to X1 and s.y 0/ 2 Spinc.Y˛;ı/ extends to X3 , there
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are domains Dx connecting x with x0 and Dy connecting y with y 0 that do not
pass through w (but might have nontrivial multiplicities at z ). Adding these domains
to D. /, we get a triangle domain connecting x0 , � and y 0 with the same c by
Lemma 5.3.

Then we show that cD 0 by isotoping ˛ to obtain a diagram where such x , y and  as
above exist, and invoke Lemma 3.9. Finally, if  appears in the surgery map fH1;L.x/,
then nw. /D 0 and it has a pseudoholomorphic representative, so nz. /� 0. Conse-
quently, AS2

.y/�AS1
.x/, as desired.

We now explain the missing details in the above outline.

5H Triply periodic domains

The following argument was motivated by the work of Manolescu and Ozsváth [22].

Definition 5.14 A doubly pointed triple Heegaard diagram is a tuple

T D .†;˛;ˇ; ı; w; z/;

where † is a closed, oriented surface, and there is an integer d � 0 such that the sets
˛, ˇ and ı all consist of d pairwise disjoint simple closed curves in † n fw; zg that
are linearly independent in H1.† n fw; zg/.

We denote by Y˛;ˇ , Y˛;ı and Yˇ;ı the 3–manifolds represented by the Heegaard
diagrams .†;˛;ˇ/, .†;˛; ı/ and .†;ˇ; ı/, respectively.

Definition 5.15 Let T D .†;˛;ˇ; ı; w; z/ be a doubly pointed triple Heegaard dia-
gram. Let D1; : : : ;Dl denote the closures of the components of †n .˛[ˇ[ı/. Then
the set of domains in T is

D.T /D ZhD1; : : : ;Dli:

We denote by nz.D/ (respectively nw.D/) the multiplicity of a domain D 2D.T / in
the region Di that contains z (respectively w ).

A triply periodic domain is an element P 2D.T / such that @P is a Z–linear combina-
tion of curves in ˛[ˇ [ ı . We denote the set of triply periodic domains by …˛;ˇ;ı .

A doubly periodic domain is an element P 2 D.T / such that @P is a Z–linear
combination of curves either in ˛[ˇ , or in ˇ [ ı , or in ˛[ ı . We denote the set of
the three types of doubly periodic domains by …˛;ˇ , …˛;ı and …ˇ;ı , respectively.
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The following result states that every triply periodic domain in the diagram describing
the surgery map for W2 can be written as a sum of doubly periodic domains.

Proposition 5.16 Let .†;˛;ˇ; ı/ denote a Heegaard diagram associated to the cobor-
dism X2 . Then

…˛;ˇ;ı D…˛;ˇC…˛;ıC…ˇ;ı:

Given a triple diagram associated to a surgery on an `–component link L, one can
construct a 4–manifold X4 as in [30, Section 2.2]; see [16, Section 5] for the analogous
construction in the sutured setting. The 3–manifolds Y˛;ˇ , Y˛;ı and Yˇ;ı , defined by
the Heegaard diagrams .†;˛;ˇ/, .†;˛; ı/ and .†;ˇ; ı/, respectively, naturally sit in
@X4 . The cobordism X2 corresponding to the attachment of the 2–handles is obtained
by gluing the 4–manifold �X D \`iD1

.S1 �D3/ to X4 along Yˇ;ı Š #`iD1.S
1 �S2/.

Lemma 5.17 [29, Propositions 2.15 and 8.3] Given a pointed triple Heegaard diagram
.†;˛;ˇ; ı; z/, there are isomorphisms

�˛;ˇW …˛;ˇ
'
�!Z˚H2.Y˛;ˇ/ and �˛;ˇ;ıW …˛;ˇ;ı

'
�!Z˚H2.X4/:

In both cases, the projection onto the Z summand is given by nz .

Lemma 5.18 Given a pointed triple Heegaard diagram .†;˛;ˇ; ı; z/, the isomor-
phisms from Lemma 5.17 fit into the commutative diagram

…˛;ˇ
�˛;ˇ

//

��

Z˚H2.Y˛;ˇ/

IdZ˚i�
��

…˛;ˇ;ı
�˛;ˇ;ı

// Z˚H2.X4/

where i W Y˛;ˇ!X4 is the embedding.

Proof Let P be a doubly periodic domain in …˛;ˇ . By construction, the 2–chain
in X� associated to P — thought of as a triply periodic domain — is homotopic, hence
homologous to i�.H.P//, where H.P/ is the 2–chain in Y˛;ˇ obtained by capping
off the boundary of the doubly periodic domain P. Therefore, the projections onto the
second summand commute. The projections onto the Z summands commute because
in both cases they are obtained by taking nz .
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Proof of Proposition 5.16 By Lemmas 5.17 and 5.18, it is sufficient to prove that the
map

�W H2.Y˛;ˇ/˚H2.Y˛;ı/˚H2.Yˇ;ı/!H2.X4/

is surjective.

