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Modular operads of embedded curves
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For each k � 5 , we construct a modular operad Ek of “k–log-canonically embedded”
curves. We also construct, for k � 2 , a stable cyclic operad Ekc of such curves, and,
for k � 1 , a cyclic operad Ek0;c of “k–log-canonically embedded” rational curves.

14H10; 18D50

1 Introduction

Definition 1.1 Let S be a scheme. We define a k–log-canonically embedded stable
marked curve .C; f�igniD1; �/ over S to be a stable marked curve .� W C!S; f�ig

n
iD1/,

along with a projective embedding by a complete linear system

�W C! PS

�
��!C=S

� nX
iD1

�i

�̋ k �_
:

Isomorphisms of k–log-canonically embedded stable marked curves are defined in the
natural manner.

A pair of stable marked curves .C1; f�igniD1/ and .C2; f�j gmjD1/ can be glued together
to obtain a third such curve .C1[�k��l C2; f�i ; �j gi¤k;j¤l/ for any choice of k and l .
Similarly, two points �k and �l on the same curve .C; f�igniD1/ can be glued together
to obtain a new curve .C=�k��l ; f�igi¤k;l/. In this article, we construct analogous
gluings for k–log-canonically embedded curves. More conceptually, denote by Ekg;n
the moduli of k–log-canonically embedded stable curves of genus g with n marked
points (see Definition 4.1). For k � 2 (or k � 1 when g1 D g2 D 0), we construct
maps

(1-1) Ekg1;n1C1 � Ekg2;n2C1! Ekg1Cg2;n1Cn2
encoding the gluing of two embedded curves. For k � 5, we construct maps

(1-2) Ekg;nC2! EkgC1;n
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which encode gluing two points together on the same embedded curve. Our main result
is now the following:

Theorem 1.2
(1) For each k � 5, the maps (1-1) and (1-2) endow the collection fEkg;ng with the

structure of a modular operad (in DM stacks), which we denote by Ek .

(2) For k � 1, the maps (1-1) endow the collection fEk0;ng with the structure of a
cyclic operad (in schemes), which we denote by Ek0;c .

(3) For each k � 2, the maps (1-1) endow the collection fEkg;ng with the structure
of a stable cyclic operad (in DM stacks), which we denote by Ekc .

Further, the maps
Ekg;n!Mg;n

given by forgetting the embedding determine maps

(1) of modular operads (in DM stacks)

Ek!M;

(2) of cyclic operads (in schemes)

Ek0;c!M0;

(3) and of stable cyclic operads (in DM stacks)

Ekc !M:

We refer to the operads Ek0;c , Ekc and Ek as the cyclic, stable cyclic and modular
operads of k–log-canonically embedded curves. These operads expand the small
collection of examples of cyclic, stable cyclic and modular operads in schemes and
DM stacks. We were led to them by the analogy between M and the topological
modular operad Mtop of smooth, connected, oriented surfaces with boundary. Because
the space of embeddings of a manifold M in R1 is contractible, the operad Mtop is
equivalent to the operad (up to coherent homotopy) E1top of smooth, connected, oriented
surfaces with boundary inside R1 . This equivalence provides the starting point for
many results on moduli of topological surfaces (eg Madsen and Weiss’s proof [5] of the
Mumford conjecture). It is natural to ask whether one can similarly obtain information
about the moduli of stable marked curves by studying moduli of embedded curves. We
hope to pursue this in future work.
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2 Preliminaries on curves

Definition 2.1 (see [4]) Let S be a scheme and let g and n be nonnegative integers
such that n� 3�2g . A stable marked curve of genus g over S , .C; f�igniD1/, is a flat,
projective morphism

� W C! S;

of relative dimension 1, along with pairwise disjoint sections

�i W S ! C

for i D 1; : : : ; n. We require that, for all geometric points s of S ,

(1) the fibers Cs are reduced, connected curves with at most nodal singularities;

(2) the points �i .s/ lie in the smooth locus of Cs for all i ;

(3) h1.Cs;OCs /D g ; and

(4) the normalization C�a;s of each irreducible component of Cs contains at least
3� 2ga;s special points, where ga;s is the arithmetic genus of C�a;s and where a
point is special if it is either a point of the form �i .s/ or the preimage of a node.

Now let C! S be a curve, ie a flat, projective morphism of relative dimension 1, not
necessarily connected. We further assume that for each geometric point s of S , the
fiber Cs has at most nodal singularities. Let �1 , �2W S ! C be two disjoint sections
such that �1.s/ and �2.s/ lie in the smooth locus of the fiber Cs for each geometric
point s of S . Define Cgl WD C=�1��2 , denote the quotient map by glW C! Cgl , and
let � WD gl ı�1 D gl ı�2 . Recall that for each line bundle L on Cgl we have a short
exact sequence

(2-1) 0! L! gl� gl�L! ���
�L! 0:

Next, recall that the canonical line bundle !C=S of a family of nodal curves, defined
as det.�1C=S /, admits the following description; see Knudsen [4, page 163]. Every
section ˛ of !C=S , when restricted to the fiber Cs over a geometric point s of S , is
a rational 1–form ˛s on the normalization of Cs . Moreover, ˛s has at most simple
poles at the preimages fp˙;sg of the nodes fpsg and

respC;s ˛sC resp�;s ˛s D 0
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for each node ps of the fiber Cs . Along with Nakayama’s lemma, this implies that we
have a canonical exact sequence of OCgl –modules

(2-2) 0! !Cgl=S ! gl� !C=S .�1C �2/! ��OS ! 0:

Choosing L D !Cgl=S and taking the obvious vertical maps from (2-1) to (2-2), an
application of the 5–lemma tells us that gl� gl� !Cgl=S Š gl� !C=S .�1C �2/.

