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Analytic nonabelian Hodge theory

JONATHAN PRIDHAM

The proalgebraic fundamental group can be understood as a completion with respect
to finite-dimensional noncommutative algebras. We introduce finer invariants by
looking at completions with respect to Banach and C*—algebras, from which we can
recover analytic and topological representation spaces, respectively. For a compact
Kéihler manifold, the C*—completion also gives the natural setting for nonabelian
Hodge theory; it has a pure Hodge structure, in the form of a pro- C*—dynamical
system. Its representations are pluriharmonic local systems in Hilbert spaces, and we
study their cohomology, giving a principle of two types, and splittings of the Hodge
and twistor structures.

32G13, 32G20

Introduction

Simpson [24; 25] defined the coarse Betti, de Rham and Dolbeault moduli spaces of
a smooth projective complex variety. These are all algebraic spaces, with a complex
analytic isomorphism between the Betti and de Rham moduli spaces. The nonabelian
Hodge theorem of [25, Theorem 7.18] is a homeomorphism between the de Rham and
Dolbeault moduli spaces, the key to which was the correspondence between semisimple
local systems, pluriharmonic bundles and Higgs bundles.

The reductive proalgebraic fundamental group 7 (X, x)™ introduced by Simpson [23]
encapsulates, in a single object, all the information about the category of semisimple
local systems. When X is a compact Kihler manifold, the group scheme 7 (X, x)™d
also has a pure Hodge structure in the form of a discrete circle action, and a description
in terms of Higgs bundles.

However, it has long been realised that the reductive proalgebraic fundamental group
is slightly inadequate. From it we can recover the points of the Betti moduli space, and
from the full proalgebraic fundamental group we can even recover their infinitesimal
neighbourhoods, but in general these groups convey no information about how the
neighbourhoods glue together. A further source of dissatisfaction is the discontinuity
of the circle action on 71 (X, x)™, since it is continuous on moduli spaces.
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The key idea behind this paper is that we can produce finer and more satisfactory
invariants by looking at representations with analytic structure, an approach previously
considered by Sullivan [29, Section 9]. The group scheme 7 (X, x)™¢ can be recovered
from representations in finite-dimensional matrix algebras, but the Riemann—Hilbert
correspondence between Betti and de Rham moduli holds with coefficients in any
Banach algebra. We accordingly construct Betti, d¢ Rham and Dolbeault moduli
functors on Banach algebras, and recover the analytic moduli spaces from these functors.
The framed Betti and de Rham functors are represented by a Fréchet algebra which we
regard as the analytic completion of R[m; (X, x)].

To understand the topological structure underlying these analytic spaces, we then
restrict to C*—algebras rather than Banach algebras. There are notions of unitary and
pluriharmonic representations with coefficients in any C*-algebra, and the homeomor-
phism of moduli spaces above extends to an isomorphism between the semisimple de
Rham functor and the polystable Dolbeault functor on polynormal C*-algebras, via
isomorphisms with the pluriharmonic functor. The C*—algebra of bounded operators
gives us a notion of pluriharmonic local systems in Hilbert spaces, and there is a form
of Hodge decomposition for these local systems.

Lurking behind these comparisons is the twistor moduli functor on multiplicatively
convex Fréchet ﬁ%oll —algebras. Its fibres at +i € P! are the Dolbeault functor and its
conjugate, while all other fibres are isomorphic to the de Rham functor. The Deligne—
Hitchin twistor space can be recovered as an analytic space from the twistor moduli
functor, and pluriharmonic torsors give a splitting of the twistor moduli functor on
C*—algebras over C(P!(C)). Twistor cochains then admit a Hodge decomposition on
pulling back along the Hopf fibration SU, — P!(C), and a continuous circle action
serves to promote twistor structures to Hodge structures.

The structure of the paper is as follows. In Section 1, we cover some background
material on prorepresentability. Proposition 1.19 then establishes a topological analogue
of Tannaka duality for polynormal C*-algebras and unitary representations, while
Lemma 1.28 gives a similar result for nonunitary representations.

In Section 2, we introduce the framed Betti and de Rham functors R Alf’x and Rg(l?x on
Banach algebras for any manifold X . In Proposition 2.3, we establish an isomorphism
R 5’ «(4) = R§X, (A) for any pro-Banach algebra 4. We can even recover the analytic
structure of moduli spaces of G -bundles from these symmetric monoidal functors
(Remark 2.6). Proposition 2.10 then shows that R )1(3’ . 1s represented by a Fréchet
algebra completion E )1?’ , of R[my(X,x)]. This is a Fréchet bialgebra, from which
(X, x) can be recovered (Lemma 2.11).
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In Definition 2.18, we introduce a symmetric monoidal functor R X.x On C*-algebras,
parametrising pluriharmonic bundles on a compact Kéhler manifold X . This is repre-
sentable by a pro-C*-bialgebra E5 J . (Proposition 2.22 and Lemma 2.24). There are
also a symmetric monoidal functor R DO)IC on Banach algebras associated to Dolbeault
moduli, which is seldom representable, and a harmonic functor extending the definition
of R }J( , to all Riemannian manifolds X', but with substantial loss of functoriality.

In Section 3 we establish relations between the various functors. We can recover the
topology on moduli spaces of semisimple representations from £ )J( . (Theorem 3.6).
Proposition 3.8 then gives a Tannakian description of the polynormal completion
of £ ; ,» While Corollary 3.11 gives a simple characterisation of continuous morphisms
from E J . to polynormal C*—algebras. Section 3.3 then gives similar results for RD"1

Lemma 3. 19 shows that grouplike elements G((Ey J )ab) of the abelianisation of EJ Yox

are just Hy (X, Z & R), with consequences for complex tori.

There is a continuous circle action on E Xoxo so it is a pro-C*—dynamical system

(Proposition 3.31). This allows us to regard X . as an analytic nonabelian Hodge

structure of weight 0 (Remark 3.32). In Example 3.33, we see that the circle action

on G((EAJ,,x)ab) is just given by the Hodge structure on H! (X, R). Proposition 3.38

then characterises pure Hilbert variations of Hodge structure as representations of
XS I

Sectlon 4 is concerned with Hilbert space representations of Ey 7, which correspond to
pluriharmonic local systems V in Hilbert spaces. We can 1dent1fy reduced cohomology
H*(X, V) with the space of smooth V-valued harmonic forms, as well as establishing
the principle of two types and a formality results (Section 4.2.1). There are analogous,
but weaker, results for nonreduced cohomology (Section 4.2.2). The same is true
of direct limits of Hilbert space representations, and Corollary 4.22 shows that the
universal such is the continuous dual (£ )J( ,) (which can be regarded as the predual of
the W*—envelope of E )J( )

In Section 5, these results are extended to show that the natural twistor structure on
H"(X,V) is pure of weight n (Corollary 5.5), with a weaker result for nonreduced
cohomology (Proposition 5.6). If [E is the local system associated to the 71 (X, x)—
representation E )J( ,» then Proposition 5.10 shows that this twistor structure can be
enhanced to a form of analytic Hodge filtration on the de Rham algebra A*(X,E’). In
Section 5.4, we reinterpret splittings of twistor structures and Archimedean monodromy
in terms of the Hopf fibration.

Finally, in Section 6, we introduce a whole twistor family of framed moduli functors
on multiplicatively convex Fréchet algebras over P!(C), from which we can recover
both de Rham and Dolbeault functors. The coarse quotient of the framed twistor space
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is just the Deligne—Hitchin twistor space (Remark 6.17). The twistor family carries
a natural involution o, and we show in Proposition 6.13 that o —equivariant sections
of the framed twistor space are just framed pluriharmonic bundles. Theorem 6.20,
Proposition 6.22 and Corollary 6.24 then give analogues of Theorem 3.6, Proposition 3.8
and Corollary 3.11 in the twistor setting, describing twistors with C*—algebra coeffi-
cients and the topology of the twistor space.

Notation

We will use & to denote either of the fields R or C.

Definition 0.1 Given a k—Hilbert space H, write L(H) for the space of k—linear
bounded operators on H, with the norm topology.

Definition 0.2 Given topological spaces X and Y, we write C(X, Y) for the set of
continuous maps from X to Y.

Definition 0.3 Given a group G acting on a set X, write [X/G] for the groupoid
with objects X and morphisms X x G, where the source of (x, g) is x and the target
is xg. Composition of morphisms is given by (xg, /) o (x, g) = (x, gh).

Definition 0.4 Given a group G acting on sets S and 7', write S xg 7T for the
quotient of S x T by the G—action g(s,?) = (gs, g~ ).

Acknowledgements [ would like to thank Carlos Simpson for originally posing the
problem of finding finer invariants and for helpful discussions. I would also like to
thank the anonymous referee for spotting erroneous statements about Fréchet algebras.

This work was supported by the Engineering and Physical Sciences Research Council
(grant numbers EP/F043570/1 and EP/1004130/1).

1 Prorepresentability of functors on unital Banach algebras
and C *-algebras

Definition 1.1 Given a functor F: C — Set, an object 4 € C and an element £ € F(A),
we follow [13, Section A.3] in saying that the pair (4, &) is minimal if, for any
pair (A’,£’), any strict monomorphism f: A" — A with F(f)(§’) = & must be an
isomorphism.

We say that a pair (4", &") is dominated by a minimal pair if there exists a minimal
pair (4, &) and a morphism g: A — A” with F(g)(§) =&".
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Definition 1.2 Asin [13, Section A.3], we say that a functor F: C — Set on a category
C containing all finite limits is left exact if it preserves all finite limits. This is equivalent
to preserving finite products and equalisers, or to preserving fibre products and the
final object.

Lemma 1.3 Let C be a category containing finite limits and take a left exact functor
F: C — Set. Assume that, for any cofiltered inverse system {A;}; of strict subobjects
of any object A € C, the limit lim; A; exists, and that the map
F(im 4;) — lim F(4;)
i i
is an isomorphism.

Then every pair (A, & € F(A)) is dominated by a minimal pair.

Proof Given the pair (A4, §), let I be the full subcategory of the overcategory C| A
consisting of strict monomorphisms B — A for which £ lifts to F(B). Note that this
lift must be unique by the monomorphism property. If f o g is a strict monomorphism,
then so is g, which implies that all morphisms in / must be strict monomorphisms in C.
Moreover, left-exactness of F' guarantees that / is closed under the fibre product x 4.
the monomorphism properties imply that parallel arrows in I are equal, so I is a
cofiltered category.

By hypothesis, the limit L :=1lim,_, B exists in C. It is necessarily a strict subobject
of A, since it is the limit of all parallel maps sourced at A and equalised by some B e I .
The unique lifts of £ to each F(B) define an element of

lim F(B),
4m
Bel
so by hypothesis we have a corresponding element 1 € F(L). Therefore L is an object

of I and is in fact the initial object of /. The pair (L, n) is therefore minimal, and
dominates (4, &) as required. m|

Definition 1.4 Recall from [13, Section A.2] that a proobject X € pro(C) is said to
be strict if it is isomorphic to a proobject of the form {X;}, where each map X; — X
is an epimorphism.

A functor F: C — Set is said to be strictly prorepresentable if there exists a strict
proobject X' with F' = Homp,(c) (X, —).

Proposition 1.5 Let C be a category containing finite limits and limits of cofiltered
inverse systems of strict subobjects. Then a functor F: C — Set is strictly prorepre-
sentable if and only if
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(1) F is left exact;

(2) F preserves limits of cofiltered inverse systems of strict subobjects.

Proof If F satisfies the conditions, then it is left-exact, and by Lemma 1.3 every pair
is dominated by a minimal pair. It therefore satisfies the conditions of [13, Proposition
A.3.1], so is strictly prorepresentable.

Conversely, every prorepresentable functor F is left-exact, so we need only show
that the second condition holds. Write F' = lim  Hom(Ry, —) for a strict inverse
system {Ry}, and take a cofiltered inverse system {A;}; of strict subobjects of some
object A € C.

Given an element x € lim, F(A4;) with image x; in F(4;), by definition there exist
objects Ry, and maps y;: Ry, — A; lifting x;. Now fix i ; the liftings are compatible
in the sense that for j > i (increasing «; if necessary), there is a commutative diagram:

Vi
Ra;, —— A;

]

»i
Ry, —— 4;

Since Aj — A; is a strict monomorphism and Ry; — Rg; an epimorphism, y; must
lift to a map y;;: Ry; — Aj. Since Aj — A; is a monomorphism, the lifting y;; is
unique. Considering all j > i together, this gives us a unique map X: Ry; — 1<i1_nj Aj,
which gives rise to a unique preimage X € F (l(iLnj Aj), as required. a

1.1 Banach algebras

Definition 1.6 Write BanAlg, for the category of unital (not necessarily commutative)
Banach algebras over k, with bounded morphisms.

Proposition 1.7 Take a functor F': BanAlg, — Set such that
(1) F preserves all finite limits (equivalently preserves fibre products and the final
object);
(2) F preserves monomorphisms (ie maps closed subalgebras to subsets); and
(3) for all inverse systems S of closed subalgebras, the map
F( N As) — () F(45)
seS SES
is an isomorphism.

Then F is strictly prorepresentable.
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Proof Given a Banach algebra B, every strict subobject of B is a closed subalgebra.
For any cofiltered inverse system {A;}; of strict subobjects of any object B, the
limit lim; A; exists in BanAlg, and is given by (; Ai. The result now follows from
Proposition 1.5. m|

1.2 C*-algebras

Definition 1.8 Write C*Alg,, for the category of unital (not necessarily commutative)
C*—algebras over k, with bounded involutive morphisms.

Explicitly, a complex C*-algebra is a complex Banach algebra equipped with an
antilinear involution * satisfying (ab)* = b*a* and |a*a|| = ||a||® forall a € 4.

A real C*-algebra is a real Banach algebra equipped with a linear involution *
satisfying the conditions above and having the additional property that 1 4+ a*a is
invertible for all a € A.

A Banach x—algebra over k is a C*-algebra if and only if it is isometrically *—
isomorphic to a self-adjoint norm-closed algebra of bounded operators on a Hilbert
k —space; for k =R, this is Ingelstam’s theorem [11, Proposition 8.2 and Theorem 15.3].

Proposition 1.9 Take a functor F: C*Alg; — Set such that

(1) F preserves all finite limits (equivalently preserves fibre products and the final
object);

(2) F preserves monomorphisms (ie maps C* —subalgebras to subsets); and

(3) for all inverse systems S of nested C* —subalgebras, the map

F( ﬂ As) — ﬂ F(Ay)
seS seS
is an isomorphism.

Then F is strictly prorepresentable.
Proof The proof of Proposition 1.7 carries over. |

Lemma 1.10 Every complex C*—algebra becomes a real C* —algebra by forgetting
the multiplication by C.

Proof It suffices to show that 1+a*a is invertible for all a € A. Now, x > (14 |x|)~!
is a continuous function on R and a*a is positive self-adjoint, so the continuous
functional calculus implies that (1 +a*a)~! € A, as required. O

Geometry € Topology, Volume 21 (2017)



848 Jonathan Pridham

Lemma 1.11 The category C*Algg is equivalent to the category of pairs (A, t) for
A € C*Algc and an involution t: A — A satisfying

(1) t(ab) =t(a)r(d);

2) t(a)* =1(a*); and

(3) t(A\)=Ax forreC.
Proof Given B € C*Algg, set A:= B ®g C; this is a complex C*-algebra, with
involution (b ® A)* = b* ® A. The involution t is then given by complex conjugation,

with 7(b ®A) = b @ A. For the quasi-inverse construction, we send a pair (A4, t) to the
algebra AT of t—invariants. That this is a real C*—algebra follows from Lemma 1.10.