From the long exact sequence associated to the pair .X4;Y˛;ˇ tY˛;ı tYˇ;ı/, we see
that the map � is surjective if and only if

'W H2.X4;Y˛;ˇ tY˛;ı tYˇ;ı/!H1.Y˛;ˇ tY˛;ı tYˇ;ı/

is injective. From the inclusion of pairs

i˛;ˇ;ıW .X4;Y˛;ˇ tY˛;ı tYˇ;ı/ ,! .X;X1 tX3 t
�X /;

we obtain the commutativity of the following diagram:

H2.X4;Y˛;ˇ tY˛;ı tYˇ;ı/
'
//

.i˛;ˇ;ı/�

w
��

H1.Y˛;ˇ/˚H1.Y˛;ı/˚H1.Yˇ;ı/

.i˛;ˇ/�˚.i˛;ı/�˚.iˇ;ı/�
��

H2.X;X1 tX3 t
bX /

'

z'

// H1.X1/˚H1.X3/˚H1.bX /

where i˛;ˇ , i˛;ı and iˇ;ı are the restrictions of i˛;ˇ;ı to Y˛;ˇ , Y˛;ı and Yˇ;ı , re-
spectively. The map .i˛;ˇ;ı/� is an isomorphism by excision. The fact that z' is an
isomorphism follows from the long exact sequence in homology associated with the
pair .X;X1 tX3 t

�X /, together with the fact that H2.X /DH1.X /D 0.

The commutativity of the above diagram implies that the map ' is injective, and
therefore concludes the proof of the proposition.

Remark 5.19 The important condition in Proposition 5.16 is that the map

�W H2.X1/˚H2.X3/˚H2.�X /!H2.X /

is surjective, which is obviously true as H2.X /D 0. The surjectivity of � is equivalent
to the injectivity of z' , which implies the injectivity of ' .

In Proposition 5.16, we saw that, in the case of a triple diagram describing the 2–handle
attachments in the cobordism X , every triply periodic domain can be expressed as a
sum of doubly periodic domains. We now analyze the doubly periodic domains.

Proposition 5.20 Consider a null-homologous knot K in a 3–manifold Y . Given a
doubly pointed Heegaard diagram .†;˛;ˇ; w; z/ for .Y;K/, every periodic domain P
satisfies

nz.P/� nw.P/D 0:
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Proof Let H.P/ 2 C2.Y / be the 2–cycle obtained by capping off the boundary
of P with the cores of the 3–dimensional 2–handles attached to †� I along ˛� f0g
and ˇ � f1g. Then nz.P/ � nw.P/ is precisely the algebraic intersection number
of H.P/ and K , which is zero as K is null-homologous.

5I Representing homology classes

Let .†;˛;ˇ/ be a Heegaard diagram for a 3–manifold Y . It is straightforward to see
that any element of H1.Y / can be represented by a 1–cycle in †. In this subsection,
we strengthen this result for the case of concordances in the following sense.

Lemma 5.21 Choose an arbitrary handle decomposition of the cobordism X from S3

to S3, and let X2 denote the trace of the 2–handle attachments. Suppose that
.†;˛;ˇ; ı; w; z/ is a doubly pointed triple Heegaard diagram subordinate to a bouquet
for a link L that defines X2 . Then the map

i W H1.†/!H1.Y˛;ˇ/˚H1.Y˛;ı/;

induced by the inclusions † ,! Y˛;ˇ and † ,! Y˛;ı , is surjective.

In other words, given any two classes in the first homologies of Y˛;ˇ and Y˛;ı , there is
a 1–cycle in † that represents both simultaneously.

Proof Consider the following short exact sequence of abelian groups:

0!
H1.†/

h˛;ˇi \ h˛; ıi
!

H1.†/

h˛;ˇi
˚

H1.†/

h˛; ıi
!

H1.†/

h˛;ˇ; ıi
! 0:

The middle term is isomorphic to H1.Y˛;ˇ/˚H1.Y˛;ı/, and the last term is isomorphic
to H1.X4/, where X4 is the 4–manifold obtained by the triangle construction; see [29,
Proposition 8.2]. The short exact sequence above can then be rewritten as

0!
H1.†/

h˛;ˇi \ h˛; ıi

f
!H1.Y˛;ˇ/˚H1.Y˛;ı/

g
!H1.X4/! 0:

If we prove that H1.X4/D 0, then by exactness we have that the map f is surjective.
So the map i in the statement of the lemma is surjective too, because it is obtained by
composing the following two maps:

H1.†/!
H1.†/

h˛;ˇi \ h˛; ıi

f
!H1.Y˛;ˇ/˚H1.Y˛;ı/:
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Therefore, we only need to prove that H1.X4/ D 0. For this purpose, consider the
Mayer–Vietoris long exact sequence associated to the decomposition X D A [B ,
where ADX4 and B DX1 tX3 t

