Volume 20, issue 6 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 2, 549–862
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Concordance maps in knot Floer homology

András Juhász and Marco Marengon

Geometry & Topology 20 (2016) 3623–3673
Abstract

We show that a decorated knot concordance C from K to K induces a homomorphism FC on knot Floer homology that preserves the Alexander and Maslov gradings. Furthermore, it induces a morphism of the spectral sequences to HF̂(S3)2 that agrees with FC on the E1 page and is the identity on the E page. It follows that FC is nonvanishing on HFK̂0(K,τ(K)). We also obtain an invariant of slice disks in homology 4–balls bounding S3.

If C is invertible, then FC is injective, hence

dimHFK̂j(K,i) dimHFK̂j(K,i)

for every i,j . This implies an unpublished result of Ruberman that if there is an invertible concordance from the knot K to K, then g(K) g(K), where g denotes the Seifert genus. Furthermore, if g(K) = g(K) and K is fibred, then so is K.

Keywords
concordance, knot Floer homology, genus
Mathematical Subject Classification 2010
Primary: 57M27, 57R58
References
Publication
Received: 18 September 2015
Revised: 25 January 2016
Accepted: 24 February 2016
Published: 21 December 2016
Proposed: Ciprian Manolescu
Seconded: Peter Teichner, Ronald Stern
Authors
András Juhász
Mathematical Institute
University of Oxford
Andrew Wiles Building, Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG
United Kingdom
http://www.maths.ox.ac.uk/people/andras.juhasz
Marco Marengon
Department of Mathematics
Imperial College London
180 Queen’s Gate
London
SW7 2AZ
United Kingdom
http://www.imperial.ac.uk/people/m.marengon13