To see that these are quasi-inverse functors, first note that (B g C)* = B. Next,
observe that because 7 is antilinear, we can write A = AT ®iAT = A" Qg C for all
pairs (4, T) as above. O

Definition 1.12 For a complex (resp. real) x—algebra A, write U(A) for the group
of unitary (resp. orthogonal) elements

{ac A|la*a=aa* =1}.
Write u(A) for the Lie algebra of anti-self-adjoint elements
{acA|a*+a=0}
and write S(A4) for the self-adjoint elements of 4, noting that u(4) =iS(A4) when A

is complex.

1.3 Representations and polynormal C *-algebras

1.3.1 Representation spaces Fix a real unital C*-algebra 4.

Definition 1.13 Write Rep;; (A4) for the space of unital continuous *—homomorphisms
p: A — Mat,(C) equipped with the topology of pointwise convergence. Write
Irr;; (A) C Rep; (A) for the subspace of irreducible representations.

Definition 1.14 Define FDHilb to be the groupoid of complex finite-dimensional
Hilbert spaces and unitary isomorphisms.

Definition 1.15 Write FD*Rep(A4) for the groupoid of pairs (V, p) for V € FDHilb
and p: A — End(V') a unital continuous *—homomorphism. Morphisms are given by
unitary isomorphisms intertwining representations. The set of objects of FD*Rep(A4)
is given the topology of pointwise convergence.
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Definition 1.16 Define Apy to be the ring of Gal(C /R)—equivariant continuous addi-
tive endomorphisms of the fibre functor from FD*Rep(A) to vector spaces. Explicitly,
a € Apn associates to each pair (V, p) an element a(V, p) € End(V'), subject to the
conditions:

(1) For any unitary isomorphism u: V — W , we have a(W, upu=") =ua(V, p)u~".

(2) For any (Vi, p1), (V2, p2) € FD*Rep(4), we have a(Vy @ Va, p1 @ p2) =
a(Vi, p1) ®a(Va, p2).

(3) The maps a: Rep;(A4) — Mat,(C) are continuous and Gal(C /R)-equivariant.
Lemma 1.17 The ring Apn has the structure of a pro-C* —algebra over A.

Proof We candescribe Apy as the categorical limit of a diagram of *—homomorphisms
between the C*-algebras C(Rep; (A), Mat,(R)), thus making it into a pro-C*—
algebra. The *—homomorphism A — Apy is given by mapping a to the transformation

a(V, p) = pla). m
1.3.2 Polynormal C *-algebras

Definition 1.18 Recall from [17] that an algebra A is said to be n—normal if, for all
ai,...,dry € A, we have

> sgn(0)ag(1)da ) da(zny = 0.

oc€SH,

Call an algebra polynormal if it is n—normal for some n.
By the Amitsur—Levitzki theorem, the algebra of nxn—matrices over a commutative
ring is n—normal. Also note that an n—normal algebra is k—normal for all k > n.

Note that by restricting to n—dimensional representations we get that, for any real
C*-algebra A, the ring Apn of Definition 1.16 is an inverse limit Apy = linn ApN,n
of n—normal C*-algebras.

We now have a result combining aspects of Tannaka and Takesaki duality:

Proposition 1.19 If A is a polynormal unital C*—algebra then the morphism A — Apn
of Lemma 1.17 is an isomorphism.
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Proof Since A is N-normal for some integer N, [17, Section 3] implies that A is of
type I, with all complex irreducible representations of 4 having dimension at most V.

For a sufficiently large cardinal «, Bichteler [3] characterises the W *—envelope A” ® C
of A ® C as the ring defined analogously to Apy by replacing “continuous” with
“bounded” and “finite-dimensional” with “of dimension at most ¢”. Since all irreducible
representations are at most N—dimensional, the direct integral decomposition of 4—
representations gives us an injective map Apy — A", with boundedness following
because any a € Apy is bounded on [ [, < Rep}’; (A).

Now, Akemann and Shultz [1] define aring A, C A” to consist of those b for which the
functions b, b*b and bb* are weakly x—continuous on the space P(A) of pure states
of A. Since all irreducible representations arise as subrepresentations of N—dimensional
representations, continuity on Repy, (4) suffices to give continuity on P(4), so the
inclusion Apy — A, is an isomorphism.

By [4], the spectrum of A is Hausdorff, then [1] observes, since A is type I, that A is
perfect, which means that the inclusion A — A, is in fact an isomorphism. Thus the
map A — Apn is an isomorphism. |

1.4 The category of C *—-algebras with completely bounded morphisms
1.4.1 Basic properties

Lemma 1.20 If A isa C*-algebraand f: A — B a morphism of Banach algebras,
then the image of f has the natural structure of a C* —algebra, with f: A — Im(f’)
becoming a C* —-homomorphism.

Proof The kernel of f is a closed two-sided ideal. Thus, by [22, Theorem 3], 4 /ker f
is a C*-algebra, as required. O

Definition 1.21 Recall that a homomorphism 7: A — B of Banach algebras is said
to be completely bounded if

sup || My (7)|| < oo,
neN

where My (w): M,(A) — My(B) is the morphism on #n X n matrices given by 7.

Given a pro-Banach algebra 4 = lim; A; with completely bounded structure maps
Aj — A;, and a Banach algebra B, any morphism 7: A — B factors through some 4;,
and we say that 7 is completely bounded if the map A; — B is so for some sufficiently
large j > 1.

Write Hom(4, B)p for the set of completely bounded homomorphisms from A to B.
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Lemma 1.22 If A is a C* -algebra, then any completely bounded homomorphism
f: A— L(H) is conjugate to a *—homomorphism of C* —algebras.

Proof This is the main result of [16]. O

Remark 1.23 Kadison’s similarity problem asks whether all bounded (noninvolutive)
homomorphisms between C*-algebras are in fact completely bounded. The answer is
affirmative in a wide range of cases, but the general problem remains open. Note that
Gardner showed [9, Theorem A] that all Banach isomorphisms of C*-algebras are
conjugate to C*-homomorphisms (and hence completely bounded).

Also note that by [22, Theorem 3], every closed two-sided ideal of a C*-algebra is
a x—ideal; combined with Gardner’s result, this implies that any bounded surjective
map A — B between C *—algebras must be conjugate to a C*~homomorphism, hence
completely bounded. The same is true of any bounded map between C*—algebras
whose image is a C*—subalgebra.

Definition 1.24 Let C* BAlg, be the category of unital C*-algebras over k, with
completely bounded morphisms (which need not preserve ).

Lemma 1.25 For complex C* -algebras A, B, giving a U(B)—equivariant function
S Homcxplg. (A, B) — B (for the adjoint action on B) is equivalent to giving a
B> —equivariant function f: Homc+ galg. (4, B) —> B.

Proof There is a canonical inclusion ¢: Home+ajg,. (A, B) > Homc+pg Algc (4, B),
so given f we just set f to be f olL.

The polar decomposition allows us to write B* = B4 U(B), where B4 C S(B)
is the subset of strictly positive self-adjoint elements. Given f, there is thus an
associated B*—equivariant function f Homg+alg. (4, B) X By — B given by
f(p g2) = g ' f(p)g. By Lemma 1.22, the map Homc+pje. (4, B) X B4 —
Homc = palg.. (4, B) is surjective, and we need to check that f* descends.

Now, if & € S(B) has the property that exp(§) fixes p(A) under conjugation, then
exp(i§r) commutes with f(p) for all 7, so i§ must also. Thus & and hence exp(§)
commute with f(p), so the map f does indeed descend. |

1.4.2 Representations We now fix a real unital C*—algebra 4.

Definition 1.26 Define FDVect to be the category of complex finite-dimensional
vector spaces and linear maps.
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Definition 1.27 Write FDRep(A) for the category of pairs (V, p) for V' € FDVect
and p: A — End(V') a unital continuous morphism of Banach algebras. Morphisms
are given by linear maps intertwining representations. The set of objects of FDRep(A4)
is given the topology of pointwise convergence.

Note that the objects of FDRep(A4) decompose into direct sums of irreducibles.

Lemma 1.28 The ring Apn of Lemma 1.17 is isomorphic to Apy, the ring of
Gal(C/R)—equivariant continuous endomorphisms of the fibre functor n: FDRep(A4) —
FDVect. Explicitly, Apny consists of elements a such that:

(1) For any linear map f: (V, p1) — (W, p2), we have a(W, p2) f = fa(V, p1).
(2) The maps a: Rep;,(A) — Mat, (C) are continuous and Gal(C /R)—equivariant.

Proof First note that condition (1) applied to the two projections V; & V, — V;
ensures that, for any (V71, p1), (V2. p2) € FD*Rep(A4), we have a(V; @ V5, p1 ® p2) =
a(Vi, p1) ®a(Vz, p2).

Restriction to sx—representations then gives us a map ¥: Apyy — Apn. For a com-
mutative C*—algebra C, the C*-algebra Maty (C) is of type /. This means that
any bounded map A — Mat; (C) is completely bounded, so taking B = Mat (C) in
Lemma 1.25 for all k£ ensures that v is an isomorphism. O

Definition 1.29 Given a commutative unital real C*—algebra A and a *-homo-
morphism A — B of real C*-algebras, write FDRep ;(B) for the category of triples
(f,V,p) for f € A (the spectrum of A4), V € FDVect and p: B — End(V) a unital
continuous morphism of Banach algebras for which p(a¢) = f(a)id for all a € A.
Morphisms are given by linear maps intertwining representations. The set of objects of
FDRep ;(B) is given the topology of pointwise convergence.

The category FDRep ;(B) has an additive structure over A, given by
(V1,00 @ (f, V2, 02) = (f, V1 ® Va2, p1 © p2).

Lemma 1.30 Given a commutative unital C* —algebra A and a *—homomorphism
A — B of real C* —algebras, the ring Bpx of Lemma 1.17 is isomorphic to the ring of
Gal(C /R)—equivariant continuous endomorphisms of the fibre functor

n: FDRep 3(B) — FDVect.

Proof This just combines the proofs of Lemma 1.28 and Proposition 1.19. The only
modification is to observe that 4 = C(A, C)S(C/R) and that, for any irreducible
representation p: B — End(V'), we necessarily have p|4 = fid for some f € A. O
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2 The Betti, de Rham and harmonic functors on
Banach algebras

2.1 The Riemann—-Hilbert correspondence

Definition 2.1 Given a path-connected topological space X with basepoint x and a
unital R—algebra B, define the Betti representation space R Alf ,(B) by

R . (B) := Homgp(m; (X, x), BX),
where B* is the multiplicative group of units in B.

Define the representation groupoid R)? (B) by R)?(B) =[R )1(3 (B)/B*], where B*
acts by conjugation. Note that this is independent of the choice of basepoint (being
equivalent to the groupoid of B> —torsors on X).

Definition 2.2 Given a connected manifold X with basepoint x and a Banach alge-
bra B, define the de Rham groupoid Rg(R(B) to be the groupoid of smooth B> ~bundles
with flat connections. Thus R‘)j(R(B) consists of pairs (7, D), where .7 is a right
%)?(B X)—torsor, and D is a flat connection on 7.

Explicitly, write /y (ad 7) := 7 x #9(B) /¢ (B), for the adjoint action of B on B.
Then a flat connection on .7 is

D: 7 — o'(ad 7)
satisfying
(1) D isa d—connection: D(pg) =adgD(p)+ g~ 'dg for g € %XO(BX);
(2) D isflat: (ad D)o D =0.

Define R“lR (B) to be the groupoid of triples (7, D, f), where (7, D) € RdR(B) and
fex* 9 isa distinguished element. Since RS dR . (B) has no nontrivial automorphisms,
we will regard it as a set-valued functor (glven by its set of isomorphism classes).

Note that B> acts on RdR (B) by changing the framing, whence the quotient groupoid
is equivalent to RdR(B)

Proposition 2.3 For any pointed connected manifold (X, x) and any Banach algebra
B there are canonical equivalences

RR(B) ~ RE(B), R;}‘fx(B) =~ R}?,X(B)

functorial in X, x and B.
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Proof When B is a finite-dimensional matrix algebra, this is [10, Theorem 5.10]. The
same proof carries over to Banach algebras, noting that the argument for existence of
parallel transport [15, Section I.3] holds in this generality, since exp(b) =)~ b"/n!
converges and is invertible for all b € B. O

Remark 2.4 The functor RdRX naturally extends to a functor on the category of
pro-Banach algebras pro(BanAlg) by sending any cofiltered inverse system {A4;}; to
lim; R$X, (4;). Since the functor RE ¥. commutes with all limits, the equivalences
of Proposmon 2.3 then extend to pro-Banach algebras. The category pro(BanAlg)
contains all multiplicatively convex Fréchet algebras (since they are countable inverse
limits of Banach algebras) and indeed all complete LMC algebras via the Arens—Michael

decomposition.

For any open subset U C C”, the ring O(U) :=I'(U, 0y) of holomorphic functions
on U can be realised as a pro-Banach algebra by looking at the system of sup norms
on compact subspaces. Taking quotients by finitely generated ideals I then gives local
models Y := (V(I), Oy/I) for complex analytic spaces, and realises O(Y) as the
pro-Banach algebra O(U)/I. A complex analytic morphism from Y to the variety
Hom(rrq (X, x), GL,(C)) is then just an element of Hom(rz (X, x),GL,0(Y)) =
R )1;’ (Mat, O(Y)) for the pro-Banach algebra Mat, O(Y') of morphisms ¥ — Mat, (C).

We can therefore recover the analytic structure of the variety Hom(mr{ (X, x), GL,(C))
from the set-valued functor R )'?’ . on Banach algebras and hence (by Proposition 2.3)
from the set-valued functor RdR

In [25], the varieties R (Matn( )) and R (Matn( )) are denoted by Rp (X, x,n).
and Rpr(X, x,n).

Lemma 2.5 For any real Banach algebras B, C, there is a canonical map
m: RE (B)x RE (C) > RE (B®FC),

where ®” is the projective tensor product. This makes Ry B . intoa symmetnc monoidal
functor, with unit corresponding to the trivial representanon in each R (B)

Proof Given representations p1: 71(X, x) — B* and p,: 71(X, x) - C*, we obtain
P1 ® p2: (X, x) = (B® C)*. Taking the completion with respect to the projective
cross norm gives the required result. a

Remark 2.6 Given any complex affine group scheme G, we may use the tensor
structure on RB to recover the affine analytic variety Hom(mr1 (X, x), G(C)) in the
same spirit as Remark 2.4. Explicitly, O(G) is a coalgebra, so can be written as a nested
union of finite-dimensional coalgebras. Therefore O(G)Y is a pro-finite-dimensional
algebra, and hence a pro-Banach algebra.
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Multiplication on G gives us a comultiplication u: O(G)Y — O(G x G)V . For any
complex analytic space Y, we may then characterise Hom(r; (X, x), G(Y)) as

{p € RE (O(G)'®O(Y)) | iw(p) = m(p, p) € RE . (O(G x G)"RO(Y))}.

