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Maximally stretched laminations on
geometrically finite hyperbolic manifolds

FRANÇOIS GUÉRITAUD

FANNY KASSEL

Let �0 be a discrete group. For a pair .j; �/ of representations of �0 into PO.n; 1/D
Isom.Hn/ with j geometrically finite, we study the set of .j; �/–equivariant Lips-
chitz maps from the real hyperbolic space Hn to itself that have minimal Lipschitz
constant. Our main result is the existence of a geodesic lamination that is “maximally
stretched” by all such maps when the minimal constant is at least 1 . As an application,
we generalize two-dimensional results and constructions of Thurston and extend his
asymmetric metric on Teichmüller space to a geometrically finite setting and to
higher dimension. Another application is to actions of discrete subgroups � of
PO.n; 1/�PO.n; 1/ on PO.n; 1/ by right and left multiplication: we give a double
properness criterion for such actions, and prove that for a large class of groups �
the action remains properly discontinuous after any small deformation of � inside
PO.n; 1/�PO.n; 1/ .

20H10, 30F60, 32Q05, 53A35, 57S30

1 Introduction

For n � 2, let G be the group PO.n; 1/ D O.n; 1/=f˙1g of isometries of the real
hyperbolic space Hn . In this paper we consider pairs .j; �/ of representations of a
discrete group �0 into G with j injective and discrete, and j.�0/nHn geometrically
finite, and we investigate the set of .j; �/–equivariant Lipschitz maps Hn!Hn with
minimal Lipschitz constant. We develop applications, both to properly discontinuous
actions on G and to the geometry of some generalized Teichmüller spaces (via a
generalization of Thurston’s asymmetric metric). Some of our main results, in particular
Theorems 1.8 and 1.11, Corollary 1.12, and Theorem 7.1, were initially obtained in
Kassel [23, Chapter 5] in the case nD 2 with j convex cocompact.

1.1 Equivariant maps of Hn with minimal Lipschitz constant

Let �0 be a discrete group. We say that a representation j 2 Hom.�0; G/ of �0
in G D PO.n; 1/ is convex cocompact (resp. geometrically finite) if it is injective
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with a discrete image j.�0/ � G and if the convex core of the hyperbolic orbifold
M WD j.�0/nHn is compact (resp. has finite m–volume, where m�n is its dimension).
In this case, the group �0 identifies with the (orbifold) fundamental group of M.
Parabolic elements in j.�0/ correspond to cusps in M; they do not exist if j is convex
cocompact. We refer to Section 2.1 for full definitions.

Let j 2 Hom.�0; G/ be geometrically finite and let � 2 Hom.�0; G/ be another
representation, not necessarily injective or discrete. In this paper we examine .j; �/–
equivariant Lipschitz maps of Hn , ie Lipschitz maps f W Hn!Hn such that

f .j./ � x/D �./ �f .x/

for all  2 �0 and x 2 Hn . A constant that naturally appears is the infimum of all
possible Lipschitz constants of such maps,

(1-1) C.j; �/ WD inffLip.f / j f W Hn
!Hn is .j; �/–equivariantg:

A basic fact (Section 4.2) is that C.j; �/ <C1 unless there is an obvious obstruction,
namely an element  2 �0 with j./ parabolic and �./ hyperbolic. Here we use
the usual terminology: a nontrivial element of G is elliptic if it fixes a point in Hn ,
parabolic if it fixes exactly one point on the boundary at infinity of Hn , and hyperbolic
otherwise (in which case it preserves a unique geodesic line in Hn ). To make the
statements of our theorems simpler, we include the identity element of G among the
elliptic elements.

We shall always assume C.j; �/ <C1. Then there exists a .j; �/–equivariant map
f W Hn!Hn with minimal constant C.j; �/, except possibly if the group �.�0/ has
a unique fixed point on the boundary at infinity @1Hn of Hn (see Section 4.4, as well
as Sections 10.2 and 10.3 for examples).

We fix once and for all a geometrically finite representation j0 2Hom.�0; G/. Dealing
with cusps is a substantial aspect of the paper; we make the following definitions, which
are relevant only when j is not convex cocompact.

Definition 1.1 We say that j 2Hom.�0; G/ has the cusp type of j0 if, for any  2�0 ,
the element j./ is parabolic if and only if j0./ is parabolic. We say �2Hom.�0; G/
is cusp-deteriorating with respect to j (or that the pair .j; �/ is cusp-deteriorating) if,
for any  2 �0 with j./ parabolic, the element �./ is elliptic.

In the sequel, we will always assume that j has the cusp type of the fixed representa-
tion j0 . Therefore, we will often just use the phrase “� cusp-deteriorating”, leaving j
implied. Of course, this is an empty condition when j is convex cocompact.
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1.2 The stretch locus

The main point of the paper is to initiate a systematic study of the stretch locus of
equivariant maps of Hn with minimal Lipschitz constant.

Definition 1.2 Let f W Hn!Hn be a .j; �/–equivariant map realizing the minimal
Lipschitz constant C.j; �/. The stretch locus Ef of f is the (j.�0/–invariant) set
of points x 2Hn such that the restriction of f to any neighborhood of x in Hn has
Lipschitz constant C.j; �/ (and no smaller).

It follows from our study that the geometry of the stretch locus depends on the value
of C.j; �/. We prove the following:

Theorem 1.3 Let .j; �/ 2 Hom.�0; G/2 be a pair of representations with j geo-
metrically finite and C.j; �/ < C1. Assume that there exists a .j; �/–equivariant
map f W Hn!Hn with minimal Lipschitz constant C.j; �/, and let E.j; �/ be the
intersection of the stretch loci of all such maps. Then:

� E.j; �/ is nonempty, except possibly if C.j; �/D 1 and � is not cusp-deteriorat-
ing (see Section 10.8 for an example).

� There is an “optimal” .j; �/–equivariant, C.j; �/–Lipschitz map f0W Hn!Hn

whose stretch locus is exactly E.j; �/.

� If C.j; �/ > 1 (resp. if C.j; �/D 1 and � is cusp-deteriorating), then E.j; �/
is a geodesic lamination (resp. contains a k–dimensional geodesic lamination
for some k � 1) with the following properties:
– The lamination is “maximally stretched” by any .j; �/–equivariant map
f W Hn!Hn with minimal Lipschitz constant C.j; �/, in the sense that f
multiplies all distances by C.j; �/ on every leaf of the lamination.

– The projection to j.�0/nHn of the lamination is compact and contained in
the convex core.

By a geodesic lamination (resp. a k–dimensional geodesic lamination) of Hn we mean
a nonempty disjoint union L of geodesic lines (resp. k–planes) of Hn , called leaves,
that is closed in the space of geodesic lines (resp. k–planes) of Hn . The image in
j.�0/nHn of a j.�0/–invariant geodesic lamination of Hn is a geodesic lamination
in the usual sense.

We note that an “optimal” map f0 is usually not unique since it can be slightly perturbed
outside of the stretch locus E.j; �/.
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In Section 9.1 we explain how, in the case that nD 2 and that j and � are both injective
and discrete with finite covolume, Theorem 1.3 follows from Thurston’s theory [51] of
the asymmetric metric on Teichmüller space.

More precise results in the case C.j; �/D 1 are given (for arbitrary n) in Section 5,
leading to a reasonable understanding of the stretch locus when C.j; �/� 1. On the
other hand, for C.j; �/<1 the stretch locus is more mysterious; we make the following
conjecture:

Conjecture 1.4 For n D 2, let .j; �/ 2 Hom.�0; G/2 be a pair of representations
with j geometrically finite and let E.j; �/ be the intersection of the stretch loci of
all .j; �/–equivariant maps with minimal Lipschitz constant C.j; �/ 2 .0; 1/. Then
E.j; �/ is the lift to H2 of a gramination (contraction of “graph” and “lamination”) of
M WD j.�0/nH2 , by which we mean the union of a finite set F and of a lamination in
M XF with finitely many leaves terminating on F .

We discuss this conjecture and provide evidence for it in Section 9.4.

We also examine the behavior of the minimal Lipschitz constant C.j; �/ and of the
stretch locus E.j; �/ under small deformations of j and � . We prove that the constant
C.j; �/ behaves well for convex cocompact j :

Proposition 1.5 The map .j; �/ 7! C.j; �/ is continuous on the set of pairs .j; �/ in
Hom.�0; G/2 with j convex cocompact.

Here Hom.�0; G/ is endowed with the natural topology (see Section 6).

For j geometrically finite but not convex cocompact, the constant C.j; �/ behaves in a
more chaotic way. For n� 3, we prove that continuity holds when C.j; �/> 1 and that
the condition C.j; �/ < 1 is open on the set of pairs .j; �/ with j geometrically finite
of fixed cusp type and � cusp-deteriorating (Proposition 6.1). However, semicontinuity
(both upper and lower) fails when C.j; �/� 1 (see Sections 10.6 and 10.7). For n� 4,
the condition C.j; �/ < 1 is not open and upper semicontinuity fails for any value of
C.j; �/ (see Sections 10.10 and 10.11). This is related to the fact that geometrical
finiteness itself is not an open condition when n� 4, even under fixed cusp type. We
refer to Section 6 for a more thorough discussion.

It is natural to hope that when the function .j; �/ 7! C.j; �/ is continuous the map
.j; �/ 7!E.j; �/ should be at least upper semicontinuous with respect to the Hausdorff
topology. We prove this semicontinuity in dimension n D 2 when C.j; �/ > 1 and
�.�0/ does not have a unique fixed point at infinity (Proposition 9.5), generalizing a
result of Thurston [51].
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1.3 Extension of Lipschitz maps in Hn

In order to prove Theorem 1.3, following the approach of Kassel [23], we develop the
extension theory of Lipschitz maps in Hn and, more precisely, refine an old theorem
of Kirszbraun [27] and Valentine [52], which states that any Lipschitz map from a
compact subset of Hn to Hn with Lipschitz constant � 1 can be extended to a map
from Hn to itself with the same Lipschitz constant. We prove the following.

Theorem 1.6 Let �0 be a discrete group and .j; �/ 2 Hom.�0; G/2 a pair of repre-
sentations of �0 in G with j geometrically finite.

(1) For any j.�0/–invariant subset K ¤∅ of Hn and any .j; �/–equivariant map
'W K!Hn with Lipschitz constant C0 � 1, there exists a .j; �/–equivariant
extension f W Hn!Hn of ' with Lipschitz constant C0 .

(2) For any j.�0/–invariant subset K ¤ ∅ of Hn whose image in j.�0/nHn is
bounded and any .j; �/–equivariant map 'W K!Hn with Lipschitz constant
C0 < 1, there exists a .j; �/–equivariant extension f W Hn ! Hn of ' with
Lipschitz constant < 1.

The point of Theorem 1.6 is that we can extend ' in an equivariant way, without
increasing the Lipschitz constant C0 if it is � 1, and still keeping it < 1 if it was
originally < 1. Moreover, we control the local Lipschitz constant when C0 � 1

(Theorem 5.1). Intuitively (at least when C0 > 1), the idea is that one should be able
to choose an f whose stretch locus consists of stretch segments with endpoints in K ,
moved apart by a factor C0 under ' .

We believe (see Appendix C.1) that in Theorem 1.6(2) the best Lipschitz constant of
an equivariant extension f could be bounded away from 1 in terms of C0 alone. This
would allow one to remove the assumption that K has a bounded image in j.�0/nHn ,
using the Arzelà–Ascoli theorem (see Section 5.4).

In Theorem 5.1 below we refine Theorem 1.6 and actually allow K to be the empty set.
(In this case we define C0 to be the supremum of ratios �.�.//=�.j.// for  2 �0
with j./ hyperbolic, where

(1-2) �.g/ WD inf
x2Hn

d.x; g � x/

is the translation length of g in Hn if g 2G is hyperbolic, and 0 if g is parabolic or
elliptic.) Theorem 1.3 is equivalent to the case K D∅ in Theorem 5.1.

Theorem 1.6 and its refinements such as Theorem 5.1 should be compared to a number of
recent results in the theory of extension of Lipschitz maps; see Lang and Schroeder [36],
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Lang, Pavlović and Schroeder [35], Buyalo and Schroeder [13] and Lee and Naor [37],
for example. We also point to Danciger, Guéritaud and Kassel [16] for an infinitesimal
version.

1.4 An application to the study of complete manifolds locally modeled on
G D PO.n; 1/

One important motivation for examining equivariant Lipschitz maps of minimal Lips-
chitz constant is the link with certain manifolds locally modeled on G , namely quotients
of G by discrete subgroups of G�G acting properly discontinuously and freely on G
by right and left multiplication: .g1; g2/ � g D g2gg�11 . This link was first noticed
in Salein [46], then developed in Kassel [23].

For nD 2, the manifolds locally modeled on PO.2; 1/0 Š PSL2.R/ are the anti-de
Sitter 3–manifolds, or Lorentzian 3–manifolds of constant negative curvature, which
are Lorentzian analogues of the hyperbolic 3–manifolds. For n D 3, the manifolds
locally modeled on PO.3; 1/0ŠPSL2.C/ are the 3–dimensional complex holomorphic-
Riemannian manifolds of constant nonzero curvature, which can be considered as
complex analogues of the hyperbolic 3–manifolds (see Dumitrescu and Zeghib [18]
for details). For n D 2, all compact manifolds locally modeled on G are quotients
of G by discrete subgroups of G �G , up to a finite covering; see Klingler [28] and
Kulkarni and Raymond [33]. For nD 3, a similar property has been conjectured in
Dumitrescu and Zeghib [18] (see Section 7.8).

Recall that the quotient of G by a discrete group � is Hausdorff (resp. is a manifold) if
and only if the action of � on G is properly discontinuous (resp. properly discontinuous
and free). Let � be a discrete subgroup of G �G acting properly discontinuously
on G by right and left multiplication. Letting �0 be the abstract group underlying �
and j , � 2 Hom.�0; G/ be the two projections of � �G �G onto G , we can write
� as

(1-3) �
j;�
0 D f.j./; �.// j  2 �0g:

The key point here is that if � is torsion-free, then j is injective and discrete up to
switching the two factors; this was proved in Kulkarni and Raymond [33] for nD 2,
and in Kassel [22] (strengthening partial results of Kobayashi [30]) for general rank-one
groups G . The group � is thus isomorphic to the fundamental group of the hyperbolic
n–manifold M WD j.�0/nHn , and the quotient of G by � D �j;�0 is compact if and
only if M is compact (by a classical cohomological argument; see Section 7.7). In
general, if � is finitely generated, the Selberg lemma [47, Lemma 8] ensures the
existence of a finite-index subgroup of � that is torsion-free, and so � D �j;�0 , where
j has finite kernel and discrete image, up to switching the two factors.
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As before, we set �.g/ WD infx2Hn d.x; g �x/ for any g2G . The following terminology
is partly adopted from Salein [46]:

Definition 1.7 A pair .j; �/ 2 Hom.�0; G/2 is called admissible if the action of
�
j;�
0 on G by right and left multiplication is properly discontinuous. It is called left

(resp. right) admissible if, in addition, there exists  2 �0 such that �.j.// > �.�.//
(resp. �.j.// < �.�.//).

By Salein [46] (for nD 2) and Kassel [22] (for general n), an admissible pair .j; �/ is
either left admissible or right admissible; it cannot be both. Without loss of generality,
we may restrict to left admissible pairs.

For a pair .j; �/ 2 Hom.�0; G/2 with j injective and discrete, we set

(1-4) C 0.j; �/ WD sup
2�0 with j./ hyperbolic

�.�.//

�.j.//

if the group j.�0/ contains hyperbolic elements, and C 0.j; �/ WD C.j; �/ otherwise
(case of an elementary group fixing a point in Hn or a unique point in @1Hn ). With
this notation, a consequence of Theorem 1.3 is the following (double) left admissibility
criterion, which was first established in Kassel [23, Chapter 5] for nD 2 and convex
cocompact j .

Theorem 1.8 Let �0 be a discrete group. A pair .j; �/ 2 Hom.�0; G/2 with j

geometrically finite is left admissible if and only if

(1) the infimum C.j; �/ of Lipschitz constants of .j; �/–equivariant Lipschitz maps
f W Hn!Hn is < 1.

This is equivalent to the condition that

(2) the supremum C 0.j; �/ of ratios of translation lengths �.�.//=�.j.// for
 2 �0 with j./ hyperbolic is < 1,

except possibly in the degenerate case where �.�0/ has a unique fixed point in @1Hn

and � is not cusp-deteriorating. In particular, left admissibility is always equivalent to
(1) and to (2) if j is convex cocompact.

In other words, Theorem 1.8 states that .j; �/ is left admissible if and only if “� is
uniformly contracting with respect to j ”; this uniform contraction can be expressed in
two equivalent ways: in terms of Lipschitz maps (condition (1)) and in terms of ratios
of lengths (condition (2)).
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Note that the inequality C 0.j; �/ � C.j; �/ is always true (see (4-1)). It can occur
quite generically that C 0.j; �/ <C.j; �/ below 1, even when j and � are both convex
cocompact (see Sections 10.4 and 10.5). In the degenerate case where �.�0/ has a
unique fixed point in @1Hn and � is not cusp-deteriorating, it can also happen that
C 0.j; �/ < C.j; �/D 1 (see Section 10.9). However, when we are not in this degen-
erate case, it follows from Theorem 1.3 that C.j; �/� 1 implies C 0.j; �/D C.j; �/
(Corollary 1.12); in particular, C 0.j; �/ < 1 implies C.j; �/ < 1.

In Theorem 1.8, the fact that if C.j; �/ < 1 then .j; �/ is left admissible easily
follows from the general properness criterion of Benoist [4] and Kobayashi [31] (see
Section 7.3); this was first observed by Salein [46]. Conversely, suppose that .j; �/
is left admissible. Then C 0.j; �/ � 1 (because .j; �/ cannot be simultaneously left
and right admissible, as mentioned above); the point is to prove that C 0.j; �/D 1 is
impossible. This is done in Section 7.5, following the strategy of Kassel [23]: we
use Theorem 1.3 to establish that C 0.j; �/ D 1 implies not only that C.j; �/ D 1

(Corollary 1.12), but also that the stretch locus E.j; �/ contains a geodesic line of Hn ;
it is then easy to find a sequence of elements of �0 contradicting proper discontinuity
by following this geodesic line.

We note that in Theorem 1.8 it is necessary for �0 to be finitely generated: indeed,
for infinitely generated �0 there exist left admissible pairs .j; �/ 2 Hom.�0; G/2

of injective and discrete representations that satisfy C.j; �/ D C 0.j; �/ D 1 (see
Section 10.1). It would be interesting to know whether Theorem 1.8 still holds for
finitely generated but geometrically infinite j (Appendix C.2).

Here is a consequence of Proposition 1.5 and Theorem 1.8:

Theorem 1.9 Let G D PO.n; 1/ and let � be a discrete subgroup of G �G acting
properly discontinuously, freely and cocompactly on G by right and left multiplication.
There is a neighborhood U � Hom.�;G �G/ of the natural inclusion such that, for
any ' 2 U , the group '.�/ is discrete in G �G and acts properly discontinuously,
freely and cocompactly on G .

A particular case of Theorem 1.9 was proved by Kobayashi [32], namely the so-called
“special standard” case (terminology of Zeghib [53]) where � is contained in G �f1g;
for nD 3, this was initially proved by Ghys [19]. The general case for nD 2 follows
from the completeness of compact anti-de Sitter manifolds, due to Klingler [28],
and from the Ehresmann–Thurston principle on the deformation of holonomies of
.G ;X/–structures on compact manifolds. An interpretation of Theorem 1.9 in terms
of .G ;X/–structures is given in Section 7.8.
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We extend Theorem 1.9 to proper actions on G that are not necessarily cocompact,
using the following terminology:

Definition 1.10 We say that a quotient of G by a discrete subgroup � of G �G is
convex cocompact (resp. geometrically finite) if, up to switching the two factors, � is
of the form �

j;�
0 as in (1-3) with j convex cocompact (resp. geometrically finite) and

.j; �/ left admissible.

This terminology is justified by the fact that convex cocompact (resp. geometrically
finite) quotients of PO.n; 1/ fiber, with compact fiber O.n/, over convex cocom-
pact (resp. geometrically finite) hyperbolic manifolds, up to a finite covering (see
Proposition 7.2 or Danciger, Guéritaud and Kassel [16, Theorem 1.2]).

We prove the following extension of Theorem 1.9 (see also Kassel [24] for a p–adic
analogue):

Theorem 1.11 Let G D PO.n; 1/ and let � be a discrete subgroup of G �G acting
properly discontinuously on G , with a convex cocompact quotient. There is a neigh-
borhood U � Hom.�;G �G/ of the natural inclusion such that, for any ' 2 U , the
group '.�/ is discrete in G�G and acts properly discontinuously on G , with a convex
cocompact quotient. Moreover, if the quotient of G by � is compact, then so is the
quotient of G by '.�/ for ' 2 U . If the quotient of G by � is a manifold, then so is
the quotient of G by '.�/ for ' 2 U close enough to the natural inclusion.

Note that Theorem 1.11 is not true if we replace “convex cocompact” with “geometri-
cally finite”: for a given j with cusps, the constant representation � D 1 may have
small deformations �0 that are not cusp-deteriorating, hence for which .j; �0/ cannot
be admissible. However, we prove that Theorem 1.11 is true in dimension nD 2 or 3
if we restrict to deformations of � of the form �

j;�
0 with geometrically finite j and

cusp-deteriorating � (Theorem 7.7); a similar statement is not true for n > 3 (see
Section 10.11).

Theorem 1.8 implies that any geometrically finite quotient of G is sharp in the sense
of Kassel and Kobayashi [25]; moreover, by Theorem 1.11, if the quotient is convex
cocompact, then it remains sharp after any small deformation of the discrete group �
inside G � G (see Section 7.7). This implies the existence of an infinite discrete
spectrum for the (pseudo-Riemannian) Laplacian on any geometrically finite quotient
of G ; see Kassel and Kobayashi [25].
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1.5 A generalization of Thurston’s asymmetric metric on
Teichmüller space

Let S be a hyperbolic surface of finite volume. The Teichmüller space T .S/ of S
can be defined as the space of conjugacy classes of geometrically finite representations
of �0 WD �1.S/ into PO.2; 1/Š PGL2.R/ corresponding to finite-volume hyperbolic
surfaces homeomorphic to S . Thurston [51] proved that C.j; �/D C 0.j; �/ � 1 for
all j; � 2 T .S/; the function

dTh WD logC D logC 0W T .S/� T .S/!RC

is the Thurston metric on T .S/, which was introduced and extensively studied in [51].
It is an “asymmetric metric”, in the sense that dTh.j; �/� 0 for all j; � 2 T .S/, that
dTh.j; �/D0 if and only if j D� in T .S/, that dTh.j1; j3/�dTh.j1; j2/CdTh.j2; j3/

for all ji 2 T .S/, but that in general dTh.j; �/¤ dTh.�; j /.

We generalize Thurston’s result that C.j; �/D C 0.j; �/ to any dimension n � 2, to
geometrically finite representations j that are not necessarily of finite covolume, and
to representations � that are not necessarily injective or discrete: as a consequence of
Theorem 1.3, we obtain the following:

Corollary 1.12 For G D PO.n; 1/, let .j; �/ 2 Hom.�0; G/2 be a pair of representa-
tions with j geometrically finite. If C.j; �/� 1, then

(1-5) C.j; �/D C 0.j; �/;

except possibly in the degenerate case where C.j; �/D 1, where �.�0/ has a unique
fixed point in @1Hn , and where � is not cusp-deteriorating.

In particular, C.j; �/�1 always implies (1-5) if j is convex cocompact and C 0.j; �/�1
always implies (1-5) without any assumption on j .

In order to generalize the Thurston metric, we consider a nonelementary hyperbolic
manifold M of any dimension n � 2 and let T .M/ be the set of conjugacy classes
of geometrically finite representations of �0 WD �1.M/ into G D PO.n; 1/ with the
homeomorphism type and cusp type of M. We allow M to have infinite volume,
otherwise T .M/ is trivial for n > 2 by Mostow rigidity. We set

(1-6) dTh.j; �/ WD log
�
C.j; �/

ı.�/

ı.j /

�
for all j; � 2 T .M/, where ıW T .M/! .0; n� 1� is the critical exponent (see (8-1))
giving the exponential growth rate of orbits in Hn or, equivalently in this setting, the
Hausdorff dimension of the limit set; see Sullivan [48; 49]. It easily follows from the
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definition of ı that dTh.j; �/� 0 for all j; � 2 T .M/ (Lemma 8.3). Let T .M/Zs be
the subset of T .M/ consisting of elements j such that the Zariski closure of j.�0/
in G is simple (for instance equal to G itself). We prove the following:

Proposition 1.13 The function dTh defines an asymmetric metric on T .M/Zs .

The point of Proposition 1.13 is that dTh.j; �/D 0 implies j D � on T .M/Zs .

On the other hand, for convex cocompact M, it follows from work of Burger [12,
Theorem 1] (see also Bridgeman, Canary, Labourie and Sambarino [9]) that

d 0Th.j; �/ WD log
�
C 0.j; �/

ı.�/

ı.j /

�
defines an asymmetric metric on T .M/Zs . Kim [26, Corollary 3] also proved that if
logC 0.j; �/ D 0 and ı.j / D ı.�/, then j D � in T .M/Zs . By Corollary 1.12, the
asymmetric metrics dTh and d 0Th are equal on the set

f.j; �/ 2 T .M/2Zs j C.j; �/� 1g D f.j; �/ 2 T .M/2Zs j C
0.j; �/� 1g:

However, they differ in general (see Sections 10.4 and 10.5). It would be interesting to
compare them.

In dimension n� 3 the asymmetric metric dTh is always continuous, and in dimension
n� 4 it is continuous when M is convex cocompact (Lemma 8.1).

1.6 Organization of the paper

Section 2 contains reminders and basic facts on geometrical finiteness, Lipschitz maps
and convex interpolation in the real hyperbolic space Hn . In Section 3 we recall the
classical Kirszbraun–Valentine theorem and establish an equivariant version of it for
amenable groups. We then derive general properties of the stretch locus in Section 4. In
Section 5 we prove an optimized, equivariant Kirszbraun–Valentine theorem for geomet-
rically finite representations of discrete groups; this yields in particular Theorems 1.3
and 1.6, as well as Corollary 1.12. In Section 6 we examine the continuity properties
of the minimal Lipschitz constant C.j; �/; in particular, we prove Proposition 1.5. In
Section 7 we apply the theory to properly discontinuous actions on GDPO.n; 1/ (prov-
ing Theorems 1.8, 1.9, and 1.11), and in Section 8 we generalize Thurston’s asymmetric
metric on Teichmüller space (proving Proposition 1.13). In Section 9 we focus on the
case nD 2; we recover and extend results of Thurston for C.j; �/ > 1, and discuss the
nature of the stretch locus for C.j; �/ < 1. Finally, in Section 10 we give a number of
examples and counterexamples designed to make the theory more concrete while point-
ing out some subtleties. We collect useful formulas in Appendix A, technical facts on
geometrically finite representations in Appendix B and open questions in Appendix C.
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Note We have tried, inside each section, to clearly separate the arguments needed for
the convex cocompact case from those specific to the cusps. Skipping the latter should
decrease the length of the paper substantially.
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2 Preliminary results

In this section we recall a few well-known facts and definitions on geometrically
finite hyperbolic orbifolds, on Lipschitz constants and on barycenters in the real
hyperbolic space Hn . We also expand on the notion of cusp-deterioration introduced
in Definition 1.1. In the whole paper, G is the full group PO.n; 1/DO.n; 1/=f˙1g of
isometries of Hn . If n is even, then G identifies with SO.n; 1/.

2.1 Geometrical finiteness

Let j 2 Hom.�0; G/ be an injective representation of a discrete group �0 , with j.�0/
discrete. The quotient M WD j.�0/nHn is a smooth, n–dimensional orbifold; it is a
manifold if and only if �0 is torsion-free. The convex core of M is the smallest closed
convex subset of M containing all closed geodesics; its preimage in Hn is the convex
hull of the limit set ƒj.�0/ � @1Hn of j.�0/. (The convex hull is empty only in the
degenerate case where the group j.�0/ has a fixed point in Hn or a unique fixed point
in @1Hn ; we do not exclude this case.) Following [7], we will say that the injective
and discrete representation j is geometrically finite if �0 is finitely generated and if,
for any " > 0, the "–neighborhood of the convex core of M has finite volume. In
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.� D1/

HV

j.S 0/

V

C

B

@B

@1H3

Figure 1: A rank-one cusp centered at � D1 in the upper half-space model
of H3 . The limit set is contained in f�g[ @1.H3 XC/ .

dimension nD 2, any injective and discrete representation in G of a finitely generated
group is geometrically finite. In general, j is geometrically finite if and only if the
convex core of M is contained in the union of a compact set and of finitely many
disjoint cusps whose boundaries have compact intersection with the convex core. We
now explain what we mean by cusp, following [7].

Let B be a horoball of Hn , centered at a point � 2 @1Hn , and let S � �0 be the
stabilizer of B under j . The group j.S/ is discrete (possibly trivial) and consists of
nonhyperbolic elements. It preserves the horosphere @B ' Rn�1 and acts on it by
affine Euclidean isometries. By the first Bieberbach theorem (see [7, Theorem 2.2.5]),
there is a finite-index normal subgroup S 0 of S that is isomorphic to Zm for some
0�m<n and whose index in S is bounded by some �.n/ 2N depending only on the
dimension n; we have m� 1 if and only if S contains a parabolic element. The group
j.S/ preserves and acts cocompactly on some m–dimensional affine subspace V of
@B 'Rn�1 , unique up to translation; the subgroup j.S 0/ acts on V by translation. Let
HV be the closed .mC1/–dimensional hyperbolic subspace of Hn containing � in its
boundary such that HV\@B D V , and let � W Hn!HV be the closest-point projection
(see Figure 1). The group j.S/ preserves the convex set C WD ��1.HV \B/ �Hn .
Following [7], we say that the image of C in M is a cusp if m� 1 and C\j./ �CD∅
for all  2 �0 X S . The cusp is then isometric to j.S/nC; its intersection with the
convex core of M is contained in j.S/nB 0 for some horoball B 0 � B . The integer m
is called the rank of the cusp.
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When the convex core of M is nonempty, we may assume that it contains the image
of V , after possibly replacing B by some smaller horoball and V by some translate.

We shall use the following description:

Fact 2.1 If j is geometrically finite, then M D j.�0/nHn is the union of a closed
subset M 0 and of finitely many disjoint quotients j.Si /nBi , where Bi is a horoball
of Hn and j.Si / a discrete group of isometries of Bi containing a parabolic element,
such that:
� The intersection of M 0 with the convex core of M is compact.
� For any i we have M 0\ .j.Si /nBi /D j.Si /n@Bi ; in particular, the intersection

of j.Si /n@Bi with the convex core of M is compact.
� For any i the intersection in Hn of Bi with the preimage N of the convex core

of M is the convex hull of @Bi \N, and j.Si /n.@Bi \N/ is compact.

Definition 2.2 We shall call the intersections of the sets j.Si /nBi with the convex
core of M standard cusp regions.

If j is geometrically finite, then the complement of the convex core of M has finitely
many connected components, called the funnels of M. By definition, j is convex
cocompact if it is geometrically finite with no cusp; when �0 is infinite, this is equivalent
to the convex core being nonempty and compact. The set of convex cocompact
representations is open in Hom.�0; G/ (see [8, Proposition 4.1] or Proposition B.1).

In Sections 4 and 5, we shall consider a j.�0/–invariant subset K of Hn whose image
in M is compact. We shall then use the following notation:

Notation 2.3 In the rest of the paper, Conv.K/�Hn denotes
� the convex hull of K if K is nonempty;
� the preimage in Hn of the convex core of M D j.�0/nHn if K is empty and

the convex core is nonempty (leaving j implicit);
� any nonempty j.�0/–invariant convex subset of Hn if K and the convex core

of M D j.�0/nHn are both empty (ie j.�0/ is an elementary group fixing a
point in Hn or a unique point in @1Hn ).

In all three cases the set Conv.K/ is nonempty and contains the preimage in Hn of
the convex core of M. In Fact 2.1, we can take M 0 and the Bi with the following
properties:
� M 0 contains the (compact) image of K in M .
� The intersection of M 0 with the image of Conv.K/ in M is compact.
� For any i the set Bi \ Conv.K/ is the convex hull of @Bi \ Conv.K/, and
j.Si /n.@Bi \Conv.K// is compact.
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2.2 Cusp deterioration

Let j 2 Hom.�0; G/ be a geometrically finite representation and let B1; : : : ; Bc be
horoballs of Hn whose projections j.Si /nBi to M D j.�0/nHn are disjoint and
intersect the convex core in standard cusp regions representing all the cusps, as in
Section 2.1. Consider � 2 Hom.�0; G/.

Definition 2.4 For 1� i � c , we say that � is deteriorating in Bi if �.Si / contains
only elliptic elements.

Thus � is cusp-deteriorating in the sense of Definition 1.1 if and only if it is deteriorating
in Bi for all 1� i � c .

Depending on whether � is deteriorating in Bi or not, we shall use the following
classical fact with � 0 D �.Si /:

Fact 2.5 (see [42, Theorem III.3.1]) Let � 0 be a finitely generated subgroup of G .
(1) If all elements of � 0 are elliptic, then � 0 has a fixed point in Hn .
(2) If all elements of � 0 are elliptic or parabolic and if � 0 contains at least one

parabolic element, then � 0 has a unique fixed point in the boundary at infinity
@1Hn of Hn .

Lemma 2.6 Let � 0 be as in Fact 2.5(2) and let wlW � 0 ! N be the word length
function with respect to some fixed finite generating subset F 0 of � 0 . Fix p 2Hn .
� There exists R > 0 such that, for all  0 2 � 0 ,

d.p;  0 �p/� 2 log.1C wl. 0//CR:

� If � 0 is discrete in G , then there exists R0 > 0 such that, for all  0 2 � 0 ,

d.p;  0 �p/� 2 log.1C wl. 0//�R0:

Proof Let � 2 @1Hn be the fixed point of � 0 and let @B be the horosphere through p
centered at � . For any q , q0 2 @B , let d@B.q; q0/ be the length of the shortest path
from q to q0 that is contained in @B . Then d@B is a Euclidean metric on @B 'Rn�1

and

(2-1) d.q; q0/D 2 arcsinh
�
1
2
d@B.q; q

0/
�

for all q , q0 2 @B (see (A-3)). In particular, jd � 2 log.1C d@B/j is bounded on
@B � @B . By the triangle inequality,

d@B.p; 
0
�p/�

�
max
f 02F 0

d@B.p; f
0
�p/

�
� wl. 0/

for all  0 2 � 0 , which implies the first statement of the lemma.
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If � 0 is discrete in G , then it acts properly discontinuously on @B and has a finite-index
subgroup isomorphic to Zm (for some 0 < m < n), acting as a lattice of translations
on some m–dimensional affine subspace V of the Euclidean space @B 'Rn�1 (see
Section 2.1). In a Euclidean lattice, the norm of a vector is estimated, up to a bounded
multiplicative factor, by its word length in any given finite generating set; therefore
there exist c , Q> 0 such that

d@B.p; 
0
�p/� c wl. 0/�Q

for all  0 2 � 0 . The second statement of the lemma follows by using (2-1) and the
properness of the function wl on � 0 .

Here is a consequence of Lemma 2.6, explaining why the notion of cusp-deterioration
naturally appears in our setting.

Lemma 2.7 Let � 2 Hom.�0; G/. If there is a .j; �/–equivariant map f W Hn!Hn

with Lipschitz constant < 1, then � is cusp-deteriorating with respect to j .

Proof Let f W Hn!Hn be a .j; �/–equivariant map. Suppose that � is not cusp-dete-
riorating. Then there is an element  2�0 such that j./ is parabolic and �./ is either
parabolic or hyperbolic. Fix a point p 2Hn . By Lemma 2.6, we have d.p; j.k/�p/�
2 log k as k ! C1. If �./ is parabolic, then similarly d.f .p/; �.k/ � f .p// �
2 log k and, if �./ is hyperbolic, then jd.f .p/; �.k/�f .p//�k�.�.//j is uniformly
bounded (for instance by twice the distance from f .p/ to the translation axis of �./
in Hn ). In both cases, we see that

lim sup
k!C1

d.f .p/; �.k/ �f .p//

d.p; j.k/ �p/
� 1;

hence the .j; �/–equivariant map f cannot have Lipschitz constant < 1.

2.3 Lipschitz constants

For any subset X of Hn and any map f from X to some metric space .Z; dZ/ (in
practice Hn or R), we denote by

Lip.f /D sup
x; x02X;x¤x0

dZ.f .x/; f .x
0//

d.x; x0/

the Lipschitz constant of f . For any Y �X and any x 2X , we set

LipY .f /D Lip.f jY /; Lipx.f /D inf
r>0

LipBx.r/.f /;

where Bx.r/ is the closed ball of radius r centered at x in Hn . We call Lipx.f / the
local Lipschitz constant of f at x .
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Remarks 2.8 (1) Let f be a C –Lipschitz map from a geodesic segment Œx; x0�
of Hn to Hn . If d.f .x/; f .x0//D Cd.x; x0/, then f “stretches maximally”
Œx; x0� in the sense that d.f .y/; f .y0//D Cd.y; y0/ for all y , y0 2 Œx; x0�.

(2) Let X be a convex subset of Hn , covered by a collection of open sets Ut , t 2 T .
For any map f W X !Hn ,

Lip.f /D sup
t2T

LipX\Ut .f /:

(3) For any rectifiable path C in some subset X of Hn and for any map f W X!Hn ,

length.f .C //� sup
x2C

Lipx.f / � length.C /:

Indeed, (1) follows from the fact that if the points x , y , y0 and x0 lie in this order,
then d.x; x0/D d.x; y/C d.y; y0/C d.y0; x0/ while

d.f .x/; f .x0//� d.f .x/; f .y//C d.f .y/; f .y0//C d.f .y0/; f .x0//

by the triangle inequality. To prove (2), we just need to check that the right-hand side
is an upper bound for Lip.f / (it is also clearly a lower bound). Any geodesic segment
Œp; q��X can be divided into finitely many subsegments, each contained in one of the
open sets Ut ; we use again the additivity of distances at the source and the subadditivity
of distances at the target. Finally, (3) follows from the definition of the length of a
path (obtained by summing up the distances between points of smaller and smaller
subdivisions and taking a limit) and from the definition of the local Lipschitz constant.

Lemma 2.9 The local Lipschitz constant function x 7! Lipx.f / is upper semicontin-
uous: for any converging sequence xk! x ,

Lipx.f /� lim sup
k!C1

Lipxk .f /:

In particular, for any compact subset K of X , the supremum of Lipx.f / for x 2K is
achieved on some nonempty closed subset of K . Moreover, if X is convex, then

(2-2) Lip.f /D sup
x2X

Lipx.f /:

Proof Upper semicontinuity follows from an easy diagonal extraction argument. The
inequality Lip.f /� supx2X Lipx.f / is clear. The converse inequality for convex X
follows from Remark 2.8(3) with C any geodesic segment Œp; q��X .
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Note that the convexity of X is required for (2-2) to hold: for instance, an arclength-
preserving map taking a horocycle X to a straight line is not even Lipschitz, although
its local Lipschitz constant is everywhere 1.

As a consequence of Lemma 2.9, the stretch locus of any Lipschitz map f W X !Hn

is closed in X for the induced topology. Here we use the following terminology, which
agrees with Definition 1.2:

Definition 2.10 For any subset X of Hn and any Lipschitz map f W X !Hn , the
stretch locus Ef of f is the set of points x 2 X such that Lipx.f /D Lip.f /. The
enhanced stretch locus zEf of f is the union of f.x; x/ 2X �X j x 2Ef g and

f.x; x0/ 2X �X j x ¤ x0 and d.f .x/; f .x0//D Lip.f / d.x; x0/g:

By Remark 2.8(1), both projections of zEf to X are equal to Ef , but zEf records
a little extra information, namely the positions of the maximally stretched segments
between points of the stretch locus Ef .

2.4 Barycenters in Hn

For any index set I equal to f1; 2; : : : ; kg for some k � 1 or to N� , and for any tuple
˛ D .˛i /i2I of nonnegative reals summing up to 1, we set

.Hn/I˛ WD

�
.pi / 2 .H

n/I
ˇ̌̌X
i2I

˛i d.p1; pi /
2 <C1

�
:

This set contains at least all bounded sequences .pi / 2 .Hn/I , and it is just the direct
product .Hn/k if k <C1.

The following result is classical, and actually holds in any CAT.0/ space.

Lemma 2.11 For any index set I equal to f1; 2; : : : ; kg for some k � 1 or to N� and
for any tuple ˛ D .˛i /i2I of nonnegative reals summing up to 1, the map

m˛W .Hn/I˛!Hn

taking .pi /i2I to the minimizer of
P
i2I ˛i d. � ; pi /

2 is well defined and ˛i –Lipschitz
in its i th entry: for any .pi /, .qi / 2 .Hn/I˛ ,

(2-3) d.m˛.p1; p2; : : : /;m
˛.q1; q2; : : : //�

X
i2I

˛i d.pi ; qi /:
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Proof Fix I and ˛ D .˛i /i2I , and consider an element .pi / 2 .Hn/I˛ . For any
x 2Hn ,

ˆ.x/ WD
X
i2I

˛i d.x; pi /
2
�

X
i2I

˛i .d.x; p1/C d.p1; pi //
2

� 2
X
i2I

˛i .d.x; p1/
2
C d.p1; pi /

2/ <C1:

The function ˆW Hn ! R thus defined is proper on Hn since it is bounded from
below by any proper function ˛i d. � ; pi /2 with ˛i > 0, and it achieves its minimum
on the convex hull of the pi . Moreover, ˆ is analytic: to see this on any ball B
of Hn , note that the unweighted summands d. � ; pi /2 for pi in a 1–neighborhood
of B are analytic with derivatives (of any nonnegative order) bounded independently
of i , while the other summands can be written �2i C2�id.p1; pi /Cd.p1; pi /

2 , where
�i WDd. � ; pi /�d.p1; pi / again is analytic on B , and �i and �2i have their derivatives
(of any nonnegative order) bounded independently of i .

On any unit-speed geodesic .xt /t2R of Hn , we have d2.d.xt ; pi /2/=dt2
ˇ̌
tD0
� 2.

Indeed, let logx0 W H
n! Tx0H

n be the inverse of the exponential map at x0 . Standard
CAT.0/ comparison inequalities with the Euclidean metric dEucl yield

dEucl.logx0.xt /; logx0.pi //
2
� d.xt ; pi /

2

for all t 2R; both sides are equal at t D 0, the first derivatives are equal at t D 0, and
the left-hand side has second derivative � 2. It follows that t 7! ˆ.xt / has second
derivative at least 2

P
I ˛i D 2 everywhere. While m˛.p1; p2; : : : / is the minimizer

of ˆ, the point m˛.q1; q2; : : : / is the minimizer of ˆC‰ , where

‰.x/ WD
X
i2I

.�d.x; pi /
2
C d.x; qi /

2/˛i :

We claim that  i W x 7! �d.x; pi /2C d.x; qi /2 is 2d.pi ; qi /–Lipschitz: indeed, with
.xt /t2R as above,ˇ̌̌̌

d
dt

ˇ̌̌
tD0

 i .xt /

ˇ̌̌̌
D j2d.x0; pi / cos 2pix0x1� 2d.x0; qi / cos 2qix0x1j

D 2dEucl.�`.logx0 pi /; �`.logx0 qi //� 2d.pi ; qi /;

where `�Tx0H
n is the tangent line to .xt /t2R at tD0, and �`W Tx0H

n!` is the clos-
est-point projection. Therefore, ‰ is Lipschitz with constant L WD 2

P
i2I ˛id.pi ; qi /.