Lemma 2.2 In the situation above, let D � Cgl be a divisor such that D ! S is a
flat map of degree d and such that, for each geometric point s of S , the fiber Ds is
supported on the smooth locus of the fiber Cgl

s . Then, for each k � 1, there is a short
exact sequence

0! !Cgl=S .D/
˝k
! gl� !C=S .DC �1C �2/

˝k
! ��OS ! 0:

Proof If we take LD !Cgl=S .D/
˝k, then (2-1) becomes

0! !Cgl=S .D/
˝k
! gl� gl� !Cgl=S .D/

˝k
! ��OS ! 0:

It remains to show that gl� gl� !Cgl=S .D/
˝k Š gl� !C=S .DC �1C �2/

˝k .

Using Nakayama’s lemma, it suffices to check that this isomorphism holds at each
geometric point s of S . Let Us � Cs be an open set such that either both or
neither of the points �1.s/ and �2.s/ are in Us . So long as both gl� !Cgl

s
.Ds/

˝k

and !Cs .Ds C �1.s/C �2.s//
˝k agree on every such Us , the pushforwards will be

isomorphic. By the above discussion, we see that

�.Us; gl� !Cgl
s
.Ds//Š �

�
Us; !Cs .DsC �1.s/C �2.s//

�
for each such Us , and therefore

�.Us; gl� !Cgl
s
.Ds/

˝k/Š �
�
Us; !Cs .DsC �1.s/C �2.s//

˝k
�
;

as required.

Now let C be a nodal curve over a field � and let �W C� ! C be its normalization.
Recall that for any line bundle L on C we have a short exact sequence

(2-3) 0! L! ���
�L!ON ! 0

analogous to (2-1). By reasoning analogous to the proof of Lemma 2.2, we also have
the following:
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Lemma 2.3 In the situation above, let D be a divisor on C . Denote by N the divisor of
nodes on C and denote by P the divisor of preimages of nodes in the normalization C� .
Then for each k � 1, there is a short exact sequence of OC –modules

0! !C.D/
˝k
! ��!C� .DCP /

˝k
!ON ! 0:

Proposition 2.4 (Riemann–Roch) Let � be a field and let C be a curve of arithmetic
genus g over � , with at most nodal singularities. Let L be a line bundle on C of total
degree d . Then

h0.C; L/� h1.C; L/D d �gC 1:

Proof Let �W C� ! C be the normalization of C and let N be the divisor of nodes
in C . The sequence (2-3) gives a long exact sequence on cohomology

0!H 0.C; L/!H 0.C� ; ��L/!H 0.N;ON /!H 1.C; L/!H 1.C� ; ��L/! 0:

Exactness then implies that

h0.C; L/� h0.C� ; ��L/C j � h1.C; L/C h1.C� ; ��L/D 0;

where j is the length of N . We can rearrange terms and apply the smooth Riemann–
Roch theorem:

h0.C; L/� h1.C; L/D h0.C� ; ��L/� h1.C� ; ��L/� j D
X
a

da �
X
a

gaC l � j;

where l is the number of irreducible components C �a of C�, da is the degree of L
restricted to the component C�a , and ga is the geometric genus of C�a . Using that
d D

P
a da and g D

P
a ga � .l � 1/C j , we conclude the result.

Lemma 2.5 Let .C; f�igniD1/ be a stable marked curve over a field � . Then, for k � 2,
we have

h0
�
C; !C

� nX
iD1

�i

�̋ k �
D .2k� 1/.g� 1/C kn:

When C has arithmetic genus 0, the same formula holds for k � 1.

Proof Stability and k� 2 (or k� 1 for genus 0) imply that !C˝
�
!C
�Pn

iD1 �i
�˝�k�

has negative degree on each component of C , and thus

H 1

�
C; !C

� nX
iD1

�i

�̋ k �
D 0:
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If C is smooth (or even just irreducible) then, by Riemann–Roch, we have

h0
�
C; !C

� nX
iD1

�i

�̋ k �
D k.2g� 2Cn/�gC 1D .2k� 1/.g� 1/Cnk:

For nonsmooth C , let N be the divisor of nodes of C and let j be the length of N . Let
�W C�! C be a normalization of C and let P be the divisor of preimages of the nodes.
Because H 1

