Volume 21, issue 1 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
The character of the total power operation

Tobias Barthel and Nathaniel Stapleton

Geometry & Topology 21 (2017) 385–440
Bibliography
1 J F Adams, Maps between classifying spaces, II, Invent. Math. 49 (1978) 1 MR511095
2 J F Adams, M F Atiyah, K–theory and the Hopf invariant, Quart. J. Math. Oxford Ser. 17 (1966) 31 MR0198460
3 M Ando, Isogenies of formal group laws and power operations in the cohomology theories En, Duke Math. J. 79 (1995) 423 MR1344767
4 M Ando, M J Hopkins, N P Strickland, The sigma orientation is an H map, Amer. J. Math. 126 (2004) 247 MR2045503
5 T Barthel, N Stapleton, Centralizers in good groups are good, Algebr. Geom. Topol. 16 (2016) 1453 MR3523046
6 R R Bruner, J P May, J E McClure, M Steinberger, H ring spectra and their applications, 1176, Springer (1986) MR836132
7 H Carayol, Nonabelian Lubin–Tate theory, from: "Automorphic forms, Shimura varieties, and L–functions, II" (editors L Clozel, J S Milne), Perspect. Math. 11, Academic Press (1990) 15 MR1044827
8 E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 MR2030586
9 V G Drinfel’d, Elliptic modules, Mat. Sb. 94(136) (1974) 594 MR0384707
10 N Ganter, Global Mackey functors with operations and n–special lambda rings, preprint (2013) arXiv:1301.4616
11 P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151 MR2125040
12 M J Hopkins, N J Kuhn, D C Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000) 553 MR1758754
13 J Lubin, J Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966) 49 MR0238854
14 P Nelson, On the Morava E–theory of wreath products of symmetric groups, in preparation
15 C Rezk, Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations" (editors M Mahowald, S Priddy), Contemp. Math. 220, Amer. Math. Soc. (1998) 313 MR1642902
16 C Rezk, The units of a ring spectrum and a logarithmic cohomology operation, J. Amer. Math. Soc. 19 (2006) 969 MR2219307
17 C Rezk, Power operations for Morava E-theory of height 2 at the prime 2, preprint (2008) arXiv:0812.1320
18 C Rezk, Power operations in Morava E–theory : structure and calculations, preprint (2013)
19 J Rognes, Galois extensions of structured ring spectra: stably dualizable groups, 898, Amer. Math. Soc. (2008) MR2387923
20 T M Schlank, N Stapleton, A transchromatic proof of Strickland’s theorem, Adv. Math. 285 (2015) 1415 MR3406531
21 B Schuster, Morava K–theory of groups of order 32, Algebr. Geom. Topol. 11 (2011) 503 MR2783236
22 N Stapleton, An introduction to HKR character theory, preprint (2013) arXiv:1308.1414
23 N Stapleton, Transchromatic generalized character maps, Algebr. Geom. Topol. 13 (2013) 171 MR3031640
24 N P Strickland, Finite subgroups of formal groups, J. Pure Appl. Algebra 121 (1997) 161 MR1473889
25 N P Strickland, Morava E–theory of symmetric groups, Topology 37 (1998) 757 MR1607736
26 A V Zelevinsky, Representations of finite classical groups: a Hopf algebra approach, 869, Springer (1981) MR643482
27 Y Zhu, The power operation structure on Morava E–theory of height 2 at the prime 3, Algebr. Geom. Topol. 14 (2014) 953 MR3160608