Thus, for any unit-speed geodesic ray .xt /t�0 starting from x0 Dm
˛.p1; p2; : : : /, as

soon as t > 1
2
L we have dˆ.xt /=dt >L, hence d.ˆC‰/.xt /=dt > 0. The minimizer

of ˆC‰ is within 1
2
L from x0 , as promised.
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Note that the map m˛ is G–equivariant:

(2-4) m˛.g �p1; g �p2; : : : /D g �m
˛.p1; p2; : : : /

for all g 2G and .pi / 2 .Hn/I˛ . It is also diagonal:

(2-5) m˛.p; p; : : : /D p

for all p 2Hn . If � is a permutation of I , then

(2-6) m.˛�.1/;˛�.2/;::: /.p�.1/; p�.2/; : : : /Dm
.˛1;˛2;::: /.p1; p2; : : : /

for all .pi / 2 .Hn/I˛ ; in particular, mk WDm.1=k;:::;1=k/ is symmetric in its k entries.
Unlike barycenters in vector spaces however, m has only weak associativity properties:
the best one can get is associativity over equal entries, ie if p1 D � � � D pk D p then

m.˛1;:::;˛kC1;::: /.p1; : : : ; pkC1; : : : /Dm
.˛1C���C˛k ;˛kC1;::: /.p; pkC1; : : : /:

We will often write
P
i2I ˛ipi for m˛.p1; p2; : : : /.

While (2-3) controls the displacement of a barycenter under a change of points, the
following lemma deals with a change of weights:

Lemma 2.12 Let I Df1; 2; : : : ; kg for some k�1 or I DN�, and let ˛D .˛i /i2I and
ˇD .ˇi /i2I be nonnegative sequences, each summing up to 1. Consider points .pi /i2I
of Hn , all within distance R of some p 2Hn (in particular .pi / 2 .Hn/I˛ \ .H

n/I
ˇ

).
Then

d.m˛.p1; p2; : : : /;m
ˇ .p1; p2; : : : //�R

X
i2I

j˛i �ˇi j:

Proof For any i 2 I , we set ıi WD ˛i � ˇi . The basic observation is that if, for
example, ı1>0, then we can transfer ı1 units of weight from p1 to p , at the moderate
cost of moving the barycenter by �Rı1 : by Lemma 2.11, the point

m WDm.˛1;˛2;˛3;::: /.p1; p2; p3; : : : /Dm
.ı1;ˇ1;˛2;˛3;::: /.p1; p1; p2; p3; : : : /

lies at distance �Rı1 from m.ı1;ˇ1;˛2;˛3;::: /.p; p1; p2; p3; : : : /. Repeating this pro-
cedure for all indices i � 1 such that ıi > 0, we find that m lies at distance � Rı
from

m.ı;minf˛1;ˇ1g;minf˛2;ˇ2g;minf˛3;ˇ3g;::: /.p; p1; p2; p3; : : : /;

where we set ı WD
P
ıi>0

ıi . This expression is symmetric in ˛ and ˇ , so m lies at
distance � 2Rı DR

P
j˛i �ˇi j from m.ˇ1;ˇ2;::: /.p1; p2; : : : /.
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2.5 Barycenters of Lipschitz maps and partitions of unity

Here is an easy consequence of Lemma 2.11:

Lemma 2.13 Let I D f1; 2; : : : ; kg for some k � 1 or I DN� , and let ˛ D .˛i /i2I
be a nonnegative sequence summing up to 1. Consider p 2X �Hn and a sequence of
Lipschitz maps fi W X !Hn with .fi .p// 2 .Hn/I˛ and with .Lip.fi //i2I bounded.
Then the map

f D
X
i2I

˛ifi W x 7!m˛.f1.x/; f2.x/; : : : /

is well defined on X and satisfies

Lipx.f /�
X
i2I

˛i Lipx.fi / and LipY .f /�
X
i2I

˛i LipY .fi /

for all x 2 Y � X . In particular, if Lip.fi / D C D Lip.f / for all i 2 I , then the
(enhanced) stretch locus of f (Definition 2.10) is contained in the intersection of the
(enhanced) stretch loci of the maps fi .

Proof We first note that .fi .x// 2 .Hn/I˛ for any x 2Hn . Indeed, using the triangle
inequality and the general inequality .aC bC c/2 � 3.a2C b2C c2/ for a , b , c � 0,
we haveX
i2I

˛id.f1.x/; fi .x//
2

� 3
X
i2I

˛i
�
d.f1.x/; f1.p//

2
C d.f1.p/; fi .p//

2
C d.fi .p/; fi .x//

2
�
;

which is finite since .fi .p// 2 .Hn/I˛ and .Lip.fi //i2I is bounded. By Lemma 2.11,
the map f is well defined and, for any x , y 2Hn ,

d.f .x/; f .y//�
X
i2I

˛i d.fi .x/; fi .y//;

which implies Lemma 2.13.

We also consider barycenters of maps with variable coefficients. The following result,
which combines Lemmas 2.12 and 2.13 in an equivariant setting, is one of our main
technical tools; it will be used extensively throughout Sections 4 and 6.

Lemma 2.14 Let �0 be a discrete group, .j; �/ 2 Hom.�0; G/2 a pair of representa-
tions with j injective and discrete, and B1; : : : ; Br open subsets of Hn . For 1� i � r ,
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let fi W j.�0/ � Bi ! Hn be a .j; �/–equivariant map that is Lipschitz on Bi . For
p 2Hn , let Ip denote the set of indices 1� i � r such that p 2 j.�0/ �Bi , and define

Rp WD diamffi .p/ j i 2 Ipg<C1:

For 1� i � r , also let  i W Hn! Œ0; 1� be a j.�0/–invariant Lipschitz map supported
in j.�0/ �Bi . Assume that  1; : : : ;  r induce a partition of unity on a j.�0/–invariant
open subset B of

Sr
iD1 j.�0/ �Bi . Then the map

f D
X
i2I

 ifi W B!Hn; p 7!
X
i2Ip

 i .p/fi .p/;

is .j; �/–equivariant and, for any p 2 B , the following “Leibniz rule” holds:

(2-7) Lipp.f /�
X
i2Ip

.Lipp. i /RpC i .p/Lipp.fi //:

Proof The map f is .j; �/–equivariant because the barycentric construction is; see
(2-4). Fix p 2 B and " > 0. By definition of Ip , continuity of  i and fi , and upper
semicontinuity of the local Lipschitz constant (Lemma 2.9), there is a neighborhood U
of p in B such that, for all x 2 U ,

�  i jU D 0 for all i … Ip ,

�  i .x/�  i .p/C " for all i 2 Ip ,

� Rx �RpC ",

� LipU . i /� Lipp. i /C " for all i 2 Ip ,

� LipU .fi /� Lipp.fi /C " for all i 2 Ip .

By the triangle inequality, for any x , y 2 U ,

d.f .x/; f .y//D d

�X
i2Ip

 i .x/fi .x/;
X
i2Ip

 i .y/fi .y/

�

� d

�X
i2Ip

 i .x/fi .x/;
X
i2Ip

 i .y/fi .x/

�
C d

�X
i2Ip

 i .y/fi .x/;
X
i2Ip

 i .y/fi .y/

�
:

Using Lemma 2.12, we see that the first term of the right-hand side is bounded byX
i2Ip

.LipU . i / d.x; y//Rx � d.x; y/

�X
i2Ip

.Lipp. i /C "/
�
.RpC "/;
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and, using Lemma 2.13, that the second term is bounded by

d.x; y/
X
i2Ip

 i .y/LipU .fi /� d.x; y/
X
i2Ip

. i .p/C "/.Lipp.fi /C "/:

The bound (2-7) follows by letting " go to 0.

3 An equivariant Kirszbraun–Valentine theorem for
amenable groups

One of the goals of this paper is to refine the classical Kirszbraun–Valentine theorem
[27; 52], which states that any Lipschitz map from a compact subset of Hn to Hn

with Lipschitz constant � 1 can be extended to a map from Hn to itself with the same
Lipschitz constant. We shall in particular extend this theorem to an equivariant setting,
for two actions j; � 2Hom.�0; G/ of a discrete group �0 on Hn , with j geometrically
finite (Theorem 1.6). Before we prove Theorem 1.6, we shall:

� Reprove the classical Kirszbraun–Valentine theorem (Section 3.1), both for the
reader’s convenience and because the main technical step (Lemma 3.2) will be
useful later to control the local Lipschitz constant.

� Examine the case when the Lipschitz constant is < 1 (Section 3.2).

� Extend the classical Kirszbraun–Valentine theorem to an equivariant setting
for two actions j; � 2 Hom.S;G/ of an amenable group S (Section 3.3).
We shall use this as a technical tool to extend maps in cusps when dealing
with geometrically finite representations j 2 Hom.�0; G/ that are not convex
cocompact.

3.1 The classical Kirszbraun–Valentine theorem

We first give a proof of the classical Kirszbraun–Valentine theorem [27; 52].

Proposition 3.1 Let K ¤ ∅ be a compact subset of Hn . Any Lipschitz map
'W K ! Hn with Lip.'/ � 1 admits an extension f W Hn ! Hn with the same
Lipschitz constant.

The following is an important technical step in the proof of Proposition 3.1. It will also
be used in the proofs of Lemmas 3.8, 5.2 and 5.4 below.
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Lemma 3.2 Let K ¤∅ be a compact subset of Hn and 'W K !Hn a nonconstant
Lipschitz map. For any p 2Hn XK , the function

Hn
!RC; q0 7! Cq0 WDmax

k2K

d.q0;'.k//

d.p; k/
;

admits a minimum Cq at a point q 2Hn , and q belongs to the convex hull of '.K 0/,
where

K 0 WD

�
k 2K

ˇ̌̌ d.q;'.k//
d.p; k/

D Cq

�
:

Moreover,

� either there exist k1 , k2 2K 0 such that 0� 1k1pk2 < 5'.k1/q'.k2/� � ;

� or 1k1pk2 D 5'.k1/q'.k2/ for .���/–almost all .k1; k2/ 2K 0�K 0 , where � is
some probability measure on K 0 such that q belongs to the convex hull of the
support of '�� .

Here we denote by babc 2 Œ0; �� the angle at b between three points a , b , c 2Hn .

Proof of Lemma 3.2 The function q0 7! Cq0 is proper and convex, hence admits a
minimum Cq at some point q 2Hn . We have Cq > 0 since ' is nonconstant.

Suppose by contradiction that q does not belong to the convex hull of '.K 0/, and
let q0 be the projection of q to this convex hull. If q00 is a point of the geodesic
segment Œq; q0�, close enough to q , then d.q00;'.k//=d.p; k/ is uniformly less than
Cq for k 2K ; indeed, for k 2K in a small neighborhood of K 0 this follows from
the inequality d.q00;'.k// < d.q;'.k//, while for k 2K away from K 0 it follows
from the fact that d.q;'.k//=d.p; k/ is itself bounded away from Cq by continuity
and compactness of K . Thus Cq00 < Cq , a contradiction. It follows that q belongs to
the convex hull of '.K 0/.

Let K 0log� TpHn (resp. Llog� TqHn ) be the (compact) set of vectors whose image by
the exponential map exppW TpHn!Hn (resp. expqW TqHn!Hn ) lies in K 0 (resp.
in '.K 0/). Let

'log WD exp�1q ı' ı exppW K
0
log!Llog

be the map induced by ' . The fact that q belongs to the convex hull of '.K 0/ implies
that 0 belongs to the convex hull of Llog D 'log.K

0
log/. Therefore, there exists a

probability measure �log on K 0log such thatZ
K 0log

'log.x/

k'log.x/k
d�log.x/D 0 2 TqHn:
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(The division is legitimate since k'log.x/k D d.q;'.expq.x///� Cq d.p;K / > 0 for
all x 2 K 0log .) We set � WD .expp/��log , so that q belongs to the convex hull of the
support of '�� . We then have“
K 0�K 0

.cos 1k1pk2� cos 5'.k1/q'.k2// d.� � �/.k1; k2/

D

“
K 0log�K

0
log

��
x1

kx1k

ˇ̌̌ x2

kx2k

�
�

�
'log.x1/

k'log.x1/k

ˇ̌̌ 'log.x2/

k'log.x2/k

��
d.�log � �log/.x1; x2/

D

ˇ̌̌̌Z
K 0log

x

kxk
d�log.x/

ˇ̌̌̌2
�

ˇ̌̌̌Z
K 0log

'log.x/

k'log.x/k
d�log.x/

ˇ̌̌̌2
� 0:

If the function .k1; k2/ 7! cos 1k1pk2�cos 5'.k1/q'.k2/ takes a positive value at some
pair .k1; k2/2K 0�K 00 , then we have 0� 1k1pk2< 5'.k1/q'.k2/�� . Otherwise, the
function takes only nonpositive values, hence is zero .���/–almost everywhere since
its integral is nonnegative; in other words, 1k1pk2 D 5'.k1/q'.k2/ for .���/–almost
all .k1; k2/ 2K 0 �K 0 .

The other main ingredient in the proof of Proposition 3.1 is the following consequence
of Toponogov’s theorem, a comparison theorem expressing the divergence of geodesics
in negative curvature (see [10, Lemma II.1.13]).

Lemma 3.3 In the setting of Lemma 3.2, we have Cq �max.Lip.'/; 1/.

Proof We may assume Cq � 1, otherwise there is nothing to prove. By Lemma 3.2,
there exist k1 , k2 2K 0 such that 1k1pk2 � 5'.k1/q'.k2/¤ 0. Since

d.q;'.k1//

d.p; k1/
D
d.q;'.k2//

d.p; k2/
D Cq � 1;

Toponogov’s theorem implies d.'.k1/;'.k2//�Cq d.k1; k2/. On the other hand, we
have d.'.k1/;'.k2//�Lip.'/ d.k1; k2/ by definition of Lip.'/, hence Cq�Lip.'/.

Proof of Proposition 3.1 It is enough to prove that for any point p 2HnXK we can
extend ' to K [ fpg keeping the same Lipschitz constant C0 WD Lip.'/. Indeed, if
this is proved, then we can consider a dense sequence .pi /i2N of points of Hn XK ,
construct by induction a C0–Lipschitz extension of ' to K [fpi j i 2Ng, and finally
extend it to Hn by continuity.

Let p 2 Hn X K . If ' is constant, then the constant extension of ' to K [ fpg

still has the same Lipschitz constant. Otherwise we apply Lemmas 3.2 and 3.3 with
.K ;'/ WD .K; '/.
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Remark 3.4 The proof actually shows that, for C � 1, any map ' WK!Hn with
Lip.'/� C admits an extension f W Hn!Hn with Lip.f /� C .

Remark 3.5 The same proof shows that, if K is a nonempty compact subset of Rn ,
then any Lipschitz map 'W K!Rn admits an extension f W Rn!Rn with the same
Lipschitz constant. There is no constraint on the Lipschitz constant for Rn since the
Euclidean analogue of Toponogov’s theorem holds for any C � 0. This Euclidean
extension result is the one originally proved by Kirszbraun [27], by a different approach
based on Helly’s theorem. The hyperbolic version is due to Valentine [52].

Remark 3.6 Proposition 3.1 actually holds for any subset K of Hn , not necessarily
compact. Indeed, we can always extend ' to the closure K of K by continuity,
with the same Lipschitz constant, and view K as an increasing union of compact
sets Ki for i 2 N. Proposition 3.1 gives extensions fi W Hn ! Hn of 'jKi with
Lip.fi / � Lip.'/, and by the Arzelà–Ascoli theorem we can extract a pointwise
limit f from the fi , extending ' with Lip.f /D Lip.'/.

3.2 A weaker version when the Lipschitz constant is less than 1

Proposition 3.1 does not hold when the Lipschitz constant is < 1; see Example 9.6.
However, we prove the following strengthening of Remark 3.4 with C D 1.

Proposition 3.7 Let K ¤ ∅ be a compact subset of Hn . Any Lipschitz map
'W K!Hn with Lip.'/ < 1 admits an extension f W Hn!Hn with Lip.f / < 1.

It is not clear whether the analogue of Remark 3.6 holds when Lip.'/ < 1; see
Appendix C.1.

Here is the main technical step in the proof of Proposition 3.7:

Lemma 3.8 Let K¤∅ be a compact subset of Hn with convex hull Conv.K/ in Hn ,
and let 'W K!Hn be a Lipschitz map with Lip.'/ < 1. For any p 2 Conv.K/, there
is a neighborhood Up of p in Hn and a 1–Lipschitz extension fpW K [ Up ! Hn

of ' such that LipUp .fp/ < 1.

Proof We first extend ' to a map hW K [ fpg !Hn with Lip.h/ < 1. For this we
may assume p …K . By Lemma 3.2 with .K ;'/ WD .K; '/, we can find points q 2Hn

and k1 , k2 2 K such that Cq WD maxk2K d.q; '.k//=d.p; k/ is minimal and such
that d.q; '.ki // D Cq d.p; ki / for i 2 f1; 2g and 1k1pk2 � 5'.k1/q'.k2/ ¤ 0. We
cannot have Cq D 1, otherwise we would have d.'.k1/; '.k2//� d.k1; k2/ by basic
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trigonometry, contradicting Lip.'/ < 1. Therefore Cq < 1 by Lemma 3.3. We can
then take hW K [fpg !Hn to be the extension of ' sending p to q .

Next, choose a small " > 0 such that Lip.h/.1C "/4 < 1. Let us prove that there
is a ball B of radius r > 0 centered at p and an extension h0W B ! Hn of hjK\B
such that LipB.h

0/ � Lip.h/.1C "/4 < 1. If p … K , we just take B to be disjoint
from K and h0.B/ D fqg. If p 2 K , we remark that there is a constant r > 0

such that, for any x 2Hn , the exponential map expx W TxHn!Hn and its inverse
logx W H

n! TxHn are both .1C"/–Lipschitz when restricted to the ball Bx.r/�Hn

of radius r centered at x and to its image logx Bx.r/� TxHn . We set B WD Bp.r/.
Consider the map

logq ı h ı exppW logp.K/! TqHn:

Its restriction to logp.K\B/�TpHn is Lip.h/.1C"/2–Lipschitz. By Remark 3.5, this
restriction admits an extension  W logp B! TqHn with the same Lipschitz constant.
Then

h0 WD expq ı ı logpW B!Hn

is an extension of hjK\B with LipB.h
0/� Lip.h/.1C "/4 < 1.

Let B 0 � B be another ball centered at p , of radius r 0 > 0 small enough such that
Lip.h/rCLip.h0/r 0<r�r 0 . We claim that we may take Up WDB 0 and fpW K[Up!Hn

to be the map that coincides with ' on K and with h0 on Up . Indeed, for any distinct
points .x; y/ 2K �B 0 , if x 2 B then Lipfx;yg.fp/� Lip.h0/ < 1, and otherwise

(3-1)
d.fp.x/; fp.y//

d.x; y/
�
d.fp.x/; fp.p//C d.fp.p/; fp.y//

d.x; p/� d.p; y/

�
Lip.h/ d.x; p/CLip.h0/r 0

d.x; p/� r 0
< 1;

where the last inequality uses the fact that d.x; p/ � r and the monotonicity of real
Möbius maps t 7! .t C a/=.t � b/ for a , b � 0.

Proof of Proposition 3.7 It is sufficient to prove that any Lipschitz map 'W K!Hn

with C0 WD Lip.'/ < 1 admits an extension f W Conv.K/! Hn with Lip.f / < 1,
as we can always precompose with the closest-point projection � W Hn! Conv.K/,
which is 1–Lipschitz.

By Lemma 3.8, for any p 2 Conv.K/ we can find a neighborhood Up of p in Hn

and a 1–Lipschitz extension fpW K [ Up ! Hn of ' such that LipUp .fp/ < 1. By
compactness of Conv.K/, we can find finitely many points p1; : : : ; pm 2 Conv.K/
such that Conv.K/�

Sm
iD1 Upi . For any 1� i�m, using Remark 3.4, we extend fpi to
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a 1–Lipschitz map on Conv.K/[Upi , still denoted by fpi . By (2-2) and Lemma 2.13,
the symmetric barycenter

f WD

mX
iD1

1

m
fpi jConv.K/W Conv.K/!Hn;

which extends ' , satisfies

Lip.f /� max
1�i�m

LipUpi
.fpi /C .m� 1/

m
< 1:

3.3 An equivariant Kirszbraun–Valentine theorem for amenable groups

We now extend Proposition 3.1 to an equivariant setting with respect to two actions
of an amenable group. Recall that a discrete group S is said to be amenable if there
exists a sequence .Fi /i2N of finite subsets of S (called a Følner sequence) such that,
for any g 2 S ,

#.gFi 4Fi /
#Fi

! 0 as i !C1;

where 4 denotes the symmetric difference. For instance, any group which is abelian
or solvable up to finite index is amenable.

The following proposition will be used throughout Section 4 to extend Lipschitz maps in
horoballs of Hn corresponding to cusps of the geometrically finite manifold j.�0/nHn ,
taking S to be a cusp stabilizer.

Proposition 3.9 Let S be an amenable discrete group, .j; �/�Hom.S;G/2 a pair of
representations with j injective and j.S/ discrete in G , and K ¤∅ a j.S/–invariant
subset of Hn whose image in j.S/nHn is compact. Any .j; �/–equivariant Lipschitz
map 'W K!Hn with Lip.'/� 1 admits a .j; �/–equivariant extension f W Hn!Hn

with the same Lipschitz constant.

Proof Set C0 WD Lip.'/ � 1. By Proposition 3.1 and Remark 3.6, we can find an
extension f 0W Hn!Hn of ' with Lip.f 0/D C0 , but f 0 is not equivariant a priori.
We shall modify it into a .j; �/–equivariant map. For any  2 S , the C0–Lipschitz
map

f WD �./ ıf
0
ı j./�1W Hn

!Hn

extends ' . For all  ,  0 2 S and p 2Hn , since f and f 0 agree on K , the triangle
inequality gives

(3-2) d.f .p/; f 0.p//� 2C0 � d.p;K/:
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Fix a finite generating subset A of S . Using a Følner sequence of S , we see that for
any " > 0 there is a finite subset F of S such that #.F 4F /� " #F for all  2 A.
Write F D f1; : : : ; kg, where k D #F , and set

(3-3) f ".p/ WDmk.f1.p/; : : : ; fk .p//

for all p 2 Hn , where mk D m.1=k;:::;1=k/ is the averaging map of Lemma 2.11.
By (2-5), the map f " still coincides with ' on K . Moreover, as a barycenter of
C0–Lipschitz maps, f " is C0–Lipschitz (Lemma 2.13). Note, using (2-4), that

(3-4) �./ ıf " ı j./�1.p/Dmk.f1.p/; : : : ; fk .p//

for all  2 S and p 2Hn . Since #.F 4F /� " #F for all  2 A, all but at most "k
of the k entries of mk in (3-4) are the same as in (3-3) up to order, hence

d.�./ ıf " ı j./�1.p/; f ".p//� 2C0 � d.p;K/ � "

for all p 2Hn by (2-6), Lemma 2.11, and (3-2). We conclude by letting " go to 0 and
extracting a pointwise limit f from the f " ; such a map f W Hn!Hn is C0–Lipschitz,
extends ' , and is equivariant under the action of any element  of A, hence of S .

4 The relative stretch locus

We now fix a discrete group �0 , a pair .j; �/ 2 Hom.�0; G/2 of representations of �0
in G with j geometrically finite, a j.�0/–invariant subset K of Hn whose image in
M WD j.�0/nHn is compact (possibly empty), and a .j; �/–equivariant Lipschitz map
'W K!Hn . We shall use the following terminology and notation:

Definition 4.1

� The relative minimal Lipschitz constant CK;'.j; �/ is the infimum of Lipschitz
constants Lip.f / of .j; �/–equivariant maps f W Hn!Hn with f jK D ' .

� We denote by Fj;�K;' the set of .j; �/–equivariant maps f W Hn ! Hn with
f jK D ' that have minimal Lipschitz constant CK;'.j; �/.

� If Fj;�K;' ¤∅, the relative stretch locus EK;'.j; �/�Hn is the intersection of
the stretch loci Ef (Definition 2.10) of all maps f 2 Fj;�K;' .

� Similarly, the enhanced relative stretch locus zEK;'.j; �/� .Hn/2 is the inter-
section of the enhanced stretch loci zEf (Definition 2.10) of all maps f 2 Fj;�K;' .
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Note that EK;'.j; �/ is always j.�0/–invariant and closed in Hn , because Ef is for
each f 2Fj;�K;' (Lemma 2.9). Similarly, zEK;'.j; �/ is always j.�0/–invariant (for the
diagonal action of j.�0/ on .Hn/2 ) and closed in .Hn/2 .

If K is empty, then CK;'.j; �/ is the minimal Lipschitz constant C.j; �/ of (1-1) and
EK;'.j; �/ is the intersection of stretch loci E.j; �/ of Theorem 1.3, which we shall
simply call the stretch locus of .j; �/. For empty K we shall sometimes write Fj;�

instead of Fj;�K;' .

4.1 Elementary properties of the (relative) minimal Lipschitz constant
and the (relative) stretch locus

We start with an easy observation for empty K :

Remark 4.2 If all elements of �.�0/ are elliptic, then C.j; �/D 0 and Fj;� is the
set of constant maps with image a fixed point of �.�0/ in Hn (such a fixed point exists
by Fact 2.5); in particular, E.j; �/DHn .

Here are now some elementary properties of CK;'.j; �/ and EK;'.j; �/ for general K .

Remark 4.3 Conjugating by elements of G leaves the relative minimal Lipschitz
constant invariant and modifies the relative stretch locus (if Fj;�K;' ¤∅) by a translation:
for any j; � 2 Hom.�0; G/ and g , h 2G , we have�

Cg �K;hı'ıg�1.j
g ; �h/D CK;'.j; �/;

Eg �K;hı'ıg�1.j
g ; �h/D g �EK;'.j; �/;

where j g WD gj. � /g�1 and �h D h�. � /h�1 .

Indeed, for any .j; �/–equivariant Lipschitz map f W Hn!Hn extending ' , the map
h ı f ı g�1W Hn! Hn extends h ı ' ı g�1, is .j g ; �h/–equivariant with the same
Lipschitz constant, and Lipg �p.h ıf ıg

�1/D Lipp.f / for all p 2Hn .

Lemma 4.4 For any finite-index subgroup � 00 of �0 , if we set j 0 WD j j� 00
and

�0 WD �j� 00
, then

� CK;'.j; �/D CK;'.j
0; �0/;

� Fj;�K;' � Fj
0;�0

K;' , and Fj;�K;' ¤∅ if and only if Fj
0;�0

K;' ¤∅;

� in this latter case, EK;'.j; �/DEK;'.j 0; �0/.

By Lemma 4.4, we may always assume that
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� the finitely generated group �0 is torsion-free (using the Selberg lemma [47,
Lemma 8]);

� j and � take values in the group G0 D PO.n; 1/0 ' SO.n; 1/0 of orientation-
preserving isometries of Hn .

This will sometimes be used in the proofs without further notice.

Proof of Lemma 4.4 The inequality CK;'.j 0; �0/ � CK;'.j; �/ holds because any
.j; �/–equivariant map is .j 0; �0/–equivariant. We now prove the converse inequality.
Write �0 as a disjoint union of cosets ˛1� 00; : : : ; ˛r�

0
0 , where ˛i 2 �0 . Let f 0

be a .j 0; �0/–equivariant Lipschitz extension of ' . For  2 �0 , the map f WD

�./ıf 0 ıj./�1 depends only on the coset � 00 . By (2-6), the symmetric barycenter
f WD

Pr
iD1.1=r/f˛i satisfies, for any  2 �0 ,

�./ ıf ı j./�1 D

rX
iD1

1

r
f˛i D f;

because the cosets ˛i� 00 are the ˛i� 00 up to order. This means that f is .j; �/–
equivariant. By Lemma 2.13, we have Lip.f / � Lip.f 0/, hence CK;'.j; �/ �

CK;'.j
0; �0/ by minimizing Lip.f 0/.

Since CK;'.j; �/ D CK;'.j 0; �0/, it follows from the definitions that Fj;�K;' � Fj
0;�0

K;'

and that, if these are nonempty, then EK;'.j; �/�EK;'.j 0; �0/. In fact, if Fj 0;�0K;' ¤∅,
then also Fj;�K;' ¤ ∅ and EK;'.j; �/D EK;'.j 0; �0/. Indeed, if f 02 Fj

0;�0

K;' , then the
symmetric barycenter f D

Pr
iD1.1=r/f˛i introduced above belongs to Fj;�K;' , and the

stretch locus of f is contained in that of f 0 by Lemma 2.13.

Lemma 4.5 The inequalities

(4-1) C 0.j; �/� C.j; �/� CK;'.j; �/

always hold, where C 0.j; �/ is given by (1-4).

Proof The right-hand inequality follows from the definitions. For the left-hand
inequality, we observe that, for any  2 �0 with j./ hyperbolic and any p 2Hn on
the translation axis of j./, if f W Hn!Hn is .j; �/–equivariant and Lipschitz, then

�.�.//� d.f .p/; �./ �f .p//D d.f .p/; f .j./ �p//

� Lip.f / d.p; j./ �p/D Lip.f /�.j.//;

and we conclude by letting Lip.f / tend to C.j; �/.
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Here is a sufficient condition for the left inequality of (4-1) to be an equality. We shall
see in Theorem 5.1 that for C.j; �/� 1 this sufficient condition is also necessary, at
least when Fj;�K;' and EK;'.j; �/ are nonempty.

Lemma 4.6 Let ` be a geodesic ray in Hn whose image in j.�0/nHn is bounded. If
` is maximally stretched by some .j; �/–equivariant Lipschitz map f W Hn!Hn , in
the sense that f multiplies all distances on ` by Lip.f /, then

C 0.j; �/D C.j; �/D Lip.f /:

Proof By (4-1) it is enough to prove that C 0.j; �/ � Lip.f /. Parametrize ` by arc
length as .pt /t�0 . Since the image of ` in j.�0/nHn is bounded, for any " > 0

we can find  2 �0 and 0 < s < t with t � s � 1 such that the oriented segments
j./ � Œps; psC1� and Œpt ; ptC1� of Hn are "–close in the C 1 sense. By the closing
lemma (Lemma A.1), this implies

j�.j.//� .t � s/j � 2":

The images under f of the unit segments above are also "Lip.f /–close geodesic
segments. By the closing lemma again and the .j; �/–equivariance of f ,

j�.�.//� .t � s/Lip.f /j � 2"Lip.f /:

Taking " very small, we see that �.�.//=�.j.// takes values arbitrarily close to
Lip.f / for  2 �0 with j./ hyperbolic, hence C 0.j; �/� Lip.f /.

4.2 Finiteness of the (relative) minimal Lipschitz constant

Lemma 4.7 (1) If j is convex cocompact, then CK;'.j; �/ <C1.

(2) In general, if j is geometrically finite, then CK;'.j; �/<C1 unless there exists
an element  2 �0 such that j./ is parabolic and �./ is hyperbolic.

The following proof uses Lemma 2.14 applied to an appropriate partition of unity. A
similar proof scheme will be used again throughout Section 6.

Proof of Lemma 4.7(1) (convex cocompact case) Recall Notation 2.3 for Conv.K/.
If j is convex cocompact, then Conv.K/ is compact modulo j.�0/, hence we can find
open balls B1; : : : ; Br of Hn , projecting injectively to j.�0/nHn , such that Conv.K/
is contained in the union of the j.�0/ �Bi . For any i , let fi W Bi !Hn be a Lipschitz
extension of 'jBi\K (such an extension exists by Proposition 3.1). We extend fi to
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j.�0/ �Bi in a .j; �/–equivariant way (with no control on the global Lipschitz constant
a priori). The function

p 7!Rp WD diamffi .p/ j 1� i � r and p 2 j.�0/ �Big

is locally bounded above and j.�0/–invariant, so is uniformly bounded on
S
i j.�0/�Bi .

Let . i /1�i�r be a partition of unity on Conv.K/, subordinated to the covering
.j.�0/ �Bi /1�i�r , with  i Lipschitz and j.�0/–invariant for all i . Lemma 2.14 gives
a .j; �/–equivariant map

f WD

rX
iD1

 ifi W Conv.K/!Hn

with Lipp.f / bounded by some constant L independent of p 2 Conv.K/. Then
LipConv.K/.f / � L by (2-2). By precomposing f with the closest-point projection
� W Hn! Conv.K/, which is 1–Lipschitz and .j; j /–equivariant, we obtain a .j; �/–
equivariant Lipschitz extension of ' to Hn .

Proof of Lemma 4.7(2) (general geometrically finite case) Suppose that, for any
 2 �0 with j./ parabolic, the element �./ is not hyperbolic. The idea is the same
as in the convex cocompact case, but we need to deal with the presence of cusps,
which make Conv.K/ noncompact modulo j.�0/. We shall apply Proposition 3.9 (the
equivariant version of Proposition 3.1 for amenable groups) to the stabilizers of the
cusps.

Let B1; : : : ; Bc be open horoballs of Hn , disjoint from K , whose images in j.�0/nHn

are disjoint and intersect the convex core in standard cusp regions (Definition 2.2),
representing all the cusps. Let BcC1; : : : ; Br be open balls of Hn that project injectively
to j.�0/nHn such that the union of the j.�0/ �Bi for 1� i � r covers Conv.K/. For
cC 1� i � r , we construct a .j; �/–equivariant Lipschitz map fi W j.�0/ �Bi !Hn

as in the convex cocompact case. For 1� i � c , we now explain how to construct a
.j; �/–equivariant Lipschitz map fi W j.�0/ �Bi !Hn .

Let Si be the stabilizer of Bi in �0 for the j –action. We claim that there exists a
.j jSi ; �jSi /–equivariant Lipschitz map fi W Bi ! Hn . Indeed, choose p 2 Bi , not
fixed by any element of j.Si /, and q 2Hn . Set

fi .j./ �p/ WD �./ � q

for all  2 Si . Let wlW Si !N be the word length with respect to some fixed finite
generating set of Si . By Lemma 2.6, there exists R0 > 0 such that

d.p; j./ �p/� 2 log.1C wl.//�R0
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for all  2 Si . On the other hand, there exists R > 0 such that

d.q; �./ � q/� 2 log.1C wl.//CR

for all  2 Si : if �./ is elliptic for all  2 Si , this follows from the fact that the
group �.Si / admits a fixed point in Hn (Fact 2.5), hence d.q; �./ �q/ is bounded for
 2 Si ; otherwise this follows from Lemma 2.6. Since the function wl is proper, we
see that lim sup2Si d.q; �./ � q/=d.p; j./ �p/� 1, hence

sup
2SiXf1g

d.q; �./ � q/

d.p; j./ �p/
<C1:

In other words, fi is Lipschitz on j.Si / �p . We then use Proposition 3.9 to extend fi
to a .j jSi ; �jSi /–equivariant Lipschitz map fi W Bi !Hn .

Let us extend fi to j.�0/ �Bi in a .j; �/–equivariant way (with no control on the
global Lipschitz constant a priori). We claim that

Rp WD diamffi .p/ j 1� i � r and p 2 j.�0/ �Big

is uniformly bounded on Conv.K/. Indeed, j.�0/ � Bi \ j.�0/ � Bk D ∅ for all
1 � i ¤ k � c by definition of standard cusp regions. Therefore, if p 2Hn belongs
to j.�0/ �Bi for more than one index 1 � i � r , then it belongs to the “thick” part
j.�0/ �

S
c<i�r Bi . But

S
c<i�r Bi is bounded and p 7!Rp is locally bounded above

and j.�0/–invariant, hence Rp is uniformly bounded on Conv.K/.

We conclude as in the convex cocompact case.

The converse to Lemma 4.7 is clear: if there exists an element  2 �0 such that
j./ is parabolic and �./ is hyperbolic, then CK;'.j; �/ D C1. Indeed, for any
p , q 2 Hn , the distance d.p; j.k/ � p/ grows logarithmically in k (Lemma 2.6)
whereas d.q; �.k/ � q/ grows linearly.

In the rest of the paper, we shall assume CK;'.j; �/ <C1 whenever we discuss a fixed
pair .j; �/. We shall allow C.j; �/DC1 only in Section 6 and Proposition 9.5, where
we discuss semicontinuity properties of the maps .j; �/ 7!C.j; �/ and .j; �/ 7!E.j; �/,
for empty K .

4.3 Projecting onto the convex core

In the proof of Lemma 4.7, we used the closest-point projection � W Hn! Conv.K/,
which is 1–Lipschitz and .j; j /–equivariant. This projection will be used many times
in Sections 4, 5 and 6, with the following more precise properties:
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Lemma 4.8 Suppose that Fj;�K;' ¤∅ and let � W Hn! Conv.K/ be the closest-point
projection. For any f 2 Fj;�K;' ,

(1) Lip.f ı�/D Lip.f jConv.K//D Lip.f /D CK;'.j; �/ and f ı� 2 Fj;�K;' ;

(2) if CK;'.j; �/>0, then the stretch loci and enhanced stretch loci (Definition 2.10)
satisfy �

Ef ı� DEf jConv.K/ �Ef \Conv.K/;
zEf ı� D zEf jConv.K/ �

zEf \ .Conv.K/�Conv.K//:

In particular, if CK;'.j; �/ > 0, then the relative stretch locus EK;'.j; �/ is always
contained in Conv.K/.

(This is not true if CK;'.j; �/D 0; see Remark 4.2.)

Proof For any f 2 Fj;�K;' we have Lip.f ı �/ D Lip.f jConv.K// � Lip.f / since
� W Hn ! Conv.K/ is 1–Lipschitz. Equality holds and f ı � 2 Fj;�K;' since � is
.j; j /–equivariant and Lip.f /D CK;'.j; �/ is minimal. This proves (1).

For (2), it is enough to consider the enhanced stretch locus zE �Hn �Hn , since the
stretch locus E is the projection of zE to either of the Hn factors. Note that

zEf jConv.K/ �
zEf ı� � Conv.K/�Conv.K/;

because � is the identity on Conv.K/ and is contracting outside Conv.K/. Let us
prove that zEf ı� � zEf jConv.K/ . Consider a pair .x; x0/ 2 zEf ı� . By definition, there are
sequences .xk/k2N converging to x and .x0

k
/k2N converging to x0 such that xk ¤ x0k

and
d.f ı�.xk/; f ı�.x

0
k
//

d.xk; x
0
k
/

! CK;'.j; �/ as k!C1:

By continuity of � we have �.xk/! �.x/D x and �.x0
k
/! �.x0/D x0 . Since

d.f ı�.xk/; f ı�.x
0
k
//

d.xk; x
0
k
/

�
d.f ı�.xk/; f ı�.x

0
k
//

d.�.xk/; �.x
0
k
//

� CK;'.j; �/;

the middle term also tends to CK;'.j; �/, which shows that .�.x/; �.x0//D .x; x0/
belongs to zEf jConv.K/ . Thus zEf ı� D zEf jConv.K/ �

zEf .
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4.4 Equivariant extensions with minimal Lipschitz constant

We shall use the following terminology:

Definition 4.9 A representation � 2Hom.�0; G/ is reductive if the Zariski closure of
�.�0/ in G is reductive or, equivalently, if the number of fixed points of the group �.�0/
in the boundary at infinity @1Hn of Hn is different from 1.

Lemma 4.10 The set Fj;�K;' of Definition 4.1 is nonempty as soon as either K ¤∅ or
� is reductive.

When K D∅ and � is nonreductive, there may or may not exist a .j; �/–equivariant
map f W Hn ! Hn with minimal constant C.j; �/ D CK;'.j; �/; see examples in
Sections 10.2 and 10.3.

Proof of Lemma 4.10 The idea is to apply the Arzelà–Ascoli theorem. Set C WD
CK;'.j; �/ and let .fk/k2N be a sequence of .j; �/–equivariant Lipschitz maps with
fkjK D ' and C C 1� Lip.fk/! C . The sequence .fk/ is equicontinuous. We first
assume that K ¤∅, and fix q 2K . For any k 2N and any p 2Hn ,

(4-2) d.fk.p/; '.q//� .C C 1/ d.p; q/:

Therefore, for any compact subset C of Hn , the sets fk.C / for k 2 N all lie in
some common compact subset of Hn . The Arzelà–Ascoli theorem applies, yielding
a subsequence with a C –Lipschitz limit; this limit necessarily belongs to Fj;�K;' . We
now assume that K D∅ and � is reductive.

� If the group �.�0/ has no fixed point in Hn and does not preserve any geodesic
line of Hn (this is the generic case), then �.�0/ contains two hyperbolic elements
�.1/ and �.2/ whose translation axes have no common endpoint in @1Hn . Fix a
point p 2Hn . For any k 2N and i 2 f1; 2g,

d.fk.p/; �.i / �fk.p//� .C C 1/ d.p; j.i / �p/:

Therefore, the points fk.p/ for k 2N belong to some uniform neighborhood of the
translation axis A�.i / of �.i / for i 2 f1; 2g. Since A�.1/ and A�.2/ have no
common endpoint at infinity, the points fk.p/ belong to some compact subset of Hn

(see Figure 2). Since Lip.fk/ stays bounded, we obtain that, for any compact subset C

of Hn , the sets fk.C / for k 2N all lie inside some common compact subset of Hn ,
and we conclude as above using the Arzelà–Ascoli theorem.

� If the group �.�0/ preserves a geodesic line A of Hn , then it commutes with
any hyperbolic element of G acting as a pure translation along A. For any k 2 N
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H2

A�.1/

A�.2/

Figure 2: Uniform neighborhoods of lines in Hn with disjoint endpoints
have a compact intersection.

and any such hyperbolic element gk , the map gk ı fk is still .j; �/–equivariant, with
Lip.gk ı fk/D Lip.fk/. Fix p 2Hn . By the previous paragraph, the points fk.p/
for k 2 N belong to some uniform neighborhood of A. Therefore, after replacing
.fk/k2N by .gk ıfk/k2N for some appropriate sequence .gk/k2N , we may assume
that the points fk.p/ for k 2 N all belong to some compact subset of Hn , and we
conclude as above.

� If the group �.�0/ has a fixed point in Hn , we use Remark 4.2.

4.5 The stretch locus of an equivariant extension with minimal Lipschitz
constant

Lemma 4.11 (1) If j is convex cocompact, then the stretch locus Ef of any
f 2 Fj;�K;' is nonempty.

(2) In general, the stretch locus of any f 2 Fj;�K;' is nonempty except possibly if
CK;'.j; �/D 1 and � is not cusp-deteriorating.

Recall from Definition 1.1 that “� is not cusp-deteriorating” means there is an element
 2 �0 such that j./ and �./ are both parabolic. When CK;'.j; �/D 1, there exist
examples of pairs .j; �/ with � non-cusp-deteriorating such that the stretch locus Ef is
empty for some maps f 2 Fj;�K;' (see Sections 10.8 and 10.9, as well as Corollary 4.18
for elementary �0 ).
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Proof of Lemma 4.11(1) (convex cocompact case) By Lemma 4.8, it suffices to
prove that the stretch locus of f jConv.K/ is nonempty. The map x 7! Lipx.f jConv.K//

is upper semicontinuous (Lemma 2.9) and j.�0/–invariant. If j is convex cocompact,
then Conv.K/ is compact modulo j.�0/, and so x 7! Lipx.f jConv.K// achieves its
maximum on Conv.K/, at a point that belongs to the stretch locus of f jConv.K/ .