2.2 Representability of the de Rham functor

Lemma 2.7 Given a free group I' = F(X), the functor
A+ Homg, (T, A™)

on the category of real Banach algebras is prorepresentable.

Proof Given a function v: X — [1,00), let v: ' — [1, 00) be the largest function
subject to the conditions

1 v =1
2) v(x)=v(x" ") =v(x) forall x € X;
(3) v(gh) =v(g)v(h).
ny n2 np

Explicitly, we write any g € I' as a reduced word g = x| x,”...x; ", then set
v(g) = ]_[f-;l v(x;)1il. We now define a norm ||—|| 1,v on k[I'] by setting

Yohyy| =0yl Vm).

yel Ly yel

Now, given any representation p: I' — A, we may define v: X — [1, 00) by

v(x) := max{[ o). [ oG]}

this at least 1 because 1 = p(x)p(x~1),s0 1 < ||p(x)] - |lp(x~1)|. It follows that for
all v € k[I'] we have ||p(v)|| =< ||v||1,v, so p determines a map

k[N — A,

where k[I']""v denotes the Banach algebra obtained by completing k[I'] with respect
to the norm || — |1, .

Next, give [1, 00)% the structure of a poset by saying v; < v, provided v; (x) < v, (x)
for all x € X'. This is in fact a directed set, since we can define max{vy, v,} pointwise.
There is a canonical morphism

K[T]2 — k[T] M

whenever vy < v,, which gives us an inverse system k[T[*" := {k[[']"*}, of Banach
algebras, indexed by the directed set ([1, c0)* .
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Thus we have shown that

Homg, (', 4™) = lim HokaanAlg(k[F]A”,A),

vE[l,00)X

functorial in Banach k—algebras A. In other words, our prorepresenting object is the
inverse system k[I"]*". ad

Example 2.8 Take X = {z},so ' =Z, and let v(z) = R. Then elements of k[Z]"
are Y ;cz Aiz' such that

D kIR <00, Y |ALIRT < oo

i=0 i<0

Thus C[Z] R is the ring of analytic functions converging on the annulus R~! <|z| < R.

Hence lim , C[Z]"R is the ring of analytic functions on C*, while lim , R[Z]"R is
<~ —_— o <

the subring consisting of functions f with f(z) = f(2)

Contrast this with the isometric Banach completion of C[Z], which just gives us
Clz)M = £Y(Z).
Lemma 2.9 Given a finitely generated free group I' = F(X), the functor

A~ Homgy(T', A™)
on the category of multiplicatively convex Fréchet k —algebras is representable.
Proof We may embed N; in [1,00)% as a subset of the constant functions. Since X

is finite, N is a cofinal subset of [1, c0)¥X , giving us an isomorphism

{k[F]/\“ }UE[I,oo)X = {k[r]/\n }HENI

in the category of pro-Banach k —algebras. Since Ny is countable, k[T[*":=1im, k[T]""
is a Fréchet algebra.

Applying the proof of Lemma 2.7, we have shown that
Hom(T", AX) = HomkFrAlg(k[F]an’ A4)

for all Banach algebras A. Since any m—convex Fréchet algebra A can be expressed as
an inverse limit A4 = lim; A; of Banach algebras, it follows that the same isomorphism
holds for all such algebras, so the functor is representable in m—convex Fréchet algebras.

O
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Proposition 2.10 Given a finitely generated group I", the functor
A~ Homg,(T', A™)
on the category of multiplicatively convex Fréchet k —algebras is representable.
Proof Choose generators X for ', so I' = F(X)/K for some normal subgroup K.

Lemma 2.9 gives a Fréchet k—algebra k[ F(X)]*™™ governing representations of F(X).
Since

Homgp (T, 4) = { / € Homgp(F(X), A%) | f(K) = {1}},

our functor will be represented by a quotient of k[F(X)]*. Specifically, let I be the
closed ideal of k[ F(X)]*™ generated by {k—1|k € K} and set k[[']|*" := k[F(X)]*™/I.
This is an m—convex Fréchet algebra and

Homgp (T, A™) = Homygpa1e (k[T A)
for all such algebras A.

For an explicit description of kK[I"']*", note that the system of norms is given by

Xy, = Xyl

where w(y) is the minimal word length of y in terms of X . a

When combined with its tensor structure, this implies that the functor of Proposition 2.10
is a very strong invariant indeed:

Lemma 2.11 The tensor structure of Lemma 2.5 gives k[['|* the structure of an
m—convex Fréchet bialgebra. The group

Gk[TT™) = {a € k[T | u(a) = a ® a € k[TT" @ k[T]™, e(a) = 1 € k}

of grouplike elements of k[[']|*" is then T".

Proof Applying the map m of Lemma 2.5 to (&,£) for the canonical element
& € Homgy(I', k[I']*") gives us a comultiplication p: k[I'[*" — k[I']** @™ k[[']*" =
k[T x '™ and a counit &: k[T']*™ — k. On the topological basis I', we must have
p(y) = (y,y) and e(y) = 1.

Expressing @ € G(k[[']") as ), cr ay ¥, note that the conditions become ayas = 0
for y #6,and ) a, = 1; thus a = y for some y € I'. O
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Example 2.12 Arguing as in Example 2.8, for " abelian and finitely generated,
C[T']*™ is isomorphic to the ring of complex analytic functions on Homg,(I', C*),
while R[I']** C C[T"]*" consists of Gal(C /R)-equivariant functions. The multiplicative
analytic functions are of course just I itself.

Proposition 2.3 then implies:

Corollary 2.13 The functors Rg(lix and R Alf’ , on real multiplicatively convex Fréchet
algebras are representable.

Remark 2.14 Adapting the ideas of [19], the functor R )1(3’ , has a natural extension to
those simplicial Banach algebras B, for which B, — m¢ B is a nilpotent extension
for each n. Explicitly, we could set R Alf’ ,(B) to be the set of homotopy classes of
maps G(Sing(X, x)) — B of simplicial groups, where G is Kan’s loop group. This
functor admits a tensor structure extending Lemma 2.5,

The functor RdR has a natural extension to those differential graded Banach algebras
B, for which Bo — Ho B is a nilpotent extension. Explicitly, R’ dr . (B) would consist of
pairs (9, D), where 9 is a szo(BX)—torsorand D: Ty —>]_[ ,QZ”H ®Woad In(n+1)
is a flat hyperconnection, where ad .7, := 7 x /2 (BY) (Bn)

It then seems likely that [19, Corollary 4.41] should adapt to give natural isomorphisms
R )? L(B) = Rg,Rx (NB), where N is Dold-Kan normalisation.

2.3 The pluriharmonic functor

Fix a compact connected Kihler manifold X', with basepoint x € X .

Definition 2.15 Given a real Banach space B, denote the sheaf of B—valued C*°
n—forms on X by /¥ (B), and let <7y be the resulting complex. Write A*(X, B) :=
['(X, og(B)). We also write oy := gf" v(R) and A°(X) := A*(X,R).

Definition 2.16 Define S to be the real algebraic group [[¢ /R Gm obtained as in
[6, Section 2.1.2] from G, ¢ by restriction of scalars. Note that there is a canonical
inclusion G, — S

The following is a slight generalisation of [20, Definition 2.49]:

Definition 2.17 For any real Banach space B, there is an action of S on /§ (B),
which we will denote by a +— A ¢ a, for A € C* = S(R). For a € (A*(X) ® C)P9, it
is given by

Loa:=APAa.
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Definition 2.18 Given a real C*-algebra B, define RI{, (B) to be the groupoid of
pairs (U(£), D), where U(2?) is aright d)?(U (B))-torsor, and D is a pluriharmonic
connection on U(Z).

Explicitly, write & := U(Z?) X o9 (U(B)) ;zfXO (B*), and
ad P 1= P % 9 gy 7y (B)
0
=[U(2) Xg/,?(U(B)) @7)(() (w(B))]®[U(2) ng}(’(U(B)) @7)(()(5(3))]’

where U(B) and B* act on B by the adjoint action. Then a pluriharmonic connection
on & is
D: U(P)—ad ¥
satisfying
(1) D is a d—connection: D(pu) = ad,D(p)+u"'du for u e MQ(U(B));
(2) D isflat: (ad D)o D =0;
(3) D is pluriharmonic: (ad D)o D¢ + (ad D€)o D = 0.

Here, D = d™ 4 ¢ comes from the decomposition of ad % into anti-self-adjoint and
self-adjoint parts, and D¢ =i od™ —i o 0.

Define RJ ,(B) to be the groupoid of triples (U(2), D, f), where (U(EZ) D) is
in R)J((B) and f € x*U(2) is a distinguished element. Since R ,(B) has no
nontrivial automorphisms, we will regard it as a set-valued functor (glven by its set of
isomorphism classes).

Remark 2.19 There is a natural action of U(B) on R 1{, ,(B), given by changing the
framing. The quotient groupoid [R )J( ,(B)/U(B)] is thus equivalent to R)J((B). In
[25, Lemma 7.13], the set R)‘? (Mat,, (C)) is denoted by RéR(X, x,n).

Also note that the definition of R )J(x(B) can be extended to any real Banach *—
algebra B. However, this will not be true of the harmonic functor of Section 2.5.

Example 2.20 When V is areal Hilbert space, the algebra L (V') of bounded operators
on V isareal C*-algebra. Then Rj{ (B) is equivalent to the groupoid of pluriharmonic
local systems V in Hilbert spaces on X, fibrewise isometric to V. The connection
D: «7°(V) — o71(V) must satisfy the pluriharmonic condition that DD 4+ DD = 0
for D¢ defined with respect to the smooth inner product V x V — %9. Isomorphisms
in R}?(B) preserve the inner product.
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Definition 2.21 Define the de Rham projection
mar: RY ((B) > R, (B)
by mapping (U(2?), D, f') to the framed flat torsor

(2.D. f) = UP) % 0ws)) g (BX), D, f xysy BX).

Proposition 2.22 The functor R )*? - C*Alg — Set is strictly prorepresentable, by an
object E)J( . €pro(C*Alg).

Proof The final object in C*Alg is 0, and R 1{, ,(0) is the one-point set, so R 1{, .
preserves the final object.

Given maps 4 — B < C in C*Alg and (p4, pB) € RAJ,X(A) XR{ (B) R)J(X(C),
we get ”

4R (P4 PC) € RYS(A) X pax () R (C) = RY ((4) X g _(5) RY ((C)
~ R (AxpC).
Thus we have a flat torsor (£, D) € R}Rx (AxpgC).

It follows that p4 = (U(Z4), D) for some orthogonal form
0
U(P4) CPu=2 X2 ((AxpC)¥) (A7),

and similarly for pc. Since the images of p4 and pc are equal in RfYRX (B), there is
a framed orthogonal isomorphism

o1 U(Z4) X0 w(ay) A2(U(B)) — U(Zc) X0 U(C)) 2 (U(B)),

inducing the identity on #p. Hence o must itself be the identity, so both U(Z4)
and U(Z¢) give the same unitary form U(Zpg) for Pg. It is easy to check the
pluriharmonic conditions, giving an element

(U(24) Xu(p) U(Pc). D) € RY (A x5 C)

over (p4, pc). This is essentially unique, so R )J( . breserves fibre products, and hence
finite limits.

Now, given a C*—subalgebra A C B, the map R )';’x (A)— R )‘i,x (B) is injective. This
follows because if two framed pluriharmonic bundles &?;, £, € R )‘g L (A) become
isomorphic in R )J( ,(B), compatibility of framings ensures that the isomorphism
maps x* 2 to x*2,. Since f is compatible with the connections, it thus gives an
isomorphism f: £; — £,, by considering the associated local systems.
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Finally, given an inverse system {A;}; of nested C*—subalgebras of a C*-algebra B
and an element of (); R )J( ,(4i), we have a compatible system {(Z, D;, fi)}i. Set
2 :=lim; #;, with connection D and framing f* induced by the D; and f;. This
defines a unique element of R AJ, X(ﬂi Ai), showing that

F(ﬂ Ai) ~ ﬂ F(A;).

Thus all the conditions of Proposition 1.9 are satisfied, so R )‘? . 1s strictly prorepre-
sentable. |

Definition 2.23 Given pro-C*—algebras B and C over k, define B®;C to be the
maximal k —tensor product of B and C, as defined in [18, Definition 3.1]; this is again
a pro-C* —algebra.
Lemma 2.24 For any real pro-C* —algebras B and C, there is a canonical map

m: Ry (B) x Ry . (C) > RY (B&RC),

making R ; . Into a symmetric monoidal functor, with unit corresponding to the trivial
torsor in each RAJ, L(B).

Proof Given (U(2), D, f,U(2), E, B) on the left-hand side, we first form the
sz’)?(U(B@C))—torsor U(Z) given by

UZ):=(U(Z) % U(Q)){Q{)Q(U(B)XU(C))WXO(U(B®C))-
We then define a connection F on U(Z) determined by

F(p,q.1) = (Dp.q) + (p. Dq) € oy (ad %)
Lo
= (U(2) xU(2)) .0 wB)xu(c)) @x (BOC)

for p e U(Z?) and g € U(2) This is clearly flat and pluriharmonic, and the construction
is also symmetric monoidal. |

Note that this gives E ,\{ . the structure of a pro- C*—bialgebra, with comultiplication
75 E)J( L E)f x@E)J( coming from m, and counit &: EA{ , — k coming from the
trivial torsor.

X

The following is immediate:

Geometry € Topology, Volume 21 (2017)



862 Jonathan Pridham

Lemma 2.25 For any morphism f: X — Y of compact connected Kéhler manifolds,
there is a natural transformation

S*: Ry oo~ Ry,
of functors.

2.4 Higgs bundles

Definition 2.26 Given a complex Banach algebra B, write Oy (B) for the sheaf on X
given locally by holomorphic functions X — B.

Definition 2.27 For a complex Banach algebra B, a Higgs B—torsor on X consists
of an Oy (B)*—torsor 7, together with a Higgs form 6 € ad 7 Qg Q}( where
ad .7 := 7 X gy (B)*,ad Ox (B) satisfying

OAND =0T ®py Q5.

Definition 2.28 Let R?OI(B) be the groupoid of Higgs B-torsors, and RDOl (B)
the groupoid of framed Higgs bundles (7,0, f), where f: B* — x*7 is a BX—
equivariant isomorphism. Alternatively, we may think of f as a distinguished element
of x*7.

Note that RDO] ' (B) is a discrete groupoid, so we will usually identify it with its set of
1somorph1sm classes Also note that there is a canonical action of B* on RDOl " (B)
given by the action on the framings. This gives an equivalence

Ry (B) = [RY"(B)/B*]
of groupoids.
The following is immediate:
Lemma 2.29 Giving a Higgs B—torsor X is equivalent to giving an %)? (BX) torsor 2
equipped with a flat d—connection, ie a map
D" 2 —ad 2= 2% 0 gx) g Ty (B)
satisfying

(1) D"(pg) =adgD"(p)+ g '0g for g € A#2(B*);
(2) (adD")o D" =0.
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Remark 2.30 Unlike the Betti, de Rham and harmonic functors, the Dolbeault functor
cannot be prorepresentable in general. This is for the simple reason that a left-exact
scheme must be affine, but the Dolbeault moduli space is seldom so, since it contains
the Picard scheme.