�X . A portion of the long exact sequence is

H2.X /!H1.A\B/ �!H1.A/˚H1.B/!H1.X /:

Since X has trivial first and second homology groups, by exactness the map � gives an
isomorphism

(5-4) H1.Y˛;ˇ/˚H1.Y˛;ı/˚H1.Yˇ;ı/
�
��!H1.X4/˚H1.X1/˚H1.X3/˚H1.�X /:

If ck denotes the number of k–handles in the decomposition of the cobordism X

and d D j˛j, then it is straightforward to check that

H1.Y˛;ˇ/ŠH1.X1/Š Zc1 ;

H1.Yˇ;ı/ŠH1.�X /Š Zd�c2 ;

H1.Y˛;ı/ŠH1.X3/Š Zc3 :

It now follows from (5-4) that H1.X4/D 0, which concludes the proof.

5J Proof of Lemma 5.13

The cobordism W2 can be represented via surgery on a framed `–component link L.
Let T D .†;˛;ˇ; ı; w; z/ be a doubly pointed triple Heegaard diagram subordinate to
a bouquet for the framed link L. As in [16, Section 6], we suppose d D j˛j D jˇj D jıj

and that the curve ıi is an isotopic translate of ˇi for i 2 f`C 1; : : : ; dg.

Following notation established in Section 5D and in Figure 1, let Y˛;ˇ , Y˛;ı and Yˇ;ı
denote the closed manifolds associated to the Heegaard diagrams .†;˛;ˇ/, .†;˛; ı/,
and .†;ˇ; ı/, respectively. Each of these closed manifolds contains a knot, defined
by the basepoints w and z . We denote the knot exteriors — thought of as sutured
manifolds — by M˛;ˇ , M˛;ı and Mˇ;ı . We let  denote the sutures of all three
sutured manifolds.

Let s be the unique Spinc structure on X . By definition, sjX4 is the unique Spinc

structure on X4 that extends to the whole cobordism X . Suppose that x 2 T˛ \Tˇ
and y 2 T˛ \Tı are such that s.x/ D sjY˛;ˇ and s.y/ D sjY˛;ı . Let � 2 Tˇ \Tı
denote the top-graded generator. Consider a Whitney triangle  2�2.x; �;y/, possibly
crossing the basepoints z and w , and let

(5-5) c DAS2
.y/�AS1

.x/C nz. /� nw. /:

Our aim is to show that c D 0. First, we show that c is independent of the triangle  
in �2.x; �;y/ for fixed x and y . Indeed, let  1;  2 2 �2.x; �;y/. The domain
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P D D. 1/�D. 2/ is triply periodic. By Proposition 5.16, P can be expressed as
the sum of three doubly periodic domains P˛;ˇ , Pˇ;ı and P˛;ı .

Since .†;˛;ˇ; ı/ is subordinate to a bouquet for L, the diagrams .†;˛;ˇ; w; z/,
.†;ˇ; ı; w; z/ and .†;˛; ı; w; z/ each define a null-homologous knot in a connected
sum of a number of copies of S1 �S2. Hence, by Proposition 5.20, nz.P /D nw.P /

for every P 2 fP˛;ˇ; Pˇ;ı; P˛;ıg. So nz.P/D nw.P/, and

nz. 1/� nw. 1/D nz. 2/� nw. 2/:

Therefore, c is independent of the triangle  for fixed x and y ; see (5-5).

To check that c is independent of x , we consider another generator x0 such that
s.x0/ D sjY˛;ˇ D s.x/. Since x and x0 represent the same Spinc structure, there
is a Whitney disk � 2 �2.x

0;x/ (that possibly crosses the basepoints w and z ).
If  2 �2.x; �;y/, then � # 2 �2.x

0; �;y/. By Lemma 5.3, the number c defined
in (5-5) is the same for  and � # , so c does not depend on x . A similar reasoning
also proves that c is independent of y .

What remains to prove is that c D 0. We do this by constructing a Whitney triangle  
for which c D 0.

zyi zxi

�i

ˇi ıi

˛i

˛i

�i zyi

zxi

ˇi

ıi

Figure 2: This shows the domain of the Whitney triangle z . The curves
ˇi and ıi , for i 2 f`C 1; : : : ; dg , are small isotopic translates of each other,
and — after isotoping ˛i — we can find a “small” triangle bounded by ˛i , ˇi

and ıi , shown shaded on the left. For i 2 f1; : : : ; `g , after applying finger
moves to the ˛–curves, we can assume that there is a triangle, shown shaded
on the right. The sum of all these triangles is the domain of z .

