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Analytic nonabelian Hodge theory

JONATHAN PRIDHAM

The proalgebraic fundamental group can be understood as a completion with respect
to finite-dimensional noncommutative algebras. We introduce finer invariants by
looking at completions with respect to Banach and C �–algebras, from which we can
recover analytic and topological representation spaces, respectively. For a compact
Kähler manifold, the C �–completion also gives the natural setting for nonabelian
Hodge theory; it has a pure Hodge structure, in the form of a pro-C �–dynamical
system. Its representations are pluriharmonic local systems in Hilbert spaces, and we
study their cohomology, giving a principle of two types, and splittings of the Hodge
and twistor structures.

32G13, 32G20

Introduction

Simpson [24; 25] defined the coarse Betti, de Rham and Dolbeault moduli spaces of
a smooth projective complex variety. These are all algebraic spaces, with a complex
analytic isomorphism between the Betti and de Rham moduli spaces. The nonabelian
Hodge theorem of [25, Theorem 7.18] is a homeomorphism between the de Rham and
Dolbeault moduli spaces, the key to which was the correspondence between semisimple
local systems, pluriharmonic bundles and Higgs bundles.

The reductive proalgebraic fundamental group �1.X;x/
red introduced by Simpson [23]

encapsulates, in a single object, all the information about the category of semisimple
local systems. When X is a compact Kähler manifold, the group scheme �1.X;x/

red

also has a pure Hodge structure in the form of a discrete circle action, and a description
in terms of Higgs bundles.

However, it has long been realised that the reductive proalgebraic fundamental group
is slightly inadequate. From it we can recover the points of the Betti moduli space, and
from the full proalgebraic fundamental group we can even recover their infinitesimal
neighbourhoods, but in general these groups convey no information about how the
neighbourhoods glue together. A further source of dissatisfaction is the discontinuity
of the circle action on �1.X;x/

red , since it is continuous on moduli spaces.
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The key idea behind this paper is that we can produce finer and more satisfactory
invariants by looking at representations with analytic structure, an approach previously
considered by Sullivan [29, Section 9]. The group scheme �1.X;x/

red can be recovered
from representations in finite-dimensional matrix algebras, but the Riemann–Hilbert
correspondence between Betti and de Rham moduli holds with coefficients in any
Banach algebra. We accordingly construct Betti, de Rham and Dolbeault moduli
functors on Banach algebras, and recover the analytic moduli spaces from these functors.
The framed Betti and de Rham functors are represented by a Fréchet algebra which we
regard as the analytic completion of RŒ�1.X;x/�.

To understand the topological structure underlying these analytic spaces, we then
restrict to C �–algebras rather than Banach algebras. There are notions of unitary and
pluriharmonic representations with coefficients in any C �–algebra, and the homeomor-
phism of moduli spaces above extends to an isomorphism between the semisimple de
Rham functor and the polystable Dolbeault functor on polynormal C �–algebras, via
isomorphisms with the pluriharmonic functor. The C �–algebra of bounded operators
gives us a notion of pluriharmonic local systems in Hilbert spaces, and there is a form
of Hodge decomposition for these local systems.

Lurking behind these comparisons is the twistor moduli functor on multiplicatively
convex Fréchet Ohol

P1 –algebras. Its fibres at ˙i 2 P1 are the Dolbeault functor and its
conjugate, while all other fibres are isomorphic to the de Rham functor. The Deligne–
Hitchin twistor space can be recovered as an analytic space from the twistor moduli
functor, and pluriharmonic torsors give a splitting of the twistor moduli functor on
C �–algebras over C.P1.C//. Twistor cochains then admit a Hodge decomposition on
pulling back along the Hopf fibration SU2! P1.C/, and a continuous circle action
serves to promote twistor structures to Hodge structures.

The structure of the paper is as follows. In Section 1, we cover some background
material on prorepresentability. Proposition 1.19 then establishes a topological analogue
of Tannaka duality for polynormal C �–algebras and unitary representations, while
Lemma 1.28 gives a similar result for nonunitary representations.

In Section 2, we introduce the framed Betti and de Rham functors RB
X ;x

and RdR
X ;x

on
Banach algebras for any manifold X . In Proposition 2.3, we establish an isomorphism
RB

X ;x
.A/ŠRdR

X ;x
.A/ for any pro-Banach algebra A. We can even recover the analytic

structure of moduli spaces of G–bundles from these symmetric monoidal functors
(Remark 2.6). Proposition 2.10 then shows that RB

X ;x
is represented by a Fréchet

algebra completion EB
X ;x

of RŒ�1.X;x/�. This is a Fréchet bialgebra, from which
�1.X;x/ can be recovered (Lemma 2.11).
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In Definition 2.18, we introduce a symmetric monoidal functor RJ
X ;x

on C �–algebras,
parametrising pluriharmonic bundles on a compact Kähler manifold X . This is repre-
sentable by a pro-C �–bialgebra EJ

X ;x
(Proposition 2.22 and Lemma 2.24). There are

also a symmetric monoidal functor RDol
X ;x

on Banach algebras associated to Dolbeault
moduli, which is seldom representable, and a harmonic functor extending the definition
of RJ

X ;x
to all Riemannian manifolds X , but with substantial loss of functoriality.

In Section 3 we establish relations between the various functors. We can recover the
topology on moduli spaces of semisimple representations from EJ

X ;x
(Theorem 3.6).

Proposition 3.8 then gives a Tannakian description of the polynormal completion
of EJ

X ;x
, while Corollary 3.11 gives a simple characterisation of continuous morphisms

from EJ
X ;x

to polynormal C �–algebras. Section 3.3 then gives similar results for RDol
X ;x .

Lemma 3.19 shows that grouplike elements G..EJ
X ;x

/ab/ of the abelianisation of EJ
X ;x

are just H1.X;Z˚R/, with consequences for complex tori.

There is a continuous circle action on EJ
X ;x

, so it is a pro-C �–dynamical system
(Proposition 3.31). This allows us to regard EJ

X ;x
as an analytic nonabelian Hodge

structure of weight 0 (Remark 3.32). In Example 3.33, we see that the circle action
on G..EJ

X ;x
/ab/ is just given by the Hodge structure on H1.X;R/. Proposition 3.38

then characterises pure Hilbert variations of Hodge structure as representations of
EJ

X ;x
Ì S1 .

Section 4 is concerned with Hilbert space representations of EJ
X ;x

, which correspond to
pluriharmonic local systems V in Hilbert spaces. We can identify reduced cohomology
H�.X;V / with the space of smooth V–valued harmonic forms, as well as establishing
the principle of two types and a formality results (Section 4.2.1). There are analogous,
but weaker, results for nonreduced cohomology (Section 4.2.2). The same is true
of direct limits of Hilbert space representations, and Corollary 4.22 shows that the
universal such is the continuous dual .EJ

X ;x
/0 (which can be regarded as the predual of

the W �–envelope of EJ
X ;x

).

In Section 5, these results are extended to show that the natural twistor structure on
Hn.X;V / is pure of weight n (Corollary 5.5), with a weaker result for nonreduced
cohomology (Proposition 5.6). If E is the local system associated to the �1.X;x/–
representation EJ

X ;x
, then Proposition 5.10 shows that this twistor structure can be

enhanced to a form of analytic Hodge filtration on the de Rham algebra A�.X;E0/. In
Section 5.4, we reinterpret splittings of twistor structures and Archimedean monodromy
in terms of the Hopf fibration.

Finally, in Section 6, we introduce a whole twistor family of framed moduli functors
on multiplicatively convex Fréchet algebras over P1.C/, from which we can recover
both de Rham and Dolbeault functors. The coarse quotient of the framed twistor space
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is just the Deligne–Hitchin twistor space (Remark 6.17). The twistor family carries
a natural involution � , and we show in Proposition 6.13 that � –equivariant sections
of the framed twistor space are just framed pluriharmonic bundles. Theorem 6.20,
Proposition 6.22 and Corollary 6.24 then give analogues of Theorem 3.6, Proposition 3.8
and Corollary 3.11 in the twistor setting, describing twistors with C �–algebra coeffi-
cients and the topology of the twistor space.

Notation

We will use k to denote either of the fields R or C .

Definition 0.1 Given a k –Hilbert space H , write L.H / for the space of k –linear
bounded operators on H , with the norm topology.

Definition 0.2 Given topological spaces X and Y , we write C.X;Y / for the set of
continuous maps from X to Y .

Definition 0.3 Given a group G acting on a set X , write ŒX=G� for the groupoid
with objects X and morphisms X �G , where the source of .x;g/ is x and the target
is xg . Composition of morphisms is given by .xg; h/ ı .x;g/D .x;gh/.

Definition 0.4 Given a group G acting on sets S and T , write S �G T for the
quotient of S �T by the G –action g.s; t/D .gs;g�1t/.

Acknowledgements I would like to thank Carlos Simpson for originally posing the
problem of finding finer invariants and for helpful discussions. I would also like to
thank the anonymous referee for spotting erroneous statements about Fréchet algebras.

This work was supported by the Engineering and Physical Sciences Research Council
(grant numbers EP/F043570/1 and EP/I004130/1).

1 Prorepresentability of functors on unital Banach algebras
and C �–algebras

Definition 1.1 Given a functor F W C!Set, an object A2 C and an element � 2F.A/,
we follow [13, Section A.3] in saying that the pair .A; �/ is minimal if, for any
pair .A0; � 0/, any strict monomorphism f W A0! A with F.f /.� 0/ D � must be an
isomorphism.

We say that a pair .A00; � 00/ is dominated by a minimal pair if there exists a minimal
pair .A; �/ and a morphism gW A!A00 with F.g/.�/D � 00 .
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Definition 1.2 As in [13, Section A.3], we say that a functor F W C!Set on a category
C containing all finite limits is left exact if it preserves all finite limits. This is equivalent
to preserving finite products and equalisers, or to preserving fibre products and the
final object.

Lemma 1.3 Let C be a category containing finite limits and take a left exact functor
F W C! Set. Assume that, for any cofiltered inverse system fAigi of strict subobjects
of any object A 2 C , the limit lim

 ��i
Ai exists, and that the map

F.lim
 ��

i

Ai/! lim
 ��

i

F.Ai/

is an isomorphism.

Then every pair .A; � 2 F.A// is dominated by a minimal pair.

Proof Given the pair .A; �/, let I be the full subcategory of the overcategory C#A

consisting of strict monomorphisms B!A for which � lifts to F.B/. Note that this
lift must be unique by the monomorphism property. If f ıg is a strict monomorphism,
then so is g , which implies that all morphisms in I must be strict monomorphisms in C .
Moreover, left-exactness of F guarantees that I is closed under the fibre product �A .
the monomorphism properties imply that parallel arrows in I are equal, so I is a
cofiltered category.

By hypothesis, the limit L WD lim
 ��B2I

B exists in C . It is necessarily a strict subobject
of A, since it is the limit of all parallel maps sourced at A and equalised by some B 2 I .
The unique lifts of � to each F.B/ define an element of

lim
 ��
B2I

F.B/;

so by hypothesis we have a corresponding element �2F.L/. Therefore L is an object
of I and is in fact the initial object of I . The pair .L; �/ is therefore minimal, and
dominates .A; �/ as required.

Definition 1.4 Recall from [13, Section A.2] that a proobject X 2 pro.C/ is said to
be strict if it is isomorphic to a proobject of the form fXig, where each map Xi!Xj

is an epimorphism.

A functor F W C ! Set is said to be strictly prorepresentable if there exists a strict
proobject X with F Š Hompro.C/.X;�/.

Proposition 1.5 Let C be a category containing finite limits and limits of cofiltered
inverse systems of strict subobjects. Then a functor F W C! Set is strictly prorepre-
sentable if and only if
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(1) F is left exact;

(2) F preserves limits of cofiltered inverse systems of strict subobjects.

Proof If F satisfies the conditions, then it is left-exact, and by Lemma 1.3 every pair
is dominated by a minimal pair. It therefore satisfies the conditions of [13, Proposition
A.3.1], so is strictly prorepresentable.

Conversely, every prorepresentable functor F is left-exact, so we need only show
that the second condition holds. Write F D lim

��!˛
Hom.R˛;�/ for a strict inverse

system fR˛g˛ and take a cofiltered inverse system fAigi of strict subobjects of some
object A 2 C .

Given an element x 2 lim
 ��i

F.Ai/ with image xi in F.Ai/, by definition there exist
objects R˛i

and maps yi W R˛i
!Ai lifting xi . Now fix i ; the liftings are compatible

in the sense that for j > i (increasing j̨ if necessary), there is a commutative diagram:

R˛j

��

yj
// Aj

��

R˛i

yi
// Ai

Since Aj !Ai is a strict monomorphism and R
j̨
!R˛i

an epimorphism, yi must
lift to a map yij W R˛i

!Aj . Since Aj !Ai is a monomorphism, the lifting yij is
unique. Considering all j > i together, this gives us a unique map zxW R˛i

! lim
 ��j

Aj ,
which gives rise to a unique preimage zx 2 F.lim

 ��j
Aj /, as required.

1.1 Banach algebras

Definition 1.6 Write BanAlgk for the category of unital (not necessarily commutative)
Banach algebras over k , with bounded morphisms.

Proposition 1.7 Take a functor F W BanAlgk ! Set such that

(1) F preserves all finite limits (equivalently preserves fibre products and the final
object);

(2) F preserves monomorphisms (ie maps closed subalgebras to subsets); and

(3) for all inverse systems S of closed subalgebras, the map

F

�\
s2S

As

�
!

\
s2S

F.As/

is an isomorphism.

Then F is strictly prorepresentable.
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Proof Given a Banach algebra B , every strict subobject of B is a closed subalgebra.
For any cofiltered inverse system fAigi of strict subobjects of any object B , the
limit lim

 ��i
Ai exists in BanAlgk and is given by

T
i Ai . The result now follows from

Proposition 1.5.

1.2 C �–algebras

Definition 1.8 Write C �Algk for the category of unital (not necessarily commutative)
C �–algebras over k , with bounded involutive morphisms.

Explicitly, a complex C �–algebra is a complex Banach algebra equipped with an
antilinear involution � satisfying .ab/� D b�a� and ka�ak D kak2 for all a 2A.

A real C �–algebra is a real Banach algebra equipped with a linear involution �
satisfying the conditions above and having the additional property that 1C a�a is
invertible for all a 2A.

A Banach �–algebra over k is a C �–algebra if and only if it is isometrically �–
isomorphic to a self-adjoint norm-closed algebra of bounded operators on a Hilbert
k –space; for kDR, this is Ingelstam’s theorem [11, Proposition 8.2 and Theorem 15.3].

Proposition 1.9 Take a functor F W C �Algk ! Set such that

(1) F preserves all finite limits (equivalently preserves fibre products and the final
object);

(2) F preserves monomorphisms (ie maps C �–subalgebras to subsets); and

(3) for all inverse systems S of nested C �–subalgebras, the map

F

�\
s2S

As

�
!

\
s2S

F.As/

is an isomorphism.

Then F is strictly prorepresentable.

Proof The proof of Proposition 1.7 carries over.

Lemma 1.10 Every complex C �–algebra becomes a real C �–algebra by forgetting
the multiplication by C .

Proof It suffices to show that 1Ca�a is invertible for all a2A. Now, x 7! .1Cjxj/�1

is a continuous function on R and a�a is positive self-adjoint, so the continuous
functional calculus implies that .1C a�a/�1 2A, as required.
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Lemma 1.11 The category C �AlgR is equivalent to the category of pairs .A; �/ for
A 2 C �AlgC and an involution � W A!A satisfying

(1) �.ab/D �.a/�.b/;

(2) �.a/� D �.a�/; and

(3) �.�/D x� for � 2C .

Proof Given B 2 C �AlgR , set A WD B˝R C ; this is a complex C �–algebra, with
involution .b˝�/� D b�˝x�. The involution � is then given by complex conjugation,
with �.b˝�/D b˝x�. For the quasi-inverse construction, we send a pair .A; �/ to the
algebra A� of � –invariants. That this is a real C �–algebra follows from Lemma 1.10.

To see that these are quasi-inverse functors, first note that .B ˝R C/� D B . Next,
observe that because � is antilinear, we can write ADA� ˚ iA� ŠA� ˝R C for all
pairs .A; �/ as above.

Definition 1.12 For a complex (resp. real) �–algebra A, write U.A/ for the group
of unitary (resp. orthogonal) elements

fa 2A j a�aD aa� D 1g:

Write u.A/ for the Lie algebra of anti-self-adjoint elements

fa 2A j a�C aD 0g

and write S.A/ for the self-adjoint elements of A, noting that u.A/D iS.A/ when A

is complex.