Definition 2.31 Given (U(2), D) € R)J((_B), decompose d T and ¢ into (1,0) and
(0,1) typesas dt =90+ 0dand ¥y =60 +6. Nowset D' =09+6 and D" =9+ 6.
Note that D = D'+ D" and D¢ =iD'—iD".

Definition 2.32 For a complex C*-algebra B, define the Dolbeault projection map
Dol R{{,(B) N R)D(OI(B) by sending (U(Z?), D) to (£ X 9 (B ,!ZfXO(BX)’ D).
2.5 The harmonic functor

We now let X' be any compact Riemannian real manifold.

Definition 2.33 Given a compact Riemannian manifold X', a real C*—algebra B, a
right %)?(U (B))-torsor U(£) and a flat connection

D: U(P) — ad 2,

say that D is a harmonic connection if (dT)*®% = 0 € I'(X,ad &) for d* and ¥
defined as in Definition 2.18 and the adjoint * given by combining the involution * on
ad & with the adjoint on &7y given by the Kahler form.

Lemma 2.34 A flat connection D as above on a compact Kédhler manifold is harmonic
if and only if it is pluriharmonic.

Proof The proof of [23, Lemma 1.1] carries over to this generality. a

Definition 2.35 The lemma allows us to extend Definitions 2.18 and 2.21 to any
compact Riemannian manifold X, replacing pluriharmonic with harmonic in the
definition of R¥ (B) and R} (B).

Proposition 2.36 The functor R 5? - C*Algg — Set is strictly prorepresentable, by
an object E){ . €pro(C*AlgR).

Proof The proof of Proposition 2.22 carries over. |

Note that Lemma 2.24 carries over to the functor R )'i , for any compact Riemannian
manifold X .

The following is immediate:

Geometry € Topology, Volume 21 (2017)



8604 Jonathan Pridham

Lemma 2.37 For any local isometry f: X — Y of compact connected real Riemann-
ian manifolds, there is a natural transformation

%, J J
f . RY,fx - RX,X
of functors.

Note that this is much weaker than Lemma 2.25, the pluriharmonic functor being a
priori functorial with respect to all morphisms.

3 Analytic nonabelian Hodge theorems

3.1 The de Rham projection

Fix a compact connected real Riemannian manifold X, with basepoint x € X .
The argument of [25, Lemma 7.17] (which is only stated for X Ké&hler) shows that
4R gives a homeomorphism

Ry (Mat, (C))/U(n) — Hom(r1 (X, x). GL4(C)) /GL4(C).
where // denotes the coarse quotient (in this case, the Hausdorff completion of the
topological quotient).
As an immediate consequence, note that

Ry ,.(C) — Homgp(1 (X, x),C*)

is a homeomorphism. Thus the abelianisation of E )‘? , ® C is isomorphic to the com-
mutative C*—algebra C(Hom(mr (X, x), C*),C), with R)‘?’x - R)';’x ® C consisting
of Gal(C /R)—equivariant functions.

We now adapt these results to recover a finer comparison between the respective
functors.

3.1.1 Harmonic representations

Proposition 3.1 For a compact Riemannian manifold X and all real C* —algebras B,
the de Rham projection
mar: RY (B) > R (B)

has the property that if p;, p, € R)J(X(B) and adp mar(p1) = war(py) for some
strictly positive self-adjoint element b € B, then py = p,.

Thus
iR Ry (B)/U(B) > R (B)/B*

is injective.
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Proof The first statement above implies the second: it suffices to show that, for any
U@),D, f)eR )J( ,(B), there are no other harmonic representations in the B |, —
orbit of mgr(U(2), D, ). Since B, , = exp(S(B)) (by the continuous functional
calculus), we can equivalently look at the orbit under the exponential action of the
set S(B).
We adapt the proof of [5, Proposition 2.3]. The harmonic condition (dT)*® = 0 is
equivalent to saying that, for all £ € A%(X,i ad 2),

(0.dTE) =0€ A°(X, B),
where (—, —) is defined using the Riemannian metric.

Now, the set of flat connections on % admits a gauge action = of the smooth auto-
morphism group of %2, and hence via exponentiation an action of the additive group
I'(X,ad 22). An isomorphism in B44 between two flat connections corresponds
to an element of exp(I"(X, S(ad £2))) for S(ad &) C ad & consisting of symmetric
elements, giving a gauge between the respective connections. Thus the S(B)-orbit
above is given by looking at the orbit of D under I'(X, S(ad £)).

By analogy with [5, Proposition 2.3], we fix £ € A°(X, S(ad 2)), let a’tJr and v; be
the anti-self-adjoint and self-adjoint parts of exp(£7) » D, and set

f(t):= (8:.9:) € A°(X. B).
Now, d(exp(£t) » D)/dt = (exp(Et) » D)E = d; & +9; AE, s0 d¥y/dt =d; & and
S'(6)=2(.(d1)"D:) € A°(X. B).
In other words, D; is harmonic if and only if f/(z) = 0 for all £.
Now, if we set 13, =d ,+ — ¥4, the calculations of [5, Proposition 2.3] adapt to give
2/"(t) = | Di§ + Di€|1* + || D — Dig|)* € 4°(X. B),

where ||v]|? := (v, v); unlike Corlette, we are only taking inner product with respect to
the Kéhler metric, not imposing an additional inner product on B.

Note that #”/(z) an element of A°(X, B.), which liesin A°(X, B4 ) unless D;£ =0.
If we start with a harmonic connection D, this implies that exp(§) = D is harmonic if
and only if D& = 0. However, when D& = 0 we have exp(§) x D = D, showing that
D is the unique harmonic connection in its By —orbit. |

Corollary 3.2 For a complex C*-algebra B and an element p € R AJ,X(BX), the
centraliser Z(mqr (p), B™) of mgr(p) under the adjoint action of B is given by

Z(ngr(p), B) = exp({b e S(B)| bt ¢ Z(p,U(B)) forall t € R}) xZ(p,U(B));

beware that this is the semidirect product of a set with a group.
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Proof Take g € Z(mar(p), B*), and observe that the polar decomposition allows us
to write g = exp(b)u for u € U(B) and b € S(B). Since ngr is U(B)—equivariant,
we have

adexp(p) ar (ady p) = adg war(p) = war (D).
Thus Proposition 3.1 implies that ad, p = p, so u € Z(p, U(B)).

Since Z(mgr(p), B™) is a group, this implies that exp(b) € Z(rgr(p), B™), and hence
that exp(b) commutes with the image of wgr(p). We may apply the continuous
functional calculus to take logarithms, showing that b itself commutes with the image
of mar(p), so ibt does also. But then exp(ibt) € Z(p, U(B)) for all ¢, as required.

Conversely, if exp(ibt) € Z(p, U(B)) for all ¢, then exp(—ibt)mar(p) exp(ibt) =
gr(p) and, differentiating in ¢ for each element of 71 (X, x), we see that i b commutes
with gr(p). Thus exp(b) € Z(war(p), BX). ad

3.1.2 Topological representation spaces and completely bounded maps

Lemma 3.3 For the real pro-C* —algebra E ){ . of Proposition 2.22, there is a canon-
ical map mgr: Hompo(analg) (£ } B) — RS}, (B), functorial in real Banach alge-

bras B.

’x’

Proof Given f: E A{ . —> B, Lemma 1.20 factors f as the composition of a surjective
C*-homomorphism g: E )J( , — C and a continuous embedding C < B. The de
Rham projection of Definition 2.21 then gives us an element wgr(g) € Rg(Rx (C).
Combining this with the embedding C* — B then provides the required element of
R{¥.(B). O
Proposition 3.4 For any real C*-algebra B, the map of Lemma 3.3 induces an
injection
mar: Hom(EY, . B)ey = RS, (B)

for the completely bounded morphisms of Definition 1.21.
Proof Since B can be embedded as a closed C*—subalgebra of L(H) for some
complex Hilbert space H, we may replace B with L(H). By Lemma 1.22, any

completely bounded homomorphism f: E )f . —> L(H) is conjugate to a *—morphism,
since E )% . is a pro-C* —algebra. Therefore Proposition 3.1 shows that

Hom(EY .. L(H))e/GL(H) — R (L(H))/GL(H).
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Take a homomorphism f: E ){ . — L(H) of C*-algebras; it suffices to show that the
centraliser of f and of wgr(f) are equal. By Corollary 3.2, we know that

Z(mar(f), GL(H))
= exp({b e S(L(H))| e'bt e Z(f,U(H)) forall t € R}) xZ(f,U(H)).

If ¢’ commutes with f for all f, then e!%’fe~i0* = f and differentiating in
shows that b commutes with f. Therefore exp(h) commutes with f, showing that

Z(nar(f). GL(H)) C Z(f,GL(H)).

The reverse inclusion is automatic, giving the required result. |

Remark 3.5 1In [23; 20], the proreductive fundamental group 7y (X, x)?(ecl is studied —
this is an affine group scheme over k. By Tannakian duality [7, Chapter II], we can
interpret the dual O(mry (X, x)red V' of the ring of functions as the ring of discontinuous

Gal(C /R)—equivariant endomorphisms of 7%

The group scheme 7 (X, x)red encodes all the information about the sets of finite-
dimensional representations of 1 (X, x). As we will now see, (E )J( JpN encodes all
the information about their topologies as well.

Theorem 3.6 For any positive integer n, mgr gives a homeomorphism mgR ¢ between
the space Homy,o(an Alg) (EY X x> Maty, (C)) with the topology of pointwise convergence
and the subspace of R (Matn (C)) whose points correspond to semisimple local
systems.

Proof The isomorphism 7R ss is given on points by the proof of [5, Theorem 3.3],
since completely bounded algebra homomorphisms £ )J( . — Mat, (C) are those conju-
gate to x—homomorphisms, which in turn correspond to harmonic local systems. We
need to show that this is a homeomorphism.

Consider the map ngR EY, — E J % of pro-Banach algebras. If 7; — T is a
convergent net in Hom,g dnAlg)( X x> Maty (©)), then T,-(ngR(y)) — T(ngR(y)), SO
TdR,ss 18 continuous.

Now, the de Rham projection qr: R X, (B) — RCIR (B) is automatically injective
for C *—algebras B. Thus the inclusion in E J . of the pro- C* —subalgebra generated
by 7TdR(7T1(X X)) must be an epimorphism, smce R[m; (X, x)] is dense in ECIR By
[21, Proposition 2], an epimorphism of C*-algebras is surjective, so E must be
generated as a pro- C * —algebra by JrgR(m (X,x)), and as a pro- Banach algebra by
”dR(ﬂl (X, x) U JTdR(Tl'l (X, x)*.
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Now, if we have a convergent sequence 7gr(7;) — 7wqr (T), then T; (ngRy) —T (ngRy)
for all y € m1(X, x), so it suffices to show that the same holds for (ngRy)*. Given
T € HompoBanalg) ( Xx,Matn((C)), define T* by T*(e) := T(e*)*. We wish to
show that T}* (' y) — T* (k). which will follow if 7ar(T}*) — 7ar(T*).

As in the proof of Proposition 3.4, we can write 7" = adgS for S: E ){ » Mat, (C)
a x—homomorphism and g € GL,(C). Then T* = ad(gxy—1 S = ad(ggxy—1 T'; this
means that if we write mqr(T) = (¥, D, f), then ngr(T*) = (¥, D, (f*)_l), where
f*: x*¥ — C" is defined using the harmonic metric on ¥ and the standard inner
product on C”.

Explicitly, this means that we can describe the involution * on semisimple elements
of R)l(g’ Mat, (C)) by p* = (C (0)~HT, where C is the Cartan involution of [23].
If D=d™* + ¥ is the decomposition into antihermitian and hermitian parts with
respect to the harmonic metric, then C(¥,d ™ + 9, f) = (¥,d ™ =9, f). The proof
of [5, Theorem 3.3] ensures that the decomposition D + (d +, 1) is continuous in D,
so C is continuous. Hence 7gr(7T") > mgr(T™) is also continuous, which gives the
convergence required. |

3.1.3 The polynormal completion and Tannaka duality

Definition 3.7 Let FDRdR be the category of pairs (V, p) for V € FDVect and
RdR (End(V)). Morphlsms [+ (Vi, p1) = (Va, p,) are given by linear maps
f Vi - V2 for which the adjoint action of

id 0 End(V;) 0 ® ( End(V)) 0
( f id) < (Hom(Vl, Va) End(Vz)) on FDRY « \ Hom(V,. v4) End(Vy)
fixes p1 @ p».

Write ndR: FDROlR — FDVect for the fibre functor (V, p) — V. Let FDRdR >58
FDRdR be the full subcategory in which objects correspond to semlslmple local

systems, with fibre functor n%%.

Proposition 3.8 The ring (E ,JPN is isomorphic to the ring of continuous Gal(C/R) -

dR
equivariant endomorphisms of nk .

Proof This just combines Lemma 1.28 and Theorem 3.6. |
Remark 3.9 This leads us to contemplate the structure of the ring of continuous endo-

morphisms f of n‘}CR. Any finite-dimensional C —algebra arises as a subalgebra of some
matrix algebra, so any such f induces continuous maps Homgp (7 (X, x), BX) — B
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for all finite-dimensional algebras B. In particular, this holds when B = Mat,(A4) for
some Artinian C—algebra A, from which it follows that the maps

fr: RX x(End(V)) — End(V)

are all analytic. In other words, any continuous endomorphism of 7R is automatically
analytic.

When 71 (X, x) is abelian, this ensures that the ring (E'y dr " JED ® C of such endomor-
phisms is the ring of complex analytic functions on HomGp (1 (X, x), C*), which by
Example 2.12 is just C[mq (X, x)*".

In general, the ring (E JFD is an inverse limit of polynormal Banach algebras, but it
is not clear to the author whether it is the propolynormal completion of the Fréchet alge-
bra ESX_. In general, the map 1 (X, x) — (E{} )b need not be injective: Section 6.5
of [2] glves examples of Kihler groups with no falthful linear representations.

Definition 3.10 Given a k—normal real C*-algebra B, define R dR’SS(B) CRY dR (B)
to be the subspace consisting of those p for which ¥ (p) corresponds to a semlslmple
local system for all ¥: B — Mat (C).

Corollary 3.11 For any k —normal real C* —algebra B, the space R® Xx *(B) is iso-
morphic to the set of continuous algebra homomorphisms E J .~ B.

Proof Since B is k—normal, any such morphism E ;", . — B factors uniquely through
(Ey EY ,Jpn. By Proposition 3.8, a homomorphism (Ex EY ,)PN = B corresponds to a
contlnuous Gal(C /R)—equivariant functor p*: FDRep(B) — FDRdRXqq of topological
categories fibred over FDVect. An element p € RdR . (B) satisfies this condition

provided p* maps to FDRdR S C FDRY dR a

Remark 3.12 It is natural to ask whether the nonabelian Hodge theorem of [25]
extends from finite-dimensional matrix algebras to more general C*—algebras B.
Proposition 3.8 can be thought of as an extension of the correspondence to polynormal
C*—algebras, but it seems unlikely to adapt much further, because the arguments of
[25; 5] rely on sequential compactness of U,,. However, it is conceivable that suitable
solutions of the heat equation might give rise to asymptotic C*-homomorphisms.