By isotoping the ˛–curves, we can create intersection points zx in T˛ \Tˇ and zy
in T˛ \Tı such that there is a “small” triangle z 2 �2.zx; �; zy/. The domain of z is
shown in Figure 2. For each i 2 f`C 1; : : : ; dg, we isotope ˛i — pushing the other
˛–curves alongside — until it intersects both ıi and ˇi near �i , and consider the shaded
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triangle shown on the left-hand side of the figure. For each i 2 f1; : : : ; `g, after some
finger moves on the ˛–curves — again, pushing the other ˛–curves along — we can
assume that there is a small triangle near each intersection point �i D ˇi\ıi , as shown
shaded on the right-hand side of the figure. The sum of all these small triangles is
the domain of the Whitney triangle z . We denote the generators connected by z 
by zx 2 T˛;ˇ and zy 2 T˛;ı ; ie z 2 �2.zx; �; zy/.

The Whitney triangle z satisfies nz. z / D nw. z / D 0, but the constant c is not
necessarily defined for it, because s.zx/ and s. zy/ might not coincide with sjY˛;ˇ
and sjY˛;ı , respectively, where s 2 Spinc.X / is the unique Spinc structure; see (5-5).
The next lemma proves that we can replace z with a Whitney triangle  for which
the constant c is defined.

Lemma 5.22 We can further isotope the ˛–curves so that there is a Whitney triangle  
in �2.x; �;y/ satisfying

� nz. /D nw. /D 0,

� s.x/D sjY˛;ˇ and s.y/D sjY˛;ı .

Proof Given generators x0 D .x0
1
; : : : ;x0

d
/ and x00 D .x00

1
; : : : ;x00

d
/ in T˛ \ Tˇ ,

Ozsváth and Szabó associate to them [29, Definition 2.11] a class ".x0;x00/2H1.Y˛;ˇ/.
Choose 1–chains a� ˛ and b � ˇ such that

@aD @b D x001 C � � �Cx00d �x01� � � � �x0d :

Then a � b represents an element of H1.†/ whose image in H1.Y˛;ˇ/ under the
inclusion map is ".x0;x00/. Ozsváth and Szabó proved [29, Lemma 2.19] that

(5-6) s.x00/� s.x0/D PD.".x0;x00//:

Consider the Whitney triangle z 2 �2.zx; �; zy/ defined above, and whose domain is
shown in Figure 2. Its domain is the disjoint union of d triangles zT1; : : : ; zTd .

We define the homology classes h1 2H1.Y˛;ˇ/ and h2 2H1.Y˛;ı/ as

h1 D PD.sjY˛;ˇ � s.zx//;(5-7a)

h2 D PD.sjY˛;ı � s. zy//;(5-7b)

where s is the unique Spinc structure on X . By Lemma 5.21, there is a homology
class h 2H1.†/ such that i.h/D .h1; h2/; ie h represents h1 in H1.Y˛;ˇ/ and h2

in H1.Y˛;ı/. We can represent h as m�, where � is a simple closed curve on † that
satisfies the following conditions:

� � intersects the triangle zT1 as on the left-hand side of Figure 3,
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� � is disjoint from all the triangles zT2; : : : ; zTd , and

� � is disjoint from the basepoints z and w .

�

zy1 zT1 zx1

˛1

�1

ˇ1 ı1

y1 T1

�1

x1 possible other
˛–curves

Figure 3: The pictures above show how to modify the Whitney triangle z 
defined in Figure 2 to obtain a Whitney triangle  satisfying the requirements
of Lemma 5.22. The picture on the left shows the loop � near the triangle zT1 .
The picture on the right shows the new triangle T1 in the triple Heegaard
diagram obtained after performing a finger move on the ˛–curves along � .

If we perform a finger move on the ˛–curves along the loop m�, the result will
look like the right-hand side of Figure 3. If x1 and y1 are as on the right-hand side
of Figure 3, we define x D .x1; zx2; : : : ; zxd / and y D .y1; zy2; : : : ; zyd /. Notice that,
by construction,

(5-8) ".zx;x/D h1 and ". zy ;y/D h2:

Let  be a Whitney triangle with domain T1 t
zT2 t � � � t

zTd , where T1 is the shaded
triangle on the right-hand side of Figure 3. By construction, nz. / D nw. / D 0.
Furthermore, by (5-6), (5-8) and (5-7), we have

s.x/D s.zx/CPD.".zx;x//

D s.zx/CPD.h1/

D s.zx/C .sjY˛;ˇ
� s.zx//D sjY˛;ˇ :

Analogously, we have s.y/D sjY˛;ı .

Before showing that c D 0 for the triangle  2 �2.x; �;y/ constructed above, we
prove that the relative Spinc structure sı. / 2 Spinc.W2/ extends to a relative Spinc

structure on W .