Proof of Lemma 4.11(2) (general geometrically finite case) Assume either that
C ¤ 1 or that C D 1 and � is cusp-deteriorating, where we set C WD CK;'.j; �/.
Consider f 2 Fj;�K;' . As in the convex cocompact case, it is sufficient to prove that
the stretch locus of f jConv.K/ is nonempty. Suppose by contradiction that it is empty;
this means (Lemma 2.9) that LipK0.f / < C for any compact subset K 0 of Conv.K/
or, equivalently, that the j.�0/–invariant function x 7! Lipx.f / only approaches C
asymptotically (from below) in some cusps. Let B1; : : : ; Bc be open horoballs of Hn ,
disjoint from K , whose images in j.�0/nHn are disjoint and intersect the convex
core in standard cusp regions (Definition 2.2), representing all the cusps. Our strategy
is, for each Bi on which x 7! Lipx.f / approaches C asymptotically, to modify
f jConv.K/ on Conv.K/\ j.�0/ �Bi in a .j; �/–equivariant way so as to decrease the
Lipschitz constant on Conv.K/\Bi . By (2-2), this will yield a new .j; �/–equivariant
extension of ' to Conv.K/ with a smaller Lipschitz constant than f jConv.K/ , which
will contradict the minimality of Lip.f jConv.K// D Lip.f /. Let us now explain the
details.

Let B D Bi be an open horoball as above, on which x 7! Lipx.f / approaches C
asymptotically, and let S be the stabilizer of B in �0 for the j –action. The group j.S/
is discrete and contains only parabolic and elliptic elements. Since CK;'.j; �/ <C1
by assumption, the group �.S/ also contains only parabolic and elliptic elements
(Lemma 4.7).

First we assume that �.S/ contains a parabolic element, ie � is not deteriorating in B
(Definition 2.4). In particular, � is not cusp-deteriorating, hence C � 1 by Lemma 2.7
and so C > 1 by the assumption made at the beginning of the proof. Since S is
amenable, in order to decrease the Lipschitz constant on Conv.K/\B it is enough
to prove that LipConv.K/\@B.f / < C , because we can then apply Proposition 3.9. By
geometrical finiteness and the assumption that the image of K in j.�0/nHn is compact
(see Fact 2.1 and the remarks after Notation 2.3), we can find a compact fundamental
domain D of Conv.K/\j.�0/ �@B for the action of j.�0/. Fix p 2D . By Lemma 2.6,
there exist R , R0 > 0 such that

(4-3) d.p; j./ �p/� 2 log.1C wl.//�R0
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and

(4-4) d.f .p/; f .j./ �p//D d.f .p/; �./ �f .p//� 2 log.1C wl.//CR

for all  2 S , where wlW S !N denotes the word length with respect to some fixed
finite generating set of S . Consider q , q0 2 Conv.K/\ @B with q 2 D ; there is an
element  2 �0 such that d.j./ �p; q0/��, where �> 0 is the diameter of D . By
the triangle inequality and (4-3), we have

d.q; q0/� d.p; j./ �p/� d.p; q/� d.j./ �p; q0/� 2 log.1C wl.//� .R0C 2�/

and, using (4-4) and Lip.f /D C ,

d.f .q/; f .q0//� d.f .p/; f .j./ �p//C d.f .p/; f .q//C d.f .j./ �p/; f .q0//

� 2 log.1C wl.//C .RC 2C�/:

Since C > 1, this implies

d.f .q/; f .q0//

d.q; q0/
�
1CC

2
< C

as soon as wl./ is large enough or, equivalently, as soon as d.q; q0/ is large enough.
However, this ratio is also bounded away from C when d.q; q0/ is bounded, because
the segment Œq; q0� then stays in a compact part of j.�0/nConv.K/. Therefore there is a
constant C 00<C such that d.f .q/; f .q0//�C 00d.q; q0/ for all q , q0 2Conv.K/\@B
with q 2 D , hence LipConv.K/\@B.f /� C

00 < C by equivariance. By Proposition 3.9,
we can redefine f inside Conv.K/\B so that LipConv.K/\B.f /<C . We then extend
f to Conv.K/\ j.�0/ �B in a .j; �/–equivariant way.

We now assume that �.S/ consists entirely of elliptic elements, ie � is deteriorating
in B (Definition 2.4). Then �.S/ admits a fixed point q in Hn by Fact 2.5. Let
f1W j.�0/ �B!Hn be the .j; �/–equivariant map that is constantly equal to q on B
and let  1W Hn! Œ0; 1� be the j.�0/–invariant function supported on j.�0/ �B given
by

 1.p/D " .d.p; @B//

for all p 2 B , where  W RC! Œ0; 1� is the 3–Lipschitz function with  jŒ0;1=3� D 0
and  jŒ2=3;C1/ D 1, and " > 0 is a small parameter to be adjusted later. Let f2 WD f ,
and let  2 WD 1� 1 . The .j; �/–equivariant map

f0 WD  1f1C 2f2W H
n
!Hn

coincides with f on Conv.K/\ @B . Let us prove that, if " is small enough, then
Lipp.f0/ is bounded by some uniform constant < C for p 2 Conv.K/\B . Let p 2
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Conv.K/\B . Since Lipp.f1/D 0, since f1.p/D q and since f2 D f , Lemma 2.14
yields

Lipp.f0/� .Lipp. 1/CLipp. 2// d.q; f .p//C 2.p/Lipp.f /:

Let B 0 be a horoball contained in B , at distance 1 from @B . If p 2 Conv.K/\B 0 ,
then Lipp. 1/D Lipp. 2/D 0 and  2.p/D 1� ", hence

Lipp.f0/� .1� "/Lipp.f /� .1� "/C:

If p 2 Conv.K/\ .B XB 0/, then Lipp. 1/;Lipp. 2/� 3" and  2.p/� 1, hence

Lipp.f0/� 6" d.q; f .p//C sup
x2Conv.K/\.BXB 0/

Lipx.f /:

Note that the set Conv.K/\ .B XB 0/ is compact modulo j.S/, which implies on the
one hand that the j.S/–invariant, continuous function p 7! d.q; f .p// is bounded on
Conv.K/\.BXB 0/, and on the other hand that the j.S/–invariant, upper semicontinu-
ous function x 7!Lipx.f / is bounded away from C on Conv.K/\.BXB 0/ (recall that
the stretch locus of f jConv.K/ is empty by assumption). Therefore, if " is small enough,
then Lipp.f0/ is bounded by some uniform constant <C for p 2Conv.K/\B , which
implies LipConv.K/\B.f0/<C by (2-2). We can redefine f to be f0 on Conv.K/\B .
We then extend f to Conv.K/\ j.�0/ �B in a .j; �/–equivariant way.

After redefining the map f as above in each cusp where the local Lipschitz constant
x 7! Lipx.f / approaches C asymptotically, we obtain a .j; �/–equivariant map on
Conv.K/ with Lipschitz constant < C , which contradicts the minimality of C .

4.6 Optimal extensions with minimal Lipschitz constant

Definition 4.12 An element f02F
j;�
K;' (Definition 4.1) is called optimal if its enhanced

stretch locus zEf0 (Definition 2.10) is minimal, equal to

zEK;'.j; �/D
\

f 2Fj;�K;'

zEf :

This means that the ordinary stretch locus Ef0 of f0 is minimal, equal to

EK;'.j; �/D
\

f 2Fj;�K;'

Ef ;

and that the set of maximally stretched segments of f0 is minimal (using Remark 2.8(1)).
This last condition will be relevant only when CK;'.j; �/D1, in the proof of Lemma 5.4;
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indeed, when CK;'.j; �/ > 1, Theorem 5.1 shows that f0 2 Fj;�K;' is optimal if and
only if its ordinary stretch locus Ef0 is minimal.

As mentioned in the introduction, in general an optimal map f0 is by no means unique,
since it may be perturbed away from EK;'.j; �/.

Lemma 4.13 If Fj;�K;' ¤∅, then there exists an optimal element f0 2 F
j;�
K;' .

Proof For any f 2 Fj;�K;' , the enhanced stretch locus zEf is closed in Hn �Hn

(Lemma 2.9 and Remark 2.8(1)) and j.�0/–invariant for the diagonal action. There-
fore, zEK;'.j; �/ is also closed and j.�0/–invariant. By definition, for any x D

.p; q/ 2 .Hn �Hn/X zEK;'.j; �/ (possibly with p D q ), we can find a neighborhood
Ux of x in Hn�Hn , a .j; �/–equivariant map fx 2F

j;�
K;' and a constant ıx > 0 such

that
sup

.p0;q0/2Ux
p0¤q0

d.fx.p
0/; fx.q

0//

d.p0; q0/
D CK;'.j; �/� ıx < CK;'.j; �/:

Since .Hn �Hn/X zEK;'.j; �/ is exhausted by countably many compact sets, we can
write

.Hn
�Hn/X zEK;'.j; �/D

C1[
iD1

Uxi

for some sequence .xi /i�1 of points of .Hn �Hn/ X zEK;'.j; �/. Choose a point
p 2 Hn and let ˛ D .˛i /i�1 be a sequence of positive reals summing up to 1 and
decreasing fast enough so that

C1X
iD1

˛i d.fx1.p/; fxi .p//
2 <C1:

By Lemma 2.13, the map f0 WD
P1
iD1 ˛ifxi is well defined and satisfies

sup
.p;q/2Uxi
p¤q

d.f0.p/; f0.q//

d.p; q/
� CK;'.j; �/�˛iıxi < CK;'.j; �/

for all i , hence zEf0 \Uxi D∅, which means that zEf0 D zEK;'.j; �/.

Here is an immediate consequence of Lemmas 4.11 and 4.13:

Corollary 4.14 If Fj;�K;' ¤∅, then the relative stretch locus EK;'.j; �/
� is nonempty for convex cocompact j ;
� is nonempty for general geometrically finite j , except possibly if CK;'.j; �/D 1

and � is not cusp-deteriorating.
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In fact, the following holds:

Lemma 4.15 If Fj;�K;' ¤∅, then for any p 2Hn X .EK;'.j; �/[K/ there exists an
optimal element f0 2 F

j;�
K;' that is constant on a neighborhood of p .

Proof Assume that Fj;�K;' ¤∅ and let f 2 Fj;�
K;'

be optimal (given by Lemma 4.13).
Fix p 2 Hn X .EK;'.j; �/[K/. Let B � Hn be a closed ball centered at p , with
small radius r > 0, such that B does not meet K[EK;'.j; �/ and projects injectively
to j.�0/nHn . By Lemma 2.9,

C � WD LipB.f / < C WD CK;'.j; �/:

For any small enough ball B 0 � B of radius r 0 centered at p , the map

�pW @B [B
0
!Hn

that coincides with the identity on @B and is constant with image fpg on B 0 satisfies
1 < Lip.�p/D r=.r � r 0/ < C=C � . Proposition 3.1 enables us to extend �p to a map
�0pW B!Hn fixing @B pointwise with Lip.�0p/ < C=C

� . We may moreover assume
�0p.B/� B up to postcomposing with the closest-point projection onto B . The .j; j /–
equivariant map JpW Hn!Hn that coincides with �0p on B and with the identity on
HnXj.�0/�B satisfies Lipx.Jp/�Lip.�0p/<C=C

� if x 2 j.�0/�B and Lipx.Jp/D 1
otherwise. Thus, by (2-2), we see that the .j; �/–equivariant map f0 WD f ıJp satisfies
Lipx.f0/� C

� Lip.�0p/ < C if x 2 j.�0/ �B and Lipx.f0/D Lipx.f / otherwise. In
particular, f0 is C –Lipschitz, constant on B 0 , extends ' , and its (enhanced) stretch
locus is contained in that of the optimal map f . Therefore f0 is optimal.

4.7 Behavior in the cusps for (almost) optimal Lipschitz maps

In this section we consider representations j that are geometrically finite but not convex
cocompact. We show that when Fj;�K;' is nonempty, we can find optimal maps f02F

j;�
K;'

(in the sense of Definition 4.12) that “show no bad behavior” in the cusps. To express
this, we consider open horoballs B1; : : : ; Bc of Hn whose images in M WD j.�0/nHn

are disjoint and intersect the convex core in standard cusp regions (Definition 2.2),
representing all the cusps. We take them small enough so that K \ j.�0/ �Bi D∅ for
all i . Then the following holds:

Proposition 4.16 Consider C � <C1 such that there exists a C �–Lipschitz, .j; �/–
equivariant extension f W Hn!Hn of ' .

(1) If C � � 1, then we can find a C �–Lipschitz, .j; �/–equivariant extension
f0W Hn ! Hn of ' and horoballs B 0i � Bi such that LipB 0

i
.f0/ D 0 for all

deteriorating Bi and LipB 0
i
.f0/D 1 for all nondeteriorating Bi .
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(2) If C � < 1, then we can find a C �–Lipschitz, .j; �/–equivariant extension
f0W Hn!Hn of ' that converges to a point pi in any Bi (ie the sets f0.B 0i /
converge to fpig for smaller and smaller horoballs B 0i � Bi ).

(3) If C � < 1, then for any " > 0 we can find a .C �C"/–Lipschitz, .j; �/–
equivariant extension f0W Hn ! Hn of ' and horoballs B 0i � Bi such that
LipB 0

i
.f0/D 0 for all i .

Moreover, if C � D CK;'.j; �/, then in (1) and (2) we can choose f0 such that its
enhanced stretch locus is contained in that of f . In particular, f0 is optimal if f is.

By “Bi deteriorating” we mean that � is deteriorating in Bi in the sense of Definition 2.4.
Recall that all Bi are deteriorating when C �<1 (Lemma 2.7). If Bi is not deteriorating,
then any .j; �/–equivariant map has Lipschitz constant � 1 in Bi (see Lemma 2.6),
hence the property LipB 0

i
.f0/ D 1 in (1) cannot be improved. We believe that the

condition C �� 1 could be dropped in (1), which would then supersede both (2) and (3);
see Appendix C.4.

Note that if f0 converges to a point pi in Bi , then pi must be a fixed point of the
group �.Si /, where Si � �0 is the stabilizer of Bi under j .

Here is an immediate consequence of Proposition 4.16(1), of Lemma 4.8 and of the
fact that the complement of the cusp regions in Conv.K/ is compact (Fact 2.1). Recall
that Fj;�K;' is nonempty as soon as K ¤∅ or � is reductive (Lemma 4.10).

Corollary 4.17 Suppose Fj;�K;' ¤∅. If
� CK;'.j; �/ > 1, or
� CK;'.j; �/D 1 and � is cusp-deteriorating,

then the image of the relative stretch locus EK;'.j; �/ in j.�0/nHn is compact.

Here is another consequence of Proposition 4.16 and Lemma 4.8, in the case when the
group j.�0/ is virtually Zm for some m< n:

Corollary 4.18 If the groups j.�0/ and �.�0/ both have a unique fixed point in @1Hn ,
then C.j; �/D 1 and Fj;� ¤∅ and E.j; �/D∅.

Proof of Corollary 4.18 If j.�0/ and �.�0/ both have a unique fixed point in @1Hn ,
then � is not cusp-deteriorating with respect to j , and so C.j; �/�1 by Lemma 2.7. By
Proposition 4.16(1) we can find a .j; �/–equivariant map f W Hn!Hn and a j.�0/–
invariant horoball B of Hn such that LipB.f /D 1. If we denote by �B W Hn!B the
closest-point projection, then f ı�B W Hn!Hn is .j; �/–equivariant and 1–Lipschitz.
Thus C.j; �/ D 1 and f 2 Fj;� . Lemma 4.8 shows that Ef is contained in any
j.�0/–invariant horoball B 0 � B , hence it is empty. In particular, E.j; �/D∅.
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Proof of Proposition 4.16 For any 1 � i � c we explain how f jConv.K/ can be
modified on j.�0/�Bi\Conv.K/ to obtain a new .j; �/–equivariant Lipschitz extension
f0W Conv.K/!Hn of ' such that f0 (precomposed as per Lemma 4.8 with the closest-
point projection �Conv.K/ onto Conv.K/) has the desired properties, namely (A), (B),
(C) and (D) below. More precisely, the implications will be .A/D) .2/, .B/D) .3/

and .C/–.D/D) .1/. We denote by Si the stabilizer of Bi in �0 under j .

(A) Convergence in deteriorating cusps We first consider the case when Bi is
deteriorating and prove that there is a C �–Lipschitz, .j; �/–equivariant extension
f0W Conv.K/!Hn of ' such that f0 converges to a point on Bi \Conv.K/, agrees
with f on Conv.K/X j.�0/ �Bi , and satisfies d.f0.p/; f0.q//� d.f .p/; f .q// for
all p , q 2 Conv.K/. If C � D CK;'.j; �/, then this last condition implies that the
enhanced stretch locus of f0 is contained in that of f .

It is sufficient to prove that for any ı >0 there is a C �–Lipschitz, .j; �/–equivariant ex-
tension fı W Conv.K/!Hn of ' such that fı agrees with f on Conv.K/Xj.�0/ �Bi ,
satisfies d.fı.p/; fı.q//� d.f .p/; f .q// for all p , q 2Bi \Conv.K/ and, for some
horoball B 0i � Bi , the set fı.B 0i \Conv.K// is contained in the intersection of the
convex hull of f .B 0i \Conv.K// with a ball of radius ı . Indeed, if this is proved, then
we can apply the process to f and ıD 1 to construct a map f.1/ , and then inductively
to f.i/ and ı D 1=2i for any i � 1 to construct a map f.iC1/ ; extracting a pointwise
limit, we obtain a map f0 satisfying the required properties.

Fix ı > 0 and let us construct fı as above. Choose a generating subset fs1; : : : ; smg
of Si , a compact fundamental domain D of @Bi\Conv.K/ for the action of j.Si / (use
Fact 2.1) and a point p 2D . For t � 0, the closest-point projection �t from Bi onto the
closed horoball at distance t of @Bi inside Bi commutes with the action of j.Si /. Set
pt WD�t .p/; by (A-5), the number max1�k�m d.pt ; j.sk/ �pt / goes to 0 as t!C1.
We can also find fundamental domains Dt of �t .@Bi / \ Conv.K/, containing pt ,
whose diameters go to 0 as t !C1. Since f is Lipschitz and .j; �/–equivariant,
the diameter of f .Dt / and the function t 7!max1�k�m d.f .pt /; �.sk/ �f .pt // also
tend to 0 as t ! C1. Let Fi � Hn be the fixed set of �.Si / (a single point or
a copy of Hd for some d � n). There exists � > 0 such that, for any x 2 Hn , if
max1�k�m d.x; �.sk/ � x/ < �, then d.x;Fi / < 1

2
ı . Applying this to x D f .pt /,

we see that for large enough t there is a point qt 2 Fi such that d.f .pt /; qt / <
1
2
ı and the diameter of f .Dt / is < 1

2
ı , which implies that the �.Si /–invariant set

f .Conv.K/\�t .@Bi // is contained in the ball � WDBqt .ı/ of radius ı centered at qt .
Let ��W Hn!� be the closest-point projection onto � (see Figure 3). The .j; �/–
equivariant map fı W Conv.K/!Hn that agrees with f on Conv.K/Xj.�0/ ��t .Bi /
and with �� ıf on Conv.K/\�t .Bi / satisfies the required properties.

Geometry & Topology, Volume 21 (2017)



Maximally stretched laminations on geometrically finite hyperbolic manifolds 737

Hn Bi

D

�t .Bi /

�t .D/

f

f .D/

Fi D Fix.�.Si //

Bqt .ı/D�

f .D/

Fi D Fix.�.Si //

Bqt .ı/D�
��

Figure 3: Step (A): postcomposition with the closest-point projection onto
the small, �.Si /–invariant ball �

(B) Constant maps with a slightly larger Lipschitz constant in deteriorating
cusps We still consider the case when Bi is deteriorating. For " > 0, we prove
that there is a .C �C"/–Lipschitz, .j; �/–equivariant extension f0W Hn!Hn of '
that is constant on some horoball B 0i � Bi and that agrees with f on HnX j.�0/ �Bi .

Fix " > 0. By .A/, we may assume that f converges to a point pi on Bi , hence
there is a horoball B 00i � Bi such that f .B 00i / is contained in the ball of diameter 1

2
"

centered at pi . Let fi W j.�0/ �B 00i !Hn be the .j; �/–equivariant map that extends the
constant map B 00i ! fpig and let  W Hn! Œ0; 1� be a j.�0/–invariant, 1–Lipschitz
function equal to 1 on a neighborhood of HnXj.�0/ �B

00
i and vanishing far inside B 00i .

The map

f0 WD  f C .1� /fi
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is a .j; �/–equivariant extension of ' that is constant on some horoball B 0i � Bi and
that agrees with f on Hn X j.�0/ �Bi . By Lemma 2.14,

Lipp.f0/� Lipp.f /� C
�

for all p 2Hn X j.�0/ �B
00
i , and

Lipp.f0/� Lipp.f /C "� C
�
C "

for all p 2 j.�0/ �B 00i , hence f0 is .C �C"/–Lipschitz by (2-2).

(C) Constant maps in deteriorating cusps when C � � 1 We now consider the
case when Bi is deteriorating and C � � 1. We construct a C �–Lipschitz, .j; �/–
equivariant extension f0W Conv.K/!Hn of ' that is constant on B 0i \Conv.K/ for
some horoball B 0i � Bi and agrees with f on Conv.K/X j.�0/ �Bi . We also prove
that if C �DCK;'.j; �/ then the enhanced stretch locus of f0 (hence of f0 ı�Conv.K/
by Lemma 4.8) is included in that of f .

By .A/, we may assume that f converges to a point pi on Bi . Let B 0i be a horoball
strictly contained in Bi . Since the set @Bi \ Conv.K/ is compact modulo j.Si /

(Fact 2.1), its image under f lies within bounded distance from pi . Therefore, if B 0i
is far enough from @Bi , then the map from .Conv.K/X j.�0/ �Bi /[ .B 0i \Conv.K//
to Hn that agrees with f on Conv.K/X j.�0/ �Bi and that is constantly equal to pi
on B 0i \Conv.K/ is C �–Lipschitz. By Proposition 3.9, we can extend it to a C �–
Lipschitz, .j jSi ; �jSi /–equivariant map from .Conv.K/Xj.�0/�Bi /[.Bi\Conv.K//
to Hn . Finally we extend this map to a .j; �/–equivariant map f .1/W Conv.K/!Hn .
Then f .1/ is C �–Lipschitz, agrees with f on Conv.K/X j.�0/ �Bi , and is constant
on B 0i \Conv.K/.

Suppose that C � D CK;'.j; �/. Then Lip.f .1//D C � (and no smaller). The stretch
locus (and maximally stretched segments) of f .1/ are included in those of f , except
possibly between @Bi and @B 0i . To deal with this issue, we consider two horoballs
B 000i ¨ B 00i strictly contained in B 0i and, similarly, construct a C �–Lipschitz, .j; �/–
equivariant map f .2/W Conv.K/!Hn that agrees with f on Conv.K/X j.�0/ �B 00i
and is constant on B 000i \Conv.K/. The .j; �/–equivariant map

f0 WD
1
2
f .1/C 1

2
f .2/

still agrees with f on Conv.K/X j.�0/ �Bi and is constant on B 000i \Conv.K/. By
Lemma 2.13, its (enhanced) stretch locus is included in that of f .

(D) Lipschitz constant 1 in nondeteriorating cusps We now consider the case
when Bi is not deteriorating; in particular, C � � 1 by Lemma 2.7. We construct
a C �–Lipschitz, .j; �/–equivariant extension f0W Conv.K/ ! Hn of ' such that
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LipB 0
i
\Conv.K/.f0/D 1 for some horoball B 0i � Bi and f0 agrees with f on the set

Conv.K/Xj.�0/ �Bi . We also prove that if C �DCK;'.j; �/ then the enhanced stretch
locus of f0 (hence of f0 ı�Conv.K/ ) is included in that of f .

We assume C � > 1 (otherwise we may take f0 D f ). It is sufficient to construct a
1–Lipschitz, .j jSi ; �jSi /–equivariant map fi W B 0i\Conv.K/!Hn for some horoball
B 0i � Bi such that the .j jSi ; �jSi /–equivariant map

f .1/W .Conv.K/X j.�0/ �Bi /[ .B 0i \Conv.K//!Hn

that agrees with f on Conv.K/ X j.�0/ � Bi and with fi on B 0i \ Conv.K/ satis-
fies Lip.f .1// � C � . Indeed, we can then extend f .1/ to a C �–Lipschitz, .j; �/–
equivariant map Conv.K/! Hn using Proposition 3.9, as in step (C). Proceeding
with two other horoballs B 000i ¨B 00i to get a map f .2/ and averaging as in step (C), we
obtain a map f0 with the required properties.

To construct fi , we use explicit coordinates: in the upper half-space model Rn�1�R�
C

of Hn , we may assume (using Remark 4.3) that j.Si / and �.Si / both fix the point at
infinity, that the horosphere @Bi is Rn�1 � f1g and that f fixes .0; 1/ 2Rn�1 �R�

C
.

Let Wi be the orthogonal projection to Rn�1 of Conv.K/ � Rn ; the group j.Si /
preserves and acts cocompactly on any set Wi � fbg with b 2R�

C
(use Fact 2.1). The

restriction of f to Wi � f1g may be written as

f .a; 1/D .f 0.a/; f 00.a//

for all a 2Wi , where f 0W Wi !Rn�1 and f 00W Wi !R�
C

. Let

L WDmax.1;Lip.f 0//;

where Lip.f 0/ is measured with respect to the Euclidean metric dsRn�1 of Rn�1 , and
let B 0i � Bi be a horoball Rn�1 � Œb0;C1/, with large b0 > L to be adjusted later.
The map fi W Wi � Œb0;C1/!Hn given by

fi .a; b/ WD .f
0.a/; Lb/

is .j jSi ; �jSi /–equivariant, since f is and the groups j.Si / and �.Si / both preserve
the horospheres Rn�1 � fbg (see Figure 4). Moreover, fi is 1–Lipschitz, since by
construction it preserves the directions of Rn�1 (horizontal) and R�

C
(vertical) and

it stretches by a factor � 1 in the Rn�1–direction and 1 in the R�
C

–direction for the
hyperbolic metric

ds2 D
ds2

Rn�1
C db2

b2
:

Let Di � Wi � f1g be a compact fundamental domain for the action of j.�0/ on
@Bi \Conv.K/ and let R WDmaxx2Di d..0; 1/; x/ > 0.
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b0

x .0; 1/ .0; 1/

@Bi

B 0i

@1Hn @1Hn

x0 D .a; b/

fi

fi .x
0/

f .x/

Lb0

f .@Bi /

Figure 4: Definition of a 1–Lipschitz extension fi in the cusp in step (D)

Recall (see (A-2)) that, for any .a; b/ 2Rn�1 �R�
C

,

d..0; 1/; .a; b//D arccosh
�
kak2C b2C 1

2b

�
:

In particular, ˇ̌̌̌
d..0; 1/; .a; b//� log

�
kak2

b
C b

�ˇ̌̌̌
� 1

as soon as b exceeds some constant, which we shall assume from now on. Therefore,
for any x 2 Di and x0 D .a; b/ 2 B 0i \Conv.K/,

(4-5) d.x; x0/� log
�
kak2

b
C b

�
� 1�R

and (using the expression of fi and the fact that f fixes .0; 1/ and f 0 is L–Lipschitz)

(4-6) d.f .x/; fi .x
0//� d.f .x/; f .0; 1//C d.f .0; 1/; fi .x

0//

� log
�
kLak2

Lb
CLb

�
C 1CC �R

D log
�
kak2

b
C b

�
C log.L/C 1CC �R:
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In particular, if B 0i is far enough from @Bi (ie b0 > 0 is large enough), then the log
term dominates in (4-5) and (4-6) (where b � b0 ), and so

d.f .x/; fi .x
0//� C � d.x; x0/

for all x 2 Di and x0 2 B 0i \Conv.K/ (recall C � > 1). Therefore, the .j jSi ; �jSi /–
equivariant map

f .1/W .Conv.K/X j.�0/ �Bi /[ .B 0i \Conv.K//!Hn

that agrees with f on Conv.K/X j.�0/ �Bi and with fi on B 0i \Conv.K/ satisfies
Lip.f .1//� C � . This completes the proof of (D), hence of Proposition 4.16.

5 An optimized, equivariant Kirszbraun–Valentine theorem

The goal of this section is to prove the following analogue and extension of Proposition
3.9. We refer to Definitions 2.10 and 4.1 for the notion of stretch locus. We denote
by ƒj.�0/ � @1Hn the limit set of j.�0/. Recall that for geometrically finite j the
sets Fj;�K;' and EK;'.j; �/ of Definition 4.1 are nonempty as soon as K is nonempty
or � is reductive, except possibly if CK;'.j; �/D 1 and � is not cusp-deteriorating
(Lemma 4.10 and Corollary 4.14).

Theorem 5.1 Let �0 be a discrete group, .j; �/ 2 Hom.�0; G/2 a pair of representa-
tions of �0 in G with j geometrically finite, K a j.�0/–invariant subset of Hn whose
image in j.�0/nHn is compact, and 'W K!Hn a .j; �/–equivariant Lipschitz map.
Suppose that Fj;�K;' and EK;'.j; �/ are nonempty. Set

C0 WD

�
Lip.'/ if K ¤∅;
C 0.j; �/ if K D∅;

where C 0.j; �/ is given by (1-4).

� If C0 � 1, then there exists a .j; �/–equivariant extension f W Hn!Hn of ' with
Lipschitz constant C0 , optimal in the sense of Definition 4.12, whose stretch locus is
the union of the stretch locus E' of ' (defined to be empty if K D∅) and of a closed
set E 0 such that

– if C0 > 1, then E 0 is equal to the closure of a geodesic lamination of Hn XK

that is maximally stretched by f , and j.�0/nE 0 is compact;

– if C0 D 1, then E 0 is a union of convex sets, each isometrically preserved by f ,
with extremal points only in the union of K and of the limit set ƒj.�0/ � @1Hn ;
moreover, j.�0/nE 0 is compact provided that � is cusp-deteriorating.
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In particular, in these two cases CK;'.j; �/D C0 and EK;'.j; �/DE' [E 0 .

� If C0 < 1 then CK;'.j; �/ < 1.

By a geodesic lamination of HnXK we mean a nonempty disjoint union L of geodesic
intervals of Hn XK (called leaves), with no endpoint in Hn XK , such that L is
closed for the C1 topology (ie any Hausdorff limit of segments of leaves of L is a
segment of a leaf of L ). By “maximally stretched by f ” we mean that f multiplies
all distances by C0 on any leaf of the lamination.

For �0 D f1g and K ¤∅, Theorem 5.1 improves the classical Kirszbraun–Valentine
theorem (Proposition 3.1) by adding a control on the local Lipschitz constant of the
extension (through a description of its stretch locus).

We shall give a proof of Theorem 5.1 in Sections 5.1–5.3, and then a proof of
Theorem 1.6, as well as Corollary 1.12 under the extra assumption E.j; �/ ¤ ∅,
in Section 5.4 (this extra assumption will be removed in Section 7.5). For K D∅, we
shall finally examine how far the stretch locus E.j; �/ goes in the cusps in Section 5.6.

5.1 The stretch locus when CK;'.j; �/ > 1

We now fix .j; �/ and .K; '/ as in Theorem 5.1. To simplify notation, we set

C WD CK;'.j; �/� C0;

E WDEK;'.j; �/�Hn;(5-1)

zE WD zEK;'.j; �/�Hn
�Hn

(see Definition 4.1). Recall that E � Conv.K/ and zE � Conv.K/�Conv.K/ as soon
as C > 0 (Lemma 4.8). In order to prove Theorem 5.1, we first establish the following:

Lemma 5.2 In the setting of Theorem 5.1, if C > 1 then E X K is a geodesic
lamination of Hn XK , and any f 2 Fj;�K;' multiplies arc length by C on the leaves of
this lamination.

Note that the projection of E to j.�0/nHn is compact (even in the presence of cusps)
by Corollary 4.17.

The proof is a refinement of the classical Kirszbraun–Valentine theorem (Proposition 3.1).

Proof of Lemma 5.2 By Lemma 4.13, there exists an optimal f 2 Fj;�K;' , whose
stretch locus is exactly E . Fix p 2 E XK and consider a small closed ball B �
Hn XK , of radius r > 0, centered at p , which projects injectively to j.�0/nHn . By
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Lemma 3.2 with .K ;'/ WD .@B; f j@B/, we can find points q 2Hn and k1; k2 2 @B
such that Cq WDmaxk2@B d.q; f .k//=d.p; k/ is minimal and such that d.q; f .ki //D
Cq d.p; ki / for i 2 f1; 2g and 1k1pk2 � 5f .k1/qf .k2/¤ 0. By minimality of Cq , we
have Cq � Cf .p/ � Lip.f /D C .

We claim that Cq DC . Indeed, suppose by contradiction that Cq <C . Let B 0 �B be
another ball centered at p , of radius r 0 2 .0; r/ small enough so that Cqr=.r�r 0/�C .
Then, as in the proof of Lemma 4.15, the extension of f j@B to @B[B 0 which is constant
equal to q on B 0 is still C –Lipschitz. Using Proposition 3.1 (see also Remark 3.4),
we extend it to a C –Lipschitz map f 0W B!Hn . Working by equivariance, we obtain
an element of Fj;�K;' , agreeing with f on Hn X j.�0/ � B , which is constant on a
neighborhood of p , contradicting p 2E . Thus Cq D C .

We claim that k1 , k2 2 @B are diametrically opposite, that the geodesic segment
Œk1; k2� is maximally stretched by f , that f .p/ D q , and that the set K 0 of points
k 2 @B such that d.q; f .k//D C d.p; k/ is reduced to fk1; k2g. Indeed, since f is
C –Lipschitz, we have

d.f .k1/; f .k2//

d.k1; k2/
� C D

d.q; f .k1//

d.p; k1/
D
d.q; f .k2//

d.p; k2/
;

and since C >1, Toponogov’s theorem [10, Lemma II.1.13] implies d.f .k1/; f .k2//D
C d.k1; k2/ and 1k1pk2 D � (the case 1k1pk2 D 0 is ruled out since k1 , k2 2 @B are
distinct). In particular, the geodesic segment Œk1; k2� has midpoint p and is maximally
stretched by f , and f .p/D q by Remark 2.8(1). For any k 2K 0 we have

1k1pk �5f .k1/qf .k/¤ 0 or 1kpk2 �5f .k/qf .k2/¤ 0
(since 1k1pkC1kpk2 D5f .k1/qf .k/C5f .k/qf .k2/D � ), and so the above reasoning
shows that k 2 fk1; k2g.

Taking B arbitrarily small, we see that there are exactly two germs of geodesic rays
through p in E that are maximally stretched by f , and they are diametrically opposite.
Let ` be the largest geodesic interval in E XK through p that is maximally stretched
by f , corresponding to these two germs. We claim that ` terminates on the union of
K and of the limit set ƒj.�0/ . Indeed, any infinite end of ` terminates on ƒj.�0/ since
`�E';K.j; �/� Conv.K/ by Lemma 4.8; moreover, ` cannot terminate on a point
p0 2E XK since there are exactly two germs of geodesic rays through p0 in E that
are maximally stretched by f and they are diametrically opposite. This implies that
E XK is a geodesic lamination of Hn XK , maximally stretched by f .

It is possible for a point p 2 K to belong to the stretch locus E without being an
endpoint of a leaf of E , or even without belonging to any closed C –stretched segment
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of f at all (for instance if x 7! Lipx.'/ immediately drops away from p ). However,
the following holds:

Lemma 5.3 In the setting of Theorem 5.1, if C > 1 then any p 2E\K lies either in
the closure of E XK or in E 0' WD fk 2K j Lipk.'/D C g.

(Note that we have not yet proved that the inequality C0 WD Lip.'/� C is an equality;
this will be done in Proposition 5.8, and will imply by definition that E 0' is the stretch
locus E' of ' .)

Proof Suppose C > 1 and consider p 2E \K . Assuming p …E 0' , we shall prove
that p lies in the closure of E XK . Since p …E 0' , there is a small closed ball B of
radius r > 0 centered at p , projecting injectively to j.�0/nHn , such that LipB.'/<C
(Lemma 2.9). By Proposition 3.1 and Remark 3.4, the map 'jB\K admits an extension
x' to B with LipB.x'/ < C . Consider an optimal f 2 Fj;�K;' , whose stretch locus is
exactly E (Lemma 4.13), and let

C � WD sup
q2.K\B/[@B

d.'.p/; f .q//

d.p; q/
� C:

We claim that C � D C . Indeed, suppose by contradiction that C � < C . For any ball
B 0�B centered at p with radius r 0>0 small enough, the map f 0W K[@B[B 0!Hn

that coincides with f on K [ @B and with ' on B 0 is still C –Lipschitz. Indeed,
for any x 2 K [ @B and y 2 B 0 , if x lies in the interior of B then Lipfx;yg.f

0/ D

Lipfx;yg.x'/ < C , and otherwise the triangle inequality gives

d.f 0.x/; f 0.y//

d.x; y/
�
C �r CLip.x'/r 0

r � r 0

as in (3-1), which is � C if r 0 is small enough. Therefore f 0 admits a C –Lipschitz
extension to B by Remark 3.4; working by equivariance, we obtain an element
f 0 2 Fj;�K;' agreeing with f on Hn X j.�0/ �B , such that Lipp.f

0/ � Lip.x'/ < C ,
contradicting p 2E . Thus C � D C .

If the upper bound C � is approached by a sequence .qi /i2N of .K \B/[ @B with
qi ! p , then qi 2K for all large enough i and p 2E 0' , contradicting the assumption.
Therefore .qi /i2N has an accumulation point q ¤ p . The geodesic segment Œp; q�
is maximally stretched by f (Remark 2.8(1)), hence Œp; q�XK � E XK and any
accumulation point of Œp; q�\K lies in E 0' . Since p …E 0' , we obtain that p lies in
the closure of E XK .
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5.2 The stretch locus when CK;'.j; �/D 1

We define C , E and zE as in (5-1). When C D 1, the stretch locus E may contain
pieces larger than lines that are isometrically preserved by all elements of Fj;�K;' . Here
is the counterpart of Lemma 5.2 in this case:

Lemma 5.4 In the setting of Theorem 5.1, if C D 1 then there is a canonical family
.�p/p2E of closed convex subsets of Hn , of varying dimensions, with the following
properties:

(i) Any p 2E lies in the interior of the corresponding �p (where we view �p as a
subset of its own affine span — in particular, a point is equal to its own interior).

(ii) The interiors of �p and �q are either equal or disjoint for p , q 2E .

(iii) The restriction to �p of any f 2 Fj;�K;' is an isometry.

(iv) Whenever two points x ¤ y in Hn satisfy d.f .x/; f .y//D d.x; y/ for some
(hence any) optimal f 2 Fj;�K;' (Definition 4.12), the geodesic segment Œx; y�
(called a 1–stretched segment) is contained in some �p .

(v) All extremal points of �p lie in the union of K and of the limit set ƒj.�0/
of j.�0/.

(vi) The intersection of �p with any supporting hyperplane is an �q .

(vii) E D
S
p2EXK �p [E

0
' , where E 0' D fk 2K j Lipk.'/D 1g.

Properties (i)–(vii) are reminiscent of the stratification of the boundary of a convex
object, with 1–stretched segments of E replacing segments contained in the boundary
of the convex object; we shall call the interiors of the sets �p strata of E and the
sets �p closed strata.

Remark 5.5 In dimension n� 3, the connected components of E DEK;'.j; �/ can
be nonconvex. Indeed, take nD 3. Let �0 be the fundamental group of a closed surface,
let j 2 Hom.�0; G/ be geometrically finite, obtained by bending slightly a geodesic
copy of H2 inside H3 along some geodesic lamination L , and let � 2 Hom.�0; G/
be obtained by bending even a little more along the same lamination L . Then E is
the first bent copy of H2 , which can be nonconvex (though connected).

Proof of Lemma 5.4 Consider an optimal f 2 Fj;�K;' (Lemma 4.13); by definition,
the stretch locus Ef DE is minimal, and so is the enhanced stretch locus zEf D zE .

For p 2 E , let Wp � P .TpHn/ be the set of directions of 1–stretched segments
containing p in their interior. This set is independent of f because zEf D zE . (It is for
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this independence property that we use the enhanced stretch locus zE here.) Since f
is 1–Lipschitz, the convex hull of any two such 1–stretched segments is isometrically
preserved by f . Therefore the set Wp is a full projective subspace (possibly empty),
equal to the projectivization of a vector subspace Vp � TpHn . Moreover, there is a
neighborhood of p in expp.Vp/ on which f coincides with an isometric embedding
 pW expp.Vp/!Hn , and the closed set

�p WD fx 2 expp.Vp/ j f .x/D  p.x/g �E

is convex and contains p in its interior. The isometric embedding  p may depend
on f , but the set �p depends only on the data .j; �;K; '/, because so does the
enhanced stretch locus zE . We shall denote by dp � 0 the dimension of Vp .

Conditions (i) and (iii) are satisfied by construction, and so is (iv) by taking p in the
interior of the given 1–stretched segment Œx; y�. (Note that �p may contain points
of K in its interior, even when p …K .)

For any x belonging to the interior of �p in expp.Vp/, we have Vx D Tx�p . Indeed,
Vx � Tx�p is clear since f jInt.�p/ is an isometry; and if x were in the interior of
any 1–stretched segment s not contained in expp.Vp/, then f would be isometric
on the .dpC1/–dimensional convex hull of �p [ s , which contains p in its interior;
this would violate the definition of Vp . From Vx D Tx�p we deduce in particular
 x D  p and �x D�p .

It follows that, given q 2E , if the interiors of �p and �q intersect at a point x , then
 p D  x D  q and �p D�q ; thus (ii) holds.

Any 1–stretched segment sD Œx; y� with an interior point q in �p is contained in �p .
Indeed, f must preserve all angles bxqp0 and byqp0 for p02�p , hence f is an isometry
on the convex hull of s[�p , which contains p in its interior; therefore, s � expp.Vp/
by definition of dp , and s ��p by definition of �p .

In expp.Vp/, the intersection of �p with any supporting hyperplane … at a point
of @�p is the closure of an open convex subset Q of some Hd , where 0 � d < dp
(with H0 being a point). Consider a point q 2 Q . By the previous paragraph, any
open 1–stretched segment through q is in �p , hence in …, hence in Q (see Figure 5).
Therefore, d D dq and  q D pjexpq.Vq/ . It follows that �q is the closure of Q . This
gives (vi).

By (vi), extremal points q 2�p inHn satisfy �q D fqg, hence q 2K by Lemma 5.6
below; this gives (v).

We obtain (vii) by replacing C by 1 and the call to Proposition 3.1 by Proposition 3.7
in the proof of Lemma 5.3.
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p

q

�p

…

Q

Figure 5: A 3–dimensional convex stratum �p with a supporting plane …

Lemma 5.6 Any p 2E XK is contained in the interior of a 1–stretched segment.

Proof Consider an optimal f 2Fj;�K;' (Lemma 4.13), whose stretch locus is exactly E .
Fix p 2E XK and consider a small closed ball B �Hn XK , centered at p , which
projects injectively to j.�0/nHn . By Lemma 3.2 with .K ;'/ WD .@B; f j@B/, we can
find a point q 2 Hn such that Cq WD maxk2@B d.q; f .k//=d.p; k/ is minimal. In
particular, Cq � Cf .p/ � Lip.f /D 1.