3.2 Residually finite-dimensional completion, products and complex tori

Definition 3.13 A pro-C*-algebra A is said to be residually finite-dimensional if it
has a separating family of finite-dimensional x-representations.
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Given a pro-C*—algebra A4, define the pro-C*-algebra Agrpp to be the universal
residually finite-dimensional quotient of A. Explicitly, Arpp is the quotient of A
with respect to the proideal given by the system of kernels of finite-dimensional *—
representations of A.

Note that polynormal C*-algebras are residually finite-dimensional, so we have com-
pletions A — Arpp — Apn for general A4.

Proposition 3.14 Given compact connected Kihler manifolds X and Y, there is an
isomorphism (E)J(Xy,(x,y))RFD ~ (E[\{,X)RFD(@(E){'J)RFD-

Proof The prO]eCtIOHS give canonical elements of the spaces R ,\J’xY (. y)( X) and
R*’ XxY.(x, y)(E ¥ y) which by Lemma 2.24 give rise to a canonical map

. d
j' EXXY,(x,y) - EX X®EY,y'

By [5], every finite-dimensional representation of EZ XxY.(x.y) corresponds to a semi-
simple representation of 7 (X XY, (x, y)) = 71 (X, x) x 71 (Y, ), so factors through
E;@Eé Since (EAJ,XY(X y))RFD C [1; End(V;) where V; ranges over finite-dimen-

sional irreducible representations, this implies that

JRED: (Ej’fxy’,(x,y))RFD — (E§,X)RFD®(E§J)RFD

is injective. However, the basepoint y gives us a map X — X x Y, and hence

E)J(x — EAJ’XY(x ) ensuring that (E)J()RFD lies in the image of frpp; a similar
argument applies to Y. Thus frep is surjective, and hence an isomorphism. a

Remark 3.15 We have only imposed the hypothesis that the manifolds be Kéhler in
order to use the functoriality properties of Lemma 2.25, since Lemma 2.37 is too weak
to apply to the maps between X x Y and X.

Lemma 3.16 Given a compact connected Kahler manifold X , the commutative quo-
tient (E)f x)alb is given by
(Ef )™ ®C=CH'(X,C*),0),
(Ex )" ={f e CH'(X,C*),C) | f() = f(p)}.
Proof Since (£ J )a1b isa commutatlve C* —algebra, the Gelfand—Naimark theorem
gives (EJ )‘ﬂlb (C ~ C(Hom(E< Xoxo C),C), with EJ )db glven by Gal(C/R)-

invariants. By Section 3.1.3, we have a homeomorphism Hom( X 0= H'(X,C*),
which completes the proof. |
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Corollary 3.17 For X acomplex torus with identity e and a fixed Riemannian metric,
we have

(Ex Jreip ® C = CH'(X.C¥).C),
(Ex Jrep ={f € CH'(X,C*).C) | f(p) = [(p)}.

Proof Multiplication on X gives a pointed morphism X x X — X and hence, by
functoriality of P in X and Proposition 3.14, we have a morphism

(Ex Jrip®(EY )rED = (EX. . )RFD
of real pro-C *—algebras, and we may apply Lemma 3.16. |
Remark 3.18 If it were the case that all irreducible representations of 71 (X, x) were

harmonic and similarly for w1 (Y, y) then the proof of Proposition 3.14 would adapt

to show that EZ XxVi(x.y) = Ey J ®E J . As in the proof of Corollary 3.17, that

would then imply commutativity of E 7" for complex tori (X, e), giving )J( L QC=
C (Hom(my (X, e), C*)).

Lemma 3.19 Given a compact connected Kéhler manifold X , the grouplike elements
G((EAJ, x)ab) (see Lemma 2.11) of the commutative quotient (E/{, x)ab are given by

G((Ex )" ®C)=H(X.Z&C),
G((Ef,)™) =H|(X.Z®R),
with the map (X, x)® — G((E)J( X)ab) given by the diagonal map 7. — 7 ® R.

Proof The coalgebra structure on (Ey J )“b corresponds under Lemma 3.16 to the
group structure on H' (X, C*). Thus G((E J )ab) consists of continuous functions

FH'(X.C*) - C with £(1)=1and f(ab) = f(a)f(b).

We have an isomorphism C* = S! xR, given by re’? > (¢, ). Thus H! (X, C*) =~
H'(X,S! x H(X,R). By Pontrjagin duality, a continuous group homomorphism
H'(X,S') — C* is just an element of H; (X, Z), and a continuous group homomor-
phism H'(X,R) — C* is an element of H; (X, C). |

3.3 The Dolbeault projection

Now let X be a compact connected Kihler manifold with basepoint x € X .

Proposition 3.20 For all complex C* —algebras B, the Dolbeault projection
ol Ry (B) > RY(B)
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has the property that, if p{, ps € R)J(x(B) and adp mpo1(p1) = mpol(p2) for some
strictly positive self-adjoint element b € B, then p; = p,.

Thus
mpoi: RY (B)/U(B) — RY°(B)/B*

is injective.
Proof The proof of Proposition 3.1 adapts, replacing D with D”. O

Corollary 3.21 For an element p € R )J( L (B™), the centraliser Z(mpol(p), B*) of
7pol(p) under the adjoint action of B is given by

Z(mpol(p), BX) = exp({b e S(B) | ettt ¢ Z(p,U(B)) forall t € R}) xZ(p,U(B));

beware that this is the semidirect product of a set with a group.
Proof The proof of Corollary 3.2 carries over. O

Proposition 3.22 For the real pro C*—algebra E J X .x of Proposition 2.22, there is a
canonical map Hompro(BanAlg)( Xx0 B) — RD"l (B) functorial in complex Banach
algebras B. This induces an injection

Hom(EX o B = RD°1 L (B)

whenever B is a C*—algebra.

Proof The proofs of Lemma 3.3 and Proposition 3.4 carry over to this context,
replacing Proposition 3.1 and Corollary 3.2 with Proposition 3.20 and Corollary 3.21.
O

Theorem 3.23 For any positive integer n, there is a homeomorphism mpo,st between
the space Hompro(BanAlg)( Xx Mat, (C)) with the topology of pointwise convergence
and the subspace of RY°! (Matn (C)) consisting of polystable Higgs bundles E with
chi(E) - [w]dimX—1 = 0 and chy(E) - [w]dimX—2 =0,

Proof The isomorphism of points is given by [23, Theorem 1]. Replacing Proposition
3.4 with Proposition 3.22, the argument from the proof of Theorem 3.6 shows that the
map mpol: HomprO(BanAlg)( X Maty (C)) — RD°1 ' (Mat, (C)) is continuous, so we
just need to show that it is open.

Now, Proposition 7.9 of [25] implies that the isomorphism mgr ¢ © 71’1;011 « 18 continuous.
Since mgr,ss 1s @ homeomorphism by Theorem 3.6, mpgl,sr must also be a homeomor-
phism. |
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Definition 3.24 Let FDRD"1 be the category of pairs (V, p) for V € FDVect and
pPE RDO1 " (End(V)), with morphlsms defined by adapting the formulae of Definition 3.7.

Let FDR DOI e FDR/ D°1 be the full subcategory in which objects correspond to those
of Theorem 3.23. erte nEOl FDRY°! — FDVect, naekst. FDRDOl ' > FDVect for
the fibre functors (V, p) — V.

Proposition 3.25 The ring (E )J( PN ® C is isomorphic to the ring of continuous

endomorphisms of nBOl’St.

Proof The proof of Proposition 3.8 carries over, replacing Theorem 3.6 with Theorem
3.23. d

Definition 3.26 Given a k-normal complex C*-algebra B, define RD01 St(B) C
RD"1 ' (B) to be the subspace consisting of those p for which ¥(p) € FDRD"l st for
all w B — Mat; (C).

Corollary 3.27 For any k —normal complex C* —algebra B, the space RDOl CY(B) is
isomorphic to the set of continuous algebra homomorphisms E J .~ B.

Proof The proof of Corollary 3.11 carries over, replacing Proposition 3.8 with
Proposition 3.25. ad

3.4 Circle actions and C *-dynamical systems

Definition 3.28 Define a circle action on a (real or complex) pro-C* —algebra A to be
a continuous group homomorphism from S to Autpo(c+alg) (4). Here, the topology
on Aut,(c*alg)(A) is defined pointwise, so a net f; converges to f if and only if
fila) > f(a) foralla e A.

The following is immediate:

Lemma 3.29 Giving a circle action on a C*—algebra A is equivalent to giving a
pro-C* —algebra homomorphism f: A — C(S', A) that satisfies

(1) 1*of=idg: A—>C{l1},A4) =
(2) the diagram

A—T st a

fl lC(Sl,f)

(S, 4) " (ST x ST, 4)

commutes, where m: S x S1 — S is the multiplication.
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Lemma 3.30 If a functor F: C*Alg; — Set is represented by a pro-C* —algebra A,
then to give a circle action on A is equivalent to giving maps

ap: F(B) — F(C(S', B)),
functorial in B, such that
(1) F(1*)oap = idppy: F(B) — F(B);
(2) the diagram

F(B) —>2 , F(C(S', B))
oeBJ laC(Sl,B)
F(m™)

F(C(S', B)) ——= F(C(S' x S!, B))
commutes, where m: S x S' — S is the multiplication.

Proof If A has a circle action «, then a homomorphism 4: A — B gives rise to
C(S', h): C(S', A) — C(S', B), and we define ag(h) := C(S', h)oa. This clearly
satisfies the required properties.
Conversely, given maps «p as above, write A = lim; 4; as an inverse limit of C *—
algebras, and let h;: A — A; be the structure map. Then ay, (h;) € F(C(S?!, 4;)) is
amap A — C(S', 4;). Since the oy, (h;) are compatible, we may take the inverse
limit, giving a map

a: A— C(St, 4)
To see that this is a group homomorphism, just observe that the conditions above ensure
that #; 0o 1* oo = h; and

CS'x S hj)oC(SY, a)oa =C(S! xS, hy) om*«

for all i. Taking the inverse limit over i shows that this satisfies the conditions of
Lemma 3.29.

Finally, note that these two constructions are clearly inverse to each other. |

Proposition 3.31 For every compact Kéhler manifold X , there is a canonical continu-
ous circle action on E )‘? X

Proof Given (U(2), D, f) € Ry, (B), define «(U(2), D, /) € Ry (C(S, B))
as follows.

Decompose D = d ™+ into anti-self-adjoint and self-adjoint parts. Set o(U(2?)) :=
C(S\,U(2)= U(‘@)X,WAQ(U(B))'Q‘(XO(C(SI’ U(B))), thendefine (D) :=dt +t01,
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where ¢ € C(S!, C) is the canonical embedding and ¢ is from Definition 2.17. Thus
we have constructed a(U(2), D, f) :=(C(S',U(2),dT +t o9, C(S!, f)), and it
is easy to check that this satisfies the conditions of Lemma 3.30. |

Remark 3.32 By considering finite dimensional quotients of £ )f ,.» the circle action
induces a continuous map

St xE)J(’x — O(nl(X,x)flid !

for O(m (X, x)ﬁd V' as in Remark 3.5. This descends to a discontinuous action of S'!
on O(m (X, x)ﬁd V', as in [23] (made explicit in the real case as [20, Lemma 6.5]).

Note, however, that the circle action descends to continuous actions on (E )f x)RFD and
(F )J( ,JpN (which are subalgebras of O(ry(X, x)ﬁd V', though not closed).

Continuity of the circle action ensures that the map
1 J
S'xm(X,x)—> Ey

is continuous, and hence that the induced map S' x 7; (X, x) — m(X, x)ﬁd(R) C
O(m (X, )c)]rlgd V' is continuous. Thus a continuous circle action on E )%,x gives rise
to a pure Hodge structure on 71 (X, x)™ in the sense of [23, Section 5], but without
needing to refer to 1 (X, x) itself. This suggests that the most natural definition of a
pure nonabelian Hodge structure is a continuous circle action on a pro- C*-bialgebra.

Example 3.33 Lemma 3.16 gives an isomorphism

(Ex )™ ={f e CH'(X.C",C)| f(p) = f(p)}.

then Lemma 3.19 shows that the grouplike elements are G((E ; x)ab) ~H{(X,Z&R).
To describe the circle action on (E )% x)ab, it thus suffices to describe it on the space
H!'(X,C*) of one-dimensional complex representations.

Taking the decomposition D = d ™ + 1 of a flat connection D into antihermitian and
hermitian parts, note that we must have (d7)? = 92 = 0, because commutativity of C*
ensures that commutators vanish, everything else vanishing by hypothesis. This decom-
position therefore corresponds to the isomorphism H! (X, C*) ~H' (X, §')xH! (X, R).
Since the action is given by @ ¢ ¢ for ¢ € S, it follows that the S!—action is just
the o—action on H! (X, R).

On G((E)J(x)ab) ~ H;(X,Z) & H;(X,R), this means that the circle action fixes
H;(X,Z) and acts with the o—action on H; (X, R) = H; (X, R)V.
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Definition 3.34 Recall from [31, Definition 2.6] that a C*—dynamical system is a
triple (4, G,«) for G alocally compact topological group, A a C*—algebra and o a
continuous action of G ona A.

Lemma 3.35 The circle action o of Proposition 3.31 gives rise to a pro-C* —dynamical

system (E)J( e S! @), ie an inverse system of C* —dynamical systems.

Proof Since E )J( , is a pro-C*—algebra, we may write it as an inverse system
E )J(,x = LiLnl. E; for C*—-algebras E;. The circle action then sends the structure
map A;: E){’x — E; to the map C(S!, h;)oa: E)‘?’x — C(S',E;), and evalu-
ation at 1 € S' recovers s;. We may therefore set Ey iy to be the closure of

the image of E )J(x — C(S!, E;), and observe that Eqiy is S ! _equivariant, with

Ey = lim; Eqg).
Thus (E)f o St )= lim, (Eq ). S! @) is a pro-C*—dynamical system. O

The following is taken from [31, Lemma 2.27]:

Definition 3.36 Given a C*—dynamical system (A, G,«) and f € C.(G, A), define
| £l :==sup{|lm xU(f)|: (r, U) is a covariant representation of (4, G, «)}.

Then ||—|| is called the universal norm, and dominated by ||—||; .

The completion of C.(G, A) with respect to ||—|| is the crossed product of 4 by G,

denoted by 4 %y G.

Definition 3.37 Define a polarised real Hilbert variation of Hodge structures of
weight n on X to be a real local system V, with a pluriharmonic metric on MXO (V),
equipped with a Hilbert space decomposition

AH(V)RC= @ »"
p+q=n

(where @ denotes Hilbert space direct sum), with 74 = ¥9P and satisfying the
conditions

. 10 7. +1,g—1 01
for the decomposition D = 3+ d + 6 + 6 of Definition 2.31.

Proposition 3.38 Real Hilbert space representations of the nonunital pro-C* —algebra
E ix Xy S correspond to framed weight 0 polarised real Hilbert variations of Hodge
structure.
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Proof By [31, Proposition 2.29], a *-representation E)?x Xg S — L(H) for a
Hilbert space H consists of

(1) a x-representation p: E )J(’x — L(H), and
(2) a continuous representation u: S' — U(H)

such that
pla(t,a)) = u(t)payu(r)™!