�
C; !C

�Pn
iD1 �i

�˝k�
D 0 (as we showed above), Lemma 2.3 shows that

we have a short exact sequence

(2-4) 0!H 0

�
C; !C

� nX
iD1

�i

�̋ k �
!H 0

�
C; !C

� nX
iD1

�i

�̋ k �
! �j ! 0:

Write C� as a union of its irreducible components, C� D
Sl
aD1 C�a . Denote by f�.a;i/g

the set of marked points on the component C�a and define na WD jf�.a;i/gj. Denote by
ga the geometric genus of C�a . Denote by Pa the restriction of P to C�a , and define
pa WD deg.Pa/. Then

h0
�
C; !C

� nX
iD1

�i

�̋ k �
D h0

�
C� ; !C�

� nX
iD1

�i CP

�̋ k �
� j;

h0
�
C� ; !C�

� nX
iD1

�i CP

�̋ k �
D

lX
aD1

h0
�
C�a ; !C�a

�X
.a;i/

�.a;i/CPa

�̋ k �
;

h0
�
C�a ; !C�a

�X
.a;i/

�.a;i/CPa

�̋ k �
D deg

�
!C�a

�X
.a;i/

�.a;i/CPa

�̋ k �
�gaC 1

D k.2ga � 2CnaCpa/�gaC 1

D .2k� 1/.ga � 1/C k.naCpa/:

Substituting back, we get

h0
�
C� ; !C�

� nX
iD1

�i CP

�̋ k �
D

lX
aD1

h0
�
C�a ; !C�a

�X
.a;i/

�.a;i/CPa

�̋ k �

D

lX
aD1

..2k� 1/.ga � 1/C k.naCpa//

D .2k� 1/

lX
aD1

.ga � 1/C k

lX
aD1

.naCpa/

D .2k� 1/

� lX
aD1

ga � l

�
C k.nC 2j /:
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Using that g D
Pl
aD1 ga � .l � 1/C j , we have

h0
�
C� ; !C�

� nX
iD1

�i CP

�̋ k �
D .2k� 1/.g� 1/C j C kn:

In light of the exact sequence (2-4), this implies the result.

3 Gluing embedded curves

Definition 3.1 Let S be a scheme. A marked, k–log-canonically embedded curve
over S consists of the data .C; f�igniD1; �/, where

(1) � W C! S is a flat, projective morphism of relative dimension 1,

(2) the pair .C; f�ig/ is a disjoint union of stable marked curves over S ,

(3) � is a projective embedding over S by a complete linear system

�W C! PS

�
��!C=S

� nX
iD1

�i

�̋ k �_
:

Our goal in this section is to prove the following:

Theorem 3.2 (gluing embedded curves) Let S be a scheme. Let .C; f�igniD1; �/ be
a marked, k–log-canonically embedded curve over S . Denote by l�1;�2 the line in
PS
�
��!C=S

�Pn
iD1 �i

�˝k�_ spanned by �1 and �2 . If k � 5, then:

(1) There exists a section
 W S ! l�1;�2

depending functorially in S .

(2) The projection from  gives an embedding

Cgl
WD C=�1��2

�gl
�!PS

�
��!Cgl=S

� nX
iD3

�i

�̋ k �_
:

If �1 and �2 live on different connected components of C , then the claims hold
for k � 2. If, in addition, all components of C have arithmetic genus 0, then the claims
hold for k � 1.

Remark 3.3 We choose �1 and �2 for notational convenience. Our proof applies
equally well to any choice of i and j .

Proof To prove the theorem, we need to establish the claims (1) and (2).
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3.1 Constructing the section

Lemma 3.4 (claim (1)) Let S be a scheme, let k � 2 and let .C; f�igniD1; �/ be
a marked, k–log-canonically embedded curve over S . Denote by l�1;�2 the line in
PS
�
��!C=S

�Pn
iD1 �i

�˝k�_ spanned by �1 and �2 . Then there exists a section

 W S ! l�1;�2 ;

depending functorially in S .

If all irreducible components of C have arithmetic genus 0, and if �1 and �2 lie on
different connected components, then we can take k � 1.

Proof Define Cgl WD C=�1��2 . Denote the quotient map by glW C ! Cgl and let
� WD gl ı �1 D gl ı �2 . By Lemma 2.2, we have a short exact sequence

0! !Cgl=S

� nX
iD3

�i

�̋ k

! gl� !C=S

� nX
iD1

�i

�̋ k

! ��OS ! 0:

Pushing this sequence forward to S along the projection �glW Cgl! S , we obtain a
long exact sequence

0! �
gl
� !Cgl=S

� nX
iD3

�i

�̋ k

! �
gl
� gl� !C=S

� nX
iD1

�i

�̋ k

! �
gl
� ��OS

!R1�
gl
� !Cgl=S

� nX
iD3

�i

�̋ k

!R1�
gl
� gl� !C=S

� nX
iD1

�i

�̋ k

! 0:

Because k � 2 (or k � 1 if C and Cgl have arithmetic genus 0), degree considerations
combine with Grothendieck–Riemann–Roch to show that the higher direct image
sheaves vanish. Because �gl� D 1S and �gl glD � , we can rewrite the cohomology
long exact sequence as the short exact sequence