Recall that Y1 D Y˛;ˇ is obtained from Y0 by performing surgery along some framed
0–spheres. The belt circles of the 1–handles involved give rise to embedded 2–spheres
O1; : : : ;Op � Y1 . Similarly, Y2 D Y˛;ı is obtained from Y3 by surgery along some
framed 0–spheres, giving rise to embedded spheres O 0

1
; : : : ;O 0s � Y2 . In Lemma 5.22,
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we achieved that s.x/ D sjY˛;ˇ and s.y/ D sjY˛;ı . This implies that s.x/ extends
to X1 , or equivalently, that hc1.s.x//; ŒOi �i D 0 for every i 2 f1; : : : ;pg. Similarly,
hc1.s.y//; ŒO

0
j �i D 0 for every j 2 f1; : : : ; sg. However

hc1.s.x//; ŒOi �i D hc1.s
ı.x//; ŒOi �i D hc1.s

ı.x/; t/; ŒOi �i;

as sı.x/ and s.x/ are represented by the same vector field on M1 � Y1 . Since M0 is
obtained from M1 by compressing the 2–spheres O1; : : : ;Op , the equality

hc1.s
ı.x/; t/; ŒOi �i D 0

implies sı.x/ extends to sı
1
2Spinc.W1/. Similarly, sı.y/ extends to sı

3
2Spinc.W3/.

The Mayer–Vietoris sequence now implies that there is a Spinc structure sı2Spinc.W/

such that sıjW1
D sı

1
, sıjW2

D sı. / and sıjW3
D sı

3
.

We are now ready to prove that, for the Whitney triangle  constructed above, c D 0.
Recall that, by definition,

c DAS2
.y/�AS1

.x/D hc2.s
ı.y/; t/; ŒS2�i � hc1.s

ı.x/; t/; ŒS1�iI

see (5-5), Definition 5.1 and Remark 5.2. Since  is a Whitney triangle connecting
x , � and y , we have that sı. /jM1

D sı.x/ and sı. /jM2
D sı.y/, and therefore

c D hc1.s
ı. /; t/; ŒS2�i � hc1.s

ı. /; t/; ŒS1�i:

Notice that we can omit the restrictions of the (relative) Spinc structures by the naturality
of Chern classes.

Now the relative Spinc structure sı. / extends to some relative Spinc structure
sı 2 Spinc.W/. Then, by Lemmas 5.8 and 5.11, we have

c D hc1.s
ı; t/; ŒS3�i � hc1.s

ı; t/; ŒS0�i:

From Lemma 3.9, it finally follows that c D 0.

We can now conclude the proof of Lemma 5.13. By (5-5), for any Whitney triangle  
in �2.x; �;y/, where x 2 T˛ \Tˇ and y 2 T˛ \Tı are such that s.x/ and s.y/

extend to X1 and X3 , respectively, we have

AS2
.y/�AS1

.x/C nz. /� nw. /D 0:

If  contributes to the surgery map fH1;L.x/, then nw. /D 0, and it has a pseudo-
holomorphic representative, so nz. / � 0. Consequently, AS2

.y/ � AS1
.x/, as

desired.
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5K Naturality maps

Recall from [17] that, given two admissible Heegaard diagrams H and H0 for the same
3–manifold Y , there is a naturality map

fH;H0 W cCF.H/! cCF.H0/;

which is the composition of maps associated to isotopies of the attaching sets, han-
dleslides, (de)stabilisations, and diffeomorphisms of the Heegaard surface isotopic to
the identity in Y . On the homology, it induces an isomorphism

FH;H0 WbHF.H/!bHF.H0/

that is independent of the sequence of Heegaard moves.

In our case, H and H0 are doubly pointed Heegaard diagrams, which define the same
decorated knot .Y;K;P /. Together with Dylan Thurston, the first author proved [17,
Proposition 2.37] that H and H0 can be connected by a sequence of Heegaard moves
that do not cross the basepoints w and z . If we forget about the z basepoint, this
sequence induces the naturality map fH;H0 W cCF.H/!cCF.H0/ above. As we explained,
the z basepoints on H and H0 induce filtrations on cCF.H/ and cCF.H0/. It follows
from the work of Ozsváth and Szabó [28] and Rasmussen [31] that, if fH;H0 is the map
associated to either an isotopy, a handleslide, a (de)stabilization, or a diffeomorphism
of the Heegaard surface isotopic to the identity in Y , then it preserves the knot filtration.
If fH;H0 is an isotopy map or a handleslide map, then the map induced on the E1 page
is the corresponding naturality map FH;H0 on bHFK ; ie it is the map obtained by
counting all holomorphic triangles that do not cross z . If fH;H0 is a (de)stabilization
or diffeomorphism map, then it is an isomorphism of filtered complexes.

As the above result is only outlined in the works of Ozsváth and Szabó [28] and
Rasmussen [31], we provide a bit more detail. With the techniques of this paper, we
can prove the following analogue of Lemma 5.13.