J 1
forallaeEX’x,teS .

In other words, in R)J(X(C(SI,L(H))), we have a(p) = upu~', so a(p) and p are
isomorphic in the groupoid R}’( (C(S', L(H))).

Now, by definition of £ J , the representation p corresponds to a real local system V,
with a pluriharmonic metrlc on &7 v (V) and a Hilbert space isomorphism f: Vy — H.
The representation «(p) corresponds to the connection a(D) := dt 4+ ¢ ¥ on
ﬂ/{) (C(S1',V)) for the standard coordinate ¢: S! — C, together with framing f .

The condition that «(p) and p are isomorphic then gives us a unitary gauge trans-
formation g between them. In other words, we have a continuous representation
g: ST > T'(X, U(d)?(V))) with (D)o g = go D. We must also have g, = u.

Thus g gives us a Hilbert space decomposition

o~

Ap(V)@C= @ »,
p+q=0

with ¥P4 = 74P and g(t) acting on ¥ P4 as multiplication by #7~9. The condition
a(D)og = go D then forces the conditions

. 10 7. +1,9—1 01
3. lypq —> Ai/pq ®9/1{,) (C) JZ{X s 0. /qu —> Af/p q ®!771\9(C) JZ{ X .
as required. a
Remark 3.39 For any Es J . —Tepresentation V, [31, Example 2.14] gives an E{ o XS = -
representation IndS V. Its underlymg Hilbert space is just the space L2(S!, V) of
L?—measurable V —valued forms on the circle with respect to Haar measure. For the

pluriharmonic local system V associated to V', this therefore gives a weight 0 variation
1 1
Indf V of Hodge structures on X', with ﬂ}? (Indf V)= yf)? (L2(S',V)).
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4 Hodge decompositions on cohomology
Fix a compact Kihler manifold X .

Definition 4.1 Given a pluriharmonic local system V in real Hilbert spaces on X (as
in Example 2.20), the inner product on V combines with the Kédhler metric on X to
give inner products (—, —) on the spaces A" (X, V) for all n. Given an operator F
on A*(X,V), we denote the adjoint operator by F*. Let A = DD* + D*D.

4.1 Sobolev spaces

Note that, in general, the Laplacian A is not a bounded operator in the L? norm. We
therefore introduce a system of Sobolev norms:

Definition 4.2 Define L’(’z) (X, V) to be the completion of A" (X, V) with respect
to the inner product (v, w)s := (v, (I + A)*w).

Note that we then have bounded operators D, D¢: L?z) JX V) — L (X, V),

s (2),s—1
D*.D*: Ly (X.V)— L5\ (X. V) and At L (X, V) — Ll (X V).

Proposition 4.3 The maps (I + A)¥: Ly (X, V)= Ly o (X, V) are Hilbert
space isomorphisms, and there are canonical inclusions L?z) S V) C L’(12) o (XL V).

Proof The proofs of [8, Proposition 2.3 and Lemma 2.4] carry over to this generality.
O

Definition 4.4 Define H" (X, V) C A"(X, V) to consist of those forms with Aae = 0.
Regard this as a pre-Hilbert space with the inner product (—, —).

The following implies that H" (X, V) is in fact a Hilbert space:
Lemma 4.5 The inclusions

H'(X,V) > {a € Liy | Da= D*a =0} - {a € Liy o | Aa =0}

are Hilbert space isomorphisms.

Proof This is [8, Lemma 2.5] when V is the local system associated to the 71 (X)-
representation £2(7r; (X, x)), but the same proof carries over. O
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4.1.1 Decomposition into eigenspaces

Definition 4.6 Define T to be the composition
I+A)~!
Ly o (X V) TR0 Ly 5 (X, V) < Ly ((X. V),

This is bounded and self-adjoint, with spectrum o (7") C (0, 1]. Thus the spectral
decomposition gives T' = f(o 1 A d 1y, for some projection-valued measure 7 on (0, 1].

For S C [0, c0) measurable, write

V8) = T((4p)-1lpesy

1= [ a+ptay,
p€[0,00)

and for v € L(2) 442(X, V) we have

Thus

Av = / pdvpv € L) s(X, V).
0€[0,00)

If we set E™(S) :=v(S)LV,, (X, V), observe that E" defines a measurable family

(2),0
of Hilbert spaces on [0, o0), and that we have direct integral decompositions
5]
@.sX V) :/ (1+p) 2 Ep.
p€[0,00)

4.1.2 Harmonic decomposition of eigenspaces Since the operators D, D¢, D*
and D* commute with A, they descend to each graded Hilbert space E”(.S) provided
S is bounded above.

If S also has a strictly positive lower bound, then A is invertible on E”(S), so
E"(S)=AE"(S).

As A= DD*+ D*D = DD* + D*D¢, with [D, D] =[D*, D] =[D*, D] =0,
this implies that

En(S) — DEn—l(S) D D*En+1(S) — DcEn—l(S) D Dc*En+1(S)
= DDE""2(S) ® D*DE"(S) @ DD*E"(S) @ D*D*E"+%(S).

Furthermore, D: D*E"(S) — DE" '(S) and D*: DE"(S) — D*E"*1(S) are
isomorphisms, with similar statements for D€.

If S is just bounded above and does not contain 0, then the statements above still hold
if we replace subspaces with their closures:
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Proposition 4.7 There are Hilbert space decompositions

) s (X V) =H'"(X, V) B ALY, (X, V)

=H"(X,V)® DL, (X, V)& D*c’(';)}s L (XV)

=H"(X, V)@ DLy (X, V)& Dc*ﬁ’(’;;}s L (XY)

=H"(X,V)® DDLY2 (X, V)® D*DLY, (X, V)

® DDLY, (X, V)& D*Dc*cgfs (X V)

forall s.
Proof This is essentially the Hodge theorem, and we can construct the decomposition
by a slight modification of [12, pages 94-96].

We can define an approximate Green’s function by

A
G ::/ .
¢ 0,1—¢] 1A

Now, note that (I + A)G, = f(o 1—e] 1/(1 —A) dmy , which is bounded, so G¢ is the
composition of the inclusion L’(’z) s (X, V) = L?z) (X, V) with a map

Ge: Ly (X, V) = L) (X V).

Also note that G¢ commutes with A, and that AGe = (0,1 —¢] =1 —n[l —e,1].
As € — 0, this means that 7 (1) 4+ AG, converges weakly to /. Since 7 (1) is projection
onto H"(X, V), this gives the decomposition required (noting that norm closure and
weak closure of a subspace are the same, by the Hahn—Banach theorem). a

Now, for v € D*E"(S), we have (Dv, Dv) = (Av,v), so | Dv||?/||v||? lies in S.

Definition 4.8 Define Al/2: £’(12),s+1

A1/2:=[ pl/zdvp.
p€[0,00)

— ﬁ?z),s by

This gives
—1 _Al)2 —1
Dﬁ?Z),erl(X’ V)y=A / DE?Z),S—{—Z(X’ V),
ker DN Ly, (X, V) = DL;’;)}S X V)eH" (X, V).
Thus

H' L3 (X, V) = H'(X, V) & (DL, (X, V)/AY2DLISL (X, V).

There are similar statements for the operators D¢, D* and D¢*.
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Definition 4.9 Define A~1/2D: D*"

(2)5S+1(X,V)—>E” by

(2),5(X,V)

ATV/2 ::[ p1/2 dvpo D,
p€(0,00)

and define A~1/2p¢; pexcn

(2,541 X V) = LE

(),

Proposition 4.10 The operator A~'/2D is a Hilbert space isomorphism from the closed
subslzace D>k£?2),s+1 (X, V) of E?z_)}s (X, V) to the closed subspace Dﬁ?z_),lsﬂ (X, V)
of E(z),s(X’ V).

Likewise, A~'/2D¢: DC*E’(’z)’SJrl X,V)—> Dcﬁ?Z_),lS-i-l (X, V) is a Hilbert space iso-
morphism.

(X, V) similarly.

Proof We prove this for the first case, the second being entirely similar. Given
a,b € D*A"(X,V), we have

(AY2Dpa, V2 DbYg = (I + A)* A2 Da, A~V/2 Db)
(I + A)*A'D*Da,b)
(I +A)a,b) = (a,b)s,

since D*a = 0 gives D*Da = Aa. Taking Hilbert space completions with respect to
(—, —)s then gives the required result. m|

4.2 The Hodge decomposition and cohomology

Proposition 4.11 The nested intersection (), L{z),s (X, V) is the space A?(X,V) of
C*® V-valued p—forms.

Proof When V is finite-dimensional, this is the global Sobolev lemma, but the same
proof applies for Hilbert space coefficients. |

Theorem 4.12 There are pre-Hilbert space decompositions
AMX, V) =H"(X,V)® AA"(X,V)
=H"(X,V)® DA 1(X,V)® D*A"*+1(X,V)
=H"(X,V)® DA 1 (X, V) ® D*A"t1(X, V)
=H"(X,V)® DDA"=2(X, V) ® D*DA"(X,V) @& DD*4"(X, V)
@® D*D*AM2(X, V)

forall n.

Proof We just take the inverse limit lim  of the decomposition in Proposition 4.7,
and then make the substitution of Proposition 4.11. |
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4.2.1 Reduced cohomology

Definition 4.13 Given a cochain complex C* in topological vector spaces, write
H"(C*) := H"(C*)/{0},

where {0} is the closure of 0. Note that we could equivalently define H* as the quotient
of the space of cocycles by the closure of the space of coboundaries.

Given a local system V in topological vector spaces on X, define

H'(X, V) := H'(A°(X, V)).

Corollary 4.14 The maps
H'(X,V)—H'(X,V)

are all topological isomorphisms.

Corollary 4.15 (principle of two types) As subspaces of A"(X,V),

ker D Nker D¢ N (DA™ (X, V) + DA™= (X, V)) = DDA"2(X, V).

Lemma 4.16 (formality) The morphisms
(Hpe (X, V),0) < (Zpe (X, V), D) > (4*(X, V), D)

induce isomorphisms on reduced cohomology.
Proof The proof of [23, Lemma 2.2] carries over to this generality. O

Remark 4.17 Usually, formality statements such as Lemma 4.16 lead to isomorphisms
on deformation functors (see [10] for the original case and [19, Proposition 5.3] for the
case closest to our setting).

However, there does not appear to be a natural deformation functor associated to topo-
logical DGLAs L with obstruction space H>(L). Thus, in contrast to the proalgebraic
case, it is not clear whether there are natural completions of the homotopy groups
which can be described in terms of the reduced cohomology ring.

The description of the Archimedean monodromy in [20, Theorem 9.13] is even less
likely to adapt, since it features the Green’s operator G, which we have had to replace
with a nonconvergent sequence of operators.
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4.2.2 Nonreduced cohomology Taking the inverse limit lim  of the decompositions
of Section 4.1.2, we obtain

DA"Y(X,V) = A2 DpAr—1(X, V),
D*A"TL(X, V) = A2 D gnt1(X, V),
with similar statements for D¢ and D¢*.
Thus:
Proposition 4.18
H"A*(X,V) = H"(X,V) & (DA"=1(X, V)/ A2 DAn=1(X, V).

Applying the operator * then gives
H" A* (X, V) @pn(x,v) H2 A (X, V') = AM(X, V) /A2 4™ (X, V).
Moreover, we have topological isomorphisms
A2 D: D*TXV) — m,
A2 De; DEARX.V) — DA (X, V),
for A=/2D and A~Y/2D¢ as in Definition 4.9.

4.3 The W *—-enveloping algebra
431 E’(X,x)

Definition 4.19 Given a C*-algebra B and a positive linear functional f, define By
to be the Hilbert space completion of B with respect to the bilinear form (a,b) s :=
f(a*b). We define 7y to be the representation of B on By by left multiplication.
Note that this is a cyclic representation, generated by 1 € By.

Lemma 4.20 Given a C* —algebra B, the topological dual is given by B’ = hm f’
where f ranges over the filtered inverse system of positive linear funcuonals on B

Proof This amounts to showing that BYY = lim, By. Since the system is filtered
(with ' +¢ > f, g and By — By for g > f) we see that B :=lim, By is the
completion of B with respect to the seminorms ||b]|s := f(b* b)'/2, The space By
is the strong closure of B in the cyclic representation 7y, which is just the image
of BYY, by the von Neumann bicommutant theorem. Since BY" is the completion of
B with respect to the system of weak seminorms for all representations, this implies
that the map B — B is an equivalence. O
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Lemma 4.21 For a C*-algebra B and a B-representation V in Hilbert spaces,

Hompg(V,B') = V.

Proof The space Hompg(V, B’) consists of continuous B-linear maps V — B’, and
hence to continuous (A4, k)-bilinear maps A x V' — k. These correspond to continuous
linear maps V — k, as required |

Considering smooth morphisms from X then gives:

Corollary 4.22 Forany E := E/(X, x)-representation V in real Hilbert spaces, with
corresponding local system V on X , there is a canonical topological isomorphism

A*(X,V) = Homg(V', A°(X,E")),

where [E’ is the direct system of pluriharmonic local systems corresponding to the
ind-E —representation E’ given by left multiplication.

Of course, all the cohomological decomposition results of this section extend to direct
limits, so apply to E’. Conversely, Corollary 4.22 all such results for local systems V
can be inferred from the corresponding results with E’—coefficients.

Remark 4.23 The comultiplication E7(X,x) - E/(X,x)®E’(X,x) of Lemma
2.24 induces a multiplication

E'X,x)®E’(X,x) > E/(X,x)

on continuous duals, where (lim, E;)’ @(Liﬂlj Ej) :=lim, . E i®E; for C*-algebras
E; and the dual tensor product ® of [30, page 210]. In particular, ® is a crossnorm,
so we have a jointly continuous multiplication on E’(X, x)’.

Thus A*(X,E’) is also equipped with a jointly continuous (graded) multiplication, so
has the structure of a differential graded topological algebra.

4.3.2 Failure of continuity Since direct integrals of harmonic representations must
be harmonic, Corollary 4.14 and Proposition 4.18 provide us with information about
the behaviour of cohomology in measurable families. In particular, they allow us to
recover space of measures on the topological spaces of cohomology groups fibred
over the moduli spaces of local systems. Thus £ )J( , 1s a much finer invariant than the
proalgebraic completion of (X, x).

It is natural to ask whether we can strengthen the Hodge decomposition to incorporate
finer topological data. The following example indicates that it does not hold for
coefficients in [ itself:
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Example 4.24 Let X be a complex torus, so 7;(X,e) = Z?8. By Corollary 3.17,
(EY ,Jrrp ® C = C (Hom(rr1 (X, e), C*),C) = C((C*)*,C).

The complex A*(X,Erpp ® C) is then quasi-isomorphic to H*(Z?¢, C((C*)?¢,C)).
This is given by taking the completed tensor product of 2g copies of the complex F

given by C(C*,C)“=3 C(C*,C), so

H*(X, Erpp ® C) = C[-2g].
However, D*D + DD* = |z —1|? on the complex F, so harmonic forms are given by

H*(X,Erpp ® C) = 0.