0! �
gl
� !Cgl=S

� nX
iD3

�i

�̋ k

! ��!C=S

� nX
iD1

�i

�̋ k

!OS ! 0:

Dualizing and projectivizing, we obtain the sequence

S

�!PS

�
��!C=S

� nX
iD1

�i

�̋ k �_
Ü PS

�
�

gl
� !Cgl=S

� nX
iD3

�i

�̋ k �_
;

where the dashed arrow indicates the projection from the point  .
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The first map gives the desired section,

S

�!PS

�
��!C=S

� nX
iD1

�i

�̋ k �_
:

We must still show that  factors through l�1;�2 . We have the map

C �
�!PS

�
��!C=S

� nX
iD1

�i

�̋ k �_
Ü PS

�
�

gl
� !Cgl=S

� nX
iD3

�i

�̋ k �_
;

which comes from restricting the linear system ��!C=S
�Pn

iD1 �i
�˝k to the sections in

�
gl
� !Cgl=S

�Pn
iD3 �i

�˝k . These sections, by construction, agree on �1 and �2 . Thus,
this composition factors through Cgl , and  factors through l�1;�2 .

3.2 Verifying that projecting gives an embedding

It remains to show that projecting from  induces an embedding �gl of the glued
curve Cgl . Because the projection from  is a map over S , it suffices to check that
it gives an embedding on fibers. Therefore, throughout this section, we assume that
S D Spec.�/ for a field � .

The following proposition provides the basis for our approach:

Proposition 3.5 [2, Proposition IV.3.7] Let � be a field, let C be a curve in P3� , let
 be a �–point not on C and let �0W C! P2� be the morphism determined by projection
from  . Then �0 is birational onto its image and �0.C/ has at most nodes as singularities
if and only if

(1)  lies on only finitely many secants of C ,

(2)  is not on any tangent line of C ,

(3)  is not on any secant with coplanar tangent lines, and

(4)  is not on any multisecant of C .

Now let .C; f�igniD1; �/ be a marked k–log-canonically embedded curve over the
field � . We show that any �–point  2 l�1;�2 on the line spanned by �1 and �2
satisfies an analogue of Proposition 3.5. As a first step, we have:

Lemma 3.6 Let k � 2 and let .C; f�igniD1; �/ be a marked k–log-canonically embed-
ded curve over the field � , and suppose C is a disjoint union C1 t C2 with �1 2 C1 and
�2 2 C2 . Then the projection from a point  2 l�1;�2 n f�1; �2g is an isomorphism on
C nf�1; �2g with a nodal singularity at � D l�1;�2 . Further, if all components of C have
arithmetic genus 0, then the result holds for k � 1.
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Proof By Lemma 3.4, our assumptions on C and k guarantee the existence of  . The
fibers of the projection restricted to C are intersections with lines through  . In other
words, any line through  intersecting C in more than one point is a fiber where the
map is noninjective. Thus, to show the map is injective, it suffices to show that  lies
on a unique secant line of C . To see that it is an isomorphism, we note that, if  lies on
a unique secant, then the projection from  will be an isomorphism at any point where
the line intersects the curve transversely, so we just need to rule out the existence of
tangent lines to C containing  .

We first observe that any k–log-canonical embedding of C D C1tC2 will embed Ci in
disjoint projective subspaces, which, up to a projective linear transformation, we can
take to be

P .H 0.Ca; !Ca.Da/
˝k//� P

�
H 0

�
C; !C

�X
i

�i

�̋ k ��
;

where Da denotes the divisor Ca \
P
i �i for a D 1, 2. From this, we immediately

see that, if  2 l�1;�2 n f�1; �2g, then  is not contained in P .H 0.Ca; !Ca.Da/
˝k//

for aD 1, 2. Therefore,  does not lie on any tangent line of C . Similarly, if p , q 2 C
are two points in Ca , then the secant line lp;q is contained in P

�
H 0.Ca; !Ca.Da/

˝k/
�

and therefore does not contain  . From this we also see that C has no multisecants
connecting C1 and C2 . Therefore, any four points �1¤ p 2 C1 and �2¤ q 2 C2 are in
general position, and l�1;�2 \ lp;q D∅. We conclude that l�1;�2 is the unique secant
containing  .

For k � 5 and with no assumptions on �1 and �2 , we can prove a stronger statement
than the conditions of Proposition 3.5. A priori, it suffices to change the first requirement
so that  lies on a unique secant l�1;�2 . Using lp;q for the line between p and q ,we
now rephrase (and strengthen) the four criteria as

(1) for all p , q 2 C , we have lp;q \ l�1;�2 D∅ unless fp; qg\ f�1; �2g ¤∅;

(2) for all p 2 C , we have TpC \ l�1;�2 D∅ unless p 2 f�1; �2g;

(3) for all p , q 2 C , we have TpC \TqC D∅ unless p D q ; and

(4) C has no multisecant.