Lemma 5.23 Let K be a null-homologous knot in Y D #p
iD1

.S1 � S2/. Choose
a Seifert surface S for K . Suppose that H and H0 are admissible doubly pointed
Heegaard diagrams for .Y;K;P / that only differ by an isotopy or a handleslide.

Given an admissible doubly pointed triple diagram .†;˛;ˇ; ı; w; z/ for the Heegaard
move H!H0, if x 2T˛\Tˇ , then for any y 2T˛\Tı that has nontrivial coefficient
in the expansion of fH;H0.x/, we have that

FS .y/� FS .x/:
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Furthermore, if  is a holomorphic triangle connecting x 2 T˛ \Tˇ , � 2 Tˇ \Tı
(the top-dimensional generator of cCF.†;ˇ; ı; w; z/) and y 2 T˛ \Tı that does not
cross w , then

(5-9) FS .y/D FS .x/� nz. /:

Remark 5.24 The (de)stabilization and diffeomorphism maps do not appear in the
statement of Lemma 5.23 because they are not triangle maps. They are already isomor-
phisms at the level of filtered chain complexes.

Idea of the proof As in the proof of Lemma 5.13, we let

c DAS .y/�AS .x/� nw. /C nz. /;

and prove that this is independent of  , x and y . The main differences from the proof
of Lemma 5.13 are the following:

Triply periodic domains We closely follow the proof of Proposition 5.16. In this
case, X Š Y � I, the boundary of the 4–manifold X4 consists of Y tY tYˇ;ı , and
the cobordisms X1 and X3 are replaced by identity cobordisms Y � I. Finally, the
proof of the injectivity of ' follows from the surjectivity of the map

�W H2.Y � I/˚H2.Y � I/˚H2.�X /!H2.X /;

as noted in Remark 5.19.

Doubly periodic domains One can use Proposition 5.20 for the two copies of Y and
for Yˇ;ı .

Proving that c D 0 This is easier than in the case of the 2–handle maps, because we
already know that the naturality map preserves the graded Euler characteristic, and this
forces the grading shift c to be 0. Also, as X1 and X3 are products, Spinc structures
automatically extend to them, hence we do not need to isotope the ˛–curves.

5L Proof of Theorem 5.4

We are now ready to prove Theorem 5.4. In the proof we use the notation introduced
in Section 5D, and we assume that the gluing map is the identity map, as explained in
Section 5C.

Suppose that x is a generator of cCF.H0/ such that fC.x/¤ 0. Let y be a generator
of cCF.H2

S/ that appears in the expression of fC.x/ with nonzero coefficient. Then there
exist generators x02cCF.H0

P /, x002cCF.H1/, y 002cCF.H1
L/ and y 02cCF.H2/ that ap-

pear with nonzero coefficient in fH0;P .x/, fH0
P ;H1

.x0/, fH1;L.x
00/ and fH1

L;H2.y 00/,
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respectively, and such that y appears with nonzero coefficient in fH2;S.y
0/. Notice

that, by construction, s.x00/ extends to X1 and s.y 00/ extends to X3 .

By Lemma 5.23, we know that the naturality maps preserve the knot filtration, and
by Corollaries 5.10 and 5.12 so do the maps fH0;P and fH2;S . Finally, Lemma 5.13
proves that FS2

.y 00/� FS1
.x00/. By putting all these together, we obtain that

(5-10) FS3
.y/D FS2

.y 0/� FS2
.y 00/� FS1

.x00/� FS1
.x0/D FS0

.x/:

Thus fC is a map of filtered complexes and so, by Remark 4.6, it induces a morphism
of spectral sequences.

Furthermore, each of the maps fH0;P , fH0
P ;H1 , fH1;L , fH1

L;H2 and fH2;S is a map
of filtered complexes. The map induced by fC on the E1 page is the composition of
the maps induced by each of the above maps on the E1 page.

We now consider the case when the inequalities in (5-10) are all equalities. Lemmas 5.8
and 5.11 imply that the maps induced by fH0;P and fH2;S on the E1 page are the 1–
and 3–handle maps for bHFK . As for the 2–handle map fH1;L , by (5-3) in Lemma 5.13,
we have that F.y 00/D F.x00/ if and only if there is a pseudoholomorphic triangle  
connecting x00 , � and y 00 such that nw. / D nz. / D 0, and in this case all such
holomorphic triangles satisfy this equality. Hence, the map induced by fH1;L on
the E1 page is the 2–handle map for bHFK . Finally, it follows from the discussion
in Section 5K that the maps induced on the E1 page by the naturality maps for cCF
are the naturality maps for bHFK . Alternatively, one can use (5-9) in Lemma 5.23 and
argue in the same way as for the 2–handle maps.

This immediately implies that the map induced by fC on the E1 page is obtained
by counting (for the naturality maps and the 2–handle map) the pseudoholomorphic
triangles that do not cross w and z , and so it is FC .