In fact Cq D 1: otherwise, using Proposition 3.1 as in the proofs of Lemmas 4.15
and 5.2, we could construct an element of Fj;�K;' that would be locally constant near p ,
contradicting the fact that p 2E .

In particular, there cannot exist k1 , k2 2 @B such that d.q; f .ki // D Cq d.p; ki /

for i 2 f1; 2g and 0 � 1k1pk2 < 5f .k1/qf .k2/ � � : otherwise we would have
d.f .k1/; f .k2// > d.k1; k2/ by basic trigonometry, contradicting Lip.f /D 1.

Therefore, Lemma 3.2 implies the existence of a probability measure � on K 0 WD
fk 2 @B j d.q; f .k//D d.p; k/g such that q belongs to the convex hull of the support
of f�� and such that 1k1pk2D 5f .k1/qf .k2/ for .���/–almost all .k1; k2/2K 0�K 0 .
This means that the continuous map f W Hn!Hn is an isometry on the support of �
(which is contained in @B ), hence has a unique 1–Lipschitz extension (the isometric
one, with which f must agree) to the convex hull X of this support. Since f .X/
contains q , we have f .p/D q and there is a 1–stretched segment through p . This
completes the proof of Lemma 5.6, hence of Lemma 5.4.

Remark 5.7 When K D∅, the closed strata �p of the lowest dimension (say k � 1)
are always complete copies of Hk : otherwise, they would by Lemma 5.4(vi) admit
supporting planes giving rise to closed strata of lower dimension. In particular, the
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union of these closed strata is a k–dimensional geodesic lamination in the sense of
Section 1.2. In dimension nD 2, we must have k D 1 (unless j and � are conjugate);
this implies that the stretch locus is the union of a geodesic lamination and (possibly)
certain connected components of its complement.

5.3 Proof of Theorem 5.1

Theorem 5.1 is an immediate consequence of Corollary 4.17, of Lemmas 5.2 and 5.4,
and of the following proposition:

Proposition 5.8 In the setting of Theorem 5.1, if CK;'.j; �/�1 then CK;'.j; �/DC0 .
In particular, C0 < 1 implies CK;'.j; �/ < 1.

Proof Recall that C0 � C WD CK;'.j; �/ (see (5-1)). Let us prove the converse
inequality when C � 1.

In the particular situation where C WD CK;'.j; �/D 1 and � is not cusp-deteriorating,
we have C0 � 1 by Lemma 2.7. We now assume that we are not in this particular
situation. By Corollary 4.14, the set E WDEK;'.j; �/ is nonempty.

Suppose E � K . By Lemma 5.3 or Lemma 5.4(vii), for any p 2 E � K we have
Lipp.'/D C , and so C0 D Lip.'/� C .

Suppose E 6�K . By Lemma 5.2 or Lemma 5.4(iii)–(v), any point p 2E XK belongs
either to the convex hull of a subset of K on which f multiplies all distances by C , or
to a maximally stretched geodesic ray with an endpoint in ƒj.�0/ whose image in the
quotient j.�0/nHn is bounded (Proposition 4.16(1)). In the first case, C0DLip.'/�C
since f coincides with ' on K . In the second case, Lemma 4.6 yields C0 � C .

Theorem 1.3 is contained in Lemmas 4.10 and 4.13, Corollary 4.14, Theorem 5.1 and
Remark 5.7.

5.4 Some easy consequences of Theorem 5.1

We first prove Theorem 1.6, which concerns the case where K is nonempty and possibly
noncompact modulo j.�0/.

Proof of Theorem 1.6 Let K¤∅ be a j.�0/–invariant subset of Hn . We can always
extend ' to the closure K of K by continuity, with the same Lipschitz constant C0 .
Suppose the image of K in j.�0/nHn is compact. If C0 � 1, then Theorem 1.6
is contained in Theorem 5.1. If C0 < 1, then C.j; �/ < 1 by Theorem 5.1, which
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implies Theorem 1.6 since Fj;� ¤∅ (Lemma 4.10). Now, for C0 � 1, consider the
general case where the image of K in j.�0/nHn is not necessarily compact. Let
.Ck/k2N be a sequence of j.�0/–invariant subsets of Hn whose images in j.�0/nHn

are compact, with Ck � CkC1 and
S
k2N Ck DHn . For any k , Theorem 5.1 gives a

.j; �/–equivariant extension fk W Hn!Hn of 'jK\Ck
with Lip.fk/D C0 , and we

conclude using the Arzelà–Ascoli theorem as in Remark 3.6.

We then turn to Corollary 1.12, for which K is empty. Corollary 1.12 for E.j; �/¤∅
is an immediate consequence of Lemma 4.6 and Theorem 5.1. For E.j; �/D∅, we
shall prove Corollary 1.12 in Section 7.5 (Lemma 7.4), using a Cartan projection
� of G . Recall however from Corollary 4.14 that E.j; �/D ∅ may only happen if
C.j; �/D1 and � is not cusp-deteriorating; in that case, a direct proof of Corollary 1.12
could also be obtained by considering a sequence of closed geodesics of j.�0/nHn

that spend more and more time in a cusp whose stabilizer contains an element  2 �0
with both j./ and �./ parabolic.

In dimension nD 2, for �0 torsion-free, let C 0s.j; �/ be the supremum of the ratios
�.�.//=�.j.// over all elements  2 �0 corresponding to simple closed curves
in the hyperbolic surface j.�0/nH2 . (As for C 0.j; �/, we define C 0s.j; �/ to be
C.j; �/ in the degenerate case when j.�0/nH2 has no essential closed curve.) Then
C 0s.j; �/�C

0.j; �/�C.j; �/ (see (4-1)). Here is another consequence of Theorem 5.1:

Lemma 5.9 (n D 2, torsion-free �0 ) Suppose E.j; �/ ¤ ∅. If C 0s.j; �/ < 1 then
C 0.j; �/ < 1.

Proof If C.j; �/� 1, then

(5-2) C 0s.j; �/D C
0.j; �/D C.j; �/:

Indeed, by Theorem 5.1 and Remark 5.7, the image of E.j; �/ in j.�0/nHn contains a
nonempty geodesic lamination L with compact image. If L contains a simple closed
curve, then (5-2) is clear; otherwise we can argue as in the proof of Lemma 4.6, but
with the axis of j./ projecting to a simple closed geodesic nearly carried by L .

Note that if E.j; �/D∅ then it is possible to have C 0s.j; �/ < 1DC
0.j; �/DC.j; �/;

see Section 10.8.

5.5 The recurrent set of maximally stretched laminations

For empty K , Theorem 5.1 states that the stretch locus E.j; �/ contains a maximally
stretched k–dimensional geodesic lamination with compact (nonempty) image in
j.�0/nHn as soon as Fj;�K;' and EK;'.j; �/ are nonempty and C 0.j; �/�1. Conversely,
we make the following observation:
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Lemma 5.10 Let �0 be a discrete group and .j; �/ 2 Hom.�0; G/2 a pair of repre-
sentations with j geometrically finite. Let L be a j.�0/–invariant k–dimensional
geodesic lamination of Hn with a compact image in j.�0/nHn . If L is maximally
stretched by some .j; �/–equivariant Lipschitz map f W Hn!Hn , then the recurrent
set of L is contained in the stretch locus E.j; �/.

By recurrent set of L , we mean the projection to j.�0/nHn of the recurrent set of
the geodesic flow .ˆt /t2R restricted to vectors tangent to L . By compactness, this
recurrent set is nonempty.

Recall that in this setting we have C 0.j; �/D C.j; �/D Lip.f / by Lemma 4.6.

Proof Set C WD C.j; �/D Lip.f /. In order to prove that the recurrent set of L is
contained in E.j; �/, it is sufficient to prove that for any geodesic line .pt /t2R of Hn

contained in L and projecting to a geodesic which is recurrent in j.�0/nHn , we have

d.f 0.p0/; f
0.p1//D C D C d.p0; p1/

for all f 0 2 Fj;� (hence Œp0; p1�� E.j; �/). Fix " > 0. By recurrence, we can find
 2 �0 and t > 1 with Œj./ �p0; j./ �p1� arbitrarily close to Œpt ; ptC1�, so that by
the closing lemma (Lemma A.1) the translation axis of j./ passes within " of the four
points p0; p1; pt ; ptC1 and the axis of �./ within C" of their four images under f .
Choose q0; q1 2 Hn within " of p0; p1 , respectively, on the axis of j./. For any
f 0 2 Fj;� ,

d.f 0.q0/; f
0.q1//� d.f

0.q0/; �./ �f
0.q0//� d.�./ �f

0.q0/; f
0.q1//

� �.�.//� d.f 0.j./ � q0/; f
0.q1//

� C �
�
�.j.//� 4"

�
�Lip.f 0/ �

�
�.j.//� d.q0; q1/

�
D C � .d.q0; q1/� 4"/

since Lip.f 0/D C . But p0 and p1 are "–close to q0 and q1 ; therefore,

d.f 0.p0/; f
0.p1//� d.f

0.q0/; f
0.q1//� d.f

0.p0/; f
0.q0//� d.f

0.p1/; f
0.q1//

� C � .d.q0; q1/� 4"/� 2Lip.f 0/"

� C � .d.p0; p1/� d.p0; q0/� d.p1; q1/� 4"/� 2C"

� C � .1� 8"/:

This holds for any " > 0, hence d.f 0.p0/; f 0.p1//D C .
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5.6 How far the stretch locus goes into the cusps

Suppose that j is geometrically finite but not convex cocompact. For empty K , we
can control how far the stretch locus EK;'.j; �/DE.j; �/ goes into the cusps.

Proposition 5.11 There is a nondecreasing function ‰W .1;C1/! R�
C

such that,
for any discrete group �0 , any pair .j; �/ 2 Hom.�0; G/2 with j geometrically finite
and C.j; �/ > 1, and any x 2E.j; �/ whose image in j.�0/nHn belongs to a standard
cusp region of the convex core (Definition 2.2), the cusp thickness at x is at least
‰.C.j; �//.

Here we use the following terminology, where N �Hn is the preimage of the convex
core of j.�0/nHn :

Definition 5.12 Let B be a horoball of Hn such that B\N projects to a standard cusp
region of j.�0/nHn . Given a point x 2 B , let @Bx denote the horosphere concentric
to B running through x . The cusp thickness of j.�0/nHn at x is the Euclidean
diameter in j.Stab.B//n@Bx of the orthogonal projection of N to @Bx .

By Euclidean diameter we mean the diameter for the metric induced by the intrinsic,
Euclidean metric of @Bx ; it varies exponentially with the depth of x in the cusp region
(see (A-3) for conversion to a hyperbolic distance). Note that the orthogonal projection
of N is convex inside the Euclidean space @Bx 'Rn�1 .

We believe that an analogue of Proposition 5.11 should also hold for C.j; �/ < 1; see
Appendix C.4. It is false for C.j; �/D 1 (take j D �).

Proposition 5.11 will be a consequence of the following lemma, which applies to
C D C.j; �/ and to leaves `0 and `1 of the geodesic lamination E.j; �/. It implies
that any two leaves of E.j; �/ coming close to each other must be nearly parallel. This
is always the behavior of simple closed curves and geodesic laminations in dimension
nD 2.

Lemma 5.13 For any C > 1, there exists ı0 > 0 with the following property: Let
`0 and `1 be disjoint geodesic lines of Hn . Suppose there exists a C –Lipschitz map
f W `0[ `1!Hn multiplying all distances by C on `0 and on `1 . If `0 and `1 pass
within ı � ı0 of each other near some point x 2Hn , then they stay within distance 1
of each other on a length � jlog ıj � 10 before and after x .

(The constant 10 is of course far from optimal.)
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Proof We can restrict to dimension n D 3 because the geodesic span of two lines
has dimension at most 3. Fix C > 1 and let `0 , `1 and f be as above. The images
`00 WD f .`0/ and `01 WD f .`1/ are geodesic lines of H3 . Fix orientations on `0 , `1 ,
`00 and `01 such that f is orientation-preserving. For i 2 f0; 1g, let xi be a point of `i
closest to `1�i , so that the geodesic segment Œx0; x1� is orthogonal to both `0 and `1 ;
let � be the rotational symmetry of H3 around the line .x0; x1/. Similarly, let x0i 2 `

0
i

be closest to `01�i , so that the segment Œx00; x
0
1� is orthogonal to `00 and `01 ; let � 0 be

the rotational symmetry of H3 around .x00; x
0
1/. Up to replacing f by

1
2
f C 1

2
� 0 ıf ı �;

which is still C –Lipschitz (Lemma 2.13), which preserves the orientations of `0 , `1 ,
`00 and `01 , and which multiplies all distances by C on `0 and on `1 , we may assume
that f .x0/D x00 and f .x1/D x01 . Let � (resp. �0 ) be the length of Œx0; x1� (resp. of
Œx00; x

0
1�), and � (resp. � 0 ) the angle between the positive directions of `0 and `1

(resp. of `00 and `01 ), measured by projecting orthogonally to a plane perpendicular
to Œx0; x1� (resp. to Œx00; x

0
1� if �0 > 0). We claim:

.�/ There exists �0 > 0, depending only on C , such that if ���0 then

minf�; � � �g � 1:005�:

Indeed, for i 2 f0; 1g, let ti > 0 be the linear coordinate of a point pi 2 `i , measured
from xi with the chosen orientation. By (A-7),

(5-3) cosh d.p0; p1/D cosh � � cosh t0 cosh t1� cos � � sinh t0 sinh t1:

Therefore, using cosh t � 1
2
et , we obtain that, for t0 , t1!C1,

d.p0; p1/D t0C t1C log
�
1
2
.cosh �� cos �/

�
C o.1/:

Similarly, since f stretches `0 and `1 by a factor of C and f .xi /D x0i ,

d.f .p0/; f .p1//D Ct0CCt1C log
�
1
2
.cosh �0� cos � 0/

�
C o.1/:

Since f is C –Lipschitz, we must have

log
�
1
2
.cosh �0� cos � 0/

�
� C log

�
1
2
.cosh �� cos �/

�
:

Note that this must also hold if we replace �; � 0 with their complements to � , because
we can reverse the orientations of `1 and `01 . We thus obtain

1
2
.cosh �0˙ cos � 0/�

�
1
2
.cosh �˙ cos �/

�C
:
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Since cosh �0 � 1, adding the two inequalities yields

(5-4)
�
1
2
.cosh �C cos �/

�C
C
�
1
2
.cosh �� cos �/

�C
� 1:

Inequality (5-4) means that .cos �; cosh �/ lies in R2 outside of a �
4

–rotated and
p
2–scaled copy of the unit ball of R2 for the LC –norm. (See also (A-10) for an

interpretation of (5-4) in terms of the cross-ratio of the endpoints of `0 and `1 .) Since
cos � 2 Œ�1; 1� and cosh �� 1, we obtain that .cos �; cosh �/ lies above some concave
curve through the points .�1; 1/ and .1; 1/, with respective slopes 1 and �1 at these
points (recall that C > 1). In particular, if cosh � is very close to 1, then jcos � j must
be about as close (or closer) to 1 (see Figure 6). We obtain .�/ by using the Taylor
expansions of cosh and cos (of course 1:005 can be replaced by any number > 1).

x0

x1

`0

`1

p0

p1

�

�

Figure 6: At distance d.p0; x0/ D t0 < jlog �j from a point of closest ap-
proach of the two lines `0 and `1 , their angular drift � �et0 cannot much
exceed their height drift � �et0 .

To deduce the lemma from .�/, we can minimize (5-3) in t1 alone to find

sinh2 d.p0; `1/D sinh2 �C .sinh2 �C sin2 �/ sinh2 t0:

By .�/, for small enough � we have

�2 � sinh2 �C sin2 � � 2:004�2;

hence

(5-5) sinh2 �C �2 sinh2 t0 � sinh2 d.p0; `1/� sinh2 �C 2:004�2 sinh2 t0:

If t0 2 Œ0; jlog �j� (for small �), we have

sinh2 �
�2e2t0

C 2:004
sinh2 t0
e2t0

� 1:005C
2:004

4
D 1:506;

hence, on the upper side of (5-5),

(5-6) sinh2 �C 2:004�2 sinh2 t0 � 1:506�2e2t0 � sinh2.
p
1:506�et0/
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by multiplying by �2e2t0 and using the inequality x � sinh x for x 2RC . Note that
p
1:506� 1:23. On the other hand, using again sinh x � x ,

sinh2 �
�2e2t0

C
sinh2 t0
e2t0

�
cosh2 t0
e2t0

�
1

4
;

hence, on the lower side of (5-5),

(5-7) sinh2 �C �2 sinh2 t0 � .�et0 sinh 0:48/2 � sinh2.0:48�et0/

by multiplying by �2e2t0 and using the inequality sinh2 0:48 < 1
4

and the convexity
of sinh (recall �et0 � 1). From (5-5), (5-6) and (5-7), it follows that, for � smaller
than some ı0 2 .0; 1/ (depending only on C ),

0:48�ejt0j � d.p0; `1/� 1:23�e
jt0j

as soon as jt0j � jlog �j. This two-sided exponential bound means p0 7! log d.p0; `1/
is essentially a 1–Lipschitz function of p0 (plus a bounded correction), which easily
implies the lemma.

Proof of Proposition 5.11 Let �0 be a discrete group, .j; �/2Hom.�0; G/2 a pair of
representations with j geometrically finite, and B an open horoball of Hn whose image
in j.�0/nHn intersects the convex core in a standard cusp region. The stabilizer S ��0
of B under j has a normal subgroup S 0 isomorphic to Zm for some 0 < m < n, and
of index � �.n/ in S , where �.n/ <C1 depends only on n (see Section 2.1). In the
upper half-space model Rn�1�R�

C
of Hn , where @1Hn identifies with Rn�1[f1g,

we may assume that B is centered at 1. Let � be the convex hull of ƒj.�0/ X f1g
in Rn�1 , where ƒj.�0/ is the limit set of j.�0/. The ratio of the Euclidean diameter of
j.S 0/n� to that of j.S/n� is bounded by 2�.n/. We renormalize the metric on Rn�1

so that j.S 0/n� has Euclidean diameter 1; then, by definition of cusp thickness, it is
sufficient to prove that the height of points of E.j; �/ in Rn�1 �R�

C
is bounded in

terms of C.j; �/ alone.

There is an m–dimensional affine subspace V �� of Rn�1 which is preserved by
j.S 0/ and on which j.S 0/ acts as a lattice of translations (see Section 2.1). Any point
of � lies within distance 1 of V .

If C.j; �/ > 1, then by Theorem 5.1 the stretch locus E.j; �/ is a disjoint union of
geodesic lines of Hn . Let ` � E.j; �/ be such a line, reaching a height h in the
upper half-space model. We must bound h. The endpoints � , � 2� of ` are 2h apart
in Rn�1 . Let � 0 , �0 2 V be within distance 1 from � and �, respectively. There exists
 2 S 0 such that dRn�1

�
j./ � � 0; 1

2
.� 0C�0/

�
� 1. Since � 0 , �0 and their images under
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j./ form a parallelogram, we also have dRn�1
�
j./ � 1

2
.� 0 C �0/; �0

�
� 1. By the

triangle inequality,

dRn�1
�
j./ � �; 1

2
.�C �/

�
� 3 and dRn�1

�
j./ � 1

2
.�C �/; �

�
� 3:

Adding up, it follows that the points 1
4
.�C 3�/ and j./ � 1

4
.3�C �/ are at Euclidean

distance � 3 from each other. But the leaves ` and j./ � ` of E.j; �/ contain points
at height 1

2
h
p
3 above these two points, and are therefore at most 2

p
3=h apart in the

hyperbolic metric. However, ` and j./ � ` form an angle close to �
3

(see Figure 7):
by Lemma 5.13 (or .�/ in its proof), this places an upper bound on h (depending only
on C.j; �/).

h

�

V

`

� �

j./ � `

j./ � � j./ � �

@1Hncusp group j.S 0/

Figure 7: Two leaves ` and j./ � ` which nearly intersect, at an angle close
to �

3
(in the upper half-space model of Hn )

In Section 6.4, in order to prove the upper semicontinuity of .j; �/ 7!C.j; �/ wherever
C � 1 when all the cusps of j have rank � n� 2 (Proposition 6.1(3)), we shall need
the following consequence of Proposition 5.11:

Corollary 5.14 Let �0 be a discrete group and .jk; �k/k2N� a sequence of elements
of Hom.�0; G/2 converging to some .j; �/ 2 Hom.�0; G/2 wherever:

� j and the jk are all geometrically finite, of the same cusp type, with all cusps of
rank � n� 2.

� There exists C � > 1 such that C.jk; �k/� C � for all k 2N� .

� The stretch loci E.jk; �k/ are nonempty (this is the case for instance if �k is
reductive; see Lemma 4.10 and Corollary 4.14).

Then for any k 2 N� we can find a fundamental domain Ek of E.jk; �k/ for the
action of jk.�0/ such that all the Ek are contained in some compact subset of Hn

independent of k .
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Proof By Proposition B.3, there exist a compact set C�Hn and, for any large enough
k 2 N� , horoballs Hk

1 ; : : : ;H
k
c of Hn , such that the union G of all geodesic rays

from C to the centers of Hk
1 ; : : : ;H

k
c contains a fundamental domain of the convex

core of jk.�0/nHn . In particular, the cusp thickness of jk.�0/nHn at any point ofS
1�i�c @H

k
i is uniformly bounded from above by some constant independent of k .

On the other hand, by Proposition 5.11, the cusp thickness of jk.�0/nHn at any point
of E.jk; �k/ is uniformly bounded from below by some constant independent of k .
Since cusp thickness decreases uniformly to 0 in all cusps (at exponential rate), this
means that E.jk; �k/\G (which contains a fundamental domain of E.jk; �k/ for the
action of jk.�0/) remains in some compact subset of Hn independent of k .

6 Continuity of the minimal Lipschitz constant

In this section we examine the continuity of the function .j; �/ 7!C.j; �/ for geometri-
cally finite j (the set K of Sections 4 and 5 is empty). We endow Hom.�0; G/ with its
natural topology: a sequence .jk; �k/ converges to .j; �/ if and only if jk./! j./

and �k./! �./ for all  in some (hence any) finite generating subset of �0 .

We first prove Proposition 1.5, which states the continuity of .j; �/ 7!C.j; �/ for convex
cocompact j . When j is not convex cocompact, continuity, and even semicontinuity,
fail in any dimension n� 2; see Sections 10.6 and 10.7 for counterexamples. However,
we will prove the following:

Proposition 6.1 Let �0 be a discrete group and j0 2 Hom.�0; G/ a geometrically
finite representation. If all the cusps of j0 have rank � n� 2 (for instance if we are in
dimension n� 3), then:

(1) The set of pairs .j; �/ with C.j; �/ < 1 is open in

Homj0.�0; G/�Homj0–det.�0; G/:

(2) The set of pairs .j; �/ with 1 < C.j; �/ is open in

Homj0.�0; G/�Hom.�0; G/:

(3) The map .j; �/ 7! C.j; �/ is continuous on the set of pairs

.j; �/ 2 Homj0.�0; G/�Hom.�0; G/

with 1� C.j; �/ <C1.

If the cusps of j0 have arbitrary ranks, then condition (2) holds, as well as:

(10 ) The set of � with C.j0; �/ < 1 is open in Homj0-det.�0; G/.
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(30 ) The map .j; �/ 7! C.j; �/ is lower semicontinuous on the set of pairs

.j; �/ 2 Homj0.�0; G/�Hom.�0; G/

with 1� C.j; �/:

C.j; �/� lim inf
k

C.jk; �k/

for any sequence .jk; �k/ of such pairs converging to such a pair .j; �/.

(300 ) The map � 7! C.j0; �/ is upper semicontinuous on the set of representations
� 2 Hom.�0; G/ with 1� C.j0; �/ <C1:

C.j0; �/� lim sup
k

C.j0; �k/

for any sequence .�k/ of such representations converging to such a representa-
tion � .

Here we denote by

� Homj0.�0; G/ the space of geometrically finite representations of �0 in G with
the same cusp type as the fixed representation j0 ;

� Homj0-det.�0; G/ the space of representations that are cusp-deteriorating with
respect to j0 , in the sense of Definition 1.1.

These two sets are endowed with the induced topology from Hom.�0; G/. In (3),
(30 ) and (300 ), we endow the set of pairs .j; �/ satisfying 1 � C.j; �/ < C1 or
1�C.j; �/ with the induced topology from Hom.�0; G/2 . Note that Homj0-det.�0; G/

is a semialgebraic subset of Hom.�0; G/; it is equal to Hom.�0; G/ if and only if j0 is
convex cocompact.

When j0 is not convex cocompact, the condition C.j; �/ < 1 is not open in the
space Homj0.�0; G/�Hom.�0; G/ or even in fj0g �Hom.�0; G/, since the constant
representation � (for which C.j; �/D 0) may be approached by non-cusp-deteriorating
representations � (for which C.j; �/� 1); see also Section 10.6 for a related example.
This is why we need to restrict to cusp-deteriorating � in Proposition 6.1(1).

In dimension n � 4, when j0 has cusps of rank < n� 2, conditions (1) and (3) of
Proposition 6.1 do not hold; see Sections 10.10 and 10.11 for counterexamples. The
reason, in a sense, is that the convex core of a small geometrically finite deformation
of j can be “much larger” than that of j , due to the presence of parabolic elements
that are not unipotent. (Such discontinuous behavior of the convex core also explains
why being geometrically finite is not an open condition in the presence of cusps of
rank < n� 2, even among representations of a given cusp type [8, Section 5].)

Geometry & Topology, Volume 21 (2017)



758 François Guéritaud and Fanny Kassel

Note finally that C.j; �/DC1 must be ruled out in (3) and (300 ) due to Lemma 4.7:
parabolic elements can be approached by hyperbolic ones.

Proposition 1.5 is proved in Section 6.1 using a partition-of-unity argument based on
Lemma 2.14, together with a control on fundamental domains for converging convex
cocompact representations (see Appendix B). Proposition 6.1(1)–(10 ) is proved in
Section 6.2 following the same approach but using also a comparison between distances
in horospheres and spheres of Hn (Lemma 6.4). Proposition 6.1(2) and (3)–(30 )–(300 )
are proved in Section 6.4; for reductive � , they are a consequence of the existence
of a maximally stretched lamination when C.j; �/ � 1 (Theorem 1.3). The case of
nonreductive � follows from the reductive case by using again a partition-of-unity
argument, as we explain in Section 6.3.

6.1 Continuity in the convex cocompact case

In this section we prove Proposition 1.5. We fix a pair of representations .j; �/ in
Hom.�0; G/2 with j convex cocompact and a sequence .jk; �k/k2N� of elements of
Hom.�0; G/2 converging to .j; �/. We may and shall assume that �0 is torsion-free,
using Lemma 4.4 and the Selberg lemma [47, Lemma 8].

6.1.1 Upper semicontinuity We first prove that

C.j; �/� lim sup
k!C1

C.jk; �k/:

Fix " > 0 and let f W Hn!Hn be a .j; �/–equivariant, .C.j; �/C"/–Lipschitz map.
We explain how for any large enough k we can modify f into a .jk; �k/–equivariant
map fk with Lip.fk/ � Lip.f /C ". By Lemma 4.8, we only need to define fk on
the preimage Nk �Hn of the convex core of jk.�0/nHn . In order to build fk , we
will paste together shifted “pieces” of f using Lemma 2.14.

Let N �Hn be the preimage of the convex core of j.�0/nHn . By Proposition B.1,
there exists a compact set C �Hn such that

N � j.�0/ � C and Nk � jk.�0/ � C

for all large enough k 2N� , and the injectivity radius of j.�0/nHn and jk.�0/nHn is
bounded from below by some constant ı >0 independent of k . Let B1; : : : ; Br be open
balls of Hn covering C , of radius <ı . For any 1� i � r , let  i W Hn! Œ0; 1� be a Lips-
chitz, j.�0/–equivariant function supported on j.�0/�Bi , such that . i /1�i�r restricts
to a partition of unity on j.�0/ �C , subordinated to the covering .j.�0/ �.Bi\C//1�i�r .
For 1� i � r and k 2N� , let

 i;k WD
‰i;kPr
i 0D1‰i 0;k

;
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where ‰i;k W Hn ! Œ0; 1� is the jk.�0/–invariant function supported on jk.�0/ �Bi
that coincides with  i on Bi . Then, for k 2N� large enough, . i;k/1�i�r induces
a jk.�0/–equivariant partition of unity on jk.�0/ � C , subordinated to the covering
.jk.�0/ � .Bi \ C//1�i�r . Note that there is a constant L > 0 such that  i;k is
L–Lipschitz on jk.�0/ � C for all 1 � i � r and large k 2 N� ; indeed, the jk.�0/–
invariant function

P
i 0 ‰i 0;k is Lipschitz with constant �

P
i 0 Lip. i 0/ and it converges

uniformly to 1 on each Bi \ C as k ! C1, by compactness. For 1 � i � r and
k 2N� , let

fi;k W jk.�0/ �Bi !Hn

be the .jk; �k/–equivariant map that coincides with f on Bi . For k 2 N� and
p 2 jk.�0/ � C , let Ip;k be the set of indices 1� i � r such that p 2 jk.�0/ �Bi . The
function

p 7!Rp;k WD diamffi;k.p/ j i 2 Ip;kg;

defined on jk.�0/ � C , is jk.�0/–invariant and converges uniformly to 0 on C as
k!C1. By Lemma 2.14, the .jk; �k/–equivariant map

fk WD

rX
iD1

 i;kfi;k W jk.�0/ � C!Hn

satisfies

Lipp.fk/�
rX
iD1

.LRp;kC i;k.p/Lipp.fi;k//� rL
�

sup
p02C

Rp0;k
�
CLip.f /

for all p 2 C , hence for all p 2 Nk � jk.�0/ � C by equivariance. We have seen
that supp02C Rp0;k ! 0 as k !C1. Therefore, for large enough k , the .jk; �k/–
equivariant map Hn ! Hn obtained by precomposing fk with the closest-point
projection onto Nk has Lipschitz constant � supp2Nk Lipp.fk/ � Lip.f /C " by
Lemma 2.9. This shows that C.jk; �k/ � C.j; �/C 2", and we conclude by taking
the lim sup over k and letting " tend to 0.

6.1.2 Lower semicontinuity Let us now prove that

C.j; �/� lim inf
k!C1

C.jk; �k/:

If �.�0/ has a fixed point p in Hn , then C.j; �/D 0 (Remark 4.2) and there is nothing
to prove. We thus assume that �.�0/ has no fixed point in Hn .

� Generic case Consider the case where �.�0/ has no fixed point in @1Hn and
does not preserve any geodesic line of Hn . Then �.�0/ contains two hyperbolic
elements �.1/ and �.2/ whose translation axes have no common endpoint in @1Hn .
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For large enough k , the elements �k.1/, �k.2/2 �k.�0/ are hyperbolic too and their
translation axes converge to the respective axes of �.1/ and �.2/. For any k 2N� ,
let fk W Hn!Hn be a .jk; �k/–equivariant, .C.jk; �k/C2�k/–Lipschitz map. The
same argument as in the proof of Lemma 4.10 shows that for any compact subset
C of Hn , the sets fk.C / all lie inside some common compact subset of Hn . By
the Arzelà–Ascoli theorem, some subsequence of .fk/k2N� converges to a .j; �/–
equivariant map f W Hn ! Hn . (Here we use that .C.jk; �k//k2N� is bounded,
a consequence of the upper semicontinuity proved in Section 6.1.1.) This implies
C.j; �/� lim infk C.jk; �k/.

� Degenerate reductive case Consider the case where �.�0/ preserves a geodesic
line A of Hn . The following observation is interesting in its own right:

Lemma 6.2 If the group �.�0/ preserves a geodesic line A�Hn without fixing any
point in Hn , then the stretch locus E.j; �/ is a geodesic lamination whose projection to
j.�0/nHn is compact, contained in the convex core, and whose leaves are maximally
stretched.

Proof After passing to a subgroup of index two (which does not change the stretch
locus by Lemma 4.4), we may assume that �.�0/ fixes both endpoints of A in @1Hn ;
in other words, �.�0/ is contained in MA, where M is the subgroup of G that
(pointwise) fixes A and A is the group of pure translations along A. The groups
M and A commute and have a trivial intersection; let �AW MA! A be the natural
projection. We claim that �A WD �A ı � satisfies

C.j; �A/D C.j; �/ and E.j; �A/DE.j; �/:

Indeed, any element of Fj;� (resp. of Fj;�A ) remains in Fj;� (resp. in Fj;�A ) after
postcomposing with the closest-point projection onto A, and for a map Hn! A it
is equivalent to be .j; �/–equivariant or .j; �A/–equivariant. Since �A.�0/ � A is
commutative, for any m 2 Z we can consider the representation �mA W  7! �A./

m .
We claim that, for m� 1,

C.j; �mA /DmC.j; �A/ and E.j; �mA /DE.j; �A/:

Indeed, let hm be an orientation-preserving homeomorphism of A'R such that

d.hm.p/; hm.q//Dmd.p; q/

for all p , q 2 A; for any C > 0, the postcomposition with hm realizes a bijection
between the .j; �A/–equivariant, C –Lipschitz maps and the .j; �mA /–equivariant, mC –
Lipschitz maps from Hn to A, which preserves the stretch locus. Since C.j; �A/ > 0
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(because �.�0/ has no fixed point in Hn ), we have C.j; �mA / > 1 for large enough m,
hence we can apply Theorem 1.3 to the stretch locus E.j; �mA /DE.j; �A/.

Suppose the group �.�0/ preserves a geodesic line of Hn without fixing any point
in Hn . By Lemmas 4.6 and 6.2, for any "> 0 there exists  2�0 with j./ hyperbolic
such that

(6-1)
�.�.//

�.j.//
� C.j; �/� ":

It follows that jk./ is hyperbolic and

(6-2) C.jk; �k/�
�.�k.//

�.jk.//
� C.j; �/� 2"

for all large enough k . We conclude by taking the lim inf over k and letting " tend
to 0.

� Nonreductive case Finally, we consider the case where the group �.�0/ has a
unique fixed point � in @1Hn , ie � is nonreductive (Definition 4.9). Choose an oriented
geodesic line A of Hn with endpoint � . For any  2 �0 we can write in a unique way
�./ D gu, where g 2 G preserves A (ie belongs to MA with the notation above)
and u is unipotent; setting �red./ WD g defines a representation �red 2 Hom.�0; G/
which is reductive (with image in MA). Note that changing the line A only modifies
�red by conjugating it; this does not change the constant C.j; �red/, by Remark 4.3.
When � is reductive, we set �red WD � . Then the following holds:

Lemma 6.3 For any pair of representations .j; �/ 2 Hom.�0; G/2 with j convex
cocompact,

C.j; �red/D C.j; �/:

Proof We may assume that � is nonreductive. Let � and A be as above and let
prW Hn!A be the “horocyclic projection” collapsing each horosphere centered at �
to its intersection point with A; it is 1–Lipschitz. For any .j; �/–equivariant Lipschitz
map f W Hn!Hn , the map prıf is .j; �red/–equivariant with Lip.prıf /�Lip.f /,
hence

C.j; �red/� C.j; �/:

Let a 2G be a hyperbolic element acting as a pure translation along A, with repelling
fixed point � at infinity. Then �.i/ WD ai�. � /a�i ! �red as i!C1. By Remark 4.3,
we have C.j; �.i// D C.j; �/ for all i 2 N. By upper semicontinuity (proved in
Section 6.1.1),

C.j; �red/� lim sup
i!C1

C.j; �.i//D C.j; �/:
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We now go back to our sequence .jk; �k/k2N� converging to .j; �/. Since �k ! �

and � has conjugates converging to �red (see above), a diagonal argument shows that
there are conjugates �0

k
of �k such that �0

k
! �red . By the reductive case above,

lim infk C.jk; �0k/ � C.j; �
red/, and we conclude using Remark 4.3 and Lemma 6.3.

This completes the proof of Proposition 1.5.

6.2 Openness of the condition C < 1 on cusp-deteriorating pairs

In this section we prove Proposition 6.1(1)–(10 ). The strategy is analogous to the proof
of upper semicontinuity in Section 6.1.1. The partition-of-unity argument in that proof
fails in the presence of cusps, since the convex core (when nonempty) is not compact
anymore. However, we shall see that the argument can be adapted as long as convex
cores deform continuously. Such continuous behavior is ensured under the assumptions
of Proposition 6.1(10 ) (constant convex core) or Proposition 6.1(1) (all cusps of rank
� n� 2, see Proposition B.3).

Consider a pair .j; �/ 2 Homj0.�0; G/ �Homj0-det.�0; G/ with C.j; �/ < 1, and a
sequence .jk; �k/k2N� of elements of Homj0.�0; G/�Homj0-det.�0; G/ converging
to .j; �/. If j0 has a cusp of rank < n�2, we assume that jk D j for all k 2N� . We
shall prove that C.jk; �k/ < 1 for all large enough k .

We can and shall assume that �0 is torsion-free (using Lemma 4.4 and the Selberg
lemma [47, Lemma 8]). We can also always assume that the convex core of jk.�0/nHn

is nonempty; otherwise, the group jk.�0/ is elementary with a fixed point in Hn or a
unique fixed point in @1Hn , and C.jk; �k/D 0 by Remark 4.2. Therefore the convex
core of M WD j.�0/nHn is nonempty too (because j and the jk have the same cusp
type).

Let f W Hn!Hn be a .j; �/–equivariant map with 0<Lip.f /<1. We shall modify f
into a .jk; �k/–equivariant map fk with Lip.fk/ < 1 for all large enough k . As usual,
by Lemma 4.8 we only need to define fk on the preimage Nk �Hn of the convex
core of jk.�0/nHn . In order to build fk , we shall proceed as in Section 6.1.1 and
paste together shifted “pieces” of f using Lemma 2.14.

By Proposition 4.16(3) we may assume that f is constant on neighborhoods of some
horoballs H1; : : : ;Hc of Hn whose images in M D j.�0/nHn are disjoint and
intersect the convex core of M in standard cusp regions (Definition 2.2), representing
all the cusps. For 1� `� c , let S` � �0 be the stabilizer of H` under the j –action.
Let N �Hn be the preimage of the convex core of j.�0/nHn . By Proposition B.3, if
the horoballs H1; : : : ;Hc are small enough, then there exist a compact set C �Hn

and, for any k 2N� , horoballs Hk
1 ; : : : ;H

k
c of Hn , such that
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� the images of Hk
1 ; : : : ;H

k
c in jk.�0/nHn are disjoint and intersect the convex

core in standard cusp regions, for all large enough k 2N� ;

� the stabilizer in �0 of Hk
`

under jk is S` ;

� the horoballs Hk
`

converge to H` for all 1� `� c ;

� N � j.�0/ � .C [
S
1�`�cH`/ and, for all large enough k 2N� ,

(6-3) Nk � jk.�0/ �

�
C [

[
1�`�c

Hk
`

�
I

� the cusp thickness (Definition 5.12) of jk.�0/nHn at any point of @Hk
`

is
uniformly bounded by some constant ‚> 0 independent of k ;

� the injectivity radius of jk.�0/n
�
Hn X

Sk
`D1 jk.�0/ �H

k
`

�
is bounded from

below by some constant ı > 0 independent of k .

(If j0 has a cusp of rank <n�2, then jk D j and we take Hk
`
DH` for all k 2N� .)

For any 1 � ` � c , by convergence of the horoballs Hk
`

, the map f is constant on
some neighborhood of @Hk

`
\ C for large enough k , which implies

(6-4) sup
p2@Hk

`
\C

Lipp.f /D 0:

Let B1; : : : ; Br be open balls of Hn covering C , of radius < ı . For any 1� i � r , let
 i W Hn! Œ0; 1� be a Lipschitz, j.�0/–equivariant function supported on j.�0/ �Bi
such that . i /1�i�r restricts to a partition of unity on j.�0/ � C , subordinated to the
covering .j.�0/ � .Bi \ C//1�i�r . As in Section 6.1.1, for large enough k we can
perturb the  i to a jk.�0/–equivariant partition of unity . i;k/1�i�r of jk.�0/ � C ,
subordinated to the covering .jk.�0/ �Bi /1�i�r , such that all the functions  i;k are
L–Lipschitz for some constant L > 0 independent of i and k . For 1 � i � r and
k 2N� , let

fi;k W jk.�0/ �Bi !Hn

be the .jk; �k/–equivariant map that coincides with f on Bi . As in Section 6.1.1, it
follows from Lemma 2.14 that the .jk; �k/–equivariant map

f 0k WD

rX
iD1

 i;kfi;k W jk.�0/ � C!Hn

satisfies

(6-5) Lipp.f
0
k/� rLRp;kCLipp.f /
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for all p 2 jk.�0/ � C , where p 7! Rp;k is a jk.�0/–invariant function converging
uniformly to 0 on C as k!C1. By equivariance,

lim sup
k!C1

sup
p2jk.�0/�C

Lipp.f
0
k/� Lip.f / < 1:

It only remains to prove that for any 1� `� c we can extend f 0
k
j@Hk

`
\Nk

to Hk
`
\Nk

in a .jkjS` ; �kjS`/–equivariant way with Lipschitz constant < 1. Indeed, then we
can extend f 0

k
to the orbit jk.�0/ � .Hk

`
\Nk/ in a .jk; �k/–equivariant way; piecing

together these maps for varying `, and taking f 0
k

on the complement of
Sc
`D1 jk.�0/ �

Hk
`

in Nk (which is contained in jk.�0/ � C ), we will obtain a .jk; �k/–equivariant
map fk W Nk!Hn with Lip.fk/ < 1 for all large enough k , which will complete the
proof.

Fix 1� `� c . By Theorem 1.6, in order to prove that f 0
k
j@Hk

`
\Nk

extends to Hk
`
\Nk

in a .jkjS` ; �kjS`/–equivariant way with Lipschitz constant < 1, it is sufficient to
prove that Lip@Hk

`
\Nk

.f 0
k
/ < 1. By (6-4) and (6-5), for any " > 0 we have

(6-6) sup
p2@Hk

`
\Nk

Lipp.f
0
k/� "

for all large enough k , since @Hk
`
\Nk � jk.�0/ �C and the jk.�0/–invariant functions

p 7! Rp;k converge uniformly to 0 on C as k ! C1. Note that (6-6) does not
immediately give a bound on the global constant Lip@Hk

`
\Nk

.f 0
k
/, since the subset of

horosphere @Hk
`
\Nk is not convex for the hyperbolic metric. However, such a bound

follows from Lemmas 6.4 and 6.5 below, which are based on a comparison between
the intrinsic metrics of horospheres and spheres in Hn .

The idea of Lemma 6.4 is that (6-6) controls the Lipschitz constant at short range,
while the fixed point of �k.S`/ implies control at long range. The difficulty is that
there can be an arbitrarily large “medium range” to handle in-between, since the fixed
point of �k.S`/ can lie arbitrarily far out. In dimension n� 4 this is compounded by
the fact that generally @Hk

`
\Nk is not even convex for the Euclidean metric of the

horosphere @Hk
`

; Lemma 6.5 deals with that issue.

For t � 1, we say that a subset X of a Euclidean space is t –subconvex if for any
x , y 2 X there exists a path from x to y in X whose length is at most t times the
Euclidean distance from x to y .