We can further simplify as follows. Recall that the length of a zero-dimensional
scheme X over a field � is the dimension of the �–vector space H 0.X;OX /. We now
note that conditions (1)–(3) are special cases of the same thing. In particular, if we begin
with condition (1) and take the limit as q approaches p , we arrive at condition (2),
and, as �1 approaches �2 , we get (3). Second, C has no multisecants if and only if C
has no trisecants. With these changes, the statement becomes the following:
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Proposition 3.7 Let C be a curve in PN� and let �1 , �2 2 C . Then the projection from
a point  2 l�1;�2 n f�1; �2g is an isomorphism on C n f�1; �2g if:

(1) C � PN� has no trisecant.

(2) No length 4 subscheme of C is contained in a plane.

Proof As noted above, the fibers of the projection restricted to C are intersections
with lines through  . The absence of a trisecant line guarantees that fibers consist of at
most two points. The lack of a quadrisecant plane guarantees that there is only one line
through  which intersects the curve in at least two points. Thus, away from l�1;�2 ,
the projection map is injective on the curve C . As noted above, to see that it is an
isomorphism, it remains to rule out the existence of tangent lines to C containing  .
Such a line would, along with l�1;�2 give a length 4 subscheme of C contained in a
plane (through  ); by hypothesis, none exists.

We now verify that every marked k–log-canonically embedded curve satisfies the
conditions of the proposition.

Lemma 3.8 Let C D
S

Ca be a nodal curve (with irreducible components Ca ) of
arithmetic genus g over a field � . Let ga be the geometric genus of the normalization
C�a of Ca . Let L be a line bundle of degree d on C , let La be the pullback to C�a
of L and let da WD degLa . Assume that da � 2gaC 2C ja for all a , where ja is the
number of preimages of nodes in C�a . Then C has no trisecant lines when embedded by
the complete linear system jLj.

Proof A trisecant is an effective divisor T of degree 3 that is contained in a line. For
a curve embedded by the complete linear system of a line bundle L, this condition on
T can be rewritten as h0.C; L/�h0.C; L.�T //D 2. Riemann–Roch (Proposition 2.4)
tells us that

h0.C; L/�h1.C; L/D d �gC1 and h0.C; L.�T //�h1.C; L.�T //D d �g�2:

Applying Serre duality and then subtracting one from the other, we get�
h0.C; L/� h0.C; L.�T //

�
�
�
h0.C; !C˝L

�1/� h0.C; !C.T /˝L
�1/

�
D 3:

This equation implies that, in order to show that T is not a trisecant, it suffices to show
that

h0.C; !C˝L
�1/� h0.C; !C.T /˝L

�1/D 0:

In particular, it suffices to show that both terms vanish. A line bundle can be shown to
have no global sections by checking that there is no component on which the degree is
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positive. Thus, we want 2ga � 2C ja � da < 0 and 2ga � 2C 3C ja � da < 0. We
see that da � 2gaC 2C ja suffices for both.

Lemma 3.9 In the situation of Lemma 3.8, assume that da � 2ga C 3 C ja for
all a . Then, when embedded by the complete linear system jLj, the curve C has no
quadrisecant planes.

Proof Let T be an effective divisor of degree 4 on C that is contained in a plane.
Then, by a similar calculation as in the proof of Lemma 3.8, the divisor T must satisfy

h0.C; !C.T /˝L
�1/� h0.C; !C˝L

�1/D 1:

By the degree condition, !C˝L
�1 already has negative degree on each component,

and so has no global sections. Therefore, T is contained in a plane if and only if

h0.C; !C.T /˝L
�1/D 1:

However, we can compute that the degree on each component is

2ga � 2C jaC 4� da D 2gaC 2C ja � da:

By hypothesis, this is negative.

A direct computation now shows that if .C; f�igniD1/ is a disjoint union of stable curves,
then deg

�
!C
�Pn

iD1 �i
�˝k� satisfies the conditions of Lemma 3.9 (and thus Lemma 3.8)

so long as k � 5.

Corollary 3.10 (claim (2)) Let k � 5. Let S be a scheme and let .C; f�igniD1; �/ be
a marked, k–log-canonically embedded curve over S (as in Theorem 3.2). Then the
projection from  in PS

�
��!C=S

�Pn
iD1 �i

�˝k�_ induces an embedding �gl of Cgl in
PS
�
��!Cgl=S

�Pn
iD3 �i

�
˝k
�_ .

This concludes the proof of Theorem 3.2.

4 Moduli of pluri-log-canonically embedded curves

We now introduce a smooth DM stack Ekg;n parametrizing stable curves C , of genus g ,
with n marked points f�igniD1 in the smooth locus of C , equipped with a projective
embedding � by the complete linear system !C

�Pn
iD1 �i

�
˝k .
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Definition 4.1 Let k � 2. We define the moduli stack of k–log-canonically embedded
marked curves Ekg;n to be the DM stack representing the functor

S 7! f.C; f�igniD1; �/g

which maps a scheme S to the groupoid of stable curves of genus g with n marked
points and a k–log-canonical embedding �W C! PS

�
��!C=S

�Pn
iD1 �i

�˝k�_ . When
g D 0, we can take k � 1, in which case Ek0;n is in fact a scheme.