1.3 Representations and polynormal C �–algebras

1.3.1 Representation spaces Fix a real unital C �–algebra A.

Definition 1.13 Write Rep�n.A/ for the space of unital continuous �–homomorphisms
�W A ! Matn.C/ equipped with the topology of pointwise convergence. Write
Irr�n.A/� Rep�n.A/ for the subspace of irreducible representations.

Definition 1.14 Define FDHilb to be the groupoid of complex finite-dimensional
Hilbert spaces and unitary isomorphisms.

Definition 1.15 Write FD�Rep.A/ for the groupoid of pairs .V; �/ for V 2 FDHilb
and �W A! End.V / a unital continuous �–homomorphism. Morphisms are given by
unitary isomorphisms intertwining representations. The set of objects of FD�Rep.A/
is given the topology of pointwise convergence.
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Definition 1.16 Define APN to be the ring of Gal.C=R/–equivariant continuous addi-
tive endomorphisms of the fibre functor from FD�Rep.A/ to vector spaces. Explicitly,
a 2 APN associates to each pair .V; �/ an element a.V; �/ 2 End.V /, subject to the
conditions:

(1) For any unitary isomorphism uW V !W , we have a.W;u�u�1/Dua.V; �/u�1 .

(2) For any .V1; �1/; .V2; �2/ 2 FD�Rep.A/, we have a.V1 ˚ V2; �1 ˚ �2/ D

a.V1; �1/˚ a.V2; �2/.

(3) The maps aW Rep�n.A/!Matn.C/ are continuous and Gal.C=R/–equivariant.

Lemma 1.17 The ring APN has the structure of a pro-C �–algebra over A.

Proof We can describe APN as the categorical limit of a diagram of �–homomorphisms
between the C �–algebras C.Rep�n.A/;Matn.R//, thus making it into a pro-C �–
algebra. The �–homomorphism A!APN is given by mapping a to the transformation
a.V; �/D �.a/.

1.3.2 Polynormal C �–algebras

Definition 1.18 Recall from [17] that an algebra A is said to be n–normal if, for all
a1; : : : ; a2n 2A, we haveX

�2S2n

sgn.�/a�.1/a�.2/ � � � a�.2n/ D 0:

Call an algebra polynormal if it is n–normal for some n.

By the Amitsur–Levitzki theorem, the algebra of n�n–matrices over a commutative
ring is n–normal. Also note that an n–normal algebra is k –normal for all k � n.

Note that by restricting to n–dimensional representations we get that, for any real
C �–algebra A, the ring APN of Definition 1.16 is an inverse limit APN D lim

 ��n
APN;n

of n–normal C �–algebras.

We now have a result combining aspects of Tannaka and Takesaki duality:

Proposition 1.19 If A is a polynormal unital C �–algebra then the morphism A!APN

of Lemma 1.17 is an isomorphism.
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Proof Since A is N–normal for some integer N , [17, Section 3] implies that A is of
type I , with all complex irreducible representations of A having dimension at most N .

For a sufficiently large cardinal ˛ , Bichteler [3] characterises the W �–envelope A00˝C
of A˝C as the ring defined analogously to APN by replacing “continuous” with
“bounded” and “finite-dimensional” with “of dimension at most ˛”. Since all irreducible
representations are at most N–dimensional, the direct integral decomposition of A–
representations gives us an injective map APN ! A00 , with boundedness following
because any a 2APN is bounded on

`
k�N Rep�

k
.A/.

Now, Akemann and Shultz [1] define a ring Ac �A00 to consist of those b for which the
functions b , b�b and bb� are weakly �–continuous on the space P .A/ of pure states
of A. Since all irreducible representations arise as subrepresentations of N–dimensional
representations, continuity on Rep�N .A/ suffices to give continuity on P .A/, so the
inclusion APN!Ac is an isomorphism.

By [4], the spectrum of A is Hausdorff, then [1] observes, since A is type I , that A is
perfect, which means that the inclusion A!Ac is in fact an isomorphism. Thus the
map A!APN is an isomorphism.

1.4 The category of C �–algebras with completely bounded morphisms

1.4.1 Basic properties

Lemma 1.20 If A is a C �–algebra and f W A! B a morphism of Banach algebras,
then the image of f has the natural structure of a C �–algebra, with f W A! Im.f /
becoming a C �–homomorphism.

Proof The kernel of f is a closed two-sided ideal. Thus, by [22, Theorem 3], A=kerf
is a C �–algebra, as required.

Definition 1.21 Recall that a homomorphism � W A! B of Banach algebras is said
to be completely bounded if

sup
n2N
kMn.�/k<1;

where Mn.�/W Mn.A/!Mn.B/ is the morphism on n� n matrices given by � .

Given a pro-Banach algebra A D lim
 ��i

Ai with completely bounded structure maps
Aj!Ai , and a Banach algebra B , any morphism � W A!B factors through some Ai ,
and we say that � is completely bounded if the map Aj!B is so for some sufficiently
large j � i .

Write Hom.A;B/cb for the set of completely bounded homomorphisms from A to B .
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Lemma 1.22 If A is a C �–algebra, then any completely bounded homomorphism
f W A!L.H / is conjugate to a �–homomorphism of C �–algebras.

Proof This is the main result of [16].

Remark 1.23 Kadison’s similarity problem asks whether all bounded (noninvolutive)
homomorphisms between C �–algebras are in fact completely bounded. The answer is
affirmative in a wide range of cases, but the general problem remains open. Note that
Gardner showed [9, Theorem A] that all Banach isomorphisms of C �–algebras are
conjugate to C �–homomorphisms (and hence completely bounded).

Also note that by [22, Theorem 3], every closed two-sided ideal of a C �–algebra is
a �–ideal; combined with Gardner’s result, this implies that any bounded surjective
map A!B between C �–algebras must be conjugate to a C �–homomorphism, hence
completely bounded. The same is true of any bounded map between C �–algebras
whose image is a C �–subalgebra.

Definition 1.24 Let C �BAlgk be the category of unital C �–algebras over k , with
completely bounded morphisms (which need not preserve �).

Lemma 1.25 For complex C �–algebras A;B , giving a U.B/–equivariant function
f W HomC�AlgC

.A;B/ ! B (for the adjoint action on B ) is equivalent to giving a
B�–equivariant function zf W HomC�BAlgC

.A;B/! B .

Proof There is a canonical inclusion �W HomC�AlgC
.A;B/! HomC�BAlgC

.A;B/,
so given zf , we just set f to be zf ı �.

The polar decomposition allows us to write B� D BCCU.B/, where BCC � S.B/

is the subset of strictly positive self-adjoint elements. Given f , there is thus an
associated B�–equivariant function zf W HomC�AlgC

.A;B/ � BCC ! B given by
zf .p;g/ D g�1f .p/g . By Lemma 1.22, the map HomC�AlgC

.A;B/ � BCC !

HomC�BAlgC
.A;B/ is surjective, and we need to check that zf descends.

Now, if � 2 S.B/ has the property that exp.�/ fixes p.A/ under conjugation, then
exp.i� t/ commutes with f .p/ for all t , so i� must also. Thus � and hence exp.�/
commute with f .p/, so the map zf does indeed descend.

1.4.2 Representations We now fix a real unital C �–algebra A.

Definition 1.26 Define FDVect to be the category of complex finite-dimensional
vector spaces and linear maps.
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Definition 1.27 Write FDRep.A/ for the category of pairs .V; �/ for V 2 FDVect
and �W A! End.V / a unital continuous morphism of Banach algebras. Morphisms
are given by linear maps intertwining representations. The set of objects of FDRep.A/
is given the topology of pointwise convergence.

Note that the objects of FDRep.A/ decompose into direct sums of irreducibles.

Lemma 1.28 The ring APN of Lemma 1.17 is isomorphic to APN0 , the ring of
Gal.C=R/–equivariant continuous endomorphisms of the fibre functor �W FDRep.A/!
FDVect. Explicitly, APN0 consists of elements a such that:

(1) For any linear map f W .V; �1/! .W; �2/, we have a.W; �2/f D fa.V; �1/.

(2) The maps aW Rep�n.A/!Matn.C/ are continuous and Gal.C=R/–equivariant.

Proof First note that condition (1) applied to the two projections V1 ˚ V2 ! Vi

ensures that, for any .V1; �1/; .V2; �2/2 FD�Rep.A/, we have a.V1˚V2; �1˚�2/D

a.V1; �1/˚ a.V2; �2/.

Restriction to �–representations then gives us a map  W APN0 ! APN . For a com-
mutative C �–algebra C , the C �–algebra Matk.C / is of type I . This means that
any bounded map A!Matk.C / is completely bounded, so taking B DMatk.C / in
Lemma 1.25 for all k ensures that  is an isomorphism.

Definition 1.29 Given a commutative unital real C �–algebra A and a �–homo-
morphism A! B of real C �–algebras, write FDRep yA.B/ for the category of triples
.f;V; �/ for f 2 yA (the spectrum of A), V 2 FDVect and �W B! End.V / a unital
continuous morphism of Banach algebras for which �.a/ D f .a/ id for all a 2 A.
Morphisms are given by linear maps intertwining representations. The set of objects of
FDRep yA.B/ is given the topology of pointwise convergence.

The category FDRep yA.B/ has an additive structure over yA, given by

.f;V1; �1/˚ .f;V2; �2/D .f;V1˚V2; �1˚ �2/:

Lemma 1.30 Given a commutative unital C �–algebra A and a �–homomorphism
A! B of real C �–algebras, the ring BPN of Lemma 1.17 is isomorphic to the ring of
Gal.C=R/–equivariant continuous endomorphisms of the fibre functor

�W FDRep yA.B/! FDVect:

Proof This just combines the proofs of Lemma 1.28 and Proposition 1.19. The only
modification is to observe that A D C. yA;C/Gal.C=R/ and that, for any irreducible
representation �W B! End.V /, we necessarily have �jA D f id for some f 2 yA.
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2 The Betti, de Rham and harmonic functors on
Banach algebras

2.1 The Riemann–Hilbert correspondence

Definition 2.1 Given a path-connected topological space X with basepoint x and a
unital R–algebra B , define the Betti representation space RB

X ;x
.B/ by

RB
X ;x.B/ WD HomGp.�1.X;x/;B

�/;

where B� is the multiplicative group of units in B .

Define the representation groupoid RB
X
.B/ by RB

X
.B/ WD ŒRB

X ;x
.B/=B��, where B�

acts by conjugation. Note that this is independent of the choice of basepoint (being
equivalent to the groupoid of B�–torsors on X ).

Definition 2.2 Given a connected manifold X with basepoint x and a Banach alge-
bra B , define the de Rham groupoid RdR

X
.B/ to be the groupoid of smooth B�–bundles

with flat connections. Thus RdR
X
.B/ consists of pairs .T ;D/, where T is a right

A 0
X
.B�/–torsor, and D is a flat connection on T .

Explicitly, write A n
X
.ad T / WDT �A 0

X
.B�/A

n
X
.B/, for the adjoint action of B� on B .

Then a flat connection on T is

DW T ! A 1.ad T /

satisfying

(1) D is a d –connection: D.pg/D adgD.p/Cg�1dg for g 2 A 0
X
.B�/;

(2) D is flat: .ad D/ ıD D 0.

Define RdR
X ;x

.B/ to be the groupoid of triples .T ;D; f /, where .T ;D/2RdR
X
.B/ and

f 2 x�T is a distinguished element. Since RdR
X ;x

.B/ has no nontrivial automorphisms,
we will regard it as a set-valued functor (given by its set of isomorphism classes).

Note that B� acts on RdR
X ;x

.B/ by changing the framing, whence the quotient groupoid
is equivalent to RdR

X
.B/.

Proposition 2.3 For any pointed connected manifold .X;x/ and any Banach algebra
B there are canonical equivalences

RdR
X .B/'RB

X .B/; RdR
X ;x.B/ŠRB

X ;x.B/

functorial in X , x and B .
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Proof When B is a finite-dimensional matrix algebra, this is [10, Theorem 5.10]. The
same proof carries over to Banach algebras, noting that the argument for existence of
parallel transport [15, Section II.3] holds in this generality, since exp.b/D

P
n�0 bn=n!

converges and is invertible for all b 2 B .

Remark 2.4 The functor RdR
X ;x

naturally extends to a functor on the category of
pro-Banach algebras pro.BanAlg/, by sending any cofiltered inverse system fAigi to
lim
 ��i

RdR
X ;x

.Ai/. Since the functor RB
X ;x

commutes with all limits, the equivalences
of Proposition 2.3 then extend to pro-Banach algebras. The category pro.BanAlg/
contains all multiplicatively convex Fréchet algebras (since they are countable inverse
limits of Banach algebras) and indeed all complete LMC algebras via the Arens–Michael
decomposition.

For any open subset U �Cn , the ring O.U / WD �.U;OU / of holomorphic functions
on U can be realised as a pro-Banach algebra by looking at the system of sup norms
on compact subspaces. Taking quotients by finitely generated ideals I then gives local
models Y WD .V .I/;OU =I/ for complex analytic spaces, and realises O.Y / as the
pro-Banach algebra O.U /=I . A complex analytic morphism from Y to the variety
Hom.�1.X;x/;GLn.C// is then just an element of Hom.�1.X;x/;GLnO.Y // D

RB
X ;x

.MatnO.Y // for the pro-Banach algebra MatnO.Y / of morphisms Y!Matn.C/.

We can therefore recover the analytic structure of the variety Hom.�1.X;x/;GLn.C//
from the set-valued functor RB

X ;x on Banach algebras and hence (by Proposition 2.3)
from the set-valued functor RdR

X ;x
.

In [25], the varieties RB
X ;x

.Matn.�// and RdR
X ;x

.Matn.�// are denoted by RB.X;x; n/.
and RDR.X;x; n/.

Lemma 2.5 For any real Banach algebras B;C , there is a canonical map

mW RB
X ;x.B/�RB

X ;x.C /!RB
X ;x.B˝

�
R C /;

where ˝� is the projective tensor product. This makes RB
X ;x

into a symmetric monoidal
functor, with unit corresponding to the trivial representation in each RB

X ;x
.B/.

Proof Given representations �1W �1.X;x/!B� and �2W �1.X;x/!C� , we obtain
�1˝�2W �1.X;x/! .B˝C /� . Taking the completion with respect to the projective
cross norm gives the required result.

Remark 2.6 Given any complex affine group scheme G , we may use the tensor
structure on RB

X ;x
to recover the affine analytic variety Hom.�1.X;x/;G.C// in the

same spirit as Remark 2.4. Explicitly, O.G/ is a coalgebra, so can be written as a nested
union of finite-dimensional coalgebras. Therefore O.G/_ is a pro-finite-dimensional
algebra, and hence a pro-Banach algebra.
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Multiplication on G gives us a comultiplication �W O.G/_!O.G �G/_ . For any
complex analytic space Y , we may then characterise Hom.�1.X;x/;G.Y // as

f� 2RB
X ;x.O.G/

_ y̋O.Y // j �.�/Dm.�; �/ 2RB
X ;x.O.G �G/_ y̋O.Y //g:

2.2 Representability of the de Rham functor

Lemma 2.7 Given a free group � D F.X /, the functor

A 7! HomGp.�;A
�/

on the category of real Banach algebras is prorepresentable.

Proof Given a function �W X ! Œ1;1/, let x�W � ! Œ1;1/ be the largest function
subject to the conditions

(1) x�.1/D 1;

(2) x�.x/D x�.x�1/D �.x/ for all x 2X ;

(3) x�.gh/� x�.g/x�.h/.

Explicitly, we write any g 2 � as a reduced word g D x
n1

1
x

n2

2
: : :x

nk

k
, then set

x�.g/ WD
Qk

iD1 �.xi/
jni j . We now define a norm k�k1;� on kŒ�� by setting



X


2�

�








1;�

WD

X

2�

j�
 j � x�.
 /:

Now, given any representation �W �!A� , we may define �W X ! Œ1;1/ by

�.x/ WDmaxfk�.x/k; k�.x�1/kgI

this at least 1 because 1D �.x/�.x�1/, so 1� k�.x/k � k�.x�1/k. It follows that for
all v 2 kŒ�� we have k�.v/k � kvk1;� , so � determines a map

kŒ��^� !A;

where kŒ��^� denotes the Banach algebra obtained by completing kŒ�� with respect
to the norm k�k1;� .