Lemma 6.4 Let S be a discrete group. For any R > 0, there exists " > 0 with the
following property: if .j; �/2Hom.S;G/2 is a pair of representations with j injective
such that

� the group j.S/ is discrete and preserves a horoball H of Hn ,
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� the group �.S/ has a fixed point in Hn ,
� there exists a closed, j.S/–invariant, 2–subconvex set N � @H such that the

quotient j.S/nN has Euclidean diameter �R ,

then any .j; �/–equivariant map f 0W N !Hn satisfying Lipp.f
0/� " for all p 2N

satisfies Lip.f 0/ < 1.

Lemma 6.5 In our setting, up to enlarging the compact set C �Hn and replacing the
horoballs H1; : : : ;Hc and Hk

1 ; : : : ;H
k
c with smaller horoballs, still satisfying the list

of six properties (6-3), we may assume that @Hk
`
\Nk is 2–subconvex in @Hk

`
'Rn�1

for all 1� `� c and large enough k 2N� .

Here Lemma 6.4 applies to N WDNk \ @Hk
`

(which is 2–subconvex by Lemma 6.5)
and to f 0 WD f 0

k
jN (which satisfies (6-6)). Note that �k.S`/ has a fixed point in Hn

by Fact 2.5, since �k is cusp-deteriorating with respect to jk , and that the Euclidean
diameter of jk.S`/n.Nk \ @Hk

`
/ is uniformly bounded for k 2 N� , by the uniform

bound ‚ on cusp thickness. Therefore it is sufficient to prove Lemmas 6.4 and 6.5 to
complete the proof of Proposition 6.1(1)–(10 ).

Proof of Lemma 6.4 Fix R > 0 and let j , � , H and N be as in the statement.
Consider a .j; �/–equivariant map f 0W N!Hn such that Lipp.f

0/� " for all p 2N ,
for some " > 0. Let us show that if " is smaller than some constant independent of f 0 ,
then Lip.f 0/ < 1. Let d@H be the natural Euclidean metric on @H . By (A-3), for any
p , q 2N ,

(6-7) d.p; q/D 2 arcsinh
�
1
2
.d@H .p; q//

�
:

If d.p; q/ � 1, then d.p; q/ � � d@H .p; q/ for some universal � > 0 (specifically,
� D

�
2 sinh

�
1
2

���1 by concavity of arcsinh). On the other hand, d.f 0.p/; f 0.q// �
2" d@H .p; q/ by Remark 2.8(3) and 2–subconvexity, hence

d.f 0.p/; f 0.q//

d.p; q/
�
2"

�
<
2

3

for all p , q 2N with 0 < d.p; q/� 1 as soon as " < 1
3
� . We now assume that this is

satisfied and consider pairs of points p , q 2N with d.p; q/� 1.

Let @B be a sphere of Hn centered at a fixed point of �.S/, and containing f 0.p0/
for some p0 2N (see Figure 8). Then f 0.j./ �p0/ 2 @B for all  2 S , since f 0 is
.j; �/–equivariant and �.S/ preserves @B . By Remark 2.8(3) and 2–subconvexity, the
set f 0.N / is contained in the 2"R–neighborhood of @B . If the radius of @B is � 1

3
,

then as soon as " < 1=.24R/ we have

d.f 0.p/; f 0.q//� 2
3
C 4"R � 5

6
d.p; q/
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for all p , q 2 N with d.p; q/ � 1, hence Lip.f 0/ � 5
6
< 1. We now assume that

the radius r of @B is > 1
3

(possibly very large!). There exists a universal constant
� > 0 such that the closest-point projection onto any sphere of Hn of radius > 1

3
is

2–Lipschitz on the �–neighborhood (inner and outer) of this sphere. In particular,
if " � �=.2R/, which we shall assume from now on, then the projection onto @B is
2–Lipschitz on the set f 0.N /.

Hn

Hn
p0

H j.S/
f 0

f 0.@H/

f 0.p0/

�.S/
B

Figure 8: An equivariant map f 0 , contracting at small scale, taking a horo-
sphere to (or near) a sphere, is contracting at all scales.

Let x , y 2 @B be the respective projections of f 0.p/; f 0.q/; the distances d.x; f 0.p//
and d.y; f 0.q// are bounded from above by 2"R . Let d@B.x; y/ be the length of the
shortest path from x to y that is contained in the sphere @B . The formulas (A-8) and
(A-14) yield

(6-8) d.x; y/D 2 arcsinh
�

sinh.r/ � sin
�
d@B.x; y/

2 sinh.r/

��
:

On the other hand, by 2–subconvexity, we can find a path ! from p to q in N of
length at most 2 d@H .p; q/. Then d@B.x; y/ is bounded from above by the length of
the projection of the path f 0.!/ to @B ; hence, by Remark 2.8(3),

(6-9) d@B.x; y/� 4" d@H .p; q/:

Using sin.t/�minf1; tg for t � 0, it follows from (6-8) and (6-9) that

d.f 0.p/; f 0.q//� d.f 0.p/; x/C d.x; y/C d.y; f 0.q//

�min
˚
2r; 2 arcsinh

�
1
2
d@B.x; y/

�	
C 4"R

�minf2r; 2 arcsinh.2" d@H .p; q//gC 4"R:
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Comparing with (6-7), we see that if " is smaller than some constant depending only
on R , then

d.f 0.p/; f 0.q// < d.p; q/

for all p , q 2N with d.p; q/� 1. Since d.f 0.p/; f 0.q// is bounded independently
of p and q , the ratio d.f 0.p/; f 0.q//=d.p; q/ is uniformly bounded away from 1 by
compactness of N modulo j.S/. This proves that LipN .f

0/ < 1.

Proof of Lemma 6.5 Fix 1� `� c , where c is still the number of cusps.

� Subconvexity for @H` \N We first prove that, up to replacing H` with some
smaller, concentric horoball, the set @H`\N is 2–subconvex in @H` . This will prove
Lemma 6.5 when j0 has a cusp of rank <n�2, since in that case jkD j and Hk

`
DH`

for all k by assumption.

The stabilizer S`��0 of H` under j has a finite-index normal subgroup S 0 isomorphic
to Zm for some 0 < m < n (see Section 2.1). Consider the upper half-space model
Rn�1 �R�

C
of Hn , so that @1Hn identifies with Rn�1[f1g. We may assume that

H` is centered at infinity, so that @H` D Rn�1 � fbg for some b > 0. Let � be the
convex hull of ƒj.�0/Xf1g in Rn�1 , where ƒj.�0/ is the limit set of j.�0/. The group
j.S 0/ acts on Rn�1 by Euclidean isometries and there exists an m–dimensional affine
subspace V ��, preserved by j.S 0/, on which j.S 0/ acts as a lattice of translations
(see Section 2.1).

We claim that N contains V � Œb0;C1/ for some b0 > 0. Indeed, since V � �,
some point p0 2 V �R�

C
� Hn belongs to N. The convex hull in Hn of the orbit

j.S 0/ �p0 is also contained in N. This convex hull contains all the j.S 0/–translates of
the (compact) convex hull of

fj.
"1
1 : : : "mm / �p0 j ."1; : : : ; "m/ 2 f0; 1g

m
g;

where .1; : : : ; m/ is a generating subset of S 0 ; the union X of these j.S 0/–translates
projects vertically onto the whole of V and has bounded height since j.S 0/ preserves
the horospheres centered at 1. Then N contains V � Œb0;C1/, where b0 > 0 is the
maximal height of X .

Up to replacing H` with some smaller, concentric horoball, we may assume that
b �maxfb0; 7ıg, where ı > 0 is the Euclidean diameter of j.S 0/n�. Let us show that
@H`\N is then 2–subconvex. Consider p , q 2 @H`\N, with respective orthogonal
projections �p and �q to Rn�1 . We have d@H`.p; q/D dRn�1.�p; �q/=b .

Suppose dRn�1.�p; �q/�6ı . By definition of ı , we can find a point � 2ƒj.�0/Xf1g�
Rn�1 with dRn�1.�; �p/� ı . The hyperbolic triangle .p; q; �/ is contained in N. Since
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b � 7ı , both edges .p; �� and .q; �� lie outside H` D Rn�1 � Œb;C1/. It follows
that the intersection of this triangle .p; q; �/ with @H` is an arc of Euclidean circle
from p to q , of angular measure � � , and hence has Euclidean length at most
�
2
d@H`.p; q/� 2 d@H`.p; q/.

Suppose dRn�1.�p; �q/� 6ı . Since �p , �q 2�, by definition of ı we can find points
p0 and q0 in N \ .V �fbg/ whose orthogonal projections �p0 and �q0 to Rn�1 satisfy

dRn�1.�p; �p0/� ı and dRn�1.�q; �q0/� ı:

Then d@H`.p; p
0/ D dRn�1.�p; �p0/=b � ı=b , and similarly d@H`.q; q

0/ � ı=b . As
above, there is an arc of Euclidean circle from p to p0 in @H`\N, of length at most
2 d@H .p; p

0/ � 2ı=b . Similarly, there is an arc of Euclidean circle from q0 to q in
@H`\N, of Euclidean length � 2ı=b . Concatenating these arcs with the Euclidean
segment Œp0; q0�� V � fbg, which is contained in @H`\N and has Euclidean length
b�1 dRn�1.�p0 ; �q0/, we find a path from p to q in @H` \N of Euclidean length at
most

dRn�1.�p0 ; �q0/C 4ı

b
�
dRn�1.�p; �q/C 6ı

b
� 2 d@H`.p; q/:

This proves that @H`\N is 2–subconvex in @H` .

� Convexity for @H k
`
\Nk in the case of cusps of rank � n � 2 Finally, we

suppose that all cusps of j0 have rank � n � 2, in which case the representation
jk is allowed to vary with k . Recall that the cusp thickness of jk.�0/nHn at @H `

k

is bounded by some constant ‚ > 0 independent of ` and k . If we replace every
horoball H `

k
with the smaller, concentric horoball at distance log.3‚/ from @H `

k
(and

correspondingly enlarge the compact set C �Hn ), we obtain new horoballs H `
k

still
satisfying the list of six properties (6-3), such that the cusp thickness of jk.�0/nHn at
@H `

k
is at most 1

3
for all ` and k . Then @Hk

`
\Nk is convex in @Hk

`
by Lemma B.4,

hence in particular 2–subconvex.

6.3 The constant C.j; �/ for nonreductive �

In order to prove conditions (2), (3), (30 ) and (300 ) of Proposition 6.1 (in Section 6.4),
we shall rely on the existence of a maximally stretched lamination for C.j; �/ � 1,
given by Theorem 1.3. However, Theorem 1.3 assumes that the space Fj;� of equi-
variant maps realizing the best Lipschitz constant C.j; �/ is nonempty; this holds for
reductive � (Lemma 4.10), but may fail otherwise (see Section 10.3). In order to deal
with nonreductive � , we first establish the following lemma, which extends Lemma 6.3:
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Lemma 6.6 For any pair of representations .j; �/ 2 Hom.�0; G/2 with j geometri-
cally finite,

C.j; �/D C.j; �red/;

unless the representation � is not cusp-deteriorating and C.j; �red/ < 1, in which case
C.j; �/D 1.

Here �red 2 Hom.�0; G/ is the “reductive part” of � , defined in Section 6.1.2: if � is
nonreductive, then the group �red.�0/ preserves some geodesic line of Hn with an
endpoint in @1Hn equal to the fixed point of �.�0/. Since �red is well defined up to
conjugation, the constant C.j; �red/ is well defined by Remark 4.3. If � is reductive,
then �red WD � .

Proof of Lemma 6.6 We may assume that � is nonreductive, with fixed point
� 2 @1Hn . Then �red is cusp-deteriorating and preserves an oriented geodesic line
A of Hn with endpoint � . If the group j.�0/ is elementary and fixes a unique point
in @1Hn , then C.j; �/ D 1 by Corollary 4.18 and C.j; �red/ D 0 by Remark 4.2.
We now assume that we are not in this case, which means that the convex core of
M WD j.�0/nHn is nonempty. As in the proof of Lemma 6.3, by using the projection
onto A along concentric horocycles we see that

C.j; �red/� C.j; �/;

and there is a sequence .ak/k2N� of pure translations along A, with repelling fixed
point � , such that the conjugates �k WD ak�. � /a�1k (which still fix � ) converge to �red

as k!C1. By invariance of C.j; �/ under conjugation (Remark 4.3), it is sufficient
to prove that

lim sup
k!C1

C.j; �k/�

�
C.j; �red/ if � is cusp-deteriorating;
max.1; C.j; �red// otherwise:

To prove this, we use a partition-of-unity argument as in Sections 6.1.1 and 6.2. Fix ">0.
By using Proposition 4.16 and postcomposing with the closest-point projection onto A,
we can find a .j; �red/–equivariant map f W Hn!A with Lip.f /� C.j; �red/C 1

2
"

that is constant on neighborhoods of some horoballs B1; : : : ; Bc of Hn whose images
in M D j.�0/nHn are disjoint and intersect the convex core in standard cusp regions
(Definition 2.2), representing all the cusps. We shall use f to build .j; �k/–equivariant
maps fk with Lip.fk/ bounded from above by Lip.f /C " or 1C ", as the case
may be, for all large enough k . Let S1; : : : ; Sc � �0 be the respective stabilizers of
B1; : : : ; Bc under j ; the singleton f .Bi / is fixed by �.Si / for all 1 � i � c . Also
let BcC1; : : : ; Br be open balls of Hn , each projecting injectively to j.�0/nHn , such
that

Sr
iD1 j.�0/ �Bi contains the preimage N �Hn of the convex core of M. For
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c < i � r , let fi;k W j.�0/ �Bi ! Hn be the .j; �k/–equivariant map that coincides
with f on Bi .

We first assume that � is cusp-deteriorating. For 1� i � c , all the elements of �.Si /
are elliptic, hence �.Si / fixes a point in Hn (Fact 2.5). Since it also fixes � 2 @1Hn ,
it fixes pointwise a full line A0 with endpoint � . Then �k.Si / D ak�.Si /a�1k fixes
pointwise the line ak �A0 , which converges to A as k!C1. In particular, we can
find a sequence .pi;k/k2N� that converges to the singleton f .Bi / 2A as k!C1,
with pi;k fixed by �k.Si / for all k . For 1� i � c and k 2N� , let

fi;k W j.�0/ �Bi !Hn

be the .j; �k/–equivariant map that is constantly equal to pi;k on the horoball Bi . Let
. i/1�i�r be a Lipschitz partition of unity subordinated to the covering .j.�0/�Bi/1�i�r
of N, and let L WDmax1�i�r Lip. i /. By Lemma 2.14, the .j; �k/–equivariant map

fk WD

rX
iD1

 ifi;k W N !Hn

satisfies
Lipp.fk/� rLRp;kCLipp.f /

for all p 2N, where the j.�0/–invariant function

p 7!Rp;k WDmax
i;i 0

d.fi;k.p/; fi 0;k.p//

converges uniformly to 0 for p 2
Sr
iD1Bi as k !C1. For large enough k this

yields LipN .fk/� Lip.f /C 1
2
" by (2-2), hence

C.j; �k/� C.j; �
red/C "

by Lemma 4.8. Letting " go to 0, we obtain lim supk C.j; �k/�C.j; �
red/, as desired.

Suppose now that � is not cusp-deteriorating. We proceed as in the cusp-deteriorating
case, but work with the union of balls

S
c<i�r j.�0/ �Bi instead of the union of balls

and horoballs
S
1�i�r j.�0/ �Bi . Let . i /c<i�r be a Lipschitz partition of unity of

N 0 WD N X
S
1�`�c j.�0/ �B` subordinated to the covering .j.�0/ �Bi /c<i�r , and

let L WD maxc<i�r Lip. i /. As in the cusp-deteriorating case, by Lemma 2.14, the
.j; �k/–equivariant map

f 0k WD
X
c<i�r

 ifi;k W N
0
!Hn

satisfies
Lipp.f

0
k/� Lipp.f /C

1
2
"

Geometry & Topology, Volume 21 (2017)



Maximally stretched laminations on geometrically finite hyperbolic manifolds 771

for all p 2N 0 when k is large enough. In particular, for 1� `� c , since f is constant
on a neighborhood of the horoball B` , we obtain Lipp.f

0
k
/� 1

2
" for all p 2N \ @B` .

It is sufficient to prove that

(6-10) LipN\@B`.f
0
k/� 1

for all 1� `� c , since Theorem 1.6 (or Proposition 3.9) then lets us extend f 0
k
jN\@B`

to a 1–Lipschitz, .j jS` ; �kjS`/–equivariant map .B`[@B`/\N !Hn . We can then
extend f 0

k
to the orbit j.�0/ � .B`[ @B`/\N in a .j; �k/–equivariant way. Piecing

together these maps for varying 1 � ` � c , and taking f 0
k

on N 0 , we then obtain
a .j; �k/–equivariant map fk W Hn!Hn with Lip.fk/ � max

�
1;Lip.f /C 1

2
"
�

for
all large enough k (using (2-2)). Letting " go to 0, we obtain lim supk C.j; �k/ �
max.1; C.j; �red//, as desired. To prove (6-10), it is sufficient to establish the following
analogue of Lemma 6.4, which together with Lemma 6.5 completes the proof of
Lemma 6.6.

Lemma 6.7 Let S be a discrete group. For any R > 0, there exists " > 0 with the
following property: if .j; �/2Hom.S;G/2 is a pair of representations with j injective
such that

� the group j.S/ is discrete and preserves a horoball H of Hn ,

� the group �.S/ has a fixed point in @1Hn ,

� there exists a closed, j.S/–invariant, 2–subconvex set N � @H such that the
quotient j.S/nN has (Euclidean) diameter �R ,

then any .j; �/–equivariant map f 0W N !Hn satisfying Lipp.f
0/� " for all p 2N

satisfies Lip.f 0/� 1.

Proof We proceed as in the proof of Lemma 6.4, but the sphere @B will now be
a horosphere. Fix R > 0 and let j , � , H and N be as in the statement. Consider
a .j; �/–equivariant map f 0W N ! Hn such that Lipp.f

0/ � " for all p 2 N , for
some " > 0. Let us show that if " is smaller than some constant independent of f 0 ,
then Lip.f 0/� 1. As in the proof of Lemma 6.4, if " is smaller than some universal
constant, then d.f 0.p/; f 0.q//� d.p; q/ for all p , q 2N with d.p; q/� 1. We now
consider p , q 2 N with d.p; q/ � 1. Let @B be a horosphere centered at the fixed
point of �.S/ in @1Hn , containing f 0.p0/ for some p0 2 N . As in the proof of
Lemma 6.4, the set f 0.N / is contained in the 2"R–neighborhood of @B . We now use
the existence of a universal constant � > 0 such that the closest-point projection onto
any horosphere of Hn is 2–Lipschitz on the �–neighborhood (inner and outer) of this
horosphere. In particular, if " � �=.2R/, which we shall assume from now on, then
the projection onto @B is 2–Lipschitz on the set f 0.N /.
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Denoting by x , y 2 @B the projections of f 0.p/ and f 0.q/, the (in)equalities (6-7)
and (6-9) still hold, but (6-8) becomes

d.x; y/D 2 arcsinh
�
1
2
d@B.x; y/

�
;

where d@B is the natural Euclidean metric on @B . We obtain

d.f 0.p/; f 0.q//� d.f 0.p/; x/C d.x; y/C d.y; f 0.q//

� 2 arcsinh.2" d@H .p; q//C 2"R:

Comparing with (6-7) we see that if " is small enough then d.f 0.p/; f 0.q//� d.p; q/
for all p , q 2 @H \N with d.p; q/� 1. Hence, Lip.f 0/� 1.

6.4 Semicontinuity for C.j; �/� 1 in the general geometrically finite case

We now complete the proof of Proposition 6.1. Condition (1) when all the cusps
of j0 have rank � n� 2 and condition (10 ) in general have already been proved in
Section 6.2. We now show that for pairs .j; �/ of representations with j geometrically
finite representations of fixed cusp type,

(2) the condition 1 < C is open,

(30 ) the function .j; �/ 7! C.j; �/ is lower semicontinuous on the set of pairs where
1� C ,

(300 ) it is upper semicontinuous on the set of pairs where 1� C <C1 when either
all the cusps of j0 have rank � n�2 (for instance n� 3) or the representation j
is constant.

Upper semicontinuity on the set of pairs where 1� C <C1 does not hold in general
in dimension n � 4; see Section 10.10. The condition C.j; �/ D C1 is open in
Hom.�0; G/j0 �Hom.�0; G/ by Lemma 4.7, hence in (2) and (30 ) we may actually
restrict to 1� C <C1.

Let .jk; �k/k2N� be a sequence of elements of Hom.�0; G/j0 �Hom.�0; G/ converg-
ing to an element .j; �/ 2 Hom.�0; G/j0 �Hom.�0; G/ with C.j; �/ < C1. It is
sufficient to prove the following two statements:

(A) If C.j; �/ > 1, then C.j; �/� lim infk C.jk; �k/.

(B) If C � WD lim supk C.jk; �k/ > 1 and if either all the cusps of j0 have rank
� n� 2 or jk D j for all k 2N� , then C.j; �/� C � .
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If � is reductive, then (A) is an easy consequence of Corollary 1.12 (here E.j; �/¤∅
by Corollary 4.14, in which case Corollary 1.12 has been proved in Section 5.4): namely,
for any " > 0 there is an element  2 �0 with j./ hyperbolic such that

�.�.//

�.j.//
� C.j; �/� ":

If k is large enough, then �.jk.// is hyperbolic and �.�k.//=�.jk.//�C.j; �/�2"
by continuity of �, hence C.jk; �k/� C.j; �/� 2" by (4-1). We conclude by letting
" tend to 0. If � is nonreductive, then C.j; �/ > 1 entails C.j; �red/ D C.j; �/ by
Lemma 6.6, and the �k have conjugates converging to �red (see the end of Section 6.1.2),
so we just apply the reductive case to obtain (A).

To prove (B), suppose that C � > 1 and that either all the cusps of j0 have rank
� n� 2 or jk D j for all k 2N� . Up to passing to a subsequence, we may assume
C.jk; �k/ > 1 for all k 2N� and C.jk; �k/! C � . Then

C.jk; �
red
k /D C.jk; �k/

for all k 2N� by Lemma 6.6. We now use Theorem 1.3, and either Proposition 5.11 (if
jk D j ) or Corollary 5.14 (if all the cusps of j0 have rank � n� 2); in either case we
obtain that the stretch locus E.jk; �red

k
/ is a (nonempty) geodesic lamination admitting

a fundamental domain that remains in some compact subset of Hn , independent
of k . This implies, up to passing to a subsequence, that E.jk; �red

k
/ converges to

some (nonempty) j.�0/–invariant geodesic lamination L , with a compact image
in j.�0/nHn . For any " > 0, a closed curve "–nearly carried by L is also nearly
carried by E.jk; �red

k
/ and will give (as in the proof of Lemma 4.6) an element  2 �0

such that jk./ is hyperbolic and

�.�k.//

�.jk.//
D
�.�red

k
.//

�.jk.//
� C.jk; �

red
k /� "

for all large enough k . The right-hand side converges to C �� ", hence, by continuity
of �,

�.�.//

�.j.//
� C �� ";

therefore C.j; �/�C ��" by (4-1) (in particular, C �<C1). We conclude by letting
" tend to 0.

This completes the proof of Proposition 6.1.
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7 Application to properly discontinuous actions
on G D PO.n; 1/

In this section we prove the results of Section 1.4 on the geometrically finite quotients of
G WD PO.n; 1/, namely Theorem 1.8 (properness criterion) and Theorems 1.9 and 1.11
(deformation). We adopt the notation and terminology of Section 1.4, and proceed as
in [23]. Note that all the results remain true if G is replaced by O.n; 1/, SO.n; 1/ or
SO.n; 1/0 .

In Section 7.1 we start by introducing a constant C�.j; �/, which we use in Section 7.2
to state a refinement of Theorem 1.8. This refinement is proved in Sections 7.5 and 7.6.
Before that, in Section 7.3 we discuss the connection with the general theory of properly
discontinuous actions on reductive homogeneous spaces, and in Section 7.4 we make
two side remarks. Section 7.7 is devoted to the proof of Theorems 1.9 and 1.11, and
Section 7.8 to their interpretation in terms of completeness of geometric structures.

7.1 The constant C�.j; �/

We shall refine Theorem 1.8 by characterizing properness, not only in terms of the
constants C.j; �/ of (1-1) and C 0.j; �/ of (1-4), but also in terms of a third constant
C�.j; �/. We start by introducing this constant.

Fix a basepoint p0 2Hn and let �W G! RC be the displacement function relative
to p0 :

(7-1) �.g/ WD d.p0; g �p0/

for all g 2 G . This function is continuous, proper and surjective; we shall see in
Section 7.3 that it corresponds to a Cartan projection of G . Note that �.g�1/D �.g/
for all g 2G because G acts on Hn by isometries. By the triangle inequality,

(7-2) �.gg0/� �.g/C�.g0/;

and

(7-3) �.g/� �.g/

for all g , g0 2G , where �W G!RC is the translation length function of (1-2). For
hyperbolic g , the function k 7! �.gk/ grows linearly because �.gk/ � k�.g/ is
bounded (for instance by twice the distance from g � p0 to the translation axis Ag
of g ). For parabolic g , the function k 7! �.gk/ grows logarithmically (Lemma 2.6),
while for elliptic g it is bounded. Therefore,

(7-4) �.g/D lim
k!C1

1

k
�.gk/ for all g 2G:
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For any discrete group �0 and any pair .j; �/2Hom.�0; G/2 of representations, we let
C�.j; �/ be the infimum of constants t � 0 for which f�.�.//� t�.j.// j  2 �0g
is bounded from above, ie for which �.�.//� t�.j.//CO.1/ as  ranges over �0 .
Note that

(7-5) C 0.j; �/� C�.j; �/� C.j; �/:

Indeed, the left-hand inequality follows from (7-4). The right-hand inequality follows
from the fact that, for any .j; �/–equivariant map f W Hn!Hn and any  2 �0 ,

�.�.//D d.p0; �./ �p0/

� d.f .p0/; �./ �f .p0//C 2 d.p0; f .p0//

D d.f .p0/; f .j./ �p0//C 2 d.p0; f .p0//

� Lip.f / d.p0; j./ �p0/C 2 d.p0; f .p0//

D Lip.f /�.j.//C 2 d.p0; f .p0//:

7.2 A refinement of Theorem 1.8

Let �0 be a discrete group. In Sections 7.5 and 7.6, we shall refine Theorem 1.8
by establishing the implications in Figure 9 for any pair .j; �/ 2 Hom.�0; G/2 with
j geometrically finite. We refer to Definitions 1.1 and 1.7 for the notions of cusp-
deterioration and left admissibility; recall that any � is cusp-deteriorating if j is convex
cocompact.

We define the “reductive part” �red of � as in Section 6.1.2: in the generic case when
� is reductive (Definition 4.9), we set �red WD � . In the degenerate case when � is
nonreductive, we fix a Levi factor MA of the stabilizer P in G of the fixed point
at infinity of �.�0/ (see Section 7.6), denote by � W P !MA the natural projection,
and set �red WD � ı � , so that �red is reductive and preserves an oriented geodesic line
A�Hn , depending only on MA.

The implications 1 D) 3 and i D) iii D) iv are immediate consequences of (7-5),
while 3 D) 4 D) 5 and iii D) v follow from (7-5) and from the estimate �.gk/D
2 log kCO.1/ for parabolic g (Lemma 2.6); these implications do not require any
geometrical finiteness assumption on j . The implications 1 D) i and i D) 1 , the
latter assuming 5 , are immediate consequences of Lemma 6.6. We shall explain

� 3 D) 2 , iii D) ii and 2 D) 5 in Section 7.3,

� iv D) iii and ii D) i in Section 7.5,

� 2 D) ii , 3 D) iii , 4 D) iv and 5 D) v in Section 7.6.
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1 C.j; �/ < 1
KS

��

+3 C.j; �red/ < 1 i

if 5 holds

rz

KS

��
2 .j; �/ left admissible

KS

��

+3 .j; �red/ left admissible ii
KS

��
3 C�.j; �/ < 1KS

��

+3 C�.j; �
red/ < 1 iii
KS

��
4 C 0.j; �/ < 1 and � cusp-deteriorating

��

+3 C 0.j; �red/ < 1 iv

��
5 � cusp-deteriorating +3 �red cusp-deteriorating v

Figure 9: The full diagram of implications proved in Section 7

7.3 General theory of properly discontinuous actions and sharpness

Before proving the implications above, we discuss the connection with the general
theory of properly discontinuous actions on reductive homogeneous spaces.

The group G endowed with the transitive action of G�G by right and left multiplication
identifies with the homogeneous space .G � G/=Diag.G/, where Diag.G/ is the
diagonal of G �G . Let K be the stabilizer in G of the basepoint p0 of (7-1); it is a
maximal compact subgroup of G D PO.n; 1/, isomorphic to O.n/. Let A be a one-
parameter subgroup of G whose nontrivial elements are hyperbolic, all pure translations,
with a translation axis A passing through p0 . Choose an endpoint � 2 @1Hn of A
and let AC be the subsemigroup of A sending p0 into the geodesic ray Œp0; �/. Then
the Cartan decomposition G DKACK holds: any element g 2G may be written as
g D kak0 for some k , k0 2K and a unique a 2 AC (see [21, Theorem IX.1.1]). The
Cartan projection � of (7-1) is the projection onto AC composed with an appropriate
identification of AC with RC (namely the restriction of � to AC ). Likewise, the
group G �G admits the Cartan decomposition

G �G D .K �K/.AC�AC/.K �K/;
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with Cartan projection

�� D ���W G �G!RC �RC:

The general properness criterion of Benoist [4] and Kobayashi [31] states, in this
context, that a closed subgroup � of G �G acts properly on G by right and left
multiplication if and only if the set ��.�/ “drifts away from the diagonal at infinity”,
in the sense that for any R> 0 there is a compact subset of RC�RC outside of which
any point of ��.�/ lies at distance >R from the diagonal of RC �RC . Consider a
group �j;�0 as in (1-3), with j injective and discrete. Then the properness criterion
states that �j;�0 acts properly discontinuously on G (ie .j; �/ is admissible in the sense
of Definition 1.7) if and only if

(7-6) for any R � 0, j�.j.//��.�.//j>R for almost all  2 �0

(ie for all  2�0 but finitely many exceptions). In particular, this gives the implications
3 D) 2 and iii D) ii of Figure 9. It also gives 2 D) 5 by the contrapositive: if �

is not cusp-deteriorating, then there exists an element  2 �0 with j./, �./ both
parabolic, hence j.k/D 2 log kCO.1/ and �.k/D 2 log kCO.1/ as k!C1,
violating (7-6). (Note that we needed no geometrical finiteness assumption on j so
far.)

By [22, Theorem 1.3], if �0 is residually finite (for instance finitely generated) and
�
j;�
0 acts properly discontinuously on G , then the set ��.�

j;�
0 / lies on one side only of

the diagonal of RC�RC , up to a finite number of points. This means, up to switching
j and � , that condition (7-6) is in fact equivalent to the stronger condition

(7-7) for any R � 0, �.�.// < �.j.//�R for almost all  2 �0;

and that properness implies �.�.// < �.j.// for all  2 �0 (using (7-4)). Condi-
tion (7-7) is a necessary and sufficient condition for left admissibility in the sense of
Definition 1.7; right admissibility is obtained by switching j and � .

The implication 2 D) 3 of Figure 9 for geometrically finite j (which will be proved
in Sections 7.5 and 7.6 below) can be interpreted as follows:

Theorem 7.1 Let � be a discrete subgroup of G �G such that the set ��.�/ lies
below the diagonal of RC �RC (up to a finite number of points) and such that the
projection of � to the first factor of G�G is geometrically finite. Then � acts properly
discontinuously on G by right and left multiplication if and only if there are constants
C < 1 and D 2R such that

�.2/� C�.1/CD

for all  D .1; 2/ 2 � .
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The point of Theorem 7.1 is that if � acts properly discontinuously on G , then the
set ��.�/ “drifts away from the diagonal at infinity” linearly; in other words, � is
sharp in the sense of [25, Definition 4.2]. In particular, Theorem 7.1 corroborates the
conjecture [25, Conjecture 4.10] that any discrete group acting properly discontinuously
and cocompactly on a reductive homogeneous space should be sharp. Sharpness has
analytic consequences on the discrete spectrum of the (nonelliptic) Laplacian defined by
the natural pseudo-Riemannian structure of signature

�
n; 1
2
n.n� 1/

�
on the quotients

of G ; see [25].

7.4 Properness and the topology of the quotients of G D PO.n; 1/

Let us make two side remarks.

First, for convenience, here is a short proof of the properness criterion (7-6) of Benoist
and Kobayashi in our setting. Note that there is no geometrical finiteness assumption
here.

Proof of the properness criterion of Benoist and Kobayashi Suppose that condition
(7-6) holds. Let C be a compact subset of G and let

R WDmax
g2C

�.g/:

By the subadditivity (7-2) of �, for any g 2 C and  2 �0 ,

�.�./gj./�1/� j�.j.//��.�.//j ��.g/:

By (7-6), the right-hand side is >R for almost all  2�0 , so C\�./C j./�1D∅ for
almost all  2�0 . Thus the action of �j;�0 on G is properly discontinuous. Conversely,
suppose that (7-6) does not hold, ie there exists R > 0 and a sequence .m/m2N of
pairwise distinct elements of �0 such that

j�.j.m/
�1/��.�.m/

�1/j �R

for all m 2 N. By definition (7-1) of �, this means that, for any m 2 N there is an
element km 2K such that d.�.m/�1 �p0; kmj.m/�1 �p0/ � R . Since �.m/ acts
on Hn as an isometry, we obtain

�.�.m/kmj.m/
�1/D d.p0; �.m/kmj.m/

�1
�p0/�R:

Therefore C \ �.m/C j.m/
�1 ¤∅, where C is the compact subset of G consisting

of the elements g with �.g/ � R . This shows that the action of �j;�0 on G is not
properly discontinuous.
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Second, still without any geometrical finiteness assumption, here is a topological
consequence of the inequality C.j; �/ < 1; we refer to [16] for further developments
and applications.

Proposition 7.2 Let �0 be a discrete group and .j; �/ 2 Hom.�0; G/2 a pair of
representations with j injective and discrete. If C.j; �/ < 1, then the group

�
j;�
0 D f.j./; �.// j  2 �0g

acts properly discontinuously on G by right and left multiplication and the quotient is
homeomorphic to a K–bundle over M WD j.�0/nHn , where K Š O.n/ is a maximal
compact subgroup of G D PO.n; 1/.

Proof The group K is the stabilizer in G of some point of Hn . Choose a .j; �/–
equivariant map f W Hn!Hn with Lip.f / < 1. For any p 2Hn ,

Lp WD fg 2G j g �p D f .p/g

is a right and left coset of K . An element g 2G belongs to Lp if and only if p is a
fixed point of g�1 ı f ; since Lip.g�1 ı f /D Lip.f / < 1, such a fixed point exists
and is unique, which shows that g belongs to exactly one set Lp . We denote this p
by ….g/. The fibration …W G!Hn is continuous: if h 2G is close enough to g that
d.….g/; h�1 ıf ı….g//� .1�Lip.f //", then h�1 ıf takes the "–ball centered at
….g/ to itself, hence ….h/ is within " from ….g/. Moreover, …W G ! Hn is, by
construction, .�j;�0 ; j.�0//–equivariant:

�./Lpj./�1 D Lj./�p

for all  2 �0 and p 2Hn . Since the action of j.�0/ on Hn is properly discontinuous,
the action of �j;�0 on G is properly discontinuous. The fibration … descends to a
topological fibration of the quotient of G by �j;�0 , with base M D j.�0/nHn and
fiber K . Note that for constant � , ie �.�0/ D f1g, this fibration naturally identifies
with the orthonormal frame bundle of M.

7.5 Proof of the implications of Figure 9 when � is reductive

We first consider the generic case where � is reductive (Definition 4.9), ie �red D � .
We have already explained the easy implications i D) iii D) iv and iii D) v

(Section 7.2), as well as iii D) ii , which is an immediate consequence of the properness
criterion of Benoist and Kobayashi (Section 7.3). We now explain iv D) iii and
ii D) i .

The implication iv D) iii is an immediate consequence of the following equality:
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Lemma 7.3 Let �0 be a discrete group and .j; �/ 2 Hom.�0; G/2 a pair of represen-
tations. If � is reductive, then C 0.j; �/D C�.j; �/.

Proof By (7-5), we always have C 0.j; �/ � C�.j; �/. Let us prove the converse
inequality. If � is reductive, then by [1, Theorem 4.1; 5, Lemma 2.2.1] there are a finite
subset F of �0 and a constant D � 0 with the following property: for any  2 �0
there is an element f 2 F such that

j�.�.f //��.�.f //j �D

(the element f is proximal — see [5]). Then (7-2) and (7-3) imply

�.�.//� �.�.f //C�.�.f //

� �.�.f //CDC�.�.f //

� C 0.j; �/�.j.f //CDC�.�.f //

� C 0.j; �/�.j.f //CDC�.�.f //

� C 0.j; �/�.j.//C c;

where we set

c WDDCmax
f 2F

�
C 0.j; �/�.j.f //C�.�.f //

�
<1:

Thus C�.j; �/� C 0.j; �/, which completes the proof.

The implication ii D) i (or its contrapositive) for geometrically finite j is a con-
sequence of the existence of a maximally stretched lamination when C.j; �/ � 1

(Theorem 1.3). We first establish the following:

Lemma 7.4 Let �0 be a discrete group and .j; �/ 2 Hom.�0; G/2 a pair of represen-
tations with j geometrically finite. If � is reductive and C.j; �/ � 1, then there is a
sequence .k/k2N of pairwise distinct elements of �0 such that

�.�.k//�C.j; �/�.j.k//

is uniformly bounded from below; in particular (using Lemma 7.3 and (7-5)),

(7-8) C 0.j; �/D C�.j; �/D C.j; �/:

The equality C 0.j; �/D C.j; �/ is Corollary 1.12, which has already been proved in
Section 5.4 when the stretch locus E.j; �/ is nonempty. Here we do not make any
assumption on E.j; �/.
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Proof of Lemma 7.4 If C.j; �/D 1 and � is not cusp-deteriorating, then there exists
 2 �0 with j./ and �./ both parabolic. Since �.�.k// and �.j.k// are both
equal to 2 log.k/CO.1/ as k!C1 (Lemma 2.6), the sequence�

�.�.k//�C.j; �/�.j.k//
�
k2N

is uniformly bounded from below.

If C.j; �/ > 1 or if C.j; �/D 1 and � is cusp-deteriorating, then by Theorem 1.3 there
is a .j; �/–equivariant map f W Hn!Hn with minimal Lipschitz constant C.j; �/
that stretches maximally some geodesic line ` of Hn whose image in j.�0/nHn lies
in a compact part of the convex core. Consider a sequence .k/k2N of pairwise distinct
elements of �0 such that d.j.k/�p0; `/ is uniformly bounded by some constant R>0.
For k 2N, let yk be the closest-point projection to ` of j.k/ �p0 . If p0 2Hn is the
basepoint defining � in (7-1) and if we set � WD d.p0; f .y0//C d.p0; f .p0//, then
the triangle inequality implies

�.�.k//D d.p0; �.k/ �p0/

� d.f .y0/; �.k/ �f .p0//��

D d
�
f .y0/; f .j.k/ �p0/

�
��

� d.f .y0/; f .yk//� d.f .yk/; f .j.k/ �p0//��

� C.j; �/ d.y0; yk/�C.j; �/R��

� C.j; �/
�
d.p0; j.k/ �p0/� 2R

�
�C.j; �/R��

D C.j; �/�.j.k//� 3C.j; �/R��:

Thus the sequence
�
�.�.k// � C.j; �/�.j.k//

�
k2N is uniformly bounded from

below.

We can now prove the implication ii D) i .

Corollary 7.5 Let �0 be a discrete group and .j; �/ 2 Hom.�0; G/2 a pair of repre-
sentations with j geometrically finite. If � is reductive and .j; �/ left admissible, then
C.j; �/ < 1.

Proof Assume that � is reductive and .j; �/ left admissible. By [22, Theorem 1.3],
condition (7-7) is satisfied, hence C�.j; �/ � 1. Suppose by contradiction that
C.j; �/� 1. By Lemma 7.4, we have C�.j; �/D C.j; �/D 1 and there is a sequence
.k/ 2 .�0/

N of pairwise distinct elements with j�.�.k// � �.j.k//j uniformly
bounded. This contradicts the properness criterion (7-6) of Benoist and Kobayashi.
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7.6 Proof of the implications of Figure 9 when � is nonreductive

We now prove the implications of Figure 9 for geometrically finite j when � is
nonreductive (Definition 4.9). We have already explained the easy implications 1 D)

3 D) 4 D) 5 (Section 7.2) and 3 D) 2 D) 5 (Section 7.3), as well as 1 D) i

and i D) 1 under the cusp-deterioration assumption 5 (Section 7.2). Moreover,
in Section 7.5 we have established the implications i () ii () iii () iv D) v

for the “reductive part” �red of � . Therefore, we only need to explain the “horizontal”
implications 2 D) ii , 3 D) iii , 4 D) iv and 5 D) v

Let � 2 Hom.�0; G/ be nonreductive. The group �.�0/ has a unique fixed point �
in the boundary at infinity @1Hn of Hn . Let P be the stabilizer of � in G ; it is
a proper parabolic subgroup of G . Choose a Levi decomposition P D .MA/ËN,
where A Š R�

C
is a Cartan subgroup of G (ie a one-parameter subgroup of purely

translational, commuting hyperbolic elements), M Š O.n� 1/ is a compact subgroup
of G such that MA is the centralizer of A in G , and N Š Rn�1 is the unipotent
radical of P . For instance, for n D 2 (resp. n D 3), the identity component of the
group G identifies with PSL2.R/ (resp. with PSL2.C/), and we can take A to be the
projectivized real diagonal matrices, N the projectivized upper triangular unipotent
matrices, and the identity component of M to be the projectivized diagonal matrices
with entries of modulus 1. We set �red WD � ı � , where � W P !MA is the natural
projection.

The implications 2 D) ii , 3 D) iii , 4 D) iv and 5 D) v of Figure 9 are
consequences of the following easy observation:

Lemma 7.6 After possibly changing the basepoint p0 2Hn of (7-1) (which modifies
� only by a bounded additive amount, by the triangle inequality), we have

�.g/D �.�.g//D �.�.g//� �.g/

for all g 2 P .

Proof Take the basepoint p0 2Hn on the geodesic line A preserved by MA, which
is pointwise fixed by M and on which the elements of A act by translation. Then
�.�.g//D �.�.g// for all g 2 P . The projection onto A along horospheres centered
at � is .P; �.P //–equivariant, and restricts to an isometry on any line ending at � ;
therefore, if g is hyperbolic, preserving such a line, then �.g/ translates along A
by �.g/ units of length, yielding �.g/D �.�.g//. If g is parabolic or elliptic, then
�.g/D 0 and g preserves each horosphere centered at � , hence �.�.g//D 0.

Proof of 3 D) iii and 4 D) iv By Lemma 7.6, we have C 0.j; �red/ D C 0.j; �/

and C�.j; �red/� C�.j; �/, which immediately yields the implications.
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Proof of 2 D) ii Assume that .j; �/ is left admissible. By [22], the pair .j; �/ is
not right admissible and the stronger form (7-7) of the properness criterion of Benoist
and Kobayashi holds. Since � ı� � � by Lemma 7.6, the condition (7-7) also holds
for �red D � ı � , hence .j; �red/ is left admissible.