Remark 4.2 We see that Ekg;n is representable and smooth over Spec.Z/ as follows.
Denote by V.g; n; k/!Mg;n the “k–log-Hodge” bundle whose fiber at .C; f�ig/
is given by H 0

�
C; !C

�P
i �i

�˝k�_ . Because any two projective embeddings by a
complete linear system differ by a change of basis, Ekg;n!Mg;n is a torsor for the
relative group scheme PGL.V .g; n; k//!Mg;n of projective linear automorphisms
of V.g; n; k/. Further, the torsor Ekg;n has a section, given by sending a curve C to the
embedding which sends a point x 2 C to the hyperplane Hx �H 0

�
C; !C

�P
i �i

�˝k�
consisting of sections vanishing at x . Therefore the torsor trivializes, and Ekg;n is
isomorphic to PGL.V .g; n; k// over Mg;n . In less elementary fashion, one could also
directly exhibit a smooth atlas for Ekg;n by a construction analogous to the construction
of Mg;n from the Hilbert scheme.

Every S –point of Ekg;nC2 or Ekg1;n1C1 � Ekg2;n2C1 determines an embedded curve
satisfying the conditions of Theorem 3.2.1 Because the section  in Theorem 3.2 is
natural with respect to base change, Theorem 3.2 immediately implies the following:

Corollary 4.3 For each k � 2 (and k � 1 for g1 D g2 D 0), there exists a map

Ekg1;n1C1 � Ekg2;n2C1! Ekg1Cg2;n1Cn2 :

For k � 5, there exists a map

Ekg;nC2! EkgC1;n:

These maps fit into commuting squares:

Ekg1;n1C1 � Ekg2;n2C1
//

��

Ekg1Cg2;n1Cn2

��

Mg1;n1C1 �Mg2;n2C1
//Mg1Cg2;n1Cn2

and

Ekg;nC2 //

��

EkgC1;n

��

Mg;nC2
//MgC1;n

1For Ekg1;n1C1 � Ekg2;n2C1 , take the disjoint union of the factors.
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Remark 4.4 In the case gD 0 and kD 1, the discussion of Section 3 could be carried
out for embedded stable genus 0 curves .C; f�igniD1; �/ which are further equipped
with the canonical isomorphism

'W Pn�2S i Š�!PS

�
��!C=S

� nX
iD1

�i

��_
which sends the standard coordinate points of Pn�2 to the n points in general position
f�ig

n
iD1 . We could then consider the functor

S 7! f.C; f�igniD1; �; '/g

which maps an S –scheme to a stable, marked log-canonically embedded curve of
genus 0 with the specified trivialization of the ambient projective bundle. In the notation
of the previous remark, this functor is represented by the closed subscheme H10;n of the
Hilbert scheme of Pn�2 . Kapranov [3] has shown that the forgetful map H10;n!M0;n

is an isomorphism. Kapranov’s work can thus be understood as a first instance of gluing
maps for log-canonically embedded stable curves.

For larger g and k , one could similarly consider framed k–log-canonically embed-
ded stable marked curves, that is, curves as above equipped with a collection of
.2k� 1/.g� 1/CnkC 1 points in general position containing the n marked points as
a subset. The constructions of Section 3 extend to framed k–log-canonically embedded
curves. However, we do not know, even in the genus 0 case for k > 1, how to ensure
that the gluing maps for framed curves satisfy the necessary equivariance properties
required of a cyclic (and thus a modular) operad as required for the next section.

5 Modular operads of embedded curves

In this section, we prove Theorem 1.2. For the reader familiar with modular operads,
we remark that, given the above construction of the gluing maps, the only nontrivial
point which remains is to prove that the gluing maps are associative. For the rest of
our readers, we begin by recalling the definition of modular operads and stating what it
is we need to show. Readers familiar with these notions should feel free to skip the
following paragraph.

Review of modular operads Our goal in this subsection is to provide a minimal
list of things one must produce to exhibit a modular operad. For a more elegant and
thorough treatment, we refer the reader to Getzler and Kapranov [1], which we take as
our primary reference.
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Definition 5.1 Denote by Sn the permutation group on n elements f1; : : : ; ng.2 For
� 2 Sm , � 2 Sn and 1� i �m, denote by

� ıi � 2 SmCn�1

the permutation which reorders fi; : : : ; i C n� 1g according to � and then reorders
the set of sets

˚
f1g; : : : ; fi � 1g; fi; : : : ; i C n� 1g; fi C ng; : : : ; fmC n� 1g

	
by � .

Explicitly,

.� ıi �/.j / WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�.j / if j < i and �.j / < �.i/;
�.j /Cn� 1 if j < i and �.j / > �.i/;
�.i/C �.j � i C 1/� 1 if i � 1 < j < i Cn;
�.j �nC 1/ if j � i Cn and �.j �nC 1/ < �.i/;
�.j �nC 1/Cn� 1 if j � i Cn and �.j �nC 1/ > �.i/:

Let .D;˝; �/ be a symmetric monoidal category3 such that ˝ preserves coproducts;
for example D could be the category of DM stacks with the Cartesian product. We
further assume that there exists an initial object 0 2D ; for example 0 could be the DM
stack ∅.