On the other hand, the map induced by fC on the total homology is given by count-
ing all holomorphic triangles that do not cross w but might cross z . This is pre-
cisely the map �FX W

bHF.S3/ !bHF.S3/ induced by the cobordism X . Because
H1.X /DH2.X /D 0, we have �FX D IdbHF.S3/

by [26, Lemma 3.4].

6 Concordance maps preserve the homological grading

In this section, we show that concordance maps also behave well with respect to another
grading of cCF , namely the homological grading.

Let H be an admissible pointed Heegaard diagram for the closed, connected, oriented,
based 3–manifold .Y; w/, together with a Spinc structure s 2 Spinc.Y / such that
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c1.s/ 2H 2.Y / is torsion. Ozsváth and Szabó [29, Section 4] showed that cCF.H; s/
admits a relative Z–grading. For generators x;y 2 cCF.H; s/ and � 2 �2.x;y/, we
have

(6-1) gr.x;y/D �.�/� 2nw.�/:

They showed [30, Theorem 7.1] that this can be lifted to an absolute Q–grading egr , in
the sense that gr.x;y/D egr.x/� egr.y/. Such a grading is called the Maslov grading
or homological grading.

Example 6.1 If Y D S3 with its unique Spinc structure s0 , and if H is a Heegaard
diagram of Y , then on cCF.H; s0/ the absolute Q–grading is actually an absolute
Z–grading. The generator of bHF.S3; s0/Š Z2 is homogeneous of grading zero.

More generally, if Y D #k
iD1.S

1�S2/ with Heegaard diagram H , and s0 2 Spinc.Y /

is such that c1.s0/D 0, then egr is an absolute Z–grading on cCF.H; s0/.

The main result of this section is the following.

Theorem 6.2 Let C be a decorated concordance from .S3;K0;P0/ to .S3;K1;P1/,
and let Hi be an admissible doubly pointed diagram of .S3;Ki ;Pi/ for i 2 f0; 1g.
Then, the chain map

fC W cCF.H0/! cCF.H1/

preserves the absolute homological grading; that is, if x 2cCF.H0/ is egr–homogeneous,
so is fC.x/, and if fC.x/¤ 0, then

egr.fC.x//D egr.x/:

Remark 6.3 Notice that the statement of Theorem 6.2 is stronger than the fact that
fC preserves the Maslov filtration. We actually claim that the Maslov grading is not
decreased by fC .

Idea of the proof We proceed similarly to the proof of Theorem 5.4, and use the
notation from Section 5D and Figure 1. As the diffeomorphism D constructed in
Section 5C induces a homomorphism D� that preserves the homological grading, we
can assume the gluing map is trivial and we are dealing with a special cobordism.

First, we prove that, in the right Spinc structure, the maps fH0;P , fH0
P ;H1 , fH1;L ,

fH1
L;H2 and fH2;S each preserve the relative Maslov grading gr. This is only implicit

in the work of Ozsváth and Szabó [30], so we provide more detail. Then we show that
the absolute grading shift of fC , which is the composition of all the above maps, is
zero.
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For the 1– and 3–handle maps fH0;P and fH2;S , it is straightforward to check that the
relative Maslov grading is preserved using (6-1) above.

Now consider the 2–handle map fH1;L . Let .†;˛;ˇ; ı; w; z/ be an admissible triple
Heegaard diagram subordinate to a bouquet for L. For generators x 2 T˛ \ Tˇ
and y 2 T˛ \Tı such that s.x/ D sjY˛;ˇ and s.y/ D sjY˛;ı , where s denotes the
unique Spinc structure on X , and for every Whitney triangle  2 �2.x; �;y/, we let

d D egr.y/� egr.x/C�. /� 2nw. /:

We show that d is independent of  , x and y . Since the triangles  contributing
to fH1;L have �. /D 0 and nw. /D 0, it follows that the absolute grading is shifted
by d , so the relative grading is preserved.

We already know from the work of Ozsváth and Szabó [29] that the naturality maps
fH0

P ;H1 and fH1
L;H2 preserve the relative homological grading gr. Alternatively, this

can also be shown using the techniques of Section 5K.

Finally, fC , which is the composition of all the above maps, preserves the relative
homological grading, or equivalently, it shifts the absolute homological grading by some
constant e . This implies that, for every r 2N , the map Er .fC/ shifts the homological
grading by the same constant e independent of r . Since we know that the map in
total homology is IdbHF.S3/

and preserves the absolute grading by [26, Lemma 3.4], it
immediately follows that e D 0.

The rest of this section is devoted to filling in the details of the above outline.

6A Spinc structures

Let s be the unique Spinc structure on X . Then

fC D fC; s D fH2;S; s ı � � � ıfH0;P; s;

where the restrictions of s are omitted for the sake of clarity.

