Volume 21, issue 1 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Dominating surface group representations and deforming closed anti-de Sitter $3$–manifolds

Nicolas Tholozan

Geometry & Topology 21 (2017) 193–214
Bibliography
1 T Barbot, F Bonsante, J Danciger, W M Goldman, F Guéritaud, F Kassel, K Krasnov, J M Schlenker, A Zeghib, Some open questions on anti-de Sitter geometry, preprint (2012) arXiv:1205.6103v1
2 Y Carrière, Autour de la conjecture de L Markus sur les variétés affines, Invent. Math. 95 (1989) 615 MR979369
3 K Corlette, Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361 MR965220
4 J Danciger, Ideal triangulations and geometric transitions, J. Topol. 7 (2014) 1118 MR3286899
5 G D Daskalopoulos, R A Wentworth, Harmonic maps and Teichmüller theory, from: "Handbook of Teichmüller theory, I", IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc. (2007) 33 MR2349668
6 B Deroin, N Tholozan, Dominating surface group representations by Fuchsian ones, Int. Math. Res. Not. 2016 (2016) 4145 MR3544632
7 S K Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987) 127 MR887285
8 J Eells Jr., J H Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109 MR0164306
9 W M Goldman, Discontinuous groups and the Euler class, PhD thesis, University of California, Berkeley (1980) MR2630832
10 W M Goldman, Nonstandard Lorentz space forms, J. Differential Geom. 21 (1985) 301 MR816674
11 F Guéritaud, F Kassel, Maximally stretched laminations on geometrically finite hyperbolic manifolds, preprint (2013) arXiv:1307.0250
12 F Guéritaud, F Kassel, M Wolff, Compact anti–de Sitter 3–manifolds and folded hyperbolic structures on surfaces, Pacific J. Math. 275 (2015) 325 MR3347373
13 N J Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 MR887284
14 F Kassel, Quotients compacts d’espaces homogènes réels ou p–adiques, PhD thesis, Université Paris-Sud 11 (2009)
15 B Klingler, Complétude des variétés lorentziennes à courbure constante, Math. Ann. 306 (1996) 353 MR1411352
16 R S Kulkarni, F Raymond, 3–dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom. 21 (1985) 231 MR816671
17 F Labourie, Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc. 111 (1991) 877 MR1049845
18 F Salein, Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble) 50 (2000) 257 MR1762345
19 J H Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. 11 (1978) 211 MR510549
20 R Schoen, S T Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978) 265 MR0478219
21 N Tholozan, Uniformisation des variétés pseudo-riemanniennes localement homogènes, PhD thesis, Université de Nice Sophia-Antipolis (2014)
22 W P Thurston, Minimal stretch maps between hyperbolic surfaces, preprint (1986) arXiv:math/9801039
23 A J Tromba, Teichmüller theory in Riemannian geometry, Birkhäuser (1992) 220 MR1164870
24 R A Wentworth, Energy of harmonic maps and Gardiner’s formula, from: "In the tradition of Ahlfors–Bers, IV" (editors D Canary, J Gilman, J Heinonen, H Masur), Contemp. Math. 432, Amer. Math. Soc. (2007) 221 MR2342819
25 M Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449 MR982185
26 S A Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom. 25 (1987) 275 MR880186