Proof of 5 D) v Assume that � is cusp-deteriorating. For any  2 �0 with j./
parabolic, �red./ is not hyperbolic, otherwise �./ would be hyperbolic too by
Lemma 7.6, and it is not parabolic since �red takes values in the group MA, which
has no parabolic element.

7.7 Deformation of properly discontinuous actions

Theorems 1.9 and 1.11 follow from Theorem 1.8 (properness criterion) and Proposition
1.5 (continuity of .j; �/ 7! C.j; �/ for convex cocompact j ), together with a classical
cohomological argument for cocompactness.

Proof of Theorems 1.9 and 1.11 Let � be a finitely generated discrete subgroup of
G �G acting properly discontinuously on G by right and left multiplication. By the
Selberg lemma [47, Lemma 8], there is a finite-index subgroup � 0 of � that is torsion-
free. As in Section 1.4, let us write �0 (resp. � 00 ) for the abstract group underlying �
(resp. � 0 ), and let j , � 2 Hom.�0; G/ be the two projections of � �G �G onto G ,
so that � D �j;�0 as in (1-3). By [33; 46] (case nD 2) and [22] (general case), up to
switching the two factors of G �G , the restriction j j� 00 is injective and discrete and
the pair .j j� 00 ; �j� 00/ 2 Hom.� 00; G/

2 is left admissible (Definition 1.7). Therefore j
has finite kernel and discrete image and .j; �/ 2 Hom.�0; G/2 is left admissible.

Assume that j is convex cocompact. Then C.j; �/<1 by Theorem 1.8. By Proposition
1.5 and the fact that being convex cocompact is an open condition (see [8, Proposition
4.1] or Proposition B.1), there is a neighborhood U � Hom.�;G �G/ of the natural
inclusion such that for any ' 2 U , the group '.�/ is of the form �

j 0;�0

0 for some
.j 0; �0/ 2 Hom.�0; G/2 with j 0 convex cocompact and C.j 0; �0/ < 1. In particular,
'.�/ is discrete in G �G and acts properly discontinuously on G by Theorem 1.8.

We claim that the action of � D �j;�0 on G is cocompact if and only if the discrete
group j.�0/ is cocompact in G . Indeed, it is sufficient to check this on the torsion-free
finite-index subgroup � 0 ; we use the fact that when a torsion-free discrete subgroup of
G �G acts properly discontinuously on G , it acts cocompactly on G if and only if
its cohomological dimension is equal to the dimension of the Riemannian symmetric
space of G , namely n in our case (see [29, Corollary 5.5]). Assume that the action of
� on G is cocompact, and let U �Hom.�;G�G/ be the neighborhood of the natural
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inclusion from the previous paragraph. For any ' 2 U , the group '.�/ is of the form
�
j 0;�0

0 for some .j 0; �0/ 2Hom.�0; G/2 with j 0 convex cocompact. The group j 0.�0/
is still cocompact in G , hence the action of '.�/ on G is cocompact by the above
argument. (Alternatively, the cocompactness of the action of '.�/D �j

0;�0

0 on G also
follows from Proposition 7.2 and from the cocompactness of j 0.�0/.)

Finally, assume that j is convex cocompact and that the action of � D �j;�0 on G is
free (but not necessarily cocompact). The fact that the action is free means that for any
 2�0Xf1g, the elements j./ and �./ are not conjugate in G . Since the action of �
on G is properly discontinuous, j./ and �./ can never be conjugate in G when  is
of infinite order. Therefore freeness is seen exclusively on torsion elements. We claim
that �0 has only finitely many conjugacy classes of torsion elements. Indeed, j has
finite kernel and j.�0/ has only finitely many conjugacy classes of torsion elements:
this is a general property of convex cocompact subgroups of G (see [7]). For any
nontrivial torsion element  2 �0 , there is a neighborhood U � Hom.�;G �G/ of
the natural inclusion such that for any ' 2 U with '.�/D �j

0;�0

0 , the elements j 0./
and �0./ are not conjugate in G ; then j 0.� / and �0.� / are also not conjugate for
any �0–conjugate � of  .

The same argument, replacing Proposition 1.5 (continuity of .j; �/ 7! C.j; �/ for
convex cocompact j ) by Proposition 6.1(1) (openness of the condition C.j; �/ < 1
for geometrically finite j and cusp-deteriorating � in dimension n � 3), yields the
following:

Theorem 7.7 For G D PO.2; 1/ or PO.3; 1/ (ie PSL2.R/ or PSL2.C/ up to index
two), let � be a discrete subgroup of G �G acting properly discontinuously on G ,
with a geometrically finite quotient (Definition 1.10). There is a neighborhood U �
Homdet.�;G �G/ of the natural inclusion such that, for any ' 2 U , the group '.�/ is
discrete in G �G and acts properly discontinuously on G , with a geometrically finite
quotient; moreover, this quotient is compact (resp. convex cocompact, resp. a manifold)
if the initial quotient of G by � was.

The set Homdet.�;G �G/ is defined as follows. We have seen that the group � is of
the form �

j;�
0 or ��;j0 , where �0 is a discrete group and j , � 2 Hom.�0; G/ are two

representations with j geometrically finite and .j; �/ left admissible in the sense of
Definition 1.7. By Lemma 2.7, the representation � is cusp-deteriorating with respect
to j in the sense of Definition 1.1. We define Homdet.�;G�G/ to be the set of group
homomorphisms from � to G �G whose restriction to � 0 is of the form .j 0; �0/ (if
� 0 Š �

j;�
0 ) or .�0; j 0/ (if � 0 Š ��;j0 ) with j 0 geometrically finite, of the cusp type

of j , and �0 cusp-deteriorating with respect to j .

Geometry & Topology, Volume 21 (2017)



Maximally stretched laminations on geometrically finite hyperbolic manifolds 785

It is necessary to restrict to Homdet.�;G � G/ in Theorem 7.7, for the following
reasons:

� As mentioned in the introduction, for a given j with cusps, the constant represen-
tation � (ie �.�0/Df1g) can have small, non-cusp-deteriorating deformations �0 ,
for which .j; �0/ is nonadmissible.

� If we allow for small deformations j 0 of j with a different cusp type than j
(fewer cusps), then the pair .j; �/ can have small, nonadmissible deformations
.j 0; �0/ with �0 cusp-deteriorating with respect to j 0 ; this shows that we must
fix the cusp type.

Note that properly discontinuous actions on G D PO.3; 1/ of finitely generated groups
� D �

j;�
0 with j geometrically infinite do not deform into properly discontinuous

actions in general, for the group j.�0/ (eg the fiber group of a hyperbolic surface bundle
over the circle) may have small deformations j 0.�0/ that are not even discrete (eg
small perturbations of a nearby cusp group in the sense of [39]). It would be interesting
to know whether in this case one can define an analogue of Homdet.�;G�G/ in which
admissibility becomes again an open condition; see also Appendix C.2.

7.8 Interpretation of Theorem 1.9 in terms of .G;X/–structures

We can translate Theorem 1.9 in terms of geometric structures, in the sense of Ehresmann
and Thurston, as follows. We set XDGDPO.n; 1/ and G DG�G , where G�G acts
on G by right and left multiplication. Let N be a manifold with universal covering zN.
Recall that a .G ;X/–structure on N is a (maximal) atlas of charts on N with values
in X such that the transition maps are given by elements of G . Such a structure is
equivalent to a pair .h;D/, where hW �1.N /!G is a group homomorphism, called
the holonomy, and DW zN ! X an h–equivariant local diffeomorphism, called the
developing map; the pair .h;D/ is unique modulo the natural action of G by

g � .h;D/D .gh. � /g�1;gD/:

A .G ;X/–structure on N is said to be complete if the developing map is a covering; this
is equivalent to a notion of geodesic completeness for the natural pseudo-Riemannian
structure induced by the Killing form of the Lie algebra of G (see [20]). For n > 2,
the fundamental group of G0 D PO.n; 1/0 is finite, hence completeness is equivalent
to the fact that the .G ;X/–structure identifies N with the quotient of X by some
discrete subgroup � of G acting properly discontinuously and freely on X , up to a
finite covering. For nD 2, this characterization of completeness still holds for compact
manifolds N [33, Theorem 7.2]. Therefore, Theorem 1.9 can be restated as follows:
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Corollary 7.8 Let X DGD PO.n; 1/ and G DG�G , acting on X by right and left
multiplication. The set of holonomies of complete .G ;X/–structures on any compact
manifold N is open in Hom.�1.N /;G /.

We note that, for a compact manifold N, the so-called Ehresmann–Thurston principle
asserts that the set of holonomies of all (not necessarily complete) .G ;X/–structures
on N is open in Hom.�1.N /;G / (see [50]). For nD 2, Klingler [28] proved that all
.G ;X/–structures on N are complete, which implies Corollary 7.8. For n > 2, it is
not known whether all .G ;X/–structures on N are complete; it has been conjectured
to be true at least for n D 3 [18]. The question is nontrivial since the Hopf–Rinow
theorem does not hold for non-Riemannian manifolds.

8 A generalization of the Thurston metric on Teichmüller
space

In this section we prove Proposition 1.13, which generalizes the Thurston metric on
Teichmüller space to higher dimension, in a geometrically finite setting. (Corollary 1.12
has already been proved as part of Lemma 7.4; see also Section 5.4.)

8.1 An asymmetric metric on the space of geometrically finite structures

Let M be a hyperbolic n–manifold and T .M/ the space of conjugacy classes of
geometrically finite representations of �0 WD �1.M/ into G D PO.n; 1/ with the
homeomorphism type and cusp type of M. In this section we assume that M contains
more than one essential closed curve. We define a function dThW T .M/� T .M/!R
as in (1-6): for any j; � 2 T .M/,

dTh.j; �/ WD log
�
C.j; �/

ı.�/

ı.j /

�
;

where ı.j / is the critical exponent of j . Recall that, by definition,

(8-1) ı.j / WD lim sup
R!C1

1

R
log #.j.�0/ �p\Bp.R//;

where p is any point of Hn and Bp.R/ denotes the ball of radius R centered at p
in Hn . We have ı.j / 2 .0; n� 1� [3; 48] and the lim sup is in fact a limit [43; 44;
48]. The Poincaré series

P
2�0

e�s d.p;j./�p/ converges for s > ı.j / and diverges
for s < ı.j /. Equivalently, ı.j / is the Hausdorff dimension of the limit set of j.�0/
[43; 49].
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If M is a surface of finite volume, then T .M/ is the Teichmüller space of M, we
have ı � 1 on T .M/, and dTh is the Thurston metric on Teichmüller space, which
was introduced in [51] (see Section 1.5). This metric is asymmetric: in general,
dTh.j; �/¤ dTh.�; j /; see [51, Section 2].

Lemma 8.1 The function dThW T .M/ � T .M/ ! R is continuous as soon as M
is convex cocompact or all the cusps have rank � n� 2. In particular, it is always
continuous if n� 3.

Proof If M is convex cocompact or all the cusps have rank � n�2, then the function
.j; �/ 7! C.j; �/ is continuous on T .M/�T .M/ by Proposition 1.5, Lemma 2.7 and
Proposition 6.1(3). Moreover, convergence in T .M/ implies geometric convergence
(see Proposition B.3), and so ı is continuous on T .M/ by [40, Theorem 7.3].

The following remark justifies the introduction of the correcting factor ı.�/=ı.j / in
the definition (1-6) of dTh .

Remark 8.2 If M has infinite volume, then logC.j; �/ can take negative values, and
logC.j; �/D 0 does not imply j D � .

Proof The following example is taken from [51, proof of Lemma 3.4]; see also [41].
Let M be a pair of pants, ie a hyperbolic surface of genus 0 with three funnels. Let ˛
be an infinite embedded geodesic of M whose two ends go out to infinity in the same
funnel, and let ˛0 be another nearby geodesic (see Figure 10).

Cutting out the strip between ˛ and ˛0 and gluing back so that the endpoints of the
common perpendicular to ˛ and ˛0 are identified yields a new hyperbolic surface M 0

such that two boundary components of the convex core of M 0 have the same lengths
as in M, and the third one is shorter. There is a 1–Lipschitz map between M and M 0 ,
and the corresponding holonomies j ¤ � satisfy logC.j; �/D 0. In fact, it is easy
to see that after repeating the process with all three funnels we obtain an element
�0 2 T .M/ with logC.j; �0/ < 0.

With the correcting factor ı.�/=ı.j /, the following holds:

Lemma 8.3 For any j , � , j1 , j2 , j3 2 T .M/,

(1) dTh.j; �/� 0,

(2) dTh.j1; j3/� dTh.j1; j2/C dTh.j2; j3/.
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˛
˛0

Figure 10: The strip between the geodesics ˛ and ˛0 can be collapsed to
create a new hyperbolic metric with shorter curves. In general, the closed
geodesic at the bottom (met by ˛ and ˛0 ) will not collapse to a closed
geodesic of the new metric.

Proof Let f W Hn! Hn be a .j; �/–equivariant Lipschitz map. For any p 2 Hn ,
 2 �0 and R > 0, if j./ �p 2 Bp.R=Lip.f // then

�./ �f .p/D f .j./ �p/ 2 Bf .p/.R/;

hence ı.�/� ı.j /=Lip.f / by definition (8-1) of ı . Then (1) follows by letting Lip.f /
tend to C.j; �/ and taking the logarithm. The triangle inequality (2) follows from the
general inequality Lip.f1 ıf2/� Lip.f1/Lip.f2/.

As in Section 1.5, let T .M/Zs be the subset of T .M/ consisting of elements j such
that the Zariski-closure of j.�0/ in G is simple (eg equal to G ). In order to prove
Proposition 1.13, it remains to prove the following:

Proposition 8.4 If j; � 2 T .M/Zs are distinct, then dTh.j; �/ > 0.

Note that Proposition 8.4 is not true when j or � does not belong to T .M/Zs : for
instance, if j 2T .M/Zs takes values in O.2; 1/�GDPO.n; 1/, then we may multiply
it by a homomorphism with values in the centralizer O.n�2/ of O.2; 1/ in G without
changing the set f�.j.// j 2�0g; this yields a homomorphism � in T .M/XT .M/Zs

with dTh.j; �/D dTh.�; j /D 0.
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8.2 Proof of Proposition 8.4

In our setting, the rigidity of the marked length spectrum f�.j.// j  2 �0g is well
known; see [26, Theorem 2]. We shall use a slightly stronger property, namely the
rigidity of the projectivized marked length spectrum.

Lemma 8.5 Let j; � 2 T .M/Zs and C > 0. If �.�.//D C�.j.// for all  2 �0 ,
then j D � in T .M/Zs .

Proof We first observe that any connected noncompact simple subgroup H 0 of
GDPO.n; 1/ is conjugate to some PO.k; 1/0 embedded in the standard way, for k� 2.
Indeed, any H 0–orbit in Hn is a totally geodesic subspace of Hn [21, Chapter IV,
Theorem 7.2], hence is a copy of Hk for some k � 2, and there is only one way
to embed Hk into Hn up to isometry (this is clear in the hyperboloid model). In
particular, any finite normal subgroup of H 0 is trivial.

For i 2 f1; 2g, let pri W G �G! G be the i th projection. Let H1 (resp. H2 ) be the
identity component (for the real topology) of the Zariski closure of j.�0/ (resp. �.�0/)
in G , and let H be the identity component of the Zariski closure of .j; �/.�0/ in G�G .
Since H1 is a connected noncompact simple subgroup of G , the kernel of pr2jH is
either f1g or H1 . It cannot be H1 , otherwise H DH1 �H2 would be semisimple of
real rank 2, and so by [5] the cone spanned by f.�.�.//; �.j./// j  2 �0g would
have nonempty interior, contradicting the fact that �.�.//DC �.j.// for all  2�0 .
Therefore pr2jH is injective, and similarly pr1jH is injective. Thus there is a .j; �/–
equivariant isomorphism H1!H2 . By the above observation, this isomorphism is
given by the conjugation by some element g 2G .

Let � 00 be the finite-index normal subgroup of �0 consisting of the elements  such
that j./ 2 H1 . We have �./ D gj./g�1 for all  2 � 00 . Let � 2 �0 . For any
 2 � 00 we have ���1 2 � 00 , hence �.���1/ D gj.���1/g�1 . In particular,
j.�/�1g�1�.�/g fixes every attracting fixed point in @1Hn of a hyperbolic element
of j.� 00/, and so j.�/�1g�1�.�/g D 1, ie �.�/D gj.�/g�1 .

Proof of Proposition 8.4 Assume that dTh.j; �/ D 0 for some j ¤ � in T .M/Zs ,
and let C WD C.j; �/ D ı.j /=ı.�/. By Lemma 8.5, there exists 0 2 �0 such that
�.�.0// < C�.j.0//. Let f W Hn!Hn be a .j; �/–equivariant, C –Lipschitz map
(Lemma 4.10). The translation axis A�Hn of j.0/ cannot be C –stretched by f
since �.�.0// < C�.j.0//. Therefore we can find p , q 2 A and � > 0 such that
d.f .p/; f .q//�C d.p; q/� .2CC/�. Let Bp (resp. Bq ) be the ball of diameter �
centered at p (resp. q ), so that d.f .p0/; f .q0//�C d.p0; q0/�� for all p0 2Bp and
q0 2 Bq . We can assume moreover that p and q are close enough in the sense that no
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segment Œp0; q0� with p0 2 Bp and q0 2 Bq intersects any ball j./ �Bp or j./ �Bq
with  2 �0 X f1g.

Let zU be the open set of all vectors .x; Ev/ in the unit tangent bundle T 1Hn such that
x 2 Bp and expx.RCEv/ intersects Bq . Let X WD j.�0/nT 1Hn be the unit tangent
bundle of the quotient manifold j.�0/nHn , and U �X the projection of zU . For  2�0
with j./ hyperbolic, let N be the number of times that the axis of j./ traverses U
in X (see Figure 11); the triangle inequality yields

(8-2) �.�.//� C�.j.//�N�:

Let � be the Bowen–Margulis–Sullivan probability measure on X (see [45, Sec-
tion 1.C]). We have �.U/ > 0 since U intersects the projection of the axis of j.0/;
therefore we can find a continuous function  W X ! Œ0; 1� with compact support
contained in U such that k k1D 1 and " WD

R
X  d� > 0. For any  2 �0 with j./

hyperbolic and primitive (ie not a power of any other j. 0/), we denote by � the
uniform probability measure on X supported on the axis of j./. Since the support
of  is contained in Bp ,

(8-3)
Z
X

 d� � k k1 �N
diam.Bp/
�.j.//

D�
N

�.j.//
:

For R>0, let �R;j0 be the set of elements  2�0 such that j./ is primitive hyperbolic
and �.j.//�R . By [45, Theorem 5.1.1] (see also [34; 15] for special cases),

(8-4) ı.j /Re�ı.j /R
X

2�
R;j
0

Z
X

 d� !
Z
X

 d� D " as R!C1:

Moreover, this convergence is still true if we replace  with the constant function
equal to 1 on X [45, Corollary 5.3], yielding

(8-5) #.�j;R0 /�
eı.j /R

ı.j /R
as R!C1:

p

f .p/

Bp q

f .q/

Bq

f

N copies of the axis Aj./

Figure 11: Illustration of the proof of Proposition 8.4 when N D 2
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Combined, formulas (8-3), (8-4) and (8-5) imply that the average value of N=�.j.//
for  ranging over �R;j0 is at least "=.2�/ for all large enough R . Since

N

�.j.//
�

1

d.p; q/��
�

1

2�

for all  2 �R;j0 , this classically implies that a proportion � 1
2
" of elements  2 �R;j0

satisfy N=�.j.//� "=.4�/, which by (8-2) entails

�.�.//� C�.j.//�N��
�
C �

"

4

�
�.j.//�

�
C �

"

4

�
R:

Thus
#.�.C�"=4/R;�0 /�

"

2
#.�R;j0 /

for all large enough R . Then (8-5) yields
�
C � 1

4
"
�
ı.�/� ı.j /, so Cı.�/=ı.j /> 1.

9 The stretch locus in dimension 2

We now focus on results specific to dimension n D 2. We first consider the case
C.j; �/ > 1, for which we recover and extend two aspects of the classical theory [51]
of the Thurston metric on Teichmüller space. The first aspect is the chain recurrence of
the lamination E.j; �/, which we prove in Section 9.2. Building on chain recurrence,
the second aspect is the upper semicontinuity of E.j; �/ for the Hausdorff topology,
namely

E.j; �/� lim sup
k!C1

E.jk; �k/

for any .jk; �k/! .j; �/ with � and �k reductive, which we prove in Section 9.3.

We also consider the case C.j; �/ < 1 and provide some evidence for Conjecture 1.4
(describing the stretch locus E.j; �/) in Section 9.4.

In fact, we believe that chain recurrence (suitably defined) should probably also hold
in higher dimension for C.j; �/ > 1, but we shall use the classification of geodesic
laminations on surfaces to prove it here. Semicontinuity should also hold in higher
dimension, not only for C.j; �/ > 1 but also in some form for C.j; �/ � 1; this is
natural to expect in view of Propositions 1.5 and 6.1(3) (if the minimal Lipschitz
constant varies continuously, so should the stretch locus). However, our proof hinges
on chain recurrence and on the fact that f multiplies arc length along the leaves of the
stretch locus; this property does not obviously have a counterpart when C.j; �/ < 1
(the stretch locus being no longer a lamination in general), and is at any rate harder to
prove (the Kirszbraun–Valentine theorem no longer applies as in Lemma 5.2).
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9.1 Chain recurrence in the classical setting

We first recall the notion of chain recurrence and, for readers interested in the more
technical aspects of [51], we make the link between the “maximal, ratio-maximizing,
chain recurrent lamination” �.j; �/ introduced by Thurston there and the stretch locus
E.j; �/ introduced in the present paper.

On a hyperbolic surface S , a geodesic lamination is called recurrent if every half-
leaf returns arbitrarily often, arbitrarily close to its starting point. In [51], Thurston
introduced the weaker notion of chain recurrence.

Definition 9.1 A geodesic lamination PL on S is called chain recurrent if, for every
Pp 2 PL and " > 0, there exists a simple closed geodesic G passing within " of Pp and

staying "–close to PL in the C1 sense.

By “"–close in the C1 sense” we mean that any unit-length segment of G lies "–close
to a segment of PL (for the Hausdorff metric). In particular, any recurrent lamination
is chain recurrent. The following is well known:

Fact 9.2 Any geodesic lamination on S consists of finitely many disjoint recurrent
components, together with finitely many isolated leaves spiraling from one recurrent
component to another (possibly the same). The total number of recurrent components
and of isolated leaves can be bounded by an integer depending only on the topology
of S .

By Fact 9.2, chain recurrence implies that for any " > 0, any Pp 2 PL and any direction
of travel along PL from Pp , one can return to Pp (with the same direction of travel) by
following leaves of PL and occasionally jumping to nearby leaves within distance ".
(For example, if PL has an isolated leaf spiraling to a simple closed curve and no leaf
spiraling out, then PL is not chain recurrent.) By Fact 9.2, the number of necessary
"–jumps can be bounded by a number m depending only on the topology of the surface,
and the distances in-between the jumps can be taken arbitrarily large. In the sequel,
we shall call a sequence of leaf segments, separated by a number � m of "–jumps,
an "–quasileaf of PL . The closing lemma (Lemma A.1) implies that conversely any
"–quasileaf can be "–approximated, in the C1 sense, by a simple closed geodesic.

We now briefly discuss the relation to [51] (this will not be needed from Lemma 9.3
onwards). Let S be a hyperbolic surface of finite volume. In [51], Thurston associ-
ated to any pair .j; �/ of distinct elements of the Teichmüller space T .S/ of S (ie
type-preserving, geometrically finite representations of �0 WD �1.S/ into PO.2; 1/Š
PGL2.R/, of finite covolume, up to conjugation) a subset �.j; �/ of S , defined as
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the union of all chain recurrent laminations PL that are ratio-maximizing, in the sense
that there exists a locally C.j; �/–Lipschitz map from a neighborhood of PL in .S; j /
to a neighborhood of PL in .S; �/, in the correct homotopy class, that multiplies arc
length by C.j; �/ on each leaf of PL . He proved that �.j; �/ is a lamination [51,
Theorem 8.2], necessarily chain recurrent, and that this lamination is C.j; �/–stretched
by some C.j; �/–Lipschitz homeomorphism .S; j /! .S; �/, in the correct homotopy
class, whose local Lipschitz constant is < C.j; �/ everywhere outside of �.j; �/.
Indeed, this last property follows from the existence of a concatenation of “stretch
paths” going from j to � in T .S/ [51, Theorem 8.5] and from the definition of
stretch paths in terms of explicit homeomorphisms of minimal Lipschitz constant
[51, Section 4]. Therefore, the preimage z�.j; �/�H2 of Thurston’s chain recurrent
lamination �.j; �/� S ' j.�0/nH2 contains the stretch locus E.j; �/ that we have
introduced in this paper. In fact, this inclusion is an equality, as the following variant
of Lemma 5.10 shows (with �0 D �1.S/ and j; � 2 T .S/).

Lemma 9.3 (in dimension n D 2) Let �0 be a torsion-free discrete group and
.j; �/2Hom.�0; G/2 a pair of representations with j geometrically finite. Let z��H2

be the preimage of some chain recurrent lamination on S . If z� is maximally stretched
by some .j; �/–equivariant Lipschitz map f W H2!H2 , then z� is contained in the
stretch locus E.j; �/.

Proof We proceed as in the proof of Lemma 5.10, but using closed quasileaves
instead of recurrent leaves. Set C WD C.j; �/. Consider a geodesic segment Œx; y�
contained in �. By chain recurrence and by the closing lemma (Lemma A.1), for
any " > 0 there is a simple closed geodesic G on .S; j / that passes within " of x
and is "–close to an "–quasileaf L of �. We may assume that L consists of m or
fewer leaf segments, of which one contains Œx; y�. Let  2 �0 correspond to the closed
geodesic G . Then �.j.//D length.G/� length.L/Cm" and, since each leaf segment
of L is C –stretched by f , we see, using the closing lemma again, that

�.�.//� C � .length.L/� 3m"/� C �
�
�.j.//� 4m"

�
:

By considering p , q , p0 , q02H2 such that p , q project to x , y 2L, and p0 , q0 project
to points within " from x , y in G , we obtain, exactly as in the proof of Lemma 5.10,
that, for any f 0 2 Fj;� ,

d.f 0.p/; f 0.q//� C � d.p; q/� .4mC 4/C":

This holds for any " > 0, hence d.f 0.p/; f 0.q// D Cd.p; q/ and p belongs to the
stretch locus of f 0 .
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9.2 Chain recurrence for C.j; �/ > 1 in general

We now prove that the stretch locus E.j; �/ is chain recurrent in a much wider setting
than [51], allowing j.�0/ to have infinite covolume in G and � to be any representation
of �0 in G with C.j; �/ > 1 (not necessarily injective or discrete).

Proposition 9.4 (in dimension nD 2) Let �0 be a torsion-free discrete group and
.j; �/ 2 Hom.�0; G/2 a pair of representations with j geometrically finite and �

reductive (Definition 4.9). If C.j; �/ > 1, then the image in S WD j.�0/nH2 of the
stretch locus E.j; �/ is a (nonempty) chain recurrent lamination.

Proof Let f0 2 Fj;� be optimal (Definition 4.12), with stretch locus E WDE.j; �/.
By Theorem 1.3 and Lemma 4.10, we know that E is a nonempty, j.�0/–invariant
geodesic lamination. Suppose by contradiction that its image PE in S D j.�0/nH2 is
not chain recurrent. We shall “improve” f0 by decreasing its stretch locus, which will
be absurd.

Given Pp 2 PE and a direction (“forward”) of travel from Pp , define the forward chain
closure PEp of Pp in PE as the subset of PE that can be reached from Pp , starting forward,
by following "–quasileaves of PE for positive time for any " > 0. Clearly, PEp is the
union of a closed sublamination of PE and of an open half-leaf issued from Pp . If PEp
contains Pp for all Pp 2 PE and choices of forward direction, then for any " > 0 we
can find a closed "–quasileaf of PE through Pp . Since PE is not chain recurrent by
assumption, this is not the case; we can therefore choose a point Pp 2 PE and a direction
of travel such that PEp does not contain Pp .

Then PEp is orientable: otherwise for any " > 0 we could find an "–quasileaf of PE
through Pp by following a quasileaf from Pp , “jumping” onto another (quasi)leaf with
the reverse orientation, and getting back to Pp , which would contradict the fact that PEp
does not contain Pp .

Let P‡ be the lamination of S obtained by removing from PEp the (isolated) half-leaf
issued from Pp . Then P‡ inherits an orientation from the “forward” orientation of PEp .
No leaf of PE X P‡ can be outgoing from P‡ , otherwise it would automatically belong
to P‡ . But at least one leaf of PE X P‡ is incoming towards P‡ : namely, the leaf P̀

containing Pp .

The geodesic lamination P‡ fills some subsurface † � S with geodesic boundary
(possibly reduced to a single closed geodesic). Let PU � S be a uniform neighborhood
of †, with the same topological type as †, such that PU\ PE is the union of the oriented
lamination P‡ and of some (at least one) incoming half-leaves. Up to shifting the
point Pp along its leaf P̀, we may assume that Pp 2 @ PU .
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p

‡

@U

`

q
q0
ˆ�".q

0/

Figure 12: Flowing back by ˆ�" brings q0 closer to p .

Let U and ‡ be the (full) preimages of PU and P‡ in H2 . To reach a contradiction, we
shall modify f0 on U . The modification on ‡ itself is simply to replace f j‡ with
f" WD f0 ıˆ�" , where .ˆt /t2R is the flow on the oriented lamination ‡ and " > 0 is
small enough. We make the following two claims, for C WD C.j; �/:

(i) The map f" is still C –Lipschitz on ‡ for all small enough " > 0.

(ii) The map f" extends to a C –Lipschitz, .j; �/–equivariant map f on U that
agrees with f0 on @U , for all small enough " > 0.

This will prove that the leaf ` of E containing a lift p of Pp did not have to be
maximally stretched after all, a contradiction: indeed, consider q 2 ` far enough from
p , at distance < 1

4
" from some point q0 2‡ , such that ˆ�".q0/ is still within 1

4
" from

the point of ` at distance " from q (see Figure 12). Then d.p;ˆ�".q0//�d.p; q/� 12",
which implies

d.f".p/; f".q//� d.f".p/; f".q
0//C d.f".q

0/; f".q//

� C
�
d.p;ˆ�".q

0//C 1
4
"
�

� C
�
d.p; q/� 1

4
"
�
< C d.p; q/:

Proof of (ii) assuming (i) By Remark 2.8(2), it is sufficient to consider one connected
component A of U X‡ in H2 and, assuming .i/, to prove that for any small enough
" > 0 the map f" extends to a C –Lipschitz, .j; �/–equivariant map f on A, that
agrees with f0 on @A. Fix such a connected component A; its image in S is an
annulus. By Theorem 1.6, it is sufficient to prove that d.f".x/; f0.y//�Cd.x; y/ for
any geodesic segment Œx; y� across A with x 2‡ and y 2 @A. Note that the length of
such segments is uniformly bounded from below, by d.‡; @A/.
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Eı
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‡

@U

Figure 13: A segment Œx; y� across the lifted annulus A

For any 0 < ı < d.‡; @A/, let Eı be the ı–neighborhood of the lamination E in the
lifted annulus A (see Figure 13). By Lemma 2.9, since f0 is optimal,

(9-1) sup
x2AXEı

Lipx.f0/ < C:

If no leaf of E entering ‡ meets A, then all geodesic segments Œx; y� as above spend
a definite amount of length (at least d. P‡; @A/� ı ) in AXEı , and so (9-1) implies

d.f0.x/; f0.y//� C.d.x; y/� "0/

for some "0 > 0 independent of Œx; y�. Therefore,

d.f".x/; f0.y//� d.f".x/; f0.x//C d.f0.x/; f0.y//� C d.x; y/

for all 0 < " < "0 . Now suppose that there are leaves of E entering ‡ that meet A.
The collection of such leaves is finite modulo the stabilizer of A. There exists ı > 0
such that if Œx; y� is contained in the ı–neighborhood of some leaf `0 of E entering A,
then the function t 7! d.ˆ�t .x/; y/ is decreasing for t 2 Œ0; 1�, because the direction
of the flow ˆ at x is essentially the same as the direction of `0 ; in particular,

d.f".x/; f0.y//� C d.ˆ�".x/; y/� C d.x; y/

for all " 2 .0; 1�. There also exists ı0 2 .0; ı/ such that if a geodesic segment Œx; y�
as above is not contained in the ı–neighborhood of one of the finitely many leaves
entering ‡ , then it meets AXEı 0 ; in particular, it spends a definite amount of length
(at least 1

2
ı0 ) in AXEı 0=2 , and we conclude as above, using (9-1) with 1

2
ı0 instead

of ı .

Proof of (i) By Remark 2.8(2), it is enough to consider one connected component A
of U X‡ in H2 and prove that d.f".x/; f".y//�Cd.x; y/ for all x , y 2‡ \@A. If
‡\@A is a geodesic line (corresponding to a closed geodesic of P‡ ), then .ˆ�"/j‡\@A
is an isometry and so Lip‡\@A.f"/�Lip‡\@A.f /DC (in fact ‡\@A is C –stretched
by f" ). Otherwise, ‡ \ @A is a countable union of geodesic lines Di for i 2 Z, with
Di and DiC1 asymptotic to each other, both oriented in the direction of the ideal spike
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they bound if i is odd, and both oriented in the reverse direction if i is even; the leaves
of E entering ‡ do so in the spikes. Suppose by contradiction that there is a sequence
."k/ 2 .R

�
C
/N tending to 0 and, for every k 2N, a pair .xk; yk/ of points of ‡ [ @A

such that

(9-2) d.f"k .xk/; f"k .yk// > C � d.xk; yk/:

Note that the Hausdorff distance from Œxk; yk� to the nearest leaf segment of ‡ tends
to zero as k!C1. Indeed, as above, for any ı > 0, if a geodesic segment Œx; y�
is not contained in the ı–neighborhood Eı of E in A, then it spends a definite
amount of length (at least 1

2
ı ) in AXEı=2 , and (9-1) with 1

2
ı instead of ı forces

d.f".x/; f".y// � Cd.x; y/ for small enough ". This proves that the Hausdorff
distance from Œxk; yk� to the nearest segment of E tends to zero as k!C1, and
this segment actually lies in ‡ because xk and yk both belong to ‡ and there are
locally only finitely many leaves of E entering ‡ .

Up to replacing xk and yk by j.�0/–translates and passing to a subsequence, we
can in fact suppose that there exists i 2 Z such that both d.xk;Di / and d.yk;Di /
tend to zero as k!C1; indeed, the set of lines Di is finite modulo the stabilizer
of A. Up to switching xk and yk and passing to a subsequence, we can suppose
that either .xk; yk/ 2Di �DiC1 for all k or .xk; yk/ 2Di�1 �DiC1 for all k ; the
case .xk; yk/ 2Di �Di is excluded by the assumption (9-2) since Di is C –stretched
under f"k .

Let y0
k

be the point of Di on the same horocycle as yk in the ideal spike of A bounded
by Di and DiC1 , and let �k � 0 be the length of the piece of horocycle from yk
to y0

k
. If xk 2 Di�1 , define similarly an arc of horocycle from xk to x0

k
2 Di , of

length �k ; otherwise, set .x0
k
; �k/D .xk; 0/. Since d.xk;Di / and d.yk;Di / tend to

zero as k!C1, so do �k and �k .

We claim that, up to passing to a subsequence and replacing xk and yk by other points
on the same leaves, still subject to (9-2), we can assume that d.xk; yk/!C1 as
k!C1. Indeed, this is already the case if .xk; yk/2Di�1�DiC1 for all k , because
�k , �k ! 0. If .xk; yk/ 2 Di �DiC1 for all k , note that the C –Lipschitz map f
stretches Di and DiC1 maximally and sends them to two geodesic lines of H2 ,
necessarily asymptotic. Moreover, f .yk/ and f .y0

k
/ lie at the same depth in the

spike bounded by f .Di / and f .DiC1/: indeed, the distance between the horocycles
through f .yk/ and through f .y0

k
/ is independent of k ; if it were nonzero, then for

large enough k we would obtain a contradiction with the fact that f is Lipschitz
(recall �k ! 0). Using (A-4), we see that there exists Q � 0 such that, for any
integer k , the piece of horocycle connecting f .yk/ to f .y0

k
/ has length Q�C

k
, and
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y0
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�k

Figure 14: Distance estimates between points of Di�1 , Di and DiC1

the piece of horocycle connecting f"k .yk/ to f"k .y
0
k
/ has length Qe˙"k�C

k
, which is

� �k since C > 1. In particular, xk ¤ y0k for all large enough k (since xk and yk
satisfy (9-2)); in other words, xk and yk lie at distinct depths inside the spike of A
bounded by Di and DiC1 (see Figure 14, top). If yk lies deeper than xk (which we
can assume by symmetry), then for any x� 2Di less deep than xk ,

�

2
< 2x�xkyk <3f"k .x�/f"k .xk/f"k .yk/ < �:

Moreover, d.f"k .x
�/; f"k .xk//D Cd.x

�; xk/ and (9-2) holds, hence

d.f"k .x
�/; f"k .yk// > Cd.x

�; yk/

by Toponogov’s theorem [10, Lemma II.1.13]. Thus, up to replacing xk by some
fixed x� , we may assume that d.xk; yk/!C1.

Using (A-6), we see that

d.xk; yk/D d.x
0
k; y
0
k/C .�

2
k C �

2
k/.1C o.1//

(see Figure 14, bottom). Similarly, given that the length of the piece of horocycle
from f .xk/ to f .x0

k
/ in the spike bounded by Di�1 and Di is Q�C

k
for some Q� 0

independent of k (see above) and that the length of the piece of horocycle from f .yk/

to f .y0
k
/ in the spike bounded by Di and DiC1 is Q0�C

k
for some Q0� 0 independent

of k , we obtain

d.f"k .xk/; f"k .yk//� d.f"k .x
0
k/; f"k .y

0
k//C .Q

2�2Ck CQ
02�2Ck /.1C o.1//:
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Since d.f"k .x
0
k
/; f"k .y

0
k
//DCd.x0

k
; y0
k
/ and since �C

k
D o.�k/ and �C

k
D o.�k/, we

find that d.f"k .xk/; f"k .yk//�Cd.xk; yk/ for all large enough k , contradicting (9-2).
This completes the proof of (i).

9.3 Semicontinuity for C.j; �/ > 1

The notion of chain recurrence (Definition 9.1) is closed for the Hausdorff topology:
any compactly supported lamination which is a Hausdorff limit of chain recurrent
laminations is chain recurrent [51, Proposition 6.1]. It is therefore relevant to consider
(semi)continuity issues.

In the classical setting, Thurston [51, Theorem 8.4] proved that his maximal ratio-
maximizing chain recurrent lamination �.j; �/ varies in an upper semicontinuous way
as j and � vary over the Teichmüller space T .S/ of S . In other words, by Lemma 9.3,
the stretch locus E.j; �/ varies in an upper semicontinuous way over T .S/: for any
sequence .jk; �k/k2N of elements of T .S/2 converging to .j; �/,

E.j; �/� lim sup
k!C1

E.jk; �k/;

where the lim sup is defined with respect to the Hausdorff topology.

We now work in a more general setting and show how the chain recurrence of the
stretch locus E.j; �/ (Proposition 9.4) implies upper semicontinuity.

Proposition 9.5 In dimension nD 2, the stretch locus E.j; �/ is upper semicontinu-
ous on the open subset of Homj0.�0; G/�Hom.�0; G/red where C.j; �/ > 1.

Here we denote by Homj0.�0; G/ the space of geometrically finite representations of
�0 in G with the same cusp type as the fixed representation j0 (as in Section 6) and by
Hom.�0; G/red the space of reductive representations � 2Hom.�0; G/ (Definition 4.9).
These two sets are endowed with the induced topology from Hom.�0; G/. The condition
C.j; �/ > 1 is open by Proposition 6.1(2).

Proof of Proposition 9.5 By Lemma 4.4, we may assume that �0 is torsion-free.
Let .jk; �k/k2N be a sequence of elements of Homj0.�0; G/�Hom.�0; G/red with
C.jk; �k/ > 1 converging to some .j; �/ 2 Homj0.�0; G/ � Hom.�0; G/red with
C.j; �/ > 1. Since the stretch locus E.j; �/ is empty with our definitions when
C.j; �/ D C1, and the condition C.j; �/ D C1 is open by Lemma 4.7, we may
assume that the C.jk; �k/ and C.j; �/ are all finite. Recall from Section 6.4 the proof of
the fact (labeled (B) there) that lim supC.jk; �k/, if greater than 1, gives a lower bound
for C.j; �/. By the same argument as in that proof, up to passing to a subsequence,
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the stretch loci E.jk; �k/ are jk.�0/–invariant geodesic laminations that converge
to some j.�0/–invariant geodesic lamination L , compact in j.�0/nHn . Moreover,
the image of L in j.�0/nHn nearly carries simple closed curves corresponding to
elements  2 �0 with �.�.//=�.j.// arbitrarily close to C.j; �/. However, this
does not immediately imply that L is contained in E.j; �/: we need to improve the
“multiplicative error” to an “additive error”. The idea is similar to Lemmas 5.10 and 9.3,
but with varying j and � . We set C WD C.j; �/ > 1 and Ck WD C.jk; �k/ > 1.

Suppose by contradiction that L contains a point p …E.j; �/. According to Lemma
4.15, there is an element f 2 Fj;� that is constant on some ball centered at p , with
radius ı > 0. Since the E.jk; �k/ are chain recurrent (Proposition 9.4), so is L . Let
G be a simple closed geodesic in j.�0/nH2 passing within 1

2
ı of p and approached

by a ı=.16mC/–quasileaf of L (in the sense of Section 9.1), made of at most m
leaf segments of L , where m is the integer (depending only on the topology of
S D j.�0/nH2 ) defined after Fact 9.2. Let  2 �0 correspond to G . By Hausdorff
convergence, for large enough k the geodesic representative of G in jk.�0/nH2 is
approached by a ı=.8mC/–quasileaf of E.jk; �k/, made of at most m leaf segments.
Since E.jk; �k/ is maximally stretched by a factor Ck by any element of Fjk ;�k, it
follows, as in the proof of Lemma 9.3, that

j�.�k.//�Ck�.jk.//j � 4mCk �
ı

8mC
:

Since Ck tends to C by Proposition 6.1(2)–(3) and, since � is continuous, the left-
hand side converges to j�.�.//�C�.j.//j as k!C1, while the right-hand side
converges to 1

2
ı . However, this left-hand limit is at least Cı since f is constant on

the ball of radius ı centered at p , which contains a segment of G of length ı . This is
absurd, hence L �E.j; �/.

9.4 The stretch locus for C.j; �/ < 1

Still in dimension nD 2, let �0 , .j; �/, K �Hn compact and 'W K!Hn be as in
Section 4 (with K possibly empty). The relative stretch locus EK;'.j; �/ behaves very
differently depending on whether CK;'.j; �/ is smaller than, equal to or larger than 1.
Let us give a simple example to illustrate the contrast.