Next, give Œ1;1/X the structure of a poset by saying �1 � �2 provided �1.x/� �2.x/

for all x 2X . This is in fact a directed set, since we can define maxf�1; �2g pointwise.
There is a canonical morphism

kŒ��^�2 ! kŒ��^�1

whenever �1 � �2 , which gives us an inverse system kŒ��an WD fkŒ��^� g� of Banach
algebras, indexed by the directed set .Œ1;1/X .
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Thus we have shown that

HomGp.�;A
�/Š lim

��!
�2Œ1;1/X

HomkBanAlg.kŒ��
^� ;A/;

functorial in Banach k –algebras A. In other words, our prorepresenting object is the
inverse system kŒ��an .

Example 2.8 Take X D fzg, so � DZ, and let �.z/DR. Then elements of kŒZ�^�

are
P

i2Z �iz
i such thatX

i�0

j�i jR
i <1;

X
i�0

j�i jR
�i <1:

Thus CŒZ�^R is the ring of analytic functions converging on the annulus R�1�jzj�R.
Hence lim

 ��R
CŒZ�^R is the ring of analytic functions on C� , while lim

 ��R
RŒZ�^R is

the subring consisting of functions f with f .z/D f .xz/

Contrast this with the isometric Banach completion of CŒZ�, which just gives us
CŒZ�^1 D `1.Z/.

Lemma 2.9 Given a finitely generated free group � D F.X /, the functor

A 7! HomGp.�;A
�/

on the category of multiplicatively convex Fréchet k –algebras is representable.

Proof We may embed N1 in Œ1;1/X as a subset of the constant functions. Since X

is finite, N1 is a cofinal subset of Œ1;1/X , giving us an isomorphism

fkŒ��^� g�2Œ1;1/X Š fkŒ��
^ngn2N1

in the category of pro-Banach k –algebras. Since N1 is countable, kŒ��an WD lim
 ��n

kŒ��^n

is a Fréchet algebra.

Applying the proof of Lemma 2.7, we have shown that

Hom.�;A�/Š HomkFrAlg.kŒ��
an;A/

for all Banach algebras A. Since any m–convex Fréchet algebra A can be expressed as
an inverse limit AD lim

 ��i
Ai of Banach algebras, it follows that the same isomorphism

holds for all such algebras, so the functor is representable in m–convex Fréchet algebras.
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Proposition 2.10 Given a finitely generated group � , the functor

A 7! HomGp.�;A
�/

on the category of multiplicatively convex Fréchet k –algebras is representable.

Proof Choose generators X for � , so � D F.X /=K for some normal subgroup K .
Lemma 2.9 gives a Fréchet k –algebra kŒF.X /�an governing representations of F.X /.
Since

HomGp.�;A
�/D

˚
f 2 HomGp.F.X /;A

�/ j f .K/D f1g
	
;

our functor will be represented by a quotient of kŒF.X /�an . Specifically, let I be the
closed ideal of kŒF.X /�an generated by fk�1 jk 2Kg and set kŒ��an WDkŒF.X /�an=I .
This is an m–convex Fréchet algebra and

HomGp.�;A
�/Š HomkFrAlg.kŒ��

an;A/

for all such algebras A.

For an explicit description of kŒ��an , note that the system of norms is given by


X�







1;n
D

X
j�
 j � n

w.
/;

where w.
 / is the minimal word length of 
 in terms of X .

When combined with its tensor structure, this implies that the functor of Proposition 2.10
is a very strong invariant indeed:

Lemma 2.11 The tensor structure of Lemma 2.5 gives kŒ��an the structure of an
m–convex Fréchet bialgebra. The group

G.kŒ��an/D fa 2 kŒ��an
j �.a/D a˝ a 2 kŒ��an

˝
� kŒ��an; ".a/D 1 2 kg

of grouplike elements of kŒ��an is then � .

Proof Applying the map m of Lemma 2.5 to .�; �/ for the canonical element
� 2 HomGp.�; kŒ��

an/ gives us a comultiplication �W kŒ��an ! kŒ��an˝� kŒ��an D

kŒ� � ��an and a counit "W kŒ��an ! k . On the topological basis � , we must have
�.
 /D .
; 
 / and ".
 /D 1.

Expressing a 2G.kŒ��an/ as
P

2� a

 , note that the conditions become a
aı D 0

for 
 ¤ ı , and
P

a
 D 1; thus aD 
 for some 
 2 � .
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Example 2.12 Arguing as in Example 2.8, for � abelian and finitely generated,
CŒ��an is isomorphic to the ring of complex analytic functions on HomGp.�;C�/,
while RŒ��an�CŒ��an consists of Gal.C=R/–equivariant functions. The multiplicative
analytic functions are of course just � itself.

Proposition 2.3 then implies:

Corollary 2.13 The functors RdR
X ;x

and RB
X ;x

on real multiplicatively convex Fréchet
algebras are representable.

Remark 2.14 Adapting the ideas of [19], the functor RB
X ;x

has a natural extension to
those simplicial Banach algebras B� for which Bn! �0B is a nilpotent extension
for each n. Explicitly, we could set RB

X ;x
.B/ to be the set of homotopy classes of

maps G.Sing.X;x//! B�
�

of simplicial groups, where G is Kan’s loop group. This
functor admits a tensor structure extending Lemma 2.5,

The functor RdR
X ;x

has a natural extension to those differential graded Banach algebras
B� for which B0!H0B is a nilpotent extension. Explicitly, RdR

X ;x
.B/ would consist of

pairs .T0;D/, where T0 is a A 0
X
.B�

0
/–torsor and DW T0!

Q
n A nC1

X
˝A 0

X
ad Tn.nC1/

is a flat hyperconnection, where ad Tn WD T �A 0
X
.B�

0
/A

0
X
.Bn/.

It then seems likely that [19, Corollary 4.41] should adapt to give natural isomorphisms
RB

X ;x
.B/ŠRdR

X ;x
.NB/, where N is Dold–Kan normalisation.

2.3 The pluriharmonic functor

Fix a compact connected Kähler manifold X , with basepoint x 2X .

Definition 2.15 Given a real Banach space B , denote the sheaf of B–valued C1

n–forms on X by A n
X
.B/, and let A �

X
be the resulting complex. Write A�.X;B/ WD

�.X;A �
X
.B//. We also write A �

X
WD A �

X
.R/ and A�.X / WDA�.X;R/.

Definition 2.16 Define S to be the real algebraic group
Q

C=R Gm obtained as in
[6, Section 2.1.2] from Gm;C by restriction of scalars. Note that there is a canonical
inclusion Gm ,! S .

The following is a slight generalisation of [20, Definition 2.49]:

Definition 2.17 For any real Banach space B , there is an action of S on A �
X
.B/,

which we will denote by a 7! �˘ a, for � 2C� D S.R/. For a 2 .A�.X /˝C/pq , it
is given by

�˘ a WD �px�qa:
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Definition 2.18 Given a real C �–algebra B , define RJ
X
.B/ to be the groupoid of

pairs .U.P/;D/, where U.P/ is a right A 0
X
.U.B//–torsor, and D is a pluriharmonic

connection on U.P/.

Explicitly, write P WD U.P/�A 0
X
.U.B//A

0
X
.B�/, and

ad P WDP �A 0
X
.B�/A

0
X .B/

D U.P/�A 0
X
.U.B//A

0
X .B/

D ŒU.P/�A 0
X
.U.B//A

0
X .u.B//�˚ ŒU.P/�A 0

X
.U.B//A

0
X .S.B//�;

where U.B/ and B� act on B by the adjoint action. Then a pluriharmonic connection
on P is

DW U.P/! ad P

satisfying

(1) D is a d –connection: D.pu/D aduD.p/Cu�1du for u 2 A 0
X
.U.B//;

(2) D is flat: .ad D/ ıD D 0;

(3) D is pluriharmonic: .ad D/ ıDc C .ad Dc/ ıD D 0.

Here, D D dCC# comes from the decomposition of ad P into anti-self-adjoint and
self-adjoint parts, and Dc D i ˘ dC� i ˘# .

Define RJ
X ;x

.B/ to be the groupoid of triples .U.P/;D; f /, where .U.P/;D/ is
in RJ

X
.B/ and f 2 x�U.P/ is a distinguished element. Since RJ

X ;x
.B/ has no

nontrivial automorphisms, we will regard it as a set-valued functor (given by its set of
isomorphism classes).

Remark 2.19 There is a natural action of U.B/ on RJ
X ;x

.B/, given by changing the
framing. The quotient groupoid ŒRJ

X ;x
.B/=U.B/� is thus equivalent to RJ

X
.B/. In

[25, Lemma 7.13], the set RJ
X ;x

.Matn.C// is denoted by RJ
DR.X;x; n/.

Also note that the definition of RJ
X ;x

.B/ can be extended to any real Banach �–
algebra B . However, this will not be true of the harmonic functor of Section 2.5.

Example 2.20 When V is a real Hilbert space, the algebra L.V / of bounded operators
on V is a real C �–algebra. Then RJ

X
.B/ is equivalent to the groupoid of pluriharmonic

local systems V in Hilbert spaces on X , fibrewise isometric to V . The connection
DW A 0.V /!A 1.V / must satisfy the pluriharmonic condition that DDcCDcD D 0

for Dc defined with respect to the smooth inner product V �V !A 0
X

. Isomorphisms
in RJ

X
.B/ preserve the inner product.
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Definition 2.21 Define the de Rham projection

�dRW R
J
X ;x.B/!RdR

X ;x.B/

by mapping .U.P/;D; f / to the framed flat torsor

.P;D; f /D .U.P/�A 0
X
.U.B//A

0
X .B

�/;D; f �U.B/B�/:

Proposition 2.22 The functor RJ
X ;x
W C �Alg! Set is strictly prorepresentable, by an

object EJ
X ;x
2 pro.C �Alg/.

Proof The final object in C �Alg is 0, and RJ
X ;x

.0/ is the one-point set, so RJ
X ;x

preserves the final object.

Given maps A! B  C in C �Alg and .pA;pB/ 2 RJ
X ;x

.A/�RJ
X;x

.B/ RJ
X ;x

.C /,
we get

�dR.pA;pC / 2RdR
X ;x.A/�RdR

X;x
.B/RdR

X ;x.C /ŠRB
X ;x.A/�RB

X;x
.B/RB

X ;x.C /

ŠRB
X ;x.A�B C /:

Thus we have a flat torsor .P;D/ 2RdR
X ;x

.A�B C /.

It follows that pA Š .U.PA/;D/ for some orthogonal form

U.PA/�PA DP �A 0
X
..A�BC /�/A

0
X .A

�/;

and similarly for pC . Since the images of pA and pC are equal in RdR
X ;x

.B/, there is
a framed orthogonal isomorphism

˛W U.PA/�A 0
X
.U.A//A

0
X .U.B//! U.PC /�A 0

X
.U.C //A

0
X .U.B//;

inducing the identity on PB . Hence ˛ must itself be the identity, so both U.PA/

and U.PC / give the same unitary form U.PB/ for PB . It is easy to check the
pluriharmonic conditions, giving an element

.U.PA/�U.PB/ U.PC /;D/ 2RJ
X ;x.A�B C /

over .pA;pC /. This is essentially unique, so RJ
X ;x

preserves fibre products, and hence
finite limits.

Now, given a C �–subalgebra A�B , the map RJ
X ;x

.A/!RJ
X ;x

.B/ is injective. This
follows because if two framed pluriharmonic bundles P1 , P2 2 RJ

X ;x
.A/ become

isomorphic in RJ
X ;x

.B/, compatibility of framings ensures that the isomorphism f

maps x�P1 to x�P2 . Since f is compatible with the connections, it thus gives an
isomorphism f W P1!P2 , by considering the associated local systems.
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Finally, given an inverse system fAigi of nested C �–subalgebras of a C �–algebra B

and an element of
T

i RJ
X ;x

.Ai/, we have a compatible system f.Pi ;Di ; fi/gi . Set
P WD lim

 ��i
Pi , with connection D and framing f induced by the Di and fi . This

defines a unique element of RJ
X ;x

�T
i Ai

�
, showing that

F

�\
i

Ai

�
Š

\
i

F.Ai/:

Thus all the conditions of Proposition 1.9 are satisfied, so RJ
X ;x

is strictly prorepre-
sentable.

Definition 2.23 Given pro-C �–algebras B and C over k , define B y̋ kC to be the
maximal k –tensor product of B and C , as defined in [18, Definition 3.1]; this is again
a pro-C �–algebra.

Lemma 2.24 For any real pro-C �–algebras B and C , there is a canonical map

mW RJ
X ;x.B/�RJ

X ;x.C /!RJ
X ;x.B y̋RC /;

making RJ
X ;x

into a symmetric monoidal functor, with unit corresponding to the trivial
torsor in each RJ

X ;x
.B/.

Proof Given .U.P/;D; f;U.Q/;E; ˇ/ on the left-hand side, we first form the
A 0

X
.U.B y̋C //–torsor U.R/ given by

U.R/ WD .U.P/�U.Q//A 0
X
.U.B/�U.C //A

0
X .U.B y̋C //:

We then define a connection F on U.R/ determined by

F.p; q; 1/D .Dp; q/C .p;Dq/ 2 A 1
X .ad R/

D .U.P/�U.Q//A 0
X
.U.B/�U.C //A

1
X .B y̋C /

for p2U.P/ and q 2U.Q/ This is clearly flat and pluriharmonic, and the construction
is also symmetric monoidal.

Note that this gives EJ
X ;x

the structure of a pro-C �–bialgebra, with comultiplication
�W EJ

X ;x
!EJ

X ;x
y̋EJ

X ;x
coming from m, and counit "W EJ

X ;x
! k coming from the

trivial torsor.

The following is immediate:
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Lemma 2.25 For any morphism f W X ! Y of compact connected Kähler manifolds,
there is a natural transformation

f �W RJ
Y;f x!RJ

X ;x

of functors.

2.4 Higgs bundles

Definition 2.26 Given a complex Banach algebra B , write OX .B/ for the sheaf on X

given locally by holomorphic functions X ! B .

Definition 2.27 For a complex Banach algebra B , a Higgs B –torsor on X consists
of an OX .B/

�–torsor T , together with a Higgs form � 2 ad T ˝OX
�1

X
, where

ad T WD T �OX .B/�;ad OX .B/ satisfying

� ^ � D 0 2 T ˝OX
�2

X :

Definition 2.28 Let RDol
X
.B/ be the groupoid of Higgs B–torsors, and RDol

X ;x
.B/

the groupoid of framed Higgs bundles .T ; �; f /, where f W B� ! x�T is a B�–
equivariant isomorphism. Alternatively, we may think of f as a distinguished element
of x�T .

Note that RDol
X ;x

.B/ is a discrete groupoid, so we will usually identify it with its set of
isomorphism classes. Also note that there is a canonical action of B� on RDol

X ;x
.B/

given by the action on the framings. This gives an equivalence

RDol
X .B/' ŒRDol

X ;x.B/=B
��

of groupoids.

The following is immediate:

Lemma 2.29 Giving a Higgs B –torsor X is equivalent to giving an A 0
X
.B�/ torsor Q

equipped with a flat x@–connection, ie a map

D00W Q! ad Q WDQ�A 0
X
.B�/;ad A 1

X .B/

satisfying

(1) D00.pg/D adgD00.p/Cg�1x@g for g 2 A 0
X
.B�/;

(2) .ad D00/ ıD00 D 0.
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Remark 2.30 Unlike the Betti, de Rham and harmonic functors, the Dolbeault functor
cannot be prorepresentable in general. This is for the simple reason that a left-exact
scheme must be affine, but the Dolbeault moduli space is seldom so, since it contains
the Picard scheme.

Definition 2.31 Given .U.P/;D/ 2RJ
X
.B/, decompose dC and # into .1; 0/ and

.0; 1/ types as dC D @Cx@ and # D � C x� . Now set D0 D @C x� and D00 D x@C � .
Note that D DD0CD00 and Dc D iD0� iD00 .

Definition 2.32 For a complex C �–algebra B , define the Dolbeault projection map
�DolW RJ

X
.B/!RDol

X
.B/ by sending .U.P/;D/ to .P �A 0

X
.B�/A

0
X
.B�/;D00/.

2.5 The harmonic functor

We now let X be any compact Riemannian real manifold.

Definition 2.33 Given a compact Riemannian manifold X , a real C �–algebra B , a
right A 0

X
.U.B//–torsor U.P/ and a flat connection

DW U.P/! ad P;

say that D is a harmonic connection if .dC/�# D 0 2 �.X; ad P/ for dC and #
defined as in Definition 2.18 and the adjoint � given by combining the involution � on
ad P with the adjoint on A �

X
given by the Kähler form.

Lemma 2.34 A flat connection D as above on a compact Kähler manifold is harmonic
if and only if it is pluriharmonic.

Proof The proof of [23, Lemma 1.1] carries over to this generality.

Definition 2.35 The lemma allows us to extend Definitions 2.18 and 2.21 to any
compact Riemannian manifold X , replacing pluriharmonic with harmonic in the
definition of RJ

X
.B/ and RJ

X ;x
.B/.