S Twistor and Hodge structures on cochains, and SU,

5.1 Preliminaries on nonabelian twistor and Hodge filtrations

The following is [20, Definition 2.3]:

Definition 5.1 Define C to be the real affine scheme [[¢ /g A obtained from A(IC
by restriction of scalars, so C(A4) = A(IC (A®r C) = AR C for any real algebra 4.
Choosing i € C gives an isomorphism C = A2, and we let C* be the quasiaffine
scheme C — {0}.

We let the real algebraic group S = [[¢ /R Gm of Definition 2.16 act on C and C *
by inverse multiplication, ie

SxC—C, w)r—Qw).

Fix an isomorphism C 22 A2, with coordinates u, v on C such that the isomorphism
C(R) = C is given by (u,v) + u + iv. Thus the algebra O(C) associated to C
is the polynomial ring R[u, v]. The group scheme S is isomorphic as a scheme to
Afk—{(a, B) | a?+ B2 =0}, with the isomorphism S(R) 2 C* given by (a, B) > a+if
and the isomorphism S(C) = (C*)? given by (a, B) — (e +iB, o —ip).

By [20, Corollary 2.6 and Proposition 2.28], real Hodge filtrations (resp. real twistor
structures) correspond to S—equivariant (resp. G, —equivariant) flat vector bundles
on C*. The latter arises because [C*/G ] ~ Py, so G,—equivariant sheaves on C*
correspond to sheaves on P!,

The following is [20, Definition 2.15]:
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Definition 5.2 Define an .S —action on the real affine scheme SL, by

-1 -1
1 0 a B a?+B%0 a —f
A A = A .
(@ p.4) (o a2+,32) (—,3 a) ( 0 1 B«
Let row;: SLy, — C* be the S—equivariant map given by projection onto the first row.

The subgroup scheme G, C S is given by 8 = 0 in the coordinates above, and there
is a subgroup scheme S! C S given by a? + % = 1. These induce an isomorphism
(G xS1)/(=1,—1) = S. On these subgroups, the action on SL, simplifies as follows:

Lemma 5.3 The action of G,, C S on SL; is given by

(. A) > (‘;_1 2) A

and the action of S' C G, is given by

(@, B, A) > A (_Z g)_l .

The action of S C S descends via the maps above to an action on IP’HI{, which is just
given by identifying S' with the real group scheme SO, .

5.2 The twistor structure on cochains

Fix a compact Kihler manifold X .

Definition 5.4 Define D: A"(X,V)® ¢+ — A"T1(X, V) ® 6¢~« by

D =uD+vD°,

and write 4° (X, V) for the resulting complex. Put a G, —action on A (X, V) by letting
A"™(X, V) have weight n, and giving ¢~ the action of G5, C S from Definition 5.1.

Define Z"(X, V) :=ker(D: A"(X,V)® Oc» — A"TH(X, V)® O¢+), B"(X. V) :=
Im(D: A" (X, V)® Oc+ — A"(X,V)) ® Oc+ and

A" (X, V) :=Z"(X, V)/B"(X, V).

By analogy with [20, Proposition 2.28 and Theorem 7.1], we regard the G, —equivariant
complex A*(X, V) over C* as a twistor filtration on A" (X, V).
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Corollary 5.5 The canonical inclusion H* (X, V)(n) ® Oc+ — A (X,V) isa Gy—
equivariant topological isomorphism.

Proof It suffices to prove this on pulling back along the flat cover row;: SL, — C*.
We define D*: A"(X,V)® O(SL,) — A" (X, V)® O(SL,) by D* = yD*—x D*.
Then [D, D*] = A, and since A commutes with D and D€ it also commutes with D.

The result now follows with the same proof as that of Corollary 4.14, replacing D
and D* with D and D*. O

Proposition 5.6 If we write H" = H"(X,V) and M™ = DDA™~2(X,V), then
there is a G, —equivariant isomorphism

H'(X, V) = [(H" ® M/A2M™)(n) & (M" T /A2 MY (n— 1)] ® O~

of quasicoherent sheaves on C*.

Proof Writing A™ := A™(X, V), we have a commutative diagram

—1
ope DDA n+1)®0c+ _
DD*A"(n) @ Oc+ D*D¢A" (n) ® Oc+
(n)® oc - . (n)® oc
uD  pxpexgn+1 n—1)® Oc+ vD¢
which we may regard as a bicomplex. By Theorem 4.12, the complex A (X, V)
decomposes into a direct sum of H"’s and total complexes of the bicomplexes above.

Arguing as in Proposition 4.10, we have topological isomorphisms

A DD¢: D*Dexgn+1 — ppDegn—1,
A~Y2D: D¥DeAn — pDDeAn—1,
A~Y2pe. DDc*gn s ppegn—1,

so the bicomplex above is linearly isomorphic to:

MDCA”_I(H +1)® ﬁcw
DDA (n) ® Oc+= DDA 1 (n) ® O+
— _—

A DDA (- @ oce A
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Since the ideal (u, v) generates Oc+, cohomology of the top level of the associated
total complex is just

(DDA /AY2DDeA—1)(n + 1) @ O+,
while cohomology of the bottom level is 0. Moreover, the map
DDA (n— 1)@ 6 LY DDA ()2 ® O

is an isomorphism to the kernel of (v, —u), so cohomology of the middle level is
isomorphic to

(DDA 1 (n—1)/AY2 DDA 1 (n— 1)) ® Oc+ ® Oc+,
which completes the proof. |
Remark 5.7 In particular, H"(X,V) is of weights n, n — 1 in general, unlike
H"(X, V), which is pure of weight n. This means that the weight filtration given
good truncation cannot define a mixed twistor structure on H” (X, V).

We now have the following generalisation of the principle of two types:

Lemma 5.8 As subspaces of A"(X,V)® O(SL,),

ker D Nker D¢ N (D(A"1(X, V) ® O(SLy)) + D¢(A"1(X, V) ® O(SL,)))

= DD¢(A"2(X,V)O(SL,)).

Proof This follows from Corollary 4.15, with the same reasoning as [20, Lemma 1.3].
O

Lemma 5.9 (formality) The morphisms
(ﬁ}c (A*(X.V)® O(SL,)).0) « ( %C (A(X,V)® O(SLy)), 5)
— (4*(X, V) ® O(SL,), D)

induce isomorphisms on reduced cohomology.

Proof The proof of [23, Lemma 2.2] carries over to this generality, using Lemma 5.8.
O

Following Corollary 4.22 and Remark 4.23, the results above can all be regarded as
statements about the topological differential graded algebra 4°(X,EE’).
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5.3 The analytic Hodge filtration on cochains

Recall from Section 4.3.1 that the local system E’ on X is defined to correspond to
the 71 (X, x)—representation given by left multiplication on E”(X, x)’.

Proposition 5.10 The topological cochain complex A (X,E’) is equipped with a
continuous circle action, satistying

(1) the S!-action and G,, —actions on A° (X,E’") commute;

(2) the action of S' C C* = S(R) on C* makes A*(X,E’) into an S' —equivariant
sheaf on C*; and

3) —leS!actsas —1 € Gy,.

Proof Since S! acts on EY(X,x), it acts on E’, and we denote this action by
vi>t®v for t € S'. We may now adapt the proof of [20, Theorem 6.12], defining
an S!-action on &*(X,R) ®r E’ by setting t @ (¢ ® v) := (t 0 a) ® (1> ® v) for
t € S! and ¢ as in Definition 2.17. Passing to the completion «7*(X,E’) completes
the proof, with continuity following from Proposition 3.31. |

Remark 5.11 If the circle action of Proposition 5.10 were algebraic, then by [20,
Lemma 2.23] it would correspond to a Hodge filtration on A°*(X,E’). Since finite-
dimensional circle representations are algebraic, we may regard Proposition 5.10 as
the natural structure of an infinite-dimensional Hodge filtration.

In Proposition 5.10, note that we can of course replace E7(X, x) with any inverse
system B of C*-algebra quotients of E”(X,x) to which the S!-action descends,
provided we replace E with the local system associated to B.

As observed in Section 4.3.1, we may substitute V = E in Proposition 5.6 and
Lemma 5.9. Note that the resulting isomorphisms are then equivariant with respect to
the circle action of Proposition 5.10.

54 SU,

As we saw in Corollary 5.5, in order to define the adjoint operator D* to D, itis
necessary to pull A (X, V) back along the morphism row;: SL, — C*. This gives
us the complex

rowF A*(X, V) = (4*(X, V) ® O(SLy), D),

where D = uD + vD¢, with adjoint D* = yD* — x D¢*.
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This leads us to consider the x—structure on O(SL,) determined by u™ = y and

v* = —x. This implies x* = —v and y* = u, so

()=

Lemma 5.12 The real C*—enveloping algebra C*(O(SL;,)) of the real x—algebra
O(SL,) is the ring of continuous complex functions f on SU, for which

()= f(4).

or A* = (471,

Proof A s—morphism O(SL;) — C is a matrix A € SL,(C) with A = A* = (47")?,
so A € SU,. Thus the Gelfand representation gives C*(O(SL;)) ® C =~ C(SU,, C).

Now, writing Gal(C/R) = (1), and taking f € O(SL,) ® C and A € SU,, we have

t(f)(A) = f(A).

This formula extends to give a Gal(C/R)-action on C(SU,, C), and Lemma 1.11
then gives

C*(O(SLy)) = C(SU,, C)". O

Note that complex conjugation on SU, is equivalent to conjugation by the matrix

(-10)-

5.4.1 The Hopf fibration The action of S(C) on SL,(C) from Definition 5.2 does
not preserve SU,. However, Lemma 5.3 ensures that, for the subgroup schemes
Gm, S' C S, the groups S' = ST(R) c S1(C)=C* and S! c C* = G,,(C) both
preserve SU,.

Thus, in the C* setting, the S—action becomes an action of (S! x S1)/(—=1,—1)

on SU,, given by
s=1 o Re I\
(5.2, 4) > (0 s) 4 (—%z sm) '

Moreover, there is a Gal(C /R)—action on this copy of S! x S, with the nontrivial auto-
morphism ¢ given by (s,7) = (s~ ', ). The action of (S' x S1)/(=1,—1) is then 7—
equivariant. Alternatively, we may characterise our group as S1xS! Cc C*xC* = S(C),
by sending (s, ) to (s¢,st~!). On this group S x S!, the Gal(C/R)—action is then
given by (w’, w”) = (w”, w’).
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Now, consider the composition
SL, 2L C* — [C*/G] = P

On taking Gelfand representations of C*—enveloping algebras, this gives rise to the
map
SU, — P1(C),

which is just the Hopf fibration p: S3 — S2, corresponding to the quotient by the
action of S C G,,(C) by diagonal matrices. The action of 7 on SU, and on P!(C)
is just given by complex conjugation.

5.4.2 Smooth sections If we write p, for the weight n action of G,, on A!, then
we may consider the topological vector bundle
SU2 X g1 \Pn C
on P1(C) for the action of S' C G,,(C) above.
Definition 5.13 Let dﬁl C(n) be the sheaf of smooth sections of SU; xg1, C —

P1(C) and write A°(P!,C(n)) := F(IP"((C),M]SI(C(H)). Beware that, for n # 0,
there is no local system generating ME(,? C(n).

For U C P!(C), observe that I'(U, 42%]}9 ,C(n)) consists of smooth maps

-1
f:p7'(U)— C satisfying f((g g))A =s"f(A)
forall s € S!.

For the quotient map ¢: C* — P!, we may characterise I'(U, ﬁ]g,"ll (n)) as the space
of holomorphic maps

fra7'U)—>C
satisfying f'(su,sv) = s" f(u,v) for all s € C*. The embedding S c C*(C) thus

yields
ol (n) € oA, C (),

and indeed ,QfI[(,?l(C(n) = ﬁ’g’ll(n) ®0?;11 42%]121@.

Now, for the conjugate sheaf ﬁIIE‘,,OII (n), note that I"(U, ﬁ]}ﬁ,"f (n)) is the space of antiholo-
morphic maps
fiqg N U)—C
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satisfying f(su, sv) =5" f(u, v) for all s € C*. Thus we have a canonical embedding
ﬁ’h‘” (n) € o, C(—n),

C.

with 427181@(_") ﬁ’h"l(n) ®0hol

Note that the inclusion O(SL;) C C(SU,, C) gives

u,ve A°(P',C(1))°, u ve A" P!, C(-1)°,
and
O(SLy) c @ 4°(P'.C(n))".

nez

Definition 5.14 By [20, Definition 2.22], there is a derivation N on O(SL;,) given
by Nx =u, Ny =v and Nu = Nv =0 for coordinates (¥ }) on SL;. Since this
annihilates # and v, it is equivalent to the O(SL,)-linear map

Q(SLy/C*) — O(SL,)

given by dx +— u and dy — v.

Note that N has weight 2, and extends (by completeness) to give t—equivariant
differentials

N: oy, C(n) > g, C(n+2).
Also, N is the composition of the antiholomorphic differential

Op1: oy Cln) = 7 C () @y

with the canonical isomorphism Qp1 = 0(-2).

5.4.3 Splittings of the twistor structure As in [20, Remark 2.16], we can charac-
terise the map row;: SL, — C* as the quotient C* = [SL,/G,], where G, acts
on SL, as left multiplication by (éa (1)) Here, the S—action on G, has A acting as
multiplication by AA.

Therefore the map g orow;: SL, — P! is given by taking the quotient of SL, by the
Borel subgroup B = G, x G, for the action above. The action of G, corresponds
to weights, while the action of G, corresponds to the derivation N above, which we
regard as the Archimedean monodromy operator as in [20, Section 3.4].
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Definition 5.15 Given a pluriharmonic local system V, define A (X, V) to be the
sheaf of ﬁ%‘}l—modules associated to the G, —equivariant sheaf 4°*(X,EY) on C*.
Explicitly,

P

<Gm
A(X, V) = (@(q*l'(x, V) ® e ﬁ];‘il(n)) :

SO
A"(X, V) = A"(X, V) ®r 08 (n),

with differential D = uD + vD¢ for u, v e (P!, 6p1(1)).

Definition 5.16 Write ;a;'(X ,V) = ,szf]}‘,?l ®ﬁ>holl /I*(X , V), and observe that this
admits an operator v

D€ = —TD +uD: FM(X,V) — " (X, V)(<2).

Now, applying the map O(SL;) — @,z A°(P!,C(n))* to Lemmas 5.8 and 5.9
yields the following:

Lemma 5.17 As subspaces of P (X,V),

ker D Nker D€ N (Da/"=1(X, V) + Dea/n=1(X, V)(2)) = DD (#7~2(X, V)(2)).
Thus the morphisms
(5, (7(X. V). 0) < (25, (7*(X. V). D) > &"(X, V)
induce isomorphisms on reduced cohomology sheaves.
Now, A*(X,E’ ) can be recovered from row’f/f‘ (X,E’) and its nilpotent monodromy

operator NV, and, by Lemma 4.16, row] A*(X,E’) is equivalent to H* (X, E')® O(SL,)
up to reduced quasi-isomorphism.

Under the base change above, we have N = 5]1»1 , giving an exact sequence
0— A*(X,V) > 7*(X, V) s &7*(X, V)(2) — 0.

In other words, we can recover the topological DGA /I’(X ,E’) from the differential
d=N on the topological DGA «/*(X, E’) and the latter is just €),, @p1 (H" (X, E’)(n))
up to reduced quasi-isomorphism.