Example 9.6 We take �0 to be trivial. Fix o 2 H2 and let .as/s�0 , .bs/s�0 and
.cs/s�0 be three geodesic rays issued from o, parametrized at unit speed, forming
angles of 2�

3
at o. Let KDfat ; bt ; ctg for some t > 0 and let 'W K!H2 be given by

'.at /D aT , '.bt /D bT and '.ct /D cT for some T >0. Then Lip.'/D g.T /=g.t/,
where gW RC ! RC is given by g.s/ D d.as; bs/. By convexity of the distance
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function, the function g is strictly convex, asymptotic to
p
3s for s! 0 and to 2s for

s!C1. (Explicitly, g.s/D 2 arcsinh.
p
3=4 sinh s/ by (A-14).)

� If t < T , then Lip.'/ > T=t > 1 by strict convexity of g . By Theorem 5.1, the
map ' extends to H2 with the same Lipschitz constant and with stretch locus
the perimeter of the triangle atbtct ; this stretch locus is the smallest possible
by Remark 2.8(1).

� If t D T , then ' is 1–Lipschitz and has a unique 1–Lipschitz extension to the
(filled) triangle atbtct , namely the identity map. An optimal extension to H2

is obtained by precomposing with the closest-point projection onto the triangle
atbtct ; the stretch locus is this triangle.

� If t > T , then Lip.'/ < T=t < 1 by strict convexity of g . However, the
optimal Lipschitz constant of an extension of ' to H2 cannot be less than
T=t : indeed, such an extension may be assumed to fix o by symmetry, and
d.o; aT /=d.o; at /D T=t . It follows from the construction used in Section 10.4
below that a .T=t/–Lipschitz extension of ' to H2 does indeed exist, and
the stretch locus is equal to the union of the geodesic segments Œo; at �, Œo; bt �
and Œo; ct �.

Although the stretch locus may vary abruptly in the above, note that this variation
is upper semicontinuous in .t; T / for the Hausdorff topology, in agreement with a
potential generalization of Proposition 9.5 to C � 1.

We now consider the case when K is empty. Here is some evidence in favor of
Conjecture 1.4, which claims that for C.j; �/ < 1 the stretch locus E.j; �/ should be
what we call a gramination:

� In Section 10.4, we give a construction, for certain Coxeter groups �0 , of pairs
.j; �/ with j convex cocompact, j.�0/nH2 compact and C.j; �/<1, for which
the stretch locus E.j; �/ is a trivalent graph.

� Consider the examples constructed in [46, Section 4.4]: for any compact hy-
perbolic surface S of genus g and any integer k with jkj � 2g � 2, Salein
constructed highly symmetric pairs .j; �/ 2 Hom.�1.S/;G/2 with j Fuchsian
such that � has Euler number k ; a construction similar to Section 10.4 shows
that the stretch locus of such a pair .j; �/ is a regular graph of degree 4g .

� In Section 10.5, we give a construction of pairs .j; �/ with j convex cocompact,
j.�0/nH2 noncompact and C.j; �/ < 1 for which the stretch locus E.j; �/ is a
trivalent graph. It is actually possible to generalize this construction and obtain,
for any given convex cocompact hyperbolic surface S of infinite volume and any
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given trivalent graph G retract of S , an open set of pairs .j; �/ 2 Hom.�0; G/2

with j convex cocompact for which the stretch locus E.j; �/ is a trivalent graph
of H2 , with geodesic edges, whose projection to j.�0/nH2 is a graph isotopic
to G (see Remarks 10.3).

� It is also possible to construct examples of pairs .j; �/ 2 Hom.�0; G/2 with j
geometrically finite and C.j; �/ < 1 for which the stretch locus E.j; �/ is a
geodesic lamination; see Sections 10.2 and 10.3 for instance.

Here is perhaps a first step towards proving Conjecture 1.4.

Lemma 9.7 In dimension n D 2, let .j; �/ 2 Hom.�0; G/2 be a pair of representa-
tions with j geometrically finite and Fj;� ¤ ∅. Each connected component of the
complement of the stretch locus E.j; �/�H2 is convex.

Proof Suppose by contradiction that the open set H2 X E.j; �/ has a nonconvex
component U . There exists a smooth arc A0 �H2XE.j; �/ whose endpoints x0 and
y0 are connected by a segment intersecting E.j; �/. We can assume that A0[ Œx0; y0�
is a Jordan curve, and is arbitrarily small: this can be seen by moving the segment
Œx0; y0� until it stops intersecting E.j; �/, and then doing a small perturbative argument.
In particular, we may assume that A0 [ Œx0; y0� embeds into j.�0/nH2 under the
quotient map.

We can perturb the Jordan curve A0 [ Œx0; y0� to a Jordan curve A[ Œx; y� whose
inner (open) disk D intersects E.j; �/ in some point z , with A� U (see Figure 15).

x

y
z

A

A0

E.j; �/

B 0

D0

V

V 0

Figure 15: Improving the local Lipschitz constant at z

Let B � U be a compact neighborhood of A. Choose an optimal, C –Lipschitz
equivariant map f (Lemma 4.13): by construction, LipB.f /DW C

� < C . We define
a .j; �/–equivariant map g" WD f ıJ"W H2!H2 , where J" is the small deformation
of the identity map idH2 given as follows:
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� On H2 X j.�0/ �D , take J" to be the identity map.

� On D0 WDD XB , take

J" WD " ��Œx;y�C .1� "/ � idD0 ;

where �Œx;y� denotes the closest-point projection onto Œx; y�; extend .j; �/–
equivariantly to j.�0/ �D0 .

� On B 0 WDD\B , note that J" is already defined on @B 0 and use Proposition 3.1
to find an optimal extension to B 0 ; extend .j; �/–equivariantly to j.�0/ �B 0 .

We have LipD0.J"/� 1 because Lip.�Œx;y�/� 1 (use Lemma 2.13). Also, we claim
that Lip@B 0.J"/ � C=C

� for " small enough. This is true because @B 0 is the union
of two subsegments V and V 0 of Œx; y� and two disjoint arcs, namely A and another,
nearly parallel arc A0 : the only pairs of points .�; � 0/ 2 .@B 0/2 that J"j@B 0 can move
apart are in A�A0 (up to order), but d.�; � 0/ is then bounded from below by a positive
constant d.A;A0/. Thus, Lip@B 0.J"/ (and hence Lip.J"/) goes to 1 as " goes to 0,
which yields Lip.g"/ � C as soon as Lip.J"/ � C=C � . However, since �Œx;y� is
contracting near z 2D0 , we have Lipz.g"/ < C , hence z …Eg" . This contradicts the
optimality of f , as z 2E.j; �/.

10 Examples and counterexamples

All examples below are in dimension nD 2, except the last two. For nD 2, we use
the upper half-plane model of H2 and identify G D PO.2; 1/ with PGL2.R/ and its
identity component G0 with PSL2.R/.

Section 10.1 deals with infinitely generated �0 . Examples 10.2–10.5 concern convex
cocompact j , while Examples 10.6–10.11 illustrate phenomena that arise only in the
presence of cusps.

10.1 A left admissible pair .j; �/ with C.j; �/D 1, for infinitely
generated �0

In this section, we give an example of an infinitely generated discrete subgroup � of
G�G that acts properly discontinuously on G but that does not satisfy the conclusion
of Theorem 7.1; in other words, � is not sharp in the sense of [25, Definition 4.2].

In the upper half-plane model of H2 , let Ak (resp. Bk ) be the half-circle of radius 1
(resp. log k ) centered at k2 , oriented clockwise. Let A0

k
(resp. B 0

k
) be the half-circle

of radius 1 (resp. log k ) centered at k2Ck , oriented counterclockwise (see Figure 16).
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Let ˛k 2 G0 (resp. ˇk 2 G0 ) be the shortest hyperbolic translation identifying the
geodesic represented by Ak with A0

k
(resp. Bk with B 0

k
); its axis is orthogonal to Ak

and A0
k

(resp. to Bk and B 0
k

), hence its translation length �.˛k/ (resp. �.ˇk/) is equal
to the distance between Ak and A0

k
(resp. Bk and B 0

k
). An elementary computation

(see (A-12) below) shows that

(10-1)
�.˛k/D 2 arccosh

�
k

2

�
D 2 log kC o.1/;

�.ˇk/D 2 arccosh
�

k

2 log k

�
2 log k� 2 log log kC o.1/:

Consider the free group �N D hkik�N and its injective and discrete representations
j and � given by j.k/ D ˛k and �.k/ D ˇk . Since �.ˇk/=�.˛k/ goes to 1, we
have C.j; �/ � 1 and C.�; j / � 1. However, we claim that, for N large enough,
the group �j;�N D f.j./; �.// j  2 �N g is left admissible (Definition 1.7), acting
properly discontinuously on G .

Indeed, fix the basepoint p0D
p
�12H2 and consider a reduced word  D "1

k1
: : : 

"m
km

in �N , where "i D˙1. Let DA�H2 be the fundamental domain of H2 for the action
of j.�N / that is bounded by the geodesics Ak and A0

k
for k � N. Let DB be the

fundamental domain for the action of �.�N / that is bounded by the geodesics Bk and
B 0
k

for k �N.

The geodesic segment from p0 to j./ �p0 projects in the fundamental domain DA to
a union of mC 1 geodesic segments I0; : : : ; Im ; namely, Ii connects the half-circle
Aki or A0

ki
(depending on "i ) to the half-circle AkiC1 or A0

kiC1
(depending on "iC1 ),

unless i D 0 or i D m, in which case one of the endpoints is p0 (see Figure 16).
Moreover, the geodesic line carrying Ii hits @1H2 near the centers of these half-circles,
since all half-circles Ak and A0

k
are far from one another and from p0 (compared to

their radii). Therefore, the ends of Ii are nearly orthogonal to the Ak and A0
k

, and the
length of Ii can be approximated by the distance from some side of DA to another (or
to p0 ). The error is o.1/ for each segment Ii , uniformly as N !C1.

p0 D
p
�1

I0 I1

An1

Bn1
A0n1

B 0n1
An2

Bn2

Figure 16: For infinitely generated �0 , construction of an admissible pair
.j; �/ with C.j; �/D 1
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The distance from p0 to �./ �p0 is likewise a sum of lengths of segments J0; : : : ; Jm
between boundary components of DB : the segment Ji meets Bki (resp. B 0

ki
, BkiC1

or B 0
kiC1

) exactly when Ii meets Aki (resp. A0
ki

, AkiC1 or A0
kiC1

). Therefore, Ii is
longer than Ji by roughly the sum of

d.Aki ; Bki /D d.A
0
ki
; B 0ki / and d.AkiC1 ; BkiC1/D d.A

0
kiC1

; B 0kiC1/:

Using (10-1), we obtain

length.Ii /� length.Ji /D log log ki C log log kiC1C o.1/

(with one term stricken out for i D 0 or i Dm), with uniform error as N !C1. In
particular, for N large enough the left-hand side is always at least 1. Finally,

�.j.//��.�.//D d.p0; j./ �p0/� d.p0; �./ �p0/

D

mX
iD0

.length.Ii /� length.Ji //

�max
˚
m; log log

�
max
1�i�m

ki
�	
;

which clearly diverges to C1 as  D "1
k1
� � � 

"m
km

exhausts the countable group �N .
Therefore the group �j;�N acts properly discontinuously on G by the properness criterion
of Benoist and Kobayashi (Section 7.3).

10.2 A nonreductive � with Fj;� ¤∅

Let �0 be a free group on two generators ˛ and ˇ , and let j 2 Hom.�0; G/ be the
holonomy representation of a hyperbolic one-holed torus S of infinite volume such
that the translation axes Aj.˛/ and Aj.ˇ/ of ˛ and ˇ meet at a right angle at a point
p 2H2 (see Figure 17).

We first consider the representation �0 2 Hom.�0; G/ given by �0.˛/ D j.˛/2 and
�0.ˇ/D 1. It is reductive with two fixed points in @1H2 . We claim that C.j; �0/D
2D �.�0.˛//=�.j.˛// and that the image of the stretch locus E.j; �/ in j.�0/nH2

is the closed geodesic corresponding to ˛ . Indeed, consider the Dirichlet fundamental
domain D of the convex core centered at p for the action of j.�0/. It is bounded by
four segments of the boundary of the convex core, and by four other segments s , s0 , t
and t 0 such that j.˛/ maps s to s0 and j.ˇ/ maps t to t 0 . Let �Aj.˛/ be the closest-
point projection onto Aj.˛/ and h the orientation-preserving homeomorphism of Aj.˛/
such that d.p; h.q//D 2 d.p; q/ for all q 2 Aj.˛/ . The map h ı�Aj.˛/ W D!H2 is
2–Lipschitz and extends to a 2–Lipschitz, .j; �0/–equivariant map f0W H2!Aj.˛/
whose stretch locus is exactly j.�0/ �Aj.˛/ .
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H2

U U

s

t t 0

s0

Aj.˛/

Aj.ˇ/
p

D

f

f .s/

f .t/

f .p/

f .s0/

f .t 0/

Figure 17: A nonreductive representation � such that the stretch locus
E.j; �/ is the j.�0/–orbit of the axis Aj.˛/

Consider a small, nonreductive deformation � 2 Hom.�0; G/ of �0 such that �.˛/D
�0.˛/ D j.˛/2 and such that �.ˇ/ has a parabolic fixed point in @1H2 common
with j.˛/. Then C.j; �/ D C.j; �0/ D 2 by Lemma 6.3. We claim that Fj;� is
nonempty if �.ˇ/ is close enough to IdH2 . Indeed, let us construct a .j; �/–equivariant
deformation f of f0 which is still 2–Lipschitz. By Lemma 2.9, we have LipU .f0/<C

for some neighborhood U of t [ t 0 . Therefore, the map f defined on s[ s0[ t [ t 0

by f jt[s[s0 D f0jt[s[s0 and f jt 0 D �.ˇ/ ıf0jt 0 is still 2–Lipschitz if �.ˇ/ is close
enough to IdH2 . This map f extends, with the same Lipschitz constant 2, to all of D
(by the Kirszbraun–Valentine theorem, Proposition 3.1), hence .j; �/–equivariantly
to H2 .

This construction can be adapted to any hyperbolic surface S of infinite volume when
the stretch locus E.j; �0/ is a multicurve.

10.3 A nonreductive � with Fj;� D∅

Again, let �0 be a free group on two generators ˛ and ˇ , and let j 2 Hom.�0; G/ be
the holonomy representation of a hyperbolic one-holed torus S of infinite volume.

Let L be the preimage in H2 of an oriented irrational measured lamination of S .
We first construct a reductive representation �0 2 Hom.�0; G/ with two fixed points
in @1H2 such that E.j; �0/ D L and C.j; �0/ < 1. It is sufficient to construct a
differential 1–form ! of class L1 on S with the following properties:

(1) ! is locally the differential of some 1–Lipschitz function ' .

(2)
R
I ! D length.I / for any segment of leaf I of (the image in S of) L , oriented

positively.
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Indeed, if such an ! exists, then for any geodesic line A of H2 , any isometric identifi-
cation A'R, and any C 2 .0; 1/, we can define a representation �0 2Hom.�0; G/ as
follows: if  2 �0 X f1g corresponds to a loop G on S , then �0./ is the hyperbolic
element of G translating along A with length C

R
G ! 2R. Such a representation �0

satisfies E.j; �0/DL and C.j; �0/DC because for any basepoint p 2H2 , the map

f0W q 2H2
7! C

Z
Œp;q�

z! 2R'A

(where z! is the j.�0/–invariant 1–form on H2 lifting ! ) is .j; �0/–equivariant, has
Lipschitz constant exactly C , and stretches L maximally, and we can use Lemma 5.10.

B

@
H

H 0

L

L

f

f�g

/ e�t t
J

Figure 18: The one-holed bigon B bounded by the irrational lamination L

(left). The symbol @ denotes the boundary of the convex core. The function
' is constant on the shaded area; elsewhere its level curves are pieces of
horocycles. Right, the Lipschitz map f must collapse all lines of L if
C < 1 , because e�Ct � e�t for large t .

Let us construct a 1–form ! as above. The idea is similar to the “stretch maps” of [51].
The complement of the image of L in the convex core of S is a one-holed biinfinite
bigon B ; each of its two spikes can be foliated by pieces of horocycles (see Figure 18).
Let H and H 0 be horoball neighborhoods of the two spikes, tangent in two points
of L (one for each side of B ). We take ! D d' , where

' WD

8<:
0 on BX .H [H 0/;
d. � ; @H/ on H;
�d. � ; @H 0/ on H 0:

This form ! extends continuously to all of L .

Now let �2Hom.�0; G/ be a nonreductive representation such that the fixed point � of
�.�0/ in @1H2 is one of the two fixed points of �0.�0/. Then C.j; �/DC WDC.j; �0/
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by Lemma 6.3. We claim that Fj;� D ∅, ie there exists no C –Lipschitz, .j; �/–
equivariant map f W H2 ! H2 . Indeed, suppose by contradiction that such an f

exists.

We first note that f stretches maximally every leaf of L . Indeed, the “horocyclic
projection” taking any p 2H2 to the intersection of the translation axis A of �0 with
the horocycle through p centered at � is 1–Lipschitz. After postcomposing f with this
horocyclic projection, we obtain a C –Lipschitz map f1 which is .j; �0/–equivariant,
hence has to stretch maximally every leaf of E.j; �0/ D L (Theorem 1.3). Then
f also stretches maximally every leaf of L . In fact, this argument shows that, on
any leaf of L , the map f coincides with f1 postcomposed with some parabolic (or
trivial) isometry of H2 fixing � , depending on the leaf; the leaf endpoint in @1H2

which is sent to � by f1 is also sent to � by f . (Actually, by density of leaves the
.j; �0/–equivariant restrictions f0jL and f1jL differ only by a translation along the
axis A of �0 , but we will not need this.)

Let us now prove that f maps all the leaves of L to the same geodesic line of H2 .
This will provide a contradiction since f .L / is �.�0/–invariant and �.�0/ has only
one fixed point in @1H2 (namely � ). Let J be a short geodesic segment of H2

transverse to the lamination L such that J XL is the union of countably many open
subintervals Jk . Then each Jk intercepts an ideal sector bounded by two leaves of L

that are asymptotic to each other on one of the two sides, left or right, of J . Orient J
so that all the half-leaves on the left of J are mapped under f1 to geodesic rays with
endpoint � . Then any two leaves asymptotic on the right of J have the same image
under f : indeed, the right parts of the image leaves are asymptotic because f is
Lipschitz, and the left parts are asymptotic because � sends all the left endpoints to � .
Consider two leaves ` and `0 of L that are asymptotic on the left of J , bounding
together an infinite spike. At depth t� 1 inside the spike, ` and `0 approach each other
at rate e�t (see (A-5)), and their images under f , if distinct, approach each other at
the slower exponential rate e�Ct (recall that C < 1); since f is Lipschitz, this forces
f .`/ D f .`0/. Therefore, all the sectors intercepted by the Jk are collapsed by f .
Since, by [6], the length of J is the sum of the lengths of the Jk , passing to the limit
we see that all the leaves of L meeting J have the same image under f . We conclude
by observing that the projection of J [L to S carries the full fundamental group of S .

This proves that Fj;� D ∅. It is not clear whether the same can happen when
C.j; �/� 1, but the natural conjecture would be that it does not.

10.4 A pair .j; �/ with C 0.j; �/ < C.j; �/ < 1 and j.�0/nHn compact

While the constants C.j; �/ and C 0.j; �/ are equal above 1 (Corollary 1.12), they
can differ below 1. To prove this, we only need to exhibit a pair .j; �/ such that any
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closed geodesic of j.�0/nH2 spends a definite (nonzero) proportion of its length in a
compact set V disjoint from the stretch locus (on V the local Lipschitz constant of an
optimal Lipschitz equivariant map stays bounded away from C.j; �/, see Lemma 2.9).

In H2 , consider a positively oriented hyperbolic triangle ABC with angles

yAD
�

3
; yB D

�

2
; yC D

�

14

and another, smaller triangle A0B 0C 0 with the same orientation and with angles

yA0 D
�

3
; yB 0 D

�

2
; yC 0 D

�

7
:

The edge ŒA0; B 0� is shorter than ŒA; B�; let 'W ŒA; B� ! ŒA0; B 0� be the uniform
parametrization, with '.A/D A0 and '.B/D B 0 , so that

C0 WD Lip.'/D
d.A0; B 0/

d.A;B/
< 1:

Claim 10.1 The map ' admits a C0–Lipschitz extension f to the filled triangle ABC ,
taking the geodesic segment ŒA; C � (resp. ŒC; B�) to the geodesic segment ŒA0; C 0�
(resp. ŒC 0; B 0�), and with stretch locus the segment ŒA; B�.

Proof Let ` be the geodesic line of H2 containing ŒA; B�, oriented from A to B .
Any point p 2 H2 may be reached in a unique way from A by first applying a
translation of length v.p/ 2R along the geodesic line orthogonal to ` at A, positively
oriented with respect to ` (“vertical direction”), then a translation of length h.p/ 2R
along ` itself (“horizontal direction”). The real numbers h.p/ and v.p/ are called the
Fermi coordinates of p with respect to .`; A/. Similarly, let h0 and v0 be the Fermi
coordinates with respect to .`0; A0/, where `0 is the geodesic line containing ŒA0; B 0�,
oriented from A0 to B 0 (see Figure 19).

Let ‰W RC ! RC be a diffeomorphism whose derivative ‰0 is everywhere < C0
on R�

C
and let f �W H2!H2 be given, in Fermi coordinates, by

h0.f �.p//D C0h.p/ and v0.f �.p//D‰.v.p//:

Then Lipp.f
�/ < C0 for all p … `. Indeed, the differential of f � at p … ` has

principal value ‰0.v.p// < C0 in the vertical direction and, by (A-9), principal value
C0 cosh‰.v.p//=cosh v.p/ < C0 in the horizontal direction.

We shall take f WD �A0B 0C 0 ı f � for a suitable choice of ‰ , where �A0B 0C 0 is the
closest-point projection onto the filled triangle A0B 0C 0 . Since we wish f to map
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A B

C

A0 B 0

C 0

p

h.p/

v.p/

f �

f �.C /

Figure 19: Defining a contracting map between right-angled triangles

ŒA; C � to ŒA0; C 0�, we need to choose ‰ so that for any p 2 ŒA; C � the point f �.p/
lies above (or on) the edge ŒA0; C 0�. By (A-13),

tan1pAB D tanh v.p/
sinh h.p/

and

tan5f �.p/A0B 0 D tanh v0.f �.p//
sinh h0.f �.p//

D
tanh‰.v.p//
sinh.C0v.p//

:

Note that tanh.C0t / > C0 tanh.t/ and sinh.C0t / < C0 sinh.t/ for all t > 0, by strict
concavity of tanh and convexity of sinh (recall that 0<C0<1). Therefore the function
‰W t 7! C0t yields a map f � with f �.ŒA; C �/ above ŒA0; C 0�. We can decrease this
function slightly to obtain ‰ with ‰0.t/ < C0 for all t > 0 while keeping f �.ŒA; C �/
above ŒA0; C 0�.

In fact, by the above formulas, we can also ensure f �.ŒA; C �/D ŒA0; C 0� directly, by
taking ‰ D‰ yA , where

(10-2) ‰ yA.v/D �
�1.C0�.v// with �.v/D arcsinh

�
tanh v

tan yA

�
I

then ‰0
yA
< C0 (on R�

C
) easily follows from C0 < 1 and from the concavity of � .

Let �0 be the group generated by the orthogonal reflections in the sides of ABC and
Nj its natural inclusion in G D PGL2.R/. Let x� 2 Hom.�0; G/ be the representation

taking the reflections in ŒA; B�, ŒB; C � and ŒC; A� to the reflections in ŒA0; B 0�, ŒB 0; C 0�
and ŒC 0; A0�, respectively; it is well defined (relations are preserved) because �

7
is

a multiple of �
14

. The group �0 has a finite-index normal subgroup �0 which is
torsion-free and such that Nj .�0/ and x�.�0/ are orientation-preserving, ie with values
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in G0 D PSL2.R/. Let j; � 2 Hom.�0; G/ be the corresponding representations. The
map f given by Claim 10.1 extends, by reflections in the sides of ABC , to a C0–
Lipschitz, .j; �/–equivariant map on H2 . Its stretch locus is the �0–orbit of the
segment ŒA; B�, which is the 1–skeleton of a tiling of H2 by regular 14–gons meeting
3 at each vertex.

We claim that C.j; �/D C0 and that f is an optimal element of Fj;� , in the sense of
Definition 4.12. Indeed Lemma 4.4, applied to �0 and its finite-index subgroup �0 ,
shows that there exists an element xf 2 Fj;� which is optimal and . Nj ; x�/–equivariant.
In particular, if p 2H2 is fixed by some Nj .x/ 2 Nj .�0/, then xf .p/ is fixed by x�.x/.
Applying this to the three sides of the triangle ABC , we see that xf sends A, B and C
to A0 , B 0 and C 0 , respectively. In particular,

C.j; �/�
d.A0; B 0/

d.A;B/
D C0:

Since f is C0–Lipschitz with stretch locus the �0–orbit of the segment ŒA; B�, this
shows that C.j; �/D C0 and that E.j; �/ is the stretch locus of f ; in other words, f
is an optimal element of Fj;� .

It is easy to see that no geodesic of H2 can spend more than a bounded proportion of its
length near the regular trivalent graph E.j; �/, which implies that C 0.j; �/ < C.j; �/.

10.5 A pair .j; �/ with C 0.j; �/<C.j; �/<1 and j.�0/nHn noncompact

Let �0 be a free group on two generators and j 2 Hom.�0; G/ the holonomy repre-
sentation of a hyperbolic three-holed sphere S with three funnels. Let G be a geodesic
trivalent graph on S , with two vertices v and w and three edges, such that the natural
symmetry of S switches v and w and preserves each edge. Let `1 , `2 , `3 > 0 be
the lengths of the three edges and �1 , �2 , �3 2 .0; �/ the angles between consecutive
edges at both vertices, so that �1C �2C �3 D 2� . The preimage of G in H2 is an
embedded trivalent tree T . For any C0 2 .0; 1/, there exists an immersed trivalent
tree T 0 with the same combinatorics as T , with all (oriented) angles between adjacent
edges of T 0 the same as in T , but with all edges of length `i in T replaced by edges
of length C0`i in T 0 . The natural map 'W T ! T 0 , multiplying all lengths along edges
by C0 , is .j; �/–equivariant for a unique � 2 Hom.�0; G/. If C0 < 1 is large enough,
then the immersed tree T 0 is in fact embedded, and � is convex cocompact.

Claim 10.2 Suppose `1 , `2 and `3 are large enough that the bisecting rays at the
vertices of T meet either outside of the preimage N �H2 of the convex core of S ,
or not at all. Then the map ' extends to a .j; �/–equivariant map f W H2!H2 with
Lipschitz constant C0 and stretch locus T .
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Proof Let e be an edge of T , and e0 and e00 two of its neighbors, so that e0 , e and e00

are consecutive edges of some complementary component of T . By symmetry of the
pair of pants S , the edge e forms the same angle �i with e0 and with e00 . Let ˇ0 and
ˇ00 be the corresponding bisecting rays, issued from the endpoints of e . Let Q �H2

be the compact quadrilateral bounded by e , ˇ , ˇ0 and a segment of the boundary
of N. There is a similarly defined quadrilateral on each side of each edge of T , and
their union is N ; therefore, it is sufficient to define the map f on Q in a way that is
consistent (along the bisecting rays ˇ0 and ˇ00 ) for Q and neighboring quadrilaterals
Q0 and Q00 (see Figure 20).

e

e0 e00

Q

Q0 Q00

ˇ0 ˇ00
@N

T

�i=2

Figure 20: Defining a contracting map on the convex hull N of a tree T , one
quadrilateral Q at a time

The construction is similar to that of Claim 10.1, whose notation we borrow: let
.h; v/W Q!R�RC be the Fermi coordinates with respect to the edge e , and .h0; v0/
the Fermi coordinates with respect to '.e/. Define f jQ by h0.f .p//D C0h.p/ and
v0.f .p// D ‰�i=2.v.p// for all p 2 Q , where ‰�i=2 is given by (10-2). Since the
quadrilaterals Q , Q0 and Q00 have all their angles along T equal to 1

2
�i , the map f

just defined takes the bisecting rays ˇ and ˇ0 to the bisecting rays of the corresponding
angles of T 0 , in a well-defined manner. The proof that f is C0–Lipschitz on N is the
same as in Claim 10.1.

We claim that C.j; �/D C0 and that f is an optimal element of Fj;� , in the sense
of Definition 4.12. Indeed, since G is invariant under the natural symmetry of S , the
group �0 is contained, with index two, in a discrete subgroup �0 of G D PGL2.R/.
Let Nj 2 Hom.�0; G/ be the natural inclusion and let x� 2 Hom.�0; G/ be the natural
extension of � . All reflections in perpendicular bisectors of edges of T (resp. T 0 )
belong to Nj .�0/ (resp. x�.�0/). Lemma 4.4, applied to .�0; �0/, shows that there
exists an element xf 2 Fj;� which is optimal and . Nj ; x�/–equivariant. Let us show that
xf agrees with ' on T . Let v be a vertex of T and let e1 , e2 and e3 be the three
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incident edges of T , connecting v to v1 , v2 and v3 , with perpendicular bisectors
M1 , M2 and M3 . For 1 � i � 3, by . Nj ; x�/–equivariance, xf .vi / is the symmetric
image of xf .v/ with respect to the perpendicular bisector M0i of '.ei /. In particular,
d. xf .v/; xf .vi //D 2 d. xf .v/;M0i /. Note that the convex function

q 7! max
1�i�3

d.q;M0i /
d.v;Mi /

is always � C0 on H2 , with equality if and only if q D '.v/, in which case all
three ratios are equal to C0 . Therefore C.j; �/D Lip. xf / � C0 and the constant C0
is achieved, if at all, only by maps that agree with ' on the vertices of the tree T .
Since the map f of Claim 10.2 is C0–Lipschitz with stretch locus T , this shows that
C.j; �/D C0 and that E.j; �/D T ; in other words, f is an optimal element of Fj;� .

As in Section 10.4, it is easy to see that no closed geodesic can spend more than a
bounded proportion of its length near the trivalent graph G , which implies C 0.j; �/ <
C.j; �/D C0 .

Remarks 10.3 � This construction actually gives an open set of pairs .j; �/ in
Hom.�0; G/2 with j convex cocompact and

C 0.j; �/ < C.j; �/ < 1:

Indeed, Hom.�0; G/2 has dimension 12 and we have 12 independent parameters,
namely `1 , `2 , `3 , �1 , �2 , C0 and a choice of a unit tangent vector in H2 for
T and for T 0 (ie conjugation of j and �). The map from this parameter space to
Hom.�0; G/2 is injective since different parameters give rise to different stretch
loci; therefore, its image is open by Brouwer’s invariance of domain theorem.

� There is no constraint on C0 2 .0; 1/; in particular, � could be noninjective or
nondiscrete.

� A similar construction works for any trivalent topological graph that is a retract
of a convex cocompact hyperbolic surface. The invariance of the geodesic
realizations under the natural symmetry of the three-holed sphere is replaced by
a minimization property for the sum of weighted edge-lengths of the graph.

All remaining examples show phenomena specific to the presence of cusps.

10.6 The function .j; �/ 7! C.j; �/ is not upper semicontinuous when
j.�0/ has parabolic elements

The following example shows that Proposition 1.5 fails in the presence of cusps, even
if we restrict to C < 1. (It certainly fails for larger C since the constant representation
� can have non-cusp-deteriorating deformations, for which C � 1.)
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Let �0 be a free group on two generators ˛ and ˇ , and let j 2 Hom.�0; G/ be given
by

j.˛/D

�
1 3

0 1

�
and j.ˇ/D

�
1 0

�3 1

�
:

The quotient j.�0/nH2 is homeomorphic to a sphere with three holes, two of which
are cusps (corresponding to the orbits of 0 and 1 in @1H2 ). Let � 2Hom.�0; G/ be
the constant representation, so that C.j; �/D 0. We shall exhibit a sequence �k! �

with C.j; �k/ < 1 for all k and C.j; �k/! 1.

Define �k.˛/ (resp. �k.ˇ/) to be the rotation centered at Ak WD 2k
p
�1 (resp. Bk WD

2�k
p
�1), of angle 2�=.2kk/. Note that a circle of radius r in H2 has circumference

2� sinh.r/ (see (A-8)), which is equivalent to �er as r!C1. Therefore,

d.
p
�1; �k.˛/ �

p
�1 /�

�

k
! 0 as k!C1;

so .�k/k2N converges to the constant representation � . By construction, �k.˛2
k�1k/

is a rotation of angle � centered at Ak , and �k.ˇ
2k�1k/ a rotation of angle �

centered at Bk . Therefore, if !k D ˛2
k�1kˇ2

k�1k then �k.!k/ is a translation
of length 2d.Ak; Bk/ D 4k log 2. On the other hand, one can compute explicitly
jTr.j.!k//j D .3 � 2k�1k/2 � 2, which shows that j.!k/ is a translation of length
4.k log 2C log k/CO.1/. It follows that

C.j; �k/� 1�
log k
k log 2

CO
�
1

k

�
;

H2 mod j.�0/

f mod�0
2�=.2kk/ 2�=.2kk/

Figure 21: The representation �k can be seen as the holonomy of a singular
hyperbolic metric on a sphere with three cone points of angle 2�=.2kk/ ,
2�=.2kk/ and close to 2� . The angle at the third cone point determines the
distance between the other two, and is adjusted so that no equivariant map f
can be better than .1�o.1//–Lipschitz as k!C1 .
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which goes to 1 as k!C1. See Figure 21 for an interpretation of �k as the holonomy
of a singular hyperbolic metric.

However, we have C.j; �k/ < 1 for all k : otherwise, by Corollary 4.14 and Lemmas
4.10, 5.2 and 5.4, the stretch locus E.j; �k/ would contain a maximally stretched
geodesic lamination Lk with compact image PLk in j.�0/nH2 . Necessarily any
recurrent component of PLk would be a geodesic boundary component of the convex core
(a three-holed sphere carries no other recurrent geodesic laminations!), corresponding
to ˛ˇ 2 �0 . Therefore we would have �.�k.˛ˇ//DC.j; �/�.j.˛ˇ//� �.j.˛ˇ// > 0.
This is impossible since �k tends to the constant representation and � is continuous.

Note that by placing Ak and Bk at t˙k
p
�1 for different values of t in .1; 2� (without

changing the rotation angle of �k.˛/ and �k.ˇ/), we could also have forced C.j; �k/
to converge to any value in .0; 1�.

10.7 The function .j; �/ 7! C.j; �/ is not lower semicontinuous when
j.�0/ has parabolic elements

Let �0 be a free group on two generators ˛ and ˇ , and j 2Hom.�0; G/ the holonomy
representation of a hyperbolic metric on a once-punctured torus, with j.˛ˇ˛�1ˇ�1/
parabolic. We assume that j.�0/ admits an ideal square Q of H2 as a fundamental
domain, with the axes of j.˛/ and j.ˇ/ crossing the sides of Q orthogonally. Fix
two points p , q 2H2 distance 1 apart. For each k � 1, let rk 2H2 be the point at
distance k from p and q such that pqrk is counterclockwise oriented. Fix a small
number ı>0 and let �k be the representation of �0 taking ˛ (resp. ˇ ) to the translation
of length ı along the oriented geodesic line .p; rk/ (resp. .q; rk/) — see Figure 22.

H2

H2

Q

f
j.˛/

j.ˇ/

Qk

p

q

rk

�k.˛/

�k.ˇ/

Figure 22: If �.�k.˛// and �.�k.ˇ// are small enough, then C.j; �k/ stays
small and bounded away from 1 .
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As k !C1, the representations �k converge to a representation � fixing exactly
one point at infinity (the limit of .rk/k�1 ), and �.˛ˇ˛�1ˇ�1/ is parabolic; hence,
C.j; �/ � 1. However, C.j; �k/ is bounded away from 1 from above. To see this,
observe that the fixed points of �k.˛ˇ˛�1ˇ�1/, �k.ˇ˛�1ˇ�1˛/, �k.˛�1ˇ�1˛ˇ/
and �k.ˇ�1˛ˇ˛�1/ are the vertices of a quadrilateral Qk with four sides of equal
length, centered at rk , of size roughly 2ı . The maps �k.˛/ and �k.ˇ/ identify pairs
of opposite sides of Qk . Taking ı very small, it is not difficult to construct maps
Q!Qk (taking whole neighborhoods of the ideal vertices of Q to the vertices of Qk )
that are equivariant with very small Lipschitz constant.

Note however that the inequality C.j; �/� lim infk C.jk; �k/ of lower semicontinuity
holds as soon as the Arzelà–Ascoli theorem applies for maps fk 2 Fjk ;�k , ie as soon
as the sequence .fk.p//k�1 does not escape to infinity in H2 ; this fails only when �
fixes exactly one point at infinity.

10.8 A reductive, non-cusp-deteriorating � with E.j; �/D∅

Let S be a hyperbolic surface of infinite volume with at least one cusp and let
j 2 Hom.�0; G/ be its holonomy representation, where �0 WD �1.S/. Consider a
collection of disjoint geodesics ˛1; : : : ; ˛m of S with both ends going out in the
funnels, subdividing the convex core of S into contractible polygons and polygons with
one puncture (cusp). We apply Thurston’s construction from the proof of Remark 8.2:
for each ˛i we consider another geodesic ˛0i very close to but disjoint from ˛i , and
construct the holonomy � of a new hyperbolic metric by cutting out the strips bounded
by ˛i [˛0i and gluing back the boundaries, identifying the endpoints of the common
perpendicular to ˛i and ˛0i (see Figure 23).

It is easy to check that the .j; �/–equivariant map f W H2!H2 defined by this “cut
and paste” procedure is 1–Lipschitz, hence C.j; �/ � 1. In fact, C.j; �/ D 1 since
� is not cusp-deteriorating (Lemma 2.7). However, E.j; �/ D ∅: otherwise, (5-2)
would imply C 0s.j; �/D 1, where C 0s.j; �/ is the supremum of �.�.//=�.j.// over
all elements  2 �0 corresponding to simple closed curves G in S . To see that this
is impossible, first note that any such G intersects the arcs ˛i nontrivially, yielding
�.�.// < �.j.//. In fact, G stays in the complement of some cusp neighborhoods,
which is compact: this means that G intersects the ˛i a number of times roughly
proportional to the length of G . Moreover, each of these intersections is responsible
for a definite (additive) drop in length between �.j.// and �.�.//: this simply
follows from the fact that ˛i is a definite distance away from ˛0i , and forms with G an
angle which can be bounded away from 0 (again by compactness: ˛i exits the convex
core and G must not). This implies C 0s.j; �/ < 1. Therefore E.j; �/D∅. A similar
argument can be found in [41].
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˛1
˛01

˛2
˛02

f mod�0

j.�0/nH2

�.�0/nH2

Figure 23: In the second surface (with strips removed), simple closed curves
are uniformly shorter than in the first.

(This is an example where C 0s.j; �/ < 1DC.j; �/DC
0.j; �/, the last equality coming

from Lemma 7.4.)

10.9 A nonreductive, non-cusp-deteriorating � with
C 0.j; �/ < 1D C.j; �/ (and E.j; �/D∅)

Let �0 be a free group on two generators ˛ and ˇ , and j 2Hom.�0; G/ the holonomy
representation of a hyperbolic three-holed sphere with one cusp and two funnels such
that j.˛/ is hyperbolic and j.ˇ/ parabolic.

For any nonreductive � 2 Hom.�0; G/, if �.˛/ and �.ˇ/ are not hyperbolic (for
instance if �.�0/ is unipotent), then C 0.j; �/ D 0; if, moreover, �.ˇ/ is parabolic,
then � is not cusp-deteriorating and so C.j; �/ � 1 by Lemma 2.7, which implies
E.j; �/D∅ and C.j; �/D 1 by Theorem 1.3.
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Here is another example with C 0.j; �/ > 0. Let � 2 Hom.�0; G/ be a nonreduc-
tive representation with �.˛/ hyperbolic and �.ˇ/ parabolic; set " WD �.�.˛// > 0.
There exists L > 0 with the following property (see [14, page 122], together with
Lemma 2.6): for any nontrivial cyclically reduced word  D ˛m1ˇm2˛m3ˇm4 � � �

in �0 with m2 � � �ms ¤ 0, where ms is the last exponent,

�.j.//� L

� X
i2Œ1;s� odd

jmi jC
X

i2Œ1;s� even

.1C log jmi j/
�
:

On the other hand, for such a  ,

�.�.//D "

ˇ̌̌̌ X
i2Œ1;s� odd

mi

ˇ̌̌̌
;

hence �.�.//=�.j.//� "=L. This shows that C 0.j; �/� "=L, which is < 1 for "
small enough. However, since �.ˇ/ is parabolic we have C.j; �/� 1 as above, which
implies E.j; �/D∅ and C.j; �/D 1 by Theorem 1.3.

10.10 In dimension n � 4, the function .j; �/ 7! C.j; �/ is not upper
semicontinuous even above 1

When n � 4, the existence of nonunipotent parabolic elements, coming from cusps
of rank < n� 2, destroys certain semicontinuity properties of C . We first give an
example, in dimension nD 4, where

1� C.j; �/ < lim inf
k

C.jk; �k/

for some .jk; �k/! .j; �/ with j and jk geometrically finite of the same cusp type,
with a cusp of rank 1. This shows that condition (3) of Proposition 6.1 is not satisfied
in general for n� 4.

Identify @1H4 with R3 [ f1g and let G WD PO.4; 1/. For � 2 R3 , we denote by
P� �H4 the copy of H3 bordered by the unit sphere of R3 centered at � . Let �0 be a
free group on two generators ˛ and ˇ , and let j 2 Hom.�0; G/ be the representation
such that

� j.˛/ is the unipotent isometry of H4 fixing 1 and acting on R3 by translation
along the vector .2�; 0; 0/;

� j.ˇ/ is the pure translation (hyperbolic element) taking � WD .3; 0; 0/ to 1,
1 to � WD .0; 0; 0/ and P� to P� .
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It is a standard argument (sometimes called “ping pong”) that j.˛/ and j.ˇ/ generate
a free discrete group in G ; the representation j is geometrically finite and the quotient
manifold j.�0/nH4 has one cusp, with stabilizer h˛i � �0 . Take �D �k D j , so that
C.j; �/ D 1. Choose an integer p � 2 and, for k � 1, let jk 2 Hom.�0; G/ be the
representation such that
� jk.˛/ is the parabolic element of G fixing1 and acting on R3 as the corkscrew

motion preserving the line `k WD f0g � R � fkg, with rotation angle 2�=k
around `k and progression p

p
k=k along `k ;

� jk.ˇ/D j.ˇ/.

It is an easy exercise to check that jk! j as k!C1. Moreover, jk is geometrically
finite with the same cusp type as j for large k , by a standard ping pong argument.
(Note however that fundamental domains for the action of jk.�0/ do not converge
to a fundamental domain for the action of j.�0/, but to a smaller set.) The element
�k.˛

kˇ/ D j.˛kˇ/ takes � to 1 and 1 to j.˛k/.�/ D .2k�; 0; 0/ and P� to
Pj.˛k/.�/ ; by (A-11),

(10-3) �.j.˛kˇ//� 2 log 2�k�R

for some R > 0 independent of k . On the other hand, jk.˛kˇ/ takes � to 1,
1 to jk.˛k/.�/D .0;

p
p
k; 0/ and P� to Pjk.˛k/.�/ , hence

�.jk.˛
kˇ//� 2 log p

p
kCRC 1

by (A-11). It follows, by (4-1), that

C.jk; �k/�
�.�k.˛

kˇ//

�.jk.˛
kˇ//

�
2 log 2�k�R

2 log p
p
kCRC 1

;

which accumulates only to values � p as k!C1. Since p was arbitrary, we see
that .j 0; �0/ 7! C.j 0; �0/ is not even bounded near .j; �/.