Proposition 2.36 The functor RJ
X ;x
W C �AlgR! Set is strictly prorepresentable, by

an object EJ
X ;x
2 pro.C �AlgR/.

Proof The proof of Proposition 2.22 carries over.

Note that Lemma 2.24 carries over to the functor RJ
X ;x

for any compact Riemannian
manifold X .

The following is immediate:
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Lemma 2.37 For any local isometry f W X ! Y of compact connected real Riemann-
ian manifolds, there is a natural transformation

f �W RJ
Y;f x!RJ

X ;x

of functors.

Note that this is much weaker than Lemma 2.25, the pluriharmonic functor being a
priori functorial with respect to all morphisms.

3 Analytic nonabelian Hodge theorems

3.1 The de Rham projection

Fix a compact connected real Riemannian manifold X , with basepoint x 2X .

The argument of [25, Lemma 7.17] (which is only stated for X Kähler) shows that
�dR gives a homeomorphism

RJ
X ;x.Matn.C//=U.n/! Hom.�1.X;x/;GLn.C//==GLn.C/;

where == denotes the coarse quotient (in this case, the Hausdorff completion of the
topological quotient).

As an immediate consequence, note that

RJ
X ;x.C/! HomGp.�1.X;x/;C

�/

is a homeomorphism. Thus the abelianisation of EJ
X ;x
˝C is isomorphic to the com-

mutative C �–algebra C.Hom.�1.X;x/;C
�/;C/, with RJ

X ;x
�RJ

X ;x
˝C consisting

of Gal.C=R/–equivariant functions.

We now adapt these results to recover a finer comparison between the respective
functors.

3.1.1 Harmonic representations

Proposition 3.1 For a compact Riemannian manifold X and all real C �–algebras B ,
the de Rham projection

�dRW R
J
X ;x.B/!RdR

X ;x.B/

has the property that if p1 , p2 2 RJ
X ;x

.B/ and adb �dR.p1/ D �dR.p2/ for some
strictly positive self-adjoint element b 2 B , then p1 D p2 .

Thus
�dRW R

J
X ;x.B/=U.B/!RdR

X ;x.B/=B
�

is injective.
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Proof The first statement above implies the second: it suffices to show that, for any
.U.P/;D; f / 2RJ

X ;x
.B/, there are no other harmonic representations in the BCC–

orbit of �dR.U.P/;D; f /. Since BCC D exp.S.B// (by the continuous functional
calculus), we can equivalently look at the orbit under the exponential action of the
set S.B/.

We adapt the proof of [5, Proposition 2.3]. The harmonic condition .dC/�# D 0 is
equivalent to saying that, for all � 2A0.X; i ad P/,

h#; dC�i D 0 2A0.X;B/;

where h�;�i is defined using the Riemannian metric.

Now, the set of flat connections on P admits a gauge action ? of the smooth auto-
morphism group of P , and hence via exponentiation an action of the additive group
�.X; ad P/. An isomorphism in BCC between two flat connections corresponds
to an element of exp.�.X;S.ad P/// for S.ad P/� ad P consisting of symmetric
elements, giving a gauge between the respective connections. Thus the S.B/–orbit
above is given by looking at the orbit of D under �.X;S.ad P//.

By analogy with [5, Proposition 2.3], we fix � 2A0.X;S.ad P//, let dCt and #t be
the anti-self-adjoint and self-adjoint parts of exp.� t/ ?D , and set

f .t/ WD h#t ; #t i 2A0.X;B/:

Now, d.exp.� t/ ?D/=dt D .exp.� t/ ?D/� D dCt �C#t ^ � , so d#t=dt D dCt � and

f 0.t/D 2h�; .dCt /
�#t i 2A0.X;B/:

In other words, Dt is harmonic if and only if f 0.t/D 0 for all � .

Now, if we set yDt WD dCt �#t , the calculations of [5, Proposition 2.3] adapt to give

2f 00.t/D kDt�C yDt�k
2
CkDt� � yDt�k

2
2A0.X;B/;

where kvk2 WD hv; vi; unlike Corlette, we are only taking inner product with respect to
the Kähler metric, not imposing an additional inner product on B .

Note that f 00.t/ an element of A0.X;BC/, which lies in A0.X;BCC/ unless Dt�D0.
If we start with a harmonic connection D , this implies that exp.�/ ?D is harmonic if
and only if D� D 0. However, when D� D 0 we have exp.�/ ?D DD , showing that
D is the unique harmonic connection in its BCC–orbit.

Corollary 3.2 For a complex C �–algebra B and an element p 2 RJ
X ;x

.B�/, the
centraliser Z.�dR.p/;B

�/ of �dR.p/ under the adjoint action of B is given by

Z.�dR.p/;B
�/D exp

�
fb 2 S.B/ j eibt

2 Z.p;U.B// for all t 2Rg
�

Ì Z.p;U.B//I

beware that this is the semidirect product of a set with a group.
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Proof Take g 2 Z.�dR.p/;B
�/, and observe that the polar decomposition allows us

to write g D exp.b/u for u 2 U.B/ and b 2 S.B/. Since �dR is U.B/–equivariant,
we have

adexp.b/ �dR.adup/D adg �dR.p/D �dR.p/:

Thus Proposition 3.1 implies that adup D p , so u 2 Z.p;U.B//.

Since Z.�dR.p/;B
�/ is a group, this implies that exp.b/ 2 Z.�dR.p/;B

�/, and hence
that exp.b/ commutes with the image of �dR.p/. We may apply the continuous
functional calculus to take logarithms, showing that b itself commutes with the image
of �dR.p/, so ibt does also. But then exp.ibt/ 2 Z.p;U.B// for all t , as required.

Conversely, if exp.ibt/ 2 Z.p;U.B// for all t , then exp.�ibt/�dR.p/ exp.ibt/ D

�dR.p/ and, differentiating in t for each element of �1.X;x/, we see that ib commutes
with �dR.p/. Thus exp.b/ 2 Z.�dR.p/;B

�/.

3.1.2 Topological representation spaces and completely bounded maps

Lemma 3.3 For the real pro-C �–algebra EJ
X ;x

of Proposition 2.22, there is a canon-
ical map �dRW Hompro.BanAlg/.E

J
X ;x

;B/! RdR
X ;x

.B/, functorial in real Banach alge-
bras B .

Proof Given f W EJ
X ;x
!B , Lemma 1.20 factors f as the composition of a surjective

C �–homomorphism gW EJ
X ;x
! C and a continuous embedding C ,! B . The de

Rham projection of Definition 2.21 then gives us an element �dR.g/ 2 RdR
X ;x

.C /.
Combining this with the embedding C�! B� then provides the required element of
RdR

X ;x
.B/.

Proposition 3.4 For any real C �–algebra B , the map of Lemma 3.3 induces an
injection

�dRW Hom.EJ
X ;x;B/cb ,!RdR

X ;x.B/

for the completely bounded morphisms of Definition 1.21.

Proof Since B can be embedded as a closed C �–subalgebra of L.H / for some
complex Hilbert space H , we may replace B with L.H /. By Lemma 1.22, any
completely bounded homomorphism f W EJ

X ;x
!L.H / is conjugate to a �–morphism,

since EJ
X ;x

is a pro-C �–algebra. Therefore Proposition 3.1 shows that

Hom.EJ
X ;x;L.H //cb=GL.H / ,!RdR

X ;x.L.H //=GL.H /:
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Take a homomorphism f W EJ
X ;x
!L.H / of C �–algebras; it suffices to show that the

centraliser of f and of �dR.f / are equal. By Corollary 3.2, we know that

Z.�dR.f /;GL.H //

D exp
�
fb 2 S.L.H // j eibt

2 Z.f;U.H // for all t 2Rg
�

Ì Z.f;U.H //:

If eibt commutes with f for all f , then eibtfe�ibt D f , and differentiating in t

shows that b commutes with f . Therefore exp.b/ commutes with f , showing that

Z.�dR.f /;GL.H //� Z.f;GL.H //:

The reverse inclusion is automatic, giving the required result.

Remark 3.5 In [23; 20], the proreductive fundamental group �1.X;x/
red
k

is studied —
this is an affine group scheme over k . By Tannakian duality [7, Chapter II], we can
interpret the dual O.�1.X;x/

red
R /_ of the ring of functions as the ring of discontinuous

Gal.C=R/–equivariant endomorphisms of �dR;ss
x .

The group scheme �1.X;x/
red
k

encodes all the information about the sets of finite-
dimensional representations of �1.X;x/. As we will now see, .EJ

X ;x
/PN encodes all

the information about their topologies as well.

Theorem 3.6 For any positive integer n, �dR gives a homeomorphism �dR;ss between
the space Hompro.BanAlg/.E

J
X ;x

;Matn.C// with the topology of pointwise convergence
and the subspace of RdR

X ;x
.Matn.C// whose points correspond to semisimple local

systems.

Proof The isomorphism �dR;ss is given on points by the proof of [5, Theorem 3.3],
since completely bounded algebra homomorphisms EJ

X ;x
!Matn.C/ are those conju-

gate to �–homomorphisms, which in turn correspond to harmonic local systems. We
need to show that this is a homeomorphism.

Consider the map �
]
dRW E

dR
X ;x
! EJ

X ;x
of pro-Banach algebras. If Ti ! T is a

convergent net in Hompro.BanAlg/.E
J
X ;x

;Matn.C//, then Ti.�
]
dR.
 //!T .�

]
dR.
 //, so

�dR;ss is continuous.

Now, the de Rham projection �dRW R
J
X ;x

.B/! RdR
X ;x

.B/ is automatically injective
for C �–algebras B . Thus the inclusion in EJ

X ;x
of the pro-C �–subalgebra generated

by �]dR.�1.X;x// must be an epimorphism, since RŒ�1.X;x/� is dense in EdR
X ;x

. By
[21, Proposition 2], an epimorphism of C �–algebras is surjective, so EJ

X ;x
must be

generated as a pro-C �–algebra by �]dR.�1.X;x//, and as a pro-Banach algebra by
�
]
dR.�1.X;x//[�

]
dR.�1.X;x//

� .
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Now, if we have a convergent sequence �dR.Ti/!�dR.T /, then Ti.�
]
dR
 /!T .�

]
dR
 /

for all 
 2 �1.X;x/, so it suffices to show that the same holds for .�]dR
 /
� . Given

T 2 Hompro.BanAlg/.E
J
X ;x

;Matn.C//, define T � by T �.e/ WD T .e�/� . We wish to
show that T �i .�

]
dR
 /! T �.�

]
dR
 /, which will follow if �dR.T

�
i /! �dR.T

�/.

As in the proof of Proposition 3.4, we can write T D adgS for S W EJ
X ;x

;Matn.C/
a �–homomorphism and g 2 GLn.C/. Then T � D ad.g�/�1 S D ad.gg�/�1 T ; this
means that if we write �dR.T /D .V ;D; f /, then �dR.T

�/D .V ;D; .f �/�1/, where
f �W x�V ! Cn is defined using the harmonic metric on V and the standard inner
product on Cn .

Explicitly, this means that we can describe the involution � on semisimple elements
of RB

X ;x
.Matn.C// by �� D .C.�/�1/| , where C is the Cartan involution of [23].

If D D dC C # is the decomposition into antihermitian and hermitian parts with
respect to the harmonic metric, then C.V ; dCC#; f /D .V ; dC�#; f /. The proof
of [5, Theorem 3.3] ensures that the decomposition D 7! .dC; #/ is continuous in D ,
so C is continuous. Hence �dR.T / 7! �dR.T

�/ is also continuous, which gives the
convergence required.

3.1.3 The polynormal completion and Tannaka duality

Definition 3.7 Let FDRdR
X ;x

be the category of pairs .V;p/ for V 2 FDVect and
p 2 RdR

X ;x
.End.V //. Morphisms f W .V1;p1/! .V2;p2/ are given by linear maps

f W V1! V2 for which the adjoint action of�
id 0

f id

�
2

�
End.V1/ 0

Hom.V1;V2/ End.V2/

�
on FDRdR

X ;x

�
End.V1/ 0

Hom.V1;V2/ End.V2/

�
fixes p1˚p2 .

Write �dR
x W FDRdR

X ;x
! FDVect for the fibre functor .V;p/ 7! V . Let FDR

dR;ss
X ;x

�

FDRdR
X ;x

be the full subcategory in which objects correspond to semisimple local
systems, with fibre functor �dR;ss

x .

Proposition 3.8 The ring .EJ
X;x

/PN is isomorphic to the ring of continuous Gal.C=R/–
equivariant endomorphisms of �dR;ss

x .

Proof This just combines Lemma 1.28 and Theorem 3.6.

Remark 3.9 This leads us to contemplate the structure of the ring of continuous endo-
morphisms f of �dR

x . Any finite-dimensional C–algebra arises as a subalgebra of some
matrix algebra, so any such f induces continuous maps HomGp.�1.X;x/;B

�/! B
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for all finite-dimensional algebras B . In particular, this holds when B DMatn.A/ for
some Artinian C–algebra A, from which it follows that the maps

fV W R
dR
X ;x.End.V //! End.V /

are all analytic. In other words, any continuous endomorphism of �dR
x is automatically

analytic.

When �1.X;x/ is abelian, this ensures that the ring .EdR
X ;x

/FD˝C of such endomor-
phisms is the ring of complex analytic functions on HomGp.�1.X;x/;C

�/, which by
Example 2.12 is just CŒ�1.X;x/�

an .

In general, the ring .EdR
X ;x

/FD is an inverse limit of polynormal Banach algebras, but it
is not clear to the author whether it is the propolynormal completion of the Fréchet alge-
bra EdR

X ;x
. In general, the map �1.X;x/! .EdR

X ;x
/FD need not be injective: Section 6.5

of [2] gives examples of Kähler groups with no faithful linear representations.

Definition 3.10 Given a k –normal real C �–algebra B , define R
dR;ss
X ;x

.B/�RdR
X ;x

.B/

to be the subspace consisting of those p for which  .p/ corresponds to a semisimple
local system for all  W B!Matk.C/.

Corollary 3.11 For any k –normal real C �–algebra B , the space R
dR;ss
X ;x

.B/ is iso-
morphic to the set of continuous algebra homomorphisms EJ

X ;x
! B .

Proof Since B is k –normal, any such morphism EJ
X ;x
!B factors uniquely through

.EJ
X ;x

/PN . By Proposition 3.8, a homomorphism .EJ
X ;x

/PN ! B corresponds to a
continuous Gal.C=R/–equivariant functor p�W FDRep.B/!FDR

dR;ss
X ;x

of topological
categories fibred over FDVect. An element p 2 RdR

X ;x
.B/ satisfies this condition

provided p� maps to FDR
dR;ss
X ;x
� FDRdR

X ;x
.

Remark 3.12 It is natural to ask whether the nonabelian Hodge theorem of [25]
extends from finite-dimensional matrix algebras to more general C �–algebras B .
Proposition 3.8 can be thought of as an extension of the correspondence to polynormal
C �–algebras, but it seems unlikely to adapt much further, because the arguments of
[25; 5] rely on sequential compactness of Un . However, it is conceivable that suitable
solutions of the heat equation might give rise to asymptotic C �–homomorphisms.

3.2 Residually finite-dimensional completion, products and complex tori

Definition 3.13 A pro-C �–algebra A is said to be residually finite-dimensional if it
has a separating family of finite-dimensional �–representations.
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Given a pro-C �–algebra A, define the pro-C �–algebra ARFD to be the universal
residually finite-dimensional quotient of A. Explicitly, ARFD is the quotient of A

with respect to the proideal given by the system of kernels of finite-dimensional �–
representations of A.

Note that polynormal C �–algebras are residually finite-dimensional, so we have com-
pletions A!ARFD!APN for general A.

Proposition 3.14 Given compact connected Kähler manifolds X and Y , there is an
isomorphism .EJ

X�Y;.x;y/
/RFD Š .E

J
X ;x

/RFD y̋ .E
J
Y;y
/RFD .

Proof The projections give canonical elements of the spaces RJ
X�Y;.x;y/

.EJ
X ;x

/ and
RJ

X�Y;.x;y/
.EJ

Y;y
/, which by Lemma 2.24 give rise to a canonical map

f W EJ
X�Y;.x;y/!EJ

X ;x
y̋EJ

Y;y :

By [5], every finite-dimensional representation of EJ
X�Y;.x;y/

corresponds to a semi-
simple representation of �1.X �Y; .x;y//D �1.X;x/��1.Y;y/, so factors through
EJ

X
y̋EJ

Y
. Since .EJ

X�Y;.x;y/
/RFD �

Q
i End.Vi/ where Vi ranges over finite-dimen-

sional irreducible representations, this implies that

fRFDW .E
J
X�Y;.x;y//RFD! .EJ

X ;x/RFD y̋ .E
J
Y;y/RFD

is injective. However, the basepoint y gives us a map X ! X � Y , and hence
EJ

X ;x
! EJ

X�Y;.x;y/
, ensuring that .EJ

X
/RFD lies in the image of fRFD ; a similar

argument applies to Y . Thus fRFD is surjective, and hence an isomorphism.