Also note that, when we substitute V := E’ in Lemma 5.17, the morphisms all
become equivariant with respect to the circle action of Proposition 5.10. This action
makes /" (X,E’) into an S!—equivariant sheaf over P!, where the action on P! is
given by 12 € S' sending (u:v) to to(u:v) = (au—bv:av+bu) fort =a+ibeS'.

Geometry € Topology, Volume 21 (2017)



894 Jonathan Pridham

6 The twistor family of moduli functors

6.1 Pro-Banach algebras on projective space

On the complex manifold P!(C), we have a sheaf ﬁ’]}ﬁf’ll of holomorphic functions,
which we may regard as a sheaf of pro-Banach algebras. As a topological space, P!(C)
is equipped with a Gal(C /R)-action, the nontrivial element t acting on points by
complex conjugation. There is also an isomorphism

rg: ! ﬁ%"ll — ﬁ]lﬁ,oll
given by
() = TG
and satisfying

rg or! (rg) =id: ﬁI};"ll — ﬁg}l.

Definition 6.1 Define FrAlgp: ¢ to be the category of sheaves .7 of unital multi-
plicatively convex Fréchet ﬁ’];"ll —algebras (ie countable pro-Banach algebras equipped
with a morphism from ﬁ]}};"f), quasicoherent in the sense that the maps

F(U) ®Z’§;’i ) ol (V) — Z(V)

are isomorphisms for all open subspaces V' C U, where ®” here denotes projective
tensor product.

Define FrAlgp: g to be the category of pairs (7, r;) for 7 € FrAlgp: ¢ and

an (ﬁg’ll, rg) —linear isomorphism satisfying

r(ﬂ

Forl(th) =ids.

Note that for any m—-convex Fréchet k —algebra B the sheaf BT O3 lies in FrAlgp: ¢ .
When k =R, the involution idp ® rg makes B ®7 6’]1;,,"11 an object of FrAlgp: .

The forgetful functor FrAlgp: g — FrAlgp: ¢ has a right adjoint, given by 7
FZ®t~ .7, with the involution 7 given by swapping summands and the ﬁ;ﬂl —structure
on 7717 defined using 7.
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6.2 The twistor functors

Deﬁnltlon 6.2 Define the group01d valued functor R on FrAlgp: ¢ by letting
(%) consist of pairs (7, D) for ;z%o(pr 195’X)—t0rsors 7 on X x P1(C) with
*9 trivial as a %X —torsor on P (C) and flat ud +vd°—connections

D: 7 — gf)} ®%(() ad 7(1).

Here u and v are the basis of I'(PL, ¢(1)) given by the coordinates « and v of C*
and the canonical map C* — P1.

Define the set-valued functor R C on FrAlg]Pl c by letting RY Xox (%’) be the groupoid
of triples (7, D, f), with (7, D) ER (%’) and framing f € I'(P1(C),x*7).

Definition 6.3 Define the group01d -valued functor RT on FrAlgp: g by letting
RT (%) consist of triples (7, D, ry) for (7, D) € R (%’) and isomorphism
r(‘é (idy x 1)71.7 — 7 satisfying the following condltlons The isomorphism

1 . -1
(T%” T?) WX(prZ '@ ) X ﬁ MX(pr lL@X) (ldX X 'L') ‘7 g ‘7
must be a morphism of ﬁ%)} (pr_lﬂx)—torsors, and the diagram

Tl S ) ® 0 l7(1)
D
T ——— ®,0 7(1)
must commute.
Define the functor R;;’ L on FEAlg]pl’R by letting R;;’ ,(#) be the groupoid of quadru-
ples (7, D, rg, f) for (7, D, rg) in R}E(%’) and

feT(PC), x*7)7

a framing.

Remark 6.4 The groupoids RY Xox (%’) R (%) are equivalent to discrete groupoids,
so we will regard them as set-valued functors (given by isomorphism classes of
objects) Also, RX (93) and RY ¥ (%) are equivalent to the groupoid quotients
[R (,%’)/ I'(PY(C), %)) and [R x(%’)/ (P (C), %X)Tnﬂ], respectively, with the
actlon given by changing the frammg

The following is straightforward:
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Lemma 6.5 The functors Rg’f and R}E’C can be recovered from R;(F . and R}E,
respectively, via isomorphisms

T,C - - T,C - _
Ry (B =Ry (2&d71'%8), Ry (B =Ry(#B&T 7).

Note that the proof of Lemma 2.5 carries over to give the canonical comultiplication

RY (%)) x R} (#2) > Ry (%1 @™ %,).
6.3 Universality and o —invariant sections

Proposition 6.6 The functors Rg}z and R)B"l can be recovered from R}F, and RE’C ,
: : : dR Dol T T,C
respectively. Likewise, R Xox and R X Can be recovered from R x.x and R Xx -

Proof Given a point p € P!(C) and a complex m—convex Fréchet algebra B, we
may regard the skyscraper sheaf px B as an object of FrAlgp: ¢ . For a real m—convex
Fréchet algebra B and p € P!(R), we may regard p« B®C as an object of FrAlgp: R>
with ¢# given by complex conjugation.

Now, just observe that on pulling back to (1:0) € P!(R), the differential ud + vd®
is just d. At (1:—i) € P1(R), we have ud + vd® = d —id® = 20. Uncoiling the
definitions, this gives

T,C L
RE.(B) =Ry ((1:0+B), RY(B)= Ry ((1:=i)+B),
and similarly for R. m|

Lemma 6.7 For a real m—convex Fréchet algebra B, the groupoid R}E (B®g ﬁ]}ﬁ,"ﬂ) is
equivalent to the groupoid of triples (£, D, E), where & is an sz’XO(BX)—torsor on X,
the maps D, E: & — mf)} ® Y ad & are flat d— and d°—connections, respectively, and
DE+ ED =0.

Proof Take an object (7, D) € RL(B ®g 61)). Triviality of the (B®Foh)*~
torsors x*.7 for x € X ensures that .7 must be of the form MXO(B ®g B)* X9 (B%) &P
for some & as above.

Now, since I'(P!, ﬁlgf’ll(l))’ﬁ = Ru @ Ru, the connection D can be regarded as a
ud +vd°—connection

D: 72— (mf)} ®%§} ad ) ®r (Ru & Rv),

which we write as uD + vE.

Flatness of D is now a statement about e, ﬁI};ﬂl(Z))’ﬁ = Ru? ® Ruv ® Ro?, with
the u? and v? terms giving flatness of D and E and the uv term giving the condition
[D,E]=0. m
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Definition 6.8 Define the involution top of the polarised scheme (P!, p1(1)) to
be the map induced by the action of i € S(R) on C* from Definition 5.1. In particular,
top(u:v)=(v:—u).

Remark 6.9 On [27, page 12], the coordinate system (1« +iv:u—iv) on P1(C) is
used, and antiholomorphic involutions ¢ and 7 are defined. In our coordinates, these
become o (u :v) = (v,—u) and t(u :v) = («, v). This justifies the notation to used
above. Also note that the G, ¢ —action on ]P’(é given in [27, page 4] is just the complex
form of our circle action on ]P’]é from Sections 5.3 and 5.4.3.

Definition 6.10 Given a real Banach algebra B, define the involution o’ of the
space R}T,(B ®r ﬁ};f’f) by sending}he pair (7, 5) to (101;1 7, JIJPTI 13). Note that
this is well-defined because top 1D is a rop(ud+vd®)=(vd—ud®)—connection, and
Jd =d° and Jd° = —d, so Jralglﬁ is a ud +vd°—connection.

Definition 6.11 Given a C*-algebra B, define the Cartan involution C of B* to be
givenby C(g)=(g~!)*. Note that this induces a Lie algebra involution ad C: b+ —b*
on the tangent space B of B*.

If B=A® C forareal C*-algebra A, we write T for complex conjugation, so Ct
is the involution Ct(g) = (g~!)*. Note that ad Ct is the C—linear extension of ad C
on A.

Since R}E (%) only depends on the group of units > of £ and its tangent Lie
algebra %, the Cartan involution induces an involution Ct of R}E(B Rk ﬁi}f’]l .

Definition 6.12 Given a real Banach algebra B, define the involution o of the space
R}E(B ®r ﬁ]g,oll) by 0 := (C71)(z0’).

Proposition 6.13 For a real C*—algebra B, there is a canonical isomorphism

Ry (651(B))° = RY .(B).

Proof Since RXT’ x 18 the groupoid fibre of R}E — RTX} over the trivial torsor, Lemma
6.7 shows that an object (7, D, f) of R}’X(ﬁﬂl},"ll(B)) is a quadruple (£, D, E, f)
for (£, D, E) as in that lemma and f our framing. We therefore begin by describing
the o—action on such data. For (£, D, E, f) to be og—invariant, we must have an
isomorphism «o: (£, D, E, f)—>o(Z,D,E, f).

The torsor & maps under o to C(£), with [ € x*22 mapping to C(f) (since
o’ and 1 affect neither). The isomorphism « then gives a: & — C(£) such that
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a(f)=C(f) ex*C(2). Let U(ZP) C & consist of sections ¢ with a(q) = C(q).
This is nonempty (since its fibre at x contains f), so it must be an ,Q{XO(U(B))—
torsor, noting that U(B) is the group of C—invariants in B*. Moreover, & =

Meanwhile, to’'(uD +vE) =vJD —uJE, so to'(D, E) = (—JE, JD). Thus the
isomorphism o gives
D|o=—JCE, E|os=JCD.

In other words, £ = D¢ and E€ = —D (which are equivalent conditions).

Thus R;R . (ﬁ]lf,f’ll(B))“ is equivalent to the groupoid of triples (U(Z?), D, ), with
D flat and [D, D€] = 0. m|

Remark 6.14 When B = Mat,(C), this shows that framed pluriharmonic local
systems correspond to framed o —invariant sections of the twistor functor. Without the
framings, this will not be true in general, since a o —invariant section of the coarse
moduli space will give a nondegenerate bilinear form which need not be positive
definite. Note that for U C P!, the set of isomorphism classes of R;?C (Mat, (ﬁ(h]"l))
is the set of sections over U of the twistor space T W — P! of [26, Section 3].

Remark 6.15 Although we have seen that R}E together with its comultiplication
encodes all the available information about twistor structures on moduli spaces of
local systems, it does not carry information about higher homotopy and cohomology
groups. There is, however, a natural extension of R}E to differential graded m—convex
Fréchet algebras, by analogy with [19; 20]. This would involve taking D to be a
hyperconnection D: Ty — [, anH ® 20 ad 9, (n 4+ 1). The structures of Section 4
can all be recovered from this functor.

6.4 Topological twistor representation spaces

In this section, we will show that, by considering continuous homomorphisms rather
than x—homomorphisms, we can describe the entire semisimple locus of the twistor
family from (E )J( )N, Tather than just the o —equivariant sections.

Given a point (a : b) € P!(C) and a complex Banach algebra B, we can generalise the
construction of Proposition 6.6 and consider the set R;(T ’f ((a : b)« B). This consists
of torsors with flat ad +bd°—connections.

Definition 6.16 Define T,y := | [(zu)epi(c) Ry« (@ : b)xMaty(C)).
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Note that Ty, inherits a Gal(C/R)-action from R T (C . We can also give Ty x , a

complex analytic structure, by saying that a map f: U —> Ty x(B) from an analytic
space U consists of an analytic map f: U — P!(C) together with an element of
R}; ’f (f+x(Mat,, 0y )). We will now investigate the underlying topological structure.

Remark 6.17 The adjoint action of GL,(C) on Ty x , is continuous and, indeed,
compatible with the complex analytic structure. This allows us to consider the coarse
quotient Ty x ,//GL,(C), which is the Hausdorff completion of the topological quo-
tient, equipped with a natural complex analytic structure over P! (C). A straightforward
calculation shows that this coarse moduli space is precisely the Deligne—Hitchin twistor
space, as constructed in [14] and described in [28, Section 3].

Now, Proposition 6.13 induces a map 7 R L, (Mat, (C)) x P lC)y-»T X ,x,n- Foran
explicit characterisation, note that an ad +de—COHHCCt10n D liesin R )J( (Mat, (C))
if and only if

[D,JCD]=0,

and that JCD is a —Bd—i—EdC:aI;l (ad+bd®)—connection.

Definition 6.18 Given a flat ad+bd—connection D on a finite-dimensional C®
vector bundle ¥ on X for (a:b) € P1(C)—{%i}, we say that (¥, D) is semisimple
if the local system ker D is so.

Definition 6.19 Define T ;(t xn C Tx x n by requiring that the fibre over any point of
P1(C)—{+i} consist of the sem1s1mple objects, the fibre over i be RBO;“(Matn (@)
(Section 3.3), and the fibre over —i be its conjugate.

We give Ty S‘ ,, the subspace topology, so amap K — Ty S‘ is continuous if the projec-
tion f: K = IP’ 1(C) is so, and the map lifts to an element of RT C (f+C(K,Mat, (C))).

Theorem 6.20 For any positive integer n, there 1’s a natural homeomorphism 7
over P1(C) between the space Homyo(Banalg) (E'y x,Mat,, (C)) x PI(C) with the
topology of pointwise convergence and the space T ;(‘ X

Proof The homeomorphism is given on the fibre over (a : b) € P1(C) by
nr s (U(2), D, ) =(2,aD +bD", f).

The proofs of Theorems 3.6 and 3.23 adapt to show that 7 i induces homeomor-
phisms on fibres over P!(C) and, in particular, is an isomorphism on points. The
same arguments also show that 7  and 7gR © JTT o TTT,st = R;,R;S(Matn (C)) are

continuous, so the result follows from Theorem 3.6. O
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Definition 6.21 Let FDT;' = be the category of pairs (V, p, (a : b)) for V € FDVect
and (p,(a:b)) e Ty | Where n = dim V. Morphisms are defined by adapting the
formulae of Deﬁmtlon 3 7. Write n,qf S FDT )}tx — FDVect x P1(C) for the fibre

functors (V, p, (a : b)) — (V,(a: b)).

Proposition 6.22 The C* -algebra ( )pN®RC (P1(C), C) is isomorphic, V1a a
Gal(C /R)—equivariant isomorphism, to the ring of continuous endomorphisms of Ny Tost

Proof The proof of Proposition 3.8 carries over, replacing Theorem 3.6 with Theorem
6.20 and Lemma 1.28 with Lemma 1.30. d

Definition 6.23 Given a k—normal real C*-algebra B over C(P!(C), C)Gl(C/R)
we may regard B as an ﬁhd —algebra via the inclusion of holomorphic functions in
continuous functions. Then define RXT (B) C R (B) to be the subspace consisting
of those p for which

(W (p).(a:b)eTy , 4
for all (a:b) € P'(C) and ¢: B — Maty(C) with ¥|c(p1(cy.cycac/m) = eV(g:p) id.

Corollary 6.24 For any k —normal real C*—algebra B over C(P!(C), C)Ga(C/R)
there is a natural isomorphism between R, T St(B)Gal(C/ R) and the set of continuous
algebra homomorphisms E J .~ B.

Proof The proof of Corollary 3.11 carries over, replacing Proposition 3.8 with
Proposition 6.22. |
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