Definition 5.2 An operad in .D;˝; �/ consists of

(1) for each nonnegative integer n 2N , an object P.n/ 2 D with a homomorphism
Sn! Aut.P.n//; and

(2) for each 1� i �m, a map ıi W P.m/˝P.n/! P.mCn� 1/.

We require that these satisfy the following conditions. For � 2 Sm , � 2 Sn and
1� i �m, we require

(5-1) .� ıi �/ � ıi D ı�.i/ � .� ˝ �/

as maps P.m/˝P.n/! P.mCn� 1/.

For 1� i < j � l , we require

(5-2) ıjCm�1 � .ıi ˝ 1P.n//D ıi � .ıj ˝ 1P.m// � .1P.l/˝ �/

and, for 1� i � l and 1� j �m, we require

(5-3) ıiCj�1 � .ıi ˝ 1P.n//D ıi � .1P.l/˝ıj /

as maps P.l/˝P.m/˝P.n/! P.l CmCn� 2/.

2By convention, S0 is the trivial group, ie the group of automorphisms of the empty set.
3� is the symmetry isomorphism.
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We define a map of operads P1 ! P2 in the obvious manner, ie it consists of a
collection of equivariant maps P1.n/! P2.n/ for all n 2 N which intertwine the
various maps ıi for P1 and P2 .

Remark 5.3 To make sense of these axioms, it is helpful to picture P.n/ as a collection
of labels for trees with one outgoing leaf and n incoming leaves marked 1; : : : ; n; the
group Sn acts by permuting the markings of the incoming leaves. In this picture, the
map ıi corresponds to gluing the outgoing leaf of a tree in P.n/ to the i th incoming
leaf of a tree in P.m/ to obtain a tree in P.nCm� 1/. Axiom (5-1) requires that
if we first relabel and then glue, this is equivalent to gluing first and then relabeling
in the natural fashion. Axioms (5-2) and (5-3) require the gluing of three trees to be
associative in the natural fashion.

Denote by SnC the permutation group on nC 1 letters f0; : : : ; ng. Denote by �n the
cycle .01 � � �n/.

Definition 5.4 A cyclic operad is an operad P in .D;˝; �/ such that, for each n2N ,
the Sn–action on P.n/ extends to an SnC–action4 and such that

(5-4) �nCm�1 � ım D ı1 � .�n˝ �m/ � �

as maps P.m/˝P.n/! P.mCn� 1/.

We define maps of cyclic operads in the obvious manner.

Remark 5.5 In the picture of Remark 5.3, the objects P.n/ of a cyclic operad can
be pictured as a collection of labels for trees with one outgoing and n incoming
leaves, where we are also allowed the permute the outgoing leaf with the incoming
leaves. Equivalently, we can view P.n/ as a collection of labeled trees with nC 1
leaves marked 0; : : : ; n, where SnC acts by permuting the markings on the leaves.
Axiom (5-4) requires that if we first relabel using the extra symmetry in SnC and then
glue, this is equivalent to gluing first and relabelling in the natural fashion.

Notation 5.6 If P is a cyclic operad, we write P..nC1// for the object P.n/. In this
notation, we have

ıi W P..m//˝P..n//! P..mCn� 2//

for m, n > 1. We will also consider cyclic operads P for which we define P..0//.
However, we do not assume the existence of maps ıi with source P..m//˝P..n// for
either m or n equal to 0.

4Under the embedding Sn ,! SnC corresponding to the inclusion f1; : : : ; ng � f0; : : : ; ng .
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Definition 5.7 A stable cyclic operad is a cyclic operad P such that, for each non-
negative integer n 2N , there exists an Sn–equivariant decomposition

P..n// WD
a
g2N

P..g; n//

such that P..g; n//D 0 if n < 3� 2g , and such that, for all 1� i �m and n > 0, the
map ıi restricts to a map

P..g;m//˝P..h; n//! P..gC h;mCn� 2//:

Remark 5.8 In a stable cyclic operad, we can picture the object P..g; n// as a collec-
tion of labels for dual graphs of stable curves of genus g with n marked points. In this
picture, the maps ıi correspond to gluing the first leg of a graph in P..h; n// to the i th

leg of a graph in P..g;m//, and relabelling the remaining legs accordingly.

Definition 5.9 Let n� 2, � 2 Sn and i ¤ j 2 f1; : : : ; ng. Denote by �nfi;j g 2 Sn�2
the induced bijection

f1; : : : ; n� 2g Š�!f1; : : : ; ng n fi; j g
�
�!f1; : : : ; ng n f�.i/; �.j /g Š�!f1; : : : ; n� 2g;

where the first and last bijections are the canonical order-preserving bijections.

Definition 5.10 A modular operad is a stable cyclic operad P such that, for each
g , n and i ¤ j 2 f1; : : : ; ng, there exists a map

�ij W P..g; n//! P..gC 1; n� 2//

such that the following properties are satisfied: For each � 2 Sn , we require

(5-5) �nfi;j g � �ij D ��.i/�.j / � �

as maps P..g; n//! P..gC 1; n� 2//.