So it suffices to consider the above maps in the Spinc structure s. In the rest of the
section, we will focus on the maps fH2;S; s; : : : ; fH0;P; s , and for simplicity, we will
denote the restrictions of s by the same letter.

6B 1– and 3–handles

The 1–handle map fH0;P; s satisfies the following.

Geometry & Topology, Volume 20 (2016)



Concordance maps in knot Floer homology 3669

Lemma 6.4 Let x00; zx00 2 cCF.H0; s/ be generators. Then

gr.x00; zx00/D gr.fH0;P;s.x
00/; fH0;P;s.zx

00//I

ie the relative homological grading is preserved under the 1–handle map.

Proof Let � 2 �2.x
00; zx00/. Then the domain of � also represents a Whitney disk

between fH0;P .x
00/ and fH0;P .zx

00/ in the Heegaard diagram H0
P that we also denote

by � . By (6-1), we have

gr.x00; zx00/D �.�/� 2nw.�/D gr.fH0;P;s.x
00/; fH0;P;s.zx

00//:

A dual argument gives the following result for the 3–handle map fH2;S; s .

Lemma 6.5 Let y 0; zy 0 2 cCF.H2; s/ be generators such that fH2;S; s.y
0/ ¤ 0 and

fH2;S; s. zy
0/¤ 0. Then

gr.y 0; zy 0/D gr.fH2;S; s.y
0/; fH2;S; s. zy

0//I

ie the relative homological grading is preserved under the 3–handle map.

6C 2–handles

For 2–handles, we have the following.

Lemma 6.6 Let x; zx 2 cCF.H1/ be generators such that s.x/ D s.zx/ D s. Then
fH1;L; s.x/ and fH1;L; s.zx/ are egr–homogeneous, and if they are nonzero, then

gr.x; zx/D gr.fH1;L; s.x/; fH1;L; s.zx//:

Proof For x 2 cCF.H1/, y 2 cCF.H1
L/ and  2 �2.x; �;y/ such that s. /D s, let

(6-2) d D egr.y/� egr.x/C�. /� 2nw. /:

First, we check that d is independent of  . As in the proof of Lemma 5.13, it suffices
to show that, for every triply periodic domain P,

(6-3) �.P/D 2nw.P/:

Since, by Proposition 5.16, every triply periodic domain is the sum of doubly periodic
domains, it is sufficient to prove (6-3) in the case of doubly periodic domains in Heegaard
diagrams of Y˛;ˇ , Y˛;ı and Yˇ;ı .

Consider, for example, Y˛;ˇ and z2T˛\Tˇ , with a periodic domain P 2…˛;ˇ based
at z . As s.z/ extends to the cobordism X1 , we see that c1.s.z// vanishes on the belt
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spheres of the 1–handles. Furthermore, since H.P/ 2H2.Y / is a linear combination
of the belt spheres, we obtain that

hc1.s.z//;H.P/i D 0:

By the work of Ozsváth and Szabó [29, Theorem 4.9] and Lipshitz [20, Lemma 4.10],

�.P/D hc1.s.z//;H.P/iC 2nw.P/;

and the result follows. This proves that d is independent of  .

Next, we check that d is independent of x and y . Let zx be another generator
of cCF.H1/ such that s.zx/ D s. Then there is a Whitney disk � 2 �2.zx;x/, hence
� # 2 �2.zx; �;y/. Then, by (6-1),

d D egr.y/�egr.x/C�. /� 2nw. /

D egr.y/�egr.x/C�. /� 2nw. /C .egr.x/�egr.zx/C�.�/� 2nw.�//

D egr.y/�egr.zx/C�.� # /� 2nw.� # /:

Thus, d is independent of x . An analogous argument shows independence of y .

Finally, all the holomorphic triangles that appear in the definition of the map fH1;L; s

satisfy �. /D 0 and nw. /D 0. Then, it follows from (6-2) that fH1;L; s increases
the absolute grading egr by d . In particular, it preserves the relative grading gr.

6D Naturality maps

We already know from the work of Ozsváth and Szabó [29] that the naturality maps
preserve the Maslov grading. Alternatively, one can prove that the handleslide and
isotopy maps preserve the Maslov grading using the techniques of Lemma 6.6. The
(de)stabilization maps are already isomorphisms on the chain level.

6E Proof of Theorem 6.2

As explained in Section 6A,

fC D fH2;S; s ıfH1
L;H2;s ıfH1;L; s ıfH0

P ;H1;s ıfH0;P; s:

All the above maps preserve the relative Maslov grading by Lemmas 6.4, 6.5 and 6.6,
so fC shifts the absolute Maslov grading by some constant e . It follows that the maps
induced between the spectral sequences Er .fC/ shift the absolute Maslov grading by
the same constant e . On the other hand, the map in total homology is IdbHF.S3/

, which
is homogeneous of degree 0, so we obtain that e D 0.
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