10.11 The condition C.j; �/ < 1 is not open in dimension n� 4

We finally give an example, in dimension nD 4, where

C.j; �/ < 1 < lim inf
k

C.jk; �k/

for .jk; �k/! .j; �/ with j and jk geometrically finite of the same cusp type, with a
cusp of rank 1, and with �k (and �) cusp-deteriorating. This proves that condition (1)
of Proposition 6.1 need not be satisfied for n� 4 when there is a cusp of rank < n�2.

Let �0 be a free group on two generators ˛ and ˇ , and let j and jk be as in
Section 10.10. We take a representation � 2 Hom.�0; G/ such that
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� �.˛/D 1 2G ;
� �.ˇ/ is a pure translation along some line ` of H4 .

Since �.�0/ is contained in the stabilizer of `, multiplying the translation length
of �.ˇ/ by some constant " > 0 multiplies the translation length of all elements �./
by ". Therefore, up to taking �.�.ˇ// small enough, we may assume C.j; �/ < 1.
Up to conjugating � , we can furthermore assume that there exist � , � 2R3 (distance
2 cosh

�
1
2
�.�.ˇ//

�
apart by (A-12)) such that �.ˇ/ takes � to1, 1 to � and P� to P� .

We still normalize to �D .0; 0; 0/ for convenience. We then take �k 2 Hom.�0; G/
such that

� �k.˛/ is an elliptic transformation fixing pointwise the hyperbolic 2–plane
bordered by the line `0

k
WD f0g �R� f

p
kg of R3 (compactified at 1), and

acting as a rotation of angle �=k in the orthogonal direction;
� �k.ˇ/D �.ˇ/.

Clearly �k.˛/! �.˛/ as k!C1, since this holds in restriction to any horosphere
centered at 1 (such a horosphere is stable under �k.˛/). This time, �k.˛kˇ/ takes �
to 1, 1 to �k.˛k/.�/D .0; 0; 2

p
k/ and P� to P�k.˛k/.�/ , hence

�.�k.˛
kˇ//� 2 log 2

p
k�R

by (A-11). Using (10-3), we obtain

C.jk; �k/�
�.�k.a

kb//

�.jk.a
kb//

�
2 log 2

p
k�R

2 log p
p
kCRC 1

;

which accumulates only to values � 1
2
p as k ! C1. Since p was arbitrary, we

see that .j 0; �0/ 7! C.j 0; �0/ is not bounded near .j; �/, even in restriction to cusp-
deteriorating �0 .

Appendix A: Some hyperbolic trigonometry

We collect a few well-known formulas in hyperbolic trigonometry, from which we
derive several formulas used at various places in the paper.

A.1 Distances in H2 and H3

Let n D 2 or 3. We use the upper half-space model of Hn ; if n D 2, then Hn '

fz 2C j Im.z/ > 0g, the hyperbolic metric is given by

ds2 D
djzj2

Im.z/2
;
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the isometry group G of Hn identifies with PGL2.R/ acting by Möbius transforma-
tions, and @1Hn 'R[f1g. If nD 3, then Hn 'C�R�

C
, the hyperbolic metric is

given by

ds2 D
djaj2C db2

b2

for .a; b/2C�R�
C

, the identity component G0 of G identifies with PSL2.C/, which
acts on the boundary @1Hn 'C[f1g by Möbius transformations, and this action
extends in a natural way to Hn . The matrix

T� WD

�
e�=2 0

0 e��=2

�
2G0

defines a translation of (complex) length � along the geodesic line with endpoints
0, 12 @1Hn . Set p0 WD

p
�12Hn if nD 2, and p0 WD .0; 1/2Hn if nD 3. Then

R� WD

�
cos.�=2/ sin.�=2/
� sin.�=2/ cos.�=2/

�
2G0

defines a rotation of angle � around p0 if n D 2, and around the geodesic line
(containing p0 ) with endpoints ˙

p
�1 2 @1Hn if nD 3. The stabilizer of p0 in G0

is K D PSO.2/ if nD 2, and K D PSU.2/ if nD 3. For any g D
�
a
c
b
d

�
2G0 ,

(A-1) 2 cosh d.p0; g �p0/D
�a b

c d

�2 WD jaj2Cjbj2Cjcj2Cjd j2:
Indeed this holds for g D T� and the right-hand side is invariant under multiplication
of g by elements of K on either side (recall the Cartan decomposition G0 DKAK
for A WD fT� j � 2Rg; see Section 7.3). Suppose nD 2; applying (A-1) to

g D

�
v1=2 uv�1=2

0 v�1=2

�
;

we find in particular that, for any u, v 2R with v > 0,

(A-2) d.
p
�1; uC

p
�1v/D arccosh

�
u2C v2C 1

2v

�
:

A.1.1 Horospherical distances Applying (A-1) to g D
�
1
0
L
1

�
, we see that for any

points p and q on a common horosphere @H , the distance d.p; q/ from p to q in
Hn and the distance LD d@H .p; q/ of the shortest path from p to q contained in the
horosphere @H (“horocyclic distance”) satisfy

(A-3) d.p; q/D arccosh
�
1C 1

2
d@H .p; q/

2
�
D 2 arcsinh

�
1
2
d@H .p; q/

�
:
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Let t 7! pt and t 7! qt be the geodesic rays from p and q to the center � 2 @1Hn

of the horosphere @H , parametrized by arc length. Then

(A-4) d@Ht .pt ; qt /D e
�t d@H .p; q/

for all t � 0, where @Ht is the horocycle through pt and qt centered at � . Using
(A-3) and the concavity of arcsinh, we find that there exists D > 1 such that

(A-5) e�t d.p; q/� d.pt ; qt /�De
�t d.p; q/

for all t � 0; moreover, an upper bound on d.p; q/ yields one on D .

A.1.2 Distances in two ideal spikes of H2 The following situation is considered in
the proof of Proposition 9.4. Let �1¤ �2¤ �3¤ �4 be points of @1H2 , not necessarily
all distinct. Let Di�1 , Di and DiC1 be the geodesic lines of H2 running from �1
to �2 , from �2 to �3 and from �3 to �4 , respectively. Consider two points x 2Di�1
and x0 2Di on a common horocycle centered at �2 and let � � 0 be their horocyclic
distance. Similarly, consider two points y 2DiC1 and y0 2Di on a common horocycle
centered at �3 and let �� 0 be their horocyclic distance. Setting L WD d.x0; y0/, we
have

(A-6) d.x; y/D LC �2C �2C o.�2C �2/

as �2C �2C e�L! 0. Indeed, by (A-1),

cosh d.x; y/D 1

2

�1 0� 1
�
TL

�
1 ��

0 1

�2 D coshLC .sinhL/ � .�2C �2/.1C o.1//

and we conclude using the degree-1 Taylor series of cosh at L.

A.1.3 Distances in a prism in H3 The following situation is considered in the proof
of Lemma 5.13. Consider a geodesic segment I of H3 , of length �� 0, together with
two oriented geodesic lines ` and `0 of H3 meeting I orthogonally at its endpoints,
and forming an angle � 2 Œ0; �� with each other. Note that I is the shortest geodesic
segment between ` and `0 ; the complex number L WD � C i� 2 C is called the
complex distance between ` and `0 and will be expressed in terms of cross-ratios in
Appendix A.1.4. For now, let us compute the distance between points p 2 ` and q 2 `0 ,
at respective signed distances s and t from I . Note that T 0s WDR�=2TsR��=2 2G0 is
a translation of length s along the geodesic line from �12 @1H3 to 12 @1H3 , which
intersects the translation axis of TL (with endpoints 0;12 @1H3 ) perpendicularly at
the basepoint p0D .0; 1/ 2H3 . Define g WD T 0�sTLT

0
t . Without loss of generality, we

may assume that p D p0 and q D g �p , and that I D ŒT 0�s �p0; T
0
�sTL �p0�. Using
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(A-1) and the identities 2
ˇ̌
cosh L

2

ˇ̌2
D cosh �C cos � and 2

ˇ̌
sinh L

2

ˇ̌2
D cosh �� cos � ,

this gives

(A-7) cosh d.p; q/D cosh � cosh s cosh t � cos � sinh s sinh t:

When �D 0 and � D 0 or � we recover the formulas for cosh.s˙ t /.

When �D 0 and s D t , we find that points p and q on a circle of radius s , forming
an angle � from the center, are a distance �� sinh.s/ apart when � is small. This
estimate is needed in the proof of Lemma 6.4: approaching the arc of circle C from p

to q with a union of short geodesic segments, we find, in the limit,

(A-8) length.C /D � sinh r:

When � D 0 and s D t , we find that points p and q at (signed) distance s from a
straight line A of H2 , whose projections to A are distance � apart, satisfy

(A-9) d.p; q/� � cosh s

when � is small. (This situation is considered in the proof of Claim 10.1.)

A.1.4 Line-to-line distances For any �� , �C , � 0� , � 0
C
2 @1H3 , the complex dis-

tance LD �C i� between the oriented lines .��; �C/ and .� 0�; �
0
C
/ satisfies

(A-10) cosh �D
1Cjcj

j1� cj
and cos � D

1� jcj

j1� cj
;

where c WD Œ�� W �C W � 0� W �
0
C
� is the cross-ratio of �� , �C , � 0� and � 0

C
, defined so that

Œ1W 0 W 1 W ��D � . Indeed, by invariance under the action of G0 , it is sufficient to check
(A-10) when .��; �C/D .�1; 1/ and the shortest geodesic segment between .��; �C/
and .� 0�; �

0
C
/ is contained in .0;1/. In this case, .� 0�; �

0
C
/ is of the form .�z; z/ for

some z 2C� and we have 8<:
cosh �D 1

2
.jzjC jzj�1/;

cos � D Re.z=jzj/;
c D .1� z/2=.1C z/2I

it is then elementary to check that (A-10) holds.

Now let n� 2 be arbitrary and consider as above the upper half space model of Hn ,
so that @1Hn identifies with Rn�1[ f1g. In Sections 10.10 and 10.11 we use the
following consequence of (A-10): there exists R > 0 such that for any D � 2, any
� , �2Rn�1�@1Hn distance D apart for the Euclidean metric, and any g2 Isom.Hn/,
if g.�/D1D g�1.�/ and if g maps the unit hemisphere (geodesic hyperplane) P�
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centered at � to the unit hemisphere P� centered at �, then g is hyperbolic and its
translation length �.g/ satisfies

(A-11) j�.g/� 2 logDj �R:

Indeed, by (A-10) the hyperbolic distance between the closest points of P� and P� is

(A-12) 2 arccosh
�
1
2
D
�
;

and the point of intersection of P� with the line .�;1/ is at hyperbolic distance
2 arcsinh

�
1
2
D
�

from P� \ .�;1/ by (A-3). The translation length �.g/ is bounded
in-between these two values, which are both 2 logDCO.1/.

A.2 Relations in a right-angled hyperbolic triangle

Consider a triangle ABC in H2 with angles yA, yB and yC and opposite edge lengths
a , b and c . Suppose yB D �

2
. Then

(A-13) tan yAD
tanh a
sinh c

; cos yAD
tanh c
tanh b

and sin yAD
sinh a
sinh b

:

Indeed, let .˛; ˇ; / WD .ea=2; eb=2; ec=2/ and .X; Y / WD
�
cos 1

2
yA; sin 1

2
yA
�
; following

the perimeter of the triangle in the order C , A, B , C shows that

T�bR yATcR��=2Ta D

0B@X
˛

ˇ
CY

˛

ˇ
�X



˛ˇ
CY

1

˛ˇ

X
˛ˇ


�Y

˛ˇ

1
X
ˇ

˛
CY

ˇ

˛

1CA
must be (projectively) a rotation matrix, namely R

� yC
. After multiplying all entries

by ˛ˇ , this means

˛2.X2CY /D ˇ2.X CY2/ and ˛2ˇ2.X �Y2/DX2�Y:

It follows that

tanh aD
˛2�˛�2

˛2C˛�2
D

ˇ2 XCY
2

X2CY
�ˇ2 X�Y

2

X2�Y

ˇ2 XCY
2

X2CY
Cˇ2 X�Y

2

X2�Y

D
2� �2

2

2XY

X2�Y 2
D sinh c tan yA
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and

tanh b D
ˇ2�ˇ�2

ˇ2Cˇ�2
D

˛2X
2CY

XCY2
�˛2 X�Y

2

X2�Y

˛2X
2CY

XCY2
C˛2 X�Y

2

X2�Y

D
2� �2

2C �2
X2CY 2

X2�Y 2
D

tanh c

cos yA
:

The last identity in (A-13) follows from the first two and from the Pythagorean identity
cosh b D cosh a cosh c , which is just (A-7) for .�; �/D

�
0; �
2

�
.

As a consequence of the last identity in (A-13), if x and y are two points on a circle
of radius r in H2 , forming an angle � from the center, then

(A-14) sin �
2
D

sinh
�
1
2
d.x; y/

�
sinh r

:

A.3 The closing lemma

Finally, we recall the following classical statement; see [2, Theorem 4.5.15] for a proof.

Lemma A.1 For any ı > 0 and D > 0 , there exists " > 0 with the following property:
given any broken line LD p0 � � �pkC1 in Hn , if d.pi ; piC1/ �D for all 1 � i < k
and if the angle 5pi�1pipiC1 is at least � � " for all 1 � i � k , then L stays within
distance ı from the segment Œp0; pkC1�, and has total length at most d.p0; pkC1/Ckı .
Moreover, when ı is fixed, "D ı will do for all large enough D .

Taking limits as k!C1, this implies in particular that, for a broken line .pi /i2Z

invariant under a hyperbolic element g 2G taking each pi to piCm , under the same
assumptions on length and angle we haveˇ̌̌̌

�.g/�

mX
iD1

d.pi ; piC1/

ˇ̌̌̌
�mı:

Appendix B: Converging fundamental domains

Let �0 be a discrete group. It is well known that, in any dimension n � 2, the
set of convex cocompact representations of �0 into G D PO.n; 1/ D Isom.Hn/ is
open in Hom.�0; G/ (see [8, Proposition 4.1] for instance). The set of geometrically
finite representations is open in the set of representations �0!G of fixed cusp type
if n� 3 [38], or if all cusps have rank � n� 2 [8, Proposition 1.8], but not in general
for n� 4 [8, Section 5].
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In Sections 6.1.1 and 6.2 of the paper, where we examine the continuity properties
of the function .j; �/ 7! C.j; �/, we need not only this openness, but also a control
on fundamental domains in Hn for converging sequences of geometrically finite
representations. Propositions B.1 and B.3 below are certainly well known to experts,
but we could not find a proof in the literature. Note that they easily imply the Hausdorff
convergence of the limit sets, but are a priori slightly stronger.

B.1 The convex cocompact case

Proposition B.1 Let �0 be a discrete group and .jk/k2N� a sequence of elements of
Hom.�0; G/ converging to a convex cocompact representation j 2 Hom.�0; G/. Then
for any large enough k 2N� the representation jk is convex cocompact. Moreover,
there exists a compact set C �Hn that contains fundamental domains of the convex
cores of j.�0/nHn and jk.�0/nHn for all large enough k 2N� . If �0 is torsion-free,
then the injectivity radius of jk.�0/nHn is bounded away from 0 as k!C1.

Proposition B.1 for torsion-free �0 implies the general case, due to the Selberg lemma
[47, Lemma 8]. We henceforth assume �0 to be torsion-free.

Proof We build fundamental domains as finite unions of simplices coming from
j.�0/–invariant triangulations; the main step is the following:

Claim B.2 There exists a j.�0/–invariant geodesic triangulation � of a nonempty
convex subset of Hn which is finite modulo j.�0/ and induces dihedral angles < �
on the boundary.

Let us prove Claim B.2 (note that the projection of � to M WD j.�0/nHn will auto-
matically contain the convex core). The idea is to use a classical construction, the
hyperbolic Delaunay decomposition (an analogue of the Euclidean Delaunay decom-
position of [17]), and make sure that it is finite modulo j.�0/. Let N � Hn be
the preimage of the convex core of M D j.�0/nHn and let N be the uniform 1–
neighborhood of N. For R � 0, we call an R–hyperball of Hn any convex region
of Hn bordered by a connected hypersurface at constant distance R from a hyperplane.
Since N is the intersection of all half-spaces containing N, we see that N is the
intersection of all 1–hyperballs containing N . By the strict convexity of the distance
function in Hn , there exists ˛>0 such that, whenever points p and q of a 1–hyperball
are distance � 1 apart, the ball of radius ˛ centered at the midpoint of Œp; q� is also
contained in the 1–hyperball. Therefore, whenever p , q 2N are distance � 1 apart,
the ball of radius ˛ centered at the midpoint of Œp; q� is also contained in N .
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Let X be a j.�0/–invariant subset of N that is finite modulo j.�0/ and intersects
every ball of radius � 1

2
˛ centered at a point of N . We view X as a subset of RnC1

via the embedding of Hn as the upper hyperboloid sheet

H WD fx 2RnC1 j x21 C � � �C x
2
n � x

2
nC1 D�1 and xnC1 > 0g:

Consider the convex hull yX of X in RnC1 . There is a natural bijection between the
following two sets:

� The set of supporting hyperplanes of yX separating X from 0 2RnC1 .

� The set of open balls, horoballs, or hyperballs of Hn that are disjoint from X

but whose boundary intersects X .

Namely, the bijection is given by taking any supporting hyperplane to the set of points
of H that it separates from X (see Figure 24). This set is a ball (resp. horoball,
hyperball) if the intersection of H with the supporting hyperplane is an ellipsoid
(resp. paraboloid, hyperboloid). The degenerate case of a supporting hyperplane tangent
to H corresponds to an open ball of radius 0 (the empty set!) centered at a point of X ;
the limit case of a supporting hyperplane containing 0 2 RnC1 corresponds to a
0–hyperball, ie a half-space of Hn .

H

H2

Figure 24: Balls, horoballs and hyperballs of Hn are intersections of the
hyperboloid sheet H with affine half-spaces of RnC1 containing the origin.

For any supporting hyperplane of yX , the corresponding open ball, horoball or hyperball
B � Hn intersects N in a region of diameter � 1. Indeed, if p , q 2 B \N were
distance > 1 apart, then the ball B 0 of radius ˛ centered at the midpoint of Œp; q�
would be contained in N , by the choice of ˛ . But at least one hemisphere of B 0 (the
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hemisphere closest to the center or to the defining hyperplane of B , depending on
whether B is a (horo)ball or a hyperball) would also be contained in B . A ball of
radius 1

2
˛ contained in this hemisphere would intersect X (by assumption on X ),

while being contained in B : impossible. Thus @B\N has diameter � 1. In particular,
@B \X has diameter � 1. In particular, @B \X is finite.

Let Y � @ yX be the union of all points that belong to supporting hyperplanes separating
X from 0 2 RnC1 . (In other words, Y is the portion of @ yX that is “visible from
the origin”. There can also be an “invisible” portion, corresponding to hyperballs
whose complement is disjoint from X .) By the previous paragraph, Y has the structure
of a locally finite polyhedral hypersurface in RnC1 , with vertex set X . Projecting
each polyhedron of Y to the hyperboloid H'Hn (along the rays through the origin
0 2RnC1 ), we obtain a cellulation � of the convex hull Conv.X/ of X in Hn , called
the Delaunay cellulation of Conv.X/ relative to X . It is characterized by the fact
that any cell of � is inscribed in a hypersurface of Hn bounding some open ball,
horoball or hyperball disjoint from X . The cellulation � is j.�0/–invariant and finite
modulo j.�0/. Since j.�0/ is torsion-free, up to taking the points of X in general
position we may assume that � is a triangulation and induces dihedral angles < � on
the boundary of yX . This completes the proof of Claim B.2.

Proposition B.1 easily follows from Claim B.2. Indeed, let F � Hn be a finite set
such that X D j.�0/ �F . The vertices of a d –dimensional simplex of the triangulation
� can be listed in the form j.0/ � p0; : : : ; j.d / � pd , where p0; : : : ; pd 2 F and
0; : : : ; d 2 �0 . By finiteness of the triangulation, when jk is close enough to j the
points jk.0/ �p0; : : : ; jk.d / �pd still span a simplex and these simplices (obtained by
following the combinatorics of �) still triangulate a region of Hn that is locally convex,
hence globally convex. In particular, this region of Hn contains the preimage of the
convex core of jk.�0/nHn . Thus jk.�0/ is still convex cocompact for large k 2N� .
Any compact neighborhood C of a union U of representatives of simplex orbits of �
under j.�0/ contains a fundamental domain of the convex core of jk.�0/nHn for all
large enough k .

To bound the injectivity radius of jk.�0/nHn away from 0, we argue as follows. For
any p 2 F , let Up be the union of all simplices of � containing p . Then p is an
interior point of Up . Provided X is dense enough in N , each Up projects injectively to
M D j.�0/nHn . For " > 0, let U "p be the complement in Up of the "–neighborhood
of @Up . If " is small enough, then any point of � has a translate belonging to some U "p
with p 2 F , whose "–neighborhood therefore projects injectively to M. This property
remains true as � (hence the finitely many sets Up ) are deformed slightly, up to taking
a smaller ". This completes the proof of Proposition B.1.
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Note that in the above proof, for torsion-free �0 , the hyperbolic manifolds jk.�0/nHn

and j.�0/nHn are in fact homeomorphic since their convex cores admit combinatorially
identical triangulations.

B.2 The geometrically finite case when all cusps have rank � n� 2

Here is an analogue of Proposition B.1 for geometrically finite representations of fixed
cusp type with all cusps of rank � n� 2. Note that cusps always have rank � n� 2 in
dimension n� 3.

Proposition B.3 Let �0 be a discrete group, j 2 Hom.�0; G/ a geometrically finite
representation with all cusps of rank � n� 2, and .jk/k2N� a sequence of elements of
Hom.�0; G/ converging to j , all of the same cusp type as j (Definition 1.1). Then for
any large enough k 2N� the representation jk is geometrically finite, and .jk/k2N

converges geometrically to j . More precisely, if H1; : : : ;Hc are horoballs of Hn

whose images in j.�0/nHn are disjoint, small enough and intersect the convex core
in standard cusp regions (Definition 2.2), representing all the cusps, then there exist a
compact set C �Hn and, for any large enough k 2N� , horoballs Hk

1 ; : : : ;H
k
c of Hn ,

such that:

� The images of Hk
1 ; : : : ;H

k
c in jk.�0/nHn are disjoint and intersect the convex

core in standard cusp regions.
� The stabilizer in �0 of Hk

i under jk is the stabilizer in �0 of Hi under j for
all 1� i � c .

� The horoballs Hk
i converge to Hi for all 1� i � c as k!C1.

� The union of C and of H1[� � �[Hc (resp. Hk
1 [� � �[H

k
c ) contains a fundamental

domain of the convex core of j.�0/nHn (resp. jk.�0/nHn ).
� The union of all geodesic rays from C to the centers of H1; : : : ;Hc (resp.
Hk
1 ; : : : ;H

k
c ) contains a fundamental domain of the convex core of j.�0/nHn

(resp. jk.�0/nHn ); in particular, the cusp thickness (see Definition 5.12) of
jk.�0/nH

n at any point of
S
1�i�c @H

k
i is uniformly bounded by some constant

independent of k .

Moreover, if j.�0/ is torsion-free, then the infimum of injectivity radii of jk.�0/nHn

at projections of points of C is bounded away from 0 as k!C1.

Again, we can and will assume that �0 is torsion-free. Proposition B.3 fails in dimension
n � 4 when j has a cusp of rank < n� 2, as can be seen from [8, Section 5] or by
adapting the examples of geometrically finite representations jk from Sections 10.10
and 10.11.
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In order to prove Proposition B.3, we need the following lemma, which is also used in
Section 6.2:

Lemma B.4 Let j 2 Hom.�0; G/ be a geometrically finite representation with all
cusps of rank � n� 2, and let N �Hn be a uniform neighborhood of the preimage
N of the convex core of j.�0/nHn . For any horoball H of Hn such that H \N
projects to a standard cusp region and such that the cusp thickness (Definition 5.12) of
j.�0/nHn at any point of H is at most 1

3
, the set @H \N is convex in @H 'Rn�1 ,

equal to

� the full Euclidean space @H if the cusp has rank n� 1;

� the region contained between two parallel (possibly equal) Euclidean hyperplanes
of @H if the cusp has rank n� 2.

Proof of Lemma B.4 The stabilizer S � �0 of H under j has a finite-index normal
subgroup S 0 isomorphic to Zm , where m 2 fn � 1; n � 2g is the rank of the cusp
(see Section 2.1). In the upper half-space model Rn�1 �R�

C
of Hn , in which @1Hn

identifies with Rn�1 [ f1g, we may assume that H is centered at infinity, so that
@H DRn�1�fbg for some b > 0. Let � be the convex hull of ƒj.�0/Xf1g in Rn�1 ,
where ƒj.�0/ is the limit set of j.�0/. The group j.S/ acts on Rn�1 by Euclidean
isometries and there is an m–dimensional affine subspace V ��, preserved by j.S/,
on which j.S 0/ acts as a lattice of translations (see Section 2.1). This implies that � is
either Rn�1 (if mD n� 1) or the region contained between two parallel hyperplanes
of Rn�1 (if m D n� 2). Let ı > 0 be the Euclidean diameter of j.S/n�. Then ı
is the cusp thickness of j.�0/nHn at Rn�1 � f1g, or alternatively the cusp thickness
of j.�0/nHn is at most 1

3
exactly on Rn�1 � Œ3ı;C1/. Every j.S/–orbit in � is

ı–dense in �. Lemma B.4 reduces to

(B-1) N \ .Rn�1 � Œ3ı;C1//D�� Œ3ı;C1/:

The left-hand side is always contained in the right-hand side since N is the convex
hull in Hn of the limit set ƒj.�0/ . For the converse, suppose a point p 2��R�

C
lies

outside N. Then p belongs to a closed half-space D of Hn disjoint from N, whose
ideal boundary @1D is a Euclidean .n�1/–dimensional ball disjoint from ƒj.�0/ .
If @1D is centered inside � (eg if mD n� 1), then @1D has radius < ı because
ƒj.�0/ is ı–dense in �. This yields p 2�� .0; ı/��� .0; 3ı/, as desired.

Now suppose @1D is centered outside �; this may only happen if mD n� 2. Let P
be the connected component of @� closest to the center of @1D , and P 0 the other
component: P and P 0 are parallel hyperplanes of Rn�1 both intersecting ƒj.�0/ (and
possibly equal, if j.�0/ preserves a copy of Hn�1 ). We claim that P \ƒj.�0/ is
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3ı–dense in P : indeed, fix � 2 P \ƒj.�0/ . If j.S/ � � � P (in particular if P D P 0 )
we are done, as j.S/ � � is already ı–dense in �. If not, since j.S/ � � � P [P 0 we
can choose � 0 2 j.S/ � � \P 0 . Let S 0 � S be the stabilizer of P , which has index
two in S , so that j.S 0/n� has twice the Euclidean volume of j.S/n�. Let U and
U 0 be (closed) Dirichlet fundamental domains of j.S/n� for the Euclidean metric,
centered at � and � 0 respectively. Any lifts of U and U 0 to j.S 0/n� must overlap,
because of their total volume. Since U and U 0 are contained in ı–balls centered at �
and � 0 , this shows that � and � 0 are at most 2ı apart in the quotient j.S 0/n�. Since
j.S/ � � D j.S 0/ � f�; � 0g is ı–dense in �, we get that j.S 0/ � � � P is 3ı–dense (and
contained in P \ƒj.�0/ ).

The intersection @1D\P , being disjoint from ƒj.�0/ , is therefore an .n�2/–dimen-
sional Euclidean ball of radius < 3ı . Since the hemisphere D is centered outside �,
this shows that D does not achieve any height � 3ı inside ��R�

C
. In particular,

p 2D\ .��R�
C
/��� .0; 3ı/. This proves (B-1).

Proof of Proposition B.3 We proceed as in the proof of Proposition B.1 and first
establish the following analogue of Claim B.2:

Claim B.5 There exists a j.�0/–invariant geodesic triangulation � of a nonempty
convex subset of Hn with the following properties:

� � is finite modulo j.�0/, with vertices lying both in Hn and in @1Hn .

� The vertices in @1Hn are exactly the parabolic fixed points of j.�0/.

� No edge of � connects two such (ideal) vertices.

� In a neighborhood of a parabolic fixed point � of rank n� 2, the boundary of �
consists of two totally geodesic hyperplanes of Hn meeting only at � .

Let N �Hn be the uniform 1–neighborhood of the preimage N of the convex core of
M D j.�0/nHn . Let X be a j.�0/–invariant subset of N that is locally finite modulo
j.�0/ and intersects every ball of diameter � ˛ centered at a point of N , where ˛ > 0
is chosen as in the proof of Claim B.2: whenever points p and q of a 1–hyperball
of Hn are distance � 1 apart, the ball of radius ˛ centered at the midpoint of Œp; q� is
also contained in the 1–hyperball. By a similar argument to the proof of Claim B.2,
the Delaunay cellulation � of Conv.X/ with respect to X is locally finite, with all
cells equal to compact polyhedra of diameter � 1. It remains to make � finite modulo
j.�0/ by modifying it inside each cusp. For this purpose, we choose X carefully.

Let H1; : : : ;Hc be open horoballs of Hn , centered at points �1; : : : ; �c 2 @1Hn ,
whose images in j.�0/nHn are disjoint and intersect the convex core in standard cusp
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regions, representing all the cusps. We take these horoballs at distance > 2 from
each other in j.�0/nHn , and small enough so that the conclusions of Lemma B.4 are
satisfied. Choose the j.�0/–invariant, locally finite set X in general position subject
to the following constraints:

(�) X X
Sc
iD1 @Hi stays at distance � ˛0 from @N and from each @Hi , for some

˛0 2 .0; ˛/ to be determined below.

(��) For any 1 � i � c , the set X \ @Hi intersects any ball of Hn of radius 1
2
˛0

centered at a point of @Hi \N .

(���) If the stabilizer of Hi has rank n� 2, then X intersects any Euclidean ball
of radius 1

8
˛0 in the boundary of @Hi \N in @Hi ' Rn�1 , while all other

points of X in @Hi \N are at distance � 1
4
˛0 from the boundary of @Hi \N

(which by Lemma B.4 consists of two parallel .n�2/–dimensional Euclidean
hyperplanes of @Hi ).

Qualitatively, this implies X is especially concentrated on the horospheres @Hi and
even more on @N \ @Hi , but with a little buffer around these high-concentration
regions.

Consider the Delaunay cellulation � of Conv.X/ with respect to such a set X . Suppose
two vertices x and y of a given cell of � (inscribed in a hypersurface bounding an
open ball, horoball or hyperball B of Hn disjoint from X ) lie on opposite sides of
one of the horospheres @Hi . By (�), the points x and y lie at distance � ˛0 from @N ,
hence so does the intersection point fzgD Œx; y�\@Hi . But at least one half of the ball
of radius ˛0 centered at z is contained in B , hence B \X ¤∅ by (��); impossible.
Therefore the given cell of � either has all its vertices in the closure of Hi or has all
its vertices in Hn XHi . We can thus partition the cells of � (of any dimension) into

� interface cells, with all their vertices in some j./ � @Hi ;

� thin-part cells, with all their vertices in the closure of some j./ �Hi (not all in
the horosphere j./ � @Hi );

� thick-part cells, with all their vertices in Hn X j.�0/ �
Sc
iD1Hi (not all in the

horospheres j./ � @Hi ).

Consider the Euclidean Delaunay cellulation �@Hi of the Euclidean convex hull of
X\@Hi in @Hi , with respect to X\@Hi , in the classical sense (see [17]); by definition,
any cell of �@Hi is inscribed in some Euclidean sphere bounding an open Euclidean
ball of @Hi disjoint from X \ @Hi .

Claim B.6 The geodesic straightenings of the Euclidean triangulations �@Hi give
exactly the interface cells.
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Proof For any interface cell W of �, the projection of W to @Hi is a cell of �@Hi .
Indeed, if W is inscribed in an open ball, horoball or hyperball B of Hn disjoint
from X , then the projection of W is inscribed in B \ @Hi , which is a Euclidean ball
(or half-plane) of @Hi disjoint from X .

Conversely, for any cell WE of �@Hi , the geodesic straightening of WE is contained
in � as an interface cell. Indeed, suppose WE is inscribed in an open Euclidean ball
BE of @Hi , disjoint from X \@Hi and centered in @Hi \N . By (��), the hyperbolic
ball B concentric to BE such that B \@Hi DBE has radius � 1

2
˛0 , hence is disjoint

from X by (�), which means that the geodesic straightening of WE is contained in �.
Therefore, we just need to see that WE is always inscribed in such a ball BE .

If Hi has rank n� 1, this follows from the fact that @Hi \N D @Hi by Lemma B.4.
If Hi has rank n� 2, this follows from (���): if WE is inscribed in a Euclidean
open ball B 0E of @Hi , disjoint from X \ @Hi and centered outside @Hi \N , then
X\@B 0E is contained in a boundary component P of N\@Hi (an .n�2/–dimensional
Euclidean hyperplane by Lemma B.4) and WE is inscribed in another ball BE of @Hi ,
still disjoint from X , but centered at the projection of p to P .

In fact, (���) also implies that the Euclidean Delaunay cellulation �P of P with
respect to X \ P is contained in �@Hi . Up to taking the points of X in generic
position in P , in @Hi , and in Hn , we can make sure that all three Delaunay cellulations
�P ��@Hi �� (where the last inclusion holds up to geodesic straightening) are in
fact triangulations.

It follows from the comparison between hyperbolic and Euclidean Delaunay cellulations
above that any geodesic ray escaping to the point at infinity �i 2 @1Hn of the cusp
crosses the interface cells at most once. Therefore the thin-part cells form a star-shaped
domain relative to �i . We now modify � by removing all thin-part simplices and
coning the interface simplices of �@Hi off to �i . We repeat for each cusp (these
operations do not interfere, since the distance between two horoballs Hi is larger
than twice the diameter of any cell), and still denote by � the resulting complex (see
Figure 25); it is now finite modulo j.�0/.

To complete the proof of Claim B.5, we must check that the new complex � is still
convex. This is clear at the cusps of rank n� 1, since the corresponding Hi satisfy
N \Hi D Hi by Lemma B.4. At a cusp of rank n� 2, above the interface �@Hi
(which is convex in @Hi by the above discussion), the boundary of � consists of two
geodesic hyperplanes tangent at infinity (by Lemma B.4), and is therefore convex. At
the boundary of �@Hi , dihedral angles are convex because they already were before
removal of the thin simplices. This completes the proof of Claim B.5.
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x0

x1

x2

y0

y1

@Hi

@1H3
j.S 0/

@N

Figure 25: The triangulation � in a rank-1 cusp bounded by a horosphere
@Hi centered at 1 in the upper half-space model of H3 . At great height, the
uniform neighborhood N of the convex core is bounded by just two oblique
Euclidean planes. To simplify the picture, we have chosen X to intersect each
boundary line P of N \ @Hi in only one j.S 0/–orbit, .xs/s2Z or .ys/s2Z .
Since j.S 0/ is unipotent, the triangles .1; xs; xsC1/ are coplanar. In the
center we showed a thick-part tetrahedron and a thin-part tetrahedron (after
coning off) which share an interface triangle.

We now deduce Proposition B.3 from Claim B.5. As above, let H1; : : : ;Hc be horoballs
of Hn , centered at points �1; : : : ; �c 2 @1Hn , whose images in j.�0/nHn are disjoint
and intersect the convex core in standard cusp regions, representing all the cusps. Let
p1; : : : ; pr 2Hn be orbit representatives of the vertices of � lying in Hn . For 1� i � c
and k 2N� , let �ki 2 @1Hn be the fixed point of jk.Si /, where Si is the stabilizer
in �0 of �i under j . Since converging parabolic elements have converging fixed points,
.�ki /k2N� converges to �i for all 1� i � c . We can thus find horoballs Hk

i centered
at �ki that converge to Hi . Whenever the corresponding cusp has rank n � 2, the
direction of the jk.Si /–invariant .n�2/–planes in @Hk

i converges to the direction of
the j.Si /–invariant .n�2/–planes in @Hi . For 1� i � r , we also choose a sequence
.pki /k2N� of points of Hn , converging to pi , such that if Œj./ �pi ; j. 0/ �pi 0 � is a
boundary edge of �@Hi (such as Œx0; x1� in Figure 25), then jk./ �pki and jk. 0/ �pki 0
belong to a horocycle of @Hk

i contained in some jk.Si /–stable .n�2/–plane of @Hk
i .

(Inside each boundary component of j.Si /n�@Hi , it is enough to enforce this condition
over boundary edges that form a spanning tree in the quotient.)
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The simplices spanned by the jk.�0/ �pki and jk.�0/ � �ki , following the combinatorics
of �, still locally form a triangulation for large k , because there are only finitely many
orbits of simplices to check. It remains to check that the jk.�0/–invariant collection
�k of such simplices triangulates a convex region. This can be ensured locally, at
every codimension-2 face W contained in the boundary of �. If W is compact, then
the dihedral angle of �k at W goes to that of �, which is strictly convex. If W has an
ideal vertex �i , then @� is flat at W by Claim B.5, and @�k is flat by choice of the pki .
Therefore �k triangulates a convex region, which necessarily contains the convex core
of jk.�0/nHn . In particular, jk.�0/ is still geometrically finite for large k (in the
absence of torsion, the quotient hyperbolic manifolds are in fact homeomorphic since
their convex cores admit combinatorially identical triangulations). For the compact
set C of Proposition B.3, we can take a neighborhood of a union of orbit representatives
of the compact simplices of �. To bound injectivity radii away from 0, we argue as in
the convex cocompact case, but in restriction to thick-part simplices only.

Appendix C: Open questions

Here we collect a few open questions, organized by themes; some of them were already
raised in the core of the paper.

C.1 General theory of extension of Lipschitz maps in H2

Does there exist a function F W .0; 1/! .0; 1/ such that for any compact subset K of H2

and any Lipschitz map 'W K!H2 with Lip.'/<1 , there is an extension f W H2!H2

of ' with Lip.f / � F.Lip.'//? By controlling the sizes of the neighborhoods Up
in the proofs of Proposition 3.7 and Lemma 3.8, it is possible to deal with the case
where a bound on the diameter of K has been fixed a priori. An encouraging sign for
unbounded K is that in Example 9.6, where K consists of three equidistant points,
CK;'.j; �/D Lip.'/Co.1/ as the diameter of K goes to infinity with Lip.'/ 2 .0; 1/
fixed.

Fix a compact subset K of H2 and a Lipschitz map 'W K!H2 . Is it possible to find
an extension f W H2!H2 of ' with minimal Lipschitz constant CK;'.j; �/ which is
optimal in the sense of Definition 4.12 and satisfies Lipp.f /D Lipp.'/ for all points
p 2K outside the relative stretch locus EK;'.j; �/?

Under the same assumptions, if C WD CK;'.j; �/ < 1, is it true that, for any p

in EK;'.j; �/ XK , there exists a point q ¤ p such that Œp; q� is C –stretched, ie
d.f .p/; f .q//D Cd.p; q/? By definition of the relative stretch locus, some segments
near p are nearly C –stretched, but it is not clear whether we can take p as an endpoint.
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C.2 Geometrically infinite representations j in dimension nD 3

Does Theorem 1.8 hold for finitely generated �0 but geometrically infinite j ? To prove
this in dimension 3, using the ending lamination classification [11], one avenue would be
to extend Theorem 1.3 in a way that somehow allows the stretch locus E.j; �/ to be an
ending lamination. One would also need to prove a good quantitative rigidity statement
for infinite ends: at least that, if two geometrically infinite manifolds j.�0/nH3 and
j 0.�0/nH3 have a common ending lamination, then j�.j.k//��.j 0.k//j is bounded
for some appropriate sequence .k/k2N of elements of �0 whose associated loops go
deeper and deeper into the common end. (Here �W G!RC is the Cartan projection
of (7-1).)

C.3 Nonreductive representations �

For .j; �/ 2 Hom.�0; G/2 with j geometrically finite and � reductive, we know
(Lemma 4.10) that the infimum C.j; �/ of Lipschitz constants for .j; �/–equivariant
maps Hn ! Hn is always achieved (ie Fj;� ¤ ∅). Is it still always achieved for
nonreductive � when C.j; �/ � 1? When C.j; �/ < 1, we know that it may or may
not be achieved; see the examples in Sections 10.2 and 10.3.

C.4 Behavior in the cusps for equivariant maps with minimal Lipschitz
constant

Is there always a .j; �/–equivariant, C.j; �/–Lipschitz map that is constant in each
deteriorating cusp? The answer is yes for C.j; �/ � 1 (Proposition 4.16), but for
C.j; �/ < 1 we do not even know if the stretch locus E.j; �/ has a compact image
in j.�0/nHn . If it does, then one might ask for a uniform bound: do Proposition 5.11
and Corollary 5.14 extend to C.j; �/ < 1?

Suppose that C.j; �/ D 1 and that � is not cusp-deteriorating. If the stretch locus
E.j; �/ is nonempty, does it contain a geodesic lamination whose image in j.�0/nHn

is compact?

C.5 Generalizing the Thurston metric

To what extent can the 2–dimensional theory of the Thurston (asymmetric) metric on
Teichmüller space be transposed to higher dimension? In particular, how do the two
asymmetric metrics dTh and d 0Th of Section 1.5 compare on the deformation space
T .M/ of a geometrically finite hyperbolic manifold M ?

The topology and geometry of T .M/, or of level sets of the critical exponent function
ıW T .M/! .0; n� 1� (see Section 8.1), seem difficult but interesting to study. Are
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any two points connected by a dTh –geodesic? Is there an analogue of stretch paths
(particular geodesics introduced in [51])? Is it possible to relate infinitesimal dTh –balls
to the space of projective measured laminations as in [51]?

C.6 Chain recurrence of the stretch locus

In dimension n � 3, when C.j; �/ > 1, does the stretch locus E.j; �/ have a chain-
recurrence property as in Proposition 9.4, in the sense that any point in the geodesic
lamination j.�0/nE.j; �/ sits on a closed quasileaf? Since there is no classification
of geodesic laminations (Fact 9.2) available in higher dimension, quasileaves can be
generalized in at least two ways: either with a bound "! 0 on the total size of all
jumps from one leaf to the next, or (weaker) on the size of each jump separately. It
is not clear whether the two definitions coincide, even under constraints such as the
conclusion of Lemma 5.13.

In dimension n� 2, does chain recurrence, suitably defined, extend to the convex strata
of Lemma 5.4 when C.j; �/D 1?

C.7 Semicontinuity of the stretch locus

Is the stretch locus map .j; �/ 7!E.j; �/ upper semicontinuous for the Hausdorff topol-
ogy when C.j; �/ is arbitrary, in arbitrary dimension n? Proposition 9.5 answers this
question affirmatively in dimension nD 2 for C.j; �/ > 1; the case C.j; �/D 1 might
allow for a proof along the same lines, using chain recurrence (suitably generalized as
in Appendix C.6 above).

C.8 Graminations

If C.j; �/ < 1 and Fj;� ¤ ∅, is the stretch locus E.j; �/ generically a trivalent
geodesic tree (as in the example of Section 10.5)? Is it, in full generality, what in
Conjecture 1.4 we called a gramination, namely the union of a closed discrete set F
and of a lamination in the complement of F (with leaves possibly terminating on F )?
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