For 1� i ¤ j ¤ k ¤ l � n, we require

(5-6) �ij � �kl D �kl � �ij

as maps P..g; n//! P..gC 2; n� 4//.5

5Note that we are abusing notation slightly on the left-hand side of (5-6) by writing �ij for the map
which corresponds to the image of the pair i , j under the identification f1; : : : ; ngnfk; lgŠ f1; : : : ; n�2g .
An analogous abuse of notation also occurs on the right-hand side.
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We further require

�12 � ım D ım�2 � .�12˝ 1P..h;n///;(5-7)

�m;mC1 � ım D ım � .1P..g;m//˝ �12/;(5-8)

�m�1;m � ım D �mCn�2;mCn�1 � ım�1 � .1P..g;m//˝ �
�1
n /;(5-9)

as maps P..g;m//˝P..h; n//! P..gC hC 1;mCn� 4//.

We define maps of modular operads in the obvious manner.

Remark 5.11 A modular operad is a stable cyclic operad with extra structure encoded
by the maps �ij . If we picture P..g; n// as a collection of labels for dual graphs
of stable marked curves, then the maps �ij correspond to gluing together the i and
j legs of a graph � to obtain a new graph � 0 . As usual, axiom (5-5) requires that
relabelling and then gluing is equivalent to gluing first and relabelling in the natural
fashion. Similarly, axioms (5-6)–(5-9) require the various operations involving gluing
two pairs of legs together to be associative in the natural fashion.

Proof of Theorem 1.2 Because the forgetful maps Ekg;n!Mg;n are Sn–equivariant,
by Corollary 4.3, it suffices to verify that the gluing maps on fEkg;ng form a modular
operad in order to conclude that the forgetful maps

Ekg;n!Mg;n

determine a map of operads (the analogous observation applies to the cyclic and stable
cyclic operads Ek0;c and Ekc ).

Further, the construction of the gluing maps in the proof of Theorem 3.2 immediately
implies that the equivariance axioms (5-1), (5-4) and (5-5) are all satisfied in each
case. Therefore, it only remains prove that the gluing maps satisfy the associativity
properties (5-2), (5-3) and (5-6)–(5-9). These will all be immediate consequences of
the following lemma:

Lemma 5.12 Let k � 5, let S be a scheme and let .C; f�igniD1; �/ be a marked
k–log-canonically embedded curve over S . Denote by

.Cgl12;34 ; f�ig
n
iD5; �

gl12;34/

the embedded curve obtained by first gluing �1 to �2 and then gluing �3 to �4 .
Likewise, denote by

.Cgl34;12 ; f�ig
n
iD5; �

gl34;12/
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the embedded curve obtained by first gluing �3 to �4 and then gluing �1 to �2 . Then
there exists a canonical isomorphism

.Cgl12;34 ; f�ig
n
iD5; �

gl12;34/Š .Cgl34;12 ; f�ig
n
iD5; �

gl34;12/:

The same conclusion holds if k � 2 and f�1; �2g and f�3; �4g lie on disjoint compo-
nents of C and Cgl . In addition, if all components of C have arithmetic genus 0, then
we can take k � 1.

Proof The associativity of the classical gluing maps for curves guarantees the existence
of a canonical isomorphism

.Cgl12;34 ; f�ig
n
iD5/Š .C

gl34;12 ; f�ig
n
iD5/:

Using this isomorphism, our observations about the vanishing of higher direct image
sheaves imply that there exists a commuting diagram of OS –modules with exact rows
and columns:

��!Cgl12;34=S

�Pn
iD5 �i

�˝k
//

��

��!Cgl34=S

�P
i¤3;4 �i

�˝k
//

��

OS

��!Cgl12=S

�Pn
iD3 �i

�˝k
//

��

��!C=S
�Pn

iD1 �i
�˝k

//

��

OS

��

OS OS // 0

Dualizing and projectivizing, we obtain a commuting diagram

∅ //

��

S

��

S

��

S // PS
�
��!C=S

�Pn
iD1 �i

�˝k�_
//

��

PS
�
��!Cgl12=S

�Pn
iD3 �i

�˝k�_
��

S // PS
�
��!Cgl34=S

�P
i¤3;4 �i

�˝k�_
// PS

�
��!Cgl12;34=S

�Pn
iD5 �i

�˝k�_
where the dashed arrows indicate the projections. The commutativity of the lower right
square implies that �gl12;34 D �gl34;12 .

Remark 5.13 There is an equivalent, although more manifestly geometric, formulation
of the above argument. Each of the pairs of points f�1; �2g and f�3; �4g lying over

Geometry & Topology, Volume 21 (2017)



922 Satoshi Kondo, Charles Siegel and Jesse Wolfson

eventual nodes gives a point on the line between them. Then, projection from one point
followed by projection from the image of the other, in either order, is the same map
as projection from the line spanned by the two points. Here, the equivalence of the
embeddings follows from the fact that these are just two factorizations of the same
projection map, with one-dimensional center.
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