Remark 3.15 We have only imposed the hypothesis that the manifolds be Kähler in
order to use the functoriality properties of Lemma 2.25, since Lemma 2.37 is too weak
to apply to the maps between X �Y and X .

Lemma 3.16 Given a compact connected Kähler manifold X , the commutative quo-
tient .EJ

X ;x
/ab is given by

.EJ
X ;x/

ab
˝C D C.H1.X;C�/;C/;

.EJ
X ;x/

ab
D ff 2 C.H1.X;C�/;C/ j f .x�/D f .�/g:

Proof Since .EJ
X ;x

/ab is a commutative C �–algebra, the Gelfand–Naimark theorem
gives .EJ

X ;x
/ab ˝ C Š C.Hom.EJ

X ;x
;C/;C/, with EJ

X ;x
/ab given by Gal.C=R/–

invariants. By Section 3.1.3, we have a homeomorphism Hom.EJ
X ;e
;C/ŠH1.X;C�/,

which completes the proof.
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Corollary 3.17 For X a complex torus with identity e and a fixed Riemannian metric,
we have

.EJ
X ;e/RFD˝C D C.H1.X;C�/;C/;

.EJ
X ;e/RFD D ff 2 C.H1.X;C�/;C/ j f .x�/D f .�/g:

Proof Multiplication on X gives a pointed morphism X �X ! X and hence, by
functoriality of P in X and Proposition 3.14, we have a morphism

.EJ
X ;e/RFD y̋ .E

J
X ;e/RFD! .EJ

X ;e/RFD

of real pro-C �–algebras, and we may apply Lemma 3.16.

Remark 3.18 If it were the case that all irreducible representations of �1.X;x/ were
harmonic and similarly for �1.Y;y/, then the proof of Proposition 3.14 would adapt
to show that EJ

X�Y;.x;y/
Š EJ

X ;x
y̋EJ

Y;y
. As in the proof of Corollary 3.17, that

would then imply commutativity of EJ
X ;e

for complex tori .X; e/, giving EJ
X ;e
˝C D

C
�
Hom.�1.X; e/;C

�/
�
.

Lemma 3.19 Given a compact connected Kähler manifold X , the grouplike elements
G..EJ

X ;x
/ab/ (see Lemma 2.11) of the commutative quotient .EJ

X ;x
/ab are given by

G..EJ
X ;x/

ab
˝C/Š H1.X;Z˚C/;

G..EJ
X ;x/

ab/Š H1.X;Z˚R/;

with the map �1.X;x/
ab!G..EJ

X ;x
/ab/ given by the diagonal map Z! Z˚R.

Proof The coalgebra structure on .EJ
X ;x

/ab corresponds under Lemma 3.16 to the
group structure on H1.X;C�/. Thus G..EJ

X ;x
/ab/ consists of continuous functions

f W H1.X;C�/!C with f .1/D 1 and f .ab/D f .a/f .b/.

We have an isomorphism C� Š S1 �R, given by rei� 7! .�; r/. Thus H1.X;C�/Š
H1.X;S1 � H1.X;R/. By Pontrjagin duality, a continuous group homomorphism
H1.X;S1/!C� is just an element of H1.X;Z/, and a continuous group homomor-
phism H1.X;R/!C� is an element of H1.X;C/.

3.3 The Dolbeault projection

Now let X be a compact connected Kähler manifold with basepoint x 2X .

Proposition 3.20 For all complex C �–algebras B , the Dolbeault projection

�DolW R
J
X ;x.B/!RDol

X ;x.B/
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has the property that, if p1;p2 2 RJ
X ;x

.B/ and adb �Dol.p1/ D �Dol.p2/ for some
strictly positive self-adjoint element b 2 B , then p1 D p2 .

Thus
�DolW R

J
X ;x.B/=U.B/!RDol

X ;x.B/=B
�

is injective.

Proof The proof of Proposition 3.1 adapts, replacing D with D00 .

Corollary 3.21 For an element p 2 RJ
X ;x

.B�/, the centraliser Z.�Dol.p/;B
�/ of

�Dol.p/ under the adjoint action of B is given by

Z.�Dol.p/;B
�/D exp

�
fb 2 S.B/ j eibt

2 Z.p;U.B// for all t 2Rg
�

Ì Z.p;U.B//I

beware that this is the semidirect product of a set with a group.

Proof The proof of Corollary 3.2 carries over.

Proposition 3.22 For the real pro-C �–algebra EJ
X ;x

of Proposition 2.22, there is a
canonical map Hompro.BanAlg/.E

J
X ;x

;B/!RDol
X ;x

.B/, functorial in complex Banach
algebras B . This induces an injection

Hom.EJ
X ;x;B/cb ,!RDol

X ;x.B/

whenever B is a C �–algebra.

Proof The proofs of Lemma 3.3 and Proposition 3.4 carry over to this context,
replacing Proposition 3.1 and Corollary 3.2 with Proposition 3.20 and Corollary 3.21.

Theorem 3.23 For any positive integer n, there is a homeomorphism �Dol;st between
the space Hompro.BanAlg/.E

J
X ;x

;Matn.C// with the topology of pointwise convergence
and the subspace of RDol

X ;x
.Matn.C// consisting of polystable Higgs bundles E with

ch1.E/ � Œ!�
dim X�1 D 0 and ch2.E/ � Œ!�

dim X�2 D 0.

Proof The isomorphism of points is given by [23, Theorem 1]. Replacing Proposition
3.4 with Proposition 3.22, the argument from the proof of Theorem 3.6 shows that the
map �DolW Hompro.BanAlg/.E

J
X ;x

;Matn.C//! RDol
X ;x

.Matn.C// is continuous, so we
just need to show that it is open.

Now, Proposition 7.9 of [25] implies that the isomorphism �dR;ss ı�
�1
Dol;st is continuous.

Since �dR;ss is a homeomorphism by Theorem 3.6, �Dol;st must also be a homeomor-
phism.

Geometry & Topology, Volume 21 (2017)



Analytic nonabelian Hodge theory 873

Definition 3.24 Let FDRDol
X ;x

be the category of pairs .V;p/ for V 2 FDVect and
p2RDol

X ;x
.End.V //, with morphisms defined by adapting the formulae of Definition 3.7.

Let FDR
Dol;st
X ;x

� FDRDol
X ;x

be the full subcategory in which objects correspond to those
of Theorem 3.23. Write �Dol

x W FDRDol
X ;x
! FDVect, �Dol;st

x W FDR
Dol;st
X ;x

! FDVect for
the fibre functors .V;p/ 7! V .

Proposition 3.25 The ring .EJ
X ;x

/PN ˝C is isomorphic to the ring of continuous
endomorphisms of �Dol;st

x .

Proof The proof of Proposition 3.8 carries over, replacing Theorem 3.6 with Theorem
3.23.

Definition 3.26 Given a k –normal complex C �–algebra B , define R
Dol;st
X ;x

.B/ �

RDol
X ;x

.B/ to be the subspace consisting of those p for which  .p/ 2 FDRDol;st
X ;x

for
all  W B!Matk.C/.

Corollary 3.27 For any k –normal complex C �–algebra B , the space R
Dol;st
X ;x

.B/ is
isomorphic to the set of continuous algebra homomorphisms EJ

X ;x
! B .

Proof The proof of Corollary 3.11 carries over, replacing Proposition 3.8 with
Proposition 3.25.

3.4 Circle actions and C �–dynamical systems

Definition 3.28 Define a circle action on a (real or complex) pro-C �–algebra A to be
a continuous group homomorphism from S1 to Autpro.C�Alg/.A/. Here, the topology
on Autpro.C�Alg/.A/ is defined pointwise, so a net fi converges to f if and only if
fi.a/! f .a/ for all a 2A.

The following is immediate:

Lemma 3.29 Giving a circle action on a C �–algebra A is equivalent to giving a
pro-C �–algebra homomorphism f W A! C.S1;A/ that satisfies

(1) 1� ıf D idAW A! C.f1g;A/DA;

(2) the diagram

A
f

//

f
��

C.S1;A/

C.S1;f /
��

C.S1;A/
m�
// C.S1 �S1;A/

commutes, where mW S1 �S1! S1 is the multiplication.
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Lemma 3.30 If a functor F W C �Algk ! Set is represented by a pro-C �–algebra A,
then to give a circle action on A is equivalent to giving maps

˛BW F.B/! F.C.S1;B//;

functorial in B , such that

(1) F.1�/ ı˛B D idF.B/W F.B/! F.B/;

(2) the diagram

F.B/

˛B

��

˛B
// F.C.S1;B//

˛
C.S1;B/

��

F.C.S1;B//
F.m�/

// F.C.S1 �S1;B//

commutes, where mW S1 �S1! S1 is the multiplication.

Proof If A has a circle action ˛ , then a homomorphism hW A! B gives rise to
C.S1; h/W C.S1;A/!C.S1;B/, and we define ˛B.h/ WDC.S1; h/ı˛ . This clearly
satisfies the required properties.

Conversely, given maps ˛B as above, write AD lim
 ��i

Ai as an inverse limit of C �–
algebras, and let hi W A!Ai be the structure map. Then ˛Ai

.hi/ 2 F.C.S1;Ai// is
a map A! C.S1;Ai/. Since the ˛Ai

.hi/ are compatible, we may take the inverse
limit, giving a map

˛W A! C.S1;A/

To see that this is a group homomorphism, just observe that the conditions above ensure
that hi ı 1� ı˛ D hi and

C.S1
�S1; hi/ ıC.S1; ˛/ ı˛ D C.S1

�S1; hi/ ım�˛

for all i . Taking the inverse limit over i shows that this satisfies the conditions of
Lemma 3.29.

Finally, note that these two constructions are clearly inverse to each other.

Proposition 3.31 For every compact Kähler manifold X , there is a canonical continu-
ous circle action on EJ

X ;x
.

Proof Given .U.P/;D; f / 2RJ
X ;x

.B/, define ˛.U.P/;D; f / 2RJ
X ;x

.C.S1;B//

as follows.

Decompose DD dCC# into anti-self-adjoint and self-adjoint parts. Set ˛.U.P// WD

C.S1;U.P//DU.P/�A 0
X
.U.B//A

0
X
.C.S1;U.B///, then define ˛.D/ WDdCCt˘# ,
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where t 2 C.S1;C/ is the canonical embedding and ˘ is from Definition 2.17. Thus
we have constructed ˛.U.P/;D; f / WD .C.S1;U.P/; dCC t ˘#;C.S1; f //, and it
is easy to check that this satisfies the conditions of Lemma 3.30.

Remark 3.32 By considering finite dimensional quotients of EJ
X ;x

, the circle action
induces a continuous map

S1
�EJ

X ;x!O.�1.X;x/
red
R /0

for O.�1.X;x/
red
R /_ as in Remark 3.5. This descends to a discontinuous action of S1

on O.�1.X;x/
red
R /_ , as in [23] (made explicit in the real case as [20, Lemma 6.5]).

Note, however, that the circle action descends to continuous actions on .EJ
X ;x

/RFD and
.EJ

X ;x
/PN (which are subalgebras of O.�1.X;x/

red
R /_ , though not closed).

Continuity of the circle action ensures that the map

S1
��1.X;x/!EJ

X ;x

is continuous, and hence that the induced map S1 � �1.X;x/! �1.X;x/
red
R .R/ �

O.�1.X;x/
red
R /_ is continuous. Thus a continuous circle action on EJ

X ;x
gives rise

to a pure Hodge structure on �1.X;x/
red in the sense of [23, Section 5], but without

needing to refer to �1.X;x/ itself. This suggests that the most natural definition of a
pure nonabelian Hodge structure is a continuous circle action on a pro-C �–bialgebra.

Example 3.33 Lemma 3.16 gives an isomorphism

.EJ
X ;x/

ab
D ff 2 C.H1.X;C�/;C/ j f .x�/D f .�/g;

then Lemma 3.19 shows that the grouplike elements are G..EJ
X ;x

/ab/ŠH1.X;Z˚R/.
To describe the circle action on .EJ

X ;x
/ab , it thus suffices to describe it on the space

H1.X;C�/ of one-dimensional complex representations.

Taking the decomposition D D dCC# of a flat connection D into antihermitian and
hermitian parts, note that we must have .dC/2D#2D 0, because commutativity of C�

ensures that commutators vanish, everything else vanishing by hypothesis. This decom-
position therefore corresponds to the isomorphism H1.X;C�/ŠH1.X; ~1/�H1.X;R/.
Since the action is given by # 7! t ˘# for t 2 S1 , it follows that the S1 –action is just
the ˘–action on H1.X;R/.

On G..EJ
X ;x

/ab/ Š H1.X;Z/ ˚ H1.X;R/, this means that the circle action fixes
H1.X;Z/ and acts with the ˘–action on H1.X;R/D H1.X;R/

_ .
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Definition 3.34 Recall from [31, Definition 2.6] that a C �–dynamical system is a
triple .A;G; ˛/ for G a locally compact topological group, A a C �–algebra and ˛ a
continuous action of G on a A.

Lemma 3.35 The circle action ˛ of Proposition 3.31 gives rise to a pro-C �–dynamical
system .EJ

X ;x
;S1; ˛/, ie an inverse system of C �–dynamical systems.

Proof Since EJ
X ;x

is a pro-C �–algebra, we may write it as an inverse system
EJ

X ;x
D lim
 ��i

Ei for C �–algebras Ei . The circle action then sends the structure
map hi W EJ

X ;x
! Ei to the map C.S1; hi/ ı ˛W E

J
X ;x
! C.S1;Ei/, and evalu-

ation at 1 2 S1 recovers hi . We may therefore set E˛.i/ to be the closure of
the image of EJ

X ;x
! C.S1;Ei/, and observe that E˛.i/ is S1 –equivariant, with

EJ
X ;x
D lim
 ��i

E˛.i/ .

Thus .EJ
X ;x

;S1; ˛/D lim
 ��i

.E˛.i/;S
1; ˛/ is a pro-C �–dynamical system.

The following is taken from [31, Lemma 2.27]:

Definition 3.36 Given a C �–dynamical system .A;G; ˛/ and f 2 Cc.G;A/, define

kf k WD supfk� Ì U.f /kW .�;U / is a covariant representation of .A;G; ˛/g:

Then k�k is called the universal norm, and dominated by k�k1 .

The completion of Cc.G;A/ with respect to k�k is the crossed product of A by G ,
denoted by A Ì˛ G .

Definition 3.37 Define a polarised real Hilbert variation of Hodge structures of
weight n on X to be a real local system V , with a pluriharmonic metric on A 0

X
.V /,

equipped with a Hilbert space decomposition

A 0
X .V /˝C D

�M
pCqDn

V pq

(where �L denotes Hilbert space direct sum), with V pq D V qp and satisfying the
conditions

@W V pq
! V pq

˝A 0
X
.C/A

10
X ; x� W V pq

! V pC1;q�1
˝A 0

X
.C/A

01X

for the decomposition D D @Cx@C � C x� of Definition 2.31.

Proposition 3.38 Real Hilbert space representations of the nonunital pro-C �–algebra
EJ

X ;x
Ì˛ S1 correspond to framed weight 0 polarised real Hilbert variations of Hodge

structure.
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Proof By [31, Proposition 2.29], a �–representation EJ
X ;x

Ì˛ S1 ! L.H / for a
Hilbert space H consists of

(1) a �–representation �W EJ
X ;x
!L.H /, and

(2) a continuous representation uW S1! U.H /

such that

�.˛.t; a//D u.t/�.a/u.t/�1

for all a 2EJ
X ;x

; t 2 S1 .

In other words, in RJ
X ;x

.C.S1;L.H ///, we have ˛.�/D u�u�1 , so ˛.�/ and � are
isomorphic in the groupoid RJ

X
.C.S1;L.H ///.

Now, by definition of EJ
X ;x

, the representation � corresponds to a real local system V ,
with a pluriharmonic metric on A 0

X
.V / and a Hilbert space isomorphism f W Vx!H .

The representation ˛.�/ corresponds to the connection ˛.D/ WD dC C t ˘ # on
A 0

X
.C.S1;V // for the standard coordinate t W S1!C , together with framing f .

