Volume 21, issue 1 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Other MSP Journals
The character of the total power operation

Tobias Barthel and Nathaniel Stapleton

Geometry & Topology 21 (2017) 385–440
Bibliography
1 J F Adams, Maps between classifying spaces, II, Invent. Math. 49 (1978) 1 MR511095
2 J F Adams, M F Atiyah, K–theory and the Hopf invariant, Quart. J. Math. Oxford Ser. 17 (1966) 31 MR0198460
3 M Ando, Isogenies of formal group laws and power operations in the cohomology theories En, Duke Math. J. 79 (1995) 423 MR1344767
4 M Ando, M J Hopkins, N P Strickland, The sigma orientation is an H map, Amer. J. Math. 126 (2004) 247 MR2045503
5 T Barthel, N Stapleton, Centralizers in good groups are good, Algebr. Geom. Topol. 16 (2016) 1453 MR3523046
6 R R Bruner, J P May, J E McClure, M Steinberger, H ring spectra and their applications, 1176, Springer (1986) MR836132
7 H Carayol, Nonabelian Lubin–Tate theory, from: "Automorphic forms, Shimura varieties, and L–functions, II" (editors L Clozel, J S Milne), Perspect. Math. 11, Academic Press (1990) 15 MR1044827
8 E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 MR2030586
9 V G Drinfel’d, Elliptic modules, Mat. Sb. 94(136) (1974) 594 MR0384707
10 N Ganter, Global Mackey functors with operations and n–special lambda rings, preprint (2013) arXiv:1301.4616
11 P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151 MR2125040
12 M J Hopkins, N J Kuhn, D C Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000) 553 MR1758754
13 J Lubin, J Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966) 49 MR0238854
14 P Nelson, On the Morava E–theory of wreath products of symmetric groups, in preparation
15 C Rezk, Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations" (editors M Mahowald, S Priddy), Contemp. Math. 220, Amer. Math. Soc. (1998) 313 MR1642902
16 C Rezk, The units of a ring spectrum and a logarithmic cohomology operation, J. Amer. Math. Soc. 19 (2006) 969 MR2219307
17 C Rezk, Power operations for Morava E-theory of height 2 at the prime 2, preprint (2008) arXiv:0812.1320
18 C Rezk, Power operations in Morava E–theory : structure and calculations, preprint (2013)
19 J Rognes, Galois extensions of structured ring spectra: stably dualizable groups, 898, Amer. Math. Soc. (2008) MR2387923
20 T M Schlank, N Stapleton, A transchromatic proof of Strickland’s theorem, Adv. Math. 285 (2015) 1415 MR3406531
21 B Schuster, Morava K–theory of groups of order 32, Algebr. Geom. Topol. 11 (2011) 503 MR2783236
22 N Stapleton, An introduction to HKR character theory, preprint (2013) arXiv:1308.1414
23 N Stapleton, Transchromatic generalized character maps, Algebr. Geom. Topol. 13 (2013) 171 MR3031640
24 N P Strickland, Finite subgroups of formal groups, J. Pure Appl. Algebra 121 (1997) 161 MR1473889
25 N P Strickland, Morava E–theory of symmetric groups, Topology 37 (1998) 757 MR1607736
26 A V Zelevinsky, Representations of finite classical groups: a Hopf algebra approach, 869, Springer (1981) MR643482
27 Y Zhu, The power operation structure on Morava E–theory of height 2 at the prime 3, Algebr. Geom. Topol. 14 (2014) 953 MR3160608