The condition that ˛.�/ and � are isomorphic then gives us a unitary gauge trans-
formation g between them. In other words, we have a continuous representation
gW S1! �.X;U.A 0

X
.V /// with ˛.D/ ıg D g ıD . We must also have gx D u.

Thus g gives us a Hilbert space decomposition

A 0
X .V /˝C D

�M
pCqD0

V pq;

with V pq D V qp and g.t/ acting on V pq as multiplication by tp�q . The condition
˛.D/ ıg D g ıD then forces the conditions

@W V pq
! V pq

˝A 0
X
.C/A

10
X ; x� W V pq

! V pC1;q�1
˝A 0

X
.C/A

01X ;

as required.

Remark 3.39 For any EJ
X ;x

–representation V , [31, Example 2.14] gives an EJ
X ;xÌS1–

representation IndS1

e V . Its underlying Hilbert space is just the space L2.S1;V / of
L2 –measurable V –valued forms on the circle with respect to Haar measure. For the
pluriharmonic local system V associated to V , this therefore gives a weight 0 variation
IndS1

e V of Hodge structures on X , with A 0
X
.IndS1

e V /D A 0
X
.L2.S1;V //.
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4 Hodge decompositions on cohomology

Fix a compact Kähler manifold X .

Definition 4.1 Given a pluriharmonic local system V in real Hilbert spaces on X (as
in Example 2.20), the inner product on V combines with the Kähler metric on X to
give inner products h�;�i on the spaces An.X;V / for all n. Given an operator F

on A�.X;V /, we denote the adjoint operator by F� . Let �DDD�CD�D .

4.1 Sobolev spaces

Note that, in general, the Laplacian � is not a bounded operator in the L2 norm. We
therefore introduce a system of Sobolev norms:

Definition 4.2 Define Ln
.2/;s

.X;V / to be the completion of An.X;V / with respect
to the inner product hv;wis WD hv; .I C�/swi.

Note that we then have bounded operators D;Dc W Ln
.2/;s

.X;V /! LnC1
.2/;s�1

.X;V /,
D�;Dc�W Ln

.2/;s
.X;V /!Ln�1

.2/;s�1
.X;V / and �W Ln

.2/;s
.X;V /!Ln

.2/;s�2
.X;V /.

Proposition 4.3 The maps .IC�/k W Ln
.2/;s

.X;V /!Ln
.2/;s�2k

.X;V / are Hilbert
space isomorphisms, and there are canonical inclusions Ln

.2/;s
.X;V /�Ln

.2/;s�1
.X;V /.

Proof The proofs of [8, Proposition 2.3 and Lemma 2.4] carry over to this generality.

Definition 4.4 Define Hn.X;V /�An.X;V / to consist of those forms with �˛D 0.
Regard this as a pre-Hilbert space with the inner product h�;�i.

The following implies that Hn.X;V / is in fact a Hilbert space:

Lemma 4.5 The inclusions

Hn.X;V /! f˛ 2Ln
.2/;0 jD˛ DD�˛ D 0g ! f˛ 2Ln

.2/;0 j�˛ D 0g

are Hilbert space isomorphisms.

Proof This is [8, Lemma 2.5] when V is the local system associated to the �1.X /–
representation `2.�1.X;x//, but the same proof carries over.

Geometry & Topology, Volume 21 (2017)



Analytic nonabelian Hodge theory 879

4.1.1 Decomposition into eigenspaces

Definition 4.6 Define T to be the composition

Ln
.2/;0.X;V /

.IC�/�1

����!Ln
.2/;2.X;V / ,!Ln

.2/;0.X;V /:

This is bounded and self-adjoint, with spectrum �.T / � .0; 1�. Thus the spectral
decomposition gives T D

R
.0;1� � d�� for some projection-valued measure � on .0; 1�.

For S � Œ0;1/ measurable, write

�.S/ WD �f.1C�/�1j�2Sg:

Thus
T D

Z
�2Œ0;1/

.1C �/�1 d��;

and for v 2 L.2/;sC2.X;V / we have

�v D

Z
�2Œ0;1/

� d��v 2 L.2/;s.X;V /:

If we set En.S/ WD �.S/Ln
.2/;0

.X;V /, observe that En defines a measurable family
of Hilbert spaces on Œ0;1/, and that we have direct integral decompositions

Ln
.2/;s.X;V /D

Z ˚
�2Œ0;1/

.1C �/�s=2En
� :

4.1.2 Harmonic decomposition of eigenspaces Since the operators D , Dc , D�

and Dc� commute with �, they descend to each graded Hilbert space En.S/ provided
S is bounded above.

If S also has a strictly positive lower bound, then � is invertible on En.S/, so

En.S/D�En.S/:

As �DDD�CD�DDDcDc�CDc�Dc , with ŒD;Dc �D ŒD�;Dc �D ŒDc�;D�D 0,
this implies that

En.S/DDEn�1.S/˚D�EnC1.S/DDcEn�1.S/˚Dc�EnC1.S/

DDDcEn�2.S/˚D�DcEn.S/˚DDc�En.S/˚D�Dc�EnC2.S/:

Furthermore, DW D�En.S/ ! DEn�1.S/ and D�W DEn.S/ ! D�EnC1.S/ are
isomorphisms, with similar statements for Dc .

If S is just bounded above and does not contain 0, then the statements above still hold
if we replace subspaces with their closures:
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Proposition 4.7 There are Hilbert space decompositions

Ln
.2/;s.X;V /DHn.X;V /˚�Ln

.2/;sC2
.X;V /

DHn.X;V /˚DLn�1
.2/;sC1

.X;V /˚D�LnC1
.2/;sC1

.X;V /

DHn.X;V /˚DcLn�1
.2/;sC1

.X;V /˚Dc�LnC1
.2/;sC1

.X;V /

DHn.X;V /˚DDcLn�2
.2/;sC2

.X;V /˚D�DcLn
.2/;sC2

.X;V /

˚DDc�Ln
.2/;sC2

.X;V /˚D�Dc�LnC2
.2/;sC2

.X;V /

for all s .

Proof This is essentially the Hodge theorem, and we can construct the decomposition
by a slight modification of [12, pages 94–96].

We can define an approximate Green’s function by

G� WD

Z
.0;1���

�

1��
d��:

Now, note that .I C�/G� D
R
.0;1��� 1=.1��/ d�� , which is bounded, so G� is the

composition of the inclusion Ln
.2/;sC2

.X;V / ,!Ln
.2/;s

.X;V / with a map

G�W L
n
.2/;s.X;V /!Ln

.2/;sC2.X;V /:

Also note that G� commutes with �, and that �G� D �.0; 1� ��D I ��Œ1� �; 1�.
As �!0, this means that �.1/C�G� converges weakly to I . Since �.1/ is projection
onto Hn.X;V /, this gives the decomposition required (noting that norm closure and
weak closure of a subspace are the same, by the Hahn–Banach theorem).

Now, for v 2D�En.S/, we have hDv;Dvi D h�v; vi, so kDvk2=kvk2 lies in S .

Definition 4.8 Define �1=2W Ln
.2/;sC1

! Ln
.2/;s

by

�1=2
WD

Z
�2Œ0;1/

�1=2 d��:

This gives

DLn�1
.2/;sC1.X;V /D�

1=2DLn�1
.2/;sC2

.X;V /;

ker D\Ln
.2/;s.X;V /DDLn�1

.2/;sC1
.X;V /˚Hn.X;V /:

Thus

HnL�.2/;s.X;V /ŠHn.X;V /˚ .DLn�1
.2/;s�1

.X;V /=�1=2DLn�1
.2/;s�2

.X;V //:

There are similar statements for the operators Dc , D� and Dc� .
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Definition 4.9 Define ��1=2DW D�Ln
.2/;sC1

.X;V /! Ln
.2/;s.X ;V / by

��1=2
WD

Z
�2.0;1/

��1=2 d�� ıD;

and define ��1=2Dc W Dc�Ln
.2/;sC1

.X;V /! Ln
.2/;s

.X;V / similarly.

Proposition 4.10 The operator��1=2D is a Hilbert space isomorphism from the closed
subspace D�Ln

.2/;sC1
.X;V / of Ln�1

.2/;s
.X;V / to the closed subspace DLn�1

.2/;sC1
.X;V /

of Ln
.2/;s

.X;V /.

Likewise, ��1=2Dc W Dc�Ln
.2/;sC1

.X;V /!DcLn�1
.2/;sC1

.X;V / is a Hilbert space iso-
morphism.

Proof We prove this for the first case, the second being entirely similar. Given
a; b 2D�An.X;V /, we have

h��1=2Da; ��1=2Dbis D h.I C�/
s��1=2Da; ��1=2Dbi

D h.I C�/s��1D�Da; bi

D h.I C�/sa; bi D ha; bis;

since D�aD 0 gives D�DaD�a. Taking Hilbert space completions with respect to
h�;�is then gives the required result.

4.2 The Hodge decomposition and cohomology

Proposition 4.11 The nested intersection
T

s L
p

.2/;s
.X;V / is the space Ap.X;V / of

C1 V–valued p–forms.

Proof When V is finite-dimensional, this is the global Sobolev lemma, but the same
proof applies for Hilbert space coefficients.

Theorem 4.12 There are pre-Hilbert space decompositions

An.X;V /DHn.X;V /˚�An.X;V /

DHn.X;V /˚DAn�1.X;V /˚D�AnC1.X;V /

DHn.X;V /˚DcAn�1.X;V /˚Dc�AnC1.X;V /

DHn.X;V /˚DDcAn�2.X;V /˚D�DcAn.X;V /˚DDc�An.X;V /

˚D�Dc�AnC2.X;V /

for all n.

Proof We just take the inverse limit lim
 ��s

of the decomposition in Proposition 4.7,
and then make the substitution of Proposition 4.11.
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4.2.1 Reduced cohomology

Definition 4.13 Given a cochain complex C � in topological vector spaces, write

Hn.C �/ WD Hn.C �/=f0g;

where f0g is the closure of 0. Note that we could equivalently define H� as the quotient
of the space of cocycles by the closure of the space of coboundaries.

Given a local system V in topological vector spaces on X , define

Hn.X;V / WD Hn.A�.X;V //:

Corollary 4.14 The maps

Hn.X;V /! Hn.X;V /

are all topological isomorphisms.

Corollary 4.15 (principle of two types) As subspaces of An.X;V /,

ker D\ ker Dc
\ .DAn�1.X;V /CDcAn�1.X;V //DDDcAn�2.X;V /:

Lemma 4.16 (formality) The morphisms

.H�Dc .X;V /; 0/ .Z�Dc .X;V /;D/! .A�.X;V /;D/

induce isomorphisms on reduced cohomology.

Proof The proof of [23, Lemma 2.2] carries over to this generality.

Remark 4.17 Usually, formality statements such as Lemma 4.16 lead to isomorphisms
on deformation functors (see [10] for the original case and [19, Proposition 5.3] for the
case closest to our setting).

However, there does not appear to be a natural deformation functor associated to topo-
logical DGLAs L with obstruction space H2.L/. Thus, in contrast to the proalgebraic
case, it is not clear whether there are natural completions of the homotopy groups
which can be described in terms of the reduced cohomology ring.

The description of the Archimedean monodromy in [20, Theorem 9.13] is even less
likely to adapt, since it features the Green’s operator G , which we have had to replace
with a nonconvergent sequence of operators.
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4.2.2 Nonreduced cohomology Taking the inverse limit lim
��!s

of the decompositions
of Section 4.1.2, we obtain

DAn�1.X;V /D�1=2DAn�1.X;V /;

D�AnC1.X;V /D�1=2D�AnC1.X;V /;

with similar statements for Dc and Dc� .

Thus:

Proposition 4.18

HnA�.X;V /ŠHn.X;V /˚
�
DAn�1.X;V /=�1=2DAn�1.X;V /

�
:

Applying the operator � then gives

HnA�.X;V /˚Hn.X ;V / H2d�nA�.X;V 0/ŠAn.X;V /=�1=2An.X;V /:

Moreover, we have topological isomorphisms

��1=2DW D�An.X;V /!DAn�1.X;V /;

��1=2Dc
W Dc�An.X;V /!DcAn�1.X;V /;

for ��1=2D and ��1=2Dc as in Definition 4.9.

4.3 The W �–enveloping algebra

4.3.1 EJ.X;x/0

Definition 4.19 Given a C �–algebra B and a positive linear functional f , define Bf
to be the Hilbert space completion of B with respect to the bilinear form ha; bif WD
f .a�b/. We define �f to be the representation of B on Bf by left multiplication.
Note that this is a cyclic representation, generated by 1 2 Bf .

Lemma 4.20 Given a C �–algebra B , the topological dual is given by B0 D lim
��!f

B0
f

,
where f ranges over the filtered inverse system of positive linear functionals on B .

Proof This amounts to showing that B__ D lim
 ��f

Bf . Since the system is filtered
(with f C g � f , g and Bg ! Bf for g � f ), we see that yB WD lim

 ��f
Bf is the

completion of B with respect to the seminorms kbkf WD f .b�b/1=2 . The space Bf
is the strong closure of B in the cyclic representation �f , which is just the image
of B__ , by the von Neumann bicommutant theorem. Since B__ is the completion of
B with respect to the system of weak seminorms for all representations, this implies
that the map yB! B__ is an equivalence.
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Lemma 4.21 For a C �–algebra B and a B –representation V in Hilbert spaces,

HomB.V;B
0/Š V 0:

Proof The space HomB.V;B
0/ consists of continuous B –linear maps V ! B0 , and

hence to continuous .A; k/–bilinear maps A�V ! k . These correspond to continuous
linear maps V ! k , as required

Considering smooth morphisms from X then gives:

Corollary 4.22 For any E WDEJ.X;x/–representation V in real Hilbert spaces, with
corresponding local system V on X , there is a canonical topological isomorphism

A�.X;V /Š HomE.V
0;A�.X;E0//;

where E0 is the direct system of pluriharmonic local systems corresponding to the
ind-E–representation E0 given by left multiplication.

Of course, all the cohomological decomposition results of this section extend to direct
limits, so apply to E0 . Conversely, Corollary 4.22 all such results for local systems V
can be inferred from the corresponding results with E0–coefficients.

Remark 4.23 The comultiplication EJ.X;x/! EJ.X;x/ y̋EJ.X;x/ of Lemma
2.24 induces a multiplication

EJ.X;x/0 x̋EJ .X;x/0!EJ.X;x/0

on continuous duals, where .lim
 ��i

Ei/
0 x̋ .lim
 ��j

Ej /
0 WD lim

��!i;j
Ei x̋Ej for C �–algebras

Ei and the dual tensor product x̋ of [30, page 210]. In particular, x̋ is a crossnorm,
so we have a jointly continuous multiplication on EJ.X;x/0 .

Thus A�.X;E0/ is also equipped with a jointly continuous (graded) multiplication, so
has the structure of a differential graded topological algebra.

4.3.2 Failure of continuity Since direct integrals of harmonic representations must
be harmonic, Corollary 4.14 and Proposition 4.18 provide us with information about
the behaviour of cohomology in measurable families. In particular, they allow us to
recover space of measures on the topological spaces of cohomology groups fibred
over the moduli spaces of local systems. Thus EJ

X ;x
is a much finer invariant than the

proalgebraic completion of �1.X;x/.

It is natural to ask whether we can strengthen the Hodge decomposition to incorporate
finer topological data. The following example indicates that it does not hold for
coefficients in E itself:
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Example 4.24 Let X be a complex torus, so �1.X; e/ Š Z2g . By Corollary 3.17,
.EJ

X ;e
/RFD˝C D C

�
Hom.�1.X; e/;C

�/;C
�
Š C..C�/2g;C/.

The complex A�.X;ERFD˝C/ is then quasi-isomorphic to H�
�
Z2g;C..C�/2g;C/

�
.

This is given by taking the completed tensor product of 2g copies of the complex F

given by C.C�;C/
z�1
�!C.C�;C/, so

H�.X;ERFD˝C/ŠCŒ�2g�:

However, D�DCDD� D jz�1j2 on the complex F , so harmonic forms are given by

H�.X;ERFD˝C/Š 0:

5 Twistor and Hodge structures on cochains, and SU2

5.1 Preliminaries on nonabelian twistor and Hodge filtrations

The following is [20, Definition 2.3]:

Definition 5.1 Define C to be the real affine scheme
Q

C=R A1 obtained from A1
C

by restriction of scalars, so C.A/DA1
C.A˝R C/ŠA˝R C for any real algebra A.

Choosing i 2 C gives an isomorphism C Š A2
R , and we let C � be the quasiaffine

scheme C �f0g.

We let the real algebraic group S D
Q

C=R Gm of Definition 2.16 act on C and C �

by inverse multiplication, ie

S �C ! C; .�; w/ 7! .��1w/:

Fix an isomorphism C ŠA2 , with coordinates u, v on C such that the isomorphism
C.R/ Š C is given by .u; v/ 7! uC iv . Thus the algebra O.C / associated to C

is the polynomial ring RŒu; v�. The group scheme S is isomorphic as a scheme to
A2

R�f.˛; ˇ/ j˛
2Cˇ2D0g, with the isomorphism S.R/ŠC� given by .˛; ˇ/ 7!˛Ciˇ

and the isomorphism S.C/Š .C�/2 given by .˛; ˇ/ 7! .˛C iˇ; ˛� iˇ/.

By [20, Corollary 2.6 and Proposition 2.28], real Hodge filtrations (resp. real twistor
structures) correspond to S –equivariant (resp. Gm –equivariant) flat vector bundles
on C � . The latter arises because ŒC �=Gm�' P1

R , so Gm –equivariant sheaves on C �

correspond to sheaves on P1 .

The following is [20, Definition 2.15]:
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Definition 5.2 Define an S –action on the real affine scheme SL2 by

.˛; ˇ;A/ 7!

�
1 0

0 ˛2Cˇ2

�
A

�
˛ ˇ

�ˇ ˛

��1

D

�
˛2Cˇ2 0

0 1

��1

A

�
˛ �ˇ

ˇ ˛

�
:

Let row1W SL2! C � be the S –equivariant map given by projection onto the first row.

The subgroup scheme Gm � S is given by ˇ D 0 in the coordinates above, and there
is a subgroup scheme S1 � S given by ˛2Cˇ2 D 1. These induce an isomorphism
.G�S1/=.�1;�1/Š S . On these subgroups, the action on SL2 simplifies as follows:

Lemma 5.3 The action of Gm � S on SL2 is given by

.˛;A/ 7!

�
˛�1 0

0 ˛

�
A

and the action of S1 �Gm is given by

.˛; ˇ;A/ 7!A

�
˛ ˇ

�ˇ ˛

��1

:

The action of S1 � S descends via the maps above to an action on P1
R , which is just

given by identifying S1 with the real group scheme SO2 .

5.2 The twistor structure on cochains

Fix a compact Kähler manifold X .

Definition 5.4 Define zDW An.X;V /˝OC� !AnC1.X;V /˝OC� by

zD D uDC vDc ;

and write zA�.X;V / for the resulting complex. Put a Gm –action on zA�.X;V / by letting
An.X;V / have weight n, and giving OC� the action of Gm � S from Definition 5.1.

Define zZn.X;V / WD ker
�
zDW An.X;V /˝OC�!AnC1.X;V /˝OC�

�
, zBn.X;V / WD

Im
�
zDW An�1.X;V /˝OC� !An.X;V /

�
˝OC� and

zHn.X;V / WD zZn.X;V /=zBn.X;V /:

By analogy with [20, Proposition 2.28 and Theorem 7.1], we regard the Gm –equivariant
complex zA�.X;V / over C � as a twistor filtration on An.X;V /.
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Corollary 5.5 The canonical inclusion Hn.X;V /.n/˝OC� !
zHn.X;V / is a Gm –

equivariant topological isomorphism.

Proof It suffices to prove this on pulling back along the flat cover row1W SL2! C � .
We define zD�W An.X;V /˝O.SL2/!An�1.X;V /˝O.SL2/ by zD�DyD��xDc� .
Then Œ zD; zD��D�, and since � commutes with D and Dc it also commutes with zD .

The result now follows with the same proof as that of Corollary 4.14, replacing D

and D� with zD and zD� .

Proposition 5.6 If we write Hn D Hn.X;V / and M m D DDcAm�2.X;V /, then
there is a Gm –equivariant isomorphism

zHn.X;V /Š Œ.Hn
˚M=�1=2M n/.n/˚ .M nC1=�1=2M nC1/.n� 1/�˝OC�

of quasicoherent sheaves on C � .

Proof Writing Am WDAm.X;V /, we have a commutative diagram

DDcAn�1.nC 1/˝OC�

DDc�An.n/˝OC�

vDc
11

D�DcAn.n/˝OC�

�uDmm

D�Dc�AnC1.n� 1/˝OC�
uD

mm

vDc

11

which we may regard as a bicomplex. By Theorem 4.12, the complex zA�.X;V /
decomposes into a direct sum of Hn ’s and total complexes of the bicomplexes above.

Arguing as in Proposition 4.10, we have topological isomorphisms

��1DDc
W D�Dc�AnC1!DDcAn�1;

��1=2DW D�DcAn!DDcAn�1;

��1=2Dc
W DDc�An!DDcAn�1;

so the bicomplex above is linearly isomorphic to:

DDcAn�1.nC 1/˝OC�

DDcAn�1.n/˝OC�

v�1=2 22

DDcAn�1.n/˝OC�

�u�1=2ll

DDcAn�1.n� 1/˝OC�
u�1=2

ll

v�1=2

22
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Since the ideal .u; v/ generates OC� , cohomology of the top level of the associated
total complex is just

.DDcAn�1=�1=2DDcAn�1/.nC 1/˝OC� ;

while cohomology of the bottom level is 0. Moreover, the map

DDcAn�1.n� 1/˝OC�
.u;v/
��!DDcAn�1.n/2˝OC�

is an isomorphism to the kernel of .v;�u/, so cohomology of the middle level is
isomorphic to

.DDcAn�1.n� 1/=�1=2DDcAn�1.n� 1//˝OC� ˝OC� ;

which completes the proof.

Remark 5.7 In particular, zHn.X;V / is of weights n, n � 1 in general, unlike
zHn.X;V /, which is pure of weight n. This means that the weight filtration given
good truncation cannot define a mixed twistor structure on zHn.X;V /.

We now have the following generalisation of the principle of two types:

Lemma 5.8 As subspaces of An.X;V /˝O.SL2/,

ker zD\ ker zDc \
�
zD.An�1.X;V /˝O.SL2//C zDc.An�1.X;V /˝O.SL2//

�
D zD zDc.An�2.X;V /O.SL2//:

Proof This follows from Corollary 4.15, with the same reasoning as [20, Lemma 1.3].

Lemma 5.9 (formality) The morphisms�
H�
zDc
.A�.X;V /˝O.SL2//; 0

�
 
�
Z�
zDc
.A.X;V /˝O.SL2//; zD

�
! .A�.X;V /˝O.SL2/; zD/

induce isomorphisms on reduced cohomology.

Proof The proof of [23, Lemma 2.2] carries over to this generality, using Lemma 5.8.

Following Corollary 4.22 and Remark 4.23, the results above can all be regarded as
statements about the topological differential graded algebra zA�.X;E0/.
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5.3 The analytic Hodge filtration on cochains

Recall from Section 4.3.1 that the local system E0 on X is defined to correspond to
the �1.X;x/–representation given by left multiplication on EJ.X;x/0 .

Proposition 5.10 The topological cochain complex zA�.X;E0/ is equipped with a
continuous circle action, satisfying

(1) the S1 –action and Gm –actions on zA�.X;E0/ commute;

(2) the action of S1�C�DS.R/ on C � makes zA�.X;E0/ into an S1 –equivariant
sheaf on C � ; and

(3) �1 2 S1 acts as �1 2Gm .

Proof Since S1 acts on EJ.X;x/, it acts on E0 , and we denote this action by
v 7! t ~ v for t 2 S1 . We may now adapt the proof of [20, Theorem 6.12], defining
an S1 –action on A �.X;R/˝R E0 by setting t � .a˝ v/ WD .t ˘ a/˝ .t2 ~ v/ for
t 2 S1 and ˘ as in Definition 2.17. Passing to the completion A �.X;E0/ completes
the proof, with continuity following from Proposition 3.31.

Remark 5.11 If the circle action of Proposition 5.10 were algebraic, then by [20,
Lemma 2.23] it would correspond to a Hodge filtration on A�.X;E0/. Since finite-
dimensional circle representations are algebraic, we may regard Proposition 5.10 as
the natural structure of an infinite-dimensional Hodge filtration.

In Proposition 5.10, note that we can of course replace EJ.X;x/ with any inverse
system B of C �–algebra quotients of EJ.X;x/ to which the S1 –action descends,
provided we replace E with the local system associated to B .

As observed in Section 4.3.1, we may substitute V D E in Proposition 5.6 and
Lemma 5.9. Note that the resulting isomorphisms are then equivariant with respect to
the circle action of Proposition 5.10.

5.4 SU2

As we saw in Corollary 5.5, in order to define the adjoint operator zD� to zD , it is
necessary to pull zA�.X;V / back along the morphism row1W SL2! C � . This gives
us the complex

row�1 zA
�.X;V /D .A�.X;V /˝O.SL2/; zD/;

where zD D uDC vDc , with adjoint zD� D yD��xDc� .
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This leads us to consider the �–structure on O.SL2/ determined by u� D y and
v� D�x . This implies x� D�v and y� D u, so�

u v

x y

��
D

�
y �x

�v u

�
;

or A� D .A�1/t .

Lemma 5.12 The real C �–enveloping algebra C �.O.SL2// of the real �–algebra
O.SL2/ is the ring of continuous complex functions f on SU2 for which

f . xA/D f .A/:

Proof A �–morphism O.SL2/!C is a matrix A2SL2.C/ with xADA�D .A�1/t ,
so A 2 SU2 . Thus the Gelfand representation gives C �.O.SL2//˝C Š C.SU2;C/.

Now, writing Gal.C=R/D h�i, and taking f 2O.SL2/˝C and A 2 SU2 , we have

�.f /.A/D f . xA/:

This formula extends to give a Gal.C=R/–action on C.SU2;C/, and Lemma 1.11
then gives

C �.O.SL2//D C.SU2;C/
� :

Note that complex conjugation on SU2 is equivalent to conjugation by the matrix�
0 1
�1 0

�
.

5.4.1 The Hopf fibration The action of S.C/ on SL2.C/ from Definition 5.2 does
not preserve SU2 . However, Lemma 5.3 ensures that, for the subgroup schemes
Gm , S1 � S , the groups S1 D S1.R/� S1.C/ŠC� and S1 �C� ŠGm.C/ both
preserve SU2 .

Thus, in the C � setting, the S –action becomes an action of .S1 � S1/=.�1;�1/

on SU2 , given by

.s; t;A/ 7!

�
s�1 0

0 s

�
A

�
<t =t

�=t <t

��1

:

Moreover, there is a Gal.C=R/–action on this copy of S1�S1, with the nontrivial auto-
morphism � given by �.s; t/D .s�1; t/. The action of .S1�S1/=.�1;�1/ is then � –
equivariant. Alternatively, we may characterise our group as S1�S1�C��C�ŠS.C/,
by sending .s; t/ to .st; st�1/. On this group S1 �S1 , the Gal.C=R/–action is then
given by �.w0; w00/D .w00; w0/.

Geometry & Topology, Volume 21 (2017)



Analytic nonabelian Hodge theory 891

Now, consider the composition

SL2
row1
��!C �! ŒC �=Gm�Š P1:

On taking Gelfand representations of C �–enveloping algebras, this gives rise to the
map

SU2! P1.C/;

which is just the Hopf fibration pW S3 ! S2 , corresponding to the quotient by the
action of S1 �Gm.C/ by diagonal matrices. The action of � on SU2 and on P1.C/
is just given by complex conjugation.

5.4.2 Smooth sections If we write �n for the weight n action of Gm on A1 , then
we may consider the topological vector bundle

SU2 �S1;�n
C

on P1.C/ for the action of S1 �Gm.C/ above.

Definition 5.13 Let A 0
P1C.n/ be the sheaf of smooth sections of SU2 �S1;�n

C!
P1.C/ and write A0.P1;C.n// WD �.P1.C/;A 0

P1C.n//. Beware that, for n ¤ 0,
there is no local system generating A 0

P1C.n/.

For U � P1.C/, observe that �.U;A 0
P1C.n// consists of smooth maps

f W p�1.U /!C satisfying f
��

s�1 0

0 s

��
AD snf .A/

for all s 2 S1 .

For the quotient map qW C �! P1 , we may characterise �.U;Ohol
P1.n// as the space

of holomorphic maps
f W q�1.U /!C

satisfying f .su; sv/D snf .u; v/ for all s 2C� . The embedding S3 � C �.C/ thus
yields

Ohol
P1.n/� A 0

P1C.n/;

and indeed A 0
P1C.n/D Ohol

P1.n/˝Ohol
P1

A 0
P1C .

Now, for the conjugate sheaf Ohol
P1.n/, note that �.U;Ohol

P1.n// is the space of antiholo-
morphic maps

f W q�1.U /!C
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satisfying f .su; sv/Dxsnf .u; v/ for all s 2C� . Thus we have a canonical embedding

Ohol
P1.n/b A 0

P1C.�n/;

with A 0
P1C.�n/D Ohol

P1.n/˝Ohol
P1

A 0
P1C .

Note that the inclusion O.SL2/� C.SU2;C/ gives

u; v 2A0.P1;C.1//� ; xu; xv 2A0.P1;C.�1//� ;

and

O.SL2/�
M
n2Z

A0.P1;C.n//� :

Definition 5.14 By [20, Definition 2.22], there is a derivation N on O.SL2/ given
by N x D u, Ny D v and N uDNv D 0 for coordinates

�
u v
x y

�
on SL2 . Since this

annihilates u and v , it is equivalent to the O.SL2/–linear map

�.SL2=C �/!O.SL2/

given by dx 7! u and dy 7! v .

Note that N has weight 2, and extends (by completeness) to give � –equivariant
differentials

N W A 0
P1C.n/! A 0

P1C.nC 2/:

Also, N is the composition of the antiholomorphic differential

x@P1 W A 0
P1C.n/! A 0

P1C.n/˝
Ohol

P1

�P1

with the canonical isomorphism �P1 Š O.�2/.

5.4.3 Splittings of the twistor structure As in [20, Remark 2.16], we can charac-
terise the map row1W SL2 ! C � as the quotient C � D ŒSL2=Ga�, where Ga acts
on SL2 as left multiplication by

�
1 0
Ga 1

�
. Here, the S –action on Ga has � acting as

multiplication by �x�.

Therefore the map q ı row1W SL2! P1 is given by taking the quotient of SL2 by the
Borel subgroup B DGm Ë Ga , for the action above. The action of Gm corresponds
to weights, while the action of Ga corresponds to the derivation N above, which we
regard as the Archimedean monodromy operator as in [20, Section 3.4].
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Definition 5.15 Given a pluriharmonic local system V , define MA�.X;V / to be the
sheaf of Ohol

P1 –modules associated to the Gm –equivariant sheaf zA�.X;E_/ on C � .
Explicitly,

MA�.X;V /D

�M
n

.q� zA
�.X;V //˝

O
alg
P1

Ohol
P1.n/

�Gm

;

so
MAn.X;V /DAn.X;V /˝R Ohol

P1.n/;

with differential MD D uDC vDc for u, v 2 �.P1;OP1.1//.

Definition 5.16 Write VA �.X;V / WD A 0
P1 ˝Ohol

P1

MA�.X;V /, and observe that this
admits an operator

MDc
WD �xvDCuDc

W VA n.X;V /! VA nC1.X;V /.�2/:

Now, applying the map O.SL2/ ,!
L

n2Z A0.P1;C.n//� to Lemmas 5.8 and 5.9
yields the following:

Lemma 5.17 As subspaces of VA n.X;V /,

ker MD\ ker MDc
\ . MD VA n�1.X;V /C MDc VA n�1.X;V /.2//D MD MDc. VA n�2.X;V /.2//:

Thus the morphisms

.H �
MDc
. VA �.X;V //; 0/ 

�
Z �
MDc
. VA �.X;V //; MD

�
! VA n.X;V /

induce isomorphisms on reduced cohomology sheaves.

Now, zA�.X;E0/ can be recovered from row�
1
zA�.X;E0/ and its nilpotent monodromy

operator N , and, by Lemma 4.16, row�
1
zA�.X;E0/ is equivalent to H�.X;E0/˝O.SL2/

up to reduced quasi-isomorphism.

Under the base change above, we have N D x@P1 , giving an exact sequence

0! MA�.X;V /! VA �.X;V / N
�! VA �.X;V /.2/! 0:

In other words, we can recover the topological DGA MA�.X;E0/ from the differential
x@DN on the topological DGA VA �.X;E0/ and the latter is just

L
n AP1.Hn.X;E0/.n//

up to reduced quasi-isomorphism.

Also note that, when we substitute V WD E0 in Lemma 5.17, the morphisms all
become equivariant with respect to the circle action of Proposition 5.10. This action
makes VA n.X;E0/ into an S1 –equivariant sheaf over P1 , where the action on P1 is
given by t2 2S1 sending .u W v/ to t˘.u W v/D .au�bv WavCbu/ for t DaCib 2S1 .

Geometry & Topology, Volume 21 (2017)



894 Jonathan Pridham

6 The twistor family of moduli functors

6.1 Pro-Banach algebras on projective space

On the complex manifold P1.C/, we have a sheaf Ohol
P1 of holomorphic functions,

which we may regard as a sheaf of pro-Banach algebras. As a topological space, P1.C/
is equipped with a Gal.C=R/–action, the nontrivial element � acting on points by
complex conjugation. There is also an isomorphism

�
]
O W �

�1Ohol
P1 ! Ohol

P1

given by

�
]
O.f /.z/D f .xz/

and satisfying

�
]
O ı �

�1.�
]
O/D idW Ohol

P1 ! Ohol
P1 :

Definition 6.1 Define FrAlgP1;C to be the category of sheaves F of unital multi-
plicatively convex Fréchet Ohol

P1 –algebras (ie countable pro-Banach algebras equipped
with a morphism from Ohol

P1 ), quasicoherent in the sense that the maps

F .U /˝�
Ohol

P1
.U /

Ohol
P1.V /!F .V /

are isomorphisms for all open subspaces V � U , where ˝� here denotes projective
tensor product.

Define FrAlgP1;R to be the category of pairs .F ; �]F / for F 2 FrAlgP1;C and

�
]
F W �

�1F !F

an .Ohol
P1 ; �

]
O/–linear isomorphism satisfying

�
]
F ı �

�1.�
]
F /D idF :

Note that for any m–convex Fréchet k –algebra B the sheaf B˝�
k
Ohol

P1 lies in FrAlgP1;C .
When k DR, the involution idB˝ �

]
O makes B˝�

k
Ohol

P1 an object of FrAlgP1;R .

The forgetful functor FrAlgP1;R ! FrAlgP1;C has a right adjoint, given by F 7!

F˚��1F , with the involution �] given by swapping summands and the Ohol
P1 –structure

on ��1F defined using �O .

Geometry & Topology, Volume 21 (2017)



Analytic nonabelian Hodge theory 895

6.2 The twistor functors

Definition 6.2 Define the groupoid-valued functor RT ;C
X

on FrAlgP1;C by letting
RT ;C

X
.B/ consist of pairs .T ; zD/ for A 0

X
.pr�1

2
B�/–torsors T on X �P1.C/ with

x�T trivial as a B�–torsor on P1.C/ and flat udCvd c –connections

zDW T ! A 1
X ˝A 0

X
ad T .1/:

Here u and v are the basis of �.P1
R;O.1// given by the coordinates u and v of C �

and the canonical map C �! P1 .

Define the set-valued functor RT ;C
X ;x on FrAlgP1;C by letting R

T ;C
X ;x

.B/ be the groupoid
of triples .T ; zD; f /, with .T ; zD/ 2RT ;C

X
.B/ and framing f 2 �.P1.C/;x�T /.

Definition 6.3 Define the groupoid-valued functor RT
X

on FrAlgP1;R by letting
RT

X .B/ consist of triples .T ; zD; �]T / for .T ; zD/ 2 RT ;C
X

.B/ and isomorphism
�
]
T W .idX � �/

�1T ! T satisfying the following conditions. The isomorphism

.�
]
B; �

]
T /W A

1
X .pr�1

2 B�/�
�
]
B;A

1
X
.pr�1

2
��1B�/

.idX � �/
�1T ! T

must be a morphism of A 1
X
.pr�1

2
B�/–torsors, and the diagram

��1T

�
]
T

��

��1 zD
// A 1

X
˝A 0

X
��1T .1/

�
]
T
��

T
zD

// A 1
X
˝A 0

X
T .1/

must commute.

Define the functor RT
X ;x

on FrAlgP1;R by letting RT
X ;x

.B/ be the groupoid of quadru-
ples .T ; zD; �]T ; f / for .T ; zD; �]T / in RT

X
.B/ and

f 2 �.P1.C/;x�T /�
]
T

a framing.

Remark 6.4 The groupoids R
T ;C
X ;x

.B/;RT
X ;x

.B/ are equivalent to discrete groupoids,
so we will regard them as set-valued functors (given by isomorphism classes of
objects). Also, RT ;C

X
.B/ and RT

X .B/ are equivalent to the groupoid quotients
ŒR

T ;C
X ;x

.B/=�.P1.C/;B�/� and ŒRT
X ;x

.B/=�.P1.C/;B�/�
]
T �, respectively, with the

action given by changing the framing.

The following is straightforward:
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Lemma 6.5 The functors R
T ;C
X ;x

and RT ;C
X

can be recovered from RT
X ;x

and RT
X

,
respectively, via isomorphisms

R
T ;C
X ;x

.B/ŠRT
X ;x.B˚ �

�1B/; RT ;C
X

.B/ŠRT
X .B˚ �

�1B/:

Note that the proof of Lemma 2.5 carries over to give the canonical comultiplication

RT
X ;x.B1/�RT

X ;x.B2/!RT
X ;x.B1˝

� B2/:

6.3 Universality and � –invariant sections

Proposition 6.6 The functors RdR
X

and RDol
X

can be recovered from RT
X

and RT ;C
X

,
respectively. Likewise, RdR

X ;x
and RDol

X ;x
can be recovered from RT

X ;x
and R

T ;C
X ;x

.

Proof Given a point p 2 P1.C/ and a complex m–convex Fréchet algebra B , we
may regard the skyscraper sheaf p�B as an object of FrAlgP1;C . For a real m–convex
Fréchet algebra B and p2P1.R/, we may regard p�B˝C as an object of FrAlgP1;R ,
with �] given by complex conjugation.

Now, just observe that on pulling back to .1 W 0/ 2 P1.R/, the differential ud C vd c

is just d . At .1 W �i/ 2 P1.R/, we have ud C vd c D d � id c D 2@. Uncoiling the
definitions, this gives

RdR
X ;x.B/DRT

X ;x..1 W 0/�B/; RDol
X ;x.B/DR

T ;C
X ;x

..1 W �i/�B/;

and similarly for R.

Lemma 6.7 For a real m–convex Fréchet algebra B , the groupoid RT
X
.B˝�R Ohol

P1/ is
equivalent to the groupoid of triples .P;D;E/, where P is an A 0

X
.B�/–torsor on X,

the maps D;EW P!A 1
X
˝A 0

X
ad P are flat d– and d c –connections, respectively, and

DECED D 0.

Proof Take an object .T ; zD/ 2 RT
X
.B ˝R Ohol

P1/. Triviality of the .B˝�ROhol
P1/
�–

torsors x�T for x 2X ensures that T must be of the form A 0
X
.B˝�RB/��A 0

X
.B�/P

for some P as above.

Now, since �.P1;Ohol
P1.1//

�] D Ru˚Rv , the connection zD can be regarded as a
udCvd c –connection

zDW P! .A 1
X ˝A 0

X
ad P/˝R .Ru˚Rv/;

which we write as uDC vE .

Flatness of zD is now a statement about �.P1;Ohol
P1.2//

�] DRu2˚Ruv˚Rv2 , with
the u2 and v2 terms giving flatness of D and E and the uv term giving the condition
ŒD;E�D 0.
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Definition 6.8 Define the involution ��P of the polarised scheme .P1;OP1.1// to
be the map induced by the action of i 2 S.R/ on C � from Definition 5.1. In particular,
��P .u W v/D .v W �u/.

Remark 6.9 On [27, page 12], the coordinate system .uC iv W u� iv/ on P1.C/ is
used, and antiholomorphic involutions � and � are defined. In our coordinates, these
become �.u W v/D .xv;�xu/ and �.u W v/D .xu; xv/. This justifies the notation �� used
above. Also note that the Gm;C –action on P1

C given in [27, page 4] is just the complex
form of our circle action on P1

R from Sections 5.3 and 5.4.3.

Definition 6.10 Given a real Banach algebra B , define the involution �� 0 of the
space RT

X
.B˝�R Ohol

P1/ by sending the pair .T ; zD/ to .���1
P T ;J���1

P
zD/. Note that

this is well-defined because ���1
P
zD is a ��P .udCvd c/D.vd�ud c/–connection, and

Jd D d c and Jd c D�d , so J���1
P
zD is a udCvd c –connection.

Definition 6.11 Given a C �–algebra B , define the Cartan involution C of B� to be
given by C.g/D .g�1/� . Note that this induces a Lie algebra involution ad C W b 7!�b�

on the tangent space B of B� .

If B DA˝C for a real C �–algebra A, we write � for complex conjugation, so C�

is the involution C�.g/D .xg�1/� . Note that ad C� is the C–linear extension of ad C

on A.

Since RT
X
.B/ only depends on the group of units B� of B and its tangent Lie

algebra B , the Cartan involution induces an involution C� of RT
X
.B˝�R Ohol

P1/.

Definition 6.12 Given a real Banach algebra B , define the involution � of the space
RT

X
.B˝�R Ohol

P1/ by � WD .C�/.�� 0/.

Proposition 6.13 For a real C �–algebra B , there is a canonical isomorphism

RT
X ;x.O

hol
P1.B//

�
ŠRJ

X ;x.B/:

Proof Since RT
X ;x

is the groupoid fibre of RT
X
!RT

fxg
over the trivial torsor, Lemma

6.7 shows that an object .T ; zD; f / of RT
X ;x

.Ohol
P1.B// is a quadruple .P;D;E; f /

for .P;D;E/ as in that lemma and f our framing. We therefore begin by describing
the � –action on such data. For .P;D;E; f / to be � –invariant, we must have an
isomorphism ˛W .P;D;E; f /! �.P;D;E; f /.

The torsor P maps under � to C.P/, with f 2 x�P mapping to C.f / (since
� 0 and � affect neither). The isomorphism ˛ then gives ˛W P ! C.P/ such that
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˛.f /D C.f / 2 x�C.P/. Let U.P/�P consist of sections q with ˛.q/D C.q/.
This is nonempty (since its fibre at x contains f ), so it must be an A 0

X
.U.B//–

torsor, noting that U.B/ is the group of C –invariants in B� . Moreover, P D

A 0
X
.B�/�A 0

X
.U.B// U.P/.

Meanwhile, �� 0.uDC vE/D vJD � uJE , so �� 0.D;E/D .�JE;JD/. Thus the
isomorphism ˛ gives

DjQ D�JCE; EjQ D JCD:

In other words, E DDc and Ec D�D (which are equivalent conditions).

Thus RT
X ;x

.Ohol
P1.B//

� is equivalent to the groupoid of triples .U.P/;D; f /, with
D flat and ŒD;Dc �D 0.

Remark 6.14 When B D Matn.C/, this shows that framed pluriharmonic local
systems correspond to framed � –invariant sections of the twistor functor. Without the
framings, this will not be true in general, since a � –invariant section of the coarse
moduli space will give a nondegenerate bilinear form which need not be positive
definite. Note that for U � P1 , the set of isomorphism classes of RT ;C

X
.Matn.Ohol

U
//

is the set of sections over U of the twistor space T W ! P1 of [26, Section 3].

Remark 6.15 Although we have seen that RT
X

together with its comultiplication
encodes all the available information about twistor structures on moduli spaces of
local systems, it does not carry information about higher homotopy and cohomology
groups. There is, however, a natural extension of RT

X
to differential graded m–convex

Fréchet algebras, by analogy with [19; 20]. This would involve taking zD to be a
hyperconnection zDW T0!

Q
n A nC1

X
˝A 0

X
ad Tn.nC 1/. The structures of Section 4

can all be recovered from this functor.

6.4 Topological twistor representation spaces

In this section, we will show that, by considering continuous homomorphisms rather
than �–homomorphisms, we can describe the entire semisimple locus of the twistor
family from .EJ

X ;x
/PN , rather than just the � –equivariant sections.

Given a point .a W b/ 2 P1.C/ and a complex Banach algebra B , we can generalise the
construction of Proposition 6.6 and consider the set RT ;C

X ;x
..a W b/�B/. This consists

of torsors with flat adCbd c –connections.

Definition 6.16 Define TX ;x;n WD
`
.aWb/2P1.C/R

T ;C
X ;x

..a W b/�Matn.C//.
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Note that TX ;x;n inherits a Gal.C=R/–action from R
T ;C
X ;x

. We can also give TX ;x;n a
complex analytic structure, by saying that a map f W U ! TX ;x.B/ from an analytic
space U consists of an analytic map f W U ! P1.C/ together with an element of
R

T ;C
X ;x

.f�.MatnOU //. We will now investigate the underlying topological structure.

Remark 6.17 The adjoint action of GLn.C/ on TX ;x;n is continuous and, indeed,
compatible with the complex analytic structure. This allows us to consider the coarse
quotient TX ;x;n==GLn.C/, which is the Hausdorff completion of the topological quo-
tient, equipped with a natural complex analytic structure over P1.C/. A straightforward
calculation shows that this coarse moduli space is precisely the Deligne–Hitchin twistor
space, as constructed in [14] and described in [28, Section 3].

Now, Proposition 6.13 induces a map �T W R
J
X ;x

.Matn.C//�P1.C/!TX ;x;n . For an
explicit characterisation, note that an adCbd c –connection zD lies in RJ

X ;x
.Matn.C//

if and only if
Œ zD;JC zD�D 0;

and that JC zD is a �xbdCxad cD��1
P .adCbd c/–connection.

Definition 6.18 Given a flat adCbd c –connection zD on a finite-dimensional C1

vector bundle V on X for .a W b/ 2 P1.C/�f˙ig, we say that .V ; zD/ is semisimple
if the local system ker zD is so.

Definition 6.19 Define T st
X ;x;n

� TX ;x;n by requiring that the fibre over any point of
P1.C/�f˙ig consist of the semisimple objects, the fibre over i be R

Dol;st
X ;x

.Matn.C//
(Section 3.3), and the fibre over �i be its conjugate.

We give T st
X ;x;n

the subspace topology, so a map K!T st
X ;x;n

is continuous if the projec-
tion f W K!P1.C/ is so, and the map lifts to an element of R

T ;C
X ;x

.f�C.K;Matn.C///.

Theorem 6.20 For any positive integer n, there is a natural homeomorphism �T ;st

over P1.C/ between the space Hompro.BanAlg/.E
J
X ;x

;Matn.C// � P1.C/ with the
topology of pointwise convergence and the space T st

X ;x;n
.

Proof The homeomorphism is given on the fibre over .a W b/ 2 P1.C/ by

�T ;st.U.P/;D; f /D .P; aDC bDc ; f /:

The proofs of Theorems 3.6 and 3.23 adapt to show that �T ;st induces homeomor-
phisms on fibres over P1.C/ and, in particular, is an isomorphism on points. The
same arguments also show that �T ;st and �dR ı�

�1
T ;stW �T ;st!R

dR;ss
X ;x

.Matn.C// are
continuous, so the result follows from Theorem 3.6.
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Definition 6.21 Let FDT st
X ;x

be the category of pairs .V;p; .a W b// for V 2 FDVect
and .p; .a W b// 2 T st

X ;x;n
where nD dim V . Morphisms are defined by adapting the

formulae of Definition 3.7. Write �T ;st
x W FDT st

X ;x
! FDVect � P1.C/ for the fibre

functors .V;p; .a W b// 7! .V; .a W b//.

Proposition 6.22 The C �–algebra .EJ
X ;x

/PN y̋RC.P1.C/;C/ is isomorphic, via a
Gal.C=R/–equivariant isomorphism, to the ring of continuous endomorphisms of �T ;st

x .

Proof The proof of Proposition 3.8 carries over, replacing Theorem 3.6 with Theorem
6.20 and Lemma 1.28 with Lemma 1.30.

Definition 6.23 Given a k –normal real C �–algebra B over C.P1.C/;C/Gal.C=R/ ,
we may regard B as an Ohol

P1 –algebra via the inclusion of holomorphic functions in
continuous functions. Then define R

T ;st
X ;x

.B/�RT
X ;x

.B/ to be the subspace consisting
of those p for which

. .p/; .a W b// 2 T st
X ;x;k

for all .a W b/ 2 P1.C/ and  W B!Matk.C/ with  jC.P1.C/;C/Gal.C=R/ D ev.aWb/ id.

Corollary 6.24 For any k –normal real C �–algebra B over C.P1.C/;C/Gal.C=R/ ,
there is a natural isomorphism between R

T ;st
X ;x

.B/Gal.C=R/ and the set of continuous
algebra homomorphisms EJ

X ;x
! B .

Proof The proof of Corollary 3.11 carries over, replacing Proposition 3.8 with
Proposition 6.22.
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